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Abstract 

 
Metallic glasses have been the subject of intense scientific study since the 

1960s, owing to their unique properties such as high strength, large elastic limit, high 

hardness, and amorphous microstructure. However, bulk metallic glasses have not 

been used in the high strength structural applications for which they have so much 

potential, owing to a highly localized failure mechanism that results in catastrophic 

failure during unconfined loading. In this thesis, bulk metallic glass matrix composites 

are designed with the combined benefits of high yield strengths and tensile ductility. 

This milestone is achieved by first investigating the length scale of the highly localized 

deformation, known as shear bands, that governs fracture in all metallic glasses. Under 

unconfined loading, a shear band grows to a certain length that is dependent on the 

fracture toughness of the glass before a crack nucleates and fracture occurs. Increasing 

the fracture toughness and ductility involves adding microstructural stabilization 

techniques that prevent shear bands from lengthening and promotes formation of 

multiple shear bands. To accomplish this, we develop in-situ formed bulk metallic 

glass matrix-composites with soft crystalline dendrites whose size and distribution are 

controlled through a novel semi-solid processing technique. The new alloys have a 

dramatically increased room-temperature ductility and a fracture toughness that 

appears to be similar to the toughest steels. Owing to their low modulus, the 

composites are therefore among the toughest known materials, a claim that has 

recently been confirmed independently by a fracture mechanics group. We extend our 

toughening strategy to a titanium-vanadium-based glass-dendrite composite system 



 

 

ix 

with density as low as 4.97 g/cm3. The new low-density composites rival the 

mechanical properties of the best structural crystalline Ti alloys. We demonstrate new 

processing techniques available in the highly toughened composites: room temperature 

cold rolling, work hardening, and thermoplastic forming. This thesis is a proven road 

map for developing metallic glass composites into real structural engineering 

materials. 
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Chapter  1 

1 Why Should We Study Metallic Glasses? 

1.1 Overview 

 The aim of this thesis is to ultimately understand and improve the tensile 

ductility and the fracture toughness of bulk metallic glass (BMG) composites. Much 

research has been done on BMGs and their composites and yet the new materials are 

still not being used in structural applications. Previous work has spanned many 

scientific fields from liquid theory to nanotechnology and yet currently BMGs are 

currently relegated primarily to niche applications. They are most useful in electronics 

for casings and small parts where expensive machining can be avoided through net 

shape casting. Herein, however, we report that significant toughening can be achieved 

by understanding the length scale of deformation in monolithic BMGs and then 

designing inclusions to exploit this length scale. Our discovery is that BMGs can be 

toughened on the microscale (as opposed to the nanoscale). This sharply contrasts with 

much of the current work in metallic glasses. Our hope is that with proper processing, 

BMGs will find structural applications that exploit their high strengths.  

1.2 What is a Metallic Glass? 

 As we discuss extensively in this thesis, metallic glasses represent such a 

departure from traditional crystalline metals that their properties nearly defy 

description. A metallic glass is a metal alloy that contains an amorphous structure, 

rather than a crystalline structure, and is therefore a disordered solid. In a typical 



 

 

2 

crystalline metal, atoms are arranged in repeating crystalline lattices which extend 

until interrupted by another lattice at a different orientation, called a grain boundary. 

The bulk material is comprised of many grains and mechanical properties are 

connected to the size of these grains (at least in the case of low stacking fault energy 

materials [1]). To strengthen crystalline metal alloys, grain refinement methods have 

been used to reduce the overall grain size, creating nanocrystalline materials [1]. In the 

case where the grain size is sufficiently small (on the order of tens of nanometers) the 

difference in the definition between nanocrystalline metals and amorphous metals 

becomes ambiguous. For instance, an amorphous metal can be identified in X-ray 

diffraction experiments by observing broad diffuse haloes, in contrast to the sharp 

Bragg peaks observed in crystalline materials. However, if the grain size of a 

crystalline material is smaller than ~ 10 nm, a similar diffraction pattern is observed. 

One definition of an amorphous metal is a material that does not possess long range 

order; however nanocrystalline metals can sometimes satisfy this definition as well. 

From experimentation, metallic glasses contain short range order on the scale of about 

2 nm. Although they don’t have crystalline lattices, metallic glasses are comprised of 

loosely packed clusters containing approximately 200 atoms, which are usually 

referred to as “shear transformation zones.” The mechanical properties and 

deformation mechanisms of a glass are inherently linked to these tiny clusters. 

 The previous definitions of short range order alloys allows us to refer to 

metallic glasses as “amorphous metals” and “disordered solids,” but are they truly 

glasses? An amorphous metal can also be defined as a vitrified liquid; that is, a solid 

that has the structure of a liquid. Since the amorphous nature of the liquid is preserved 
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upon cooling to the solid state, amorphous metals can be further defined as 

“undercooled liquids” or more casually “liquid metals.” We explore in the next section 

the glass transition, the characteristic feature of an amorphous metal, and the 

definition that allows us to refer to them as metallic “glasses.”  

1.3 Glass Transition  

 As we have seen, amorphous metals can be called disordered solids, 

undercooled liquids, vitrified liquids, non-crystalline solids, and liquid metals, among 

other terms. Much scientific research has been done to explore each of these unique 

definitions. In this section, we explore why amorphous metals are called metallic 

“glasses.”  

 Conventional glasses contain many types of chemical bonding, which include 

covalent, ionic, hydrogen, van der Waals, and metallic. Obviously, amorphous metals, 

being comprised of metals and metalloids, exhibit metallic bonding.  

 If glasses are annealed at high enough temperatures, they will crystallize, 

indicating that they are metastable phases [2]. When a liquid cools, it will take the 

equilibrium state, minimizing the free energy. From thermodynamics, the free energy 

of a system can be defined as 

TSHG −= ,     (1.1) 

where H is the enthalpy, T is the temperature, and S is the entropy. Several phases of 

one material exist so the equilibrium state that minimizes G is the stable form. 

Crystalline metals form close-packed structures and thus have lower enthalpy than 

amorphous metals, while the liquid state has more disorder and thus has higher 
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entropy. In a plot of Gibbs free energy versus temperature, both the liquid and the 

solid curves are concave down with negative slope. The melting temperature is 

defined as the point where the free energy of the crystal (x) and the liquid (l) are equal 

[3]. In other words, at Tm, 0=−=∆ xlm GGG . In addition, entropy is defined as 

mmxlm THSSS ∆=−=∆ , where mH∆  is the enthalpy of fusion. Above the melting 

temperature, the liquid has a lower free energy than the crystal and is the stable phase. 

Below the melting temperature, the crystal has the lower free energy and the liquid 

phase becomes metastable [2]. In the case where a liquid is undercooled so that it 

forms an amorphous solid, the structure is unstable. The difference in free energy 

between the undercooled liquid and the crystal is the driving force for crystallization. 

This can be defined as ( )∫ ∫ ∆−=∆−+∆=∆
T

T

T

Tm
m m

SdTdTSGG . Therefore, all metallic 

glasses will crystallize if heated to sufficiently high temperatures.  

 The most prominent feature of a metallic glass is that it undergoes a glass 

transition, Tg, prior to crystallization [4]. Below Tg, a metallic glass can be thought of 

as an extremely viscous liquid. At Tg, the glass undergoes a transformation into liquid-

like behavior marked by a rapid increase in the heat capacity (Cp), and several orders 

of magnitude decrease in the viscosity (η). Heat capacity is defined as the amount of 

heat energy it takes to raise the temperature of an object by a certain temperature, 

typically 1 °C. We can define Tg of a metallic glass by heating it at a rate of 20 K/min 

in a differential scanning calorimeter (DSC) until the increase in Cp is observed. With 

further heating, η continues to drop until the onset of crystallization at a temperature 

Tx. The temperature range between Tx and Tg is referred to as ΔT and represents a 
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thermal processing window. As we discuss in Chapter 5, between these two 

temperatures, a metallic glass has low viscosity and yet can still be vitrified, allowing 

for thermoplastic processing in some alloys.  

1.4 Crystal Nucleation and Growth  

 This thesis primarily focuses on the formation and growth of specific 

crystalline phases in metallic glasses while simultaneously suppressing the nucleation 

of other, less desirable phases. It is therefore important to briefly discuss classical 

theory for nucleation and growth of crystals (see, for example [5]).  

 Both solidification and melting of metals occur by nucleation and growth. 

However, in the case of cooling a liquid, the process of nucleation is much more 

difficult than it is in the case of melting. As a result, metals do not significantly 

superheat, whereas almost all metals supercool to some extent. Depending on several 

factors, such as cooling rate and the presence of nucleation sites (called heterogeneous 

nucleation), liquid metals can be supercooled far below their solidification 

temperatures before nucleation and growth begin. Obviously, in the case where a 

liquid metal is supercooled below its glass transition temperature, nucleation will 

never occur and the supercooled liquid becomes a metallic glass. A supercooled liquid 

is in a metastable state and the free energy difference (ΔG) between the liquid and the 

crystal is the driving force for crystallization. As we have discussed, ΔG = 0 at Tm, 

where ΔGm = ΔHm – TmΔSm. This leads to an equation for the change in entropy 

associated with crystallization, ΔSm =  ΔHm/Tm. We can make the approximation that 

ΔG = ΔH – TΔS ~ ΔHm – TΔSm. Plugging in for ΔSm from above leads to another 
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expression for the nucleation driving force, ΔG = ΔHmΔT/ Tm. We notice that this 

expression is the approximate solution to the integral we presented in the previous 

section ∫ ∆−=∆
T

Tm

SdTG . Upon nucleation of crystals, the system’s free energy 

changes as a result of the presence of the nuclei. The formation of a crystal is 

associated with a drop in free energy, which is a benefit in minimizing G, and is a 

function of the volume of the embryo. However, the formation of a crystal has a cost 

in G associated with creating a liquid-crystal interface. This increase in G is 

proportional to the surface area of the embryo. Therefore, if we assume a spherical 

shape for the nuclei, the free energy change associated with an undercooled liquid 

nucleating a crystal by homogeneous nucleation is defined as 

vGrrG ∆−=∆ 32

3
44 πσπ           (1.2) 

where r is the radius of the nuclei, σ is the interfacial surface energy, and ΔGv is the 

free energy difference between the crystal and the liquid per volume. As we have seen, 

the most stable form of a system is that which minimizes G, and yet there is a clear 

maximum in Equation 1.2. The increase in G associated with creating a new surface 

(which grows as r2) is in competition with a decrease in G associated with 

crystallizing a volume element (which decreases as r3). Above some critical radius rc, 

crystal growth will be spontaneous because it lowers G. Below rc, a crystal nuclei will 

not grow spontaneously because that would raise G. The critical nuclei size can be 

found by taking 0=
∆

crdr
Gd . The critical nuclei and free energy maximum are 
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v
c G

r
∆

=
σ2             (1.3) 










∆
=∆ 2

3

3
16

v
c G

G σπ .                    (1.4) 

 Although it will not be discussed in detail here, further thermodynamic 

arguments are available to define crystal nucleation rate (Iv), crystal growth rate (u), 

volume fraction of the crystallized part of the undercooled liquid (f), and the time 

required to crystallize a certain volume of liquid (t). The crystal nucleation rate is 

defined as 










∆
−= 2

3

3
16exp

cB
v GTk

AI πσ
η

    (1.5) 

where A is a constant, η is viscosity, and kB is the Boltzmann constant. Typically, the 

viscosity is defined as 







−

=
0

0
0 exp)(

TT
DTT ηη , where D is the diffusivity. Crystal 

growth rate can be defined as 
















 ∆
−−=

Tk
Gn

l
ku

B

cB exp1
3 2ηπ

    (1.6) 

where l is the average atomic diameter and n is the average atomic volume. The 

volume fraction of crystallized liquid can be written as 

vItuf 43

3
π

=               (1.7) 

where the time for a certain volume to crystallize, t, is found by solving this equation.  
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 These few equations are the foundation for Time-Temperature-Transformation 

(TTT) diagrams, which are extremely useful for metallic glasses [6]. TTT diagrams 

indicate how long a liquid can be held at a specific temperature before crystallization 

occurs. For glass-forming alloys, the TTT diagram can be used to determine how fast 

the alloy must be cooled to avoid the onset (or nose) of crystallization (for creating 

bulk samples) and how long the sample can be held at a certain temperature before it 

crystallizes (which is useful for thermoplastic processing). A TTT diagram can be 

generated theoretically by solving the thermodynamic equations or it can be 

constructed experimentally by plotting multiple measurements of the time it takes to 

crystallize an alloy during an isothermal differential scanning calorimetry (DSC) scan. 

TTT diagrams are very interesting for alloy development and characterization but they 

fall outside the scope of this work.  

1.5 Dendrite Growth 

 To accompany the section on crystal nucleation and growth, it is important to 

briefly discuss dendrite growth. The metallic glass composites making up the majority 

of this thesis form using dendrite growth, so it is important to explore their origin.  

 Dendrite growth is a type of crystalline growth that occurs when “the liquid-

solid interface moves into a supercooled liquid whose temperature falls, or decreases, 

in advance of the interface” [7]. When the temperature falls in advance of a liquid-

solid interface, the liquid becomes unstable, and crystals may grow from the solid 

interface into the liquid. This occurs when nucleation is poor, such that the liquid 

undercools before the solid forms. As the crystals grow, the latent heat of fusion is 
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conducted into the undercooled liquid, raising the liquid temperature towards the 

freezing point. The crystals will grow until the undercooled liquid increases in 

temperature to the solidification (or freezing) point. The structure of the crystals can 

be complex, with secondary and tertiary braches forming on the primary “trunk.” The 

final structure resembles that of a pine tree and has been called dendrite, after the 

Greek word meaning “of a tree” [7]. The dendrite growth direction is <100> for the 

body centered cubic (b.c.c.) composites in this thesis. Dendrite growth occurs during 

the freezing of metals when the solid-liquid interface is able to move forward into 

sufficiently supercooled liquid. Typically, very large supercooling (about 100 K) is 

needed to freeze dendrites in pure metals. Dendrite nucleation and growth are both 

controlled by the cooling rate. For alloys cooled rapidly, dendrites are small and 

numerous (< 1 0  μm in  size fo r so me BMG comp o sites). For alloys cooled slowly, 

dendrites are large and coarse (> 100 μm in some BMG composites).  

1.6 Glass-Forming Ability 

 Bulk metallic glasses are created by successfully cooling liquid metal from 

above the melting temperature (Tm) to below the glass transition temperature (Tg) 

while avoiding crystal nucleation and growth, which is thermodynamically favored 

below Tm. As we have seen in the previous section, crystal nucleation and growth both 

require a finite amount of time to proceed. Obviously, if a liquid metal is cooled from 

Tm to below Tg at an infinitely high rate, the liquid will freeze as a glass because 

nucleation and growth will be completely suppressed. Of course, such a high cooling 

rate is impractical in the laboratory, and yet this does not prevent us from creating 
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bulk metallic glasses. As we will see in the next section, many factors, such as atomic 

size mismatch, contribute to the frustration of crystallization, leading to potentially 

millions of alloy compositions that can be frozen as glasses under practical cooling 

rates. For each glass-forming alloy composition there is a scheme to impede the 

formation of crystals. The better the scheme, the slower the cooling rate necessary to 

freeze the liquid into a glass. For each liquid metal, there is a critical cooling rate, 

denoted Rc, to create a glass during undercooling. The first metallic glass, created in 

Au75Si25 [8], was produced in ribbons by splat quenching. Splat quenching involves 

sandwiching a molten drop of liquid between two pistons, generating a cooling rate of 

approximately 106 K/s. This is the largest cooling rate that can be practically generated 

in the laboratory and typical sample sizes created by the method are only several 

microns thick. Many metallic glasses have such high Rc that splat quenching is the 

only method by which they can be produced. For alloys that have a low Rc, much 

thicker samples can be produced without resulting in crystallization. The center of a 

rapidly cooled ingot clearly has the slowest cooling rate and as long as it can be cooled 

to below Tg faster than Rc, the entire sample will be amorphous. The maximum 

thickness that a metallic glass sample can be cooled without crystallizing is referred to 

as the glass-forming ability (GFA). In weak glass formers it can be determined by 

splat quenching, in bulk glass formers it can be determined through copper-mold 

casting, and in highly processable glass formers it can be estimated through ingots 

cooled on one side in the arc melter. The best known glass former, Pd40Cu30Ni10P20 

[9], has Rc < 1 K/s and has GFA of 7.2 cm. The best glass former made of practical 
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elements (those that are relatively low cost and easy to use), Zr41.2Ti13.8Cu12.5Ni10Be22.5 

(Vitreloy 1) [10–11], has a cooling rate of 1.4 K/s and has GFA of 2.5 cm.  

 The time it takes the center of a sample to cool to below Tg (which is inversely 

proportional to Rc) can be estimated experimentally by solving the one-dimensional 

Fourier heat flow equation (see, Haberman [12]) 

 2

2

x
Tk

t
T

∂
∂

=
∂
∂      (1.8) 

where T is the temperature, t is the time, k is the thermal diffusivity, and x is the spatial 

coordinate. The initial condition is that the alloy is at the liquidus temperature and the 

boundary conditions require room temperature at the edges (assuming a heat 

reservoir). The general solution can be written as 

( ) ∑
∞

=
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xnBtxT ππ .    (1.9) 

 Applying the boundary conditions, T(x,0) = Tl (the liquidus temperature), and 

T(0,t) = T(L,t) = Tr (room temperature), we obtain an equation for temperature as a 

function of time and of position 
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 The centerline, x =  L/2, has the slowest cooling rate so we can solve for 

temperature at the centerline as a function of time only 
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 We can use a first-order approximation to obtain the critical time it takes for 

the centerline to reach Tg. If this critical time is faster than the time it takes for crystal 

nucleation and growth to proceed above a critical size, then nucleation is suppressed. 

The critical time is defined as 
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.           (1.12) 

 Therefore, the critical cooling rate, Rc, can be found by evaluating 

( ) cglc tTTR −= . The critical cooling rate to create a bulk glass is  

( )
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 This equation tells us that the critical cooling rate to form a glass is a function 

of only the liquidus temperature, the glass transition temperature, the thermal 

diffusivity, and the length. GFA can be further defined as critical casting thickness, 

the critical length, Lc, where the centerline can be cooled to below Tg at the critical 

cooling rate. The critical casting thickness of a metallic glass is therefore  

( )
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.           (1.14) 

 In Chapter 2, we focus on the weak glass forming binary alloy Cu46Zr54, which 

has Lc = 2 mm. In Chapter 3, we mainly focus on the ternary alloy Cu47.5Zr47.5Al5, 
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which has Lc = 3 mm. In the later chapters, we focus only on highly processable 

BMGs based in the Zr-Ti-Be system with Lc > 1.5 cm.  

1.7 Criteria Used to Develop Bulk Metallic Glasses 

 The majority of work in the metallic glass field has always centered on alloy 

development. In the scope of this thesis, the criteria used to create new glasses are 

useful in understanding the limitations observed while trying to create new 

composites. Many schemes are used to evaluate which systems will form bulk glasses. 

These include (but are not limited to) atomic size mismatch, confusion principle, deep 

eutectics, reduced glass transition temperature, and chemical interactions. We note that 

two of the strategies are useful for designing BMG composites: deep eutectics and 

atomic size mismatch.  

 First, we will briefly discuss the strategies that are not as useful for designing 

composite glasses. A large value of reduced glass transition temperature, defined as 

Trg = Tg/Tm, is generally observed to lead to larger GFA [13]. A large Trg leads to a 

lower nucleation rate and a smaller time window for crystallization. For BMG 

composites, the interaction between the inclusions and the glass matrix is the major 

design problem and the reduced glass transition temperature is not a practical strategy.  

 In another strategy it is observed that constituents that have a negative heat of 

mixing can lower the system’s energy [14]. If the mixing effect is more prominent in 

the liquid than the crystal, the driving force for crystallization can be reduced and 

GFA can be enhanced. However, this empirical rule has been shown to have many 

exceptions and is not a practical strategy for designing composites.  
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 The confusion principle, which states that the more elements in a liquid the 

more difficult it is to select a viable crystal structure [15], is an empirical rule with 

many exceptions. Clearly, most good glass formers are comprised of 4–5 elements and 

yet addition of further elements does not necessarily improve GFA. For example, 

Vitreloy 1, comprised of Zr-Ti-Cu-Ni-Be is an optimal composition, based on other 

criteria for GFA. Further additions of elements actually reduce GFA, which 

contradicts the confusion principle. In fact, the discoveries of binary bulk glasses in 

the Cu-Zr system prove that good glass forming can be achieved without numerous 

elements. In the Pd-Si binary system, 6 mm glasses can be obtained, representing 

larger GFA than many systems with five or more elements.  

 We have observed that the two most important criteria for bulk glass formation 

are deep eutectics and atomic size mismatch. Good glass-forming systems can be 

found by first looking at binary phase diagrams for deep eutectics. The deeper the 

eutectic, the easier it is to cool a liquid below Tg without allowing enough time for 

crystal nucleation and growth. Figure 1.1 is a binary phase diagram of Cu-Zr, which 

exhibits several deep eutectics. These eutectics are so prominent that three 

compositions, Zr65Cu35, Cu46Zr54, and Cu50Zr50, lead to the formation of bulk glasses. 

All bulk metallic glasses are based in systems that have deep binary eutectics between 

two constituents. Examples of deep eutectics are Pd-P, Pt-P, Au-Si, Pd-As, Pt-As, Zr-

Be, Ti-Be, Cu-Ti, Cu-Zr, Ni-Ti, Ni-Zr, Pd-Si, Cu-P, and Fe-P. Figure 1.2 and Figure 

1.3 show binary phase diagrams from Zr-Be and Ti-Be, which are the basis for the 

glass forming systems used in this work. In many cases, by combining several alloys 

that all exhibit binary eutectics, even lower melting temperatures can be achieved. For 
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instance, despite deep eutectics in Zr-Be and Ti-Be, bulk glasses cannot be created in 

those systems. However, by combining the three elements, Ti-Zr-Be glassy alloys can 

be created up to 6 mm thick [17]. With additions of Cu and Ni, glass forming 

increases to 2.5 cm and melting temperatures can dip as low as ~ 900 K. Practical 

metallic glasses (those that don’t use precious or expensive metals) are typically 

comprised of elements such as Zr, Ti, Cu and Ni. To design highly processable BMG 

composites, this work deals solely with the Ti-Zr-Cu-Be system as its base.  

 Atomic size mismatch is the last constraint used to determine GFA. Elements 

that exhibit large differences in atomic size produce lattice stresses that increase the 

energy of the crystalline phase. Like the other strategies, there are many exceptions to 

this rule. Boron, for instance, is a very small metalloid that appears to be an excellent 

addition to some Zr and Ti-based alloys and yet it never seems to improve GFA. The 

most important contribution of atomic size mismatch is that a highly processable 

BMG made from practical elements cannot be made without mismatch or deep 

eutectics. The optimal combination of both is Zr41.2Ti13.8Cu12.5Ni10Be22.5 (Vitreloy 1) 

[10]. In this alloy, Cu, Ni, and Be all exhibit extremely deep eutectics with Zr and Ti. 

Additionally, Be is a small metalloid which allows for pronounced atomic size 

mismatch between the other elements. As a result, GFA is on the order of 2.5 cm. The 

only practically based highly processable glasses that do not contain Be are 

Zr57Nb5Cu15.4Ni12.6Al10 and Zr52.5Ti5Cu17.9Ni14.6Al10, Vitreloy 106 and 105, 

respectively (see X. Lin, Caltech thesis, 1997). In these non-beryllium alloys, the deep 

eutectic obtained from Zr-Be and Ti-Be is absent, raising the melting temperature by  

~ 200 K over Vitreloy 1. However, these alloys contain the small metalloid Al, which 
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increases GFA substantially, even though it raises the melting point of Ti. Vitreloy 

105 and 106 utilize the strategy of atomic size mismatch but don’t utilize the deep 

eutectic found in Be-containing alloys. Thus, GFA is reduced to ~ 1.5 cm. 

Additionally, without the oxygen-gettering affects of Be, these alloys are extremely 

prone to crystallization [18]. GFA is severely reduced when the oxygen content 

exceeds ~ 500 parts per million. Vitreloy 1, 105, and 106 are all considered to be 

highly processable, since they can be produced in ingot form. As we discuss in 

Chapter 6, small additions of Al dramatically increase the shear modulus of BMG 

composites, which eliminates ductility. To create highly processable BMG composites 

we require bulk glasses that don’t contain a substantial amount of Al. Thus, our 

current composites are limited to Be-containing alloys. No highly processable BMGs 

made from practical elements currently exist which do not contain Be or Al.  
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Figure 1.1 – Binary Cu-Zr phase diagram (adapted from [16]). The Cu-Zr eutectic 
temperatures are so deep that three binary bulk glasses form near 38.2%, 44%, and 
54.3% zirconium. The best glass former, Cu46Zr54, can be cast up to 2 mm in diameter.  
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Figure 1.2 – Binary Zr-Be phase diagram (adapted from [16]). 

 

 
Figure 1.3 – Binary Ti-Be phase diagram (adapted from [16]). 



 

 

19 

1.8 Mechanical Testing of BMGs 

 Without question, mechanical testing, specifically the uniaxial compression 

test, is the single largest pitfall of BMG research. The problem with mechanical testing 

arises from the inherent nature of BMGs. Despite thousands of reported compositions 

that form bulk glasses, almost all of them possess mechanical properties that fall 

within a narrow window. Nearly all BMGs exhibit high strength, large elastic limit, 

high hardness, and zero tensile ductility in bulk dimensions. Many BMG publications 

rely on uniaxial compression tests because all monolithic BMGs look similar under 

tensile loading. This section demonstrates some of the problems associated with 

compression tests and motivates the tension tests used in Chapters 4–6.  

