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Abstract

Demand for mobile and personal communications is growing at a rapid pace, both in terms of the
number of potential users and the introduction of new high-speed services. Meeting this dcmand
is challenging since wireless communications are subject to three major constraints: a complex and
harsh fading channel, a scarce usable radio spectrur, and limitations on the power and size of hand-
held terminals. Ther'efore, effective spectral and power efficient fading mitigation techniques are
required. In this thesis we discuss two particular techniques to overcome fading: diversity combin-
ing and adaptive transmission. We first present a new approach for the performance evaluation of
digital communications over fading channels. This approach, which is based on alternate represen-
tations of classic functions arising in the error probability analysis such as the Gaussian @-function
and the Marcum @Q-function, leads to a unified analytical frammework to determine the exact error
rate of digital communications with multichannel reception. The unified approach gives new ana-
lytical expressions for average bit error rate under very geueral channel conditions, in addition to
simplifying previously-known results both analytically and computationally. We next present meth-
ods of adapting to random channel variations in order to increase the spectral efficiency of wireless
systems. As¢ a first step we determine the theoretical spectral efficiency limits of wireless commu-
nication systems subject to the underlying severe multipath fading. We then propose an adaptive
M-QAM modulation technigue and analyze its performance over Nakagami-m fading channcls. We
also propose an adaptive modulation technique which combines voice and data, and study its per-
formance. Finally, we consider adaptive modulation in cellular systems, and compute the resulting
arca spectral efficiency, defined as the maximum bit/sec/Hz/Km?, which can be supported in the

systertl,
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Chapter 1 Infroduction

1.1 Motivation and Background

Unlike most current cellular telephone systems, future wireless systems will support not only voice
communication but also other high-speed data and multimedia services including facsimile, file
transfer, e-mail, and video teleconferencing. These services require high data rates with low delay
and bit-error-rate (BER). It is difficult to support these requirements with wireless systems due to
three major constraints in the system design. First of all, wireless systems operate over a complex and
harsh time-varying radio channel which introduces severe multipath and shadow fading. In addition,
wireless applications must share the limited available radio spectrum, and spectral efficiency is
therefore of primary concern in the system design. Finally, the communication terminals must be
small, low-power, and lightweight, which restricts their capabilities. Due to these major impairment
aud constraints, sophisticaled spectral and power efficient fade mitigation techniques are reyuired
to improve radio link performance. In particular, diversity combining and adaptive transmission
techniques have great potential to improve the performance of wireless systems such that they can
support high-speed data and multimedia. In both techniques the improvement is achieved without an

increase in the transmitted bandwidth and power but at the expense of a higher system complexity.

1.2 Thesis Objective

The objective of this thesis is two-fold. First it develops analytical methods and tools o assess
the performance of digital communications over wireless fading channels, when diversity techniques
arc employed. Second it pfoposes and analyzes the performance of various adaptive modulations.
For both topics emphasis is put on the development of “generic” analytical tools that can be used
for a wide range of communication systems operating in various fading conditions typical of com-
munication links of practical interest. As such the coverage is extremcly broad in that coherent,
differentially coberent, and noncohcrent communication systems are all treated as well as a large
variety of diversity and édaptive techniques. The final goal is to provide easy-to-compute analytical
expressions that allow the researcher or system designer to perform comparison and tradeoff (per-
formance versus complexity) studies among the various communication type and diversity /adaptive
techniques combinations so as to determine the optimum choice in the face of his or her available

constraints.
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1.3 Thesis Outline

The thesis outline is as follows. We begin in Chapter 2 with a brief review of the principal char-
acteristics and models of fading channels. The primary goal of this chapter is to introduce models,
terminology and notations that will be used throughout the thesis. We first describe the main
characteristics of fading channels. We then present a number of models for frequency-flat and
frequency-selective fading channels and explain the relation between these models and the corre-

gponding physical channels.

