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Abstract

The behavior of individuals and groups in the political realm is subject to many and
varied incentives. These incentives impact significantly not only the candidates who
win elections, but also the policies that they implement. This thesis analyzes several
aspects of this problem that have until now gone unexplained.

Part 1 contains two models of candidate competition. Chapter 1 details a model of
competition under the plurality rule that simultaneously explains two well-documented
empirical regularities: that typically only two parties compete in each election (Du-
verger’s Law), and that these parties choose non-centrist policy platforms. I show
that if, and only if, competition is for multiple districts does an equilibrium consistent
with these phenomena exist. I characterize bounds on district heterogeneity for this
to be true, which can be interpreted as describing the domain for Duverger’s Law.
In Chapter 2, I turn attention to the run-off rule and study a similar model to that
of Chapter 1. I find that this subtle change to the counting rule has a significant
impact on the incentives and equilibria of the model. In the traditional single district
environment there now exists a continuum of two-party non-centrist equilibria, which
are robust to simultaneous competition for multiple districts.

In Part 2, I investigate the behavior of voters, and particularly the effect of vote
timing on voter behavior and election outcomes. In Chapter 3, I study a model of
sequential voting and explain when and why the commonly observed phenomena of
bandwagons and momentum arise. I show that only if voters have a desire to vote for
the winning candidate, in addition to their desire to select the better candidate, is
momentum observed and bandwagons begun. In Chapter 4, I compare these results
with analogous results for when voting is simultaneous and characterize when each
process is superior. The conclusions confirm commonly held views about the front-
loading of U.S. presidential primaries: that in tight races a simultaneous vote is

preferred, but in lopsided races a sequential vote is better. Strangely, the superior
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performance of sequential voting in lopsided races is precisely because bandwagons

occur.
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0.1 Introduction

The formal study of politics, like all social sciences, is ultimately interested in out-
comes. The end goal is to understand how different electoral systems and democratic
institutions affect the policies that are implemented and the welfare that results.
Such an understanding requires careful study of the participants in these processes
and the institutions in which they interact. Of course, and again like all social sci-
ences, this is not an easy problem. Over recent decades there has developed a large
literature that has begun to seriously look at the issues involved and provide insights
into the nature of the problem. This thesis is an attempt to add to this body of
work by studying several aspects of voting and electoral competition that have been
previously overlooked.

There are many participants and institutions that go into shaping the ultimate
policy outcomes within any democratic system. A complete model would incorpo-
rate all of these features and highlight their workings and, more importantly, their
interdependencies. Unfortunately, such a complete model is currently out of reach.
As a consequence, progress has been attempted in two directions. The first approach
breaks the problem down into manageable components. The standard demarcation of
the problem is into the following three components: (1) voter behavior, (2) candidates
and electoral competition, and (3) post-election bargaining. The second approach
proceeds, despite the complexity, by combining several of the components into a uni-
fied theory. The most successful of these attempts, and to the best of my knowledge
the only one that has combined all three components, is the model of a proportional
representation election and legislature by Austen-Smith and Banks (1988). However,
the price of this success was an oversimplification of the strategic environment at each
stage of the process. It is not yet clear which approach, the partial equilibrium or
the unified, will lead to the greatest advances. Regardless of this ranking, however,
both approaches are valuable and have provided insights into politics and the political
process that were otherwise hidden.

In the partial equilibrium approach, each of the three components attempts to
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understand the behavior of individuals or groups at crucial stages of the electoral
process. Models of voting behavior, not surprisingly, focus on voters and the incentives
they face. In contrast, the candidates and the policies they represent (and, therefore,
implicitly a model of post-election bargaining) are fixed exogenously. These models
position the voters as strategic agents and seek to understand their behavior relative
to the choice set available to them and the behavior of their fellow voters. The
underlying question is the effectiveness of the voting mechanism in making group
decisions.

In a similar vein but from a different perspective, models of candidates and elec-
toral competition install the candidates as the strategic agents. These models consider
how the competitive pressures of an election impact the policy choices of candidates.
In this environment the strategic behavior of voters is not considered and there is no
specification for how policy is shaped and implemented after the election.

The third component of the problem is post-election bargaining. In these models
the pre-election behavior of both voters and candidates is ignored. Instead the set of
victorious candidates and their policies is taken as given. The focus is then on how
these candidates, and other relevant groups, interact to determine the policy that is
actually implemented.

This thesis does not attempt the grand solution. More modestly, I work in the par-
tial equilibrium world and focus on the first two components of the political problem.
I attempt to add to the understanding of voter behavior and candidate competition
by studying aspects of these environments that have until this point eluded rigorous
analysis. By analyzing strategic behavior in these two environments, I attempt to ex-
plain several empirical regularities that are not consistent with results from standard
models, and increase our understanding of different voting rules and procedures. I
hope that the reader does not consider this limited ambition a shortcoming of this
thesis, but rather sees it more appropriately as an indication of the difficulty of the
underlying problem. Indeed, perhaps the one thing that political research has taught
us is that voting behavior and the political process are as complex, and interesting,

as any other social interaction.
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This thesis is divided into two parts, reflecting the two research streams to which
it contributes. Part I contains two models of candidate competition in which I study
the policies that result under several different voting rules and in several different
competitive environments. I attempt to explain the number of candidates that are
observed in real elections and the policies they choose. In contrast, the focus of Part
IT is on voters and the decisions they make. I investigate the issue of vote timing and
how behavior and outcomes vary with changes in the timing of votes, and characterize
the efficiency of different vote timing schemes when used to make group decisions.
These research areas, and the place of my work within them, will be described in more
detail at the appropriate times. Unfortunately, and quite clearly, these contributions
do not complete the grand problem that I initially outlined. However, the fortune in
these obvious shortcomings is that the presentation of the results need not be delayed

by an outline of future research directions. The main possibilities should be clearly

apparent.



Part 1

Electoral Competition
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Introduction

Models of candidate competition are an attempt to formalize the strategies adopted
by electoral candidates in their pursuit of policy outcomes and the perks of office. Of
interest 1s not only which candidates choose to contest the election and the policies
they adopt, but, even more importantly, how these platforms translate to policy out-
comes. The standard way of understanding this problem is what has become known
as the ‘spatial model of electoral competition.” This approach was first suggested by
Hotelling (1929) and popularized by Downs (1957).

In this ‘spatial model’ policy choices can be represented by a point in a space. Vot-
ers have preferences over these spaces and cast their votes accordingly. Then, with a
particular voting rule in effect, these models provide a framework to determine how
the different candidates react to this voting pattern and the conflicting ambitions of
their competitors. The spatial model has provided enormous insight into the incen-
tives facing candidates for office and the policies they choose. However, there have
remained some failings in this development. Firstly, despite the focus of research on
elections employing the plurality rule, several well documented empirical regularities
have remained unexplained. Rectifying several of these omissions is the purpose of
Chapter 1. Secondly, precisely because of the focus of research on elections employing
the plurality rule, our understanding of the incentives facing candidates under other
voting rules remains woefully incomplete. Chapter 2 attempts to fill up one such hole
by studying a model of electoral competition under the run-off rule.

Empirical studies of plurality rule elections have repeatedly observed the following
two phenomena: firstly, that only two parties compete in elections, and secondly, that
these two parties choose non-centrist policy platforms. The first regularity was even
afforded the status of a law by Duverger (1954), and is now commonly referred to
as Duverger’s Law. Despite these observations, previous theoretical models of elec-
toral competition (with office motivated parties) have been unable to simultaneously
explain these two regularities. These models either lead to equilibria involving the

entry of more than two parties, or equilibria in which the two parties converge to
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the same policy platform. I attempt in Chapter 1 to provide an explanation that is
consistent with both phenomena. I show that when parties are required to compete
simultaneously for many districts, as is the case in most large scale federal elections
such as in the United States, the threat of entry induces the first two parties to
choose non-centrist policy platforms in order to deter subsequent entrv. I charac-
terize the conditions when such a strategy will prove successful, and thus produce
two-party non-centrist electoral contests as observed in real plurality rule elections.
These conditions can be interpreted as describing the Domain of Duverger’s Law.

In Chapter 2, I study a similar model with instead the run-off rule being used to
determine the winner. This rule, like many others, has received little attention in the
formal literature. The results of this chapter provide some insight into the incentives
and policy choices of candidates in such an environment. I find that the subtle change
in counting method as compared to the plurality rule yields a significant change to
the competitive environment and the resulting policy outcomes. In contrast to the
plurality rule results of Chapter 1, I find that a continuum of two-party non-centrist
equilibria exist in the traditional single district environment, and that they are robust
to simultaneous competition for multiple districts.

Perhaps the most startling finding that can be taken from this work is the signif-
icant change in the candidates’ strategies and policy outcomes that result when only
a subtle change is made to the voting rule. If anything, this confirms the delicate
nature of electoral mechanisms, and the importance of their careful implementa-
tion. Unfortunately this potential has been ignored all too often in real world situ-
ations. Repeatedly, well-intentioned institutional designers have implemented what
they thought were innocuous changes only to have them cause far reaching and unin-
tended consequences on political institutions and policy outcomes.! Formal work like
the following two chapters cannot stop these designers from making costly mistakes.

What it can do, at least, is ensure that they have a better idea of what they are

!New Zealand and Israel are both excellent examples from the past decade. During the 1990s,
New Zealand switched from a single-member district system to one of proportional representation
with the aim of broadening representation. However, they were seemingly unprepared for the stifling
effect on government and policy formation that such a voting rule would cause. The case of Israel
is discussed in footnote 31 of Chapter 1.



getting themselves in for.



Chapter 1 Electoral Competition in

Heterogeneous Districts



Abstract

By extending the established theoretical models of electoral competition with entry
(e.g., Palfrey (1984)) to incorporate simultaneous competition for multiple districts,
I produce a unique two-party equilibrium under plurality rule in which further entry
is deterred. Further, this equilibrium requires non-centrist party platforms. These
characteristics are consistent with empirical observation, in contrast to those of single
district models. Necessary and sufficient conditions for the existence of this equilib-
rium are then characterized. Taken together, these conditions provide a domain for
Duverger’s Law. The chapter also sheds some light on how the different levels of

elections in the U.S. and other systems relate to each other.



10
1.1 Introduction

It is a commonly noted feature of plurality rule elections that fewer parties enter and
compete than under other electoral rules.! This implies that the positions chosen by
competing parties in combination with the unique characteristics of the plurality rule
are deterring additional parties from entering the election. A second ubiquitous obser-
vation from plurality rule elections is that parties choose divergent policy positions.?
In this chapter, I present a model that simultaneously explains these dual phenomena
and shows they are, in fact, complementary. I extend the traditional spatial model of
elections to incorporate simultaneous competition for multiple districts and find that
there exists a unique equilibrium in which two parties select non-centrist platforms
and are able to deter subsequent entry.

As plurality rule is often used to elect members of a legislature, as well as a head of
state this extension would seem natural and, in many such circumstances, essential.
For example, in the U.S. the main parties compete not only for a single constituency
but for 435 Congressional districts simultaneously. Thus, a model of simultaneous
competition for multiple districts captures more accurately the problem of platform
selection by mass parties.

The model employed here is an extension of that introduced by Palfrey (1984).
The candidates are purely office motivated (i.e., they are Downsian) and voting is
sincere. To capture the notion of entry deterrence I assume, in contrast to Palfrey,
that each potential entrant will enter the election only if it has a positive probability
of electoral success. Critically, with this assumption the non-centrist equilibrium of
Palfrey no longer exists. Thus, though the equilibrium found by Palfrey explains
policy’ divergence it cannot capture the notion of entry deterrence. In fact, once this
assumption is made no pure strategy equilibrium exists in the single district case.
This motivates the extension to multiple districts as with some heterogeneity across
districts a unique non-centrist two-party equilibrium exists. This is true as long as

the degree of heterogeneity doesn’t exceed a quantifiable upper bound. These bounds

1See, amongst many others, Lijphart (1994).
2For the case of the U.S., see Alesina and Rosenthal (1995, chapter 2).
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are used to characterize the domain for the existence of a two-party entry deterring
equilibrium.

To maintain consistency with the model of Palfrey (1984), I assume that two
incumbent parties move simultaneously, and are then followed by potential entrants.
Significantly, however, the results I find are not particular to this sequencing and are
robust to alternative timing schemes, such as purely sequential or endogenous timing.
This is in contrast to single district models in which outcomes depend critically on
the timing of moves.

The two-party equilibrium found here is consistent with Duverger’s Law. This
empirical law claims that not only does plurality rule lead to the entry of fewer
parties but, in fact, typically leads to a two-party system. Loosely interpreted the
law is well supported.> However, the difficulty is that even though plurality rule
elections are usually dominated by two parties there is almost always more than two
candidates on each ballot.* The fact that these additional candidates usually receive
a minor share of the votes and do not seem to have a chance of victory is taken as
evidence that they are pursuing an alternative agenda and shouldn’t be considered
as legitimate candidates. This interpretation implies that more than simply a name
on the ballot is required before a candidate can be considered legitimate.

In the equilibrium found here, two incumbent parties are able to select platforms
such that the entry of further victory seeking candidates is deterred. Thus, even
though other non-victory seeking candidates may enter the contest, this equilibrium
formalizes the intuition of Duverger’s Law. Given this interpretation, my finding of a
restricted domain in which the two-party equilibrium exists is appropriate as though

there are many positive examples of the law, it does not hold everywhere.

Related Literature

The extension to multiple districts suggested here is only one possible explanation

for two-party dominance and non-centrist platforms. There are many variants on

3For support of Duverger’s Law see the references in Riker’s (1982) survey. In Riker’s view,
“There are indeed counterexamples [to the law], but not, I believe, definitive ones...” (Riker 1982,
p.760).

“See Lijphart (1994).
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the spatial model which employ different assumptions about the capabilities and
motivations of both candidates and voters. Due to the inherent difficulty of extracting
information on these variables, empirical investigation has been unable to provide
definitive suggestions as to which combination of assumptions is the most appropriate.
It is likely that reality is some blend of the extremes commonly studied in the formal
literature. The hope is that by studying the different extremes of behavior all of the
different forces working to produce two-party dominance and non-centrist platform
choice under plurality rule can be captured.

Most attempts at explaining the ability of two parties to dominate plurality rule
elections have focused on the behavior of voters rather than the candidates. An early
example of this approach is Palfrey (1989). The equilibrium he finds shows that if vot-
ers are acting strategically then they will focus in on two parties in order to maximize
the effectiveness of their votes. This seems to be a plausible explanation. However,
empirical investigations of voting behavior conclude that whilst some strategic voting
is observed its occurrence is not overwhelming.> The model presented here secures
more firmly the theoretical understanding of the phenomenon by showing that even if
the alternative extreme of voter behavior, sincere voting, is assumed then two-party
dominance can still be explained.

Attempts at explaining policy divergence have looked at both the number of par-
ties and their preferences. In the models of Palfrey (1984) and Cox (1987) more than
two parties compete and choose non-centrist positions in order to maximize their
vote shares. An alternative approach is to assume that candidates are not purely
Downsian and instead care about the policy that is enacted. Early papers, such as
Wittman (1983) and Calvert (1985), use this assumption in conjunction with un-
certainty about the true distribution of voters’ ideal points to achieve non-centrist
platform choice. More recently, the citizen-candidate models of Osborne and Slivinski
(1996) and Besley and Coate (1997) achieve policy divergence and entry deterrence in
a full information environment. These papers assume that candidates can only offer

their own ideal point as a platform, the opposite extreme to the purely Downsian

See Alvarez and Nagler (1999).
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candidates modelled here.

The remainder of the chapter is organized as follows. Section 2 specifies the
model and shows why previous models with Downsian candidates and sincere voting
have been unable to simultaneously explain two-party dominance and non-centrist
platform choice. Section 3 presents the results. Section 4 contains a discussion of the

results and the robustness of the model. Section 5 concludes.

1.2 The Model

Most plurality rule elections involve more than one set of candidates and one grand
district. Typically competition is for many districts simultaneously. To this end, I
construct a spatial model of electoral competition for many districts with entry. The
order of play is as follows. There are two incumbent parties who choose their platforms
simultaneously and compete in every district. In each district a potential entrant then
makes an entry decision, and if he chooses to enter he selects a platform position. The
potential entrant will enter in a district only if he has a positive probability of winning
that district. The entered parties then engage in the election. This is similar to the
model of Palfrey (1984), except there are many districts and each entrant may stay
out of the contest.

This extension is incorporated into the spatial model by the following assumption.

The issue space is the real line, R.

Assumption 1.1 There ezists a continuum of districts. In district i the median
voter’s ideal point s Z;. The ideal points of district median voters are distributed
symmetrically about 0 on the support [Z,Z], where Z = —Z, according to the cdf G,
where G(Z) = 0 and G(Z) = 1, and the pdf, g. g is continuous and is either strictly
quasi-concave or quasi-conver. The distribution of voters’ ideal points in district i

is given by the cdf F(z — Z;) for all x € R.

®Note that this permits uniform distributions as they are quasi-convex. The restriction to strict
quasi-concavity is to rule out particular flat spots in the distribution that may produce multiple
weak Nash equilibria.




14

The assumption of a continuum of districts is, of course, not realistic. However,
it has been employed as it captures the effect and intuition of the multiple district
scenario whilst avoiding the complexity of calculation associated with a lumpy dis-
tribution of district median voters. It is in the same spirit as the assumption of a
continuum of voters in the single district case. The intuition of the entry deterring
equilibrium found here is not dependent on there existing a continuum, or even a
large number of districts. In fact only two distinct districts are needed for such an
equilibrium to exist.

In each district there is a continuum of voters with symmetric, single peaked
preferences over the issue space. The non-degenerate cdf F' and the corresponding

pdf, f, have the following properties.

Assumption 1.2 For all a < 0 for which F(a) > 0, the function F is strictly

increasing on (o, —q).

Assumption 1.3 F is continuous and twice differentiable at all points x € R such

that F (z) € (0,1).7
Assumption 1.4 F(z)=1—- F(z) Yz € R.

Assumption 1.5 f'(z) > 0Vz <0, and f'(z) <0 Vz > 0.

These assumptions specify that the distribution of voters’ ideal points in each
district is symmetric about the median, and that the mass at any point is at least as
great as at any point further from the median. This requires f to be quasi-concave. It
can be seen that the uniform distribution satisfies these conditions. Assumption 1.2
ensures that there are no gaps in the distribution but without assuming that voter
ideal points span all of R (that is, voter ideal points can be contained in a bounded
interval, for example [-1,1]).

Voters are assumed to be sincere and so each votes for the candidate closest to

their ideal point. I will denote the two incumbents as I; and [, the entrant in

"This specification allows for discontinuities in F at only two points: the boundary points of the
support of f. This possibility permits the uniform, among others, as a possible distribution.



15
district 7 as Ej, and the set of all entrants by E. If a voter is indifferent over any set
of candidates then he randomizes over this set.
To differentiate the multiple district approach from the repeated application of

the single district result the following assumption is made.

Assumption 1.6 I; and Iy must each choose a single platform on which they will

compete in every district.

The restriction is somewhat excessive as party nominees typically maintain some
degree of freedom in their campaigns. However, it is true that these candidates are
associated with the party platform by voters and their nominations depend on party
loyalists. Thus, it seems plausible that their flexibility in conveying a platform to the
voters in their district is restricted. I take this restriction to the extreme in order
to capture this notion fully and simplify the model. However, the results do not
depend critically on the extremeness of this assumption. If it is instead assumed
that candidates have some freedom around the party platform then the qualitative
features of the results should not change. All that is required is that this freedom is
not excessive.?

Parties are free to locate at any point in the policy space, ®. The incumbent
parties have lexicographic preferences with share of districts won on the primary
dimension and total vote share on a second dimension.® If a party has a set of points
that maximizes its share of districts won it chooses the point in this set that maximizes
its vote share. If there is more than one point in this set that maximizes a party’s
vote share then the party randomizes equally over these points. Denote the outcome

pair for candidate I; by Oy,. Define M(j) and Vj, j = I, I, E; Vi, to be respectively

8More precisely, the two-party equilibrium will exist as long as the freedom of individual candi-
dates to differentiate themselves from the party platform does not exceed %Z This is in contrast to
the multiple district results under the run-off rule presented in Chapter 2. For the two-party equi-
librium to persist under the run-off rule the freedom of individual candidates must instead satisfy a
lower bound, and in fact be greater than or equal to Z.

9The second dimension is required only to rule out potential equilibria in which neither of the
incumbent parties win any of the districts and are unable to move their platforms anywhere such that
they do. Without the second dimension such location pairs would constitute equilibria even though
it may be asked why the incumbents themselves would enter given they have a zero probability of
winning any districts.




16
the share of districts won by, and total vote share of, party 7. In an abuse of notation
denote the parties electoral platforms by I;, I. and E, where E = (..., E;....). The

outcome function can be written as follows.
Oh (]17 [2: E) = (A[(Il ']17 [2: E)) ‘}1 (]1-, ]2a E))

The outcome for I is defined analogously. Strict (weak) preference for one outcome
over another is denoted in the usual way by the binary relation > (>), where A > B
represents the situation in which outcome A is strictly preferred to outcome B.

Each entrant is assumed to have the single district analogue of these preferences;
the first dimension is probability of victory and the second dimension is vote share.
Given the positions of the incumbents, there may not exist an optimal location choice
for each entrant. This technicality arises when an entrant attempts to maximize his
vote share over the set of points that maximize his probability of winning the district.
The probability of winning for any F; can only take on a finite set of values (as there
are only three candidates and voting is deterministic) and so a set of maximizers over
this dimension can always be found.

A variant of the limit equilibrium concept introduced by Palfrey (1984) is em-
ployed to deal with this problem. If a vote maximizing point doesn’t exist then the
entrant ‘almost’ maximizes his vote share when choosing from the set of points which
maximize his probability of winning. A perturbed game is defined for each €, where
¢ is how close each F; comes to maximizing his vote share. An equilibrium is defined
as any pair of strategies for I; and I, which are best responses to each other for an
infinite sequence of the perturbed games, with the perturbation approaching zero in
the limit. The difference between this equilibrium and that of Palfrey is that his
candidates simply maximize vote share and their preferences are representable by a
utility function. Here the candidates have lexicographic preferences and such a gen-
eral representation is not possible. Consequently, the definition of equilibrium must
remain in terms of primitive preferences. Technically the definition introduced here

is stricter than Palfrey’s, though in the single district case (where both definitions
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could be used) the results are unaffected by this additional requirement.'
Denoting the winner of a district ¢ by W7, the set of points that maximize E;’s

probability of victory is defined as follows.
)&72'(11, ]2) = arg ma}}%‘:{pTOb(I/I”ri = EilEi = :r)|]1, ]2}
z€

If maxzep{prob(W; = E;|E; = z)|I,Io} = 0 then E; does not enter the election
and E; = (). If not, then the set of points that E; equally randomizes over. for a given
g, is given by CF., where,

Cy (I, L) ={E; € Xi(I,L)|VE,(I1, I1, E) > Vg, (I, I,,y) —e,Yy € X;(I1, I2)}

1

Let C&(Ih. L) = (....Cg (I, I), ...). Anticipating these entry decisions the expected

outcome for the incumbents, given their own locations, is the expectation over Cg (11, I2).
Definition 1.1 A pair of locations, {I1, s}, is a strict limit equilibrium if,

(a) for every y # I, there is an (y), such that for all E' € C,;(y)(y,fg) and E €
Ci¥ (11, 1), O, (I, Is, E) = Oy, (y, I, E'). And,

(b) for every w # I, there is an £(w), such that for all E' € Cz(w)(fl,w) and
E € Cg(w)(jl,fg), O]Z(II,IQ,E) - OIQ(IQ,U},E/).

It is possible that if X;(1;, I3) is not a singleton then an entrant will randomize
over one or several intervals. For any policy position, z € R and (xz) > 0 such
that ¢ — 0 = e(z) — 0. define the following intervals: z© = (z.2+¢(z)), 2~ =
(r —e(z),z), and 27" = (z — =(z),z +¢(x)). If [; < I, then every entrant, if they
choose to compete, will locate in some subset of the intervals I, [J7, and ==, where
z € (11, I).

As the parties have no ideological motivation in the selection of their platforms

it is obvious that any equilibrium found will point to another equilibrium in which

10See Callander (1999).
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the two incumbent parties simply switch positions. Any pair of such equilibria will

be considered to be the same, and so constitute just one equilibrium.
Z = Z: The Single District Case

If Z = Z then all districts are homogeneous and the analvsis collapses to the
traditional single district case.!! In a separate paper, Callander (1999), I prove that
in this case no pure strategy equilibrium exists.!?!* The intuition behind this result
is that given any non-centrist pair of platforms for the incumbents a small enough
deviation can always be found such that the entrant chooses to stay out of the elec-
tion and the deviating incumbent wins. This possibility highlights a critical feature of
plurality rule elections: that entry on the flank cannot punish both incumbents simul-
taneously. If the entrant locates on the flank he secures all of his votes at the expense
of the incumbent he outflanked. Critically, the votes won by the other incumbent are
unaffected. Thus even though the entrant may win a substantial share of the votes
(when the incumbents are close to the median) he can’t beat both incumbents and
can’t win the election.

Palfrey (1984) achieves a non-centrist equilibrium in this framework but requires
that the third candidate always enters.!* Thus, his equilibrium cannot capture the
notion of entry deterrence. The nonexistence of an equilibrium in the single district
case motivates the extension to multiple heterogeneous districts as once this extension
is made the existence problem will be overcome and a unique, non-centrist, entry

deterring equilibrium will exist.
The Multiple Districts Literature

There have been few papers which have considered the issue of multiple districts.

The first investigation of multiple districts was by Hinich and Ordeshook (1974) in a

"The primary dimension of the objective function then collapses to the probability of victory.

120sborne (1993) considers this model for when the candidates move simultaneously or whenever
they wish.

13Feddersen, Sened, and Wright (1990) extract an equilibrium from this framework by assuming
voters are able to coordinate their decisions. However, the equilibrium they find involves centrist
platforms and thus can’t explain policy differentiation.

147 also prove in Callander (1999) that this equilibrium still exists and is unique for the more
general policy space, party objective function, and equilibrium notion employed here.
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study of the electoral college. Hinich and Ordeshook were interested in distortionary
effects of the electoral college in comparison to a direct vote for the President. They
proved the extension of the single district case, that with two candidate competition
both candidates would converge to the median of the median district. This result
makes two candidate competition in the multiple district case look almost identical
to that in the single district case (though maybe with a different convergent point).
Further work has been done by Austen-Smith in a series of papers. Austen-Smith
(1981) is the most similar to the model presented here as it is assumed that parties
must choose a unique platform which is applicable for candidates in all districts
(Assumption 1.6 here). The question of entry and entry deterrence is not considered
and parties compete on both distributive and policy dimensions. Consequently, the
results and intuition obtained are significantly different from those presented here.

In a recent paper, Osborne (2000) constructs a model similar to this but with
different motivation. In his model, parties compete for a single district but are uncer-
tain as to the true distribution of ideal points. This uncertainty is symmetric across
parties and consequently a potential entrant can’t enter selectively. Thus the equi-
libria obtained are significantly different and, in fact, the domain of the two-party

equilibrium that he finds is disjoint from that found here.

1.3 Results

If competition is for only one district then there are many pairs of locations for the
incumbents such that entry is deterred. The incumbents may be located symmet-
rically or even asymmetrically around the median voter and deter entry, as long as
they are not too far from the median nor too asymmetric. In fact, the nonexistence
of an equilibrium in the single district model is a consequence of the abundance of
such location pairs. This is because the incumbents, regardless of where they are
located (as long as they are deterring entry), can always find a deviation such that
entry is still deterred and they are better off (see Callander (1999) for the proof of

this result).
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However, when the incumbents are required to compete simultaneously for multi-
ple heterogeneous districts many of the location pairs which deter entry in one district
permit entry in other districts. This follows from the fact that if the incumbents are
located symmetrically in one district then they must be located asymmetrically in
dissimilar districts (as they can only choose one policy platform for all districts). As
the heterogeneity of districts increases then the asymmetry of the incumbents’ loca-
tions in some districts must also increase. The following lemma shows how extreme
the heterogeneity can be for any given positions of the incumbents (that aren’t too
far apart) such that entry is deterred. Effectively, I find that the incumbents must
be spaced twice as far apart as are the most extreme district median voters if they
wish to prevent entry in every district. Define Z' = (22*, —2Z*), where F (Z*) = 3.

All proofs are gathered in the appendix.

Lemma 1.1 For I),I, € Z' and I, < I the districts won by both incumbents com-

bined are those with median voters in the interval D (Iy, I,) = [2t 023h]

The logic of this result can be seen in Figure 1.1 which depicts a three district
example. The districts are evenly spaced with median voters at Z, 0, and Z. For the
district with median at Z the density at 0 is the same as at 2Z. Thus, if I, = 27 and
I, = 2Z then an entrant locating in I (for small enough ¢) is just defeated by I
whose vote share for this district is given by F (0 — Z). For a district with median
voter more extreme than Z this is no longer true. An entrant in I;” squeezes I, in the
center and just defeats I;. Therefore, this critical point (and the one at Z) defines
the bounds of the lemma.