 BMGs have been created in many different alloys systems including Zr, Ti, Fe, 

Au, Pt, Pd, Cu, Ni, La, and Cs. Although some of these systems show unique 

mechanical properties (such as low strength in La-based glasses and high strength in 

Fe-based glasses), the mechanical properties of the majority are similar. Despite any 

observed differences in the mechanical properties of BMGs, they all have one feature 

in common: they lack any global tensile ductility. No monolithic BMG has ever 

demonstrated more than a 0.5% global ductility in uniaxial tension tests (at ambient 

temperature with standard strain rates). This implies that monolithic BMGs are brittle 

in tension (despite the fact that BMGs will exhibit tensile ductility at high strain rates 

[19], elevated temperatures [20], and on the nano scale [21]). This is a direct result of 

the fact that BMGs do not possess a crystal structure, and thus cannot deform by 

dislocation-based plasticity. This feature simultaneously leads to unprecedented 

strength and catastrophic failure when overloaded. BMGs exhibit a highly localized 
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strain-softening phenomenon manifested through shear bands. At the yield strength, a 

significant amount of deformation in a BMG is localized in narrow bands that nucleate 

and grow from the shear transformation zones (STZs). Shear bands exhibit large 

increases in temperature, which some researchers suggest is far above the melting 

temperature of the material [22]. Deformation in a shear band can be quite large but is 

limited to perhaps tens of nanometers in width, leading to very limited global ductility. 

Plasticity in BMGs results from arresting the persistent slip of one shear band and 

nucleating another. Since monolithic BMGs do not possess a microstructure or other 

stabilizing features, a slipping shear band under uniaxial tension is difficult to arrest. A 

shear band that forms under tensile stresses can simply extend without limit until it 

reaches a critical dimension (determined by the fracture toughness of the glass) before 

nucleating a cavity and opening failure occurs [23]. Failure in tension typically occurs 

at 45° to the loading axis, in the direction of the maximum resolved shear stress. 

Therefore, plasticity, in the sense of forming multiple shear bands, does not occur in 

tension tests of BMGs. As we explore in Chapter 4, without microstructural 

stabilization obtained through composites, BMGs should theoretically never display a 

significant amount of tensile ductility. During different scientific studies of BMGs, 

tensile ductility has been obtained in modified experiments. High strain rate tension 

tests (above the 0.1 mm/s standard) were used on Vitreloy 1 to obtain tensile ductility 

(see, for instance, [19]), elevated temperatures (above Tg) were used to achieve 

superplasticity in monolithic BMGs [20], and ambient temperature tensile ductility 

was obtained during in-situ TEM studies of BMG beams that were nanometers in 

width [21]. In structural applications, where samples larger than 1 mm are used at 
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ambient temperatures under normal loading configurations, BMGs are brittle materials 

that fail with no visual precursors. This makes them unacceptable for structural 

engineering applications. Thus, until now, BMGs have largely been relegated to niche 

applications that exploit their other unique features, not their strength.  

 As we discuss in Chapter 3, three-point-bending tests are an excellent way to 

compare the toughness of BMG materials. Unlike uniaxial tension tests, which all look 

similar, BMGs can behave very differently in bending. In Chapter 3 we note that 

bending tests possess a tensile and compressive surface, which in some thicknesses 

allows a BMG material to arrest slip on a single shear band and generate multiple 

shear bands. This work has lead to some of the best studies of how plasticity occurs at 

the bulk scale in BMGs. In literature, bending tests are rarely done because of a 

dramatic size effect that occurs. Bending is directly related to fracture toughness, and 

in the case of monolithic BMG materials, fracture toughness is typically so low that 

beams cannot be bent significantly at thicknesses greater than 1 mm. As a result, 

researchers commonly resort to the uniaxial compression test alone for all of the 

mechanical characterization of newly created BMGs. However, that test also has a size 

effect whereby smaller samples exhibit larger plasticity.  

 Arguably the most important application of materials science is “material 

selection for mechanical design” [24]. To properly select the best possible material for 

a specific application, many design criteria must be taken into account. For example, 

in structural applications materials must fit the requirements for strength, stiffness, 

corrosion, fatigue, fracture toughness, density, ductility, and cost, among many others 

[24]. For a specific application, some materials exhibit “enhanced mechanical 
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properties” over other suitable materials and this contributes to their selection. In 

metallurgy research, the mechanical properties of a new material must be evaluated 

and compared with known materials to observe if any improvements in properties 

come with the deterioration of other properties. Pros and cons are weighed and the 

material with the best balance of peformance and cost is selected. As an example of 

how mechanical properties could be misreported, it would be incorrect to claim that 

ceramics have enhanced mechanical properties over titanium alloys simply because 

they have higher strengths. Titanium alloys have higher ductility, fracture toughness 

and they exhibit graceful failure, unlike the catastrophic failure observed in ceramics. 

For a high strength structural application, like in an airplane, titanium alloys are much 

better suited than ceramics. Unfortunately, in the field of BMGs, similar claims about 

“enhanced mechanical properties” appear in many papers where compression tests are 

the only mechanical characterization techniques used.  

 The mechanical properties of many BMG materials have been misrepresented 

in literature owing to the uniaxial compression test, where small cylinders are 

compressed between two parallel plates. The difficulties associated with compression 

tests are numerous, yet these tests are useful for determining the compressive yield 

strength of a material, among several other properties. First, special consideration 

must be taken during compression testing to assure that high strength materials do not 

indent or plastically deform the machine platens. Very hard WC platens are often used 

to counter this effect [1]. Lubrication between the specimen and the platens is also 

very useful to decrease nonuniform deformation, called barreling in compression [1]. 

This happens when friction causes the sample’s surface to “stick” to the platens, 
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forcing the sample to bulge out in the middle. The most important consideration for 

ceramics and BMGs is homogenous loading, since they fail predominantly in the 

elastic range. A desirable compression sample has no height difference but in practice 

this is not possible to achieve. If a cylindrical specimen has a height difference of Δh 

=  h2 – h1, then the higher side will have stress ( )2hhE ∆=σ  before loading even 

begins on the lower side. Meyers and Chawla [1] give an example of this problem in 

Alumina, for which E = 400 GPa, h = 10 mm, and σf  = 4 GPa. The strain at failure is 

210−== Eff σε , which corresponds with a displacement of 1.0==∆ hh fε mm. 

Therefore, in a 10 mm long cylindrical sample of alumina, the change in height must 

not be greater than 0.1 mm or the higher side will fail before the lower side is loaded. 

If the surfaces of the compression sample are not flat, stress inhomogeneities will arise 

which can drastically alter the stress-strain curves, leading to apparent plasticity. In 

BMG research, sample dimensions for compression are often very small, usually 

limited by critical casting thickness. Typical compression test dimensions are 2 mm in 

diameter by 4 mm long, but many papers report tests done at 1 mm diameter by 2 mm 

long. In Vitreloy 1, for example, E = 95 GPa, h = 2 mm, and σf  = 1.9 GPa. This leads 

to 02.0== Eff σε  and 04.0==∆ hh fε mm. This means a 1 mm diameter 

compression test must have a variation in height less than 40 μm to assure 

homogeneous loading. For the more common 2-mm-diameter compression test, the 

variation in height must be less than 80 μm. For samples being polished by hand on 

sandpaper, as is the common practice, such precision is extremely difficult to acheive. 

In practice, height differences of less than 0.1 mm are impractical to obtain and are 
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usually overlooked. For Vitreloy 1, compression tests should be larger than 3 mm in 

diameter to assure that tolerable differences in sample height can be obtained by 

mechanical polishing.  

 The most common problem associated with compression testing of BMG 

materials is the sample dimensions, usually a result of poor glass-forming-ability. 

Commonly, compression tests are performed on alloys with identical compositions but 

in different dimensions. For example, the binary BMG Cu50Zr50 was demonstrated to 

have 52% strain to failure in a 1-mm-diameter compression test [25], 11.5% in a 1.5 

mm test [26], and 3.7% in a 2 mm test [27]. Clearly, vastly different values of 

compressive plasticity were obtained for the same alloy. This makes it challenging to 

compare BMGs compressed at different dimensions. How does one decide which 

alloy is better, a BMG that exhibits 10% plasticity in a 3 mm diameter or a BMG that 

exhibits 20% at 1 mm? Currently, several papers are being published discussing the 

shortfalls of compression tests to avoid misunderstanding the mechanical properties of 

BMGs. One such paper was recently published by Xie and George [28], where the 

effect of sample size in compression was investigated. The Vitreloy 105 BMG, 

developed at Caltech in the 1990s by X. Lin, was demonstrated to have extensive 

plastic strain in 1.35 mm diameter compression tests. However, at 6.5 mm in diameter, 

plastic strain is totally absent [28]. In addition to problems with obtaining plane 

parallelism in small samples, mechanical tests are usually performed on large testing 

machines capable of doing high-strength tensile tests. The BMG compression tests are 

so small relative to the testing equipment that the results can be overwhelmed by 

machine compliance issues, among others. In general, it seems unwarranted to claim a 
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material is suitable for structural applications when the only supporting test is a 1-2 

mm diameter compression sample.  

 Recent results from compression tests were used in a high-profile BMG 

publication in Science [29]. The work reported room-temperature superplasticity in a 

Zr-Cu-Ni-Al alloy. Superplasticity occurs when a material exhibits positive strain-rate 

sensitivity (that is, the increased strain rate causes increased flow stress in the neck 

region during tension testing). When this occurs, necking is inhibited and plastic strain 

dramatically increases, sometimes into the thousands of percent. In this paper, 2 mm 

compression tests were used to claim room temperature superplasticity of up to 160%. 

There are several problems with such a claim, most of which are common in BMG 

literature. The undeformed compression specimen is not plane parallel (the top of the 

sample appears flat but the entire cylinder is leaning to the left, indicating major height 

change in the bottom surface). Therefore, the sample was loaded in an inhomogeneous 

state of stress. Above the flow stress, shear bands form under the compressive stress. 

Slip is hindered by friction and multiple shear bands nucleate and grow until they span 

the sample, usually occurring at ~ 25% strain. After 25% strain the sample shows clear 

signs of barreling, indicating that nonuniform plastic deformation has occurred from 

friction between the sample and the testing platen. In the stress-strain curve for the 

compression test, the curve changes from concave down to concave up at ~ 25% 

strain, corresponding exactly with the sample barreling. Since shear bands had 

previously spanned the sample, the sample has already failed. A continuous flaw 

through the sample implies the sample has failed, even though friction from the 

platens holds the sample together. The test should have been terminated at this point. 
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With the sample completely confined, friction prevented the sample from fracturing 

and it was flattened to 160% strain. Similar compression tests, with nearly identical 

stress-strain curves, are shown in many prominent BMG papers [29–35]. Although 

extensive amounts of plasticity are observed in compression, the monolithic BMGs 

fail catastrophically in tension. 

 In the uniaxial tension test, frictional forces are absent and BMG samples do 

not possess a stabilization mechanism to prevent the lengthening of a shear band. This 

problem is not without a solution, however. Results dating back to C. Paul Kim’s 

work at Caltech in 2001 have demonstrated that ductile-phase in-situ metallic glass 

composites (with crystalline inclusions embedded in a glass matrix) can result in 

tensile ductility [36–37]. The current work demonstrates that with fundamental 

understanding of how BMGs fail in tension, composites can be designed with all the 

beneficial features of the monolithic metallic glass (high yield strength, elastic limit, 

low processing temperatures, etc.), but with significant tensile ductility.  

1.9 Theoretical Yield Strength 

 The most common motivation for scientific studies involving BMGs is that 

they possess “nearly theoretical yield strengths.” Since this is the most important 

feature of a glassy metal, we discuss in this section the Orowan model for theoretical 

tensile strength (described in [1]). 

 When a material is pulled in tension and fails perpendicular to the applied 

stress, cleavage has occurred. Orowan’s model, published in 1949, does not take into 

account the effects of material imperfections or instabilities (such as necking) but 
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rather calculates the stress at which a perfect lattice will cleave. Therefore, the 

theoretical yield strength, by Orowan’s description, is the theoretical cleavage stress of 

a material. We know now that stress concentrations at the tip of a crack control 

fracture, but in the model, all atoms are assumed to separate simultaneously. Once a 

critical value of separation is reached (called d) the atomic bonds are broken, two new 

surfaces are created, and cleavage occurs. Figure 1.4 shows that a plot of stress versus 

increasing atomic separation is roughly a negative parabola. It requires an increasing 

amount of stress to separate the atoms until a maximum is reached, after which stress 

falls to zero as the bonds are broken. In Orowan’s model, the curve is assumed to be a 

simple sine wave and the area under the curve is the work necessary to cleave the 

crystal. Stress as a function of atomic separation can be written as  

( )02
2sin aa

d
K −=

πσ           (1.15) 

where K is a parameter related to Young’s modulus, d is the critical separation, a0 is 

the original separation, and a is the final separation. K can be determined by 

differentiating the stress equation with respect to a and then relating that to Young’s 

modulus. It can be easily shown that 
0a

dEK
π

= . The unknown critical separation, d, 

can be determined by equating the area under the stress-separation curve with the 

surface energy of the two new surfaces created. In this manner, d can be related to 

surface energy, γ, through 
K

d πγ
= . The maximum value of stress is when 
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20 daa += . Plugging in these values we obtain the theoretical yield strength of a 

material 

0a
E

ltheoritica
γσ = .       (1.16) 

 The surface energy can be rewritten in terms of the other parameters such that 

2

0






=
π

γ d
a
E . It can be shown experimentally that d is approximately equal to a0 so a 

simplified equation for theoretical yield strength is  

π
σ E

ltheoretica ≅ .                     (1.17) 

 This equation tells us that crystals should exhibit yield strengths that are 

approximately one third of their Young’s modulus. Most common engineering metals 

have E ~ 100–200 GPa, so this implies that they should have theoretical strength on 

the order of tens of gigapascals. In reality, most crystalline metals have yield strengths 

between 100–1000 MPa (or 0.1–1.0 GPa), far below the theoretical value. The 

discrepancy occurs because crystals contain imperfections and atomic cleavage (where 

every bond is broken simultaneously) does not occur. Real crystalline metals fail 

through motion of dislocations, which become mobile at stresses far below the 

theoretical yield strength. Additionally, the entropy of mixing tells us that even in 

thermodynamic equilibrium, a crystal will contain a finite number of point defects. 

Using statistical mechanics, the equilibrium number of vacancies of a material is  
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 −
=

kT
G

N
n fexp       (1.18) 

where n is the number of vacancies, N is the number of vacancy sites, Gf is the free 

energy associated with the formation of a vacancy, k is Boltzmann’s constant, and T is 

the temperature.  

 In metallic glasses, crystal structures are absent and common imperfections 

such as point, line, and surface defects are not responsible for plasticity. Deformation 

occurs through a strain softening phenomenon at stresses typically much higher than 

the yield strength of crystalline metals. BMGs typically exhibit low Young’s modulus 

(< 100 GPa) and thus have very low theoretical yield strengths in comparison to many 

crystalline materials. Since they have high experimental yield strengths, the difference 

between the actual yield strength and the theoretical yield strength is often quite small. 

For example, Vitreloy 1 exhibits about 1/15 or ~ 7% of its theoretical yield strength.  
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Figure 1.4 – Plot of stress versus atomic separation of atoms for cleavage in Orowan’s 
model of theoretical cleavage strength. In the model, all of the atomic bonds are 
broken simultaneously, leading to a high value for yield strength. Experimentally, 
dislocations cause yielding at stresses far below the theoretical cleavage stress. 
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1.10 Metallic Glass Composites 

 The concept that metallic glasses are inherently brittle materials was first 

recognized shortly after their invention. Many researchers quickly recognized the need 

for BMG composites to decrease brittleness and catastrophic failure in unconfined 

loading. Among the first BMG composite papers was “A metallic glass-metal matrix 

composite,” published in 1982 [38], which surprisingly, was published over a decade 

before the invention of Vitreloy 1 in 1993 [10]. By the early 1990s, several research 

groups were exploring BMG-metal matrix composites, in which metallic glasses and 

crystalline metals were combined into a composite structure. Since then, hundreds of 

papers have been published exploring the mechanical properties of BMG composites.  

 A thorough investigation of literature indicates that almost all BMG composite 

materials fall into two categories: ex situ and in situ. The ex-situ composites, which 

account for a vast majority of published papers, involve mechanically combining a 

glass forming alloy with another material such that the glass matrix structure is 

interrupted by the inclusions. These composites are typically manufactured by casting 

a glass-forming liquid over crystalline wires or particles such that a continuous matrix 

of metallic glass remains. Among the most common wire reinforcements are W, Ta 

and Nb, while the most common particle reinforcements are hard carbides such as WC 

or ZrC. The number of ex-situ composites found in literature is extensive and yet the 

mechanical properties of the vast majority of them are typically not better than the 

monolithic glasses. Ductility is sometimes achieved but usually at the cost of strength. 

The problem with ex-situ BMG composites is very simple, yet often overlooked. The 
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interface between the BMG matrix and the inclusion determines how the composite 

will fail during unconfined loading. In the case of particulate reinforced BMGs, brittle 

materials such as carbides are often used to arrest shear band growth. Since 

compression tests are typically used to evaluate the mechanical properties of the 

composites, apparent toughening seems to occur. However, as we have seen, frictional 

forces combined with closing stresses on shear bands lead to plasticity in compression 

that is not present in unconfined loading geometries. As we know now, ex situ 

particle-reinforced BMGs are far more brittle that monolithic BMGs in bending or 

tension tests because of the interface between the glass and the particles. During 

unconfined loading, the particles simply separate from the matrix and shear bands 

grow uninterrupted. Additionally, the particles often act as stress nucleation sites for 

shear bands to form, which lowers the overall strength of the material. Recent work in 

our own group has shown that in the case where soft particles are used instead of 

carbides, oxide layers on the particles cause brittle interfaces between the particles and 

the glass matrix, and similar catastrophic failure is observed.  

 Our group’s recent work has also demonstrated that wire-reinforced BMGs 

have improved bending and tension tests over particle-reinforced BMGs given that the 

wires are continuous through the matrix. If tensile loading occurs in the direction of 

the wires, shear bands must sever the wires for failure to occur. Unfortunately, since 

the wires are continuous, these alloys often have low strength, and interfacial effects 

usually cause the wires to “pull out” during tension tests. In addition, it is challenging 

to produce a fully dense composite using wires, and the final composite is highly 

anisotropic.  
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 The largest success in the toughening of BMGs came in 2001 with the 

introduction of a ductile-phase in-situ metallic glass matrix composite [36]. These 

alloys, developed by Caltech graduate student C. Paul Kim, are comprised of a two-

phase microstructure of glass and soft b.c.c. dendrites that nucleate and grow during 

the rapid cooling. The composite structure was originally obtained by simply 

increasing the amount of Zr in Vitreloy 1 (which has composition 

Zr41.2Ti13.8Cu12.5Ni10Be22.5) at the expense of Cu, Ni, and Be (holding Ti constant). In 

Vitreloy 1, the sum of the atomic percentages of Zr-Ti is 55% and when this sum 

reaches ~ 70% a two-phase composite structure forms, with dendrites growing from 

the liquid. This in-situ composite is unique because it represents an equilibrium 

system. That is, the same volume fraction of crystalline phase (determined by the 

Lever Rule) is obtained in the final alloy regardless of cooling rate. The two-phases 

form due to the extremely low solubility of Be, Ni, and Cu in b.c.c. Ti and Zr, and if 

the alloys are designed correctly, the eutectic phase vitrifies upon rapid cooling. 

Owing to the low solubility of several elements with the crystalline dendritic phase, 

the volume fraction of the b.c.c. phase can be increased by simply increasing the ratio 

of Zr and Ti. Figure 1.5 is a pseudo-phase diagram reproduced from S-Y Lee’s 

Caltech 2005 thesis, showing the formation of an in-situ Zr-Ti-Nb-Cu-Ni-Be BMG 

composite. The diagram has the monolithic glass Vitreloy 1 on the left axis, the 

monolithic b.c.c. alloy on the right axis, and the matrix composite at a composition 

between the two.  

 Both the in-situ composites and some particulate reinforced ex-situ BMG 

composites exhibit compressive plasticity but zero global tensile ductility. The 
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advancement that allowed in-situ alloys to exhibit tensile ductility while ex-situ alloys 

do not is the understanding that the inclusions need to be softer than the glass matrix 

[23]. This fundamental concept was experimentally demonstrated in 2001, with the 

alloy Zr56.2Ti13.8Nb5Cu6.9Ni5.6Be12.5 (LM2), but the concept was largely overlooked. 

Since the focus of most BMG papers has always been on the compression test, the 

effect of a soft, ductile inclusion was hardly exploited. The success of LM2 stems 

from the use of the β-stabilizer Nb to reduce the shear modulus of the b.c.c. phase. To 

illustrate this concept, C.P. Kim demonstrated two in-situ composites in his Caltech 

thesis. In one alloy, he melted Vitreloy 1 with an ingot of Ta in the plasma arc melter 

to create a two-phase composite of Vitreloy 1 and Ta dendrites. In the other alloy, he 

created LM2 by adding 5 atomic % Nb to a composite with a Zr+Ti ratio of 70%. In 

the Ta composite, no toughening or tensile ductility was observed, owing to the high 

shear modulus (G) of Ta relative to the glass matrix (G ~ 60 versus 30 GPa). In LM2, 

an electronic softening phenomenon was observed in Zr-Nb which lowered G to ~22 

GPa. As we discuss in further detail in Chapter 4, shear band growth can be arrested 

by deformation in the softer phase. Two tension tests of LM2 made from different 

processing methods are shown in Figure 1.6, along with the tension test from Vitreloy 

1. Note that the tensile behavior of the composites is different even though the alloys 

are the same. This indicates that processing plays a major role in the mechanical 

properties of in-situ composites, a concept that is exploited heavily later in this thesis. 

 Many attempts in literature have been made to create in-situ composites that 

match the mechanical properties of LM2. Although two papers were originally 

published on LM2 [36–37], the concept that a soft inclusion is needed was not well 
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understood. Ductility in tension was achieved by Yi Li’s group in 2005 when pure La 

was precipitated as a dendrite in a LaAlCuNi alloy [39]. As we show in Appendix A, 

pure La has a shear modulus slightly lower than the La-based metallic glass. Another 

in-situ composite created by Todd Hufnagel’s group demonstrated slight tensile 

ductility in a Ta-reinforced alloy owing to crack bridging.  

 Other attempts have been made to create in situ BMG matrix composites. In 

one attempt, an in-situ glass/b.c.c. composite was generated without lowering the 

shear modulus of the dendritic phase, leading to a brittle alloy. This alloy was 

developed to try to create an in-situ composite out of the non-Be alloy Vitreloy 106, 

much in the same way LM2 was created from the BMG Vitreloy 1. Two papers were 

published on this alloy, Zr66.4Nb6.4Cu10.5Ni8.7Al8, one in 2002 [40] and one in 2004 

[41]. In both cases, the papers refer to the alloy as having a “ductile b.c.c. phase,” 

which is technically true since the monolithic dendritic phase was exhibited to have 

tensile ductility. Unfortunately, owing to the presence of 10 atom% Al in the original 

alloy, the dendritic phase has composition Zr74.5Nb7.7Cu7.3Ni1.1Al9.3, which we now 

know has G > 40 GPa, while the glass matrix has been measured to have G = 30.8 

GPa. As expected, no tensile ductility is reported in either paper, and only moderate 

amounts of plastic strain in compression is observed [40,41]. Additionally, this alloy 

has a dendritic phase on an extremely small scale which also contributes to the poor 

properties.  

 In another attempt at an in situ composite, the dendrite was designed to be soft 

by adding b.c.c. stabilizers and removing aluminum, but the glass matrix crystallized. 

These “nanoeuctectic” alloys are actually not as tough as monolithic BMGs (because a 
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crystallized BMG is always more brittle than a monolithic one) and yet compression 

tests indicate that enhanced plasticity occurs. This work has spawned a new field of 

research on nanocrystalline in situ composites. However, these alloys are very brittle 

and exhibit no tensile ductility, something that is noticeably absent from numerous 

publications. A further discussion of these alloys appears in Chapter 6.
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Figure 1.5 – Pseudo phase diagram of a metallic glass composite (courtesy of S.-Y. 
Lee, Caltech thesis, 2003). The value M represents the limit of solubility of the β 
phase crystalline alloy within the glass forming compositions. The blue line represents 
the nucleation of the dendritic phase. At compositions below the blue line and between 
M and B, an alloy will decompose into a composite with dendrite B and glass matrix 
M.  In this system, M is (Zr75Ti25)55(Be50(Cu55Ni45)50)45, while B is Zr75(TiNb)25. 
(Zr75(TiNb)25)75 (Be50(Cu55Ni45)50)25. 
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Figure 1.6 – Tension tests of the in-situ composite LM2 produced at Caltech (C) and 
Howmet (H) along with the monolithic BMG Vitreloy 1 (courtesy of C. P. Kim, 
Caltech thesis, 2001). The in-situ composites have nearly the same tensile strength as 
the monolithic glass, because of their glassy matrix, but have ~ 3% tensile ductility, 
because of their soft microstructure. However, the difference between the curves H 
and C indicates that processing plays a role. As we know now, the alloy at lower 
strength with higher ductility has larger, more coarsened dendrites. The higher-
strength alloy has smaller dendrites. 
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Chapter  2 

2 TEM Study of Structural Evolution in a Copper-

Mold-Cast Cu46Zr 54 Bulk Metallic Glass∗

2.1 Commentary  

 

The Cu-Zr binary glass-forming system is an excellent model for 

understanding BMGs. This chapter exploits two very similar BMGs (Cu46Zr54 and 

Cu50Zr50) with quite different properties in bending and in compression tests. 