1.3.1 Diversity Techniques

The fivst part of the thésis studies the performance of nonadaptive digital communications (with
and without diversity combining) over fading channels. To accomplish this task we develop a new
approach to the performance cvaluation of digital communications over fading channels with and
without diversity. We also present a compendium of results that bave not previously appeared in the
literavure. Qur approach rélies on alternate representations of classic functions arising in the error
probability analysis of digital communication systems, and leads to average BER expressions which
can be readily evaluated numerically. In many cascs these exp;essions are obtained in closed-form
while in other cases they involve a single integral with finite limits and an integrand composed of
elementary or standard tabulated functions. These results reduce to well-known solutions, allow
previously obtained results to be simplified both analytically and computationally, and provide
new solutions to problems which heretofore resisted solution in a simple form. In particular a
new generic form for the average error probability of binary signals over fading channels without
diversity reception is given in Chapter 3. Chapter 4 presents a unified approach for the performance
evaluation of coherent modulations with optitnum diversity reception. Since optirnality implies more
hardware complexity and more sensitivity to channel estimation errors, Chapter 5 considers coherent
modulations in conjunction with suboptimal diversity techniques which are less complex {(hence more
practical for actual implementation) and more robust to imperfect channel estimnation. In many cases
the phase of the received signal cannot be tracked accurately, and therefore cohercnt detection is not
possible. Noncoherent and differentially coherent modulation does not require this coherent phase
tracking, and in Chapter 6 we provide a unified approach for the performance of these modulation
techniques with and without diversity reception. Since there are a number of real life scenarios in
which the combined signals are independent of one another, Chapter 7 characterizes the impact of
correlation on the outage probability and average error probability of various coherent, differentially

coherent, and noncoherent diversity receivers.



1.3.2 Adaptive Techniques

Adaptive transmission schemes are currently receiving a great deal of attention as very promising
techniques to achieve high spectral efficiency. The main objective of our work in this area is twofold,
First, we seek to determine the theoretical spectral efliciency limits of wireless point-to-point and
cellular communication systems which use adaptive modulation, Second, we attempt to design prac-
tical adaptive transmission schemes that approach these theoretical bounds. In particular, Chapter 8
provides closed-form expressions for the capacity of Rayleigh fading channels under various adaptive
transmission and diversity combining techniques. Chapter 9 extends these results to Nakagami-m
fading channels and then proposes adaptive multi-level quadrature amplitude modulation (A-QAM)
to approach these rate limits. In Chapter 10 a new hybrid adaptive scheme which supports simul-
taneous voice and data transmission over fading channels is proposed and the performance of this
scheme over Nakagami-rn fading channels is evaluated. Cellular systems are subject not ouly to
fading but also to co-channel interference. Chapter 11 introduces a general analytical framework
quantifying the spectral efliciency limits of cellular systems in which the mobile adapts their rates
relative to their fading and interference conditions. The thesis concludes in Chapter 12 with a

summary and discussion of future research directions.



Chapter 2 Fading Channels Characterization and
Modeling

2.1 Introduction

Radic wave propagation through wireless chaunels is a complicated phenomenon characterized by
various effects such as multipath and shadowing. A precise mathematical description of this phe-
nomcnon is either unknown or too complex for tractable communications systerns analyses, However,
considerable efforts have been devoted to the statistical modeling and characterization of these dif-
ferent effects. The result is a range of relatively simple and accurate statistical models for {ading
channels which depend on the particular propagation environment and the underlying cornmunica-
tion scenario.

The primary purpose of this chapter is to briefly review the principal characteristics and models
for fading channels. A more detailed treatment of this subject can be found in standard textbooks
such as [1, 2]. This chapter also introduces termininology and notation which will be used through-
out the thesis. The chapler is organized as follows. The main charvacteristics of fading channels
are presented in the next section. Models for frequency-flat fading channels, corresponding to nar-
rowband transtnission, are described in Section 2.3. Models for frequency-selective fading channels

which characterize fading in wideband channels, are described in Section 2.4.

2.2 Main Characteristics of Fading Channels

2.2.1 Slow and Fast Fading

The distinction between slow and fast fading is important for the mathematical modeling of fading
channels and for the performance evaluation of communication systems operating over these chan-
nels. This notion is related to the cokerence time of the channel, defined as the inverse of the channel
Doppler spread, which measures the period of time over which the fading process is correlated. The
fading is said to be slow if the symbol time duration is smaller than the channel’s coherence tiwe,
otherwise it is considered to be fast. In slow fading a particular fade level will affect many successive
symbols, which leads to burst errors, whereas in fast fading the fading is independent from symbol
to symbol.