This example expands naturally to a continuum of districts. It is easy to see from
the figure that if the incumbents are deterring entry in the districts with median voters
at Z and Z then they would also be deterring entry in any district with the median
voter between these bounds. Thus, it is not the number of districts but rather the
heterogeneity of the district medians that determines whether entry can be deterred
in all districts simultaneously. This lemma will prove critical to the following results.

For the statement of the propositions I will need the following condition.



21

/A
RS

% — \\\

Figure 1.1: Competition for Heterogeneous Districts



22

Condition 1 g(Z) > 24(0)."°

This condition ensures that the weight of districts with median voters at the
boundary of the distribution is enough such that the incumbents do not have the
incentive to abandon them to entrants by deviating inwards in order to win more
districts at the center of the distribution.!® Recalling that g is symmetric (Z = —Z).
then it must also be true that g (7) > %g(O).

The following proposition reflects the main insight of the chapter. It shows that
when parties are required to simultaneously compete for multiple heterogeneous dis-
tricts there exists a unique equilibrium which is consistent with the dual phenomena
of entry deterrence and non-centrist platform choice. Thus, it is ounly in the case of

competition for a single district that such an equilibrium doesn’t exist.

Proposition 1.1 Suppose 0 > Z > Z*, where Z* satisfies F(Z*) = % Then if

Condition 1 is satisfied the unique equilibrium is given by, {I1, I} = {2Z,-2Z},E; =
0 Vi (do not enter). M(I;) = M(I,) = 5, M(E) = 0.

In the single district case the incumbents have an incentive to deviate towards the
center and win the election. This incentive still exists in the multiple district case.
However, the incumbents reach a point where further deviation to win central districts
will allow entry in the districts with the most extreme median voter, as in those
districts the incumbents are located too asymmetrically (as seen from Lemma 1.1).
Condition 1 ensures that the share of districts lost on the edge by deviating inwards
outweighs the share won in the center.

Significantly, these results are not dependent on the particular timing scheme
assumed here. This is in contrast to the single district case in which timing changes

have a significant effect on the set of equilibria to the candidate competition game.'”

15Note that this condition only restricts strictly quasi-concave distributions and places no restric-
tions on quasi-convex distributions of districts.

16The %— arises because if an incumbent deviates towards the median then he wins an interval of
districts in the center which is % the length of the interval of districts he loses on the flank. Thus,
to ensure that this deviation is not profitable the density at the center can be no greater than % the
density on the flank.

17This effect can be seen by comparing the results of Osborne (1993), who compared simultaneous
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The robustness of the results presented here follows from two features of multiple
district electoral competition: (1) a single party is unable to locate at the median
simultaneously in heterogeneous districts (which explains why the single district case
is affected differently), and (2) if the first party to enter is located close enough,
but not at the median in a district then a second party can win these districts and
prevent further entry. This implies that the first party to enter will locate with the
expectation of additional entry. Simple arguments relying on Lemma 1.1 can then be
used to show that the above equilibrium, as well as those in subsequent results, must
still exist if the timing scheme were instead endogenous or purely sequential.'® Thus,
the results presented here are not dependent upon the particular timing structure
employed.

In equilibrium, the incumbents win half of the districts each. They tie in the cen-
tral diStrict, which is then decided by randomizing. However, as there is a continuum
of districts, this central district has a weight of zero and doesn’t affect the proportion
of districts won by each of the incumbents. If the continuum of districts is thought
of as the limit of a finite distribution of districts, then it is only in the limit that
the winner of the central district does not achieve a majority and win government
outright.!®

Only occasionally are legislatures observed where the seats are evenly divided
between the two major parties, or where they are separated by only one seat. It
is quite normal to observe legislatures where one party holds a significant majority.
Consequently, it would be desirable if a theoretical model could produce such uneven
seat allocations as an equilibrium. Obviously, the equal proportion of seats for the
incumbents predicted by this model is a direct consequence of the symmetry of the

structure and this would need to be dropped to produce an asymmetric outcome.

timing with endogenous timing, with the single district results described in this chapter (that also
extend to a purely sequential structure).

18 Assume that I; < 0. Lemma 1.1 implies that I, will be chosen such that Ll+4—3]2 = 7. Anticipating
this choice I1’s optimal strategy is to locate at 2Z, and thus the equilibrium will be that found in
Proposition 1.1.

190f course, that the result of Proposition 1.1 still constitutes an equilibrium with only a finite
number of districts remains to be proven.
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This is possible in the multiple district framework presented here as the proof of
Proposition 1.1 does not necessarily rely on the symmetry of g. Indeed, as long as an
analogue of Condition 1 holds (Condition 1A below) then the equilibrium depends
solely upon the width of the distribution of districts and not on the shape of the
distribution (e.g., the mean or the median). This is an interesting result as it is
not automatic that asymmetric distributions produce asymmetric outcomes for the
parties.

For example, if asymmetric distributions are incorporated into models that predict
party convergence then the parties still converge to the median (of the median district
in the multiple district case), though this may no longer be in the geographic center of
the distribution. Thus, even though there may be a different set of platform choices
" by the parties they still receive symmetric outcomes. In Palfrey’s model it is possible
to produce asymmetric outcomes for the incumbents for rather special distributions.
However, this implies that one incumbent has no chance of victory and therefore
there is no clear reason why this incumbent would enter the election. Consequently
an interpretation of asymmetric outcomes in the single district framework is difficult
to develop. However, in the multiple district framework such asymmetric outcomes
are easily conceptualized. Even though the minor incumbent party has no chance of
winning a majority, it still wins some districts contested and thus secures a voice in
the legislature. Entry in this instance could also be justified by the fact that some
members of the losing party still gain personally by winning their own district.

To characterize the equilibria for an asymmetric distribution of districts, Condition
1 will need to be generalized and strengthened. To maintain tractability, I shall

continue to assume that Z = —Z, though this too is not required.
Condition 1A g(z) > 2g(y) Vz,y € [Z, Z].*°

The tightening of this condition is required to rule out certain flat spots in quasi-

convex distributions. Such an additional restriction was not required in the statement

20This condition simply states that the density of g doesn’t vary excessively. This will ensure that
profitable deviations for the incumbents do not exist.
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of Condition 1 as symmetry ensured that even if such flat spots existed they would not
cause a problem. This tightening is overly strong. Consequently, whereas Condition
1 was sufficient and necessary for the result of Proposition 1.1 to hold, this condition
is sufficient for the following result but not necessary.?! This leads to a generalization

of Proposition 1.1.

Proposition 1.1A Suppose 0 > Z > Z*, where Z* satisfies F(Z*) = %, and that g
15 not necessarily symmetric. Then if Condition 1A is satisfied the unique equi-
librium is given by, {I,, I} = {2Z,-2Z},E; = 0 Vi (do not enter). M([;) =
[z 9(@)dz, M(1) = [} g(a)dz, M(E) =0

It can be seen immediately that unless G(0) =  then M (I;) # M(I>) and one
of the’ incumbent parties will hold an outright majority. Thus, the equilibrium in-

volves the selection of party platforms such that one party is guaranteed of winning
a majority of the districts. The existence of such equilibria could be used to explain
elections where one party is predicted to win a clear majority and does so, and where
the losing party does not seem to have a platform that could win a majority of the
seats.?? This is consistent with a common analyst observation that a party has ‘cap-
tured the middle ground.” A distribution of districts that is skewed to one side would
produce such an outcome.

An interesting technical detail of this result is that the core of the candidate game
(the median of the median district) can vary with the distribution of district median
voters, but the equilibrium doesn’t change. In fact, the equilibrium only depends on
the width of the distribution. This leads to the question of whether the equilibrium
Would still exist even if the core didn’t. As the current model is restricted to one
dimension, a core always exists and so an answer to this question cannot be immedi-
ately attained. However, when spatial competition is over multiple dimensions a core

does not generally exist and consequently neither does an equilibrium. Therefore, the

21The necessity of Condition 1 for the equilibrium of Proposition 1.1 is proven in Proposition 1.3.

22Potentially we could also explain such an outcome if we considered a dynamic model in which
the distribution of districts changed from election to election but parties were restricted in changes
to their platforms. The purpose of the result here is to show that such an uneven outcome is also
possible in a single election model with parties completely free to select their platforms.
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possibility that simultaneous competition for many districts may lead to equilibrium
existence in many dimensions would seem to be worthy of further investigation.

In addition to this assumption of symmetry, the statement of Proposition 1.1 re-
quired several further restrictions. As these restrictions may not always be valid, it
is of interest to determine the equilibria of the game when they are violated. The
following two propositions consider these possibilities. Proposition 1.2 assumes the
heterogeneity of districts to be greater than permitted in Proposition 1.1, and Propo-
sition 1.3 considers the situation when Condition 1 is not satisfied. Significantly, in

both of these cases any equilibrium must involve the entry of more than two parties.

Proposition 1.2 Suppose Z < Z*. Then if an equilibrium ezists it must involve the

entry of more than two parties.

In this situation, the dispersion of districts is too broad for the incumbents to
compete successfully in all of them. To prevent successful entry at a point between
themselves in the central district, the incumbents must leave open the possibility for
successful entry in the extreme districts by locating too asymmetrically. The result
here is stronger than what is stated: in fact, the two incumbents can’t prevent entry
whether they are, or are not, in equilibrium. As it is the equilibria that are of interest,

the result has been stated in its weaker form.

Proposition 1.3 Suppose 0 > Z > Z*, where Z* satisfies F(Z*) = %, and assume
that Condition 1 1is not satisfied.?®> Then if an equilibrium exists it is unique and
is given by, {I,I,} = {2Z%,-22%}, where Z# < 0 and satisfies g(Z%) = %g(O).
Entrants enter and win districts with median voter’s ideal points in the intervals,

(Z,Z%) and (—Z%,Z]. If g is concave then such an equilibrium always exists.

With Condition 1 violated, each incumbent has an incentive to deviate inwards to
win districts in the center from the other incumbent, even though this involves giving
up the extreme districts to entrants. As with the equilibrium in Proposition 1.1, the

incumbents still have equal shares of expected district wins, but now neither party

Z3Therefore, g must be strictly quasi-concave (as all quasi-convex distributions satisfy Condi-
tion 1).
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will hold a majority. The equilibrium is given by the point where further inward
deviation involves more districts lost on the edges than gained in the center. The
continuity of the pdf g ensures that such a point exists.

This is very similar to the equilibrium when Condition 1 is satisfied. Condition 1
simply ensures that the critical point is reached before any entry occurs. Therefore,
Condition 1 can be seen as a necessary condition for an equilibrium to involve only
two parties. Though the districts abandoned on the edges by the incumbents could
be won by a different party entering in each district (effectively independents), there
could be as few as two parties entering and winning arbitrarily close to one half
of these districts each. To determine the final party structure in this instance, a
more extensive model of entry would need to be formalized. As two-party outcome
' strﬁctures and entry deterrence are the primary concern, this question will not be
explored any further here.

As with Proposition 1.1, the assumption that g is symmetric could be dropped
here to produce an equilibrium involving entry and asymmetric seat shares for the
incumbent parties. Indeed, particular ¢ functions could be found to produce any
variety of multiple party equilibria, for example involving entry only on one flank.

This location pair may not constitute an equilibrium for non-concave ¢ functions
if there is too much district share that is lost to entrants. That is, if the district
shares of the incumbents is so small that they each have an incentive to deviate from
the prospective equilibrium to the outside of the other incumbent as they can win
a greater share of the districts on the flank. If g is concave then the density on the
flanks is small enough such that these deviations are not profitable and there exists
an e(juilibrium.

A necessary condition for the existence of a two-party equilibrium can also be
extracted from Proposition 1.2. This result showed that for a two-party equilibrium to
exist the heterogeneity of district medians can’t be too great. The following condition

captures this requirement precisely.

Condition 2 [Z,Z] C [Z*,-Z"].
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Therefore, taken together Conditions 1 and 2 form a necessary and sufficient
condition for an equilibrium to involve at most two parties. As such, these two
conditions can be interpreted as the limit of Duverger’s Law. If both conditions are
satisfied then two parties are able to deter subsequent entry and the law will be
satisfied. If either condition is violated then there would be entry and the law would

not apply. The following theorem summarizes these results.

Theorem 1.1 Suppose Assumptions 1.1-1.6 are satisfied. Then together Conditions
1 and 2 constitute a necessary and sufficient condition for a two-party entry deterring

equilibrium to exist.

As such, the requirement for cumulative density functions G to satisfy Conditions
1 and 2 can be seen as characterizing the domain of Duverger’s Law. Outside of
this domain the law would not be expected to hold. This is an appropriate result
because to explain an empirical law such as Duverger’s, that doesn’t hold universally,
a theory that predicts a restricted domain of applicability would be expected, and
indeed desired. Hopefully a recourse to empirics will indicate whether this is the

correct restriction.

1.4 Discussion

1.4.1 The Model

In many respects the model assumed here is very specific. In this section, I will at-
tempt to defend the validity of several of these restrictions and discuss the robustness
of the results to their variation.

A primary restriction is that the parties must move in a fixed order: the incum-
bents simultaneously choose their platforms, followed by the entrants. This structure
was chosen to highlight the notion of entry deterrence. The order of play shows clearly
how the platform selection of the incumbent parties deters potential entrants from

contesting the election. As real elections are a repeated process, the option for an
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entrant to move after the incumbents would seem almost necessary. This, of course,
does not imply that there are no other orderings that satisfy these desires. Alterna-
tive specifications require the timing of play to be completely sequential or, perhaps
most appropriately, endogenous.?* Significantly, the results presented in the previous
section are robust to these alternative timing schemes.?

A further feature of the model is that there exists an asymmetry between the
parties. This asymmetry leads to the natural question: why do the incumbent parties
compete in districts in which they do not win, and why don’t potential entrants do
the same and enter on a large scale? Unfortunately, the empirical literature provides
no definitive suggestions as to party motivations or intentions. When competition
is for multiple districts, this uncertainty is magnified. The structure employed here
would seem to be an acceptable possibility for several reasons. Foremost among these
is that it captures the steady state competitive structure that real world observations
are actually describing. Duverger’s Law describes the empirical regularity of two large
parties deterring subsequent entry. For these observations there does not exist any
other mass political parties, for if groups do not enter candidates in the election then
they are, by definition, not political parties. Instead, the large parties face the threat
of entry from opportunistic individuals. The strategic ability of the large parties
to deal with this ongoing threat is captured by the equilibrium and timing scheme
employed here.

Given the asymmetry of parties, it may be questioned whether the assumption of
sincere voting is appropriate. However, such a criticism ignores the fact that sincere
voting is a behavioral assumption and not a dictate of rationality. Therefore, it would
not éeem any more or less inappropriate in its use here than it would in any other
environment. In fact, even if we look at this voting decision from a rational choice
perspective, then voting for an independent candidate may be utility maximizing.
This follows because even though an independent member of the legislature will not

be a member of the majority party (if one exists), he holds the possibility for enormous

24 Another option, simultaneous choice, does not capture entry deterrence (as described above).
25See the discussion on page 22 for details.
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influence should he hold the balance of power in a minority government. And as he
is not part of a party machine he can use this power to directly benefit the members
of his constituency. This potential payoff may exceed that from electing a member of
the majority and make a vote for an independent worthwhile.

An additional simplification of the model is that there is only one potential entrant
in each district. This assumption is made in order to simplify the analysis. If there
were many potential entrants for a single district, then the entry decisions of these
parties would be interrelated and would require a more complicated stage game to be
specified. The intention, which is maintained by the assumption, is that if a single
party could enter and win a district then the incumbents lose that district.

This assumption will not require as many entrants as may be thought. Even
though only one candidate will enter in any district it may be that one minor party
enters in many districts. In most instances, one entrant, with one platform, will
be able to win many districts from the incumbents. Indeed, for the only equilib-
rium result specifying entry, Proposition 1.3, only two entrants are required to secure
all but an arbitrarily small number of the districts lost by the incumbents.?® Con-
sequently, this framework is rather general and is consistent with several types of
political entrant. It can be seen as covering the entry of multiple independents into
the legislature, or the creation of regional or single issue based parties which pick off
certain sections of the electorate (a good example of this type of entry may be found
in Canada where regional parties dominate).

Further, the restriction to one entrant in each district is not as restrictive as it may
seem. In fact, if it were assumed that potential entrants were strategic and conscious
of further entry in districts they attack then as long as the incumbents are on either
side of the median, and entry is possible, it can be shown that one entrant can secure

victory in a district and prevent the successful entry of another party.?"?8

26This is achieved by the entrants locating at points arbitrarily close to each incumbent.

2TFor example, if in the central district |[I;] > |I2|, and successful entry on the right flank is
possible, then E = I, +§, where 1 — F(i%E) > F(bg—ll) but 1 — F(E) < F(il“;—fl), secures victory
for the entrant and prevents further entry.

28The assumption of only one entrant in each district allows me to deal with problematic situations
in which the incumbents are on the same side of the median, and so wouldn’t be expected to win
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Alternatively it could be assumed that there is only one large entrant who is, like
the incumbents, constrained to a single platform (Assumption 1.6). If this entrant
only enters in districts it can win then it can easily be seen from Lemma 1.1 that
the two-party entry deterring equilibrium of Proposition 1.1 still exists. Given the
entrant moves last, the ability to enter selectively would seem appropriate.

It is assumed in the model that parties seek primarily to maximize their share
of districts won. There are many alternative specifications of the party objective
function that could be employed. Perhaps the most plausible would be to maximize
the probability of winning government. Unfortunately, as governments can be formed
with a minority of seats, or by forming a coalition of parties, a complex model of
government formation would need to be incorporated for this assumption to be used.
Another alternative would be to assume three dimensions of lexicographic preferences
with the first dimension being the probability of winning a majority of the districts
and the other two dimensions remaining the same. It is easy to see that this would
not alter the results of the model as the model is one of perfect information. Thus
any deviation that improves a candidate’s seat share must also weakly improve its
probability of winning a majority, and the same deviations prove the results for this

different specification of preferences.

1.4.2 The Results

The results of this multiple districts model can also provide some insight into the
relationship between U.S. Congressional elections and Presidential elections. To max-
imize performance in the House elections and to preclude entry of a third party, each
of the two incumbent parties must choose a non-centrist platform. However, the
Presidential candidate of each party competes in only one district, the grand district
(with mean zero in this symmetric framework), and so would like to move towards
this center to maximize his vote in the Presidential race. However, his party is con-

strained to its non-centrist platform. Therefore, to achieve any centripetal movement

the district, but where one entrant can’t prevent subsequent entry.
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a Presidential candidate must try and detach himself from his party so that he can
move towards the center without disrupting the equilibrium for the House elections.
One obvious way to achieve this objective would be on non-policy issues (as they are
party platform constrained on policy issues). This can be seen to lead to the cult
of personality phenomena in Presidential races. Personality traits are one way for a
candidate to make himself seem more central without dragging his party with him.

In fact, these incentives for detachment from the party base are applicable to all
candidates, including Senators and district candidates, who want to move towards
the median in their given district. Presidential and Senatorial candidates can usu-
ally achieve this detachment more effectively than the district candidates, primarily
because they are more visible.?®

This explanation for the cult of personality campaigns so evident in U.S. elections
can also be used to explain why such campaigns are not as evident in other single
member district elections, such as in Britain and Australia.?® In those countries, the
Prime Minister is elected indirectly by voting for his candidate in each district. Thus
leaders of the incumbent parties, the Prime Ministerial candidates, each maximizes
his probability of success by maximizing the number of districts that his party wins.
And this is achieved by sticking firmly to the non-centrist party platform.!

This analysis can also be used to consider the phenomenon of third party can-
didates in Presidential elections. For a wide dispersion of median voter points the
prediction is that the two incumbent parties are also widely spaced. If the Presi-

dential candidates cannot achieve detachment from their party platform, or cannot

29To be precise, the Presidential candidates would not attempt to move completely to the center
as they are actually competing in a multiple district election with each district representing a state.
As Hinich and Ordeshook (1974) pointed out, the candidates would attempt to move to the median
of the state that contained the median electoral college vote.

30For a discussion and review of this topic, with particular reference to these three countries, see
Crewe and King (1994).

31srael is an interesting example of how direct versus indirect election of the leader of the Gov-
ernment can have a significant effect on the political landscape. Electoral changes introduced for
the 1996 elections added an additional ballot to the Knesset elections in order to directly elect the
Prime Minister. Previously the Prime Minister had been elected indirectly as in other parliamentary
systems. This apparently innocuous change has had a dramatic impact on Israeli politics. As the
Knesset elections employ proportional representation, the results of the model presented here are
not directly applicable. For a full account of the effects of this change on Israel, see Arian (1998).
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do it very well, then there will exist a large gap between the positions of the two
incumbent party Presidential candidates. It is potentially this hole that the third
party candidates have tried to exploit. However, the model also predicts that for
an entry precluding equilibria the two incumbents are located no further apart than
[277,—27%]. As this isn’t wide enough for an entrant to steal the central district it
isn’t wide enough for a third candidate to steal the Presidential election. The third
candidate will, however, potentially receive a large share of the votes even though
they have no chance of victory. This prediction is also consistent with history as
third party candidates have received a surprisingly large vote share but have never
been victorious.3?

This thinking leads to the question of why doesn’t one of the incumbent parties
entef a stooge near the other incumbent’s piatform to break up the oppositions vote
and so ensure victory for themselves? Staying strictly within the framework presented
here it would be hard to answer that they wouldn’t. The constraint would be finding
a credible independent candidate, and those that exist would be unlikely to stoop to
such behavior to aid a party that they, by definition of being an independent, have
little affiliation with. Consequently, such behavior has been ruled out as unachievable
(not to mention unethical).

Another empirical fact is that district members in the U.S. House express far
greater vote independence than do the equivalent members in, for example, Britain’s
House of Commons.?® It could be conjectured that this greater independence is
reflective of the ability of the individual members to detach themselves to some degree
from their party’s platform. It is possible that this extra ability allows the U.S.
incumbent parties to support a wider dispersion of median voter points whilst still
precluding entry.34

A further point which the model predicts that is consistent with observation is that

the dispersion of median points produces some districts that are safely in the hands

328mallwood (1983, p.13).

33Cain, Ferejohn, and Fiorina (1987, p.43).

340Obviously if the candidates are flexible in their platform choices, then the equilibrium itself
may change. Though, as long as the freedom of individual candidates is not excessive the same

substantive results are obtained.
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of one party, others safely in the hands of the other party, and some districts that are
fought for fiercely. This is a direct consequence of the constraint that parties must
choose only one platform to compete with in every district regardless of its particular
distribution of voters. This result can be seen as a formalization and explanation of

what Robertson (1977) categorized as marginal and safe seats.

1.5 Conclusion

By extending the established theoretical models of electoral competition with entry to
incorporate simultaneous competition for multiple districts, I produce a unique two-
party equilibrium under plurality rule in which further entry is deterred. Further, this
equilibrium requires non-centrist party piatforms. These characteristics are consistent
with empirical observation, in contrast to those of single district models. Necessary
and sufficient conditions for the existence of this equilibrium are then characterized.
Taken together these conditions provide a domain for Duverger’s Law. The chapter
also sheds some light on how the different levels of elections in the U.S. and other

systems relate to each other.
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1.6 Appendix

As is standard, all proofs will proceed by showing there exists profitable deviations
from any candidate locations other than those claimed to constitute equilibria. I will
denote the locations under consideration by I, I, and E, and any deviation with a
tilde (e.g., 1:1). For simplicity, if the arguments of a function are I, I, and E then
they will be omitted. In an abuse of notation let F; = I ;L denote an entrant in district
i locating arbitrarily close to the right of incumbent party j. Further, represent an
incumbent j’s vote share in district 7 by V7, (i) . WOLOG assume that if J; # I, then
I < I, and define Z' = (22*,-22%).

1.6.1 Proof of Lemma 1.1

Note that all of the districts in this interval may not exist for a given G (i.e., existence
requires g(.) > 0). The lemma is proven by showing that successful entry is not

possible in these districts, and only these districts.
Case 1: Entry between the incumbents.

For any district [, with median voter z;, the vote share of an entrant is given by
Vi, = F(%—E—’ —2) —F(ﬂ%l2 —z) and the length of this interval is |Vp,| = (£252). As
LI, € (2Z*,-22%), then (I, — I) < —4Z* = ({514) < —2Z*. By the definition

of Z* it must be that Vg, < % and, therefore, successful entry is not possible.

Case 2: Entry on a flank.

Let district [ have median z = 3’%1—2 — 0;, where §; € [1—1—;—12,00). If B, > I,
then Vi, (1) > Vg, as |I; — z)| < |E — z|. Therefore, for entry to be successful in any
district [ it must be on the left flank.

Suppose E = I . Vg, is bounded by F(I; — z) as ¢ — 0. This implies that, as
£—0,Vg = F(I; -3t 44) = F(£224.6)) from below. As F is symmetric F(o) =
1 — F(—a), and therefore Vi, (1) = 1 — F(258 +§) = F(B52 — §)). Consequently, if
0y <0and z € D (I, 1), then E; = I implies that Vg, < V1, ({) and P(W = E) = 0.
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For 6; > 0 and 2 € D (I, 13), Vg, > Vi, (I). Further, as ¢ — 0, V7, (1) — F(&50 +
0) — F(hgle +6) < F(&5h) — F(852) = 1 — F(L3l) — F(L3k) < 1 Therefore,
Vi, > I (1), I (1) and successful entry is possible. By the symmetry of F, incumbents
win districts in D and lose districts not in D, and the proof is complete.
It is obvious that J; wins districts with a median voter in [28322 Lifl2) and I, wins
(—I—l—fﬁ 3114—”2], with a tie in districts at ﬁﬂ%. Denote the intervals as the following

D(I,) = [31t2 LD and D(I,) = [Ltle 30+l
Define D(I,) = D(I;) N [Z,Z], and likewise for D(I5). These are the intervals of
districts won by each incumbent that actually exist.
Define M (17) fD z)dz, and likewise for M(I;). These are the shares of the

districts won by each 1ncurnbent.

1.6.2 Proof of Proposition 1.1

Define H = (2Z,2Z), and H = closure(H). In this proof, and those to follow, I
will repeatedly employ Lemma 1.1. It follows from the lemma that if Z; € D (I3, I5)
then E; = () if entrants are behaving rationally (as assumed), and if Z; ¢ D (I}, I,)
then E; € R and the entrant is victorious. As the incumbent parties seek to primarily
maximize their share of districts won, in most cases (Case 5 being the only exception)
analyses of the intervals D (I;) and D ([;) are sufficient to show that an incumbent
party has improved its situation via a deviation. Unless specified, I will attempt to
show that for some deviation 7}, for some j € {1,2}, the deviator’s share of districts
won must increase. For j = 1 this implies that Oy, (]1,[2, E'") > Oy, (11,1, E) for
all E' € C4(I,I,) and E € C% (I, I) for some e, and, therefore, that {I, I} can’t

constitute an equilibrium.
Case 1 I;,1, € H.

Case 1.1: M (I;) = 0 for some j € {1,2}
Suppose D(I}) = M (1) = 0. If I, # 0 then set I; = —I,. Applying Lemma
1.1, this implies D(I;) = [3:2 0] and M(I,) > 0. Therefore, Oy, (I1, 15, E') = Oy,.
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If I, = 0 then set I; = Z. This implies D(I;) = [%, %] and M(I,) > 0. Therefore,
Oy, (11,1, E') = Oy,

Case 1.2: M (1), M (1) > 0.

This requires %2— €(Z,2).

Case 1.2.1: Suppose that ﬂ%ﬁ < Zor 1—1*;1—31—2 > Z. Therefore, D(I;) = [51144[2—7 Il—;l—’} =
D) =2, I—lyl] Consider the deviation I; = I; + 4§, where 4 is s.t. 3114—“2 = Z. This
implies that D(I,) = [l htl] — D(]}) = [2, 1tle] = [z, htl 4 8] Therefore,

D(I,) ¢ D(11), and Oy, (11, I, E') = Oy,. Likewise for 1232 > 7,

Case 1.2.2: (3l D33L) — D = (7 7Z]. This requires I, I ¢ H. See Case 4.

Case 1.2.5: [l Di3L) — D c [Z,Z]. Suppose that |I;| > |I,|. Consider
the deviation I; = I; — ~, where v > 0 and such that I; € H. Thus, D(fl) =
D(I,) = [ifi, 11;—12] = [t _ 3 Litl: _ 3] which implies the following rela-

tionship, D(I;) = D(I;) — [Bffe — 7 Ltle) 4 30l 3y SLtl] If g s strictly

quasi-concave then, by Condition 1, M(I;) > M(I,). If g is quasi-convex then for
small enough v, 3t < Ll — 2 < 0, and M(I;) > M(I) (as there is more density

at the extremes). Therefore, for all g, Oy, (fl, I,E") > Oy,.
Case 2 I,I, € Z'/H.

Case 2.1: 1,1, < 2Z.

Lemma 1.1 implies that M(I;) = M(I,) = 0. Consider the deviation I, = —1I;.
Therefore, D(I,) = [0, 12—2] = D(I,) = [0,Z] as I, < 2Z. Consequently, M(I) > 0
and Op,(I1, I, E') = Oy,.

Case 2.2: I, < 27,1, > -27.