Although the compositions are similar, one alloy seems to have higher toughness than 

the other, based on three-point-bending tests. Work in literature on Cu-Zr and Cu-Zr-

Al BMGs attributed the difference in compressive plasticity between these series of 

alloys to partial crystallization of the glass matrix, which somehow restricted shear 

band propagation. During my TEM work, I noticed that these alloys were all fully 

amorphous, as long as the samples were prepared “artifact free.”  

The results of many BMG papers have been thrown into question recently, as 

new evidence has been presented that compression tests are an undesirable method for 

comparing the mechanical properties of BMGs. As we discuss in Chapter 4, 

compressive plasticity is a result of friction and closing stresses on shear bands and 

many alloys that exhibit plastic strain in compression are very brittle went bent. 

However, it is true that BMGs have widely varying mechanical properties, even 

                                                 
∗  The contents of this chapter are published: Douglas C. Hofmann, Gang Duan, and William L. 
Johnson, Scripta Materialia, 54, 1117–1122 (2006). 
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though they are all fully amorphous. Many explanations have been offered to explain 

this (such as high Poisson’s ratio and strain-induced crystallization) but in every glass-

forming system that we have seen, partial crystallization always results in 

embrittlement.  

In the Cu-Zr binary system, as with many other systems containing Cu and Zr, 

the first phases to crystallize are the brittle intermetallics Zr2Cu and Cu10Zr7, as 

verified through X-ray diffraction. Unfortunately, due to the geometric stability of 

compression tests, partially crystalline BMGs that contain these phases often yield 

plastically. The particles can arrest shear band propagation and generate multiple shear 

bands, leading to the incorrect assumption that the partial crystallization actually 

toughens the BMG. This has lead to a great deal of seemingly misguided research in 

which brittle phases (such as carbides) are incorporated into metallic glasses to 

improve toughness. Almost all of this research relies solely on compression tests so 

apparent progress has continued to drive the work. (As we will show in Chapter 4, a 

ductile phase inclusion is absolutely necessary to obtain significant toughening and 

tensile ductility because the brittle phases simply separate from the glass matrix during 

unconfined loading, such as bending or tension tests.)  

In this chapter we will discover that on occasion one of the phases that 

crystallizes is b.c.c. Other researchers have observed this and have created alloys that 

partially crystallize into a two-phase alloy of glass and b.c.c. dendrites. Unfortunately, 

many of these b.c.c. phases that form are stiff ordered phases, not the soft phases 

necessary for ductility.  
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2.2 Background on Cu-Zr  Binary Bulk Metallic Glasses 

Recent progress in both binary bulk metallic glasses (BMGs) and ductile metal 

reinforced BMG matrix composites has triggered interest in trying to combine 

beneficial mechanical properties with simple glass-forming systems [1–16]. Such 

work is vital to future applications of BMGs because it is widely known that while 

these amorphous metals show unique mechanical properties, they lack the tensile 

ductility needed for structural engineering applications. For instance, most metallic 

glasses loaded in uniaxial tension or plane stress fail catastrophically on one shear 

band with negligible plasticity [3].  

To combat this problem, many researchers have been investigating glassy 

alloys that inherently show some level of plastic strain prior to failure in uniaxial 

compression tests [1, 12, 13]. Although special considerations must be taken during 

compression tests to assure that the samples are plane parallel and have the correct 

aspect ratio, some monolithic BMGs exhibit significant compressive plasticity while 

most exhibit none. Many of these alloys are based on the simple Cu-Zr binary BMG, 

an alloy which seems to have an inherently high level of toughness in its amorphous 

state. This BMG is also fundamentally important to understanding the structure of 

BMGs because its binary composition lends itself well to molecular dynamics studies.  

2.3 Designing the TEM Study 

The aim of this chapter is to use transmission electron microscopy to address 

issues of partial crystallization that arise in literature regarding the Cu-Zr binary. This 

is done by studying micrographs from a 1-mm-thick, 4-mm-wide, and 40-mm-long 
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cast Cu46Zr54 binary BMG based on the Cu-Zr phase diagram, where the current alloy 

is a eutectic composition [17–19]. Much work has been done on both this alloy and the 

very similar Cu50Zr50 alloy, but there has never been any indication that the 

mechanical behavior or the microstructures of these alloys are different. Since a 

molecular dynamics study has already been completed on the eutectic composition, it 

was selected for this TEM study [5].  

The locations of the TEM samples vary from the mold tip, where the sample is 

totally amorphous, to 20 mm away from the tip, where the sample is partially 

crystalline, to 40 mm from the tip, where the sample is totally crystalline. Throughout 

the strip, there is a gradient of crystallization due to the uneven cooling rate in the 

casting process. This is important in the Cu-Zr system because its low critical casting 

thickness (~ 2 mm) and tendency to crystallize has caused many researchers to claim 

that nanometer scale crystallites or second phase particles are what cause the observed 

toughness in the alloy.  

The intent of this TEM work is to demonstrate that the Cu46Zr54 BMG has no 

nanometer scale crystallites if it is successfully vitrified and is capable of having 

complex microstructures when it is partially crystalline. Later, comparisons are given 

between the mechanical properties of Cu46Zr54 and data from literature for Cu50Zr50. 

The ultimate goal is to show that the Cu-Zr binary system has an inherent toughness in 

the amorphous state resulting in the observed plastic strain and that partial 

crystallization only leads to a much more brittle alloy.  
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2.4 Experimental Method 

 The Cu-Zr alloy used in this work was prepared first as an ingot by arc melting 

together ultrasonically cleansed 99.999 at. % Cu and 99.9 at. % Zr pieces on a water-

cooled copper plate in a high-purity argon atmosphere. The ingot was melted at least 

three times to promote homogeneity. The ingot was then remelted under high vacuum 

in a quartz tube through the use of an induction heating coil and injected with argon 

pressure into a copper mold. The mold has a cavity with thickness 1 mm, width 4 mm, 

and length approximately 40 mm. To study the glass transition and crystallization 

behavior of the alloy, a Bruker AXS X-ray diffractometer was used with Cu-Kα 

source and a Perkin-Elmer DSC7 (differential scanning calorimeter) was used with 

constant heating rate (dT/dt = 0.33 K/s). Transmission electron microscope work was 

done using a Philips EM430 electron microscope at 300 keV.  

It was discovered that creating very large electron-transparent areas is possible 

in Cu46Zr54 by using chemical thinning. The etching conditions were optimized on 

multiple samples until a large electron-transparent region was obtained with 1:2 

HNO3:CH3OH 5V and -25°C. 

 The TEM samples were prepared by first taking the 1-mm-thick strip of 

Cu46Zr54 and mechanically grinding it down to 250 μm. Starting at the amorphous tip, 

a punch was used to cut 3-mm-diameter disks from the thinned strip. In total, eight 

TEM-sized foils were punched from the strip and then electropolished using the 

conditions given above. The locations of the TEM foils taken from the BMG strip are 

diagramed in Figure 2.1. 
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Figure 2.1 – Diagram of BMG strip showing location of eight samples used in TEM 
study and the figure numbers for the TEM micrographs relating to each sample. 

 

2.5 High-Resolution TEM  

 Figure 2.2(a) shows a nominal HRTEM micrograph from a part of the strip 

nearest the tip, sample 1. Despite intensive study of this sample, no hint of 

crystallization or crystallites was observed in dark field imaging, selected area 

diffraction (inset in Figure 2.2(a)), or HRTEM imaging. As an example of what 

crystallization looks like in HRTEM, compare Figure 2.2(a) with Figure 2.2(b), a 

HRTEM image of Si oriented on the [110] pole. The diamond cubic structure of Si 

leads to an ordered contrast in TEM imaging. In the HRTEM micrograph of Cu46Zr54 

no such ordering is observed for any sample tilt, indicating a totally amorphous 

matrix. Although not shown, XRD and DSC experiments on the tip of the sample also 

indicate that Cu46Zr54 can be fully amorphous with no hint of crystallization. The X-

ray diffraction pattern exhibits a pair of broad diffraction maxima, with no evidence of 

crystalline Bragg peaks. The DSC scan clearly shows an endothermic heat event 

(associated with glass transition) and further heat releases due to crystallization. 



 

 

48 

Although nanocrystalline particles can evade detection through DSC and XRD, the 

TEM confirms that the samples are indeed amorphous.  

 Figure 2.3 shows three bright field micrographs, with the objective aperture 

centered over the transmitted spot, and one diffraction pattern with a large selected 

area—all taken from sample 8, nearest the top of the mold. Many microstructural 

features are evident in the micrographs that are not usually seen in BMG samples. 

Clearly, there are grain boundaries, where bands of contrast at different angles meet, 

and dendrites, which appear in Figure 2.3(c). The diffraction pattern in Figure 2.3(a) 

shows a weak amorphous halo with bright spots from crystalline diffraction.  

 Figure 2.4 shows bright field/dark field pairs from the dendrites within the bulk 

microstructure. Figure 2.4(a–b) show multiple dendrites with the dark field conditions 

being set up on the amorphous halo in the diffraction pattern (inset in Figure 2.4(a)). 

Figure 2.4(c–d) are high-resolution TEM micrographs of the interface between the 

dendrite and the matrix. Comparing Figure 2.4(c–d) with Figure 2.2 leads to the 

conclusion that the matrix is at least partially amorphous, while the dendrites are 

crystalline. From the selected area diffraction pattern inset in Figure 2.4(d), the 

dendrites are a b.c.c. phase of Cu-Zr and are similar in size and microstructure to the 

β-phase (b.c.c.) in metallic-glass-based composites. In this work, they are found within 

a mostly crystalline matrix, unlike the fully amorphous matrix in the composite [3]. 

The dendrites in ductile-phase reinforced composites have been shown to create 

organized shear band patterns under mechanical loading, which greatly increases the 

toughness of the alloy [2, 9]. However, although the dendrites observed in the TEM 

images have a b.c.c. microstructure, without β-stabilizing elements such as Nb, V, Ta, 
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and Mo, the dendrites are likely stiff phases relative to the amorphous matrix. As we 

discuss in Chapter 4, the dendritic phase must exhibit a lower shear modulus than the 

glass matrix for significant toughening to occur.  

 Figure 2.5 shows a bright field/dark field pair using high-resolution TEM on a 

typical section of the bulk matrix, from sample 6. The diffraction pattern, which is 

inset in Figure 2.5(a), shows many bright spots from diffracting crystallites. The dark 

field micrograph shows a structured particle, as well as many nano-scale diffracting 

crystallites, which appear as bright spots. Unlike Figure 2.3, where a large grain 

structure is clearly present, this sample, which is closer to the amorphous tip, has no 

clearly visible grain structure and yet has a large volume fraction of crystallites within 

a bulk glassy matrix. 

 While Figure 2.4 shows the b.c.c. dendrites which are usually associated with a 

bulk metallic glass based composite, Figure 2.6 shows a heterogeneous microstructure 

with a combination of a glassy matrix with crystalline second-phase particles. The 

micrographs were taken from sample 2, just above the sample that was shown to be 

totally amorphous. Figure 2.6(b) shows an inset selected area diffraction pattern 

containing a few small spots from diffracting crystallites, but mostly shows an 

amorphous halo, typical of a bulk metallic glass. The dark field micrograph, also 

shown in Figure 2.6(b), has a band of very small diffracting crystallites, less than 10 

nm in size. Figure 2.6(a) shows a bright field image with the objective aperture 

centered over the transmitted spot to gain contrast. This demonstrates that the first 

phases to crystallize in the Cu-Zr binary BMG are tiny crystalline particles, which are 

likely brittle intermetallics (such as Zr2Cu and Cu10Zr7).  



 

 

50 

 Following the TEM analysis, mechanical testing was performed on the 

Cu46Zr54 BMG to investigate the effect crystallization has on plastic strain. It is 

noteworthy to mention the difficulty in preparing reproducible samples of the binary 

alloy. In the current work, the samples were very near the critical casting thickness of 

the alloy and slight variations in the copper-mold casting process caused varying 

degrees of crystallization in the strips and rods. Figure 2.7 shows a compression test 

on a 2 mm rod of Cu46Zr54 that was checked on top and bottom through XRD for any 

sign of crystallization. In a 2 mm rod, the length of amorphous Cu46Zr54 seems to vary 

between approximately 3 mm and 6 mm, depending on the cooling rate, before the 

onset of crystallization. The compression test sample in Figure 2.7 was from the tip of 

the 2 mm rod and was shown to be fully amorphous. From Figure 2.7, the amorphous 

Cu46Zr54 showed only ~ 1% of plastic strain before failure.  

 Figure 2.8 shows the results of a three-point-bending test comparing Cu46Zr54 

and Cu50Zr50. In addition to having a steeper slope in the load versus bend 

displacement plot, Cu50Zr50 is able to plastically deform slightly before failure. The 

bend test of Cu46Zr54 showed no plastic strain prior to failure. 
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Figure 2.2 – (a) HRTEM micrograph of Cu46Zr54 near the sample tip showing totally 
amorphous microstructure and inset diffraction pattern. (b) HRTEM of Si oriented on 
the [110] to demonstrate the contrast seen in crystalline samples through TEM.   
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Figure 2.3 – (a), (b), (c) TEM bright field images from Cu46Zr54 far away from the 
amorphous tip. Inset DP in (a) shows largely crystalline diffraction. 
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Figure 2.4 – (a), (b) BF/DF pairs of sheared dendrites with DF set up on the 
amorphous halo in the inset DP. (c), (d) HRTEM micrographs at interface of dendrite 
and BMG matrix with inset DP showing bcc diffraction. 
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Figure 2.5 – HRTEM BF/DF pairs on Cu46Zr54 matrix with (a) inset DP and (b) DF set 
up on amorphous halo. 

 

 
 

Figure 2.6 – (a) BF micrograph and (b) DF micrograph with inset DP showing 
heterogeneous microstructure of both glassy matrix and second phase particles.   
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Figure 2.7 – Stress-strain curve of fully amorphous Cu46Zr54 under compression at a 
strain rate of 4E-4 s-1 showing 1% plastic strain. 

 

 
 

Figure 2.8 – Three-point-bend test of Cu46Zr54 and Cu50Zr50 showing the differences in 
mechanical properties despite their similar compositions and fully amorphous 
structures. The bending configurations for the two tests are shown in the inset. 
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2.6 Discussion  

The first of many issues that arise from the TEM micrographs is that in the first 

10–15 mm of the alloy (the tip), the sample shows a totally amorphous structure with 

no diffracting crystallites. Although there is a slight variation in composition between 

Cu46Zr54 and Cu50Zr50, the micrographs contradict the findings of both Das et al. [1] 

and Inoue et al. [12], where it was claimed that nanometer-sized crystallites were 

found in the later alloy. The micrographs are supported, however, by the work of Sun, 

et al. [13], where it was rigorously demonstrated that TEM sample preparation can 

produce artifacts that make the sample appear to be partially crystalline. In that work, 

Cu64.5Zr35.5 was shown to be both amorphous and apparently partially crystalline 

depending on the thinning technique used. Additionally, Wang et al. [14] did a study 

on the glass-forming ability of Cu50Zr50 and showed through HRTEM that rods cast 

less than 2 mm in diameter were fully amorphous.  

This contradiction in the observed microstructures is important in terms of 

explaining the observed mechanical properties of both Cu46Zr54 and Cu50Zr50. The 

compression test shown in Figure 2.7 demonstrates that in a 2 mm rod of fully 

amorphous Cu46Zr54, there is only 1% plastic strain before failure, unlike the 7.9% 

reported in Cu50Zr50 [1]. The difference in plastic strain may be caused by slight anti-

parallelism or by a short aspect ratio. If the tests are indeed valid, and the rod of 

Cu50Zr50 used in the compression test was totally amorphous, as would be suggested 

by the work of Wang et al. [14], then there is clearly some internal feature present in 

these bulk metallic glasses that causes a significant increase in plastic strain with a 

small shift in composition. Typically, Poisson’s ratio is used to explain why some 
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BMGs are tougher than others within a specific system. It is theorized that a higher 

Poisson’s ratio makes it more difficult for cavitation to occur within a slipping shear 

band. Indeed, as we demonstrate in the next chapter, the addition of 5 atomic% of 

aluminum to the Cu-Zr binary alloy both increases the Poisson’s ratio and the plastic 

bending strain. However, no appreciable difference in Poisson’s ratio was measured 

for Cu50Zr50 and Cu46Zr54, despite their obvious difference in toughness. Clearly, there 

is more involved than simply Poisson’s ratio.  

As a direct comparison of the two alloys, two three-point-bending tests were 

performed on 1-mm-thick strips with sample lengths 15 mm and 19 mm. In both tests 

shown in Figure 2.8, Cu50Zr50 demonstrates plastic strain prior to failure (indicated by 

the non-linear portion of the bend versus displacement curve). On the other hand, 

Cu46Zr54 showed no plastic strain prior to failure in either test. The slopes of the 

curves in the elastic bending region of Figure 2.8 can be used to calculate Young’s 

modulus using beam bending analysis, as was done in [8] and in Chapter 3. For the 

four tests shown, Young’s modulus ranges from 82–93 GPa, similar to the acoustically 

measured value of 84 GPa for both alloys. The difference in slopes is attributed to 

slight differences in the loading configuration. Since both samples were fully 

amorphous in the bending region, the tests seem to indicate that the small change in 

composition has affected the internal property that toughens BMGs.  

Additional bending and compression tests were attempted on the partially 

crystalline and fully crystalline regions demonstrated to be present in long strips of 

Cu-Zr alloys, and yet no increase in the plastic strain was discovered by these 

“composite” structures. In fact, the alloys became very brittle at the onset of 
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crystallization, and in most cases could be broken by hand. The presence of the brittle 

intermetallic phases dramatically reduces the toughness of the alloy. 

2.7 Afterward 

Our understanding of deformation in metallic glasses has evolved since this 

work was completed in 2006. Thus, this chapter has been modified from the published 

version (D.C. Hofmann, G. Duan, & W.L. Johnson, Scr. Mater. 54, 1117–1122 

(2006)) to reflect our current understanding of BMGs.   
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Chapter  3 

3 Shear Band Formation in Cu-Zr-Based Bulk 

Metallic Glasses through Three-Point-Bending 

 

3.1 Overview 

 Herein we investigate bending tests on 1 mm strips of monolithic metallic 

glasses. The results are very interesting because we discover that BMGs vary in their 

resistance to fracture, determined by their amount of plastic bending strain in three-

point-bending tests. Some glasses exhibit brittle failure while others exhibit dense 

patterns of closely spaced shear bands. In this chapter, we focus mainly on the ternary 

Cu-Zr-Al BMG, which displays the largest amount of bending plasticity. We use 

bending equations to estimate the yield strain and Young’s modulus, and then we use 

shear band analysis (derived elsewhere) to estimate the total strain. In Section 3.7, we 

discuss fracture toughness and plastic zone size, which in BMGs is related to how long 

a shear band can develop before it nucleates a crack. We use the bending tests to 

determine the critical length of a shear band before it becomes unstable and we relate 

that length scale to fracture toughness in metallic glass matrix composites. This chapter 

leads into Chapter 4, where we develop “designed composites” by matching of key 

fundamental length scales.  
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3.2 Background on Bending Tests 

 Unlike crystalline metals, which can accommodate plastic strain through slip, 

twinning, etc., bulk metallic glasses undergo permanent deformation through formation 

of shear bands. In most BMGs, plastic deformation is a function of sample geometry 

and experimental testing conditions [1]. For instance, Inoue et al. [2] and Katsuya et al. 

[3] found that as sample size increases, bending ductility decreases. Conner et al. [1, 4] 

showed that as sample thicknesses approach the “bulk” level (~ 1 mm), there is a 

significant reduction in the number of shear bands generated, and thus, less plastic 

strain prior to failure.  

 To avoid catastrophic failure in unconstrained loading (as might be experienced 

in engineering applications) future BMGs or their composites must be able to exhibit 

plastic strain in tension and bending. Thus far, the only method for creating an alloy 

that is ductile in tension testing is through the use of a composite structure, where a 

softer dendritic phase inhibits shear band movement [5, 6] (see Chapter 4). However, 

recently a new class of alloys has been developed, based on the simple Cu-Zr binary 

system, that shows high levels of plastic strain in uniaxial compression tests [7–13].  

 Three-point-bending tests are rarely used in literature involving BMGs and yet 

they are quite useful for predicting the mechanical behavior of glasses in semi-

unconstrained loading. Since tension tests always result in catastrophic failure in 

BMGs, and compression tests only give plastic strain (not ductility), bending tests 

provide a unique compromise between the two.  
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3.3 Experimental Method 

 The alloys used in this work were first prepared as an ingot by arc melting 

ultrasonically cleansed 99.999 at.% Cu, 99.9 at.% Zr, and 99.9 at.% Al on a water 

cooled copper plate in a high-purity argon environment. Each ingot was melted three 

times to promote homogeneity. The ingots were then melted in a quartz tube through an 

induction coil and injected with pressurized argon (0.2–0.4 MPa) into a copper mold. 

The cavity has thickness 1 mm, width 3 mm, and length 40 mm. Bending specimens 

were cut from the strip to a length of 25 mm and then polished with 3 micron diamond 

suspension. Three-point bending was completed on an Instron 5500R load cell with the 

sample resting on two 6.35 mm diameter pins separated by 18.89 mm and bent by a 

third pin of the same diameter. TEM work was done on a Phillips EM420 at 120 keV 

using samples that were prepared electrochemically with 25% nitric acid in methanol.  

3.4 Results of Bending Tests  

 Figure 3.1 shows bending load versus bend displacement curves for five 1-mm-

thick Cu-Zr based alloys bent in the three-point-bend configuration, shown in the inset. 

Each alloy shows a non-linear effect at small displacements that is caused by machine 

compliance. Only two alloys, Cu47.5Zr47.5Al5 and Cu16.4Zr57.4Ni8.2Ta8Al10, show a 

significant amount of plastic strain prior to failure at this thickness, indicating that they 

have enhanced fracture resistance.  

 Optical micrographs of shear bands on the tensile side of four bending 

specimens are shown in Figure 3.2. Each micrograph shows the shear band formation 
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near the point of fracture. Horizontal lines in the micrographs are damage from 

polishing and not from deformation.  

 Figure 3.3 is an example of the evolution of mixed mode cracks across the 

tensile side of the bending surface in Cu47.5Zr47.5Al5, and is used to estimate the bending 

displacement at the onset of plastic strain. The sample was polished and then loaded in 

steps to increasing displacements. Following each step, the sample was removed from 

the testing equipment and viewed via optical microscopy for the presence of visible 

deformation. Figures 3.3(a–b) are micrographs of the sample bent to 1.25 mm and 1.50 

mm, respectively. Just prior to 1.50 mm of displacement, mixed mode cracks begin to 

form and propagate from the edge of the sample across the width, indicating the onset 

of plastic strain. This coincides with the onset of the non-linear curvature in Figure 3.1 

for Cu47.5Zr47.5Al5.  

 Figure 3.3(c) is a higher magnification image of the arrow in Figure 3.3(b). The 

micrograph shows a mixed-mode crack at the surface being blunted by several small 

shear bands at its tip. From Figure 3.3(b) this plastic region in front of the mixed-mode 

crack extends approximately 450–600 μm into the sample. This plastic zone size can be 

used to approximate the fracture toughness of the glass (see Section 3.7). Figure 3.4 is 

an optical micrograph of the side view of a 1 mm Cu47.5Zr47.5Al5 bending sample. The 

shear band spacing and offsets are estimated to be approximately 180 μm and 15.4 μm, 

respectively.  

 Prior to bending, the microstructure of Cu47.5Zr47.5Al5 was evaluated through 

transmission electron microscopy (TEM). TEM foils were prepared from a 1-mm-thick 

bending specimen and then viewed less than five minutes after being chemically 
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thinned. The SAED pattern (Figure 3.5(c)) from a nominal part of the sample 

demonstrates that Cu47.5Zr47.5Al5 has a fully amorphous structure. Two broad diffuse 

rings, characteristic of an amorphous material, are apparent in the diffraction pattern 

and no crystallization is observed in bright field or dark field imaging. To determine the 

effect of oxidation on the TEM images, the foils were stored in air for three days and 

viewed again for comparison. Figures 3.5(a–b) demonstrate that the oxidation of the 

sample now causes it to appear crystalline. The bright field image displays surface 

discoloration, the dark field image has small diffracting crystallites, and the SAED 

pattern has a thin, crystalline halo.  

 

 

Figure 3.1 – Bending load versus bend displacement plot for five alloys bent in three-
point-bending configuration shown in the inset. Despite all having an amorphous 
microstructure, some BMGs exhibit higher resistance to fracture in bending tests, as 
evidenced by their bending plasticity. 
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Figure 3.2 – Tensile surfaces of bending samples in (a) Cu45Zr45Ti10, (b) 
Cu16.4Zr57.4Ni8.2Ta8Al10, (c) Cu46Zr45Al7Y2, (d) Cu47.5Zr47.5Al5. 