In this thesis we focus on the performance evaluation of adaptive and diversity techniques. These



Is)

“techniques are typically used in conjunction with stlow fading. We therefore limit ourselves to this

type of fading throughout the whole thesis.

2.2.2 Frequency-Flat and Frequency-Selective Fading

Frequency-selectivify is also an important characteristic of fading channels. If all the spectral com-
ponents of the transmitted signal are affected in a similar manner, the {ading is said to be frequency-
nonselective or equivalently frequency-flat. This is the case for narrew-band systems in which the
transmitted signal bandwidth is much smaller than the channel’s coherence bandwidth. This band-
width is defined as the inverse of the mazimum delay spread 7,4, and measures the frequency range
over which the fading process is correlated. On the other hand if the spectral components of the
transmitted signal are affected by different amplitude gains and phase shifts, the fading is said to
be frequency-selective, This applies to wide-band systems in which the transmitted bandwidth is

bigger than the channel’s coherence bandwidth.

2.2.3 Envelope and Phase Fluctuations

In fading both the envelope and the phase of the received signal fluctuate over time. However, for
coherent modulation the fading effects on the phase can severely degrade performance. We assume
in our analyses that these phase effects are perfectly corrected at the receiver. For noncohereut
modulations phase information is not needed at the receiver and therefore the phase variation due
to fading does not affect the performance of these modulations. Hence our performance analyses for
both coherent and noncoherent modulation over fading channels requires only the fading envelope
statistics. Since we assume slow fading the fading envelope random process can be represented by a

random variable (RV) over any given symbol time.

2.3 Modeling of Flat Fading Channels

When fading affects narrow-band systerns, the received carrier amplitude is modulated by the fading
amplitude a, where « is an RV with mean square value 2 = o2 and probability density function
(PDF) p,(c) which is dependent on the nature of the radio propagation environment. After passing
through the fading channel, the signal is perturbed at the receiver by additive white Gausgian noise
(AWGN) which is typically assumed to be statistically independent of the fading amplitude «, and
which is characterized by a one-sided power spectral density Ny (W/Hz). Equivalently, the received
instantaneous signal power is modulated by a?. Thus we define the instantaneous signal-to-noise
power ratio (SNR) per symbol by v = a® E;/Ny and the average SNR per symbol by ¥ = QF, /Ny,

where E; is the energy per symbol. Qur performance evaluation of digital communications over
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fading channels will generally be a function of the average SNR per symbol #. For slowly-varying

channels the fading amplitude is constant over a symbol time and the PDF of + is obtained by

introducing a change of variables in the expression for the fading PDF p,(a) of a yielding

v (/%5)
; .

py(7) = (2.1)

1]

The amount of fading (AF), or “fading figure,” associated with the fading PDF is defined as

_ Varlo?] _E[(¢? ~ )] _ E[*] -~ (Bpy])?

AF=EE = ® T G

(2.2)

with E[:] denoting statistical average and Var[:] denoting variance. This figure was introduced by
Charash [3, (p. 29)], [4] as a unified measure of the severity of the fading, and is typically independent
of the average fading power ().

We now present the different radio propagation eflects involved in fading channels, their corre-
sponding PDFs, AFs, and their relation to physical channels, Note that a more detailed treatment

of this particular topic will be presented in [5, Chapter 2i.

2.3.1 Multipath Fading

Multipath fading is due to the constructive and destructive combination of randomnly delayed, re-
flected, scattered, and diffracted signal components. This type of fading is relatively fast and is
therefore responsible for the short-term signal variations. Depending on the nature of the radio
propagation environment, there are different models describing the statistical behavior of the mul-

tipath fading envelope.

Rayleigh

The Rayleigh distribution is frequently used to model multipath fading with no direct line-of-sight
(LOS) path. In this case, the channel fading amplitude « is distributed according to

2

PaleQ) = %y#exp (——%) oa =0, (2.3)

and hence the instantaneous SNR per symbol of the channel, -, is distributed according to an

exponential distribution given by

= L Y .
pr<v;v)=;.;exp(—,—{); V2. (2.4)



" The moments of this PDF are given by
B(y") = T(1 + k) 7", (2:5)

where I'(.} is the gamma function. The Rayleigh distribution therefore has an AF equal to 1, and
typically agrees very well with experimental data for mobile systems wherc no LOS path exists
between the transwitter and receiver antennas [2]. It also applies to the propagation of reflected and
refracted paths through the the troposphere [6] and jonosphere [7, 8], aud to ship-to-ship [9, 10, 11]

radio links.