Let |I,| > |L|. Therefore, D(I;) = (2ot LiR] — D(I) = [Z,B2EL2]. Con-
sider the deviation, I, = I, + 6, where ¢ is s.t. I; < 2Z. Consequently, D(I;) =
[Blutl Ditl] — (3Ll 4 30 Lih 4 8 — D(L) = (2,532 4+ 8] > D(I) as
|f1| L] > 2Z. Thus, M(I,) > M(L,) and Oy, (I, Io, E') = Oy,.

Case 3 I; € Z', I ¢ Z' for j,k € {1,2} and j # k.

WOLOG assume that [; € Z', I, ¢ Z'. 1 will use the D notation from Lemma 1.1,

though calling it D’ here because I ¢ Z' means the lemma may not be applicable.
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What can be seen is that some of the arguments from the lemma can be preserved:
Case 2 still applies but Case 1 does not (there may be successful entry between the
incumbents). This implies that D(/;) C D'(I;) and D(I,) C D'(I;). That is, the set
of districts that would be won (if they existed) is a subset of D’. WOLOG let I; < 0.

Case 8.1: I, < 27Z*.

In this case I, < Iy, and therefore D'(Iy) = [22H L] A LEh < 7+ D(1,) =
0. If I; < 0, the deviation of I, = —I; = D(,) = [0, 2] (as now I, € Z') =
M(l:g) > 0. Therefore, Oy (fl,IQ,E’) = Op,. If I, = 0, the deviation of I, =
7 = D) = [%,342] (as now I, € Z') = M(I;) > 0. Again, this implies
O, (11,1, E") = Oy,.

Case 8.2: I, > =27,

D(L) C D'(I) = [B#le b3h) — (L) C D'(I) = [1t2, 7). If this set is
empty then consider the deviations in Case 3.1 above. So suppose that —.D_I(IQ) # 0
(this requires 11—*2;11 < Z) and consider the deviation I, = —2Z* — ¢ for € > 0.
Therefore, D(I,) = [h—gl—z, 1—1—%3—[1] = D(I,) = [%’A,Z] for small enough ¢ as I; >
27* (the lemma is now applicable). As I, < I, and ﬂi;ﬁ > 0, then D'(I,) C D(I)
and it must be that M(L,) > M(I,). Thus, Oy, (11, I, E') > Oy,.

Case 4 [ =2Z or I, = 2Z.

Both of these locations are part of the equilibrium of the proposition. WOLOG
suppose that I; = 2Z. I will show that I, = —2Z is a strict best response for I5. This
proves existence of the equilibrium in the proposition, as well as ruling out any other
equilibria involving either of these policy positions.

Case 4.1: I, = —=27.

D(1) = (2,0, D(L) = [0, ~2) = M(L) = .

Case 4.2: I, < Z.

As I, I, < Z then D (I,) = 0 and so M(I,) = 0.

Case 4.3: Z < I, < =2Z.

Suppose that M (I,) > 0 and consider I, = I, + o, where o > 0 such that

1:2 < 27. After the deviation I, will win additional districts with measure %" but lose
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districts with, at most, measure 5. If g is strictly quasi-concave then by Condition 1,
M (L) > M(I). So as I, — 2Z, M(I,) is increasing and approaching M (I, = 2Z) =
1. Therefore, for I, < 2Z it must be that M(I) < 3. If g is strictly quasi-convex then
this argument does not necessarily apply. If I> was to win districts in an interval of
length |Z| on g, then it can be seen that the optimal location of this interval is [Z, 0],
or [0, Z], in which case M(I5) = . For I, < 27 the measure of D(I,) is less than |Z].
As G is strictly increasing once G(.) > 0, it must be that M(I) < 1 for I, < 2Z.

Case 4.4: Iy > —2Z.

D/(L,) = [ 22430) - T(1,)) C 2452 — 7). As 2Z + I, > 0 it must be that

2 4

M(L) < 3.
Case 5 I},1, ¢ Z'.

As mentioned at the beginning of the proof, for this case I will consider vote shares
of the incumbent parties. This is necessary because there is entry in all districts for the
incumbent locations I; and I, and the potential to deter entry in any district with a
unilateral deviation cannot always be established. Therefore, to show that profitable
deviations exist, I need look solely at total vote share as the share of districts won
can only weakly increase. To establish this technique I will begin each subcase by
establishing that M (I,|I1, I;) = M (I2|1, 1) = 0.

Case 5.1: I, I, < 27* (or > —27*).

Consider, for any district i, E; = [max {I3, I, }]+0 where § > 0. Obviously Bgff <0

and Vg, = 1 — F (max {I;, I}) > % as 0 — 0%. Therefore, F; = [max {I,,I,}]" wins
the district for the entrant and maximizes his vote share. Consequently, as this holds
for all districts i, M (I1|I1,I,) = M (I|I;,Iy) = 0. Of course, if F' (max{l,,[>}) =0
then Cf, is an interval for all districts [ and € > 0.

Case 5.1.1: Suppose that I; < I. Then for district [ with median z € Z, Z),
I,’s vote share is given by Vi, (I) — F(Iy — z) — F(&Eh — 2). If I, = 22" + v
then the optimal location for the entrant, for v small enough, is still £, = f; Now

Vi, (I, L) — F(2Z* + v — 2) — F(Q-‘zi;il—1 —z) > F(ly — z) — F(& — 2) as
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LI, < Z, f(2Z* +~v — z) > 0, and by Assumption 1.5, f'(z) > 0 for all z < 0.
Consequently, as this holds in all districts, V7,(I1, ;) > Vi, and Oy, (I, I, E') > Oy,.
Case 5.1.2: Suppose that I} = I,. Then for district [ with median z € [Z, Z], I,’s
vote share is given by V7, (I) — 3F(I; — z). By the continuity of f and g, it must be
that fZF (x — z) dz is also continuous in z. Therefore, if F'(1; — z;) # 0 for any z;, 0
small enough can be found s.t. I; = I, — 6 = V;, (I}, I,) = fZ (h=3%-2)dz>
1fz (I — z;) dz;. Thus, I,’s total vote share increases and Oll(Il,IQ,E’) = Op,.
So instead suppose that F(I;) = 0 for all districts [. Consider then the deviation
I = 2Z*. As in case 5.1.1, this implies that F, = ff“ and Vfl(l\fl,lg) > 0 for some
z;. Thus, I;’s vote share strictly increases in some districts and weakly increases in
all districts. Therefore, Oy, (I1, I, E') = Oy,.
Case 5.2: I, < 27*, 1, > —27*.
Without loss of generality let |I;| < |I3|. For district  with median 2 € [Z, Z],

E ¢ (I, L) = Vg, < F(Z*) = 3 and the entrant doesn’t win. So consider instead

Ey € (I, I) . In this case Vg, = F(2tE — z) — F(LB — ») and 5202 = f(L38 —
N —f(@ — z;). By Assumptions 1.1-1.5 the function Vg, is quasi-concave. Suppose

an interior maximum exists. Therefore, for some Ej, f( I—Z’E—E’ —z) = f(lig—EL - 21)
and Vi, =V, < F(Z*) = } as (&51t) > 22* (where (£58) is the length of the
interval of voters won by the entrant). If an interior maximum doesn’t exist then
Ee{lf I;}. If f(BEE —2) < F(BEE — z) for all E; € (I, I5) then the maximum
isat By = I] and Vi, < Vp, < F(Z*) = L. Similarly, V;, < Vi, < F(Z*) = 3 if the
reverse inequality holds. Therefore, for all districts /[, an entrant locates between the
incumbents and is victorious.

If an interior maximum exists then it is given by E; = 2z — (Il—gﬁ) As || < |3,
FE < 2z; < I. Thus, for an interior maximum to not exist it must be that El < I.
Simple algebra shows that this requires z; < %. Therefore, for all z; at which
an interior maximum doesn’t exist it must be that E; = I; (as in these districts
E =1I; = f(&235 — ) < f(2EE — 7)), a contradiction). These results imply that

for all districts such that z € [Z,Z], V3, (1) > Vi, (1) .
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Now consider a deviation by I, to I, = —2Z* — p. For small enough p Case 2 of
Lemma 1.1 still applies and the entrant locates between the incumbents or stays out.
Suppose the entrant enters. Then, as |[;| > Ijg! , Vh(llh,fg,E) < V}z(lHl,fg,E) for

Lol <« |24 the vote share for

all districts by the same arguments as above. As
the entrant in each district must decline. And so Vi, (1|1}, I, E) + V,(I|11, I, E) >
Vi (1) + Vi, (1) for every . As Vi, (1) > Vi, (1) and Vi, (|11, I, E) < Vi, (U1}, Iz, E) we
must have that Vi, (I|I1, I, E) > Vi,(l) for every [. If the entrant stays out then I5’s

vote share in every district is at least V,({|11, L, E). Therefore, Oy, (11, L, E') > Oy,.

Case 6 I; € H,I; € Z'/H for j,k € {1,2} and j # k.

Case 6.1: I, I, < 0.

As I, < I, Tt must be that I, € (2Z,0],1; € (22*,2Z). D(I}) = [3tl LZl] —
D(I) = 0 as 832 < Z. Thus M(I;) = 0. If I, < 0 then consider the deviation
fl = —J,. If I, = 0 then consider the deviation fl = 7. Both deviations imply, as
shown previously, that M (I;) > 0. Therefore, Oy, (I, I, E'") = Oy,.

Case 6.2: I,,I, > 0. Proceeds analogously to Case 6.1.

Case 6.53: I < 0 and I, € (27, —QZ*) :

D(I,) = [bgl LE3L] — D(L,) = [B£2,7], as L3l 7. Now consider the
deviation, I, = I, — o, a > 0, such that 112—35 = 7. Then D(I,) = [“;“—12, %1—2] =

D(I,) = [BFl=2 Z]. And so D(I5) C D(I,) and I, is strictly better off. Therefore,
OIz(Ilaf27El) >~ 012‘

1.6.3 Proof of Proposition 1.1A

The proof is identical to that for Proposition 1.1, with Condition 1A substituted for
Condition 1. The extra restriction in Condition 1A ensures that the arguments of

Proposition 1.1 can also be used to prove Proposition 1.1A.
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1.6.4 Proof of Proposition 1.2

Using the notation of the previous section, we can see that for I; < I, we have D' =
[3—1%1—2, 5—4;1-3[—2] As D C D' to preclude entry we require 3“—2’[—2 < Z and 11—2-31— > Z.
Solving these two requirements simultaneously and recalling that Z = —Z, we have
I, <27 and I, > —2Z. As Z < Z* this implies that I < 2Z* and I, > —2Z*, but
then we will have entry between the incumbents in every district (see Proposition 1.1,
case 5). So there does not exist a pair of locations for the incumbents which are able

to preclude entry in every district. Thus, there does not exist an equilibrium which

precludes entry in all districts.

1.6.5 Proof of Proposition 1.3

This proof is very similar to that of Proposition 1.1, in many instances the only
difference being a change in the domain of a case. Define H# = (2Z#,-2Z#) , and
H#* = closure (H#) .

Case 1 I,I, € H#.

Proceed as with Case 1 in Proposition 1.1. As g violates Condition 1 the quasi-

convexity requirement can be ignored.
Case 2 I,,I, € Z'/H#.

Case 2.1: 27# < Z.

Case 2.1.1: I),I, < 2Z%. E; = I in all districts and implies M (I;) = M (I,) = 0.
The 'deviation I, = —1I, requires that D(I,) = [0, 12—2] = M(I5) > 0 and, therefore,
Oy, (I1, I, E'") > Oy,.

Case 2.1.2: I, < 2Z% I, > —27%. Suppose that |I;| — v = ||, for some v > 0.
Thus D(I;) = [52 — 2,3 and D (L) = [F, %2 — 2]. If 32 < Z then the
deviation I; = I; + 4, such that 3—'[1—23 = Z, implies that Oy, (fl,Ig,E’) = O, (see

Proposition 1.1, case 2). Therefore, assume that ﬂl{ﬁ > Z and consider the following

two deviations: (1) [; = —I5, and (2) I, = —1I,. For deviation (1), D(I;) = [=£,0] =
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M(B) = M (1) +[G(0) - G(3)] - [G(32) - G(£ ~ )] K (G (0) - G(7)] >
[G(=£) — G(=£2 — 2)] then Oy (1,15, E') = Oy, and {I,,,} can’t constitute an
equilibrium. If this inequality doesn’t hold then consider deviation (2). In this case
D(Fy) = [0, 257 = M(D) = M (L) + [G(7) - G(% ~ )] - [ (0) - G(F)]. By
the symmetry of g, G(£52) — G(£-7)> G(=£)-G(=2—2). Thus, if deviation (1)
isn’t profitable for I; then [G(252)—G(2 - 1)] > [G(0)~G(F)] = M(L,) > M(I,)
which implies that Oy, (1, L, E") = Oy, and deviation (2) is profitable for I,.

Suppose instead that |I;] = |I5|, which implies D(I;) = [Z,0]. Consider the
deviation I; = I + a, where a > 0, such that D([;) = [171 +32 2] As Lo« Z#
then it must be that g(%) < 2¢(0). Because g is continuous there exists an « small
enough such that Vo' < o, g(& + 2) < 2g9(% '). This implies that M () > M(I;)
and Oh(fl, I, E") = Oy,. as I; gains more districts in the center than it loses on the
fringe.

Case 2.2: 7 < 27%.

For I} < 0,1, > 0 this is the same as for Z > 2Z#%. So assume that I;, I, < 2Z%.
We recall that by setting I, = —1Is, M(I;) > 0, and likewise for I, so equilibrium
requires that M (Iy), M (Iy) > 0. Therefore, as [} = I, = M(I;) = M(I;) = 0, in any
equilibrium it must be that I; < I, < 2Z#. Consider the deviation I, = I, + 9, such
that I, < 2Z%. This implies D(I,) = D(I,) + [0%3 D43l 4 38y [Litl Ltl 4 8]
As I, < 0 and M (I3) > 0, g is strictly increasing on this domain which implies that
M(I) > M(I,). Thus O, (I, I, E') > Oy,.

Case 3 I, € Z', I, ¢ Z' for j,k € {1,2} and j # k.
Proceed as with Case 3 in Proposition 1.1.
Case 4 I, =27Z7% or I, = —27%.

Both of these locations are part of the potential equilibrium of the proposition.
WOLOG suppose that I, = 2Z%. I will show that I, = —27% is a strict best response
for I, given that g is concave and show that when g is not concave I, # —2Z% cannot

constitute an equilibrium.
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If I, = —2Z% then D(I;) = [Z%,0],D(,) = [0,—Z%] = M (L) = ; — G(Z%).
Using the same techniques as in Proposition 1.1, all 15 such that I, > I; can be shown
to imply that M () < £ —G(Z%) and thus can’t constitute equilibria. As Condition
1 I also must consider the case of I; < I, when 2Z% > Z (when there are districts to
the left of I).

Suppose that g is concave. I will show that there can’t exist more density on the
flanks that would entice I, to deviate. As g(Z#) = 2¢(0), the concavity of g implies
that g(2Z#) < 1g(0) and g(3Z#) = 0. Therefore, for I, < I, D(I) C [I, ] and
|D(I)] < ‘—Zﬁ Thus, M(I5) is bounded by G(2Z#) — G(2Z2%# — |ZT#‘) which by the
concavity of g implies M (I;) < 1 — G(Z#). Consequently, {I;,,} = {2Z%, -2Z%}
is a strict equilibrium, and therefore the only equilibrium involving I; = 2Z% or
I, = -27%,

Suppose instead that g is not concave. Then it is possible that [, may wish
to locate at such that I, < I;. If this is the case then consider the incentives of
L. L = I 44 then D(I)) = [hthl 3hth) — T(1) 4 [3htl 3Ll 4 35]
[%ﬂ, # + %5] As, for small enough 4, g is strictly increasing over this range it
must be that Oy, (I1, I, E') > Oy,. Thus, for quasi-concave g functions I, # —27#

can’t support an equilibrium and if an equilibrium exists in this domain it must be

{1, L} = {22%,-22%}.
Case 5 11,1, ¢ Z'.
Proceed as with Case 5 in Proposition 1.1.
Case 6 I, € H# I, € Z'/H# for j,k € {1,2} and j # k.

Case 6.1: 1,1, < 0.

Therefore, I € [22*,2Z%) and I, € (227, 0].

Case 6.1.1: 11—;& < Z. Proceed as in Case 6 of Proposition 1.1.

Case 6.1.2: Z# > Ltl > 7 Thus D(,) = D(I) = [Bf L23L] Suppose
L4310,

I, < 0 and consider the deviation I, = L Then D(I,) = D(I) = [#, 2] =

(Lt — L L3l 3] Ag L2 < 0 then the strict quasi-concavity and symmetry of g
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imply that M(I,) < M(I;), and Oy, (I, I, E') = Oy,. So suppose instead that I» = 0
and consider the deviation I, = o, where a > 0, such that |ft3e] < 0. This implies

that D(I,) = D(I,) = [I“;iz, 11231.2] = [Lff 4 o Lie3B 4 301 and once again by the

strict quasi-concavity and symmetry of g, M (I,) < M(I,), and Oy, (11, I,, E') > Oy,.

Case 6.2: 1,1, > 0

This case is analogous to Case 6.1.

Case 6.3: I} € (2Z%,0) and I, € (—22%, -227"].

Case 6.5.1: h_zy_r_»_ > Z. Consider the deviation I, = I, — p, such that 1—12—35 =7
(as in Proposition 1.1). Therefore, D(I,) C D(I,) and Oy, (I1, I, E') > Oy,.

Case 6.3.2: 514312_ < Z. Consider dual deviations by the incumbents as done in
Case 2 of this result. At least one incumbent has a positive incentive to deviate and,

therefore, {I1, I} can’t constitute an equilibrium.

1.6.6 Proof of Theorem 1.1

This result is merely a combination of the previous results. It is stated in order to
give a clear representation of what has been established. Its proof simply refers to
the previous results.

Sufficient== Conditions 1 and 2 satisfy the requirements of Proposition 1.1. No
additional entry occurs and the final outcome involves two parties. Duverger’'s Law
holds.

Necessary=> If Condition 2 is violated then the requirements for Proposition 1.2
are satisfied. Third party entry occurs in every district and the final outcome involves
three or more parties. Duverger’s Law fails. If Condition 1 is violated then the
requirements for Proposition 1.3 are satisfied. Third party entry occurs in intervals of
districts on the edges of the distribution of district median voters. The final outcome

involves three or more parties and Duverger’s Law fails.
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Chapter 2 Electoral Competition and the
Run-Off Rule
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Abstract

Despite the wide range of voting rules in use in the world’s electoral systems, most
academic research has focused on only a few of these. One rule that has received
insufficient attention is the frequently used run-off rule. In this chapter, I describe
the incentives faced by candidates and voters in a model of electoral competition with
entry under the run-off rule and characterize the equilibria. I find that a continuum
of equilibria exist in which one of two incumbent parties always win. This result is
found to be robust to variations in the motivations of the entrant, the timing of entry
decisions, as well as the preferences of the parties. Significantly, this implies that if
parties are victory seeking then only two parties will enter the election. This result
is then reconciled with what Riker (1982) has called “Duverger’s Hypothesis” and a
more precise formulation is proposed. I also consider an extension of the model to
simultaneous competition for multiple districts and show that the results are robust

to a limited amount of heterogeneity across districts.
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2.1 Introduction

Over time there has arisen a substantial body of theoretical work that has explored
the intricacies of electoral competition. However, most of this work has focused on the
plurality rule and, to a lesser extent, proportional representation. To fully understand
electoral incentives, political parties, and the choices they make, this analysis must
be extended to a broader set of environments. This chapter aims to continue progress
in this direction by developing a model of electoral competition with entry under the
run-off rule.}

The run-off rule is a repeated process, where at each stage one or more parties are
eliminated. The winner is, naturally enough, the final remaining party. The principle
feature of this process is that, unlike competition under the plurality rule, it may
inot bé in the interests of each party to maximize its vote share in the first round.
As a result it has long been conjectured that the run-off rule does not provide the
incentives for a two-party system to develop. This prediction, which groups the run-
off rule with proportional representation, goes at least as far back as Lowell (1896)
and Holcombe (1910). However, as is also the case with the plurality rule, these ideas
are now most closely associated with Duverger (1954) and are referred to by Riker
(1982) as “Duverger’s Hypothesis.”

To support this conjecture, these and other authors (e.g., Wright and Riker (1989),
Shugart and Taagepera (1994)) have documented extensive empirical support.? This
support, however, is not overwhelming and left Riker (1982, p. 760) to conclude that

“we can therefore abandon Duverger’s hypothesis in its deterministic form.”? The

1Other rules that have received some attention include the alternative vote, scoring rules, and
Condorcet procedures (see, for example, Brams and Fishburn (1983), Cox (1985, 1987), Myerson
(1993), and Myerson and Weber (1993)). The existing work on the run-off rule will be discussed in
Section 2.4.2.

2The literature has always grouped data from primary and legislative elections together when
conducting analysis. However, it is not clear that such a combination is as innocuous as it first ap-
pears. Studies of primary elections (see Bartels (1988)) have shown that these intra-party contests
are typically not fought on policy dimensions and instead are fought on candidate quality compar-
isons. This is in contrast to legislative elections that place more weight on policy comparisons. As
it is policy driven contests that are analyzed here the evidence provided by Shugart and Taagepera
(who study presidential elections) is perhaps more appropriate than the evidence of Wright and
Riker (who study US gubernatorial primaries).

3For the case of legislative elections, Duverger (1954) presents the case of Australian parlia-
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open question, therefore, is why, under some circumstances, two parties can deter
further entry when competition is under the run-off rule.

In this chapter I attempt to provide an explanation to this very question. I
show that, even under the run-off rule, two parties can choose platforms that will
deter additional successful entry if the initial conditions of the electoral contest allow
them to establish their positions. Further, I prove that not only is successful entry
deterrence possible, but also that it is supportable as equilibrium behavior.

To establish these results I study a model with three parties and sincere voting.
The parties, or candidates, are completely office motivated (i.e., they are Downsian)
and are free to choose their policy platforms. I characterize the set of equilibria to
the following dynamic game: firstly, two incumbent parties choose locations, followed
by a potential entrant, and then all entered parties compete in the election. This
ordering was employed to enable comparison with the results of Palfrey (1984) for
the plurality rule, though the results presented here do not depend critically on this
timing scheme. I study two cases for this model: when the entrant must enter, and
when the entrant only enters if it has a positive probability of victory.

Solving this model, I find that there exist equilibria in which one of the two
incumbent parties must win with certainty. In fact, I find that in all equilibria the
entrant loses with certainty, and therefore doesn’t enter when it has the choice. This
final possibility implies a two-party outcome* as the incumbent parties are able to
deter subsequent entry. This equilibrium correlates well with the two-party outcome
under the run-off rule in Australia and the other counterexamples to “Duverger’s
Hypothesis.”®

Further, and most surprisingly, I find that the location choices of the incumbent

mentary elections as an unexplained counterexample. Shugart and Taagepera (1994) calculate the
effective number of candidates in presidential run-off elections and find many instances in which it
is less than three. With respect to primary elections, several counterexamples are documented by
Canon (1978) and Wright and Riker (1989). The latter authors find that, for southern US guber-
natorial elections between 1956 and 1982, the number of run-off elections in which there are only
two effective candidates (over 5% of the vote) is over ; the number of similar contests under the
plurality rule.

4In that only the two incumbent parties enter and have a chance of victory.

>Though there are three major parties in Australia, one of these parties, the National Party, is
effectively the rural arm of the conservative Liberal Party (see Riker (1982)).
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parties are unaffected by whichever of the two entry assumptions is made. Under both
assumptions there exists a continuum of equilibria in which the incumbent parties
choose symmetric positions about the median voter. There is also an equilibrium in
which both incumbent parties locate at the median.

These results serve to provide an explanation of when and why “Duverger’s Hy-
pothesis” will fail. However, even though the two-party outcomes found here permit
the hypothesis to be rejected as a deterministic theory, a closer reading of Duverger
shows that they are not, in fact, at odds with his original intuition. This is because
the two results, both here and by Duverger, incorporate differing assumptions, either
explicit or implicit, about the timing of the entry decision.

The results here suggest that if there are currently two competing parties then no
more will enter. In contrast, the intuition of Duverger implies that if there are more
than two parties already competing then these parties will not necessarily have the
incentive to exit the election. These arguments are not mutually exclusive, and the
multiplicity of real world outcomes under the run-off rule support such a conclusion.
To deal with these subtleties of timing I present a more general statement of “Du-
verger’s Hypothesis.” Perhaps most significantly, these results imply that outcomes
under the run-off rule are sensitive to the political environment in which they are
introduced.

The discussion presented so far has considered only a generic “run-off rule.” How-
ever, there are, in fact, many variants of the run-off rule. The most basic line of
division is whether the repeated rounds involve repeated voting or merely repeated
counting.® If voting is repeated then at each round voters are required to cast a new
ballot to determine which parties shall progress. The most common form is the “dual-
ballot,” though obviously there could be any number of ballots. In the dual-ballot
system all parties stand in the first round and voters cast a single, nontransferable
vote.” Unless one party gains a majority, in which case it is declared the winner

immediately, the two leading parties then progress to the second round and all other

SRiker (1982).
"Using the terminology of Cox (1997) throughout.
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parties are eliminated.® The winner is decided from these remaining parties by a sim-
ple majority vote. This system is currently used for presidential elections in France
and several Latin American countries, and was used in Israel between 1996 and 2001
to elect a prime minister.

If counting, rather than voting, is repeated then voters cast only one ballot. In-
stead of indicating only a most preferred party, the voters will rank the parties in
some way. A common form of this rule is the “alternative vote,” which is used for
lower house state and federal elections in Australia.” With this rule voters are re-
quired to list their preferences for all parties from first to last. The number of first
preferences are tallied for each party and the one with the fewest is eliminated. The
ballots for this party are then redistributed according to the second preference listed.
These votes are again tallied and the party with the lowest total is eliminated. This
process is repeated until there is only one remaining party, which is then declared
the winner. With this counting rule the number of rounds must be one less than the
number of parties. Of course, different counting rules can be developed that produce
any number of rounds.

The model developed here is consistent with both the alternative vote rule and
the dual-ballot rule. Thus, the results obtained are applicable to both. This consis-
tency is the product of three assumptions: three parties, full information and sincere
voting. With only three parties, the alternative vote can have at most two rounds,
as with a dual-ballot. With full information and sincere voting nothing can change
in the interval between the two ballots and, consequently, the dual ballots could be
conducted simultaneously.!’

However, this equivalence may only be superficial. One difference that might arise
between the alternative vote rule and the dual-ballot rule is the motivations of the
parties. A natural primary objective, common to both rules, is that parties seek to

maximize their probability of victory. However, the appropriate secondary objective

8 A further variant allows any parties to progress to the second round, making the first round
purely demonstrative.

9With the exception of the state of Tasmania (Wright (1986)).

10The implied assumption that parties cannot change their platforms between ballots is also
required here. The appropriateness of this assumption will be discussed more on page 70.
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may differ between the two rules. With a dual-ballot parties may want to maximize
their chances of making the run-off stage in order to maximize their exposure by
competing on an additional election day. In contrast, under the alternative vote rule
parties may want to maximize their primary vote share, which is their vote share
in the first round, as this maximizes their exposure (and possibly even their public
funding). Interestingly, I find that the equilibria are unaffected by whichever of these
assumptions on preferences is made.

Finally, I also explore a recent extension, introduced for the plurality rule in
Chapter 1, to consider simultaneous competition for multiple districts (in which the
parties enter candidates in each district). I find that the equilibria of the single district
case are robust to some district heterogeneity. However, if the heterogeneity is too
‘extreme then third party entry is inevitable. To make this precise I characterize the
sufficient and necessary conditions such that two-party equilibria exist.

Despite the concentration of theoretical work on only a few voting rules, there
are several papers that consider the run-off rule to varying degrees. Osborne and
Slivinski (1996), however, is the only one, at least to the best of my knowledge, that
considers a spatial model of candidate competition under the run-off rule.!! Osborne
and Slivinski construct a model of citizen-candidates under both the plurality and
run-off rules. The primary difference of their model is that they assume candidates
are policy oriented and thus, most importantly, policy restricted. They consider the
opposite extreme to that modelled here by assuming candidates must choose their
true ideal point as their campaign platform. Consequently, the intuition of their
results is significantly different to the intuition presented here. Though, even at this
opposite extreme, they find that for certain parameter values (of cost of entry and
benefit of office) two-party equilibria exist. The connection between this paper and
the current work will be discussed in more detail in Section 2.4.2.

The remainder of the chapter is organized as follows. Section 2 contains the single

district model and Section 3 the results. In Section 4, I discuss the features of the

1 Other related papers include Greenberg and Shepsle (1987), and Myerson (1993). These papers
will be discussed on page 70.
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model and results, and how they relate to “Duverger’s Hypothesis.” In Section 5, I
introduce the extension to simultaneous competition for multiple districts and present

the results for this environment. Section 6 concludes.

2.2 The Model

The model is one of electoral competition with entry in a single district. The partic-
ipants and order of play are as follows. There are two incumbent parties who choose
their platforms simultaneously. A potential entrant then makes an entry decision, and
if it chooses to enter it selects a platform position. The entered parties then engage
in the election. This ordering was chosen to enable comparison with the results of
Palfrey (1984) and Callander (1999) for the plurality rule, though it should be noted
that the results presented here do not depend critically on this particular timing
scheme.!? The comparison of the results presented here and those for the plurality
rule, along with a discussion of the robustness of the results to the timing scheme and
other factors, will be performed in Section 2.4. I will denote the two incumbents by
I; and I,, and the entrant by E.