 

 
 

Figure 3.3 – (a) Cu47.5Zr47.5Al5 loaded to 1.25 mm of bend displacement and then 
unloaded; (b) loaded to 1.50 mm showing onset of plastic strain. (c) enlargement of 
arrow showing that the plastic region in front of a crack is comprised of many small 
shear bands. The size of the plastic zone can be estimated from (b) to be several 
hundred microns.  
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Figure 3.4 – Side view of a bending sample of Cu47.5Zr47.5Al5 showing shear band 
offsets and shear band spacing. The sample was unpolished on the sides so horizontal 
lines are flow lines from casting, not from deformation. When the shear band offset 
become too large (at some specific shear band length) cracks nucleate and the beam 
fractures. 

 

 
 

Figure 3.5 – (a) BF of Cu47.5Zr47.5Al5 after three days exposed to air, showing 
discoloration and apparent crystallization. (b) DF showing small crystallites and a 
crystalline halo in the inset SAED pattern. (c) SAED pattern for Cu47.5Zr47.5Al5 showing 
fully amorphous structure (taken less than five minutes after mechanically thinning). 
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Figure 3.6 – Geometry of a sample in pure bending. 

 

 
 

Figure 3.7 – Bending load versus bending displacement curve for Cu47.5Zr47.5Al5, 
showing estimations for Young’s modulus, yield strain, and total strain. 



 

 

69 

3.5 Bending Equations 

 Figure 3.1 demonstrates that among several Cu-Zr based bulk metallic glasses, 

the amount of plastic strain observed in bending is dramatically different. TEM work, 

XRD, and DSC on these alloys suggests that all of the samples are fully amorphous. 

This confirms what we discovered in Chapter 2—that deformation in BMGs is 

maximized when the samples are amorphous, and partial crystallization only results in 

brittleness. 

 In the three-point bending tests, the number of shear bands that form is not the 

same for all metallic glasses even though they all have the same thickness. 

Cu45Zr45Ti10, shown in Figure 3.2(a), is a very brittle alloy and failure occurs sharply 

without any visible plastic deformation near the fracture. In contrast, 

Cu16.4Zr57.4Ni8.2Ta8Al10, shown in Figure 3.2(b), exhibits a large amount of plastic 

strain and has a very jagged fracture surface. Cu46Zr45Al7Y2, shown in Figure 3.2(c), 

has a shear band pattern unique from any other alloy. From Figure 3.1, this alloy does 

not demonstrate a large amount of plastic strain before failure but does have an 

extensive shear band pattern comprised of branch-like bands moving longitudinally on 

the sample. Additionally, the edge of the fracture surface has jagged diagonal steps. 

Cu47.5Zr47.5Al5, shown in Figure 3.2(d), shows the most uniform shear band pattern 

along with the largest amount of plastic strain.  

 We can estimate the yield strain in bending for Cu47.5Zr47.5Al5 (which we 

suspect will be ~ 2%) by employing stress and strain relationships for pure bending. To 

make these estimations more accurate, the experiments need to be repeated with a 

Linear Variable Displacement Transducer (LVDT) attached to the sample fixture to 
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offset the effects of machine compliance. However, since the loads are small in 

bending, we can approximate the yield strain.  

 Figure 3.6 shows the geometry of a sample in pure bending where the length 

AB (at the neutral axis) is L, the original length of the sample. Additionally, L = rθ, 

where θ is the angle of curvature and r is the distance from the neutral axis to the center 

of bending. Near the compressive side of the beam, arc DE has length equal to             

L' =  (r-y)θ, where y is the distance from the arc DE to the arc AB. Since DE had an 

original length L, the deformation in DE is given by [14]: 

LL −′=δ            (3.1) 

( ) θθδ ryr −−=             (3.2) 

θδ y−= .       (3.3) 

 The longitudinal strain xε  is then found by dividing the deformation by the 

original length of DE 

r
y

Lx −==
δε .           (3.4) 

 The longitudinal strain can be rewritten in terms of the maximum absolute value 

of strain, mε , by noting that rcm =ε , where c is the distance from the neutral axis to 

the edge of the sample  

mx c
y εε −= .         (3.5) 

 We now use Hooke’s Law for elastic deformation to determine the stress 

associated with a strain, xε , and Young’s modulus E. By multiplying Equation 3.5 by 
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E, we can determine the longitudinal stress in terms of the maximum absolute value of 

the stress, mσ   

xx Eεσ =         (3.6) 

mx c
yσσ −= .          (3.7) 

 The maximum stress occurs on both the tensile and compressive surfaces of the 

beam and their values are equal and opposite, as shown in Figure 3.6. By taking the 

sum of the moments around the z-axis, the elastic flexure formula can be obtained:  

( ) MdAy x =−∫ σ              (3.8) 

( ) MdA
c
yy m =






−−∫ σ       (3.9) 

MdAy
c

m =∫ 2σ .           (3.10) 

 By noting that this last integral is the moment of inertia, I, of the beam, an 

equation for the maximum absolute value of the stress can be obtained from 

      
I

Mc
m =σ .              (3.11) 

 The value I / c is known as the elastic section modulus, S, and is given by 

       ( ) 2
3

6
1

2
121 bh

h
bh

c
IS === .                      (3.12) 

 The moment, M, is simply half of the bending load, F/2, times the half length of 

the distance between the simple supports, L/2. The stress in the elastic region of 

bending is calculated using the bending load: 
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       22
3

bh
FL

m =σ .             (3.13) 

 Displacement analysis is used to estimate Young’s modulus, E, in the elastic 

region. The deflection, u, of point c downwards for a simply supported beam with a 

centrally located point load is given by 

         
EI

FLu
48

3

= .                        (3.14) 

 Solving for E gives an equation for Young’s modulus as a function of bending 

load, F, and bending displacement, u. For each point in the elastic region, the value of E 

is calculated and then used in Hooke’s law to obtain elastic strain. The average value of 

E obtained in this manner for Cu47.5Zr47.5Al5 is 90 GPa, quite close to the value of 87 

GPa, obtained through acoustical measurements (see Figure 3.7).  

 The onset of plastic strain, where shear bands are observed to form on the 

tensile surface of the specimen, coincides closely with the non-linear curvature in 

Figure 3.1 at 1.40 mm of bend. Knowing the location of the onset of plastic strain 

allows a linear fit to be made to the elastic region of Figure 3.1. A strain offset of 

0.25% is estimated for the non-linear compliance of the samples and the engineering 

elastic strain is calculated for Cu47.5Zr47.5Al5 in a three-point-bend test with 1 mm 

thickness. Converting from engineering strain, the true elastic strain of the sample is 

approximately %1.2=yε , similar to the 2% obtained from uniaxial compression tests 

(see Figure 3.7).  
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 The total bending strain for Cu47.5Zr47.5Al5 can be estimated using the shear 

band analysis given by Conner et al. [1, 4].  For a metallic glass plate, 2D in thickness, 

the total strain in the x-direction measured at the tensile surface is obtained from 

               ( )
λ

ε
2
maxuDyxx

∆
== ,          (3.15) 

where λ is the shear band spacing, and maxu∆  is the shear band offset. For the 1-mm-

thick sample of Cu47.5Zr47.5Al5, the shear band spacing is approximately 180 μm, the 

shear band offset is 15.4 μm, and the half beam height is 0.5 mm. The total strain is 

thus estimated to be %1.6=tε . Subtracting the elastic strain, the plastic strain in the 

three-point-bending sample is estimated to be %0.4=pε .  

 The bending tests and the shear band analysis both confirm that Cu47.5Zr47.5Al5 

is a simple metallic glass with high bending plasticity and resistance to fracture, as was 

first suggested through uniaxial compression tests [7]. The alloy exhibits plastic strain 

prior to failure in bending and has significant shear band development on the tensile 

surface.  

 In both uniaxial compression tests and three-point-bending tests, Cu47.5Zr47.5Al5 

demonstrates more total strain than most other metallic glasses. Das et al. [7] explained 

this by claiming that nanometer scale particles were present in the microstructure. 

These crystallites are thought to enhance the plastic strain by interfering with shear 

band mobility. However, the TEM analysis of Cu47.5Zr47.5Al5 shows that it is fully 

amorphous in 1-mm-thick plates and the partial crystallization may be caused by 

oxidation, as supported by [15, 16].  
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3.6 Commentary 

 Very few studies had been completed prior to this work to evaluate the 

mechanical properties of BMGs in bending. Instead, only compression tests were used, 

which raises questions about comparisons between alloys. How does one differentiate 

the compression test between a tough BMG and a brittle composite where friction in 

compression has resulted in a large amount of plasticity? The semi-unconstrained 

loading of a bending test (combining both a compressive and tensile surface) screens 

out alloys that are brittle and makes direct comparisons possible. In this chapter we 

have shown that several BMGs display different amounts of plastic bending strain, 

indicating their varying degrees of fracture resistance or toughness. Why BMGs exhibit 

different toughness despite having the same amorphous structure is still an interesting 

question. We have noticed that as Poisson’s ratio increases, bending strain increases. As 

we discuss in Section 4.3, a Pt-Ni-Cu-P alloy was developed with very high Poisson’s 

ratio and exhibited the highest bending strain of any BMG. However, this alloy also 

exhibits negligible ductility in uniaxial tension tests, as with all BMGs. Designing 

BMGs to simply have a high Poisson’s ratio is impractical, and thus designing 

monolithic BMGs with ductility is currently not possible. As we discuss in the next 

section, what we can learn from bending tests is that plasticity is greatly enhanced when 

the plastic zone radius in front of a crack tip (determined from fracture toughness) is 

larger than a certain length scale related to the beam thickness in bending.  
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3.7 Bending Tests, Plastic Zone Size, and Fracture Toughness 

 Three very detailed studies have been performed on the physics governing 

bending in metallic glass plates and beams [1, 4, 19]. In these studies, bending 

equations are derived to explain the growth and spacing of shear bands in relationship 

to beam thickness. These papers do not attempt to identify why BMGs exhibit very 

different plastic bending strains but they do clearly explain a size effect that occurs 

while increasing the beam height. Going from thin ribbons to bulk glasses (> 1 mm 

thick) BMGs undergo a transformation whereby the alloy is stable in bending until it 

reaches a critical thickness, at which point it fails in a brittle manner. In fact, [4] 

indicates that the fracture strain in bending varies inversely with the square of the 

sample thickness. In [19], this claim was contested and fracture strain was shown to 

vary inversely with beam thickness, not the square of beam thickness. Shear band 

spacing has also been shown to vary linearly with sample thickness, displaying an 

approximate 1:10 relationship between the spacing of the shear bands and the sample 

thickness [4]. For a brittle BMG in bending, failure occurs with a single shear band. As 

plastic bending strain increases, the number of shear bands increases and their relative 

spacing decreases.  

 To understand how a metallic glass can become stable against fracture in 

bending, we need to first investigate the plastic zone in front of a crack tip. The stress 

components at the tip of a crack for mode I, II, and III are given by [20]. Although not 

presented here, in each case stress is related to geometry by a factor of rK π2/ , where 

K is the stress intensity and r is the radius from the tip of the crack. The stress intensity 

factor, K, describes external conditions and contains contributions from the applied 
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stress and the crack dimensions. The critical value of stress intensity, denoted KC, 

depends on the sample dimensions. In thin samples, where thickness effects play a role 

in fracture, KC is said to be in plane-stress conditions. When the thickness is sufficiently 

large that no thickness effects are observed, KC is denoted K1C and is said to be in 

plane-strain conditions. It is important for discussions in the next chapter to note that 

K1C is independent of sample thickness, KC depends on sample thickness, and K varies 

from one system to another.  

  It is also important to note that the equations for stress at a crack tip contain a 

r singularity. This implies that the stress becomes infinite at the tip of a crack. For 

most materials, yielding near the crack tip is observed, which relaxes the singularity in 

stress. During yielding, the crack tip becomes blunted, creating two new crack surfaces 

without advancing the crack, see Figure 3.8 (adapted from [20]). The volume of 

material at the tip of the crack that participates in yielding is generally given a radius, rp 

(sometimes denoted ry or Rp), which is called the crack tip “plastic zone radius.” 

Material far away from the crack tip can “feel” or “see” the crack as a result of the 

stress field generated by the plastic zone. In metallic glasses, cracks are blunted by 

shear bands that form at the crack tip (see Figure 3.3 and Figure 4.3(c)), and the length 

of these shear bands can be denoted as 2rp. In the simplest case, the plastic zone can be 

approximated by a cylinder with radius rp. Stress intensity can be defined generally 

using the stress, σ, and crack length, a as 

             aK πσ=  .                                              (3.16) 

 For a cylindrical plastic zone size we can relate stress intensity to the yield 

strength, yσ , and the plastic zone radius, rp (which is one half of the crack length) as 
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= .                                              (3.17) 

 Therefore we can approximate the plastic zone radius by solving for rp  
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.                                           (3.18) 

 This equation works well for the case of plane stress but in the case of plane 

strain, a factor of 1/(6π) is used instead of 1/(2π) [20]. However, typical observations 

regarding plastic zone size are done on the sample’s surface, where plane stress 

conditions are in effect. Thus, we will use the form of Equation 3-18 for our geometric 

arguments. In the case of a mode I crack, stress intensity, K, is written as K1C, and is 

called plane strain fracture toughness.  

 To ultimately design composites in bulk dimensions (for example, 3 mm tension 

specimens) that exhibit high resistance to fracture and ductility, it is important to 

understand how long a shear band can become before it nucleates a catastrophic crack. 

This allows microstructural stabilization mechanisms to be applied to prevent shear 

bands from reaching this length. Therefore, it is important to know the fracture 

toughness and the plastic zone size of each metallic glass, which is defined by the 

length of shear bands that form at the crack tip during mode I failure. For every metallic 

glass tested in mode I, there will be a shear band length that defines the plastic zone 

size and this length will increase with increasing fracture toughness. Each shear band is 

accompanied by a shear offset at its base and this offset grows with applied stress. At a 

critical shear band length, the shear offset reaches a critical value and the crack grows.  
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  Figure 3.3 can be used to estimate the fracture toughness for the Cu47.5Zr47.5Al5 

ternary glass. The plastic zone can be physically observed on the sample’s surface for a 

mixed-mode crack, and the plastic zone radius is simply one half of this value. When 

measuring fracture toughness, there are multiple geometries that can be used. 

Toughness can be measured in modes I–III or in mixed modes, and the samples can be 

in plane-stress, plane-strain, or a combination. In all geometries, the lowest value for 

fracture toughness is when mode I is measured in plane-strain, so-called K1C. Typically, 

all other geometries will overestimate K1C. Thus, the mixed-mode crack in Figure 3.3 

can be used as an overestimate for K1C. From the figure, Cu47.5Zr47.5Al5 exhibits rp ~ 

225–300 μm. Using a yield stress of σy = 1547 MPa [7], this corresponds to a partial 

plane-stress fracture toughness of KC ~ 58–67 MPa m1/2, a very respectable 

overestimate compared to other BMGs. Typically Fe-based BMGs exhibit K1C < 10 

MPa m1/2, Vitreloy 1 exhibits K1C = 20–50 MPa m1/2 (depending on the reference), and 

the Zr-Ti-Cu-Be that we use later in Chapter 4 as the matrix for our composites exhibits 

K1C ~ 80 MPa m1/2 (although this value may be inflated due to plane-stress effects). 

Thus, using the plastic zone in front of a mixed-mode crack, we obtain a value for 

fracture toughness that matches our observations from bending tests quite well.  

 To determine the maximum spatial length of shear bands originating at a crack 

tip before fracture ensues, which can be thought of as 2rp, two simple methods can be 

used. Beams can be cast, polished, notched, cyclically loaded, precracked and then the 

shear bands can be observed at the tip of the pre-crack. This is the general procedure 

used in Chapter 4 to measure K1C. We can also use bending tests to determine the 

maximum beam thickness where plastic strain is observed. 
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 According to the derivations found in [1, 4, 19], plastic bending strain decreases 

as beams become thicker. At some critical beam height, which we denote as DC (also 

called h* [19]), a metallic glass beam will exhibit zero plasticity and will fail on one 

shear band. Below DC, multiple shear bands will form and bending plasticity will be 

observed. In the case of a beam at DC, the first shear band that forms will propagate 

from the tensile surface towards the neutral stress axis, creating a shear offset that is at 

a critical value, denoted Δu* in [4] and Δumax in Section 3.5. The shear offsets can be 

seen in Figure 3.4 for the Cu47.5Zr47.5Al5 ternary glass. When the shear offset reaches 

this critical value, the shear band is transformed into a mixed-mode crack, which results 

in failure of the beam. In other words, when a metallic glass beam is bent past the point 

of yielding (typically > 2% strain) shear bands will form that grow to a certain depth, s, 

that is smaller than the neutral axis of stress [4]. If a shear band can grow to this length 

before the stress intensity at the surface reaches the fracture toughness of the glass, then 

bending is considered stable. If we assume that s is at the neutral stress axis (which is 

half the beam height for symmetric bending), the length of a shear band is 

approximately 2/D , since shear bands are assumed to grow at a 45° angle. If we are 

at the critical beam thickness DC, then the edge of sample is at the fracture toughness of 

the glass and a mixed-mode crack develops with length a = 2rp ~ 2/CD . Therefore, 

fracture will occur in a bent BMG plate of thickness D when  

DDrp 35.0
22
=< .                  (3.19) 

 Experimentally, s is typically less than half of the beam height. If we look at 

Figure 3.9, showing shear bands in a bent metallic glass plate, we can see that 
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deformation is close to symmetric and shear bands grow from both the tensile and 

compressive surfaces, stopping before they reach the neutral axis of stress. Recently, 

experiments have been performed on the composite alloys from Chapter 6, along with 

several others, to determine the relationship between rp and the critical beam thickness 

where bending is stable. Fracture toughness values were obtained and then beams of 

increasing thickness were bent to estimate the critical beam size. These experiments, 

which will be the subject of future work, indicate that at the critical beam thickness 

where bending is stable, rp ~ 0.15–0.2 D—about half the value we derive in Equation 

3.19. From a scaling argument, however, we can say that in the case where rp > 2/D , 

stability against crack opening is geometrically assured. 

 We can now estimate the strain at failure of a bent BMG plate from [19]: 

D
u

f γ
ε

2
max∆

≈ ,                (3.20) 

where γ is a material constant that relates the shear band spacing, λ, with the depth that 

shear bands grow, s, through the relationship λ=2sγ. It can be said that a wire or thin 

beam of metallic glass is ductile if the strain to failure is equal to or greater than 0.1 or 

10% [19]. Therefore, Equation 3.20 can be rewritten to express the transition for which 

a beam experiences ductile to brittle failure as 








 ∆
=

γ
max5 uDC ,                  (3.21) 

which relates the critical beam thickness with the maximum shear band offset before 

cracking occurs. As we can see, the fracture toughness of a metallic glass and the length 

scale rp are related to the thickness of a bent beam and the maximum shear band offset.  
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 Of course, the geometric arguments described above have more rigorous 

definitions. We can say that unstable crack growth and fracture occur when the stress 

intensity K1 for a mode I crack perpendicular to the surface of a bent BMG plate 

exceeds the fracture toughness of the BMG, K1C. The equation for K1 can be obtained 

from fracture mechanics and takes the form of  

( ) 





























+






−






+






−



































−

−
=

4322

1 16
14

8
13

4
3.7

2
39.112.1

2
1

2
3

1
2

D
a

D
a

D
a

D
aaGK y

y π
ε
ε

ε
ν

where G is the shear modulus, ν is Poisson’s ratio, a is the crack length, εy is the yield 

strain, and D is the beam thickness [4]. Fracture occurs when CKK 11 > . We can plug in 

the equation pyC rK πσ 21 =  and then solve for rp such that we get an equation of the 

form 
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where K1(D) represents the stress intensity as a function of the beam height. The strain 

needed to initiate cracking at the surface of the beam can be defined from [4] as 
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where the material parameter α is defined as 
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να .                 (3.24) 

 For a 1 mm beam of the ternary alloy Cu47.5Zr47.5Al5, we can calculate the strain 

needed to initiate cracking in the plate. For ν = 0.365, maxu∆ = 15.4 μm, and εy = 0.02, 

we calculate the strain needed to initiate cracking is εi = 0.059 or 5.9%. This value 
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closely matches the total strain to failure of 6.1% that we calculated in Section 3.5 

using the shear band spacing. Using Equation 3.20, we can estimate the material 

parameter γ using the value for εi such that γ = 0.13. We can plug this value into 

Equation 3.21 to estimate the critical beam thickness where the transition occurs 

between ductile and brittle bending. Using this method, we estimate the critical beam 

thickness is DC = 0.6 mm or 600 μm. Below this thickness, we expect that a beam of 

the BMG Cu47.5Zr47.5Al5 will be completely stable in bending (in other words, it will 

have a strain to failure of > 0.1 or 10% before fracture). Earlier, we estimated the 

plastic zone radius, rp, to be approximately equal to 225–300 μm for Cu47.5Zr47.5Al5 

using a micrograph of a crack tip. We note that a beam of Cu47.5Zr47.5Al5 will be stable 

in bending when  

2/Cp Dr > ,              (3.25) 

which is the same scaling argument that we predicted from geometry. Although this 

analysis is only approximate, the scaling argument presented here relates the plastic 

zone size at a crack tip with plasticity in monolithic BMGs.  
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Figure 3.8 – Diagram of the plastic-zone correction at the tip of a crack (adapted from 
[20]). 

 

 
 

Figure 3.9 – Stable bending in a thin beam of metallic glass showing shear band growth 
from both the tensile and compressive surfaces (image courtesy of R.D. Conner). 
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3.8 Conclusion 

 Every metallic glass exhibits brittle failure at some critical beam thickness. 

However, when we design BMG composites, we would like bending and tension tests 

to exhibit ductile failure in dimensions larger than the critical beam thickness of the 

metallic glass matrix. Therefore, to design composites we need a metallic glass matrix 

with the highest fracture toughness available, and we need to add ductile inclusions 

spaced at a distance less than the maximum length of a shear band before it nucleates a 

crack. In unconstrained loading (like tension tests) we want shear bands to form and 

propagate and yet become arrested by the microstructure prior to the nucleation of 

cracks. If it requires more energy to drive the shear band than it takes to form a new 

one, then multiple shear bands will form and the alloy will exhibit global ductility. This 

is the strategy we use in the next chapter to create high-toughness BMG composites.  
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Chapter  4 

4 Designing Metallic Glass Matr ix Composites with 

High Toughness and Tensile Ductility∗

4.1 Commentary 

 

 This chapter represents the major discovery of this thesis. In Appendix A at the 

end of this thesis, we present the supplementary material necessary to support the 

technical claims and some important questions raised by the reviewers in Nature.  

 In this chapter, we extend our discussion on length scales from Chapter 3 to 

design metallic glass matrix composites with high toughness and tensile ductility. What 

is not obvious from this chapter or from our publication is the BMG matrix material 

that we used. Our group developed a new Zr-Ti-Cu-Be alloy (GHDT) exhibiting the 

most impressive properties of any metallic glass. As we discuss in Chapter 5, this new 

alloy has low density, the largest supercooled liquid region of any metallic glass, 

eutectic melting and crystallization, large critical casting thickness, low shear modulus, 

and the highest fracture toughness of any Zr-Ti-based metallic glass.  

 This chapter also adds far more to the field of metallic glasses than simply new 

alloy compositions. We present a scientific understanding about how to toughen 

metallic glasses that is not found in literature. Our discussion is therefore a guide for 

                                                 
∗ The contents of this chapter are published: Douglas C. Hofmann, Jin-Yoo Suh, Aaron Wiest, Gang 
Duan, Mary-Laura Lind, Marios D. Demetriou, and William L. Johnson, Nature, 451, 1085–1089 (2008). 
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others to follow to develop ductile BMG composites. Further, our understanding about 

the formation of composites has allowed us to alter the volume fraction of the soft 

inclusions from 0–100%, which changes the mechanical and thermal properties. We 

now understand how to tailor these alloys for specific applications without resorting to 

trial and error. In conclusion, the alloys presented in this chapter are so far removed 

from ordinary metallic glasses (especially in terms of fracture toughness) that they open 

the door for years worth of future research. 

4.2 Motivation  

The selection and design of modern high-performance structural engineering 

materials for demanding applications is driven by optimizing combinations of 

mechanical properties including strength, ductility, toughness, elasticity, and 

requirements for predictable and graceful failure in service [1]. Highly processable bulk 

metallic glasses are a new class of engineering materials and have attracted significant 

technological interest [2–6]. While many BMGs exhibit high strength and show 

substantial fracture toughness, they lack ductility and fail in an apparently brittle 

manner in unconstrained loading geometries [7]. For instance, while some BMGs 

exhibit significant plastic deformation in compression or bending tests, all exhibit 

negligible plasticity (< 0.5% strain) in uniaxial tension. To overcome brittle failure in 

tension, BMG-matrix composites were previously introduced [8–9]. The 

inhomogeneous microstructure, with isolated dendrites in a BMG matrix, stabilizes the 

glass against the catastrophic failure associated with unlimited extension of a shear 

band and results in enhanced global plasticity and more graceful failure. Tensile 

strengths of ~ 1 GPa, tensile ductility of ~ 2–3% [9], and enhanced fracture toughness 
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K1C ~ 40 MPa-m1/2 were reported [8–9]. Building on this approach, we have developed 

“designed composites” by matching of key fundamental mechanical and 

microstructural length scales. In this chapter, we report new exemplary BMG 

composites with benchmark engineering properties. Room-temperature tensile ductility 

exceeding 10%, yield strengths of 1.2–1.5 GPa, mode I fracture toughness up to K1C ~ 

170 MPa-m1/2, and fracture energies for crack propagation, G1C, as high as ~ 340 kJ/m2 

are reported for the new Ti-Zr-based BMG composites. The K1C, and more particularly 

the G1C, values equal or surpass those achievable in the toughest titanium or steel alloys 

placing BMG composites among the toughest known materials of any kind. 