Nakagami-¢ (Hoyt)
The Nakagami-g distribution, also referred to as the Hoyt distribution [12], is given in [13, Equn.
(52)] by

o 1+d)a (1+¢%)? o (1~-q*) o®\ ‘
pa(0;Q,9) = BT exp | — yPeT Iy fa ) @ >0, (2.6)

where Iy(.) is the zero-th order modified Bessel function of the fizst kind, and ¢ is the Nakagami-g
fading parameter which ranges from 0 to 1. Using (2.1), it can be shown that the SNR per symbol

of the channel, v, is distributed according to

- (1+¢%) (1+¢")2~ (1-¢Y)y
7. g) = il I : > 0. .
Pe(vi7,9) = =5 PR pye= o\ gy ) 2 0 (2.7)

It can be shown that the moments of this PDF are given by [13, Eqn. (52)]

: k-1 k. [1-¢®\*) _,

E(Y ) =T +k)  F | —— =31, ol .
(") (+)21( 7 2,,(1+q2) 7, (2.8)
where 3 Fy (-, -, ) is the Gauss hypergeometric function, and the AT of the Nakagami-¢ distribution

is therefore given by
2 (1+4¢%

AF, = ——ee <g<l, .

1T 0=g=l (2.9)

and hence ranges between 1 (¢ = 1) and 2 (¢ = 0). The Nakagami-g distribution spans the range
from one-sided Gaussian fading (¢ = 0) to Rayleigh fading (¢ = 1). It is typically observed on
satellite links subject to strong ionospheric scintillation [14, 15]. Note that one-sided Gaussian fading
corresponds to the worst case fading or equivalently, the largest AF for all mmultipath distributions

considered in our analyses.



'Nakagami-n (Rice)

The Nakagami-n distribution is also known as the Rice distribution [16]. Tt is often used to model
propagation paths consisting of one strong direct LOS component and many random weaker com-

ponents. Here the channel fading amplitude follows the distribution [13, Eqn. (50)]

2
)Io 2n o 1;”); o220, (2.10)

2 (1+n) e a L4+ n?) o?
Pa(QQQan) = ( Q) exp (‘%—

where n is the Nakagami-n fading parameter which ranges from 0 to oo and which is related to the

Rician K factor by K == n®. Applying (2.1) shows that the SNR per symbol of the channel, v, is

distributed according to a non-central chi-square distribution given by

(1+n%) e ( (1+n?) 7) ( [(1+n?) ~
 exp = Iyl2 —

(V7. n) = — ny——2"1 > 0. 2.11
Py ) = V 5 ) ¥ (2.11)

It can also be shown that the moments of this PDF are given by [13, Eqn. (50)]

, r(1+ k&)
TN AN A 2y =k T
E(v") = T+ 1F1(—k, 1; -n?) 77, (2.12)
where 3 Fy(:, - ) is the Kummer confluent hypergeometric function. The AF of the Nakagami-n

distribution is given by
1+ 2 n?

AF, = ————;
T (14 n2)?2’

n 20, (2.13)

and hence ranges between 0 (n = o0) and 1 (n = 0), The Nakagami-n distribution spans the range
from Rayleigh fading (n = 0) to no fading (constant amplitude) (n = oc). This type of fading
is typically observed in the first resolvable I.OS paths of microcellular urban and suburban land
mobile [17], picoceltular indoor [18], and factory [19] enviromments. It also applies to the dominant

LOS path of satellite {20, 21] and ship-to-ship [9] radio links.