I will present the equilibria under two different assumptions on entrant behav-
ior. These assumptions revolve around whether the party would enter even if it was
certain it was going to lose. In the first treatment I will assume that one entrant
(and only one entrant) will always enter, even if its probability of winning is zero.
This is the assumption used by Palfrey (1984) in analyzing the plurality rule. The
second treatment will assume that the potential entrant will enter only if it has a
stricﬂy positive probability of victory.!® This decision rule captures the belief that
political parties are designed to win elections. It will be seen that these two alterna-
tive assumptions, despite their divergent behavioral requirements, lead to the same

equilibrium location choices by the two incumbent parties.

12Palfrey (1984) does not allow the entrant to stay out of the election, regardless of whether it
can win, and therefore always produces three party outcomes. Callander (1999) extends this model
and allows third parties to not enter if their probability of victory is zero.

13This extension for the plurality rule was examined in Callander (1999) and Chapter 1.
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The issue space is the real line, R. There is a continuum of voters with symmetric,
single peaked preferences over the issue space. The voters’ ideal points are distributed
according to the nondegenerate cdf F' and the corresponding pdf, f. These functions

have the following properties.

Assumption 2.1 For all « < 0 for which F(a) > 0, the function F is strictly

increasing on (o, —a).

Assumption 2.2 F' is continuous and twice differentiable at all points x € R such

that F (z) € (0,1).1*
Assumption 2.3 F(z) =1— F(z) Vz € R.

Assﬁmption 2.4 f'(z) >0Ve <0, and f'(z) <0 Vz > 0.

These assumptions specify that the distribution of voters’ ideal points is symmetric
about zero, and that the mass at any point is at least as great as at any point further
from zero. This requires f to be quasi-concave. It can be seen that the uniform
distribution satisfies these conditions. Assumption 2.1 ensures that there are no gaps
in the distribution but without assuming that voter ideal points span all of R (that
is, voter ideal points can be contained in a bounded interval, for example [-1,1]).

Voters are assumed to be sincere and so vote for the party closest to their ideal
point. I will further assume that if a voter is indifferent between the two incumbents
then they randomize, but if they are indifferent between an incumbent and the en-
trant then they vote for the incumbent.'®:!® This assumption, stated formally below,
prevents entrants from wanting to locate on top of an incumbent. It is a formaliza-

tion of the notion that voters have a preference for established parties if all else is

14This specification allows for discontinuities in F at only two points: the boundary points of the
support of f. This possibility permits the uniform, among others, as a possible distribution.

15This assumption is not typical of the plurality rule literature, though the plurality rule results
of Callander (1999) and Chapter 1 do not change if this assumption is added. However, it is crucial
to the run-off results, as otherwise entry prevention would not be possible (the entrant could locate
on top of either incumbent and obtain a positive probability of victory).

16 Alternatively, it could be assumed that ties in the overall election between an incumbent and
the entrant are decided in favor of the incumbent, and that ties between incumbents are decided

randomly.
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the same. Any ties in the election are then decided randomly. Denote voter i’s ideal
point v; and her vote choice by wvote (i). In an abuse of notation, let I, I, and E

represent the parties electoral platforms.

Assumption 2.5 If |v; — E| < |v; — I;| for j = 1,2 then vote(i) = E. Otherwise,
vote(i) = I; if |v; — I;| < |v; — Ix| where j,k = 1,2 and j # k. If |v; — I1| = |v; — L3
then problvote(i) = I;] = £ for j =1,2.

It should be noted here that this assumption does not place any restrictions on
the voter’s utility function other than that utility is decreasing in the distance from
her ideal point. More specifically, a quadratic loss utility function is allowable with
this assumption.

The run-off rule is used to map votes into an outcome. The run-off rule is one of
elimination. Once a point is reached such that there are only two competing parties,
then the one with the greatest vote share is the winner.!” If the entrant does not
enter then the incumbents compete by this rule. However, if the entrant chooses to
contest the election then there are two stages. After the first stage, the party with
the lowest vote share is eliminated and the remaining two parties compete as above.
The winner of the election will be denoted by W.

Parties are free to locate at any point in the policy space, 8, but must maintain this
point for all rounds of the election. The parties have three-dimensional lexicographic
preferences. The primary dimension is probability of victory, the second dimension is
probability of surviving until the second round of the election, and the third dimension

is primary vote share, which is the proportion of voters whose first preference is that

party.'8

17Thus, for a two-party contest this is equivalent to plurality rule. This obviously implies that if
the entrant did not exist then this model is identical to one in which the plurality rule is used to
count votes. As such, I will always assume that the entrant exists.

18The plurality results of Callander (1999) and Chapter 1, which employ similar preferences, would
not change if instead it was assumed that parties simply vote maximize. This was the approach
of Palfrey (1984). However, when considering the entrant’s decision under the run-off rule vote
maximization and the maximization of probability of victory do not necessarily coincide. As the
probability of victory dictates the entry decision of this party it would seem natural to assume that
this rule also dictates the location decision.
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The most appropriate specification of preferences would seem to depend on whether
the model is one of a single ballot alternative vote rule, or whether it is a dual-ballot
process. If the latter, then it would seem sensible that the second dimension of pref-
erences is the probability of making the second round. By making the second round
a party would maximize its exposure as it is competing on an additional election day.
Further, such an achievement confirms the party as the main opponent of the victor.

However, in a single ballot alternative vote election this justification does not ex-
ist. Rather, it would seem appropriate for a party to maximize its primary vote share.
This is because, at least in Australia, the results from alternative vote elections report
primary vote levels and which party is the winner. They do not report which parties
survived the rounds. Indeed, public funding of political candidates is a function of
primary vote share. Thus, maximum exposure would most likely come from maxi-
mizing primary vote share. These preferences are consistent with the specification
above, and are simply the special case in which the second dimension of preferences
is given zero weight.

Significantly, the results of the model are unaffected by whichever of these two
specifications is assumed. Due to the incumbents difficulty in preventing successful
entry, the same intuition holds whether or not the second dimension is given positive
weight. Therefore, this generality of preferences does not prohibit the model from
being an accurate representation of both the single ballot alternative vote rule and
the dual-ballot rule.

Lexicographic preferences dictate that if a party has a set of points that maximize
its probability of victory it chooses the point in this set that maximizes its probability
of reaching the second round. And if this set is not a singleton then it chooses a point
that maximizes its vote share. 1 assume that if there is more than one point in this
set that maximizes a party’s vote share then the party randomizes equally over these
points. Define P(j), Q (j), and Vj, j = I1, I, E, to be, respectively, the probability

of victory, probability of making the second round, and vote share, of party j. The
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outcome function for party j € {1, I, E} can be written as follows.
O]'(Ila]%E) = (P(j][h]%E)vQ(j!]la[%E): V} (]17[27E))

Strict (weak) preference for one outcome over another is denoted by the binary relation
>~ (»), where A > B represents the situation in which outcome A is strictly preferred
to outcome B.

Given the positions of the incumbents there may not exist an optimal location
choice for the entrant. This technicality arises when the entrant attempts to maximize
its vote share over the set of points that maximize its probability of winning and of
making the second round. The probabilities of winning and making the second round
for E can only take on finite sets of values (as there are only three parties and voting is
deterministic) and so a set of maximizers over these dimensions can always be found.

A variant of the limit equilibrium concept introduced by Palfrey (1984) is employed
to deal with this problem. If a vote maximizing point doesn’t exist then the entrant
‘almost’ maximizes its vote share when choosing from the set of points which maximize
its probability of winning and making the second round. A perturbed game is defined
for each e, where ¢ is how close each F comes to maximizing its vote share. An
equilibrium is defined as any pair of strategies for I; and I, which are best responses
to each other for an infinite sequence of the perturbed games, with the perturbation
approaching zero in the limit.

The difference between this equilibrium and that of Palfrey is that his parties sim-
ply maximize vote share and their preferences are representable by a utility function.
The parties modelled here have lexicographic preferences and such a general repre-
sentation is not possible. Consequently the definition of equilibrium must remain in

terms of primitive preferences. Technically the definition introduced here is stricter
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than Palfrey’s, though the results are unaffected by this additional requirement.!¥:2°

The set of points that maximize E’s probability of victory is defined as follows.

X (L, 1) = arg meaé}:gc{P(Elll, Lyz)}

From X the set of points that maximize E’s probability of making the second round
is given by X'

X (‘[1712) = argxegfrl(?ffg){Q (E’-[17]27$)}

If the parties do not care about making the second round, and so the second dimension
receives zero weight, then set X' (I1, 1) = X (11, I5) .

Obviously, if the entrant chooses to not enter the election then E = ). If E does
enter then the set of points that it equally randomizes over, for a given ¢, is given by

%, wWhere,
Cy(L, 1) ={E € X'"(I), L)|Vp(L1, I, E) > Vg(I1, I1,y) —,Yy € X'(I1, I3)}

Anticipating this entry decision the expected outcome for the incumbents, given their

own locations, is the expectation over C5(I1, I2).

O Palfrey’s definition can be used here as even though the parties’ preferences are lexicographic
they are still representable by a utility function. This is because the first two dimensions of pref-
erences can take on only a finite number of values (0, %, %, 1), and the third dimension, vote share,
can be mapped into the interval [0,1]. An example of such an utility function for when the second
dimension has zero weight is given by,

v if P=0

=4 1+V ifP=1
Y 24V ifP:i
3+V ifp=1

Similar utility functions, but with more cases, exist for when the second dimension has non-zero

weight.

20This new definition of equilibrium is introduced in order to permit extension to the case of
simultaneous competition for multiple districts. This extension is pursued later in this chapter and
was explored in Chapter 1 for the case of plurality rule.
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Definition 2.1 A pair of locations, {11, 15}, is a strict limit equilibrium if,

(a) for every y # I, there is an £(y), such that for all E' € Cz(y)(y,fg) and E €

Ci¥(I, I), On (I, I, E) = Oy, (y, I, E'). And,

(b) for every w # I, there is an e(w), such that for all E' € ng)(fl,w) and
E S C;(y)(ll,fg), 012(]1,IQ,E) — 012(I2,w,El).

It is possible that if X'(I, I5) is not a singleton then an entrant will randomize over
one or several intervals. For any policy position, z € R and &(z) > 0, define the follow-
ing intervals: z* = (2,7 + £(2)), 27 = (¢ — (z),2), and 27+ = (z — £(z), 2 + (z)) .
If I; < I, then the entrant will locate in some subset of the intervals I7, I and 277,
where z € (11, I1).

As the parties have no ideological motivation in the selection of their platforms
it is obvious that any equilibrium found will point to another equilibrium in which
the two incumbent parties simply switch positions. Any pair of such equilibria will
be considered to be the same, and so constitute just one equilibrium.

All proofs have been relegated to the appendix. Here I will present the results
and an intuitive explanation. The equilibria themselves are very intuitive, the com-

plication is in proving that no other equilibria exist.

2.3 Results

Before I present the equilibria I will provide some intuition and a preliminary result
that hold for both assumptions on entrant behavior. The first intuition is that if the
incumbent parties are located asymmetrically then the incumbent furthest from the
median voter is in a disadvantageous position. This is easy to see if the entrant stays
out of the election (because it has a zero probability of victory) as then, by the median
voter theorem, the incumbent closest to the median will win the election. Significantly,
and in contrast to competition under the plurality rule, this disadvantage exists even
when the entrant enters. This is the case as the entrant will always locate at a point

closer to the median voter than the widest incumbent, possibly even squeezing this
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incumbent out in the first round. Thus, this incumbent will either be eliminated
in the first round or lose the run-off regardless of its opponent at that stage. This
intuition is captured by the following lemma (where P (W = j) is the probability that

party 7 wins the election).

Lemma 2.1 Suppose |I1| < |I,|. Then if E is (almost) mazimizing P(W = I3) = 0.

That is, the incumbent furthest from the center never wins.

To understand the logic behind the entrant’s decision it is useful to consider the
choices it faces. Assuming the entrant enters, if it does not squeeze I, out in the first
round then it must be either squeezing out I; or maximizing its vote share. To fulfill
either of these objectives the entrant will need to locate either arbitrarily close to I;
or somewhere in between the two incumbents (as locating on the flank to the right
of I, is dominated by locating on the flank to the left of I; because I; is closer to the
median voter). Thus, even if it manages to survive the first round, I will lose the
run-off with certainty.

Intuitively, this lemma implies that an incumbent party that is further from the
median voter has an incentive to deviate inwards. These are the same centripetal
incentives faced by parties when competition is under the plurality rule.?! However,
if the incumbents are located symmetrically, and not too far apart, then the similarity
with the plurality rule breaks down and the incumbent parties can no longer deviate
inwards and still preclude the entrant from winning. Thus, if the incumbent parties
are located asymmetrically because one party deviated towards the median from entry
precluding symmetric locations, then not only can the incumbent furthest from the
median not win as implied by Lemma 2.1, but neither can the incumbent closer to

the median.??

21See Palfrey (1984), Callander (1999) and Chapter 1.

22Lemma 2.1 is not stated in this stronger form as for some distributions there may exist asym-
metric incumbent platforms that preclude entry (in which case the incumbent closer to the median
voter does win). However, these will not constitute equilibria as the widest party will always lose and
have an incentive to deviate towards the center (see the proof of Lemma 2.3). These points require
one incumbent to be relatively far from the center. Consequently these points cannot be reached
by a single profitable deviation if both incumbents are close enough to the center. Therefore, if the
incumbents choose symmetric positions close enough to the center they will be in equilibrium. The
limit of this dispersion will be seen in the characterization of the equilibria in the next section.
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To see this, suppose that the gap between the two incumbents isn’t too large. The
entrant will then locate just outside the incumbent closest to the median, thereby
trapping this party in the middle and eliminating it in the first round. By choosing
close enough to this incumbent the entrant will then be closer to the median than
the other incumbent and thus win the second stage run-off. On the other hand, if the
incumbents are too far apart then the entrant can locate just inside the incumbent
party closest to the median, squeeze it on the outside, and then win the run-off with
the other incumbent.

In contrast, if the incumbents are located symmetrically, and not too far apart,
then to squeeze one incumbent in the middle the entrant must locate further from the
median voter than the other incumbent, thus ensuring it loses the run-off. Combining
these intuitions implies, therefore, that to prevent the entrant winning the incumbents
will locate symmetrically and not too far from the median voter. Further, the incum-
bents do not have an incentive to deviate as this will result in an asymmetric location
pair that will incite the entrant to enter and win.

The intuitions outlined here and the lemma presented above will now be em-
ployed in the following sections to characterize the equilibria of the model under the
two assumptions of entrant behavior. I show that under both assumptions there ex-
ist equilibria of the model in which the incumbent parties choose symmetric policy

locations. In fact, I show that all equilibria to the game must exhibit this feature.
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2.3.1 Entrant Always Enters

Proposition 2.1 If the Entrant always enters then the complete set of equilibria is

characterized by the following:

(a) There ezists an infinite number of equilibria of the form {I,I,} = {z,—z}
Vz € [W*,0], where W* solves 1 — 2F (%) = F(W*), and E € {I;,I],}.*
For all equilibria, PW =1,) = P(W = L) =1, P(W =E) = 0.

(b) Depending on F, there may exist additional equilibria that satisfy the follow-
ing necessary, but not sufficient conditions, {I,,I,} = {y,—y} where y €
[F7Y(3),W*) and F(%) > 3. E € 07 for all such equilibria. P(W = I;) =
PW=15L)=3P(W=E)=0.

Entry affects each incumbent equally ex-ante, and so each has an equal chance
of winning the election. The entrant has zero probability of winning the election.
The entrant enters randomly on either of the flanks. The entrant squeezes one of the
incumbents out in the first round but is then defeated by the other incumbent in the
run-off. For the case of the alternative vote, where the secondary concern of parties
is vote share rather than making the second round, the entrant may be eliminated
in the first round if x = W*. In this situation, the entrant may locate around zero
as well as on the flank in order to maximize vote share. In all cases deviation by
either incumbent provides scope for the entrant to win, so neither moves and there
are many equilibria. Notice that if x < F“l(%) then this violates the ‘too far apart’
intuition and the entrant could choose £ =z + 3 (8 > 0) and crowd I; on the flank,
and thén defeat I, in the run-off as it is closer to the median.

The second group of equilibria presented above is difficult to characterize as it
depends critically on the particular distribution of voters in the electorate. The first
group of equilibria is independent of the particular F', as long as F' satisfies the

assumptions of the model. Thus, under the run-off rule there are, at the least, a

BIfz = W* and the second dimension of preferences has zero weight then E € {I7, 17,07} for
all F. Further, if F is uniform then 0=% = (I, ).
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Figure 2.1: Equilibria Under the Run-Off Rule
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continuum of equilibria in which the entrant never wins the election. And, indepen-
dent of F', all equilibria require the incumbents to be located symmetrically about
the median, and on all but a set of measure zero involve non-centrist platforms.

The party platforms described in (b) may not be equilibria as even though in the
limit £ € I;” may not lead to E having a positive probability of victory, there could
still exist a point £ = I; + A, A > 0, such that E has a strictly positive chance of
winning the election. Whether such a point exists will depend on F and the locations
of the incumbents. The incumbent locations in (a) prevent the existence of such
points, which can be seen from the definition of W*. If a pair of incumbent locations
are not in the domain of (a) or (b) then such a point must exist and this location

pair cannot constitute an equilibrium.
2.3.2 Enter Only if Have a Positive Probability of Victory

Proposition 2.2 If the Entrant enters only when it has a positive probability of vic-

tory then the complete set of equilibria is characterized by the following:

(a) There exists an infinite number of equilibria of the form {I,, I} = {z,—z}
Vo € [W*,0], where W* solves 1 — 2F(%") = F(W*), and E = 0 (doesn’t
enter). For all equilibria, P(W = I;) = P(W = I,) = ;, P(W = E) = 0.

(b) Depending on F, there may exist additional equilibria that satisfy the follow-
ing necessary, but not sufficient conditions, {I, L} = {y,—y} where y €
[F~1(3),W*) and F(¥) > 1. E = 0 (doesn’t enter). P(W = I,) = P(W =
L)=3,P(W=E)=0.

In all of these equilibria the entrant stays out and only two parties compete. If
an incumbent deviates then, as above, the entrant could win the election. Therefore,
a deviation by an incumbent would be followed by entry. This implies that the
incumbents encounter the same incentives as when facing compulsory entry and,

consequently, in equilibrium the incumbents choose the same positions.



2.4 Discussion

2.4.1 The Model

It is hard to say which assumption of entrant behavior is the more appropriate. There
are different circumstances when each assumption would be preferred. As parties are
formed primarily to win elections it may be expected that formation would only occur
when there exists a chance for victory. The assumption ‘enter only if have a positive
probability of victory’ captures these motivations.

However, in a repeated model we can certainly imagine an entrant who enters
despite having zero probability of victory in the current period. Such an entrant
may have aspirations for future electoral success and wish to start building a support
base at the expense of other parties, or they may simply want to have a voice and
feel that the cost of entry is outweighed by the value of the audience that electoral
participation brings.?* Interestingly, the location choices of the two incumbent parties
are unaffected by whichever of these assumptions on entry is made.

An interesting aspect of the results found here, in relation to other electoral rules
when parties are Downsian, is the large number of equilibria that exist. When this
model is applied to the plurality rule there exists a unique equilibrium for ‘always
enter’ and no pure strategy equilibrium when entrants only enter if they can win
(see Palfrey (1984) and Callander (1999)). Strangely enough, this is because it is so
difficult under the run-off rule for the incumbents to deter successful entry by a third
party. For almost all distributions there exists, for a given location I;, at most one
location for I5 such that successful entry is deterred (at —I;). Therefore, there are no
deviations available to either incumbent to make themselves better off as entry will

be induced by the deviation and the entrant will win the election. This implies that

24The assumption that parties immediately receive the support of all voters for whom they are
the closest party implies a more long term view is captured by this one shot model as difficulties of
party establishment, such as name recognition, are assumed away. That is, assuming voters always
vote sincerely implies that if an entrant can’t win in the one shot model it won’t be able to win
regardless of how many periods the electoral competition is modelled as (unless, of course, its entry
incites additional entry). If a dynamic model is to differ from and extend what is presented here
then additional party competition for characteristics such as name recognition or platform credibility
would need to be considered.
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if there exists an entry deterring location I, for a given I; then this location pair is
an equilibrium. Because such a point exists for any location of I; that isn’t too far
from the median, there exists a continuum of equilibria.

In contrast, under the plurality rule there exists either an empty or non-singleton
set of points available to I, such that entry is deterred (these points are in the
neighborhood of —I;). Consequently, there always exist profitable deviations and,
therefore, no equilibrium exists when an entrant only enters if it can win. A unique
equilibrium is found under the assumption ‘always enter’ despite the existence of devi-
ations that preclude successful entry. This is because deviations from the equilibrium
cause the entrant, who must enter, to locate near the deviating incumbent in order
to maximize its vote share, thus punishing the deviator and handing the victory to
the other incumbent.

Essentially, the difference between these two rules is the ability of an entrant
under the run-off rule to attack both incumbents by locating on a flank, an ability
the entrant doesn’t have under the plurality rule. If the incumbents are close enough
together then, under both rules, entry between them results in a very low vote share
and certain defeat for the entrant. Consequently, the entrant must focus on entering
on the flank. Under the plurality rule such entry only affects the vote share of one
incumbent. As such, the other incumbent remains unpunished and wins the election.
In contrast, however, under the run-off rule entry on the flank enables the entrant
to attack both incumbents. In the first round the incumbent whose flank is attacked
is squeezed out. With this incumbent out of the way, the entrant is able to gain a
greater vote share and attack the remaining incumbent in the second round. This
second round opportunity makes it more difficult for the incumbents to deter entry
and, ironically, produces far more equilibrium party locations in which successful
entry is deterred.

Though the dynamic structure of the current model is rather particular, it is ac-
tually more general than it seems. One candidate can never prevent the entry of a
second candidate and, therefore, if the timing of decisions is sequential or endogenous

the first candidate will act as if there is a second candidate, and choose the same
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platform as it would if the parties instead chose simultaneously.?>:?¢ Also, if the po-
tential entrant chooses to stay out then all potential entrants (who similarly consider
their entry decision in isolation) would stay out. Therefore, the location pairs for the
incumbents in the equilibria found here are also equilibrium location choices for the
incumbent parties in a model involving an arbitrary number of potential entrants.

The established theoretical prediction for the run-off rule is what Riker (1982)
refers to as “Duverger’s Hypothesis” (Duverger (1954)). This assertion covers the
class of electoral rules that Duverger expected to favor multi-partyism. This class
incorporates the run-off and proportional representation rules as it was believed that
they do not encourage parties to maximize their vote count and, therefore, the incen-
tive to rationalize into only two parties is absent. This prediction would seem to be
contradicted by the two-party equilibria found in this model. However, significantly,
‘this is not the case given the differences in the explicit timing of the model presented
here and the implicit sequencing in the reasoning of Duverger.

The two-party equilibria found here suggests that if there are currently two com-
peting parties then a third candidate will not enter the election as it has no chance
of victory (assuming the first two parties have chosen equilibrium locations). An
example of this timing is the case of Australia. In Australia the alternative vote rule
was established soon after the founding of the federal government and replaced the
plurality rule. Therefore, parties initially made formation and entry decisions under
the plurality rule and this helped establish a firm two-party system.?” Thus, at the
time the run-off rule was introduced there existed an established two-party system
and there was no incentive, as explained in the current model, for a third party to

enter.

25 An endogenous timing scheme allows all parties to choose when they wish to enter in addition
to the policy platform they adopt. If there exists a first point at which parties can act (the interval
of time is closed) then all of the equilibria found in Section 2.3 will continue to exist. However, if
such a point doesn’t exist, or if timing is sequential, then the equilibrium refinement of subgame
perfection will eliminate all equilibria that do not maximize the incumbent parties’ vote shares.

26The assumption that indifferent voters would randomize over the first two parties and strictly
prefer an incumbent to an entrant would need to be retained.

2TThe tendency for two-party systems to evolve under plurality rule is well documented and is
known as Duverger’s Law.
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In contrast, the intuition of Duverger implies that if more than two parties are
already competing in the electoral system then from this point they have no incentive
to merge into two parties. This strategic situation is not captured by the present
model. Thus the multi-partyism prediction of Duverger’s Hypothesis is not at odds
with the entry deterring capabilities unearthed here. The natural question, however,
is why so many parties originally entered the electoral contests observed by Duverger.
One possible way that this situation could arise is if the electoral rule was changed to
one of run-off from something more conducive to multiple parties. Such an evolution
has been the case in the French Fifth Republic.?

For most national elections between 1945 and 1988 France employed a dual-ballot
run-off rule for both parliamentary seats and the president.?® Significantly, however,
the first system employed after the war was one of proportional representation, which
rinduced the entry of many parties.>® Thus, at the time the run-off rule was introduced
multiple parties already existed. And as these parties did not necessarily have the
incentive to then exit the electoral system France was (and still is) characterized by a
multi-party system. Interestingly, though, the effective number of parties competing
and succeeding in France has been diminishing through time (Lijphart (1994, p. 161)).

These possibilities imply that the predictions for the run-off rule significantly
depend on the starting conditions. Therefore, a more appropriate statement of Du-

verger’s Hypothesis may read,

“Competition between two parties under the run-off rule is a stable
configuration, though systems with more than two parties do not neces-

sarily converge to this configuration.”

Interestingly, this weaker statement about multi-party systems is consistent with

28Gee Lijphart (1994) for details. A more detailed analysis is provided by Schlesinger and
Schlesinger (1990).

29For the presidential election only the top two candidates in the first round were permitted to
compete in the run-off stage. For the parliamentary elections any candidate with more than 12.5%
of the vote (the threshold was 10% for some elections) could proceed. This lower threshold would,
most likely, give even greater incentive to rationalize into two parties as in this case the rule more
closely resembles a plurality rule.

30See Cox (1997) for models and evidence of the tendency of multiple parties to enter proportional
representation elections.
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one of the first attempts to describe the relationship between the number of parties
and the run-off rule. Lowell (1896, p. 110), in contrast to Duverger, did not claim
that the use of the run-off rule is a sufficient condition for multi-partyism, even in a
probabilistic sense. Instead, he only made the weaker claim that “where a number of
groups exist, [the two stage majority system] tends to foster them, and prevent their
fusing into larger bodies.” (quoted from Wright and Riker (1989))

This conclusion has important implications for the question of electoral design. It
suggests that the outcome from the introduction of an electoral rule not only depends
on the characteristics of this rule, but also on the characteristics of all previous rules
that have been in force in a given system. Consequently, the application of electoral
theory to real world situations may be far more delicate that our simplified models

would indicate.

2.4.2 Related Literature

As mentioned in the introduction, the paper closest to the current work is the model
of citizen-candidates developed by Osborne and Slivinski (1996). In contrast to the
current work, Osborne and Slivinksi assume candidates are policy orientated and
thus, most importantly, policy restricted. They consider the opposite extreme to
that modelled here by assuming candidates must choose their true ideal point as their
campaign platform. They also allow the cost incurred by a party to compete in the
election to be non-zero and assume the voters treat all parties identically (i.e., their
analogous statement of Assumption 2.5 does not differentiate between the incumbent
parties and the entrant). Osborne and Slivinski then characterize the parameters
under which two-party outcomes could arise for both the run-off and plurality rules.
Essentially, they find that for both rules two-party equilibria are possible if the cost
of entry (relative to the benefit of winning) isn’t too low to entice further entry, and
isn’t too high to not justify entry by two parties. They then show that two-party

outcomes are more likely under the plurality rule than the run-off rule.?!

31Remarkably, Osborne and Slivinski (1996) are also able to characterize conditions under which
three and four party equilibria may arise, as well as the equilibria themselves.
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Even with different domains of existence, the two-party equilibria found by Os-
borne and Slivinski (1996) under both rules have similar intuition: third party entry
is deterred because the two incumbent parties are located symmetrically, and the
incumbent parties can’t deviate towards the median as they are policy constrained.
The model presented here relaxes this final restriction and, for simplicity, considers
the opposite extreme by assuming complete policy flexibility. In order to focus on
the incentives that arise from this additional freedom I consider only two possible
ranges of cost of entry (zero, and when two but not three parties are willing to enter
if they have equal probabilities of victory) and impose the additional requirement of
Assumption 2.5. This new framework alters completely the incentives faced by parties
under both rules. Under the plurality rule this change has a profound impact on the
set of equilibria and results in, for the two entry assumptions respectively, uniqueness
and non-existences of equilibria.?? However, remarkably, under the run-off rule these
different incentives still produce a continuum of two-party non-centrist equilibria.