4.3 Discussion of Fracture Toughness   

Researchers frequently use uniaxial compression tests to assess ductility of 

BMG materials because it differentiates glassy alloys that all lack tensile ductility [10–

21]. Under compression, an operating shear band is subject to a normal stress that 

closes the band. Variations in local material properties caused, for example, by 

nanoscale inhomogeneities [20] and frictional forces (due to closing stresses) combine 

to arrest persistent slip on individual shear bands. Multiple shear bands are sequentially 

activated giving rise to global plasticity (~ 1–10% strain). A geometry that better 

differentiates the ductility is bending. Here, the sample is subject to both compressive 

and tensile stresses. Shear bands initiate on the tensile surface but are arrested as they 

propagate toward the neutral stress axis [22, 24]. Deformation is stable unless the shear 

band at the tensile surface evolves to an opening crack [23, 24]. In bending, plasticity is 

dramatically enhanced when the characteristic dimension, RP, of a crack tip “plastic 

zone” exceeds ~ D/2, where D is sample thickness [22, 23] and RP is a material length 
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scale related to fracture toughness.  For a mode I opening crack, it can be expressed as 

[25] 

RP ≈ (1/2π)(K1C/σY)2. 

RP varies from ~ 1 µm up to ~ 1 mm on going from relatively brittle to tough BMGs 

[26]. RP is associated with the maximum spatial extension (band length) of shear bands 

originating at an opening crack tip. For a specific geometry (e.g., a mode I opening 

crack in tension tests), RP is related to a maximum allowable shear offset along the 

band [23, 24]. In bending, the most ductile BMG reported is Pt57.5Cu14.7Ni5.3P22.5, with 

RP ~ 0.5 mm (K1C = 83 MPa-m1/2). A 4-mm-thick square beam showed 3% plastic 

bending strain without cracking [27]. Despite large bending and compressive ductility, 

the Pt57.5Cu14.7Ni5.3P22.5 glass has negligible (< 0.5%) ductility in uniaxial tensile tests. 

In tension, the opening stress on the shear bands enhances strain softening and 

instability, frictional forces are absent, and a propagating shear band lengthens and slips 

without limit. Cavitation ultimately ensues within the slipping band and an opening 

failure follows. 

 Suppression of tensile instability requires a mechanism to limit shear band 

extension. Bending produces an inherently inhomogeous stress state where a shear band 

is arrested by the gradient in applied stress, ∇σ = 2σY/D.  Stability against crack 

opening is geometrically ensured when D/2 < RP [23, 24]. Under uniaxial tension, 

applied stress is uniform. By introducing inhomogeneity in elastic or plastic material 

properties at a microstructural length scale L, “microstructural” stabilization 

mechanisms become possible. Shear bands initiated in plastically soft regions (e.g., 

lower σY or lower shear modulus, G) can be arrested in surrounding regions of higher 
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yield stress or stiffness. Stabilization requires that L ~ RP. This fundamental concept 

underlies enhancement of ductility and toughening and is similar to that employed in 

toughening of plastic by inclusion of rubber particles [28].  

4.4 Designing the New Composites 

Compared to previous in-situ composites, the new BMG composites have 

increased Ti content to reduce density and contain no Ni. Removal of Ni enhances 

fracture toughness of the glass and suppresses nucleation of brittle intermetallics during 

processing. Three alloys, Zr36.6Ti31.4Nb7Cu5.9Be19.1, Zr38.3Ti32.9Nb7.3Cu6.2Be15.3 and 

Zr39.6Ti33.9Nb7.6Cu6.4Be12.5, (DH1–3, respectively) are discussed. The Be content, x = 

12.5–19.1, is varied while fixing the mutual ratios of Zr, Ti, Nb, and Cu. As x 

decreases, one obtains an increasing volume (or molar) fraction of dendritic phase in a 

glass matrix. SEM, EDS, and XRD analysis show that the composition of the dendrites 

and glass matrix remain approximately constant with varying x. The dendritic phase is a 

b.c.c. solid solution containing primarily Zr, Ti, and Nb, as verified by X-ray and EDS 

analysis. DH1–3 partition by volume fraction into 42%, 51%, and 67% dendritic phase 

in a glass matrix, respectively. These percentages were obtained by analyzing the 

contrast from SEM images using computer software. They were independently verified 

by analyzing the heat of crystallization from DH1–3 in DSC scans relative to the heat 

of crystallization from a fully glassy matrix alloy (see Appendix A). Dendrite 

compositions measured using EDS range over Zr40–44Ti42–45Nb11–14Cu1–3, while glass 

matrix compositions range over Zr31–34Ti17–22Nb1–2Cu9–13Be31–38. These are reported 

with an estimated error of 1 at.%. The volume fraction of dendritic phase can be 

controlled by varying x (though not presented here) from 0 to 100%. Ultrasonic 
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measurements for the composites give average elastic constants following a “volume 

rule of mixtures” with varying x. In DH1, for example, a shear modulus G = 33.2 GPa 

(28.7 GPa), and Young’s modulus E = 89.7 GPa (78.3 GPa) are obtained for glass 

matrix phase and dendritic phases, respectively. The two-phase composite has a volume 

weighted average value of the two, G = 30.7 GPa and E = 84.3 GPa. The dendrites are 

elastically soft inclusions relative to the matrix (see Appendix A). Under loading, 

yielding and deformation are promoted in the dendrite vicinity and limited by the 

surrounding matrix. 

Earlier reported “in-situ” composites [8, 9] were solidified from the melt in an 

arc melter. Due to cooling rate variations with the ingots, the overall dendrite length 

scale and interdendrite spacings showed large variation from ~ 1–100 µm [8, 21]. To 

produce a more uniform microstructure, the present alloys were heated into the semi-

solid two-phase region (T = ~ 800–900 °C) between the alloy liquidus and solidus 

temperature [21] and held there isothermally for several minutes, remaining entirely 

below the molten state (T > 1100 °C). The semi-solid mixture was then quenched 

sufficiently rapidly to vitrify the remaining liquid phase. This process yields a more 

uniform “near equilibrium” two-phase microstructure throughout the ingot, which was 

characterized using TEM, as shown in Figure 4.1. A bright-field/dark-field pair 

showing the b.c.c. dendrite in the glass matrix is shown in Figure 4.1(a–b) for the alloy 

DH1. The interface between a dendrite and the glass matrix is shown in high resolution 

in Figure 4.1(b). The micrograph confirms that the interface between the two phases is 

atomically sharp. Diffraction patterns are shown in the insets of Figure 4.1(c) for both 

the dendrite and the matrix glass. The dendrite exhibits a b.c.c. diffraction pattern, 
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while the glass matrix exhibits two broad diffuse halos typical of an amorphous 

material. The dendrite/glass interfaces in DH2–3 are similar to those seen in Figure 4.1.  

SEM analysis was used to characterize the bulk microstructure of the 

composites. Two selected areas are shown in Figure 4.2(a–b) for the alloys DH1 and 

DH3.  After analyzing an array of micrographs, dendrite size was found to vary over L 

~ 60–120 µm, while inter-dendrite spacings vary over S ~ 80–140 µm. (The 

interdendrite spacing is the distance from the center of a single dendrite tree to the 

center of an adjacent one, while the dendrite size is the total spanning length of a single 

dendrite tree.) Primary or secondary “trunk” diameters noticeably increase from DH1 to 

DH3 with DH1 (DH3) exhibiting a more (less) developed tree structure. The rationale 

for selecting these microstructures lies in uniformly matching the length scales L and S 

to be less than, but of order, RP. The RP for the glass matrix can be estimated from its 

K1C ~ 70 MPa-m1/2, to be RP ~ 200 µm. 
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Figure 4.1 – (a) Bright-field TEM micrograph showing a b.c.c. dendrite in the glass 
matrix and (b) the corresponding dark-field micrograph of the same region. (c) A high-
resolution micrograph showing the interface between the two phases with 
corresponding diffraction patterns shown in the inset. 
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4.5  Room-Temperature Tension Tests 

The room temperature engineering stress-strain tensile curves for DH1–3 

(Figure 4.2(c)) show total strain to failure ranging from 9.6–13.1% at ultimate tensile 

strengths of 1.2–1.5 GPa. Sample-to-sample variation in total strain was typically ± 1%, 

and variation in strength was typically ± 0.1 GPa. The stress decreases at large strains 

due to necking in the gauge section. The alloy DH2, demonstrates the most necking 

(50% reduction in area), and fails at a true stress of 2.15 GPa in the necked region. 

Optical images of tensile gauge sections in DH2–3 are shown in Figure 4.2(d–e). The 

in-situ composites exhibit plastic elongation of approximately 1.3 mm (8.6%) and 1.7 

mm (11.3%) from their undeformed gauge lengths of ~ 15 mm. Figure 4.2(g–h) shows 

the necked regions from DH2–3 at higher magnification. In contrast, monolithic BMGs 

fail on a single shear band oriented at roughly 45o (Figure 4.2(i)).  The observed tensile 

ductility of DH1–3 is associated with patterns of locally parallel primary shear bands 

that form in domains defined by individual dendrites (Figure 4.2(f), taken near the 

necked region). The primary shear bands have a dominant spacing of dP ~ 15 µm, or 

roughly S/10 ≈ L/10. The plane of shear slip of the primary bands changes orientation 

(often by a 90o rotation) on moving from one dendrite domain to a neighboring dendrite 

domain. The length of individual primary shear bands (~ 60–100 µm) is of order L (and 

S), and somewhat less than but of the order of RP. The inset of Figure 4.2(f) shows a 

magnified image of secondary shear band patterns between two primary shear bands. 

Dense secondary shear bands with spacing dS ~ 1–2 µm are uniformly distributed 

within primary bands. It is noteworthy that dP ~ L/10 and dS ~ dP/10. Similar geometric 
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“scaling” of shear band spacings is also observed for primary/secondary patterns in 

bending experiments [23–24]. 

 

 

 

Figure 4.2 – Backscattered SEM micrographs showing the microstructure of (a) DH1, 
(b) DH3 where the dark contrast is from the glass matrix and light contrast is from the 
dendrites. (c) Engineering stress-strain curves for Vitreloy 1 and DH1–3 in room-
temperature tension tests. (d) Optical micrograph of necking in DH3. (e) Optical 
micrographs showing an initially undeformed tensile specimen contrasted with DH2-3 
specimens after tension testing. (f) SEM micrograph of the tensile surface in DH3 with 
higher magnification shown in the inset. SEM micrographs of necking in (g) DH2 and 
(h) DH3. (i) Brittle fracture representative of all monolithic BMGs. 
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4.6 Fracture Toughness Tests 

 Mode I fracture toughness tests in the three-point-bend geometry (K1C) were 

used to assess resistance to crack propagation of DH1–3 (illustrated in Figure 4.3(a)). 

From an initial cut notch, a pre-crack was generated by fatigue cracking. On subsequent 

loading, extensive plasticity is observed prior to crack growth.  While the load 

displacement curves start to turn over at a stress intensity of K = 55–75 MPa-m1/2, 

unloading compliance shows that failure at the blunted pre-crack front initiates much 

later. Thus, the J-integral and J-R curves were used to assess K1C according to method 

ASTM E399.A3 and formula ASTM E1820. In fact, the final propagating crack was 

arrested before sample failure occurred (Figure 4.3(b)). This contrasts sharply with the 

behavior of monolithic BMGs (Figure 4.3(c)) where crack arrest is never observed. 

Although an array of shear bands form at the pre-crack tip, the monolithic glass fails 

catastrophically along a single shear band when overloaded. Figures 4.3(d–e) are 

backscattered SEM micrographs of the arrested crack tip in DH1 and DH3 showing a 

complex plastic zone with primary and secondary shear band patterns. DH3, which has 

the highest fracture toughness, exhibits more extensive deformation at the crack tip than 

DH1 (Figure 4.3(d–e). High-resolution SEM was used to image the shear band 

formation in the interdendrite regions, shown in Figure 4.3(f). Primary and secondary 

shear band patterns are visible with spacing 5–10 µm and 0.3–0.9 µm, respectively. 

This matches closely with the secondary-to-primary shear band relation dS ~ dP/10.  

The fracture toughness (K1C) of DH1–3 were estimated to be 87 MPa m1/2, 128 MPa 

m1/2, and 173 MPa m1/2. DH1–3 have high K1C in load-limited failure, but have 

extremely high values of G1C (≈ K1C
2/E) in energy-limited failure (due in part to their 
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relatively low Young’s modulus). For example, the fracture toughness of DH3 is K1C ~ 

173 MPa m1/2, while the fracture energy is G1C ~ 341 kJ/m2. This is comparable to G1C 

in highly toughened steels which have nearly three times higher stiffness than DH3 (E 

~ 200 GPa versus E = 75 GPa).  It is noteworthy that the apparent plastic zone radius, 

RP, of the composite is several mm’s (Figure 4.3(a)), comparable to many structural 

crystalline metals. 

 

Figure 4.3 – (a) Optical image of an unbroken fracture toughness (K1C) specimen in 
DH1 showing plasticity around the crack tip on the order of several mm. (b) SEM 
micrograph of an arrested crack in DH1 during a K1C test. (c) SEM micrograph of K1C 
test in Vitreloy 1. Backscattered SEM micrographs showing the plastic zone in front of 
the crack in (d) DH1 and (e) DH3. (f) Higher magnification SEM micrograph of DH3 
showing shear bands on the order of 0.3–0.9 µm.  
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4.7 Ashby Map—Compar ing Proper ties 

To illustrate the unusual properties of the new composites, an “Ashby Map” 

used for selection of materials in load, deflection, and energy limited structural 

applications is shown in Figure 4.4. The two axes are Fracture Toughness (K1C) and 

Young’s Modulus (E), while the parallel dashed lines correspond to constant G1C 

contours. Whereas the K1C values of DH1–3 are comparable to those of the toughest 

steels and crystalline Ti alloys, the G1C values appear to pierce the limiting envelope 

defined by all alloys. The new BMG composites have benchmark G1C values.  

 Table 4.1 summarizes some of the properties observed for DH1–3. The 

properties are compared with those of monolithic BMGs and with earlier reported 

composites. Space precludes discussion of other data obtained. For example, Charpy 

impact energies were measured and found to be of order 40–50 J/cm2, much higher than 

values for either monolithic glass or previous composites (Table 4.1).  These results 

will be discussed in a later publication. Further details regarding the current alloys are 

shown in Appendix A. These include X-ray diffraction scans, DSC curves, optical 

images, and backscattered SEM micrographs. 

We conclude by noting that the present materials were created using the strategy 

of microstructural toughening and ductility enhancement in metallic glasses, as 

described in the text. The basic principles are: (1) introduction of “soft” elastic/plastic 

inhomogeneities in a metallic glass matrix to initiate local shear banding around the 

inhomogeneity, (2) matching of microstructural length scales (e.g., L and S) to the 

characteristic length scale RP (for plastic shielding of an opening crack tip) to limit 

shear band extension, suppress shear band opening, and avoid crack development. 
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These principles are applicable to other ductile-phase reinforced metallic glass systems 

in the event that several criteria are met. The new alloy system must be comprised of a 

highly processable metallic glass in which a shear-soft dendritic phase nucleates and 

grows while the remaining liquid is vitrified on subsequent cooling. At least one other 

alloy system has been reported that successfully uses this strategy [30]. A BMG matrix 

composite was discovered in La74Al14(Cu,Ni)12 whereby 5% tensile ductility was 

achieved with 50% volume fraction of soft second phases. Although the La-based 

composite exhibited an ultimate tensile strength of only 435 MPa, the alloy 

demonstrated that the properties of the monolithic metallic glass (La62Al14(Cu,Ni)24) 

could be greatly improved through the introduction of a soft second phase. Other 

desirable composite systems are those with lower density (as with Al-containing alloys) 

or with higher strength (as with Fe-based alloys).  
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Figure 4.4 – An Ashby plot for materials selection showing fracture toughness (K1C) 
versus Young’s modulus (E). The dashed contour lines are fracture energies for crack 
propagation (G1C) with each line being separated by an order of magnitude. The plot 
shows a large range of common engineering materials, along with selected metallic 
glass ribbons and BMGs. Due to their high K1C with low stiffness, the semi-solidly 
processed composites DH1–3 (Zr-Ti-Nb-Cu-Be) have among the highest G1C for all 
known engineering materials. 
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4.8 Experimental Method 

Master ingots were prepared by arc melting ultrasonically cleansed pure 

elements under a Ti-gettered argon atmosphere. The master ingots were then placed in 

a water-cooled Cu boat and heated (again under a Ti-gettered argon atmosphere) via 

induction, with the temperature monitored by pyrometer. The final shape of the ingots 

ranged from 6–15 mm thick and 40–60 mm long with total ingot mass of 10–35 g. 

Mechanical test samples were machined from ingots. 

ASTM standard tension tests were prepared in proportion with the ASTM E8M 

standard. The diameter of the gauge section was between 3.00–3.05 mm and the gauge 

length was between 15.15–15.25 mm. The tests were performed at room temperature on 

a calibrated Instron 5500R load frame. The tests were done with a constant crosshead 

displacement rate of 0.1 mm/min. The elastic strain was measured by extensometer and 

the total strain was measured both by a linear variable displacement transducer (LVDT) 

attached to the sample fixture and by machine crosshead. The decrease in area was 

measured by a Leo 1550 VP Field Emission SEM in conformance to ASTM standards.  

  Fracture toughness samples were prepared with dimensions 2.4–2.6 mm thick × 

7.6–8.4 mm wide × 36 mm long and were polished for observation of surface shear 

bands after fracture. An initial notch was made in the middle of one side using a wire 

saw. From the notched end, a pre-crack was generated by fatigue cracking with 5 Hz of 

oscillating load (applied by MTS hydraulic machine equipped with 3-point-bending 

fixture having 31.75 mm span distance.) Load level was kept at approximately ∆K ≅ 10 

MPa m1/2, Kmin/Kmax ≅ 0.2 and 2 mm of pre-crack was obtained after 40,000–100,000 

cycles. With the initial crack length of 3.7–4.4 mm, the sum of the notch length and 
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pre-crack, a quasi-static compressive displacement of 0.3 mm/min (K ∼ 40 MPa 

m1/2/min) was applied and the load response of the pre-cracked sample was measured. 

Evaluation of J, a parameter of elastic-plastic fracture mechanics, and the J-R curve by 

measuring unloading compliance were also performed during the test, as the samples 

have extensive plasticity before the initial crack propagation. In the samples with high 

fracture toughness (e.g., DH3), the requirement of sample dimension given by ASTM 

E1820 is marginally satisfied for the J evaluation. Due to limitations in sample 

geometry, these J-values were used to estimate K1C. Reduced-size Charpy impact tests 

were machined proportional to ASTM standard E23-82. The samples were made 5 mm 

x 5 mm x 55 mm in the U-notch configuration. Charpy tests were performed on a 

calibrated Riehle impact testing machine.  

The pulse-echo overlap technique was used to measure the shear and 

longitudinal wave speeds at room temperature for each of the samples.  The setup 

included a 3500PR pulser/receiver and 5 MHz piezoelectric transducers from 

Panametrics, a Tektronix 1500 oscilloscope, and a GPIB interface to a PC-controlled 

Labview program to capture the pulse and echo waveforms.  Sound velocity samples 

were all greater than 3 mm in thickness and sample surfaces were polished flat and 

parallel to a surface finish of 9 μm. Sample density was measured by the Archimedean 

technique according to the American Society of Testing Materials standard C 693-93.  

The sound velocity, density, and thickness of each sample were measured multiple 

times and the error propagated.  The errors in the calculated values of G, ν, E range 

from +/- 0.5–0.6% of the stated average value. 
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Compositions of the dendrites and glass were estimated through electron 

dispersive X-ray spectrometry (EDS), DSC, and computer software. TEM analysis was 

performed at the Kavli Nanoscience Institute at the California Institute of Technology 

using a FEI Tecnai F30UT high-resolution TEM operated at 300 kV. Samples were 

prepared for TEM observation by microtoming.   
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Table 4.1 – A comparison between the alloys DH1-3, Vitreloy 1, and the in-situ composite of [8–9] (LM2). The properties 
listed in the table are yield strength (σy), ultimate tensile strength (σmax), yield strain (εy), total strain to failure (εtot), reduction 
in area (RoA), density (ρ), modulus of elasticity (E), shear modulus (G), Charpy impact toughness (CIT), and Poisson’s ratio 
(ν). 

 
   σmax εtot σy εy E ρ G CIT RoA υ 

  Alloy   (MPa) (%) (MPa) (%) (GPa) (g/cm3) (GPa) (J) (%)   

Zr36.6Ti31.4Nb7Cu5.9Be19.1 (DH1) 1512 9.58 1474 1.98 84.3 5.6 30.7 26 44 0.371 

Zr38.3Ti32.9Nb7.3Cu6.2Be15.3 (DH2) 1411 10.76 1367 1.92 79.2 5.7 28.8 40 50 0.373 

Zr39.6Ti33.9Nb7.6Cu6.4Be12.5 (DH3) 1210 13.10 1096 1.62 75.3 5.8 27.3 45 46 0.376 

Zr41.2Ti13.8Cu12.5Ni10Be22.5 (Vitreloy 1) 1737 1.98 -- -- 97.2 6.1 35.9 8 0 0.355 

Zr56.2Ti13.8Nb5.0Cu6.9Ni5.6Be12.5 (LM 2) 1302 5.49 1046 1.48 78.8 6.2 28.6 24 22 0.375 
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Chapter  5 

5 New Processing Potential for Highly Toughened 

Metallic Glass Matr ix Composites∗

 

 

5.1 Commentary  

 The increased tensile ductility and fracture toughness of the BMG 

composites reported in Chapter 4 do not explain exactly how the new materials 

differ from previous metallic glasses in terms of processing. The goal of this chapter 

is to demonstrate that the new highly toughened composites can be processed in 

ways that many monolithic glasses cannot be processed. For example, monolithic 

BMGs exhibit low resistance to fracture and cannot be rolled significantly at ambient 

temperatures. In contrast, the new composites can be rolled extensively at high strain 

rates and still preserve their ductility. This chapter further separates the new 

composites from any reported monolithic BMG or BMG composite in terms of 

mechanical properties.  

5.2 Introduction 

Many advances in materials engineering result from combining advantageous 

properties of several materials into one. Toughened ceramics, for example, combine 

brittle high-melting temperature ceramics with inclusions that undergo stress-

induced transformations, substantially increasing fracture toughness [1]. Similar 

                                                 
∗ The contents of this chapter are published: Douglas C. Hofmann, Jin-Yoo Suh, Aaron Wiest, and 
William L. Johnson, Scripta Mater. 58, 684 (2008). 
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success was recently obtained in metallurgy by marrying relatively brittle but high-

strength bulk metallic glasses (BMGs) with mechanically soft crystalline dendrites, 

creating a new class of crystalline/amorphous metal composites [2]. These alloys 

have been shown to have high strengths (as with monolithic BMGs), large ductility 

(as with soft crystalline metals), but fracture toughness substantially exceeding either 

phase individually [2]. While the strategy for designing these BMG composites is 

now developed [2–4], the processing potential of these alloys has not been explored. 

In this research, we demonstrate thermoplastic processing, cold rolling of plates, and 

work-hardening behavior in an optimized BMG matrix composite. We have found 

that the tensile necking instability seen in high-ductility BMG matrix composites can 

be mitigated by cold rolling the samples prior to tension testing. Necking during 

tensile elongation, which leads to a reduction in area > 40% in highly toughened 

BMG matrix composites, can be reduced to ~ 20% without substantial loss of overall 

ductility. Understanding the processing behavior of BMG composites will likely 

widen the applications for these promising new materials.  

5.3 Experimental Method 

 Samples of the BMG matrix composites were prepared in ingot form by 

semi-solid processing (see [2]). All samples used for processing were machined 

directly from these ingots. Thermoplastic processing was completed on a heated 

hydraulic press with compressive capabilities of 1–20 tons. Processing was done just 

below the crystallization temperature of the composites, ~ 670 K. Cold rolling was 

performed on a Stanat rolling mill at ambient temperatures with no oil or lubricant in 

contact with the sample. Tension tests were performed at ambient temperature on a 
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calibrated Instron 5500R load frame. The tests were done with a constant crosshead 

displacement rate of 0.1 mm/min. A Netzsch 404C differential scanning calorimeter 

(DSC) (performed at a constant heating rate 20 K/min) was used to assess the 

crystallization behavior of the alloys.  