Nakagami-m
‘The Nakagami-m PDF is in essence a central chi-square distribution given by [13, Equ. (11)]

2 m™ aZm—l m (.\:2 -
Pa (a,ﬂ, m) = m—' exp (—T) 3 a = O, (2.14)

where m is the Nakagami-m fading paramcter which ranges from 1/2 to oc. Applying (2.1) shows

that the SINR per symbol, v, is distributed according to a gamuma distribution given by

mm ,Ym—l ™m .
] a7 e Bl 4 > 0. 2.18
P (7, M) T exp( = v 2 (2.15)
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It can also be shown that the moments of this PDF are given by [13, Eqn. (65)]

Eiy*] = ———r
"] T(m) mk

(2.16)
which yields an AF of

AF, =—; m>1/2 (2.17)

Hence, the Nakagami-m distribution spans via the m parameter the widest range of AF (from 0 to
2) among all the multipath distributions considered in this thesis. For instance, it includes the one-
sided Gaussian distribution (e = 1/2) and the Rayleigh distribution (m = 1) as special cases. In
the limit as m — —o0, the Nakagami-m fading channel converges to a nonfading AWGN channcl.
Furthermore, when m < 1,- a one-to-one mapping between the m parameter and the ¢ parameter
allows the Nakagami-m distribution to closely approximate the Nakagami-g (Hoyt) distribution [13,
Equ. (59)]. Similarly, when m > 1, a one-to-one mapping between the m parameter and the
n parameter (or equivalently the Rician K factor) allows the Nakagami-m distribution to clogely
approxitate the Nakagami-n (Rice) distribution [13, (Bgn. 56)]. The Nakagami-m distribution
often gives the best fit to land-mobile [22, 23, 24] and indoor-mobile [25] multipath propagation, as
well as scintillating ionospheric radio links (8, 26, 27, 28, 29].

2.3.2 Log-normal Shadowing

In terrestrial and satellite land-mobile systems, the link guality is also aflected by slow variation
of the mean signal level due to the shadowing from terrain, buildings, and trees. Cominunication
system performance will depend only on shadowing if the radio recciver is able to average out the
fast multipath fading or if an efficient “micro”-diversity system is used to eliminate the cffects of
multipath. Based on empirical measurements, there is a general consensus that shadowing can be
modeled by a log-normal distribution for various outdoor and indoor environments [30, 22, 31, 32,
33, 34|, in which case the path SNR per symbol v has a PDF given by the standard log-normal

expression

- 2
_ (10logyyy — p) ] ‘ (2.18)

Pa(Viphy0) = "\/E_ny exp [ 5 o2
where £ = 10/1n10 = 4.3429, and ¢ (dB) and ¢ (dB) are the mean and the standard deviation of
10log,q 7y, respectively.

The morments of (2.18) are given by

2
E{"yk] = exp (g W+ ;3— (-Zz) 0'2) (2.19)
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vielding an AF of \
AF, = exp (2_3) -1, (2.20)

From (2.20) the AF associated with a lognormal PDF can Le arbitrarily high. However, as noted by
Charash [3, (p. 29)), in practical situations the standard deviation of shadow fading does not exceed
9 dB [2, p. 88]. Hence, the AF of lognormal shadowing is bounded by 73. This number exceeds the
maximal AF exhibited by the various multipath PDFs studied in Section 2.3.1 by sevecral order of

magnitudes.

2.3.3 Composite Multipath/Shadowing

A composite multipath/shadowed fading environment consists of multipath fading superimposed on
log-normal shadowing. In this environment the receiver does not average out the envelope fading due
to muttipath but rather reacts to the instantaneous composite multipath/shadowed signal 2, Sec.
2.4.2]. This is often the scenario in congested downtown areas with slow moving pedestrians and
vehicles [22, 35, 36]. This type of composite fading is also observed in land-mobile satellite systems
subject to vegetative and/or urban shadowing [37, 38, 39, 40, 41]. There arve two approaches and
various combinations suggested in the literature for obtaining the composite distribution. Here, as
an example, we present the composite gamma /log-normal PDF introduced by Ho and Stiber [36].
This PDI' arises in N akagami—m shadowed environments and is obtained by averaging the gamma
distributed signal power {or equivalently the SNR per symbol) {2.18) over the conditional density
of the log-normally distributed mean signal power (or equivalently average the SNR per symbol)

(2.18), giving the following channel PDF:

0 m ,.Y'm,—].

o w™ [(m)

2
dw. (2.21)

101 —
pmo-(")’;m,,u,U) = m PY] 5 ex I:_( 0 g W /_l,)

exXp | ——ot
p[ w 1 2o w 2 g?