Another related model is that of Greenberg and Shepsle (1987).33 Though it is
sometimes construed as representing a model of run-off (see Wright and Riker (1989)),
this connection is somewhat tenuous. Greenberg and Shepsle consider elections for K
member districts and argue, quite appropriately, that the objective for parties in this
environment is to maximize their rank rather than vote share (i.e., ensure they are
in the top K vote getters). Wright and Riker (1989) argue that the case for K = 2
captures the incentives of a run-off election as parties want to be amongst the leading
two parties to make the run-off stage. However, this argument ignores the presence
of the second stage and the fact that ultimately there can be only one winner. For
example, it would not seem reasonable to suppose that a party would choose a policy
platform that ensured its passage to the second round if it also ensured certain defeat
in this final stage. Essentially, this specification of Greenberg and Shepsle is the
current model with the first dimension of preferences set to zero. However, it would

seem that such a model can only capture the incentives induced by the run-off rule if

32See Palfrey (1984) and Callander (1999).
33This model has been further developed by Shvetsova (1995).
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the rather unreasonable assumption is made that policy platforms chosen in the first
round are ignored by voters at the run-off stage.3*

Finally, Myerson (1993) also considers the run-off rule (in the form of the alterna-
tive vote), though his model differs significantly from the current work. He considers
a distributive model of elections and doesn’t allow for the prospect of entry. Myverson,
therefore, does not concern himself with the equilibrium number of parties that is of
interest here. Instead, he concerns himself with the equality of campaign offers that

are made by parties under different voting rules.

2.5 An Extension: Multiple Districts

Often elections require political parties to compete for more than a single district.
In fact, competition may be for many districts as an entire legislature is elected si-
multaneously. This is the case for Australian state and federal elections under the
alternative vote rule. It would seem natural, therefore, to incorporate such simul-
taneity into models of electoral competition. In this section I extend the model to
allow for multiple districts and show that the results of the single district model are
robust to simultaneous competition and district heterogeneity.3

Immediately it can be seen that if the districts are identical then the single district
equilibria hold in every district and the incumbents win all of the districts. However,
if there is some heterogeneity acrosé these districts then this may no longer be true
and it becomes much more difficult for the incumbent parties to secure victory in
all districts simultaneously. I find that the ability of the incumbent parties to win
all districts depends critically on the degree of heterogeneity across districts and the
parties’ flexibility in presenting different candidate platforms in the different districts.

Basically, as long as the heterogeneity of districts does not exceed the ability to differ-

34That is, parties are free to move their policy platforms between rounds and are not punished
by voters in any way for their previous announcements. Such an assumption, of course, draws into
question to a substantially greater degree the rationale behind sincere voting.

%5 This extension for the plurality rule was studied in Chapter 1. Austen-Smith (1981) and Hinich
and Ordeshook (1974) also consider models of multiple districts under plurality rule, but do not
incorporate the possibility of entry.
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entiate individual candidates from the party platform, then the equilibria of the single
district case carry over and the incumbent parties are able to deter successful entry
and secure all districts for themselves. If, however, the heterogeneity is too extreme
then successful third party entry cannot be prevented. This domain of successful
entry deterrence can be seen as another possible explanation for why the run-off rule
has produced different numbers of parties in different real world environments.

To incorporate the extension to multiple districts into the model I will make the

following additional assumption.

Assumption 2.6 There exists a continuum of districts. In district © the median
voter’s ideal point s Z;. The ideal points of district median voters are distributed
symmetrically about 0 on the support [Z,Z], where Z = —Z. The distribution of
voters’ ideal points in district i is given by the cdf F(z — Z;) for all x € R.

The assumption of a continuum of districts is, of course, not realistic. However,
it has been employed as it captures the effect and intuition of the multiple district
scenario whilst avoiding the complexity of calculation associated with a lumpy distri-
bution of median voters. It is in the same spirit as the assumption of a continuum of
voters in the single district case.

In multiple district elections there exists both individual candidates and the larger
party. Though the party itself doesn’t run in individual districts (it fields representa-
tives instead), it still stakes out a policy platform to which its individual candidates
are associated. The individual candidates may be perceived somewhat differently
from the party platform, but this difference is not extreme. By being a party’s rep-
resentative an individual candidate is associated with the party platform by voters.
This association of party and candidate restricts the set of policy platforms that
can be presented by an individual candidate and serves to differentiate the multiple
district model from the repeated application of the single district results.

The following assumption incorporates this policy inflexibility into the model.
The degree of candidate flexibility may be imposed by the party hierarchy or reflect

the capabilities and talents of the individual candidates themselves. In this model, it
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does not matter who controls the freedom of individual candidates as the objectives of
both candidate and party are aligned (and thus I will refer interchangeably to either
candidate or party flexibility). However, this alignment may not always be the case,
particularly under other voting rules, and an investigation of this relationship may
prove fruitful in understanding the origin and nature of political parties. Let I; (¢)
denote the position of party j’s candidate in district ¢ (where the median voter is at

Assumption 2.7 I, and I, must each choose a single platform in R. The individual
candidates for each party must locate within ¢ of these party platforms. That is, for
j=1,2,|I; (i) — I;| <8 Vi such that Z; € [Z, Z].

Obviously, the size of § indicates the degree of freedom individual candidates have
in choosing their platforms. If § = 0 then candidates have no freedom and party
discipline is perfect. On the other hand, if § = oo then there is no party discipline
and candidates have complete freedom. In this case the single district results are
applicable to each district separately. To differentiate the multiple district approach
I will concentrate on the strategic environment when ¢ < 00.%

The order of play in this expanded game is analogous to the single district case and
is as follows. The two incumbent parties choose their party and individual candidate
platforms simultaneously and compete in every district. In each district a potential
entrant then makes an entry decision, and if it chooses to enter it selects a platform
position. The results to follow, as did the results of Section 2.3, do not depend on
which entry assumption is made (always enter versus only if the entrant has a positive
probability of victory). As such, throughout this section I will intentionally leave open
the poésibility for both types of entrant behavior. The assumption of a single entrant
in each district is made for analytical simplicity and aims to capture the idea that if
a single party could enter and win a district then the incumbents loée that district.

In order to understand party behavior in this expanded environment, the expanded

36The plurality rule results of Chapter 1 do not permit flexibility and only consider the case where
6 = 0. This is done, however, only for analytical simplicity and the same substantive conclusions
result if the parties and candidates are permitted some flexibility.
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objectives of the parties must be specified. I will assume that parties primarily seek
to maximize their share of districts won. Denote this share by M; for party j. This
objective is a natural extension of the single district preferences as it requires the
parties to maximize the sum of their probabilities of victory in each district.®” The
minor objectives will be similarly extended: the second preference will be to maximize
the share of districts in which they make the second round (denoted by M@Q; for party
j), and the third preference will be to maximize total vote share (denoted by M Vj for

party j). Thus, the outcome function for party j € {I;, I} can be written as follows.
O;(I, Iy, E) = (M (j|I1, Iy, E), MQ(j|I1, I, E), MV} (I, I, E))

Where E = (..., E;, ...) is the vector of locations for all entrants E;. As each entrant
competes in only one district, their preferences will remain the same as in the single
district case.

The equilibrium concept provided in Definition 2.1 and employed in the single
district results can also be extended naturally to the multiple district environment.
In fact, the definition applies to the expanded environment with only two minor ad-
justments (and as such will not be restated here). Firstly, the location pair, {11, I},
is no longer a pair of points on the real line. Instead, each I; is a vector of points
specifying the location of the party platform as well as the platforms for candidates
in individual districts (subject to the restriction of Assumption 2.7). Secondly, as
there are many potential entrants, the choices by the entrants are given by a vector,
Cs (I, 1) = (, Cg. (I, 1) ), where CF, is the set of almost maximizing points for
some entrant E; (as defined in Section 2.2). If the pair {I, I,} satisfies the require-
ments of this expanded definition then I will say that it constitutes an equilibrium of
the multiple district game.

The existence of multiple districts alters the strategic environment facing the

37There are many alternative specifications of party objective functions that could be employed.
Perhaps the most plausible would be to maximize the probability of winning government. Unfortu-
nately, as governments can be formed with a minority of seats, or by forming a coalition of parties,
a complex model of government formation would need to be incorporated for this assumption to be
used.
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incumbent parties. With their choice of policy platform in each district restricted,
it will now be more difficult for them to prevent successful third party entry. The
following lemma characterizes exactly the degree of this capability in the presence of

district heterogeneity.

Lemma 2.2 Suppose the incumbent party platforms are at I, and I, and that I; (i) =
Iy and I, (i) = Iy in district © where Z; = (%2) . Then if successful entry can be
deterred in district 1 it can also be deterred in all districts with median voters in the

interval [(Ll—gﬁ) -0, (I—l%ﬁ) + (5}.

To understand this lemma consider the situation in which the incumbent parties
are located symmetrically around the median voter of the central district. If the
incumbents are not too far from the median then they will deter successful third
party entry by locating their candidates at the same points as their party platforms
(or, indeed, any pair of symmetric locations not to far from the median).?® Lemma 2.2
implies that they can also deter entry in districts with medians in the interval [, d].
This is possible as in such districts the two incumbent parties can field candidates
away from their party platforms such that they are symmetric in each district, thus
deterring successful entry. However, for districts with median voters outside of this
domain the incumbent parties cannot achieve symmetry and successful entry may
be possible. Obviously this logic is not contingent upon the incumbents locating
symmetrically about the median voter of the central district, and the lemma holds
for some interval, regardless of the location of the incumbents.

Lemma 2.2 characterized the entry deterring capability of the incumbent parties.
The following lemma strengthens this result and shows that requiring the interval of
districf medians to be a subset of this interval is not only sufficient for entry deter-

- rence, but also necessary if the incumbent location pair is to constitute an equilibrium.

Lemma 2.3 If ]?‘ = |Z| > 0 then there does not ezist an equilibrium in which

successful third party entry is deterred in all districts.

38The bounds of Propositions 2.1 and 2.2 characterize the bounds for entry deterrence in any
given district.
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This lemma shows that if the heterogeneity of districts is too great relative to the
flexibility of the party platforms then in equilibrium successful third party entry is
inevitable.?® If, on the other hand, this condition is not satisfied then Lemma 2.2
implies that successful entry can be deterred in every district if incumbent party
platforms are located appropriately. The following proposition shows in this case
that not only can entry be deterred, but that some of these location pairs constitute
equilibria. Define I7 to be the minimum [; such that {I;,,} = {I7,—I{} is an

equilibrium to the single district game that deters successful entry.

Proposition 2.3 Suppose that the pair of party platforms, {fl, jg} 18 an equiltbrium
to the single district game in which successful entry is deterred, and that ‘7[ =1|Z| <

5. Then the following are equilibria to the multiple district game:

{[17[2} = {jlan}
Il (Z) = j1+Zi+€i
IQ (Z) = f2+Zi+8i

Ve, € [0— 2,0+ Z;], subject to I +¢ < IT

In these equilibria the two incumbent parties deter successful entry and win all dis-
tricts. If entrants only enter if they have a positive probability of victory then E; =0
for all i. If entrants always enter then they locate in each district as specified in
Proposition 2.1.

Further, if ‘7! = |Z| < 0 then there exists additional equilibria involving asym-

metric party platforms (i.e., where |I1| # |I5]).

This proposition states that the single district results are robust to some district
heterogeneity. In fact, the amount of heterogeneity that can be tolerated depends

critically on the flexibility of individual candidates to differentiate themselves from

39Tf § = 0 then a stronger result can be stated: if |7| = |Z| > 0 then there does not exist an
incumbent location pair such that successful entry is deterred in every district, regardless of whether
this location pair constitutes an equilibrium to the multiple district game (see Callander (1999) for
a proof of this result).
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the party platform. These equilibria require the individual candidates to differentiate
themselves from the party platforms such that they are symmetrically located with
their opposing candidate in their respective districts. Basically, if the heterogeneity
isn’t too extreme then the single district equilibrium can be achieved in every district.
The second part of the proposition points out that if the candidate flexibility exceeds
the district heterogeneity then symmetric positioning in each district can be achieved
even if the parties themselves have asymmetric platforms.°

The equilibria of the multiple district case build upon the intuition of the single
district case. In the single district case a continuum of equilibria exist precisely
because it is so difficult for the incumbents to prevent successful third party entry.
The requirement that parties compete simultaneously for many districts makes this
task even harder. If the incumbent parties have enough flexibility in the platforms
they can offer in each district then they can overcome this difficulty and still prevent
successful third party entry. However, if the district heterogeneity is too great then
the task of entry deterrence reaches the point of impossibility and successful third
party entry is inevitable.

These results can, like the single district results, be compared to the equilibria
of the model under the plurality rule derived in Chapter 1. It was pointed out in
Section 2.4 that in a single district under the plurality rule there are, in a sense, too
many incumbent location pairs that deter successful entry. Consequently, profitable
deviations always exist for the incumbent parties and equilibria fail to exist if the
entrant can choose to stay out. As is the case with the run-off rule, the extension to
multiple districts makes successful entry deterrence more difficult under the plurality
rule. However, it makes it more difficult in such a way that a unique, two-party entry
deterring equilibrium exists as long as heterogeneity is not too extreme (and this
bound is far larger than under the run-off rule: for § = 0 the two-party equilibrium
exists under the plurality rule if | Z] < Z* where f(Z*) = 3, whereas it fails to exist

under the run-off rule for the same ¢ if there is any district heterogeneity). Thus, in

40This, of course, is not a complete characterization of equilibria to the multiple district game.
Though such a characterization is possible, it would not add substantively to the results and has
therefore been omitted.
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comparison, district heterogeneity makes successful entry deterrence generally more
difficult for the incumbents. Under the plurality rule this difficulty translates to stable
equilibrium outcomes. In contrast, however, under the run-off rule this difficulty can
very quickly become overwhelming and break down the stable two-party equilibria

that would otherwise exist.

2.6 Conclusion

In this chapter, I characterize the equilibria to a model of electoral competition with
entry under the run-off rule. The primary finding is that a continuum of equilibria
exist in which one of two incumbent parties always win. This result is found to be
robust to variations in the motivations of the entrant, the timing of entry decisions,
as well as the preferences of the parties. I also consider an extension of the model
to simultaneous competition for multiple districts and find that the equilibria of the
single district case are robust to some district heterogeneity, and characterize the
sufficient and necessary bounds on this heterogeneity such that two-party equilibria
exist.

The inability of the third party to win the election implies that only two parties
will enter and compete in the election if parties are V.ictory seeking. In contrast,
“Duverger’s Hypothesis” asserts that if there are multiple parties already competing
then the incentive to rationalize into only two parties will be absent. Interestingly,
both of these assertions may be simultaneously true. This possibility suggests that
the predictions of the model are sensitive to the initial conditions of the electoral
system, implying that the application of theoretical models to real world situations

may be more delicate than is allowed for by current specifications.

2.7 Appendix

In the text I indicated that the preferences of the parties may vary depending on

whether the run-off rule is describing competition under the dual-ballot or the alter-
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native vote systems (the difference is whether the second dimension of preferences
receives positive weight). Despite this; the proofs of all the results vary minimally if
the parties have two or three dimensions of preference (that is, whether they derive
utility from reaching the second round of counting or balloting). Here I will present
the proofs for when parties have only two dimensions of preference. If an additional
argument is needed for the three dimensional case I will mark an * and include these
arguments in a footnote.

As is standard, all proofs will proceed by showing there exists profitable deviations
from any candidate locations other than those claimed to constitute equilibria. I will
denote the locations under consideration by I, I, and E, and any deviation with a
tilde (e.g., fl). For simplicity, if the arguments of a function are Iy, [, and E then
they will be omitted. In an abuse of notation let E; = I;r denote an entrant in district
i locating arbitrarily close to the right of incumbent party 7. WOLOG I will assume

throughout that if I; # I, then I} < I. Vote share refers to primary vote share.

2.7.1 Proof of Lemma 2.1

If there are only two parties remaining in the election (either the entrant didn’t
enter or one party has been eliminated) and these parties are A and x, where A,k €
{I,,I,, E'}, then it is easy to see that P (W = X) = 1 iff |A\| < || and P(W = )) =
P (W = k) = 1 iff |A| = |&] (that is, the party closest to the median voter will win).
Therefore, for P (W = I,) > 0 it must be that |E| > |I| (as otherwise I, will be the
furthest from the median voter regardless of which other party makes it through the
first round).

Suppose then that E > I,. This implies that V;, = F(222) > 1. Therefore I,
survives the first round and as |I;| < |I3|,|E| it must be that P (W =1;) = 1. So
instead suppose that £ < —I,. I will proceed by showing that all such locations are
dominated by £ = I; and, therefore, the entrant can’t be (almost) maximizing at any
point such that P (W = I3) > 0. To show this I will consider vote shares for all parties

at the different entrant locations. For the entrant, Vp = F(£:8) and Vp(I1, L, E) —
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F(I;) > F(Eth). For I, Vy, = F(82) — F(EER) and Vi, (11, b, E) — F(L32) -
F (I;) > Vi,. The vote share for I, is unaffected. Therefore, the entrant’s vote share
strictly increases, the incumbent parties’ vote shares weakly decrease, and the entrant

moves closer to the median voter. Consequently, Og (I, 5, E) = Og (I1, I, E) and

P (W = I,) = 0 if the entrant is (almost) maximizing.

2.7.2 Proof of Proposition 2.1: Entrant Always Enters

Define W' = [W*, —W*], where W* solves F(W*) = 1 — 2F(%7). From the proof
of Lemma 2.1, E = I] is the dominant choice for VE < I; . Similarly for £ = IJ.

Therefore, in the proofs to follow I will only consider values of E € {Il", I, (I, Ig)}.
Case 1 I,,I, ¢ W'.

Case 1.1: I) = —1Is.

If E € (I1,I;) then Vg < 1 —2F (%) and V;,, V3, > F(W*), which imply that E
loses in the first round. If E € {I,I;} then |E| > |I1], || and so E will not win
the run-off. Thus, it must be that P(W = E) = 0. If I, # W* then C% = {I], L] }.
If z = W* and F isn’t uniform then C% = {I;,L5,07*}."4 If I, = W* and F is
uniform then C§ = {I;, I, (I;, I)}. In all circumstances the incumbents are affected
equally and P(W = ;) = P(W = I,) = 1.

Consider a deviation from symmetry by I to I;. If ‘fl

> |I;| then by Lemma 2.1

their probability of victory is zero and Oy, > Oy, (I, I,, E). So suppose that I €
(I,I,). If E = I then Vi, (I1,1,,E) < 1 — 2F(*) as E,I, € W'. Further, as
Vg = F(I,) > F(W*) and Vj, = 1 — F(L£) > F(W*) it must be that Vg, Vi, > V3,
and P(W = I,|I,, I, E) = 0. This implies that P(W = E|I,,I,, E) = 1 as |E| < |L,|.
Thus, for the optimal choice by the entrant it must be that P(W = I,|I;, I, E) = 0
and Oy, > Ofl(fl,IQ,E). Thus, {I,I,} = {y,—y} where y € W' is a strict Nash
equilibrium.
Case 1.2: || < |I5].

41Tf the second dimension of preferences has positive weight then E € {I;,IS} and the same
argument holds.
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From Lemma 2.1 it must be that if F is almost maximizing then P(1" = I5) = 0.
Therefore, these asymmetric locations can’t constitute an equilibrium as L=-I, =

P(W=1)=1%and Op, < Op(I,, I, E).
Case 2 [ e W I, ¢ W'

This implies that || > |I;], and so P(W = I,) = 0. If [, = —1I, then I,, [, € W~
and so, by Case 1.1, P(W = 12|Il,f2,E) = —;— Thus, Oy, > 012(11,1:2,]3).

Case 3 I, I, ¢ W.

Firstly, define W = [F~}(1), F~!(2)]. This case provides examples of situations
where an entrant does not maximize its utility my maximizing its primary vote share.

Case 8.1: I, I, < F7(3).

Firstly, notice that £ € [7 = P(W =E) =1.

Case 8.1.1: I, = I, < 0. In this case C%([1,,) = I and P(W =E|E €
C%(I1,I;)) = 1. Further, PIW = I;) =0 and as ¢ — 0,V;, = s F(L). If F(I;) #0
then as F' is atomless, § small enough can be found s.t. L =1-0 = Vi, (fl, I,,E) =
F(L-%)> 1F(I;) and therefore Oy, < Oy, (I, I, E). If F(I;) = 0 then as F is non-
degenerate a v small enough can be found s.t. 0 < F(I; +7) < 3. Given this, the
deviation I = I, + v = C5(I,,I,) = I and Vi,(I1, I, E) = F(I,) — F(432) > o,
as F is strictly increasing once F > 0. Consequently, Oy, < Oy, (1, L, E).

Case 8.1.2: I, # I,. Asin the previous subcase, C% (I}, I;) = I and P (W = E| E €
C%(I1, I,)) = 1. Further, P(W = I;) = 0 and V;, = F(842) If F (I;) # 0 then as F is
atomless there exists an a small enough such that L =hLh-a— Vi, (1:1, I, E) > Vp,.
If F(I3) = 0 then consider the same deviation as in the subcase above. For both pos-
sibilities Oy, < Oy, (I}, I, E).

Case 3.2: I < F7(3), I, > F71(3).

Let |I;] < |I] and consider possible locations for the entrant. If £ > I, then
it is the furthest from the median voter and P(W =FE) = 0. If E € I then
Vi, = F(2h) — F(L) > 1 > F(I,) + Vg and thus P(W =E) = 0. Con-

Ler(a) and Vg =

sider then £ = F~!(1). This implies that V;, = F[———%] <

=
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F[ﬂ;(i)} - F[ﬂ—;ﬁ} > . Therefore, the entrant must survive the first round
and as |E| < |I1|,|]2| the entrant will win the run-off against whoever survives. Con-
sequently, P(W = FE) = 1. These results imply that to maximize the entrant must
locate between the incumbents. I will now establish where the entrant will locate to
maximize its primary vote share.”

For a given E, Vg = F(23E) — F(E£L). Differentiating this expression indicates
that to maximize vote share the entrant will locate such that f(1_2_2+_1§) = f(E—;—[l),
which results in V7, = V7,. If such an maximum doesn’t exist then it is easy to see that
the entrant locates at I;". If vote share is maximized at I;" then from the expression
above Vg > V., Vi,. Thus P (W = E) = 1 and C% (I, I,) = I;. Similarly, if the vote
share is maximized at a point z such that Vz, = Vj, and Vg > 3 then Cf (I1, [o) = 27 7.
However, if at such a point z, Vg < & then Cf (I1, ) # z (as P(W = E) < 1). To
rsecure victory the entrant must sacrifice some vote share and move towards one of
the incumbents. Essentially, the entrant attacks one of the incumbents, eliminating
it in the first round, but remaining close enough to the median voter to win the
run-off. From the expression for Vg, the entrant will be giving up vote share as it
moves closer to an incumbent. As E = F‘l(i) ensures victory for the incumbent,
by the continuity of F there must exist a point K € (F~'(3), ) such that Vp = VJ,.
Therefore, K~ € C% (I, I,) . An analogous argument shows that a similar point exists
of the form K € (z, F7!(3)) and that Cg (I1, ) = {K‘,F+} . Note that for any
location choice for the entrant in this situation it will be that V;, # V},. However,
as the entrant randomizes over these choices it will be that E (Vy,) = E (V) (in
expectation).

So far I have established how E will react to location choices of incumbents. I
am now able to consider possible deviations for the incumbents and determine the

outcomes they will produce. It suffices to consider only the vote share of the deviating

incumbent as prior to deviation P(W = I,) = P(W = I) = 0.7% I will denote the

42As FE wins it definitely makes the second round, so the same argument holds for the different

preferences.
430nly if E € I does I; make the second round for sure, otherwise the two incumbents have

equal chances of making it. Therefore, any inward deviation by an incumbent such that L, LgW
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entrant’s platform choice after a deviation by an incumbent by E'.

Case 8.2.1: |I;| < |I5|. Consider the deviation I, = —I,. After this deviation F
will maximize vote share by locating at zero. With this deviation in mind consider
the original subcases.

Case 3.2.1.a: C5 = I (thus, Vj, > Vp,). If B' = 0 = Vi, (I,,[,,E') =
Vi,(I, I, E') < L then C5(I1, I, E') = 0%, As (I, I) C (I1, I,) then V(11 Iy, E') <
Vi (I, I, E') < Vg (I1, I, E) , and so Vi, (I1, I,) > Vi, (because Vi, (I, L) +V1, (11, I2) >
Vi, + Vi, Vi, > Vi, and Vi, (I, ) = Vi,(I1, I1)). Thus, Oy, (L, 1, E') = Oy,
FE =0= V, =V, > 1then E € {K~(I,,[.),K (I, I5)}. Similarly to
above, as (Il,fg) C (I3, I3) then VE(ILfQ,E’) < Vg (1,1, E") < Vg (I1,1,F), and so
E[Vi,(I1, I)] > Vi,. Thus, Op,(I1, I, E') = Op,.

Case 8.2.1.b: Cy = «™* (thus, Vj, = V). U B =0=V, =V}, < % then
Cs = 0-*. As above, Op,(I, [, E') > Op,. TE =0 = Vj, = Vj, >
E e {K~(I,,I,),K " (I, I,)} and, as above, Oy, (1, I, E') = Or,.

Case 3.2.1.c: C5 = {K—,K'} (thus, E[V;,] = E[V4,]; ie, E attacks one
incumbent). This requires that £ = 0 = VII(Il,l:Q,E’) = VIZ(Il,.fg,E’) > %
and so C5(I1, 1) = {K~(I, 1), K (I, I)}. As (I, [,) C (I, I,) then V(I 15) <
Vg (I I2|E') < Vg. As in expectation it is still the case that V7, (Il,fz) = Vi, (11, 1:2)
then E[Vy,(I1, I)] > E[V4,] and Oy, (I, Iy, E') = Oy,.

Case 3.2.2: |I,| = |I,|. As E=0=V;, = V;, then C5 C {0-*, K, K ' }. [ will

then

Wi w

now consider these possibilities in turn.

Case 8.2.2.a: Cg =077 (thus, V, =V}, < ). Therefore, there exists a v small
enough such that if [, = I, — v then E' = ()~ implies V;,([;, L) = Vi, (1, L) < 3.
Thus, C = ()7 As (I1,5) C (I, ]5) then Vg(I,I,) < Vg. This implies that
Vi, (I1, I,) > Vi, and, therefore, Oy, (I, I, E') = Oy,.

Case 3.2.2.b: Cy = {K‘,FJF} (thus, E[Vy,] = E[V}] > 3). Suppose that
I, = I, — § such that I, ¢ W. Then, as (I, I,) C (I, 1), for small enough &
it must be that E = & = V;,([1,,) = Vi,(I,I) > L. Therefore, Cg(I1, L) =

implies that the probability of making the second round can only increase. Therefore, if the vote
share of the deviating incumbent increases then it must be strictly better off.
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(K~(I,I,), K (I, I)}. Also, as (I, I,) C (I, I) it must be that Vi (I, I,) < V& and
E[V,, (I}, 1,)] > E[Vy,] (as E[Vy, (11, IL)] = E[Vi,(I1, I)]). Thus, Op,(I1, I, E') = Oy,.

Case 4 I,, L, ¢ W/W'"

Note that the region W /W' may be empty. For example, if f is uniform on [—3, 3]
then W = W'. T will show that if I; # —I, or F(&) < £ when I; = —I, then {I;, I}
can’t constitute an equilibrium.

Case 4.1: 11,1, < W*.

This subcase employs the same deviations and analysis as Case 3.1.

Case 4.2: I, € [F7}(3),W*), I, € (-W*, F~'(3)].

Case 4.2.1: I, = I and F(4) < L E=0= V;, =V, < 3,V& > 3,
and as |E| < |1],|]2] it must be that P(W = E) = 1. By the arguments of Case
3, C5 = 0~F. Consider the deviation I, = I; + « such that F(%) < 3. Then the
same arguments from Case 3 imply that C]i;(fl,lg,E’) = (—%)‘*7 Vh(fl,lg,E’) =
Vi,(I1, I, E'), and P(W = E) = 1. However, this also implies that Vg (1, I, E') < Vg
and so Vi, (I, I, E') > V;,."* Thus, Oy, (I, I, E') > Oy,.

Case 4.2.2: I, = —I, and F(%) = 1. By the symmetry of f, E=0=V;, =V}, =
Ve = % As f is continuous there exists an € > 0 small enough such that £ = ¢ =
Ve > Vi, and as |E| < |1], |I5], it must be that P (W = E) = 1. Therefore, Cj, =
{K‘,T(_Jr} .For asmall enough v, I; = I1+v = C4(I,, I,) = {K~ (I, L), K (I, )}
(as Vg (I1, I,) is arbitrarily close to 5 and F(I,) is strictly less than ). As (I,,I,) C
(I, I) then E [V}, (I, I, E")] > E[V},] and Oy, (I}, I, E') = Oy,.

Case 4.2.3: I, = —I; +a, where a > 0, and F(%) < % Lemma 2.1 implies that in
equilibrium P(W = I,) = 0. By the arguments of Case 3 it must be that C%, C (I3, I2),
P(W=E) =1, and Vj, > Vj,. Likewise, if [, = —I, then C%(I;, 5, E') = 0™,
P(W = E|I,I,,E'") = 1, but V;,(I1, I, B') = V;,(I1, I, E'). Therefore, as (I, I5) C
(I1, I,) it must be that V(I I;) < Vi."* This implies that Vi, (I}, Ir, E') > Vi, and

so Op, (I, I, E") > Oy,.

44For both I; and I; the incumbents tie in the first round so the probability of making the second
round is unaffected by the deviation.