5.4 Thermoplastic Processing 

 BMG alloys typically have low equilibrium melting temperatures (allowing 

for net-shape casting) and, in the glassy state, they exhibit a sharp drop in viscosity 

above their glass transition temperature (allowing for thermoplastic processing in 

some alloys). Both methods can reduce the cost of producing net-shape BMG parts 

by eliminating expensive machining. Using thermoplastic forming, a monolithic 

BMG can be formed or stamped into net-shaped components at temperatures well 

below the equilibrium alloy melting temperatures, much as polymers are 

thermoplastically processed [5–7]. Metallic glasses have a metastable liquid region 

above the glass transition temperature in which the viscosity decreases rapidly until 

the onset of crystallization.  Thermoplastic forming is done in this metastable region 

under an applied load.  The width of the region is defined as Tx - Tg =  ΔT, where Tx 

represents crystallization temperature (defined at a typical heating rate of 10–20 

K/min) and Tg represents glass transition. With a large enough ΔT (typically > 100 

K), BMGs can be processed well above Tg for several minutes and still be cooled 

sufficiently rapidly to avoid the onset of crystallization [5]. Previously, thermoplastic 

forming of BMGs has been carried out mainly with expensive Pt- or Pd-based alloys 

[9–11]. Recently, a new Zr-Ti BMG, Zr35Ti30Cu8.25Be26.75 (G1), was demonstrated to 

have ΔT = 159 K and superior thermoplastic processability (see [5]). To take 
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advantage of this, we designed our new BMG composites to yield a glass matrix of 

constitution similar to G1 (using the toughening strategy described in [2]).  In this 

work, we used one of these alloys, DH1 (Zr36.6Ti31.4Nb7Cu5.9Be19.1 in atomic %, 

Zr55.3Ti24.9Nb10.8Cu6.2Be2.8 in weight %), which is comprised of 58% glass phase by 

volume and has been processed semi-solidly [2]. Figure 5.1(a) shows a differential 

scanning calorimetry (DSC) scan from DH1 and its glass matrix (similar to G1 with 

~ 3% Nb). Both alloys exhibit a clear glass transition (enlarged in the inset), a single 

sharp eutectic crystallization event, and a melting event. While the composite DH1 

has a smaller supercooled liquid region than its matrix alone (ΔT = 103 K versus ΔT 

= 123 K), it is nevertheless sufficient for thermoplastic processing (see Figure 

5.1(a)). In contrast, previous in-situ composites exhibited ΔT = 45 K—too small to 

allow for thermoplastic processing before crystallization of the glass phase [3]. 

Thermoplastic processing was carried out on a heated hydraulic press at ~ 670 K, 

where the equilibrium viscosity of the glass matrix is on the order of 106–7 Pa-s. 

Figure 5.1(b) shows an impression of the front of a United States dime on an initially 

2-mm-thick wafer of DH1. Despite having 42% volume fraction of dendrites, near 

perfect replication is achieved if the glass phase reaches a suitably low viscosity. The 

glass/dendrite composite microstructure remains unaltered after thermoplastic 

processing and is shown in the inset of Figure 5.1(b). Despite the deformation, the 

dendrite phase appears unaltered from its nominal appearance. At high 

magnification, the micro-replication of scratches is observed. Minimal oxidation was 

observed on the surface and the glass matrix remained fully amorphous, as verified 

by X-ray diffraction. 
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Figure 5.1 – (a) DSC curves of the BMG matrix composite DH1 and its glass matrix. 
ΔT for both alloys is indicated with arrows, and the glass transitions are shown in the 
inset. (b) Thermoplastic forming of DH1 into the shape of a U.S. dime. The inset 
shows the composite microstructure, which is unaltered during the process. Once 
suitable viscosity is reached in the glass matrix, near-perfect replication was 
achieved.  
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5.5 Cold Rolling 

 In many crystalline metals forming and strengthening is accomplished 

through cold working. BMGs in contrast, are normally difficult to cold work, owing 

to their high hardness, low resistance to fracture, and tendency to deform in a highly 

localized manner. Several attempts have been reported in literature to cold work 

BMGs to improve mechanical properties. Cold drawing of wire-shaped BMGs and 

cold rolling of BMG ribbons showed increases in yield strength, while cold rolling 

of 3-mm-thick BMG plates leads to increased compressive plasticity and Charpy 

impact toughness [12–16]. For BMG wires and plates with diameters and 

thicknesses < 1 mm, cold working can be accomplished easily, owing to geometric 

stability of shear bands in small samples (see, for example Conner, R. D., et al. Acta 

Mater. 52, 2429 (2004)). In larger specimens (ex. 3 mm plates) thickness reduction 

can be obtained through cold rolling by covering the samples in MoS2 grease to 

avoid cracking and by performing the deformation in small incremental steps of 0.1 

to 0.5% per rolling pass. Extensive cold rolling of thin sheets produces many shear 

bands that are arrested under the geometric confinement, much in the same way 

apparent “super-plasticity” is achieved in compression tests of BMG rods [17–18]. 

Closing stresses generated by the compressive load prevent active shear bands from 

developing into catastrophic cracks and frictional forces arrest persistent slip when 

shear bands interact with the rolling wheel at the sample’s edge. Cold rolling BMGs 

was intended here to generate active slip bands, which would release the strain field 

in front of a crack tip and would ultimately lead to the formation of multiple shear 

bands during subsequent mechanical testing. Unlike dislocations in crystalline 
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materials however, shear bands do not have a repulsive core and do not appear to 

significantly tangle or lock. Without an arresting mechanism, active shear bands slip 

without limit and generally result in tensile instability. In some cases however, active 

shear bands oriented at different angles do interact, generating up to 0.25% tensile 

elongation [13]. Typically, rolled BMGs fail at a lower stress than unrolled samples 

in uniaxial tension with little or no plastic elongation due to active shear bands 

generated by cold rolling.   

 The problems associated with generating active shear bands in rolled BMGs 

can be circumvented in highly toughened BMG matrix composites. In contrast to the 

incremental deformation commonly applied to cold rolled monolithic BMGs, Figure 

5.2 shows an initially 4-mm-square beam of DH1 that was deformed in steps of 5 to 

14% (0.2 to 0.5 mm) per pass through progressively smaller square channels with no 

oil or lubricant at ambient temperature. In five passes, the initially 4-mm-square 

beam was reduced to 2.5 mm (square) and the beam length was increased from 51 

mm to ~ 124 mm before cracking ensued. Monolithic BMGs rolled at this higher 

strain typically cracked during the first pass.  
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Figure 5.2 – An  initially 4-mm-square beam of DH1 cold rolled through square 
channels five times until cracking ensued. The length of the beam was increased 
from 51 mm to ~ 124 mm using no lubrication or heating. 
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5.6 Work Hardening 

 To investigate the mechanical properties after cold rolling we took a beam of 

DH1 initially 5 mm square and 51 mm long and cold–rolled it to 4 mm square and 

72 mm long (see Figure 5.3(b)). The rolled dendrites are shown in the inset of Figure 

3(b). We then machined a cylindrical gauge section 3 mm in diameter and 15 mm 

long and pulled the sample in uniaxial tension. The tension test is shown in Figure 

3(a) along with a nominal sample of DH1 and the BMG Vitreloy 1 for comparison. 

The unrolled sample of DH1 exhibits total strain to failure of 9.6% and ultimate 

tensile strength of 1,512 MPa, while the rolled sample exhibits 7.6% and 1,604 MPa, 

respectively. In addition we observed an increase in Young’s modulus for the rolled 

sample, from 84.3 GPa to 94.5 GPa (measured acoustically). The inset of Figure 

5.3(a) shows large shear banding events accompanied by sharp decrease in stress. 

These jagged drops are seen in tension tests of BMG matrix composites when 

normally catastrophic shear bands are arrested and stabilized by the microstructure. 

In the rolled sample, the total plastic strain decreases by ~ 2% from the nominal 

sample but the reduction in area is substantially less, from 44% in the unrolled 

sample to 20% in the rolled sample (see Figure 5.3(c-d)). This indicates that the 

necking instability often seen in high-ductility BMG composites is lessened and the 

plastic strain is spread more uniformly throughout the gauge section. Moreover, we 

observe a work-hardening phenomenon which increases the tensile yield strength by 

~ 100 MPa. Although the rolled sample contains active shear bands, which have 

been shown to increase tensile instability, these shear bands are confined to 

interdendritic regions, effectively locking them and preventing further slip (see 
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Figure 5.3(f) of [2]). During subsequent tension testing, the stress required to drive 

these active shear bands through the soft crystalline dendrites is higher than the 

stress required nucleating new shear bands. A multiplicity of shear bands form and 

tensile ductility is preserved. The accompanying increase in yield strength is 

attributed to work-hardening in the dendritic phase through the introduction of 

dislocations. The arrested shear bands generated during rolling provide nucleation 

sites for the new shear bands generated during tension testing. In high-ductility 

BMG matrix composites shear bands normally nucleate and develop within a 

relatively small region of the gauge section, typically in ~ 2 mm in length out of total 

length of 15 mm. Necking is usually extensive but confined to this small region. The 

introduction of shear bands through rolling apparently increases the fraction of the 

tensile gauge section that participates in plastic deformation, to typically ~ 4 mm. 

Shear bands on the tensile surface of both the rolled and nominal samples are shown 

in Figure 5.3(e–f). In both cases there is substantial deformation, evidence of the 

tensile ductility.  

 To conclude we note that highly toughened BMG matrix composites are truly 

a new class of engineering materials. Owing mainly to their high toughness, they can 

be processed by cold working in a manner similar to crystalline metals without 

significant cracking or embrittlement. By “designing” the glass matrix phase to have 

a large ∆T (as in highly processable BMGs), thermoplastic processing (e.g., hot-

forging, compression molding, etc.) are possible. Summarizing,  the new BMG 

composites can (1) be processed in the semisolid region (two-phase liquid+dendrite 

mixtures) by traditional casting into net-shapes, (2) thermo-plastically processed by 
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reheating above the glass transition temperature of the amorphous matrix, and (3) 

extensively cold-worked in the solid (glass+dendrite) state. These process 

characteristics are expected to substantially increase the potential applications for 

these novel materials.  

 

 

 

Figure 5.3 – (a) Room-temperature tension testing of a rolled sample of DH1, a 
nominal sample of DH1, and Vitreloy 1. Stress-strain offsets, shown in the inset, 
demonstrate stabilization of shear bands in the rolled sample. (b) Images of the 
unrolled, rolled, and machined samples of DH1 used to generate (a). Broad necking 
in the 3 mm gauge section after tension testing and the elongated dendrites are 
shown in the inset. (c) SEM micrograph of the severe necking in unrolled DH1 
contrasted with (d) the broad necking in rolled DH1. Shear band formation during 
tension testing on the surface of (c–d) are shown in (e) for unrolled DH1 and (f) for 
rolled DH1. In both cases, the extent of deformation is similar.   
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Chapter  6 

6 New Titanium-Based Glass-Dendr ite Composites 

with Tensile Ductility 

6.1 Commentary 

 This chapter describes new titanium-based BMG composites, with the same 

density as structural crystalline titanium alloys, that are also low cost and contain a 

reduced beryllium concentration. Unlike Chapter 4 where we tuned the composites 

for maximum fracture toughness and tensile ductility, in this work we develop 

composites with low density as the major design objective. Each alloy is designed to 

have the lowest possible density while still retaining at least 5% tensile ductility. 

This chapter represents the first demonstration of the following: (1) titanium-based 

BMG composites with tensile ductility, (2) BMG composites with density less than 

5.0 g/cm3 with tensile ductility, (3) alloys with less than 1.0 weight % beryllium with 

tensile ductility. Owing to their low density and cost this new class of alloys will 

likely be far more successful as commercial engineering materials than the alloys we 

presented in Chapter 4.  

6.2 Background on Nanostructure-Dendrite Composites 

 Recently, titanium-based nanostructure-dendrite composites have been 

reported which are said to exhibit increased toughness over bulk metallic glasses 

(BMGs) and other nanostructured materials (see [1]). This work has spawned an 
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entirely new field of nanoeutectic-oriented metallurgy, with dozens of publications 

touting the benefits of such materials over BMGs (see, for instance, [2–14]). 

However, upon further investigation of this new field, we note that uniaxial 

compression tests are typically the only mechanical tests used to characterize the 

perceived toughness and enhanced plasticity of the nanostructured composites. The 

geometry of the compression test, where closing stresses and friction arrest slip, has 

resulted in the overstatement of toughness in these new materials. It appears that the 

nanostructure-dendrite composites are very similar to BMG composites, but with a 

eutectic matrix that failed to form a glass during rapid cooling. The crystallized 

matrix, or nanostructured eutectic as it is often called, is typically comprised of 

brittle intermetallics, and fails with no apparent plasticity in bending or tension tests. 

When nanostructure-dendrite composites are loaded in an unconfined manner, as 

with the uniaxial tension test, cracks move unimpeded through the brittle matrix and 

global ductility is absent. In contrast, if the matrix is frozen as a glass, the length 

scale of the deformation is larger, allowing microstructural stabilization mechanisms 

to become possible.  In the current work, we demonstrate several new titanium-based 

glass-dendrite composites, all of which exhibit at least 5 percent tensile ductility, low 

cost, and densities comparable to high-performance crystalline titanium alloys 

(4.97–5.15 g/cm3). We observe a remarkable similarity in mechanical properties 

(such as tensile ductility, yield strength, and fracture toughness) between the new 

glassy-composites and high-strength crystalline titanium alloys (such as Ti-6Al-4V) 

— all with a significantly lower Young’s modulus. The current work demonstrates 
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that titanium-based BMG composites can be competitive with crystalline titanium 

alloys for structural applications where high strength and toughness are a necessity. 

6.3 Designing Two-Phase Composites 

 Two-phase composites based in titanium and zirconium are relatively easy to 

produce, owing to the extremely low solubility of many metals and metalloids with 

body centered cubic (b.c.c.) titanium/zirconium. For example, copper, nickel, and 

beryllium all exhibit low solubility in b.c.c. titanium, and additions of these elements 

typically cause b.c.c. titanium-based dendrites to form in a continuous crystalline 

matrix. In cases where the matrix is designed around a glass-forming composition, a 

two-phase glass-dendrite composite can be formed. Recently, it has been shown that 

with proper control over the shear modulus (G) of the dendritic phase and the size of 

the dendrites, extensive toughening and ductility can be achieved [14]. Deformation 

in the glass matrix, manifested by narrow shear bands, can be confined to 

interdendric regions, resulting in the formation of a multiplicity of shear bands and 

global ductility [14]. In the case where the glass matrix does not vitrify into a bulk 

glass, a brittle nanostructure-dendrite composite forms, accompanied by a large 

increase in G. Based on nearly two decades of research with BMGs, we note that a 

crystallized or partially crystallized metallic glass is always more brittle than a fully 

amorphous one. This can typically be attributed to hard intermetallic phases that 

often appear near glass-forming regions, which rapidly increase G. Plasticity is 

always enhanced in glass-forming alloys when G is minimized, and partial 

crystallization always results in an increase in G. Under compressive loads, however, 

plasticity can appear similar for both composites. In the nanostructure-dendrite alloy 
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Ti60Cu14Ni12Sn4Nb10, 14.5% compressive plasticity is observed [1] while in the 

glass-dendrite alloy Zr56.2Ti13.8Nb5.0Cu6.9Ni5.6Be12.5, 8% compressive plasticity is 

observed [15–16]. However, their behavior in tensile loading is far different. While 

the glass-dendrite composites have been shown to exhibit up to ~ 13% tensile 

ductility [14], nanostructure-dendrite composites fail in an apparently brittle manner 

with no global ductility. Shear bands that form in the nanostructured eutectic matrix 

develop into catastrophic cracks at much shorter lengths than in BMGs, leading to 

failure on a continuous path through the matrix. The crystalline phases act as 

nucleation sites for shear bands, which typically form at lower stresses than in 

monolithic glasses. Despite claims of increased toughness and ductility in several 

publications on nanostructure-dendrite composites, tension tests are noticeably 

absent [1–14].  

 Developing titanium-based ductile-phase BMG composites is challenging, 

owing to several design criterion which must be satisfied to achieve tensile ductility. 

The necessary steps are (1) finding a highly processable titanium-based BMG, (2) 

creating a two-phase microstructure of glass plus b.c.c. dendrites, (3) lowering the 

shear modulus of the dendritic phase relative to the glass matrix, and (4) coarsening 

and homogenizing the microstructure. Additionally, to make the alloys commercially 

competitive with crystalline titanium alloys, density and cost must be minimized. 

We note that among these four essential design criteria to obtain tensile ductility, 

nanostructure-dendrite composites possess only one: low dendrite shear modulus. 

This can be attributed to the addition of b.c.c. stabilizing elements such as tantalum, 

niobium, and tin (which simultaneously increases their density).  
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 Currently, the only ductile-phase BMG composites available are based in the 

relatively dense and expensive element zirconium [14–16]. The first in-situ BMG 

composite, Zr56.2Ti13.8Nb5.0Cu6.9Ni5.6Be12.5 (in atom %), exhibits density of 6.4 g/cm3 

and is comprised of greater than 70 weight % zirconium [15–16]. Recently, 

improved alloys, such as Zr36.6Ti31.4Nb7Cu5.9Be19.1, were demonstrated to have 

densities of 5.6–5.8 g/cm3 by increasing the amount of titanium and removing nickel 

[14]. However, these alloys too are comprised of greater than 50 weight % 

zirconium. To design new titanium-based composites, we first notice that new low-

density titanium-based BMGs have recently been discovered exhibiting densities 

that range among common engineering titanium alloys (4.59–4.91 g/cm3), but with 

more than double the specific strength [17]. These new BMGs, based in the ternary 

Ti-Zr-Be glass-forming system, represent great improvements over zirconium-based 

BMGs in terms of cost and density, yet they posses several drawbacks relative to 

conventional crystalline titanium alloys. Although the alloys can be produced in 

thicknesses well above the “bulk” range (typically < 1 mm), they are not considered 

“highly-processable” that is, they do not have glass-forming ability greater than 1 cm 

and cannot be produced amorphously in ingot form. Two titanium-based BMGs 

exhibit a similar critical dimension of 6 mm [17], Ti45Zr20Be35 and Ti40Zr25Be35. In 

addition, as with all monolithic BMGs, these alloys exhibit no tensile ductility in 

bulk samples and limited bending ductility in beams less than 1 mm thick.  

6.4 New Ti-Based Bulk Metallic Glass Composites 

 To design a composite structure around the ternary Ti-Zr-Be system, we first 

increase the atom % of titanium plus zirconium proportionally to 70%. At and above 
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this concentration, the liquid undergoes phase separation during rapid cooling, with 

dendrites nucleating and growing below the liquidus temperature. As the dendrites 

grow, they deplete the remaining liquid of titanium and zirconium until an 

equilibrium concentration is reached, typically near a eutectic (which corresponds 

well with glass-forming compositions), causing the liquid to vitrify upon subsequent 

undercooling. The volume (or molar) fraction of dendrites embedded in the glass 

matrix is directly related to the low solubility of beryllium and copper in b.c.c. (or β) 

titanium and zirconium. The alloy Ti40Zr30Be30, for example, forms a two-phase 

microstructure of glass plus b.c.c. dendrites upon rapid cooling and has glass-

forming ability up to 7 mm. Despite the appropriate microstructure for tensile 

ductility, this alloy exhibits the same catastrophic failure associated with single-

phase BMGs. This is expected, based on our previous discussion that significant 

tensile ductility can only be achieved in BMG matrix composites when the shear 

modulus (G) of the inclusion is lower than G of the glass, such that deformation is 

promoted in the dendritic phase and shear band lengthening is suppressed in the 

glass phase [14]. In Ti40Zr30Be30, the dendrite is a b.c.c. Ti-Zr phase (G > 40 GPa), 

while the glass is a Ti-Zr-Be phase (G ~ 35 GPa). To increase the tensile ductility 

and resistance to crack propagation, β-stabilizers must be used to reduce G in the 

dendritic phase. These stabilizers exhibit an electronic softening phenomenon that 

dramatically lowers G, typically as low as 20–30 GPa.  

 Before we can reduce G in the dendritic phase we must first improve the 

glass-forming ability of the ternary system so that it can be produced in ingot form. 

Our processing strategy to coarsen and homogenize the microstructure, called semi-
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solid processing, typically requires critical dimensions of at least 1 cm. It is well 

known from our work with Vitreloy-type BMGs (Zr41.2Ti13.8Cu12.5Ni10Be22.5, 

Vitreloy 1) that the additions of late transition metals such as copper, nickel, iron, 

and cobalt increases the glass-forming ability from several millimeters to several 

centimeters [18]. We notice that copper and nickel phase-separate preferentially into 

the glass matrix, forming typically less than 1 atom % in the dendrite. This is 

important because some metals and metalloids (like aluminum, for example) will 

divide between the two phases and increase G in the dendrite. For this work, we 

select copper as the late transition metal both for its strong affinity towards the glass 

matrix and because copper has been shown to enhance the fracture toughness of 

monolithic BMGs. The alloys reported herein contain only 3–5 atom % copper, and 

yet glass-forming ability for each alloy is greater than 2 cm when cooled from one 

side in ingot form, demonstrating the profound effect of adding a late transition 

metal.  

 In contrast to the addition of late transition metals, we notice that the β-

stabilizers (that have complete solubility with b.c.c. titanium and zirconium) separate 

preferentially into the dendrite, forming typically less than 5 atom % in the glass 

matrix. Their addition can reduce G in the dendrite phase without compromising 

glass forming or the fracture toughness of the BMG phase. We have previously 

succeeded in creating ductile phase composites with the addition of the β-stabilizers 

niobium, tantalum, and molybdenum, but these elements are extremely dense, which 

raises the overall density of the composites substantially. In this work, we investigate 

the addition of the low-density β-stabilizer vanadium. We start by designing a 
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composite with roughly 50% glass phase by volume, which can be achieved when 

the atomic percent of beryllium and copper sum to ~ 20% and the titanium and 

zirconium are equal. We systematically add vanadium until G of the dendrite drops 

below G of the glass and toughening is observed. We then reduce the amount of 

zirconium, which reduces the fracture toughness of the glass phase, until some 

compromise between mechanical properties and density is reached. The first alloy 

we present is Ti48Zr20V12Cu5Be15 (DV1 in atom %), with ρ = 5.15 g/cm3, produced 

by the semi-solid processing method. DV1 separates into 53% glass with 

composition Ti32Zr25V5Cu10Be28 and 47% b.c.c. with composition Ti66V19Zr14Cu1, as 

determined through energy dispersive X-ray spectrometry (EDS). These values have 

an estimated error of 5%. DV1 is our most highly optimized alloy and exhibits 

12.5% total strain to failure at 1.4 GPa of maximum stress in room temperature 

tension testing, see Figure 6.1(a). Despite having low density and a large volume 

fraction of glass, DV1 exhibits extensive shear band stabilization, evidenced by the 

jagged nature of the tension test just prior to failure. Each drop in stress is associated 

with a normally catastrophic shear band being arrested by the microstructure, leading 

to significant necking (43% reduction in area, shown in the inset of Figure 6.1(a)). 

The necking instability is associated with dense patterns of primary, secondary, and 

tertiary shear bands that are visible on the surface (Figure 6.1(c)).  

 We use the optimized structure of DV1 to design three more alloys that 

sample the new Ti-Zr-V-Cu-Be system. First, we investigate the effect of increasing 

the volume fraction of glass to create a high-strength composite. By directly 

replacing titanium with beryllium we can increase the volume fraction of glass to 
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70%, retain 9.5% total strain to failure, but increase the ultimate tensile strength to 

1.6 GPa. This alloy, Ti44Zr20V12Cu5Be19 (DV2), is the highest strength (combined 

with the largest fraction of glass) alloy we have yet observed that still exhibits 

greater than 5% tensile ductility. The high strength, combined with low density (5.13 

g/cm3), puts the specific strength of DV2 (defined here as maximum stress divided 

by density) at 314 MPa cm3/g, which, for the first time, approaches the specific 

strength of Vitreloy-type monolithic BMGs [18]. 

 In an attempt to minimize density, we also report two alloys with increased 

volume fraction of b.c.c. phase, Ti56Zr18V10Cu4Be12 and Ti62Zr15V10Cu4Be9 (DV3 

and DV4, respectively). DV3 and DV4 exhibit densities of 5.08 and 5.03 g/cm3 with 

46% glass and 40% glass, respectively. It is noteworthy to mention the similarity in 

the amounts of titanium with previously reported nanostructured composites [1]. 

SEM micrographs of the necking in DV1–4 can be seen in Figure 6.1(d), with the 

typical microstructures shown in Figure 6.1(e). While unexplained, the 

microstructure of DV4 is substantially larger than the other similar alloys. This 

results in a lower yield strength but increased ductility. The microstructure of DV4 

represents evidence that by taking two similar BMG composites and increasing the 

scale of the dendrites, tensile ductility can be enhanced.  

 We note that there appears to be a limit of 5.0 g/cm3 in the minimization of 

density using the Ti-Zr-V-Cu-Be system. We could not find a configuration of the 

elements that would allow us to pierce this density barrier while still obtaining 

extensive tensile ductility. By observing the success of non-beryllium containing 

BMGs, such as Zr57Nb5Cu15.4Ni12.6Al10 (Vitreloy 106) [19], and high-strength 
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crystalline titanium alloys containing vanadium, such as Ti-6Al-4V (in weight %), 

we note that aluminum is a beneficial addition to both systems. Therefore, we 

attempt to add aluminum to our BMG composites to lower density. It should be 

noted that previous Zr-Ti-Nb-Cu-(Ni)-Be composites cannot be alloyed with 

aluminum, owing to undesirable phases that form between aluminum and niobium. 

Our new alloy system lacks niobium, so we were able to systematically add 

aluminum to explore the effects on glass forming and tensile ductility. With the 

addition of up to 10 atom % aluminum, glass forming was not affected. 