For the specizl case where the multipath is Rayleigh distributed {m = 1), (2.21) reduces to a
composite exponential/log-normal PDF which was initially proposed by Hansen and Meno [35].

The moments of a gamma/log-normal PDF are given by
I'(m+ k) k 1/k\? .
Pl 2 @ M AP i 2 2,22
E[+¥] T(m) o exp(é, [T 2(5) o (2.22)
and the resulting AF is given by
AR — 1+m a o
mo = “——m exXp ——52 - 1. (2.23)

Note that when shadowing is absent (¢ = 0), (2.23) reduces to (2.17), as expected. Similarly, as the
fading is reduced (m — oo), (2.23) reduces to {2.20), as expected.
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2.3.4 Combined (Time-Shared) Shadowed/Unshadowed

From their land-mobile satellite channel characterization experiments, Lutz et al. [40' and Barts
and Stutzman {42] found that the overall fading process for land-mobile satellite systems is a convex
combination of unshadowed multipath fading and a composite multipath/shadowed fading. Here,
as an example, we present in more detail the Lutz et al. model [40]. When 1o shadowing is present,
the fading follows a Rice (Nakagami-n) PDF. On the other hand when shadowing is present, it is
assumed that no direct LOS path exists and the received signal power (or equivalently SNR per
bit) is assumed to be an exponential/log-normal (Hansen-Meno) PDF [35]. The combination is
characterized by the shadowing time-share factor which is denoted by A, 0 £ A < 1; hence, the

resulting combined PDF is given by

Paro(1 AT K 10 0) = (1 A) po(15%, VE) + A pro (131, 05, 0), {2.24)

where ¥ is the average SNR per symbol during the unshadowed fraction of time, and p® is the
average of 10log,, v during the shadowed fraction of time. The overall average SNR per symbol, 7,
is then given by

5 o2

F=(1-A) T+ A 1070~ —z00— . (2.25)

2.4 Modeling of Frequency-Selective Fading Channels

When wide-band signals propagate through a frequency-selective channel, their spectrum is affected
by the channel transfer function, resulting in a time dispersion of the waveform. This type of fading
can be modeled as a linear filter characterized by the following complex-valued lowpass equivalent

impulse response

L
Bty = oy e §(t—m), (2.26)
I=1

where §(.) is the Dirac delta function, [ is the channel index, and {ey}/,, {01}L,, and {n}L, are
the random channel amplitudes, phases, and delays, respectively.

In (2.26) L is the number of resolvable paths (the first path being the reference path whose delay
71 = ) and is relaved to the ratio of the maximum delay spread to the symbol time. Under the
slow fading assumption, L is assumed to be constant over a certain period of time, and {a;}&,
{6:}E,, and {n}£, are all constant over a symbol interval. The different paths of a given impulse
respounse are typically generated by diflerent scatterers, and therefore they tend to exhibii negligible
correlations [34, 43]. Therefore, it is reasonable to assume that the {al}ll’__fl are statistically inde-
pendent RVs. In particular, the fading amplitude oy of the lth resolved path is assumed to be a RV

whose mean square value Z{? is denoted by @ and whose PDF pg, (a;) can be any one of the PDFs
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presented above.

The first arriving path in the impulse response typically exhibits a lower amount of fading than
subsequent paths, since it may contain the LOS path 43, 17, 24]. Furthermore, since the specular
power component typically decreases with respect to delay, the last arriving paths exhibit higher
amounts of fading [43, 24].

The {{3;}£, are related to the channel’s power delay profile (PDP) which is also referred to as
the multipath intensity profile (MIP) and which is typically a decreasing function of the delay. The
PDP model can assume various forms depending on whether the model is for indoor or outdoor
environments and, for each envirouwwent, the general propagation conditions. For example PDPg
for indoor partitioned office buildings, indoor factory buildings with heavy machinery, high den-
sity office buildings in urban areas, low density residential houses in suburban areas, open rural
enwvironument, hilly or mountainous regions, and maritime environment are described in [44]). For
example, experimental measurcments indicate that the mobile radio channel is well characterized by

an exponentially decaying PDP for indoor office buildings 34] and congested urban areas [30, 45]:
Sll — 521 e——ﬂ/T-ma;c; [ = 1, 2, ceey L’ (227)

where £, is the average fading power corresponding to the first (reference) propagation path. In the
literature the delays are often assumed to be equally spaced (771 — 7; is constant and equal to the
symbol time Ty) [1, p. 730], [46] and, with this assumption, we get the equally spaced exponential
profile given by