45For I, the probability of making the second round is now %, which is at least as great as when
at .[2.
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Case 4.2.4: I, = —I; + a, where a > 0, and F(g—l) > % Lemma 2.1 implies
that P(W = I,) = 0. Consider the deviation I, = —I;. If C%(Iy, I, E') is such that
P(W = L|I,,I,,E") > 0 then Oy, (I}, 15, E') = Oy, and {I,,I,} can’t constitute an
equilibrium. So suppose then that P(W = Ig|11,f2,E’) =0. AsE' ¢ ([1,j2> implies
that |E'| > |L], ||, and E' = 0 = Vi, (I;, [, E') = Vi,(I1, o, E') > 1. then it
must be that C%(I;, ;) = {K‘(Il,j:Q),F+(ILJ:2)}, where K~ and K are as defined

in Case 3 (as otherwise the two incumbents win with probability % each). Consider
the entrant location E' € K’(Iljg). As (Il,fQ) C ([1,I) then it must be that
VE‘(ILjQ,E/) < Vg (I1 15, E'). This implies that I ¢ C% because if such a location
is not optimal after the deviation of I, then it couldn’t have been optimal before.
Therefore, before the deviation the entrant must have proved victorious by attacking
one of the incumbents or locating arbitrarily close to I; (see Case 3). Combining
the previous two observations implies that £ Vi, (I 12, E')] > E [V,] and E [V},] >
E[V;,]. Finally, because C4(I1, I,) = {K~ (I, L), K (Il L)} = EV;,(I;, I, E")] =
E[Vy,(I1, I, E')], then it must be that E[V;, (1, I, E')] > E[V3,] and Oy, (I, I, E') >

012'*46
Case 5 I, ¢ W, I, e W/W".

Case 5.1: I, I, < 0. Therefore, C5 = I; which implies that Vg > § and P(W =
E) =1. As f is atomless there exists a 7 small enough such that I, = I, — 7 implies
Cs(Iy, I, E') = Ij and Vy, (I}, I, E') > V;,.™*" Thus, Oy, (I, I1, E') = Oy,.

Case 5.2: I, < F7}(}), and I, € (W*, F7(2)]. Lemma 2.1 implies that P(W =
I5) = 0. Consider the deviation I, = —I,. By identical arguments to Case 4 above it

must be that Oy, (fl,Iz,E’> = Oy, .18

46The probability of making the second round is § for I both before and after the deviation, so
the increase in vote share makes it strictly better off.

47As V, approaches zero as 7 becomes arbitrarily small, I; makes the second round for a small
enough 7.

48Gignificantly, Cases 4 and 5 covered the possibility that the incumbent parties are able to deter
successful entry even if they are located asymmetrically (this possibility will become more significant
in the multiple districts section). Implicitly, it was shown that if successful entry can be deterred
at asymmetric locations then it can also be deterred if the widest incumbent deviates to symmetry.
This follows from Case 4.2.4 that showed if successful entry is possible after this deviation then it
must have also been possible before.
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2.7.3 Proof of Proposition 2.2: Enter Only if Have a Positive

Probability of Victory

The following proof will make use of many of the arguments used in the previous
proof (referred to as ‘Always Enter’). To avoid repetition such arguments will be

referenced here but omitted.
Case 1l I,,I, e W'

Case 1.1: I = —1I5.

From ‘Always Enter’ it must be that P(W = E) = 0. This implies £ = () and
P(W =1I,) = P(W = I,) = L. Consider the deviation I; = I; + a, where a > 0. ‘Al-
ways Enter’ Case 1 implies P(W = E|I,,I,,E) =1 = P(W = L,|I,, I, E) = 0 and
therefore Oy, (I1, I, E') < Oy,. Alternatively, consider the same deviation but where
a < 0. Lemma 2.1 implies that P(W = fllfl,lg,E) = 0 and again O[l(jl,IQ7El) <
Or,. Thus, {I1, I} = {y, —y} where y € W' is a strict Nash equilibrium.

Case 1.2: || # || .

By Lemma 2.1, P(W = I,) = 0. If I, deviates to I, = —I; then Oy, (I}, I, E) >~
Op,.

Case 2 [ e W', I, ¢ W'
Identical to Case 1.2 above.
Case 3 I, I, ¢ W.

In Case 3 of ‘Always Enter,” P (W = E) > (0 both before and after the deviations
considered. Therefore, if the same deviations are considered here it is always the case

that E # (). As such, the proof here is identical to Case 3 above.
Case 4 I,,[, ¢ W/W'.

If in Case 4 from ‘Always Enter’ both P (W = FE) = P (W = E|E’) > 0 (that is,

the entrant has a positive probability of victory both before and after deviations by
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the incumbents) then the same arguments hold in this case (as the entrant would
always enter). This leaves two possible subcases.

Case 4.1: P(W =F)>0,and P(W =E|E') >0

Therefore, after the deviation studied in ‘Always Enter’ the entrant can no longer
win and stays out (which wasn’t allowed in ‘Always Enter’). However, the vote share
of the incumbents must be as least as great as when the entrant has to enter the
market.”*? As the deviating incumbent’s vote share strictly increased in that case,
then it must also strictly increase when the entrant chooses to not enter. As the
probability of victory was originally zero for all deviators considered in the previous
proof, the increased vote share alone implies that the deviator receives a strictly
preferred outcome.

Case 4.2: P(W =FE) =0

Suppose that || < |L] . If F(4) < % then E=0= P(W = E) = 1. Therefore,
E # (), which is a contradiction. Thus, only asymmetric incumbent locations when the
condition of the equilibrium is satisfied need to be considered (remember symmetric
locations when the condition is satisfied may in fact constitute equilibria). Therefore,
|I;| < |I5| which implies, by Lemma 2.1, that P(W = I,) = 0. As the entrant stays
out it must be that £ € (I;,—I;) = Vg < Vj,,V,. Consider then the deviation
I, = —I,. Obviously it must still be the case that E' € (I;, —1,) = Vg < Vi, V,. As
E' ¢ (I,,-1,) = |E'| > |I,], \le then P(W = E|I, I, E') = 0 and, consequently,
E' = 0. Thus, it must be that P(W = L|I,,I;) = & and Oy, (I, I, E') = Oy,.

Case 5 [, ¢ W, I, c W/W'.

Proceed as in Case 5 from ‘Always Enter’, with the same additional remarks as

in Case 4 of this proof.

2.7.4 Proofs of the Multiple Districts Results

Proof of Lemma 2.2

49And both incumbents are now guaranteed of making the second round. So on this dimension
they have to be at least weakly better off.
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WOLOG assume that the district in which entry can be deterred has its median
at 0 (therefore, Iy = —I;). Consider now any district ¢ with median at Z;, where
Z; € [=6,0]. Let I, (i) = I; + Z; for both j = 1,2. This is possible as |Z;| < 0. As
successful entry is deterred in the central district it must also be deterred in district
7.
Proof of Lemma 2.3

If the incumbent party platforms are located at I; and I then they can choose
individual candidate platforms that are symmetric in all districts with medians in

the interval [2E2 — ¢, 02 4+ 5] As [Z]| = |Z| > ¢ then it must be that [Z,Z] €

[IIQLI"’ — 0, Iiztﬁ + 5] . Thus, there exists at least one interval of district medians such

that the incumbent parties can’t be located symmetrically. WOLOG, suppose that
district 7 with its median voter at 0 is one such district. I will now establish the
conditions such that successful entry can be deterred in this district with asymmetric
incumbent locations.

Suppose that in this district |I; ()| < |12 ()| and consider the outcomes when
E el (j)or E €I (j).

Case 1: E (j) € I] (7). This gives the following vote shares: Vg (j) — F(h—(j)gm)—
F (I (7)), Vi, () = F (1 (j)), and Vi, (5) = 1=F (PE520). As B (5) < [L ()], 112 ()
it must be that Vy, (j) > Ve (j) and Vi, (j) > Ve (7). Substituting the above expres-

sions for vote shares and solving gives the following relationships,

2P (1) 2 (2D (4)
L+ P () 2 o (22RO (®)

Case 2: E (j) € I7 (j). This gives the following vote shares: Vg (j) — F (11 (7)),
Vi, (j) = F(RQHEU) — F(1,(j)), and Vi, (j) = 1 - F(EZERE) As |1 ()] <
|E (5)] < |I2(5)] one of the following must be true: (a) Vi, (j) > Ve (j), or (b)
Ve (7) 2 Vi, () > Vi, (4)-
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Consider (a) first. This condition implies that F(——ﬂz—(—) > 2F (1, (j)). Com-
bining with identity A implies that 2F (I; (j)) = F(w—(]—)) Substituting this into
identity B produces the additional relationships, F (11 (j)) < 3 and F(Q——j’b—(])) < 2
Suppose that F (I (j)) < 3. Then it must be that (M;—IM) < —I,(j), and it is
possible to find a E’ such that (M) = —I;. Then Vg (J|E') = F (=L (j)) —
Fl—(220))) = p(BltlW) — F (1, (j)), and Vi, §IE') = 1 = F(=L(j) =
F (1)) = Vs GIE). As |E (j)] < |1 ()], |12 (7)] this implies that P (W = E|E") >
0 and successful entry is not deterred. So suppose instead that F (I (j)) = 5 (and
thus F(I‘—ﬂ—z@) %) and consider E' = I, (j) + A. Generating the vote shares and

_ _ L(G)+I2G)+A
substituting the supposition implies that Vg (j|E') — Vi, (J|E') = 2 [, (j)+1§(j fdz —

1111 (]]) 3 fdz. By the symmetry of f there exists a A small enough such that Vg (j|E')—
Vi, GIE") > 0. As |[E'(5)] < | (j)], |2 (j)| then P(W = E|E") > 0 and successful
entry is not deterred. Thus, successful entry deterrence consistent with possibility
(a) is impossible.

Now consider possibility (b). Firstly, Vi (j) > Vi, (7)) = F (I (j)) > F(—IM%—
F (I, (5)) . Solving this produces a strict version of condition A. Secondly, Vi, (j) >
Vi, (j) = F(EQERUY _ p(r, (5) > 1~ F(22EEE)) Solving and combining with
condition B implies that ZF(M) =1+F (11 (j)) . Applying the strict version of
condition A further implies that F (+IZ(])) 2. This inequality will be used below
to establish the lemma. Note that this relationship implies that F(OH2 )) > % + o,
for some o > 0.

If in district j the incumbents are located asymmetrically such that P (W = I,) =
0 (therefore I, is closer to the median) and successful entry is deterred then I5 (j) is
alming to optimize its secondary objectives (i.e., make the second round, maximize
vote share). If the entrant enters it maximizes its vote share by choosing E (j) €
I7 (j) and I, (j) is eliminated in the first round. Consider the deviation by I (j)
to I (j) = I, (j) — o, for some o > 0. The above analysis implies that the entrant
can win the district and that Cg; (11 () .1, (j)) = IT. Further, I, (j) is eliminated

in the first round and thus I, (j) must survive until the second round. Therefore, as

V(I (5), I (7)) = 1 — F(Rhllzey 5 1 pild2hl)y = vy ) candidate I, ()
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is strictly better off. Consequently, in all districts j in which P (W = Iy) = 0 it must
be that I (j) = I, — 6 (i.e., this candidate can’t move any further to the left).

If in all districts P (W = I;) = 0, and successful entry is deterred, then consider
the deviation of the party platform I, = I, — a, for some o > 0, and the candidate
platforms, for all j, I, (j) = I, — 6. By the above analysis this implies that party I, is
strictly better off in every district and thus Oy, (1}, 1:2) > Oy,. Therefore, there must
exist an interval of districts (3,3 + w) such that VZ, € [5,54+w], P(W =1(l)) >0
(and at least one of these must require I (k) = I, + ¢ otherwise the above deviation
of the party platform would still be applicable).

Assume, without loss of generality, that 5 = 0 (and the interval is (0, w)). Further,
consider the case when successful entry is deterred in the district with its median
voter at 0 (if instead entry is deterred in favor of I; in the district with its median
at w then analogous analysis holds with greater with even greater vote shares for
the entrant). The analysis above showed that F(gj%(])) > 2 + o, for some o > 0.
As P(W = I,) > 0 in all districts k such that Z; € (0,w), Lemma 2.1 implies that
|I (k) — Zy| < |I, (k) — Z|. Combining these relationships, and assuming E' (k) = 0,
implies that Vg = F(OLI;@) — P20y > 1 for small enough w. As |E (k)| <
|I; (k)] , |12 (k)| it must be that P (W = E) = 1 in these districts. This contradicts the
requirement that there exist some districts in which P (W = I3) > 0 and, therefore,

proves that an equilibrium that deters successful entry in all districts cannot exist

when |Z| = |Z| > 6.
Proof of Proposition 2.3

Firstly, as the incumbent location pair {I, —I;} deters entry in the single district
game, it must be the case that all location pairs {I;, —I;} such that I; € [I},0] also
deter successful entry in the single district game. This follows as successful entry on
the flank is still not possible (as |E| > |I1],|2]) and for any E € (I, —I;) it must
be that Vg is strictly lower and V;, and Vi, strictly higher than for the same E given
the pair {I;, —I;}. Therefore, as successful entry is deterred for the pair {I, —I{},

it must also be deterred for the pair {I, —I;} if I; € [I7,0].
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For district 4, I, (i) — Z; = Io+€ < I;. As | (i) — Zi| = |I, (i) — Z;| < I} it follows
that successful entry is deterred in district ¢+ and every district is in equilibrium. As
there exists no profitable deviations in any district (even without the restriction on
candidate movement), there exists no profitable deviations for the party. Therefore
these strategies constitute an equilibrium.

For the second half of the proposition consider the following set of strategies:
(I, LY ={l1,,+n},and I, (i) =, + Z;, [, (i) = I, + Z; — 0. If n < § — |Z| then
these candidate positions satisfy Assumption 2.7 . As above, there are no profitable

deviations in each district. Therefore, there are no profitable party deviations and

this is an equilibrium.
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Part 11

Vote Timing and Information

Aggregation
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Introduction

In contrast to the candidate centered approach of Part I, Part II concentrates on
the incentives and strategic decisions of the voters themselves. Unfortunately, the
environments in which real elections are held, and vote decisions made, are typically
far from ideal. Voters are often required to make their decisions with only limited
information about the preferences and characteristics of both the competing candi-
dates and their fellow voters. As such, it is not clear that the voting mechanism will
lead to acceptable outcomes. The literature on voting theory, to which the following
two chapters belong, is an attempt to examine this very possibility.

The standard way of modelling the voting problem is to assume that the candidates
differ on both quality and policy dimensions. Voters are assumed to be aware of the
candidates’ policy platforms, but only imperfectly informed about the relative quality
of the candidates. The problem then for the voters is that they are not sure which
candidate, if elected, would provide them with the maximum benefit. The question
of how voters respond to this situation, and the outcomes that are produced from
this behavior, has been the focus of the voting literature, and is the focus of Part II
of this thesis.

Until relatively recently this voting decision was not thought to require much
analysis. Each voter, quite simply, was expected to cast a ballot in accordance with
the private information she possessed (after allowing for her personal preferences).
However, in a series of important contributions, Lohmann (1994), Austen-Smith and
Banks (1996), and Feddersen and Pesendorfer (1997) showed that such behavior was
not always rational, and, in fact, that rational behavior required much greater strate-
gic analysis than previously thought. Basically, these papers showed that the voting
situation described above constituted a game, and therefore the voters should be
allowing for, and reacting to, the behavior of their fellow voters.

The key insight of this research is that voters should condition their actions on
being pivotal as this is the only situation in which their action will affect their utility.

Perhaps surprisingly, it was then observed that such conditioning does not always lead
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to voters casting ballots in accordance with their private information. Consequently.
it may be that not all relevant and valuable information is being used in deciding
election outcomes.

Given this seminal observation, research has focused on the question of how ef-
fective voting mechanisms are in aggregating dispersed private information in the
making of group decisions. The benchmark point of comparison is typically taken
to be the outcomes that would result if all information was public knowledge. In
common interest environments this equates to the set of Pareto optimal outcomes.
Previous work, most notably by Feddersen and Pesendorfer (1997), has suggested that
in simultaneous elections the plurality rule mechanism does, despite the conflicting
objectives and dispersed information, achieve optimal outcomes in large electorates.

In Chapters 3 and 4 Iinvestigate the effect of the timing of votes on this capability.
For clarity I study a common interest environment and attempt to explain how the
timing of votes can affect the behavior of voters, the outcomes that result, and the
quality of information aggregation within the plurality rule voting mechanism. In
Chapter 3 I firstly study a model of sequential voting and explain when and why the
commonly observed phenomena of bandwagons and momentum arise. I show that
only if voters have a desire to vote for the winning candidate, in addition to their
desire to select the better quality candidate, is momentum observed and bandwagons
begin. In Chapter 4 I go on to compare these results with analogous results for when
voting is simultaneous and characterize when each process is superior in aggregating
information and producing efficient outcomes. I find that in lopsided races, when a
strong front runner exists, sequential voting is preferred, but in tight races, when such
a front runner doesn’t exist, simultaneous voting is better. Strangely, the superior
performance of sequential voting in lopsided races is precisely because bandwagons
occur.

For these two chapters I am able to achieve results only at the expense of assuming
there is a countably infinite number of voters. As infinite voting populations are
rarely observed, I also examine in Chapter 4 a model of simultaneous voting when

voters have a desire to vote for the winner and when the voting population is finite.
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Reassuringly, I find that the results for large populations are well approximated by

the infinite population limit results.
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Chapter 3 Bandwagons and Momentum in

Sequential Voting
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Abstract

In this chapter I show that an equilibrium exists to the sequential voting game in
which a bandwagon begins with probability one. These bandwagons are driven by
a combination of beliefs and the desire of voters to vote for the winning candidate.
Significantly, in this equilibrium the pivot probability for each voter is nonzero, even
in an infinite population. Consequently the bandwagons do not always start after one
(or at most two) favorable decisions (as do economic cascades) and varying levels of
informative voting are observed, consistent with observations from sequential voting in
U.S. presidential primaries. Further, voters are exposed to counterintuitive incentives,
referred to as “buyers’ remorse,” that have been attributed to real primary voters.
From the play of this equilibrium an explanation of momentum arises that is con-
sistent with empirical regularities. This interpretation provides a formal distinction
between the often ambiguous concepts of momentum and bandwagons, and permits a
separation of their effects on the sequential voting mechanism. Finally, I observe that
the limiting cases of the generalized bandwagon voting strategy (BWV) employed
are informative and uninformative voting. This not only uncovers a natural relation-
ship between these three (previously thought to be distinct) voting strategies, but
also provides a connection between the positive results presented here and previous

negative findings on bandwagons in sequential voting.
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3.1 Introduction

The emphasis placed on “momentum” and “bandwagons” during the American pres-
idential primary process might well overwhelm even the most casual observer. Both
the media and the voting population pay close attention to the current status of “mo-
mentum” and the possible onset of a “bandwagon.” Even the candidates themselves
believe in the power of these phenomena.! In response, an extensive academic litera-
ture has arisen that has not only confirmed the existence of these phenomena, but in
fact concluded that they can alter the outcome of an election.? Remarkably, despite
this emphasis and apparent importance, there does not exist a rigorous theoretical
explanation for these phenomena.

In fact, there does not even exist standardized definitions of the dynamic forces
these terms are intended to describe. There are common underlying themes, however,
and these are captured by the following informal descriptions: a “bandwagon” is said
to have begun if a point is reached such that (nearly) all subsequent voters vote for
the leading candidate, and a candidate is said to have “momentum” when his chances
of victory are improving.

Though the presidential primaries are the most visible (and studied) example of
sequential voting, the questions raised here are applicable to any decision situation
in which a voting process is used. It is possible for a “bandwagon” to start for an
investment option when votes are cast around a boardroom table just as one often
starts for fortunate presidential candidates. Consequently, the dynamic phenomena of
“bandwagons” and “momentum” impact all aspects of society where voting processes

are employed. These settings are so diverse as to include shareholders voting at annual

1An explicit example of this is found in an interview with George Bush after his success in the
1980 Iowa caucuses (Greenfield (1982, p.39-40)),

“What we’ll have, you see, is momentum. We will have forward ‘Big Mo’ on our side,
as they say in athletics.”

“Big Mo’?,” Schieffer asked.

“Yeah,” Bush replied, ““Mo,” momentum.”

In addition to this, there are many other, less explicit, examples of candidate manipulation and

strategy aimed at taking advantage of these phenomena (see Bartels (1988)).
2Jimmy Carter in 1976 is the most commonly cited example (see Bartels (1988)).
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meetings, the formulation of supreme court rulings and even (in principle) the setting
of monetary policy by central banks.

Given the significance of the decisions that are made, or could be made, with
sequential voting it would seem an important objective to understand why momentum
is observed, and when and why bandwagons begin. The answers to these questions
can explain how momentum and bandwagons affect the selection of candidates via
sequential choice, and whether the winning candidates are the “best” choices available
to the electorate. In this chapter I attempt to answer these very questions. I present
a model of incomplete and asymmetric information in sequential voting in which both
momentum and bandwagons are observed. Further, I characterize the conditions that
lead to the start of a bandwagon and quantify the cost of this phenomenon to society
in terms of the quality of candidate that is selected. In Chapter 4, I continue this
work and compare the information aggregation properties of the sequential voting
mechanism unearthed here with those of the simultaneous voting mechanism.

Previously it had been thought that the models of informational cascades from
the economics literature could be applied directly to models of sequential voting.® In
an informational cascade, agents ignore their private information and instead mimic
the behavior of previous agents. However, the models of cascades in economics are
of individual action, not collective choice. Put simply, the economic agent consumes
her choice, regardless of the choices of others, whereas the voter consumes the group
selection independent of her own choice. Consequently, voters must concern them-
selves not only with the choices made before them, but also with how their choice
will influence the choices of voters following them.

Fey (1998) and Wit (1997) show that these differences are more than trivial.
They show that while an economic type of informational cascade can be supported as
a perfect Bayesian equilibrium in a sequential voting model, this equilibrium is only
supportable by severely restricting the inferences later voters can make about the
actions of earlier voters. Further, once a “sensible” (Fey (1998)) restriction on beliefs

(possible inferences) is imposed, an informational cascade cannot be supported as an

3Bikhchandani et al. (1992) cite voting as an application for their results.
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equilibrium. Instead, Fey and Wit find that “informative voting” (meaning all voters
vote according to their private information) is a perfect Bayesian equilibrium to the
voting model, and that this is true without any restriction on inferences.

These negative results do not correspond with the empirical observation of mo-
mentum and bandwagons in sequential elections. They do, however, show that voting
bandwagons must be caused by forces other than those causing economic cascades.
In this chapter I derive positive results supporting bandwagons and momentum. The
bandwagons I find, unlike economic cascades, are not driven solely by individuals’
beliefs but also by the desire of voters to vote for the winning candidate.

This different cause results in bandwagons that are much more general than are
economic cascades. Voters will “jump on the bandwagon” when the support for the
leading candidate passes through a certain threshold. This threshold is flexible: it
can be so low that a bandwagon starts immediately, or so high that no matter how
much support a particular candidate receives he will never benefit from a bandwagon.
In contrast, economic cascades do not exhibit this flexibility, and instead have a fixed
threshold. The flexibility in these voting bandwagons is consistent with the different
types of bandwagons observed in sequential elections.*

The bandwagon threshold is determined by the degree of the voters’ desire to be
on the winning team. For any particular intensity of this desire it is possible that
several different threshold levels are supportable as equilibria. As this willingness
approaches zero the minimum number of votes required before the bandwagon begins
approaches infinity. However, the key finding is that as long as the desire to vote for
the winner is nonzero, a bandwagon will ultimately occur.

In the limiting case, when voters gain no additional utility from voting for the
Winnef, the threshold becomes so high that it can never be reached, implying that all
voters vote “informatively” and a bandwagon never starts! This is the case considered
by Fey (1998) and Wit (1997), thus their negative results can be seen as the special
limiting case of the positive results presented here. At the other extreme, if the utility

gain from voting for the winner is sufficiently high then in equilibrium all voters will

‘Bartels (1985).
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disregard their private information and “bandwagon” immediately. This behavior
is sometimes called “uninformative voting.” These limit results uncover a natural
relationship between “informative,” “uninformative,” and “bandwagon” voting in
which these three, previously thought to be independent, voting strategies can be
seen as special cases of the one general voting strategy.’

From the features of the bandwagon equilibrium just described, an explanation of
momentum arises quite naturally. This interpretation of momentum displays char-
acteristics that are consistent with the most commonly cited empirical regularities:
that primary election wins tend to lead to greater voter support and improved perfor-
mance in subsequent primaries and, most critically, that momentum can be reversed.
I will show that these characteristics arise as mechanical by-products of the model of
incomplete information and Bayesian updating employed here. This interpretation
Aprovid'es a formal separation and distinction between the often ambiguous concepts
of momentum and bandwagons in sequential elections.

To support these results, one can cite many possible reasons why a voter may gain
additional utility from voting for the winning candidate. These range from the pure
psychological benefits of being on the winning team or conforming with the majority,
to the benefits of rational strategic considerations. The behavior of “yes men,” (people
who always agree with another’s suggestion) is consistent with such a desire. A more
overt example is the people of New Hampshire, who enjoy voting for the ultimate
winner of the primary contests to such an extent that they boast about their ability
to regularly do so, such as via a sign in Manchester airport that reads, “Always First,
Always Right.”® Confirming this intuition, Niemi and Bartels (1984) and Bartels
(1988) provide rigorous experimental and empirical evidence, respectively, consistent
with such a desire. They show that a voter’s likelihood of voting for a candidate
increases with her belief that this candidate will win, and that this impact 1s over
and above the effect the belief has on her underlying preferences.

This extension formalizes and makes explicit the notion that voters derive an in-

°As defined by Fey (1998).
6As described in the Los Angeles Times (Fiore (1/26/00, p. Al)).
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trinsic benefit from casting a ballot. Such a notion is absent from traditional rational
choice models, causing them to be plagued by the “paradox of turnout.” This conun-
drum is that if voting is costly (in time and effort etc.), and voters have the option to
abstain, then in any rational choice equilibrium turnout is far lower than is empirically
observed. This paradox remains an open question, but is typically ignored under the
(usually unstated) belief that at least some voters derive an intangible benefit from
voting. In this chapter I convert this implicit belief into an explicit assumption and
show that if the benefit of voting depends on expectations as to which candidate will
win the election, as is empirically documented, then bandwagons and momentum will
be observed in sequential elections.

The primary contribution of this chapter is to provide a possible explanation to an
open question: why are bandwagons and momentum observed in sequential voting?
Whilst this explanation, that voters have a desire to vote for the winner, is seemingly
intuitive, the voting behavior and equilibrium that arise from this incentive are in fact
rather surprising when we consider the problem more deeply. The standard intuition
from voting games is that the ability of any single voter to make a difference, his
“pivot probability,” approaches zero as the population becomes large. Consequently,
the marginal utility for a voter of using private information to advantageously affect
the outcome disappears in the limit. With the infinite population assumed here it
may therefore be expected that the addition of a desire to vote for the winner would
swamp the informational incentive and result not only in bandwagons, but band-
wagons that start immediately. Obviously, such bandwagons would not resemble the
flexible bandwagons described above that are found in real sequential elections. The
flexible bandwagons found here may also be surprising from the opposite perspective.
Alternative intuition may be that the inclusion of a desire to vote for the winner
would not make any difference at all to the models of Fey (1998) and Wit (1997)
given the game remains one of common interest (as ideally all voters would still like
to make the same correct choice).

Interestingly, I find neither of these extremes to be the case and instead find that

pivot probabilities do not go to zero for any voter. Consequently, my model predicts
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a combination of informative and uninformative voting that is consistent with the
empirical phenomena of bandwagons and momentum.

In addition to this, I uncover unexpected incentives facing voters both before and
after a bandwagon begins. I find that, once a candidate has achieved more than a two
vote lead, all voters wish to vote against this leader in order to increase the probability
of selecting the best candidate, even those voters whose private information indicates
that he is the best candidate. Surprisingly, it is only the desire to vote for the winner
that causes these voters to support the leader. These incentives are surprising as
informational incentives alone typically lead the voter to cast his ballot informatively
when other voters are behaving symmetrically, as was found to be the case in the
similar models of Fey (1998) and Wit (1997). Significantly, these strange incentives
have actually been observed in presidential primaries and are referred to as “buyers’
remorse.”” Similar to the incentives faced by voters in my model, “buyers’ remorse”
describes the hesitation of voters to support the leading candidate for fear that it
would end the race prematurely.

These incentives also show that the existence of bandwagons with flexible thresh-
olds is more than an issue of beliefs, as was the case with the limited cascades of
Fey (1998) and Wit (1997). In fact, regardless of beliefs, voters must gain additional
utility from voting for the winner to make following the bandwagon their optimal
action, even when the equilibrium requires them to vote “informatively” before the
bandwagon has begun.

Taken together, these counterintuitive incentives and characteristics add up to the
intuitive solution that a desire to vote for the winner leads to the onset of bandwagons
and momentum. Additionally, these findings indicate the hurdles other potential
explanations of bandwagons would need to overcome and the characteristics they
must exhibit.

The remainder of the chapter is organized as follows. The following two sections
present the model and the results. In section 4, I motivate and justify the assumption

that voters derive additional utility from voting for the winner, and discuss the nature

"Los Angeles Times (Brownstein (1/26/00, p. A8)).
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of the bandwagons and momentum found in the model. The final section concludes

and suggests several directions for future research.