Unfortunately, aluminum is a powerful α-stabilizer for titanium and even small 

additions dramatically increase G. If the aluminum content exceeds ~ 3 atom %, 

tensile ductility rapidly falls to zero. We further report two aluminum containing 

alloys Ti60Zr16V9Cu3Al3Be9 and Ti67Zr11V10Cu5Al2Be5 (DVAl1 and DVAl2, 

respectively). Aluminum typically exhibits some solubility in b.c.c. titanium, so it 

partions equally between both phases. Therefore, small additions of aluminum can 

be used to supplement copper for improving glass-forming ability, resulting in alloys 

with density less than 5 g/cm3 (4.97 g/cm3 for both DVAl1 and DVAl2). Minimizing 

density requires reductions in the amount of zirconium, which leads to alloys with 

lower volume fractions of glass to retain tensile ductility (31% and 20% in DVAl1, 

and DVAl2, respectively). It is noteworthy to mention that DVAl2 contains 62% 

titanium by weight and only 0.9% beryllium by weight. Figure 6.2(d) demonstrates 

that large samples can be created from DVAl2 and significant bending ductility is 

observed in up to ~ 4 mm thick beams, despite being nearly beryllium free.  
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Figure 6.1 – Tensile ductility in titanium-based metallic glass composites. (a) Room-
temperature tension tests for the six BMG composites developed in this work 
compared with commercial pure titanium and Ti-6Al-4V. A maximum stress of 1.6 
GPa is obtained and each alloy exhibits > 5% tensile ductility. An example of 
necking in the alloy DV1 is shown in the inset. (b) Optical images of necking in 
commercial pure titanium (left) and Ti-6Al-4V (right). (c) Dense shear band pattern 
on the tensile surface of DV1. (d) SEM micrographs showing necking in the six 
BMG composites along with their respective microstructure shown in (e). 
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 As a direct comparison between the new BMG composites and their nearest 

competitors, crystalline titanium alloys, we have included tension tests in Figure 1(a) 

for commercial pure titanium (CP-Ti or Grade 2) and Ti-6Al-4V (Ti-6-4 or Grade 5 

annealed). As expected, CP-Ti exhibits low ultimate strength (~ 400 MPa) but 

extensive elongation (~ 25%). Ti-6-4 in the annealed condition, on the contrary, has 

ultimate strength of ~ 850 MPa combined with ~ 16% total strain. Ti-6-4 was 

selected both because of its low density (4.43 g/cm3) but also because it accounts for 

the majority of commercial titanium applications. Both tests were done in the same 3 

mm diameter as the BMG composites with the same sample geometry, shown in 

Figure 6.1(b). By enlarging the tension tests on the titanium alloys from Figure 

6.1(b), it is clear that both alloys exhibit global deformation resulting from motion of 

dislocations throughout the entire gauge length, and that the reduction in area at the 

neck is less than 30%. In contrast, BMG composites exhibit almost no global 

deformation but have large reductions in area at the point of fracture. Although not 

shown, we notice that the tensile ductility and yield strength of the titanium-based 

BMG composites is nearly identical to some common high-strength crystalline 

titanium alloys. Ti-6-4 in the standard condition (as opposed to the annealed 

condition), for example, has an ultimate strength of ~ 1.1 GPa and ~ 10% elongation, 

leading to a specific strength of 264 MPa cm3/g — higher than four of the BMG 

composites, but lower than DV1 and DV2. The tension tests are remarkably similar, 

considering the glassy composites have significantly lower Young’s modulus (78–94 

GPa versus ~ 115 GPa), larger elastic limit (~ 2% versus ~ 1%), and exhibit 
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deformation through millions of tiny stabilized cracks, instead of through 

dislocation-based plasticity.  

 Despite their similar mechanical properties, the solidus temperature of the 

BMG composites differs dramatically from crystalline titanium alloys. Owing to the 

presence of a glass matrix, which is typically designed around a deep eutectic, the 

BMG composites exhibit a solidus temperature that is ~ 900 K lower than their 

crystalline counterparts (and ~ 200 K lower than nanostructured composites). In the 

BMG composites, the solidus temperature occurs at the onset of melting of the glass-

forming phase. Just above solidus, the dendrites simply float in a glass-forming 

liquid, creating a semi-solid solution, and net-shape casting (into copper molds for 

instance) is easily attainable. On the contrary, titanium alloys must typically be 

machined into net-shaped parts, adding enough post-production cost in some cases 

that it negates the cost of the starting materials. The low processing temperatures of 

the composites allow for rapid prototyping of parts and a cost savings over 

crystalline titanium alloys.  

 As a further comparison between the new BMG composites and crystalline 

titanium alloys, plane-strain fracture toughness measurements were performed on 

three of the best alloys — DV1, DV3, and DV4. Figure 6.2(a) demonstrates the 

semi-solid processing method used to homogenize and coarsen the dendrites, which 

vastly improves fracture toughness.  In our previous publication [14], we related 

maximum bending thickness of BMGs with fracture toughness, K1C. As a way of 

verifying our K1C measurements we clamp large ingots of the composites in a vise, 

and bend them with repeated hammer strikes. The maximum thickness in which 
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significant bending is observed is related to K1C through the size of the plastic zone 

at the tip of a crack. From Figure 6.2(c) we see that DV4 (front of Figure 6.2(c)) can 

be bent to more than 90° at 3 mm, while at 4 mm significant cracking is observed. 

DV3 (middle of Figure 6.2(c)) fractures closer to 30° at 3 mm. K1C measurements 

were performed in 3-mm-thick plates, in conformance to the relaxed thickness 

requirements of the ASTM standards. K1C values of 43.8, 47.4, and 61.6 MPa m1/2 

were recorded for DV1, DV3, and DV4, respectively. It is noteworthy to mention 

that the high-strength crystalline alloy Ti-6-4 in the standard condition exhibits K1C 

= 43.0 MPa m1/2 — again, very similar to what is observed in the BMG composites. 

As a method of comparing bending ductility between the new BMG composites and 

previously reported nanostructure-dendrite composites, we show a 3-mm-diameter 

rod of the alloy Ti60Cu14Ni12Sn4Nb10, prepared using ultra-pure starting materials 

with oxygen content less than 25 ppm, in the same geometry and with the same 

processing technique as in [1].  This alloy was demonstrated to have 14.5% plastic 

strain in compression [1], and yet we note that the alloy is brittle when bent with no 

plasticity (Figure 6.2(b)). This supports our earlier claim that brittle phases form 

when a BMG is insufficiently cooled, creating a material with no apparent 

toughness.  

 The last part of this work focuses on the necessity of beryllium in the 

composites. After investigating hundreds of alloys, we have not found a highly 

processable BMG composite that is beryllium free. Two-phase crystalline 

composites without beryllium can be easily obtained in our BMG composites by 

replacing beryllium with copper, but we notice these alloys are extremely brittle. 
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Figure 6.3(a) is a differential scanning calorimetry (DSC) scan comparing DV2 with 

a titanium-based non-beryllium composite (a nanostructure-dendrite composite), 

Ti52Zr18V12Cu15Al3. Despite having little or no glass, the beryllium-free alloy 

exhibits a sharp increase in solidus temperature (from 950 K to 1160 K), indicating 

the eutectic phase is no longer a bulk glass former. Although not shown, we notice 

that the non-beryllium composite yields under compressive loads but is still very 

brittle, as with all other nanostructure-dendrite composites.  

 Highly processable zirconium- and titanium-based BMGs have been 

developed using two primary strategies: deep eutectics and atomic size mismatch. 

The best glass formers are based in the Zr-Be system (2.5 cm maximum) and the Pd-

P system (7 cm maximum thickness), and they attribute their glass forming to both 

the deep eutectics and the presence of small atoms such as phosphorus and 

beryllium. The deep eutectics allow for rapid undercooling, while the atomic size 

mismatch frustrates crystallization. The most highly processable non-beryllium 

zirconium-based BMGs, Vitreloy 106 and 105 (Zr52.5Ti5Cu17.9Ni14.6Al10),  both 

exhibit up to 1.5 cm glass-forming ability and use only the second strategy. 

Aluminum is a small metalloid, which improves glass forming, but typically raises 

melting temperature. Vitreloy 105 and 106 have solidus temperatures at ~ 1100 K, 

versus ~ 900 K in beryllium-containing alloys, which accounts for the reduction in 

glass forming. Many attempts have been made to create ductile phase composites 

based on Vitreloy 105 and 106, but we feel such strategies are not possible, based on 

our previous discussion. Both alloys contain 10 atom % aluminum, which is partially 

soluble in b.c.c. zirconium. Despite the fact that in-situ formed composites based on 
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these alloys are extremely prone to crystallization, any dendritic phase will contain a 

substantial amount of aluminum, which will raise G. To illustrate this, we report that 

a highly processable BMG composite exists in Ti62Zr20Be9Fe6Al4, with 

microstructure similar to the other alloys reported here. An X-ray diffraction pattern 

exhibiting b.c.c. peaks superimposed on a glassy background is shown in Figure 

6.3(b), along with an SEM micrograph of the microstructure shown in the inset. 

Although glass forming is quite high, this alloy exhibits no tensile ductility and is 

very brittle in bending, also shown in the inset of Figure 6.3(b). The presence of 

aluminum stiffens the dendritic phase (i.e., raises G) and ductility is compromised. 

The dendritic phase for this alloy was determined to be Ti72.3Zr19.3Fe3.4Al5, which 

has G ~ 45 GPa, while in contrast the glass matrix has G < 40 GPa. This alloy 

demonstrates that even when the matrix is frozen into an amorphous state, 

toughening does not necessarily occur. Currently, we do not know of any highly 

processable zirconium- or titanium-based BMGs without the presence of beryllium 

or aluminum.  

 The compositions (both in weight % and atom %) and the mechanical 

properties gathered on the new composites are listed in Table 6.1.  
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Figure 6.2 – Bending ductility in new titanium-based BMG composites. (a) 25 gram 
ingot of DV1 undergoing semi-solid processing in a water-cooled copper boat. (b) A 
3-mm-diameter rod of a nanostructure-dendrite composite Ti60Cu14Ni12Sn4Nb10 
(from [1]) demonstrating that it fractures with no plasticity in bending despite having 
extensive compressive plasticity. (c) Beams of DH4 (front) and DH3 (middle) bent 
in a vise, illustrating bending ductility. (d) Several samples of the alloy DVAl2 
demonstrating large glass-forming ability and bending ductility. This alloy contains 
only 0.9 weight % beryllium (5 atom %). 
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Figure 6.3 – Importance of microstructure on tensile ductility. (a) DSC scans of the 
BMG composite DV1 compared to an alloy where the beryllium is removed, 
Ti52Zr18V12Cu15Al3. Solidus temperature increases by more than 200 K when the 
beryllium is removed, indicating why glass forming is absent. (b) X-ray diffraction 
pattern of a BMG composite, Ti61Zr20Be9Fe6Al4, showing a b.c.c. pattern on a glassy 
background (SEM image of microstructure shown in the inset). Despite the proper 
microstructure for ductility, the alloy is brittle (shown in the inset), demonstrating 
the profound effect of the dendrite shear modulus on ductility.  
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Table 6.1 – Mechanical properties of new titanium-based metallic glass composites. BMG composites are shown with crystalline 
titanium counterparts in both weight percent and atom percent. Reported values are density (ρ), yield stress (σy), ultimate tensile stress 
(σmax), yield strain (εy), total strain (εtot), specific strength (σmax/ ρ), reduction of area (RoA), Young’s modulus (E), shear modulus (G), 
Poisson’s ratio (υ), and solidus temperature (K). 
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6.5 Conclusion 

 We conclude by noting that the new titanium-based BMG composites presented 

here greatly extend the potential uses for metallic glasses by reducing their cost and 

density while still retaining characteristics of predictable and non-catastrophic failure. 

The new composites contain all the benefits of the best monolithic metallic glasses (high 

strength, high elastic limit, low processing temperatures) but simultaneously exhibit 

similar mechanical properties to the most common high-strength crystalline titanium 

alloys. This work demonstrates that tensile ductility, as opposed to compressive 

plasticity, is the critical design criterion that leads to toughening. As we have discussed, 

extending these discoveries to other metallic glass systems, especially those that are 

beryllium free, is not a trivial matter. Future work in this area will need to focus on 

creating two-phase glassy/crystalline microstructures where the shear modulus of each 

phase can be altered independently. Ultimately, we would like to see high-toughness 

BMG composites utilizing the low cost of iron.   

6.6 Experimental Method 

 The alloys used in this work were prepared from titanium and zirconium crystal 

bar and other elements with purity greater than 99.5%. Master ingots of titanium-

vanadium were prepared by plasma arc melting, and other elements were pre-alloyed and 

added later. Semi-solid processing was performed using the method described in [14]. 

Tension tests and fracture toughness tests were done in accordance with ASTM 

standards, where applicable (also described in [14]). Samples of crystalline titanium 

alloys were supplied by McMaster Carr. 
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Chapter  7 

7 High Toughness Metallic Glass Composites as 

Structural Mater ials  

7.1 Commentary 

 In this chapter, we investigate the possibility of using the ductile-phase 

reinforced bulk metallic glasses in the Zr-Ti-Nb-Cu-Be system from Chapter 4 as 

structural materials. The mechanical properties of the titanium-based composites from 

Chapter 6 are very similar to crystalline titanium alloys, so we won’t discuss them in 

this chapter. Unlike the titanium-based composites, the zirconium-titanium composites 

in this chapter have large fracture toughness, room-temperature tensile ductility > 

10%, and plastic zone sizes that exceed 1 mm. However, unlike the alloys from 

Chapter 6, the composites here all have higher density (5.6–5.8 g/cm3 vs. 4.9–5.2 

g/cm3). We draw comparisons between the glass-dendrite composites and other 

engineering materials.  

7.2 Introduction 

For more than fifteen years bulk metallic glasses (BMGs) have been at the 

frontier of materials research [1–2]. Unfortunately, they have not been widely used in 

the high-strength engineering applications for which they have so much potential. This 

is due in part to the fact that the near-theoretical strength observed in these new alloys 

is negated by brittle failure and a complete lack of tensile ductility in unconfined 
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loading [7]. This has caused the engineering demand for BMGs to favor secondary 

properties, such as their low melting temperatures and formability, leading to niche 

applications [4–5]. Despite strength, BMGs are also known for large elastic limits (~ 

2%) [6], a lack of microstructure (allowing for very sharp knife edges), high hardness, 

specific strength [7], linear-elastic fracture toughness (K1C), extremely high linear-

elastic toughness (G1C) [8], and several other specific properties. The aim of this 

chapter is to investigate whether newly discovered designed composites (based on 

ductile-phase reinforced BMGs) have the design criteria necessary to become 

structural materials and in some cases replacements for crystalline metals. 

 Several BMG systems were originally designed as replacements for common 

materials. Platinum-, palladium-, and gold based BMGs were produced as jewelry [9], 

it was hoped iron-based BMGs would replace some steel applications, and Zr-Ti 

BMGs were designed to replace titanium alloys. In fact, the first highly processable 

BMG, Zr41.2Ti13.8Cu12.5Ni10Be22.5 (Vitreloy 1), was developed under DOE and NASA 

funding to create new aerospace materials, applications where crystalline Ti-alloys are 

abundant [2]. This work was never realized, however, with the discovery that BMGs 

exhibit highly localized shear band patterns and no global deformation in room-

temperature tension testing. Ductile-phase-reinforced BMGs, where a shear-soft 

dendrite forms in the glass matrix, alleviated some of this problem by presenting a 

barrier to shear band extension, leading to ~ 3% tensile ductility [8–9]. To improve 

properties, the solution involved optimizing the composition and microstructure of 

metallic glass matrix composites by increasing K1C in the glass matrix and matching 

its plastic zone size with the length scale of the dendrites [13]. A new series of alloys 



 

 

144 

was developed in this method with high K1C and near-benchmark G1C, due to the 

reduced stiffness. Three standout alloys from this series were presented in Chapter 4, 

DH1–3 (Zr36.6Ti31.4Nb7Cu5.9Be19.1, Zr38.3Ti32.9Nb7.3Cu6.2Be15.3 and 

Zr39.6Ti33.9Nb7.6Cu6.4Be12.5, respectively) and were also shown to have > 10% room-

temperature tensile ductility with yield strengths of 1.2–1.5 GPa [13]. Figure 7.1 is an 

example of several of the interesting properties of DH1–3. Figure 7.1(a) shows two 3-

mm-diameter tension tests in DH2–3 exhibiting extensive necking. SEM images of the 

necking are shown in Figure 4.1. Figure 7.1(b) shows a 3-cm-long and 1.5-cm-thick 

ingot of DH1 cooled on an arc melter, demonstrating the high glass-forming ability of 

the composites. To demonstrate the bending ductility of DH1, we take a 5-mm-square 

beam ~ 20 mm long and bend it in a three-point-bend configuration. Even with a low 

aspect ratio of 4:1, extensive bending is observed. The most ductile monolithic BMGs 

do not show substantial bending ductility in beams larger than 3 mm square. The 

difference between monolithic BMGs and our alloy DH3 (the high-toughness alloy) is 

shown in Figure 7.1(d) a 3-mm-square beam 50 mm long was clamped in a vise and 

bent with repeated hammer strikes until an angle of > 90° was obtained. The sample 

exhibits some cracking, owing to the crystalline skull which was not completely 

removed, and yet the sample has not fractured under the extreme deformation. Further 

deformation for DH3 is shown in Figure 7.1(e–f), where an 8-mm-thick ingot directly 

from the arc melter was bent with repeated strikes from a steel pipe. 
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Figure 7.1 – (a) Room-temperature tension test in 3-mm-diameter samples of DH2 
(top) and DH3 (bottom) showing extensive necking. (b) as cooled 1.5-cm-thick ingot 
of DH1 demonstrating a near-mirror finish. (c) 5-mm-square beams of DH1 unbent 
and bent in a three-point-bend configuration showing extensive plastic strain, despite 
the low aspect ratio. (d) 3-mm-square beam 50 mm long of DH3 demonstrating 
extensive bending ductility. In the same dimensions, the toughest monolithic BMGs 
can only exhibit < 5% bending strain. (e) An 8-mm-thick ingot directly after semi-
solid processing bent to a severe angle after repeated strikes with a steel bar (f). It 
should be noted that bending was stopped before the sample fractured. 
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7.3 Comparing Properties with Other Engineering Materials 

Several factors determine whether or not DH1–3 are adequate as structural 

material. Crystalline Ti alloys, for example, are used primarily for their high strength 

and fracture toughness combined with low density and stiffness [13]. The benefits of 

using BMG-matrix composites (DH1–3) over other suitable crystalline materials are 

best illustrated with a plot of fracture toughness (K1C) versus yield strength (σy). 

Figure 7.2 is a plot used for selection of materials and shows broad ranges of areas 

occupied by metals, ceramics, and polymers. The  metallic glasses that are plotted (Pd-

, Pt-, Zr-, Cu-, Zr-Ti- and Fe- based BMGs) have K1C values that range over two 

orders of magnitude (1–100 MPa m1/2) all with σy > 1 GPa. It should be noted that 

many of the fracture toughness values for BMGs do not accurately report K1C (which 

strictly measures plane-strain conditions). Many of the high-fracture toughnesses 

reported are measured in ribbons, where plane stress effects inflate fracture toughness. 

The highest value for K1C in a monolithic metallic glass is 50–60 MPa m1/2. Although 

it has been pointed out that the highly toughened composites from Chapter 4 were 

measured in plane-stress conditions, we have recently shown that these values are still 

accurate estimations. The diagonal contour lines in Figure 7.2 are the plastic zone 

sizes (also known as the process zone) which are defined as d = K1C
2/π σy

2 (mm) [8]. 

The plastic zone size is a crucial property for determining the suitability of a material 

for a structural application. If the size of d is much smaller than the sample size, fast 

fracture occurs and the material appears brittle. Conversely, if d is sufficiently large, 

ductile fracture is observed and the material fails gracefully. Much of Figure 7.2 

demonstrates what is expected intuitively in the behavior of materials. For instance, 
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lead alloys fail in a ductile manner and have d ~ 1 m, despite their low K1C (10–20 

MPa m1/2). Polymers have extremely low K1C (< 10 MPa m1/2), yet they exhibit failure 

that ranges from ductile to almost glass-like. This is explained by their plastic zone 

size, which ranges from 0.2–100 mm. Steel is among the most versatile of all 

engineering materials due to its high fracture toughness (typically > 100 MPa m1/2) 

and its broad range of yield strengths (100–1000 MPa) and plastic zone sizes (5–500 

mm). Ti alloys however, occupy a much smaller region of Figure 7.2, exhibiting K1C ~ 

50–100 MPa m1/2, σy ~ 0.8–1.5 GPa and d ~ 1–5 mm. Ti alloys are typically known 

for their low density and high strength, combined with considerable toughness, but 

Figure 7.2 demonstrates that their use as a structural material is limited to relatively 

small samples (typically < 1 cm thick) because they exhibit small plastic zone sizes. Ti 

alloys are thus not attractive as steel replacements for many applications because they 

exhibit brittle failure above a certain sample size. Despite this drawback, Ti alloys 

have a wide variety of uses that are not limited to niche applications. Although 

monolithic BMGs can exhibit high K1C (~ 100 MPa m1/2) they are confined to the 

region in Figure 7.2 where d <  1 mm, due to their high strengths. This means that 

BMGs are worse than some ceramics in terms of their plastic zone size. This “size 

effect” in BMGs is well documented in bending tests, where samples below a 

thickness of 1 mm show substantial plasticity but exhibit brittle failure when the 

sample size is increased above 1 mm [22–24]. Thus, as structural materials, BMGs are 

not attractive.  

 The increased K1C obtained in the ductile-phase reinforced BMGs (DH1–3) 

allows them to pierce the d = 1 mm barrier observed in monolithic BMGs without 
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sacrificing yield strength. Figure 7.2 shows that DH3 is an especially good structural 

material due to its similar yield strength to some crystalline Ti alloys (such as Ti-6Al-

4V), but with higher K1C (173 versus 43 MPa m1/2) and larger d (8 versus 1 mm). Even 

with lower values for K1C (the highest reportable ASTM value we currently have is 

140 MPa m1/2 based on limitations in sample thickness), the composites still have a 

plastic zone size larger than 1 mm. This explains why the bending ductility in the 

composites (Figure 7.1) is superior to any known monolithic metallic glasses.  

7.4 Production 

 Unlike iron, which is abundant in nature, titanium does not occur naturally and 

must be produced by the expensive Kroll process [13], among others. This causes 

crystalline Ti alloys to be several times more expensive than steel. The BMG 

composites DH1–3 are comprised of ~ 25% by weight Ti and typically 50% by weight 

Zr. Lab-scale BMG composites are produced under vacuum to prevent oxygen 

embrittlement; however, commercial BMGs are not. Although both titanium and 

BMG composites react vigorously with oxygen, the production of common structural 

components (billets, sheets, bars, tubes, plates) will undoubtedly be more complex 

with the BMG composites, mostly due to glass crystallization issues. Despite this, 

DH1–3 and other Vitreloy-type BMGs can be produced commercially at nearly the 

same cost as high-performance Ti-alloys. This is done by utilizing commercial-grade 

and recycled starting materials, which seem to have little effect on glass-forming 

ability or mechanical properties.  
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 Crystalline Ti alloys are frequently used in high-temperature applications, such 

as aircraft engines, helicopter exhaust ducts, fire walls, and external spacecraft 

components. One might think BMG composites that have a glass transition 

temperature ~ 620 K are unfit for such uses, but on the contrary, many Ti alloys lose 

their strength when heated to > 700 K, even though they melt at ~ 2000 K [13]. 

Another criticism of the BMG composites is their density relative to crystalline Ti 

alloys. Although we have recently produced Ti-based BMG composites with densities 

similar to crystalline Ti alloys, the composites in this chapter are not significantly less 

suitable. Figure 7.3 is a plot of K1C versus density over a wide range of engineering 

materials. Typically, Zr-based monolithic BMGs exhibit density > 6 g/cm3 and have a 

wide range of K1C values. The alloys DH1–3 have a lower density (5.6–5.8 g/cm3), 

due to increased Ti content, and have among the highest K1C values for materials with 

that density. In terms of specific strength, defined as yield strength divided by density, 

the composites are very similar to crystalline Ti alloys. DH1–3 and Ti-6Al-4V have 

specific strengths of 0.20–0.28 GPa cm3/g and 0.25 GPa cm3/g, respectively.  

7.5 Conclusion 

 The recently developed high-toughness BMG composites seem well suited for 

structural applications. Many industries could benefit from fracture-resistant metals 

with high strength, large elastic limit, and relatively low density.  
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Figure 7.2 – Ashby plot of fracture toughness versus yield strength showing general 
classes of engineering materials and metallic glasses. Diagonal contour lines are 
plastic zone sizes and crack arresting in DH1 is shown in the inset. The BMG 
composites pierce the 1 mm plastic zone barrier that confines all monolithic BMGs. 
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Figure 7.3 – Ashby plot of fracture toughness versus density showing general classes 
of engineering materials and metallic glasses. The BMG composites have high 
fracture toughness with density similar to crystalline titanium alloys.  
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Appendix A (Supplementary Material for Chapter 4) 

 This appendix contains a substantial amount of work that I was unable to 

organize into coherent chapters. It begins with the supplementary material used to 

support the claims from Chapter 4 and continues with other material that is currently 

unpublished.  

 In Chapter 4, we’ve identified the factors responsible for the ductility and 

toughness of these BMG matrix composites, particularly (1) a homogenous 

microstructure and (2) the optimization of length scales L and S that prevent shear 

bands from extending to distances that would lead to crack opening. Further, we show 

that the shear modulus of the dendritic phase is significantly lower than the matrix. 