3.2 The Model

The model is one of sequential voting with incomplete information. There are a
(countably) infinite number of voters who cast ballots sequentially, in a fixed order.®
The voters are labeled 1,2,3,...,7,... . There are two candidates, A and B. The can-
didate who wins is determined according to majority rule. The majority rule for an
infinite population is defined below. This definition simply claims that if one candi-
date forges a vote share lead that he never relinquishes, even in the limit, then he is
declared the winner. If neither candidate can achieve such a lead then the election is
declared a tie and the winner is decided by the toss of a fair coin. When the voting
population is finite this definition collapses to the standard definition of majority rule.
Let v; denote the vote cast by voter 7, and W the winner of the election. The vote

share of candidate A after n votes have been cast is S, (A) = %Z?:l L{y,=4}-

Definition 3.1 The majority rule winner is,

W = A if liminf S, (A) >

7

,__,l\"lb—‘

W = B if limsup S, (4) <

57 or,

1
PW=A) = P(W=B)= 5 otherwise.’

8The assumption of an infinite number of voters is, of course, an approximation to reality. It is
in the same spirit as the assumption of a continuum of voters in simultaneous voting games and aids
considerably in the tractability of the problem. In an economic context this assumption was made
by Lee (1993) in an analysis of the convergence characteristics of cascades. One additional problem
that arises due to the sequential voting context is with respect to the duration of the election. If
there is equal temporal spacing between voters then either the election will go on forever or there
is a nonmeasurable amount of time between each voter. However, a simple solution is provided to
this dilemma by a recourse to the basic properties of a convergent geometric progression. If instead
the time between voters is decreasing by a factor less than one then the election is finished in finite
time and there is still a measurable amount of time between any pair of voters.

9As S, (A) is a bounded sequence the liminf and the lim sup must exist. It is easy to see that
the winner under this rule is invariant to the reordering of any finite set of voters. However, given
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There are two possible states of the world, also labeled A and B. Each voter has
identical preferences dependent upon whether the correct candidate is chosen (A in
state A, and B in state B) and whether they vote for the winning candidate (reward
of £ > 0).1%11 If U; denotes voter utility, then these preferences for an arbitrary voter

i can be represented (loosely) by,
Ui = Lyw=44),w=8B)) T k-Lni=w}

This utility function is more general than that typically used in models of voting (e.g.,
Austen-Smith and Banks (1996), Fey (1998)). The extension is the inclusion of the
possibility that voters receive additional utility if they vote for the winning candidate.
Previous models considered only the limit case of £ = 0. Note that despite the
difference between this utility specification and previous models, the common values
component implies that if information was complete all voters would still ideally wish

to make the same decision.

the nature of countably infinite sequences this is not necessarily true for reorderings of infinite sets
of voters. Though, given the different sequences resulting from such a rearrangement, it would not
seem that invariance to such rearrangements is in fact a desirable property of an electoral rule.

There are many alternative ways that majority rule can be defined for a countably infinite voting
population, each with its own shortcomings. This definition is used for several reasons: it is equiv-
alent to majority rule when the population is finite, it captures the idea that the ability of a single
voter to affect the outcome disappears in the limit, and it is unaffected by simple changes in the
order of vote counting that afflict other possible definitions. For example, an obvious alternative
is that a candidate is declared the winner if it forges a vote lead (vote count and not vote share)
that never disappears. Consider the outcome then when the first person votes A and after that all
men vote A and women vote B. If counting alternates between the sexes then the outcome changes
depending on whether we start with a man or a woman (AABABAB=A wins, versus ABABABA=
tie), an obviously undesirable feature. The definition employed here is impervious to this type of
rearrangement. It should be noted though that regardless of how the technicalities in close elections
are dealt with, the results presented here are unaffected as in all of the equilibria the vote share of
the candidate deemed victorious approaches one, and thus should be selected by any reasonable
counting rule.

10As mentioned in the introduction of this chapter, and discussed in Section 3.4.1, there exists
ample motivations for why a voter would receive additional utility by voting for the candidate most
likely to win the nomination, as well as extensive empirical and experimental evidence that voters
do indeed vote with these incentives in mind.

Tt should be noted that the results presented here are not dependent upon all voters having
identical k. The results hold as stated if instead it is only required that all k; are within some
neighborhood of a common k. The robustness of the model to greater heterogeneity will be explored
on page 129.
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Each voter receives an independent, private signal about the true state of the
world. This signal is either o or [ and is sent accurately with some probability
p > 3. That is, P(a|]A) = P(8|B) = p. The state of the world can be interpreted
as specifying which candidate is unambiguously “better” in the minds of the voters.
The voters share a common prior, 7, that the true state is A. I assume priors are

“permissible,” which is given by the following definition.!?

Definition 3.2 Priors are “permissible” if there exists an integer m such that the

following expression holds,
T = P (3.1)

This is a restriction on permitted priors that is not usually made. It is made here
in order to permit tractability. The proof of the main result employs this restriction
but at no point does it appear critical. It will be seen lafer that the bandwagon
equilibria are robust to at least small perturbations of these priors. Priors will be
said to be “neutral” when m =0 (7 = 1).

As the voters cast their ballots in sequence there develops a publicly observed
history of votes. For any voter i the relevant history, denoted h; = (v, v, ..., v;_1),
is the vector of votes cast when it is her turn to decide. For the first voter this
history is empty.'> Denote by s; the private signal of voter i. A strategy for voter i
can then be defined as a map o; : (s, h;) — [0,1] describing the probability ¢ votes
for candidate A as a function of her information: the expressions o; (Als;, h;) and
o; (B]s;, h;) denote the probabilities of voting for candidates A and B, respectively,
given this information. A wvoting profile is then denoted by ¢ = (01, 09, ..., 03, ...) . Let
o_; represent the voting profile for all voters other than i.

After any history, h;, define voter j’s conditional probability that voter k’s sig-
nal is sx to be p;(sk|s;, ). Denote the belief profile by u. Bayes’ Rule is used to

12Tt may seem odd that the prior beliefs permitted depend on the precision of the voters’ private
signals. A possible justification for this is that before any of the private signals are revealed there
are an arbitrary number of signals that are publicly revealed, and that m more of these favored
candidate A rather than candidate B.

I31f voting is simultaneous, as will be considered in Chapter 4, then this history is empty for all
voters.
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update beliefs after all v; when o; (v;]s;, h;) > 0 for some s;. Expected utility for
voter 7, u;, can now be defined formally as a map u; : (o, s;, h;) — R. A Perfect
Bayesian Equilibrium (PBE) is a voting profile, o, and a belief profile, y, such that

u; (o8i, hy) > u; (o), 0_i|si, hi) Vi, 00, 85, byt
Given that a voter’s strategy may depend on her private signal, her vote choice may
contain some of this private information. The other voters will use this information
to update their beliefs as to which is the best candidate. For the history h; denote the
belief of voter i that A is the best candidate by 7 (h;|7, 0, ). In making a decision
a voter combines this belief with her private signal and forms the updated belief,
© (h;, si|m, o, 1) . For ease of exposition the triple, (7,0, ), will be omitted from the

notation for the remainder of the chapter.
Voting Strategies

Both the beliefs held and the private signal observed by a voter affect the expected
utility from each decision choice. One possibility is that the signal will dominate
these calculations and consequently the voter will always vote in agreement with it.
Alternatively, the beliefs may dominate if they reach a certain level, or a combination
of the two factors may influence the vote cast. The following general Cut Point Voting

strategy incorporates all of these possibilities.!®

Definition 3.3 Cut Point Voting (CPV) is a strategy, o;, such that

B Zf W(hl) < CB
A if n(hs) > Caa

s; otherwise

U;

Where C4,Cp € [0,1] and C4 > Cp.

Denote by CPV(Cp,C4) the strategy when the thresholds are Cp and C4. As

the parameters C'4 and Cp vary the behavior of a voter using a CPV strategy also

14Tf voting is simultaneous then this definition is equivalent to a Nash equilibrium.
15Though s; ¢ {4, B}, I abuse notation and use v; = s; to represent the action of voting infor-
matively (i.e., voting in accordance with the private signal).
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varies. I will be particularly interested in certain subsets of this generalized strategy.
If either C4,Cp ¢ {0, 1} then each voter “votes her signal” until beliefs pass a given
threshold in favor of either candidate, at which point the subsequent voters “jump on
the bandwagon” and vote for the leading candidate regardless of their private signal.
[ will call this set of strategies Bandwagon Voting and denote it by BWV(Cg,C4).

Given this strategy, a bandwagon is the vote sequence after a threshold is passed.
Thus a bandwagon is said to have commenced when all voters begin voting for the
leading candidate regardless of their private signals, and a victory for this candidate
becomes inevitable.!® Tt is easy to show that if both C4,C € (0, 1) then a bandwagon
will start with probability one.!”

This definition of bandwagon voting differs from the definition of cascades used
both in the economics literature (e.g., Bikhchandani, et al. (1992)) and voting models
(Fey (1998), Wit (1997)). Cascades restrict attention to the case where Cy = p and
Cp = 1 — p. Consequently, depending on the exact value of 7, once either a one vote
or, at most, two vote lead is established by a candidate the contest is effectively over
as all subsequent voters cascade onto this candidate.

The bandwagon behavior found in my model is of a far richer, and more realistic,
variety. Depending on priors and the value of the parameters, k£ and p, in equilibrium
the bandwagon may require a vote lead of any amount before a candidate benefits from
its effects. Though previous attempts at theoretical descriptions of this phenomenon
have not allowed for this generality, it is precisely this type of bandwagon threshold

that meshes well with empirical observation. This is made clear by Bartels (1985),

“Rather than doing better and better (or worse and worse) in an un-

broken cycle, candidates may reach plateaus of support determined in part

16This is consistent with the description by Berelson, Lazarsfeld, and McPhee (1954, p.289), “..
a “bandwagon effect”; people may vote for the man whom they expect to be the winner.” Though
in the literature there are many, often contradictory, descriptions of bandwagons and the situations
where they may occur, the notion described here seems to capture the common theme that voters
will support a candidate simply because he is expected to win.

17This is proven by showing that the probability a bandwagon hasn’t started is bounded above,
and that this bound approaches zero as the number of voters who have cast their ballots approaches
infinity. Therefore, with probability one a bandwagon must eventually start in finite time. This is
shown formally in the appendix.
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by their political skills and circumstances.” (p.814)

The generalized CPV definition also contains as special limit cases two other
voting strategies that were previously considered distinct from bandwagon voting
and defined separately. The first is “informative voting,” which is when a voter
votes her signal regardless of other information. This corresponds to CPV(0,1).18
Likewise, “uninformative voting,” when a voter selects a candidate independent of
her private signal, corresponds to CPV(0,0) when picking candidate A, and CPV(1,1)
when picking candidate B.1® Therefore, instead of considering these different voting
strategies as competing theories of sequential voting and trying to decide between
them, they should be thought of as special cases of the one general theory.

In this light many apparently different nomination battles can be seen as consistent
with the one CPV strategy, and instead are simply examples of different parameter
values. Specifically, “informative voting” is the limit case of BWV in which the
bandwagon threshold is never reached.

I will also use these same terms to describe certain actions. I will say that,
regardless of the strategy being employed, a voter voted “informatively” if her vote
choice conveys her private information to the other voters. Likewise, she will be
said to have voted “uninformatively” if her vote choice reveals no information. For
example, all voters using a BWV strategy are required to vote “informatively” until
a threshold is passed, after which they vote “uninformatively.” Further, if a BWV
strategy is being played by all voters in equilibrium then I will refer to this as a
BWYV equilibrium. Analogous terminology will be used for “informative voting,”
“uninformative voting,” and CPV equilibria.

The definition of a PBE stated earlier places no restriction on the beliefs that can
be formed after a zero probability event is observed. The freedom of this variable in

games of asymmetric information often leads to the problem of multiple equilibria.

18 As it is assumed that m is finite it must be that 7 ¢ {0,1}.

191f all voters are using a BWYV strategy and m > C4, then as long as there are no deviations all
voters will vote uninformatively for candidate A. Observationally this path would be equivalent to
all voters using an “uninformative voting” strategy. However, these two strategies are not equivalent
for C4 > 0 as for BWV there exists a possible sequence of deviations (and beliefs) following which
a voter using the BWV strategy would have to vote for B.
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It is argued by Fey (1998) and Wit (1997) that in this voting context only a certain
refinement of these beliefs should be considered, what Fey calls a “sensible” refine-
ment.?Y Their argument is that if a voter who is expected to vote uninformatively for
A actually votes for B then subsequent voters should believe with probability one that
this voter observed a signal of 5. That is, they should not expect a voter to deviate
from a bandwagon if she observed a signal supporting the leading candidate. As Fey
observed, this reasoning is similar to that of the Intuitive Criterion (Cho and Kreps
(1987)). In the language of game theory, any deviation is “maximally informative.”
This reasoning is even more appropriate with the utility function employed here. I
will refer to beliefs that satisfy this refinement as “sensible.” Formally this restriction

is the following.

Definition 3.4 Consider any pair of voters i and j where 7 < 1, and vj, where

o;(vjlsj, hj) =0 for all s; € {a, B}. Beliefs are considered to be “sensible” if,

pi(s; = vjlsi, hy) =1

The arguments for this refinement are persuasive and it shall be employed through-
out the chapter.?’ Once “sensible” beliefs are imposed the difference between the
model presented here and previous work becomes clear. In applying economic cas-
cades to the voting model, Fey (1998) and Wit (1997) find that a cascade can be
22

supported as an equilibrium, but not once beliefs are required to be “sensible.

Instead they find that “informative voting” is supportable as an equilibrium for any

20This refinement does not impact the analysis when voting is simultaneous.

21For the restricted cascades considered by Fey, equilibria without “sensible” beliefs can be elim-
inated by a weak version of the Intuitive Criterion (make inequality signs weak). However, for the
general bandwagons considered here such a refinement is not possible, and instead arguments more
in the spirit of the Divinity Criteria are required (Banks and Sobel (1987)). Though, significantly, for
k > 0 this refinement of beliefs is not necessary for any of the results. Regardless of beliefs a band-
wagon equilibrium exists, voter behavior on the equilibrium path is unchanged, and “informative
voting” is not an equilibrium.

22Essentially the beliefs which support cascade behavior as an equilibrium require that any devi-
ation from the cascade be ignored by later voters.
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specification of beliefs.??

These negative findings, which at first glance appear fatal to the prospect of
bandwagons, disguise the subtlety of each voter’s decision process. Significantly,
“informative voting” is not only the limiting case of CPV, but it is the only case for
which a bandwagon doesn’t start. Therefore, in the “informative voting” equilibrium
found by Fey and Wit for the case of £ = 0 voters would be willing to “jump on the
bandwagon,” but beliefs never quite reach the threshold for this to happen.

This interpretation implies that bandwagon behavior is not as unattractive to vot-
ers as previously thought. In fact, later voters approach indifference between voting
informatively and bandwagoning, though always marginally preferring the former. In
this chapter I show that if voters receive additional utility by voting for the winning
candidate then this ordering is reversed and voters strictly prefer to bandwagon than
vote informatively once either candidate achieves a large enough vote lead. This is
true for even an arbitrarily small k. Therefore, in equilibrium the CPV threshold is
lowered and a bandwagon will start with probability one. In fact, as k approaches
zero the minimum number of votes required before a bandwagon starts approaches
infinity, which is when a bandwagon never starts. Thus, the findings of Fey and Wit
can be seen as a limiting case, and the only case in which a bandwagon will never
start, for when voters derive utility from voting for the winner.

If all voters are using the BWYV strategy and beliefs are “sensible” then behavior
can be described as follows: all voters vote their private signals until beliefs in favor
of one of the candidates passes through a threshold, at which point all subsequent
voters vote for this candidate regardless of their private signals. For beliefs to reach
the threshold a candidate requires a certain “vote lead,” which is the number of votes
for one candidate in excess of the number of votes for the other candidate. By the
properties of Bayesian updating with equally precise signals the “vote lead” is, up
until the bandwagon starts, a sufficient statistic for the information contained in the

vote history. Thus, in order to adhere to the BWYV strategy each voter need only

23 As all histories are reached with positive probability if voting is informative, all beliefs are
determined by Bayes’ rule.
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know their private signal and the vote lead.

However, when beliefs are “sensible,” a difficulty arises in that after the bandwagon
starts some votes contain no information whereas others fully reveal the voter’s private
signal (when a voter deviates from the bandwagon). In order to keep track of the
information contained in votes both before and after the bandwagon has started, I
will define the “informative vote lead.” This measure is similar to the “vote lead,” but
instead ignores votes that reveal no private information. This measure, denoted by
n;+1 when ¢ votes have been cast, is positive when A has received more “informative”
votes than candidate B, and negative otherwise. Assuming that all voters are using

the BWYV strategy, n; can be defined as follows.

Definition 3.5 The “informative vote lead” faced by voter i is,

ny = Z [1{vj=A} - 1{11]-:3}] (32)
Jim(hg)#m(hjg1)

With an infinite number of ballots to follow each voter, voters k£ and [ face the
same decision problem if ny = n;. Thus, to simplify notation I will omit the subscript
on n. As n is a sufficient statistic for the history of votes it can be used to simplify
the expressions representing the beliefs of voters. Note that these expressions hold

even if a voter should deviate after the onset of a bandwagon.

pm+n
pmEn + (1= p)min
pm+n+1
QO(TL, a) = pm+n+1 + (1 _ p)m—Hz—!-l7 and’
pm+n—1
<p(n, 5) = m+n—1

prrt 4+ (1-p)

Obviously, p(n—1,a) = ¢(n+1, 8). To simplify the notation further these arguments

shall be combined in the expression of ¢ such that p(n+1) = ¢(n,«) and p(n—1) =
(n, B).
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In the equilibria found here the thresholds are symmetric (satisfving Cg = 1-C}).
If the “informative vote lead” required to reach either threshold from neutral priors
(m = 0) is g, then this will be referred to as a g-step bandwagon. From the statement
of the strategies the value of g is found by the following rule: from neutral priors g is

the unique integer such that,

m(g—1) € (1—=C4Cy4), and
m(g) ¢ (1—Ca,Ca)

An additional feature of this type of bandwagon is that for non-neutral priors
(m # 0) the vote lead required by each candidate will be unbalanced and reflective
of the value of m. These unbalanced bandwagons are able to describe accurately
the common primary processes which start with a dominant candidate. Good recent
examples of this would be the two nomination races of 2000. In both cases the front-
runners, Gore and Bush, were thought to need only a few solid performances to wrap
up the nomination whereas the challengers, Bradley and McCain, would only secure
their place in the race with such performances.?*

In the analysis to follow I will consider the generalized cut point voting strategy.
I will look at both internal values, or BWV, and the limit cases of “uninformative”
and “informative voting.” These possibilities cover a broad range of possible strategic
considerations that have been conjectured to occur in real sequential elections. Given
the size of the voters’ strategy spaces there may, of course, be other equilibrium
strategies to this game. However, noting the consistency of the BWV equilibrium
with observation, it is hoped that some understanding of the strategic aspects of

Voting in sequential elections can be gained by analyzing this general voting strategy.

24 Judgements like this were commonplace before the New Hampshire primary. One example is
from the Los Angeles Times (Brownstein (1/26/2000, p. A8)), “Conversely, if the two front-runners
can reinforce their solid Iowa victories with wins in New Hampshire, the challengers may find the
curtain falling in the first act.

“I think that New Hampshire is the last chance that both McCain and Bradley have to gain a
toehold on the nomination,” says political scientist William G. Mayer. “Even if they win, I still
think the odds are probably against them. But the odds are even more strikingly against them if
they lose New Hampshire.””
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3.3 Results

The main result will now be stated and proven. The following theorem shows that
even with “sensible” beliefs, BWV is an equilibrium for all nonzero values of £. Fur-
ther, by the properties of BWV the outcomes of these equilibria require, with prob-
ability one, the start of a bandwagon. I find also that as k approaches zero the
bandwagon takes longer and longer to begin. This requires a candidate to achieve an
increasingly greater vote lead before all voters will support him regardless of their pri-
vate signal. However, the crucial finding is that no matter how small is £ a bandwagon

will eventually begin.

Theorem 3.1 Suppose that beliefs are “sensible” and that k > 0. Then 3 (Cp,C4) €
(0, 1)2, where Cg = 1 — Cy, such that Bandwagon Voting by all voters constitutes a

perfect Bayesian equilibrium.

Sketch of Proof: The complete proof is in the appendix. Here I will supply a sketch

of the proof’s structure.

1. Assume that 7 = % (i.e., m = 0). The proof for all m # 0 follows immediately.
This is a consequence of the assumption of an infinite number of voters and is
a key characteristic to making the model tractable. With an infinite number of
voters to follow it doesn’t matter to each voter how many votes have been cast,
all that matters is the respective vote counts. Thus the analysis for m = 1 is

identical to that for m = 0 if we simply think of there having been one vote for

candidate A before the first voter casts her ballot.

2. Similarly, I do not need to consider the incentives facing each voter in the
sequence, but only a representative voter for each value of n. Symmetry implies
that this can be further reduced to only « observers for n = 0 and all o and

observers for n > 0.

3. I then assume a certain length of the bandwagon, ¢, and show how the con-

straints on k for o observers are increasing in n (for n < g). And likewise for
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observers they are decreasing. Therefore, to satisfy incentive compatibility (IC)
only the constraints on the final observers need be considered. These constraints

will be denoted by k,, and Eg, respectively.

4. The IC constraints for voters after the bandwagon has started (n = g) are
then determined. The constraint for § observers will be denoted by k,. The

constraint on « observers is shown to be dominated by k..

5. By comparing these constraints I then show that for each g there exists a mea-

surable region of k£ for which a g-step bandwagon is an equilibrium.

6. I then compare these regions for different values of g and show that for consec-
utive values of g they intersect. This result is then shown to imply that every
value of k£ > 0 is in a region that corresponds to some g-step bandwagon, and

thus the theorem is proven.

In a bandwagon equilibrium all voters vote informatively until beliefs in favor
of a certain candidate pass through a threshold. After this point is reached, all
subsequent voters “jump onto the bandwagon” of that candidate and vote for him
regardless of their private signals. This threshold is the same for either candidate,
but because of the possibility of non-neutral priors the vote lead required by either
candidate to reach this threshold may differ. It is possible for the bandwagon to
begin immediately, before even the first vote is cast. This will occur for sufficiently
skewed priors (|m| > ¢). This situation could correspond to an incumbent president
running unchallenged in the nomination process because it is not worth the effort for
a challenger to even participate.

The following figures give some indication as to the length of the bandwagon that
could be expected. As can be seen, the corresponding bandwagon length increases
slowly as k decreases. For example, Figure 3.1c shows that for a 6-step bandwagon £
must be at least less than 0.1, and even far smaller for most values of p, and Figure 3.1d
implies that only for extremely small values of £ is a bandwagon of length ten or more

required to support an equilibrium. For each g value the suitable region of k is that
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between the highest curve, Eg, and the second highest curve, either kg or k,,. The
reader should note the difference in scales between the graphs.

In the proof it is established that —Eg is strictly decreasing in g. This implies that
pairs of £ and p above the top curve, Eg must be associated with bandwagons of
shorter length than that represented by the curve. However, it is not necessarily the
case that max [@g,ﬁ*g] is decreasing in g, so the opposite statement cannot be made
for points in the figure below these curves.?> What can be said, though, is that the
minimum g that is supportable as an equilibrium approaches infinity as £ — 0. This
follows from the combination of three facts: k, > 0 for all finite g (this can be seen
from the statement of k, and is proven generally in Corollary 3.1), ky > kg, and
limy o kg = 0.

For any particular g the curve k,, is derived from the incentive compatibility
constraint for voters who observe a signal in favor of the leading candidate before
a bandwagon begins. As mentioned in step 3 of the proof’s sketch, the binding

constraint, that represented by k,,, is from the final observer of a favorable signal

g
before the bandwagon begins (i.e., when n = g — 1). The reader may wonder why
this bound is on the upper end of possible values of n rather than the lower end, and
even why these bounds are positive at all. This doubt arises because these voters are
expected to vote their signal in support of the leading candidate. Therefore, intuition
may suggest that they do not need the additional payoff from voting for the winner
in order to be enticed into following this strategy. Further, because the belief that A
is the true state and the probability of A winning the election are increasing in n, it
may be concluded that if the first « observer is happy to vote for A then so too must
all subsequent a observers.

However, this intuition is misleading. Strangely enough, if a bandwagon equilib-
rium is being played then as n increases the pure candidate selection incentive to vote

for A (the non-k terms) actually decreases and for n > 1 it is negative. The (correct)

intuition is that by voting for A and providing A with an even larger lead the voter is

**The non-monotonicity in g is due to the non-monotonicity of k,,. The intuition for this charac-
teristic will be described briefly on page 120.
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k*2= 0 Vp € (1/2,1)
Figure 3.1a
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K+
— 3 g = 3
Figure 3.1b

Figure 3.1: Equilibrium Bandwagon Lengths
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pushing the election closer to the bandwagon point, after which no more information
is aggregated, and this proves costly. Consider an « observer when n = g — 1. If
she votes for A, as her signal indicates, then a bandwagon begins and A is a certain
winner. However, if she goes against her signal and votes for B then n = ¢ — 2 and
subsequent voters will continue to vote informatively. If A is the “better” candidate,
this deviation will reduce only slightly the probability that A will win. But if B is the
“better” candidate then his chances of overcoming the vote deficit and winning are
much greater. Therefore, by deviating the voter provides more time for the “better”
candidate to emerge and increases the probability that this candidate is selected (even
after these probabilities are weighted by current beliefs).

Each voter trades off this informational incentive against the positive incentive to
vote for the likely winner by voting with her signal. As n increases the incentive to
"go with the winner’ also increases. However, the informational incentive increases at
a faster rate, resulting in the tightest constraint being that of the final o observer.

This intuition does not arise in the model of Fey (1998) as he considers infor-
mational cascades which must be a length of either one or two (i.e., ¢ = 1,2). For
these lengths, and only for these lengths, is it the case that k,, # 0. This finding also
implies that the generalized bandwagon equilibria found here do not depend on the

assumption of “sensible” beliefs. The fact that k£,, > 0 Vg > 2 implies that even with-

L
out “sensible” beliefs a bandwagon of length longer than two cannot be supported as
an equilibrium unless &£ > 0.

Significantly, these strange incentives are often observed in presidential primaries.
An example from the 2000 campaign is provided by a comment in the Los Angeles
Times (1/26/00, p. A8), “Many analysts — including some in the Gore camp —
believe Bradley could benefit from a reluctance among some New Hampshire voters
to possibly end the race by giving the vice president a victory.” These incentives are
commonly referred to, at least in the popular literature, as “buyers’ remorse.”

This characteristic of k,, also indicates why other approaches to generalizing the

voting model are unlikely to lead to the onset of bandwagons. Unless a voter has an

independent incentive to vote for the leading candidate then she will vote against the
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leader for informational purposes. The onset of a bandwagon requires the alignment
of preferences behind the leading candidate, preferences that arise, perhaps uniquely,
when voters have a desire to vote for the winner.

Significantly, this implies that bandwagons can’t be driven solely by the candidates
or the media. An alternative conjecture to describe bandwagons may be that it is
the candidates or the media, and not the voters, who decide a critical point has been
reached and cease competing or covering the contest, respectively, effectively starting
a bandwagon for the remaining candidate. The presence of “buyers’ remorse” implies
that voters would never let such a critical point be reached if they didn’t have an
additional incentive to vote for the winner. Thus, the incentives of the candidates or
the media alone can’t explain the onset of bandwagons.

Another interesting feature of k,, is that it is not always monotonically decreasing
in g. Significantly, as pointed out on page 116, this rules out the strong statement
that any & (for a given p) that is too small for a g-step bandwagon can only support
equilibria with longer bandwagon lengths. To understand why this is the case requires
a closer look at “buyers’ remorse” and the utility from conforming, and not conform-
ing, with the majority decision. Suppose a g-step bandwagon is being played. If
g = 2 then “buyers’ remorse” is zero (see the proof of Theorem 3.1). This is because,
with such a short bandwagon length, very little information is aggregated. Conse-
quently, inserting some misinformation into the system (by voting against a private
signal) involves a cost that does not exceed the benefit of allowing more information
to be aggregated. For g > 2, however, this benefit exceeds the cost and the “buyers’
remorse” incentive is positive. Though as ¢ — oo this benefit becomes small as the
probability of affecting the outcome (by voting against a signal) becomes small. Thus,
the strength of the “buyers’ remorse” incentive is not monotonic in g. Another way
of looking at this is that as g increases, the accuracy of the voting decision increases
and, therefore, the ability to make informational gains gets smaller. This interpre-
tation suggests that the “buyers’ remorse” incentive will be stronger the smaller is p

(as then the less accurate is the election decision for a fixed g).
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2 4

0.6 | 3.846 | 13.402
p 075 3.2 7.805
0.9 | 2439 | 4.998

Table 3.1: Expected Number of Votes till Bandwagon Begins

In contrast, the cost of succumbing to “buyers’ remorse” and voting against a
private signal increases monotonically in g. This, quite simply, follows from the
fact that for larger g the trailing candidate is less likely to overcome the deficit and
triumph. Once again the strength of this effect depends on p. Essentially, the lower is
p the greater the chance the “better” candidate loses and a vote against the strongly
favored leader doesn’t prove costly.

Combining these intuitions, it follows that the lower is p the stronger is the “buyers
remorse” incentive and the lower is the cost of voting against the leader (in terms
of k). As a result, for small values of p, the non-concavity of the “buyers’ remorse”
incentive dominates and persists for small integer values of g, and therefore k,, is
non-monotonically decreasing in g. 2¢

In addition to the length of the bandwagon, it is also of interest to know the
expected number of votes before the bandwagon begins. Unfortunately, a general
expression for arbitrary length g does not seem tractable. As an indication, Table 3.1
presents the expected number of votes before bandwagons of length 2 and 4 begin for
several possible p values.

There are several things to note from this table. Firstly, even though there are an
infinite number of voters the expected number of votes until the election is effectively
decideld (a bandwagon begins) is small and most definitely finite. For example, even
when p = % and a four vote lead by either candidate is required a bandwagon is
expected to begin before eight votes have been cast. Secondly, the expected number
of votes is, at least for the values in the table, decreasing in p, the accuracy of the

private signal. This makes intuitive sense as the more accurate the information that

26Numerical estimations serve to strongly support these intuitions.
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is available to the voters, the more likely the better candidate will emerge, and the
sooner the election will be decided.

Once a bandwagon begins, subsequent voters are required to ignore their private
information and vote for the leading candidate. This entails a loss of valuable in-
formation with regards to which is the better candidate, and may lead to the least
preferred candidate being selected. This result may be considered surprising in several
respects. From one perspective, it is surprising that information is lost as the game
is one of common interest, even when k > 0, as ideally all voters would like to make
the same correct choice. From the opposite perspective, it may be surprising that
any information is aggregated at all. Considering that after the bandwagon begins
all voters (which, as was indicated in Table 3.1, is expected to be all but a finite few)
will ignore their private information and vote purely in order to support the winner,
it is suirprising that any voters are willing to vote informatively.

The explanation of these dual intuitions is that the sequential voting mechanism
creates a tension between information revelation and the desire of voters to vote for
the winner, and that this tension manifests itself in an interdependent sequence of
behavior. Later voters bandwagon because early voters vote informatively. This is
optimal because once the bandwagon threshold is reached their incentive to vote for
the winner dominates their desire to reveal their private information. Alternatively,
early voters are prepared to vote informatively precisely because later voters will
bandwagon. This effective correlation of votes ensures the pivot probabilities of early
voters are strictly positive, even with an infinite population, and provides them with
the incentive to vote informatively. Thus, whilst the sequential voting mechanism
inhibits full information aggregation when voters have a desire to vote for the winner,
it simultaneously ensures that not all information is lost.?”

The potential cost of bandwagons can be quantified by determining the proba-

bility of selecting the best candidate given a bandwagon equilibrium. For a g-step

2TThat the pivot probabilities are strictly positive also indicates that all voters in an infinite
population will turn out, even in the presence of a positive (but sufficiently small) cost of voting.
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g
1 3 6 9 s
0.6 | .6 |.7714 | .9193 | .9746 | 1
p | 0.75 | .75 | .9643 | .9986 | .9999 | 1
09 | .9 |.9986 | =1 ~1 |1

Table 3.2: P (W = “better” candidate|g, 7w (m))

bandwagon equilibrium this probability can be expressed as follows.?®

P (W = “better” candidate|g,7 (m)) = P (AJA)+ P (B|B)
= w(0)#
(9)

I
3

Surprisingly, this expression is independent of the prior beliefs, m. Intuition can
be gained by considering the conditions for a bandwagon to begin, and thus a winner
to be anointed. For a bandwagon to begin either candidate must gain an “informative
vote lead” such that m + n = g. Thus, whenever a bandwagon starts the belief that
the chosen candidate is the “better” one is 7 (g). And so, ex-ante, the expectation
the best candidate will be picked is 7 (¢g) . Consequently, the longer is the bandwagon
the more likely it is that the “better” candidate will be selected (as 7 (g) is increasing
in g). This probability is also equal to w (0), which at m 4+ n = 0 is equal to both
the probability that A wins if it is the “better” candidate and the probability that B
wins if it is “better.” The expectation of selecting the better candidate is, therefore,
w (0).

The previous identities show that for any finite g there exists a chance that the
inferio.r candidate wins the election. For low values of g this possibility can prove
very costly, as displayed for some representative values in Table 3.2. Note that when

g = oo a bandwagon never starts and the best candidate is almost always chosen.

28See Chapter 4 for a full derivation of these identities.
2Where w (n) is derived in the proof of Theorem 3.1 and is defined as the probability that a
candidate will win from neutral priors if it is the “better” candidate and has an n “informative vote

lead.”
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The voters’ desire to vote for the winner imposes a deadweight loss on themselves
and society by permitting the possibility that an inferior candidate is selected. It is
easy to prove from the above identities that for a particular g the probability of the
inferior candidate being selected is decreasing in p. However, because ¢ is a function
of p, this does not imply that in equilibrium a larger p necessarily increases this prob-
ability. That is, an increase in p may lead to a decrease in the equilibrium bandwagon
length and actually result in an efficiency loss. Critically, however, Theorem 3.2 and
Corollary 3.1 will show that regardless of the value of p, kK > 0 implies that g must
be finite, and & = 0 implies that ¢ must be infinite. Therefore, the voters’ desire
to vote for the winner results in strict inefficiency (in the sense that the “better”
candidate wins with a lower probability) in the selection of candidates compared to
the “informative voting” equilibrium when £ = 0.

If the sequential election is a primary then to the members of the party a poor
selection may not be entirely a deadweight loss. For example, a party may prefer a
quick nomination process as provided by a short bandwagon length, even if this has
the potential of leading to the selection of a sub-optimal candidate. This possibility
will be discussed in Section 3.4.1. Regardless of the private motivations of the party,
however, the failure to select the best candidate still imposes the cost of suboptimal
government on society.

As is evident from the proof of Theorem 3.1, it is possible for certain parameter
values (p and k) to be supportable as equilibria for bandwagons of different length. In
this light it is important to know, assuming the CPV strategy is being played in equi-
librium, whether for £ > 0 a bandwagon will eventually commence. The next result
shows that this is indeed the case. That for k£ > 0 “informative voting” (CPV(0,1))
is not éupportable as an equilibrium. Thus, if a symmetric CPV equilibrium is being
played it must be a BWV equilibrium, and with probability one a bandwagon must
commence after a finite number of votes. Note that the following result does not

require the restriction to permissible beliefs.3°

30In fact, the restriction to “sensible” beliefs is also not required as every vote history can be
reached with positive probability when all voters are using the “informative voting” strategy
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Theorem 3.2 Suppose that k > 0. Then “informative voting” (i.e., CPV(0,1)) by

all voters is not a perfect Bayesian equilibrium.

Proof: Consider a voter who faces a ¢ vote lead for A and who observes a private
signal for B. Beliefs are given by (¢t — 1), and the law of large numbers gives the
following probability of victory functions.

1 if A is the true state }

wit+1) =wlt-1)= { 0 otherwise

The key observation here is that because there are an infinite number of voters
the probability that a voter’s choice will make a difference to the outcome is zero.

This gives the utility values,

ulv = Al t)=pt—-1)[1+Ek+[1—pt-1][1+0]

= 1+ko(t-1)

Il

u(v Blf,t) =t —1)[14+0]+[1—p(t—1)][1+k]

= 1+k[1—-p(t-1)]
Incentive compatibility for £ > 0 then requires,

uv = BIB,t)> ulv = Al8,¢)

= pt-1)<

DN |

Which is not true for large enough ¢ given any 7 > 0. If 7 = 0 then the same analysis
for an o observer would lead to an analogous violation of IC. Thus, informative voting

by all voters cannot be an equilibrium. B

This result shows that, no matter how small £ is, if all other voters are voting
informatively then a point will be reached where the chance of securing k for a voter
by voting for the likely winner outweighs the information contribution of voting her

signal. And thus she will “jump on the bandwagon.” The crucial insight of this result
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is that if all voters are expected to vote informatively then in a large population the
probability that any one voter will make a difference, the pivot probability, goes
to zero. This is because subsequent voters cast their ballots solely on the contents
of their private signal and can’t be influenced by earlier voters. Consequently, the
incentive to make a difference is dominated by the desire to vote for the winner.?!

In contrast, the use of bandwagon strategies when g is finite, which also involves
some voters voting informatively, is supported as an equilibrium for the very reason
that not all voters vote informatively. In a bandwagon the decisions of later voters
can be influenced by the votes of earlier voters. Thus, even with a large population
the pivot probabilities do not go to zero. By abandoning some information (those
voters who bandwagon) the use of bandwagon strategies, perhaps counterintuitively,
ensures some information aggregation by allowing those voters who use their private
information to make a difference. This logic proves central to the results of Chapter 4
that compares the information aggregation properties of sequential and simultaneous
voting.

For a fixed p the length of the bandwagon increases without bound as k approaches
zero. The following result shows that in the limit at £ = 0 the length of the bandwagon
must be infinite. That is, neither candidate can ever establish a lead big enough to
start a bandwagon and so all voters vote informatively. Thus, at £ = 0 “informative
voting” is an equilibrium but BWV is not. This is the infinite voter version of
the special case result of Fey (1998) and Wit (1997), and also doesn’t require the

restriction of permissible beliefs.

Corollary 3.1 Suppose that beliefs are “sensible” and that k = 0. Then Cut Point
Voting by all voters constitutes a perfect Bayesian equilibrium if, and only if, Cg = 0

and Cy = 1. Therefore, bandwagons never occur in equilibrium.

Proof: The proof of the symmetric case, when Cp = 1—C}, and when prior beliefs are

permissible will be presented here. This proof can be seen easily from the arguments

31For any k > 0 this is also true for large enough finite populations. Eventually the population
will be so large that the pivot probability of a single voter is outweighed by her desire to vote for
the winner. Thus “informative voting” by all voters is not an equilibrium.
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in Theorem 3.1 and requires the same intuition as the general case, which has been
relegated to the appendix.
{=sufficiency} From the proof of Theorem 3.2 the incentive compatibility con-

straint is the following,
1+k[1—pt=1)]21+kp(t~1)

Which is satisfied by indifference if £ = 0. Thus, all voters weakly prefer to reveal
their private information and vote informatively.

{<=necessity} Recall that Cy # 1 implies a bandwagon must begin after a g vote
lead has been established by a candidate (adjusting for priors if necessary). For any g-
step bandwagon, where ¢ is finite, the values of £ which support this as an equilibrium
are all &£ such that & € [max {Eg, E*g} ,Eg} . It can be seen easily from the statements
of k, and k., (in the proof of Theorem 3.1) that k, > 0 for all positive integers g, and
that k, and k,, — 07 as g — oo. Therefore 0 ¢ [max {E*,E_*g} ,Eg] for all integers
g, and there is no g such that & = 0 can support a g-step bandwagon equilibrium.

Thus, CPV can’t be an equilibrium if Cy # 1. B

This result shows that the existence of bandwagons is not simply due to the
assumption of an infinite voting population. That is, the continual addition of voters
to the population doesn’t imply that a bandwagon will eventually emerge. Rather,
in conjunction with the previous results, Corollary 3.1 shows that bandwagons exist
because of a combination of voters’ desire to vote for the winner and an infinite
population. And, further, that the nature of this bandwagon (its length) depends

upon the intensity of the desire to support the winner.

Robustness

For transparency and tractability the model employs several somewhat restrictive
assumptions. Two of the most notable of these are the restriction to “permissible”

beliefs and that all voters enjoy a positive and identical utility from conforming to
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the majority decision. The robustness of the results just presented to these two
assumptions will now be explored. In the conclusion I will also briefly discuss the
possible impact of relaxing several other assumptions.

For the statement of Theorem 3.1 it is assumed that prior beliefs are “permissible”
and given by Equation 3.1, with m required to be an integer. This is somewhat
restrictive. It is also of interest to know what happens when priors take on values
not representable by an integer m. Unfortunately, to solve this model for arbitrary
priors becomes overly complicated as the symmetry used in the proof would be lost.
However, there would seem to be no kink in the intuition of Theorem 3.1 that would
indicate that the result wouldn’t generalize.

But it needn’t be left there. What can be seen immediately from the theorem as
it stands is that the result is robust to at least small perturbations of beliefs. That
is, if beliefs vary slightly from those allowable by Equation 3.1 then the theorem still
holds. This observation cannot indicate whether the theorem holds for all possible
priors, but it can confirm that the theorem is not an artifact of the particular set of
priors that are permitted. I will have to leave as a conjecture the assertion that the
theorem holds for all possible priors, but what is known is that the theorem isn’t a

knife edge result.

Corollary 3.2 For any € > 0 define ¢ (m) = [m — &, m + €] where m is an integer.
Consider any m s.t. for some m and ¢, m € 7w (m). Now suppose that priors are
determined by substituting m into Equation 3.1. If beliefs are “sensible” there exists
an € > 0 such that BWV by all voters constitutes a perfect Bayesian equilibrium for
all k > 0.

Proof: For any g in the symmetric case the values of k£ that support a cascade equi-
librium are given by all £ such that k € [max{ﬁg, kot Eg] . From the expressions for
these values it can be seen that they vary continuously in beliefs. Therefore, as priors
change the beliefs after any given voting history also vary continuously. Thus, if the
priors vary continuously then the boundaries on acceptable k values for each g also

vary continuously. Recalling that E(gﬂ) > kg, k., for small enough perturbations of



129
the priors this inequality is still true. And as for perturbations it is still true that

ky — 0 the theorem must still be true.

Of course, the size of the permissible interval may vary for different integer values.

The second restrictive assumption to be considered here is the homogeneity of the
voters’ desire to conform. To maintain uniformity (and simplicity) I have until this
point assumed that all voters receive an identical benefit, & > 0, from conforming
to the majority decision. For a variety of reasons this may not be expected to be
the case in real voting situations.®> Unfortunately, a complete relaxation of this
assumption leads to intractability. However, I conjecture that such variation does
not substantively alter the results generated here. To provide some intuition for why
this might be the case I present here a very simple relaxation: for a finite number of
voters k = 0, and the identity of these voters is publicly known.3* Denote the set of
such voters by R. “Buyers’ remorse” implies that in this environment BWV by all
voters can’t be an equilibrium. Voters in R do not receive the benefit from following
a BWV strategy (conforming) and instead will only feel, so to speak, the “remorse.”
Consequently, their tendency will be to vote against any leading candidate. I will

refer to such a strategy as an “Anti-Bandwagon” strategy.
Definition 3.6 Anti-Bandwagon Voting (ABV) is a strategy, o;, such that
Aifm+n<0

v, =% Bifm+n>0
s;ifm+n=20

Suppose then that this strategy is used by all k£ = 0 type voters.>* As all other

voters will be aware of this their beliefs will not be affected by such votes. As before,

32Gee Section 3.4.1 for motivations of k. From these motivations it is easy to see how the level of
this desire may vary across individuals.

33The following analysis is easily extendable to an infinite number of k = 0 type voters as long as
their share of the population converges to strictly less than half.

34Given that k, (1|g) = 0 (see the proof of Theorem 3.1), the following analysis would also hold if
the required levels for voting A and B were m +n > 1 and m +n < —1, respectively.
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beliefs after deviations from this strategy will be “sensible.” This leads to the follow-
ing corollary. The proof follows simply from Theorem 3.1 and has been relegated to

the Appendix.

Corollary 3.3 Suppose that beliefs are “sensible” and that k > 0 for ¥Yi ¢ R. Then
3(Cp,C4) € (0,1)%, where Cg =1 — Cy, such that BWV(Cg,C4) Vi & R and ABV

Vi € R constitutes a perfect Bayesian equiltbrium.

In this equilibrium &£ > 0 types behave as before (and the equilibrium bandwagon
thresholds will be the same as for Theorem 3.1). The £ = 0 types vote informatively if
the election is tied (more precisely, if beliefs are neutral), otherwise they vote against
the leader. Consequently, their actions are ignored by all voters other than when the
election is tied. This leads to the rather strange conclusion that the most socially
minded voters (as they care only about selecting the “better” candidate) are ignored
by the rest of the population. Despite not affecting the outcome in equilibrium, these
voters do not have the incentive to deviate as by doing so they can only drive beliefs
further away from the interval in which informative voting takes place (and they have
no incentive to conform to the majority decision to induce them to do this).?> If there
is a cost to vote then, as these voters receive no additional payoff from conforming to
the majority, it may be expected that they would, if given the choice, abstain from
voting.

This simple case shows that the substantive findings of the symmetric case are
robust to at least some heterogeneity of the preference of agents to conform to the
majority decision. Of course, with greater heterogeneity the analysis would not be
nearly so simple. However, there exists no clear reason why the same intuitions would

not carry over, at least in approximate form.3

351t should be noted that though this strategy requires, say in the case in which a bandwagon for
A has begun, a observers to vote for B, this is not a weakly dominated strategy.

361f we expand the model only slightly then the complication increases significantly. Suppose that
in addition to the two types of the corollary there were also voters with small but positive k. If k
is too small then in equilibrium these voters can’t be following the BWV strategy (that the large
k voters are following). However, neither can they be playing the ABV strategy in equilibrium. If
playing the ABV strategy then these voters would wish to deviate and support the leading candidate
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Similar conclusions are drawn if a voter’s desire to conform is instead private
information. In this case a vote against a leading candidate would be discounted
for the possibility that the vote was from a & = 0 type. Therefore, the presence of
the £ = 0 types affects the utility calculations of the £ > 0 type voters and leads
to excessive complication. However, it would seem that, despite this complication,
k > 0 type voters would still be inclined, if the lead became substantial, to abandon

their private information and support a leading candidate.
Related Literature

In addition to Fey and Wit, Dekel and Piccione (2000) also consider the possi-
bility of cascades in sequential voting. Like the other papers, they assume a finite
population and consider only the limit case of £ = 0. They point out that when priors
are non-neutral an equilibrium exists in which some voters vote uninformatively for
the favored candidate and all others vote informatively. They claim that this equilib-
rium displays, “seemingly cascade behavior” (p. 36) because all of the uninformative
voting must come at the end, and it may begin before either candidate establishes a
majority. Observationally the play of this equilibrium may at times look like a voting
cascade, though as the candidate who benefits from the uninformative voting is not
determined by previous voting it is not in the spirit of voting bandwagons described
in the empirical literature. Additionally, these cascades exhibit several characteris-
tics which would suggest that they are fundamentally different to the bandwagons
observed in sequential elections.

The primary discrepancy is that a Dekel and Piccione cascade can only start
for the candidate who begins the election as the front runner. This implies that
the “uhderdog” candidate can never perform well enough to benefit from a cascade.
There are many counterexamples to this characteristic, most notably Carter in the

Democratic primaries of 1976.37 This inability is not only a trait of “underdogs,” but

as, given the current strategies, they have no informational impact voting against him. In this case
“Sensible” beliefs requires a deviation against the leader to then be informative, which induces these
voters to switch again and vote against the leader. Thus, any equilibrium in this environment would
be significantly more complicated and require some mixing for these low k types (5 observers always
vote B, and « observers mix over A and B).

37See, amongst others, Aldrich (1980).
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of all non-front runners. Therefore, if priors are neutral a cascade will never be seen.
In fact, if the population becomes large then the priors must become increasingly
skewed for the probability of a cascade occurring to not approach zero. Thus, the
characteristics of the cascade type behavior described by Dekel and Piccione do not
correlate fully with the frequency and nature of bandwagons observed in sequential

elections.

3.4 Discussion

3.4.1 Motivation: Why Vote for the Winner?

There are many possible reasons why a voter would place utility on whether the op-
tion or candidate she supports is likely to win the vote. These motivations can be
of a personal, psychological foundation or they can be rational calculations once the
full context of the voting game is taken into account. As I prove my results for all
nonzero weightings on this payoff it doesn’t matter whether all of these motivations
are present, or even whether they are strong or weak. All that is important is that
they affect the voting decision to some degree. In that light, and considering the per-
vasiveness of the motivations it would seem that this extension of the utility function
is a natural and valid one.

Of course the existence of these motivations doesn’t necessarily imply that they
are actually employed in the vote decision. However, the validity of the extension
is confirmed by Bartels (1988) in his study of U.S. presidential primaries when he

concludes,>®

“The overall impact of expectations seems to involve at least three
distinct effects reflecting distinct psychological processes in the minds of

prospective voters - processes ranging from rational strategic calculation

38More recent evidence consistent with a desire to vote for the winning candidate is provided by
Herron (1998). In a study of the 1992 U.S. presidential election he finds that Clinton supporters
were significantly more likely to turn out and vote if they thought he was going to win, and Bush
supporters were significantly less likely to turn out if they held the same beliefs. Effectively, Clinton
supporters were inspired to vote for a winner and Bush supporters were inspired to abandon a loser.
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to a simple, uncritical desire to “go with a winner.” In combination,
these distinct individual-level effects make up the very significant aggre-
gate level effect of expectations on choices that campaign observers call

“momentum.”” (p. 10)

Rational Choice Motivations

Often the sequential voting game specified here is part of a larger strategic environ-
ment, and when the complete game is considered a desire to vote for the winner on the
part of voters may arise as a traditionally rational, utility maximizing choice. There
are many possible extensions that would be capable of producing this result. Two
extensions that are very plausible, and that require little additional consideration will
be presented here.

| Thé most obvious possibility arises from the fact that the winner of the election
typically holds some degree of arbitrary power over the voters. If the winner abuses
this power to reward his supporters (indeed, it may very well be in his interests to do
so) then voters would wish to have voted for the winner, whoever it may be. There
are many examples of voting environments where such incentives would arise. Politics
is perhaps the most obvious as the winner controls the government. However, it may
be in more personalized situations that this incentive is at its strongest. For example,
workplace superiors hold the power of employment over underlings and this power
may exert undue influence on behavior in decision situations and lead to conforming
“yes men” type behavior.

A more subtle possibility arises if the sequential election is a precursor for a
further election, as is the case with the U.S. presidential primaries. It is argued that
this secondary stage impacts the objectives of voters (not to mention candidates) in
the initial primary stage, and impacts them in such a way that the voters act as if
they place utility on voting for the likely winner.

Aldrich (1980) claims that in a close race, even if both candidates have shown the
ability to win votes in the subsequent general election, the voters are better served

to discard their private information and instead bandwagon on either of the two
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candidates in order to give the chosen candidate, and thus the party in general, the

best possible chance to win office. He describes the incentive as follows.

“Winning a close race for the presidential nomination, on the other

hand, might decrease the odds of winning the general election.” (p. 14)

He goes on to argue that this implication played a crucial role on the outcome of

the presidential race between Ford and Carter in 1976.

Behavioral Motivations

Casual empiricism in virtually any aspect of society would suggest that people like
to win. It is likely, therefore, that these desires carry over to the political world and
motivate not only candidates but voters as well. Just as a sports fan wants to support
a winning team, so too does a voter want to support a winning candidate.

This behavioral motivation is further supported by the social psychology literature
on conformism.?® This literature shows that individuals have a tendency to conform
to group decisions, even when they privately believe the group decision to be wrong.
This interpretation is consistent with the desire to vote for the winner as in a majority
rule election a vote for the winning candidate, by definition, conforms with a majority
of other voters.

These motivations may also arise if voters perceive a vote for the winner to be a
signal of intelligence, or some other desirable trait. Indeed, such a perception would
even be appropriate if the model represents an environment in which all voters receive
the same signal but only a fraction p, the intelligent fraction, perceive this signal in
the correct way.

Combining these intuitions there would appear to exist both ample rational choice
and behavioral reasons for why a voter would want to vote for the winning candidate.
What is important here is not which forces are at work, but just that some positive
incentive to ‘go with a winner’ exists. Given the above justifications this presumption

would seem reasonable.

39 An extensive review of the literature is contained in the text by Aronson, Wilson and Akert
(1997).
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3.4.2 Is this an Appropriate Model?

In addition to explaining the existence of bandwagons there are other characteristics
of the primary process that are consistent with the assumptions and bandwagon

equilibrium of the model.

Policy

The model presented here is without policy content. Instead the candidates compete
purely on what may be considered quality attributes. This assumption is not too
strange in the context of U.S. nomination campaigns and, in fact, it may even be the
most appropriate assumption. It is a common empirical finding that policy matters
little in primary elections. In summarizing this finding Bartels (1988, p.83) suggests
that this is the case, even though policy is important to the voters, because the
candidates within any one party tend to converge in their positions. Indeed, even if
there are intra-party differences in policy they are likely to be small compared to the
difference with the candidate to be faced in the general election. Consequently it is
likely to be in each voter’s interests to vote for the candidate from her party most
likely, if nominated, to win the general election.

A further reason why primary voters may not be interested in policy is because it is
not in their own interests to elicit firm policy positions from their candidates. Instead
they would prefer their candidates to be ambiguous at the nomination phase to ensure
they have full flexibility to compete at the general election. Regardless of which of
these, or any other, reason is the most accurate it would seem an absence of policy
positions in the description of the candidates is not an inappropriate abstraction of

the actual primary process.

Voter Expectations

Another empirical regularity is that voters form different expectations as to which
candidate is likely to win. The model of asymmetric information assumed here is

consistent with this. Unfortunately, the binary signalling space of the model is not
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rich enough to account for the diversity of expectations found in real primaries.

The assumption that the signals are independent and that each is observed by a
single voter is also an approximation, but one that isn’t completely unrealistic. This
startling fact is explained by Popkin (1994, p.119) who points out that until the week
of the election in their state many primary voters are not even familiar enough with

the candidates to give them a general favorability rating.*°

Voter Behavior

When playing a BWYV equilibrium the only information each voter needs in order to
make her vote decision is her private signal and the vote history (in fact, all she needs is
the current vote difference, n). And once the bandwagon has begun the voter needn’t
even bother about her private signal! This is highly consistent with observations of
the infbrmation level of voters when they come to make their decision. Popkin (1994)
presents evidence that primary voters do learn ‘horse race’ information about the
progress of the nomination battle but very little else until their state’s primary.
Within the strict confines of the model this apparently simplistic voting behavior
is fully rational. This is because the current vote difference is a sufficient statistic for
all publicly available information. However, in the real world voters could feasibly
pay more attention to the campaigns and thus observe more ‘private signals’ than just
their own. This could change voter strategies and possibly lead to better decisions
by the electorate. The trade-off would be the increased expense of gathering this
information. The point here is that even though U.S. primary voters typically search
for little information, they are acting rationally for this information level by employing

such simplistic strategies.

40This unusual timing of signals also abrogates the criticism that simple pre-play communication
would circumvent the information aggregation problems of the model. This is a frequent criticism
of common interest games. However, if each voter learns her signal only when it is her turn to vote,
as is argued by Popkin, then such pre-play communication would not be possible.
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Learning

Recent work by Alvarez and Glasgow (1997) suggests that voters do learn during
presidential campaigns (both during the nomination phase and the general cam-
paign). Further, they find that voters incorporate new information into their beliefs
via Bayesian updating. This is exactly what voters in this model are doing when they
calculate 7 and .

Given this consistency the equilibrium of the model suggests a link from voter
learning to how voters make their decisions, thus providing a potential explanation

for how campaigns can matter.

3.4.3 Momentum

The concept of “momentum” has taken on almost mystical tones in its application
to sequential voting. It has been used to describe many different and contradictory
phenomena. Often it is even used as a synonym for a bandwagon. It reached such
a point that Reeves (1977) was forced to define it as, “the political cliche used to
describe what is happening when no one is sure.” (p.180) Researchers have made
many attempts to define momentum. A loose definition, but one that encompasses the
notion of many others was suggested by Aldrich (1980) when he observed, “Candidates
may be said to have momentum if their chances are improving.” (p.103)

Typical explanations of momentum appeal to psychological as well as informa-
tional forces. By examining the implications of the BWV equilibrium an explanation
of momentum arises that is purely mechanical. That is, it explains the empirical
phenomena associated with momentum purely through Bayesian updating and con-
ditional probabilities. In a bandwagon voting equilibrium a candidate’s chances of
victory can be represented by a simple mathematical expression. If candidate A holds

an n “informative vote lead” then his probability of victory is given by

P (A winsn) =7 (n)w(n) +[1 —7(n)][1 —w(—n)]
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This expression is the probability that A wins when he is the “better” candidate plus
the probability that A wins when B is “better.” It is easy to see that a candidate’s
probability of victory is increasing in n, and thus when his vote lead is increasing he
has momentum.

This interpretation of momentum provides a formal distinction between the con-
cepts of momentum and bandwagons in sequential voting. It follows from this inter-
pretation that momentum itself isn’t detrimental to the quality of vote choice. Rather,
it is only when this momentum turns into a bandwagon that valuable information is
lost.

Despite their differences, most studies of momentum identify three defining fea-
tures.*! Firstly, after a primary victory the support for the victor typically increases
in subsequent national polls. Secondly, this increased support is likely to lead to an
increase in the vote in subsequent primaries for the leading candidate. Finally, and
what has been the most elusive to explain, momentum can reverse itself. That is, one
candidate can be gaining momentum when suddenly it reverses and flows against the
candidate.*? This implies that the gaining of momentum does not lead to inevitable
victory for the beneficiary. The momentum that arises here out of the BWV equi-
librium is consistent with each of these regularities. They will now be discussed in
turn.

The first characteristic is easy to explain. Consider t<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>