This results in deformation initiating within the dendrites. It allows extensive 

deformation without fracture and enhancement of toughness and tensile ductility. This 

paper is the first to explain the mechanism of toughening and experimentally use this 

knowledge to optimize engineering properties. Additionally, while the new composites 

appear to be of similar composition to earlier-reported in-situ composites, they are 

based in a completely different glassy matrix. The matrix material of the previous 

composites was similar to Vitreloy 1, a somewhat low fracture toughness glass while 

the new composites are based in GHDT, a high fracture toughness, low shear modulus 

BMG with the largest supercooled liquid region ever discovered. The alloys are 

similar in composition but far different in properties.  

 The Ashby map included in the original manuscript (Figure 4.4) depicts useful 

property combinations of known materials. The present materials are exceptional 
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among known engineering materials. Alloys with the most similar mechanical 

properties and density to DH1-3 are high-performance Ti-alloys. As a side note, 

commercially manufactured BMGs are clearly not prohibitively costly since they are 

already in broad use in cell phone cases, electronic cases, sports equipment, etc., 

produced by Liquidmetal Inc., in California. These materials are comparable in cost 

with commercial Ti alloys.  

 The b.c.c. phase develops by crystal nucleation, dendrite development, and 

subsequent dendrite “tree” growth. The topology of a dendrite tree is an embedded and 

isolated crystal within a surrounding matrix. Growing dendrites never impinge or 

become conjoined. The final morphology is that of isolated crystals in a glass matrix. 

The dendritic crystals do not form a percolating path and do not comprise a continuous 

matrix; rather the remaining liquid/glass is the only continuous phase. Deformation in 

both phases is seen in Figure 2(d-e) of Chapter 4. Plastic deformation begins in 

dendrites at stress levels far below the yield stress of the glass. As deformation 

initiates in the dendrite, stress is transferred to the surrounding glass and shear bands 

are subsequently initiated in the glass phase, as stress concentration there is greater. 

These shear bands lengthen and extend under further deformation. The local shear 

bands have an orientational relationship related to the easy slip directions of the local 

dendrite. Thus, the orientation of shear bands formed around a single dendrite tree has 

a crystallographic relationship with the dendrite. The mis-orientation of neighboring 

dendrites inhibits extension of the shear band patterns from the region around one 

dendrite tree to that of a neighboring tree, since neighboring dendrite orientations are 

uncorrelated. This limits the extension of the shear bands around one dendritic domain 
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to lengths on the order of L or S. When these lengths are less than Rp , shear bands do 

not evolve into opening cracks and fracture is avoided. This is the basic mechanism 

behind the exceptional ductility and toughness of the materials.  

  The micrographs in Figure 4.1 represent small, two-dimensional images of the 

alloys and do not represent the full microstructure, only an example of it. After taking 

many SEM micrographs we loaded the figures into image analysis software in Matlab 

and analyzed phase fractions (using the contrast). After averaging over many of the 

images, we obtained the percentages listed in the manuscript.  

 We have several other independent methods of assessing the glass volume 

fraction. These include DSC analysis of the heat released when the glass matrix 

crystallizes, X-ray diffraction analysis, and rule of mixture analysis of elastic 

properties, all of which lead to estimates of the glass volume fraction consistent with 

image analysis. We have DSC scans of the three alloys DH1–3 and the glass matrix 

material from DH1, which is very similar to the matrix of the alloys DH2–3. Each 

alloy shows clear glass transition temperatures and eutectic crystallization events with 

the composites having a slightly smaller supercooled liquid region. This is the exact 

trend observed in previous work on in-situ BMGs. By dividing the heat of 

crystallization in DH1 by the DH1 matrix (a single-phase glass) we obtain 58.7% 

glass, 50.0% glass, and 32.7% glass for DH1–3 respectively. The values obtained 

through image analysis were 58%, 49%, and 33%, respectively. Microprobe analysis 

has demonstrated that Be does not partition into the dendrite, so by reducing the 

overall atomic percentage of Be in the composites, the volume fraction of the glass 

phase must decrease.  
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 Based on the (1) image analysis, (2) DSC analysis of glass “heats of 

crystallization,” (3) X-ray diffraction results, etc., which are mutually consistent, we 

have an exceptionally high level of confidence in our estimates of the volume fractions 

of the two phases.  

The apparent fine white particles in backscattered SEM images of the 

microstructures were artificially created during contrast enhancement. The glass 

matrix is fully amorphous. The dendrites and the glass matrix have similar 

compositions, so when obtaining backscattered images in the SEM, there is little 

contrast difference. To clearly demonstrate the microstructure, we enhanced the 

contrast of the micrographs, creating the appearance of a grainy texture which does 

not exist. From the high-resolution TEM micrographs, the glass matrix is amorphous 

down to atomic resolution. This is also verified by the amorphous diffraction pattern. 

 We also demonstrate that the glass matrix is amorphous in several other ways. 

First, we have calculated the dendrite composition and the glass matrix composition 

through EDS and have produced a sample of the matrix alloy for DH1 (which is 

similar to the glass matrix of DH2–3). The alloy is a clear bulk glass former, as 

verified by X-ray and DSC. The DSC scan demonstrates that the DH1 matrix alloy 

exhibits a large (122 K) supercooled liquid region and a large eutectic crystallization 

event, both typical of an excellent bulk glass former. The X-ray diffraction scan is 

further evidence that the alloys DH1–3 contain two phases, one b.c.c. crystalline and 

the other glassy. We have XRD scans of the dendrite material, which exhibits clear 

b.c.c. peaks, the glass matrix material, which exhibits two broad diffuse halos typical 

of a bulk metallic glass, and the composite DH1, which is a superposition of the two. 
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No other crystalline peaks are visible in the composite and the broad diffuse 

background is still present, indicating only the b.c.c. and glassy phases. The evidence 

for only two phases is unambiguous. The X-ray scans are similar for DH2–3. We have 

also included backscattered SEM micrographs with unaltered contrast taken at higher 

magnification from the alloy DH1.  

 We present further evidence of the two-phase mixtures in DH1–3 by plotting 

shear modulus versus the volume fraction of b.c.c. phase, as calculated through image 

analysis and DSC. We have produced and measured the shear modulus for the glass 

matrix of DH1, the dendrite material of DH1, and the composite DH1. As discussed in 

the manuscript, the glass matrix has a higher shear modulus than the b.c.c. dendrite, 

and the composite shear modulus follows a rule-of-mixtures average of the two. 

Calculating the volume fraction of b.c.c. phase from this method yields 44% dendrites, 

in excellent agreement with the phase fraction estimated by the other methods. This 

analysis is also valid for DH2–3, though the matrix and dendrite have slightly different 

composition.  

 There seems to be a misunderstanding of the interdendrite spacing S. The 

interdendrite spacing is the distance from the center of a single dendrite tree to the 

center of an adjacent one, while the dendrite size, L, is the total spanning length of a 

single dendrite tree. It should be noted that the entire tree with its arms and trunk 

comprise at least a semi-coherent single b.c.c. crystal. Further, two neighboring 

dendrite trees are single crystals of differing orientation. Since nucleation of dendrites 

is a random process producing equiaxed crystal orientation, the orientations of 

neighboring dendrite trees is uncorrelated, unlike neighboring arms of a single 
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dendrite tree which, tend to have the same orientation. Both S and L are difficult to 

estimate from two-dimensional images because dendrites are three-dimensional tree-

like structures. The 10 μm distance alluded to by the referee is the characteristic 

spacing of the dendrite arms in a single dendrite tree, commonly called the “arm 

spacing.” Indeed, this is about 10 μm. The value of the dendrite tree size, L, can only 

be measured accurately from two-dimensional images when the slice passes through 

the center of a dendrite tree. The images make dendrite tree sizes appear to vary far 

more than they actually do because two-dimensional cross sections cut dendrite trees 

at various distances from the center, making the dendrite projection appear smaller 

than the actual dendrite size. Nevertheless, by surveying two-dimensional micrographs 

we can estimate the spanning length of a typical dendrite to be in the range of 60–120 

μm, roughly an order of magnitude greater than the arm spacing of the dendrite tree.  

 In addition, as the TEM images in Figure 4.1 demonstrate, there is no 

heterogeneous nature of the glass phase. The plasticity and benchmark toughness are 

not an intrinsic property of the bcc material. The b.c.c. material typically actually 

exhibits yield strength of ~ 700 MPa and fracture toughness less than 100 MPa m1/2. 

The new properties demonstrated in the composites far exceed both those of the BMG 

matrix material and those of the b.c.c. dendrite. This clearly shows that the 

combination of the two phases leads to the benchmark properties.  
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Figure A1 – DSC curves from the alloys DH1–3 and the glass matrix of DH1. In each 
alloy, a clear glass transition is visible along with a eutectic crystallization event. The 
heat of crystallization in DH1–3 relative to the heat of crystallization in the matrix 
alloy is an estimation of the volume fraction of glass. This method verifies image 
analysis done using computer software. The DSC tells us that the alloys are, in fact, 
comprised of glass, and the volume fraction of glass is less than that of a fully 
amorphous sample.  
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Figure A2 – (a) Contrast adjusted backscattered SEM micrograph of DH1 with 
composition (Zr45.2Ti38.8Nb8.7Cu7.3)80.9Be19.1, and (b) a higher-volume fraction alloy 
with composition (Zr45.2Ti38.8Nb8.7Cu7.3)91Be9. Since Be does not partition into the 
dendrite, reducing the Be in the total alloy composition leads to a smaller volume 
fraction of glass phase. This illustrates why the alloys DH1–3 have increasing volume 
fraction of dendrites, even though selected SEM micrographs may appear to show 
otherwise. As a note, the contrast has been increased to differentiate the two phases, 
making it appear as though the glass phase has a heterogeneous instead of amorphous 
microstructure. The scale bar applies to both images. Partitioning works because Be is 
not soluble in b.c.c. titanium and zirconium. This is the key feature to be used in other 
systems to design composites. For example, B is not soluble in f.c.c. Fe or Ni.  
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Figure A3 – (a) 7-mm-thick fully amorphous ingot of the matrix BMG for the alloy 
DH1, demonstrating that it is a bulk glass former. This BMG has similar composition 
to the matrix alloys of DH2–3 and exhibits a lustrous, mirror-like finish when cooled 
in ingot form on the arc melter. The matrix alloy of DH1 was cooled fully amorphous 
up to 7 mm on the water-cooled Cu boat, and is estimated to have a critical casting 
thickness of 1.5 cm in quenched cooling. The X-ray diffraction pattern for this BMG 
shows two broad, diffuse halos, typical of an amorphous BMG. This figure is used to 
contest the claim that the matrix material is not amorphous. We show here that it is an 
excellent bulk glass former. 
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Figure A4 – X-ray diffraction data for DH1 showing the b.c.c. dendrite material, the 
fully amorphous glass matrix, and the composite, which is a superposition of the two. 
DH1 is thus a combination of a glass matrix and a b.c.c. dendrite. If the glass matrix 
were partially crystalline, erroneous peaks would be visible in the X-ray scan of DH1. 
This holds true for DH2 and DH3, although not shown. Additionally, the amorphous 
background from the glass matrix is still visible in the scan from DH1. This scan 
demonstrates that two phases are present, but it does not say anything about the 
mechanical properties of the phases other than that they are b.c.c. plus glass. Shear 
modulus data is also needed.  
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Figure A5 – Plot of shear modulus versus volume fraction of dendrites for the alloy 
DH1, its glass matrix, and its dendrite. The glass matrix has a higher shear modulus (~ 
33 GPa) than the b.c.c. dendrite (~ 28 GPa), indicating that the dendrite is a soft 
inclusion. The composite DH1 is a rule of mixtures average of the glass matrix and the 
dendrite, indicating that it is truly a two-phase alloy. Calculating the volume fraction 
of glass by this method yields 56%, in excellent agreement with image analysis and 
DSC scans. The results are similar for DH2–3 with slightly different slopes due to the 
different compositions of glass matrix and dendrites. Note that the dendrite material is 
titanium rich and the glass matrix is zirconium rich. Also note that the estimated error 
in these measurements is 0.2 GPa. 
 



 

 

164 

 
 
 
 
 
 
 
 
 
 

 
 
Figure A7 – Backscattered SEM micrograph of the microstructure of DH1. A single 
dendrite tree which has been cross-sectioned near its central nucleation point is 
illustrated with the dark curve. An estimate of the spanning length, L, is indicated by 
the arrows (L ~ 100 µm). Other dendrite cross sections capture only portions of the 
trees. This figure is used to support the length scale claims made in Chapter 4 and to 
dispute the claims made by a reviewer that the dendrites were smaller than reported. 
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Figure A8 – Optical images of large ingots of Vitreloy 1 and DH1. (a) Bars produced 
on the water-cooled Cu boat of Vitreloy 1 (top) and DH1 (bottom). The ingot of DH1 
is > 5 cm long and 1 cm thick. (b) Arc-melted ingots of Vitreloy 1 (left) and DH1 
(right). Both ingots have masses > 25 g and have thickness > 1.2 cm. These ingots do 
not represent the critical thickness of DH1–3 but merely reflect ingot sizes used. This 
figure is used as a demonstration of the large glass-forming ability of this system. 
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Figure A9 – Comparison of uncontrolled microstructure versus semi-solid 
processing. (a-c) Backscattered SEM micrographs from an approximately 7-mm-
thick ingot of an in-situ composite cooled on an arc melter (reproduced from S. 
Lee, thesis; Caltech, 2005). (a) Taken from the top of the ingot showing a dendrite 
size of 0.4–0.6 µm. (b) Taken from the middle of the ingot showing a dendrite arm 
size of 2–4 µm. (c) Take from the bottom of the ingot showing a dendrite arm size 
of 8-12 µm. (d-e) Backscattered SEM micrographs from a 7-mm-thick bar of DH2 
produced on the water-cooled Cu boat in the semi-solid region. (d) Taken from the 
top of the bar. (e) Taken from the middle of the bar. (f) Taken from the bottom of 
the bar. The dendrite arm size varies from 5–15 µm throughout the ingot. This 
image demonstrates that semi-solid processing produces a more uniform 
microstructure which varies minimally with cooling rate. Since tensile ductility 
rapidly falls with dendrite size, the more homogeneous microstructure of DH2 
leads to a highly toughened composite.  
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Figure A10 – Plot of shear modulus versus volume fraction of dendrites for a La-
based metallic glass, its glass matrix, and its dendrite (Yi Li’s group, 2005). The 
glass matrix has a higher shear modulus (~ 15 GPa) than the dendrite (~ 14.3 
GPa), indicating that the dendrite is a soft inclusion. This system exhibits ~ 5% 
ductility in tension. The concept of a soft dendrite was not discussed in this paper 
but fortunately, the pure La is softer than the glass matrix, leading to ductility.  
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8 Appendix B (Fracture Toughness Revised) 

 This appendix contains recently obtained data regarding fracture toughness of 

the alloy DH3 from Chapter 4. In that chapter, we attempted to quantify the fracture 

toughness of our ingots and we ran into several problems. First, the literature on 

BMGs seems to overstate the true fracture toughness (K1C) of these brittle materials. 

Values are commonly reported up to 100 MPa m1/2, and yet further examination of 

these measurements reveals that they are performed predominantly in plane-stress 

conditions. Plane-stress values can be up to twice as high as plane-strain 

measurements, and K1C is supposed to be measured in plane-strain. Second, we 

initially had sample limitations on our alloys, based on the geometry of the Cu boat. 

To make the comparisons fair, we measured K1C for the composites in the same 

dimensions as we measured monolithic BMGs. Unfortunately, the ASTM standards 

for fracture toughness indicate that for every sample thickness there is a maximum 

value for K1C that can be reported. Tougher alloys require larger samples. In Chapter 

4, we claimed the alloy DH3 had an estimated K1C ~ 170 MPa m1/2. This value, 

however, requires a 6-cm-thick sample for the value to be valid.  

 Recently, a renowned fracture mechanics group claimed that our estimations 

were completely unreliable. They claimed that once the ASTM standard value for a 

particular thickness is reached, any value above that is completely miscellaneous. The 

group claimed that increasing the thickness of our alloys would reduce the measured 

value dramatically. To defend the claims from our publication, we produced thicker 
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samples and measured the fracture toughness. We produced a 4.2-mm-thick sample 

and a 4.8-mm-thick sample. Additionally, we also measured a sample directly from 

the arc melter, without undergoing semi-solid processing, to quantify the effect of 

changing the microstructure. In this thesis, we will not go into detail about actual K1C 

measurement, only the results. More detail can be found in Jin-Yoo Suh’s Caltech 

thesis. 

 

 

Figure B1 – Different thickness samples used for fracture toughness experiments. As 
we discover, our measurements of fracture toughness are nearly independent of 
thickness but rely heavily on semi-solid processing. 
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Figure B2 – A 4.2-mm-thick K1C specimen of the alloy DH3. Even at the larger 
thickness (compared to 2.5 mm in Chapter 4) the sample demonstrates complete crack 
arrest and exhibits a plastic zone several millimeters in size. The plastic zone seems to 
be even larger than in the thinner 2.5 mm sample. The measured K1C is 170 MPa m1/2, 
which exceeds the sample limitations. The maximum reportable K1C for this sample is 
~ 125 MPa m1/2.  

 

 
 
Figure B3 – A 4.8-mm-thick specimen of DH3 with wires attached for electrical 
resistance measurements used to track crack growth. Even at this much larger 
thickness, complete crack arrest is observed. The measured K1C is 168 MPa m1/2, 
which exceeds the sample limitations. The maximum reportable K1C for this sample is 
~ 140 MPa m1/2. Currently, this is the highest fracture toughness value that we can 
obtain. We have recently produced a 5.5-mm-thick sample, which will allow us to 
measure K1C values in excess of 150 MPa m1/2.  This sample is still under 
investigation.  
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Figure B4 – A 5.3-mm-thick sample of the alloy DH3 directly from the arc melter 
without semi-solid processing. Crack arrest is still observed but with lower resistance 
to fracture. The measured value of K1C is 103.5 MPa m1/2, which satisfies the ASTM 
requirement for thickness. The toughest monolithic BMGs have K1C that doesn’t 
exceed ~ 50–60 MPa m1/2. This demonstrates that even with uncontrolled 
microstructures, BMG composites are approximately twice as tough as monolithic 
ones.  

 

 
Figure B5 – Plot of K1C (using the J-Integral method) as a function of sample 
thickness. The blue values represent invalid measurements due to sample thickness 
and the pink area represents valid ASTM standard thicknesses. The BMG composite 
DH3 directly from the arc melter is shown with the green value. Although not 
rigorous, our extrapolation indicates that K1C will likely be ~ 163 MPa m1/2, lower 
than the 173 MPa m1/2 that we reported in Chapter 4. However, both values are 
estimations. Regardless, the fracture toughness of the new composites seems to exceed 
engineering titanium alloys and approaches toughened steels.  
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9 Appendix C (Miscellaneous Data) 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure C –. Backscattered SEM micrographs showing systematic variation of the at. % 
of Be, X, with (a) X = 19.1, (b) X = 15.3, (c) X = 12.5, and (d) X = 9. The dendrites 
are the lighter contrast and the glass matrix is the darker. EDS analysis was used 
detect the composition of the dendrite and a combination of computer assisted image 
analysis and DSC scans were used to estimate the volume fraction of dendrites. The 
alloys DH1–5 have 41%, 52%, 67%, 76%, and 80% β-phase by volume, respectively. 
Phase separation occurs because Be is not soluble as is b.c.c. titanium or zirconium. 
One might think that heterogeneous nucleation would cause the glass-forming phase to 
crystallize, however there are no stable Be phases that could form.  
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Figure C2 – A plot of volume fraction of β-phase dendrites versus at% of Be, X, in 
(Zr45.2Ti38.8Nb8.7Cu7.3)100-X(Be)X for 5 alloys. From the plot, it is clear that the volume 
fraction of β-phase follows an approximately linear trend from 40–100%. This 
indicates that the microstructure and mechanical properties of these alloys can be 
controlled by varying a single component, Be, even though both Cu and Be favor the 
glass matrix over the dendrite. Increasing the volume fraction of β-phase has been 
shown to increase fracture toughness and tensile ductility while decreasing yield 
strength.  
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Figure C3 – Schematic plot of shear modulus versus volume fraction of β-phase 
dendrites for the alloys DH1–3. The black line indicates a rule of mixtures average 
between BMG matrix and the shear-soft dendrites. The diameter of the circles 
represents the total strain to failure during room temperature uniaxial tension testing. 
The dashed lines are estimations of the total strain to failure of alloys that are not 
shown. The total strain to failure is typically ~ 2% for metallic glasses and ~ 7% for 
the dendrite material. The dendrites in the composites suppress tensile instability and 
limit shear band extension, allowing for total strain to failure that is larger than the 
pure dendrite material (9.6%, 10.8%, and 13.6% for DH1–3, respectively). 
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Figure C4 – Plots of atomic percentage versus volume fraction of dendrites to 
illustrate the compositional differences obtained during chemical partitioning for the 
dendrites and glass matrix of the alloys DH1–3. The dashed trend-line for the alloys 
DH1–3 is useful for estimating both the pure β-phase alloy and the parent BMG of this 
system. From the plot, the dashed line indicates that if the glass phase were removed, 
the resulting alloy would be similar to Zr45.2Ti38.8Nb8.7Cu7.3, representing X = 0 the 
plot. The trend also predicts a BMG Zr30.4Ti26.1Nb5.9Cu4.9Be32.7 as the parent glass 
matrix, similar to the original BMG Zr35Ti30Cu8.25Be26.75 with ~ 6% Nb and increased 
Be. EDS analysis was used on the alloys DH1–3 to determine the composition of the 
β-phase and the glass matrix. For each alloy the atomic percentage of the constitutive 
elements is plotted as a function of the volume fraction of dendrites with DH1’–3’ 
(DH1β–3β) representing the glass matrix (dendrites) of the alloys DH1–3. The plot 
illustrates how the composition of the glass matrix and the dendrites change relative to 
the estimated pure glass and pure dendrite. The compositions of the dendrites follow a 
clear trend starting from the pure β-phase alloy Zr45.2Ti38.8Nb8.7Cu7.3. With decreasing 
volume fraction of β-phase the dendrites favor Ti over Zr, becoming Ti-rich at ~ 56%. 
Thus the alloys DH1 and DH2 have Ti-rich dendrites while the alloy DH3 has a Zr-
rich dendrite. Nb content steadily increases from the pure β-phase material to DH1, 
while Cu sharply drops to ~ 1 at%, where it remains for all three alloys. As an 
estimation it can be said that the composition of the dendrite for DH1-3 is a shear-soft 
(G ~ 23 GPa) alloy of Zr-Ti with ~ 15 at% Nb. The composition of the glass matrix 
does not follow such a clear trend, however. The at.% of Be and Zr remain relatively 
constant between 30-38% while the Ti (Cu) content decreases (increases) as the 
volume fraction of β-phase approaches 70%. Analogous to the lack of Cu in the β-
phase material, the Nb typically has ~1 at% in the glass matrix. As an estimation, the 
glass matrix for DH1–3 is a Zr-Ti-Cu-Be BMG with typically ~ 10 at% Cu. This 
implies that the glass matrix should exhibit some of the same beneficial properties as 
were discovered in Zr35Ti30Cu8.25Be26.75 (large supercooled liquid region and high 
fracture toughness). Note that this plot is an estimation and there is likely an error of 
about 5% in the measured values.  
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Figure C5 – SEM micrograph from the tensile surface of the composite DH3 after 
testing. A hierarchy of shear bands is visible with primary bands ~ 40 μm wide, 
secondary bands ~ 10μm wide, and tertiary bands < 2 μm wide. This is among the 
finest shear band spacing ever observed in BMG research and it is from a tension test, 
not a compression test. 
 

 
 

Figure C6 – SEM micrograph from the tensile surface of the composite DH2 after 
testing. A dense pattern of shear bands is visible, indicating a large amount of plastic 
strain has occurred.  
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Figure C7 – (left) Extensive necking during a tension test of the in-situ composite 
LM2A2 from S.Y. Lee’s Caltech thesis (2005) produced by the semi-solid processing 
method. The alloy displays ~ 13.5% tensile ductility and a dense “stair-step” shear 
band pattern (right). The semi-solid processing has more than doubled the tensile 
ductility reported in S.Y. Lee’s thesis for this alloy. 
 

. 
 

Figure C8 – SEM micrograph from the fracture surface of a Charpy impact test in 
DH3. Despite the high strain-rate test, the alloy has a jagged fracture, indicative of 
high toughness. 
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Figure C9 – Fatigue life data for the alloy DH3 compared with the monolithic BMG 
Vitreloy 1 and fracture-resistant 300-M steel. This work was completed at Lawrence 
Livermore National Laboratory by M. Launey in collaboration with our group. The 
preliminary fatigue data show that DH3 has a higher fatigue limit than high strength 
steel. Fatigue is among the most important measurements for structural materials and 
the alloy DH3 has among the highest value of fatigue for any known structural 
engineering materials.  
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Figure C10 – An example of how tension tests were produced from porosity-free 
ingots by machining. More recent tension samples were produced by cutting the 
cylindrical ingot into a square bar and then lathing a cylindrical gauge section 3 mm in 
diameter and 15 mm long into it. Then the specimens were loaded into large clamping 
grips on the load frame. The geometry allowed the grips to hold a flat part of the 
sample while the gauge section allowed for a standard ASTM cylindrical tensile test.  
 

 
 

Figure C11 – Backscatterd SEM micrograph of a metallic glass reinforced alloy 
(MGRA), which is an alloy with < 10% glass phase by volume. The dendrites remain 
isolated and the glass matrix is still continuous, although it now forms into ~1 μm 
thick webs. This alloy still has a substantially higher strength than the pure dendrite 
material, ~ 900 MPa vs. ~ 600 MPa.  
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