Q=Q e Y4 §5>0,andl=1,2,--,L, (2.28)

where the paramcter § reflects the rate at which the average fading power decays. Other idealized
PDP profiles reported or used in the literature include the constant (flat) [47], the flat exponen-
tial {48], the double-spike [47], the Gaussian [47], the power-function (polynomial) [49], and other
more complicated composite profiles [50].

As in the flat fading case, after passing through the fading channel a wide-band signal is perturbed
by AWGN with a one-sided power spectral density Ny (W/Hz). The AWGN is assumed to be
independent of the fading amplitudes {a;}Z ;. Hence the instantaneous SNR per symbol of the ith
channel is given by v = E?JWE“, and the average SNR per symbol of the ith channel is given by

o U
Vi =R

2.5 Conclusion

In this chapter we presented a brief overview of fading channel characteristics. We then described

various frequency-flat and frequency-selective fading channel models. With the above models in
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hand, we are now in a position to analyze the performance of various communication systems

operating over these channels.
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Chapter 3 A Generic Form for the Average Error
Probability of Binary Signals over Flat Fading

Channels - Single Channel Reception

3.1 Introduction

Although specific results for the bit-error-rate of binary signals transmitted over a single additive
whitec Gaussian noise (AWGN) channel exist for coherent, differentially coherent, and noncoher-
ent modulations [51], an interesting unification of these resulls into a single bit-error-rate (BER)
expression is possible as discussed by Wojnar [52]. In particular, Wojnar cites a result privatcly
communicated to him by Linder (see footnote 2 of Wojnar paper [52]) which states that the BER
of coherent, differentially coherent and noncoherent detection of binary signals transmitted over the

AWGN channel is given by the generic expression

r (b, a%)

Bo(B) = — T(b)

(8.1)
where T'(-,-) is the complementary incomplete gamma function [53, p. 949, Eqn. (8.350.2)] which is
traditionally defined as
o0
T(a,z) = / et 1oL g, (3.2)
<z

and I'(-) is the gamwma function [53, p. 942, Eqn. (8.310.1)]. In (3.1), E} (J) represents the energy per
bit, Ny (W/Hz) is the AWGN power density, and a and b depend on the particular form of modulation
and detection and are presented in Table 3.1. Hence, although the result in (3.1) does not provide
any new results relative to those indicated in Table 3.1, it does offer a nice unification of scveral BER
expressions into a single one which can easily be programmed using standard mathematical softwarce
packages such as Mathematica. Furthermore, when evaluating the average BER performance of
thesc very same binary communication systems over a fading channel, an alternate representation
of the complementary gamma function will also be helpful in unifying these results, as we will show

next.
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Table 3.1: The parameters ¢ and b for various modulation/detection combinations.

[ (a,b) [1/2 [1
1/2 orthogonal coherent BFSK orthogonal noncoherent BFSK
i antipodal coherent BPSK antipodal differentially coherent BPSK (DPSK)
0 <g<1]| correlated cohereut binary signaling

3.2 Desired Representation of the Conditional BER.

When flat fading is present, the received carrier amplitude is attenuated by the fading amplitude, o,
which is a random variable (RV) with mean square value {} = a? and probability density function
(PDF) dependent on the nature of the radio propagation environment. Equivalently, the received
instantaneous signal power is attenuated by o? and thus it is appropriate to define the instantaneous
signal-to-noise ratio (SNR) per bit by v = a?F,/Ny aud the average SNR, per bit by 5 = QE,/N,.
As such, for a fixed fade level «, the BER of any of the modulations considered in Table 1 is obtained
by replacing Ey,/Ny by v in (3.1). To evaluate the average BER one must then average (3.1) over
the statistics of the fading, Since in the definition of (3.2) the argument z appears in the lower limit
of the integral, it is analytically difficult to perform: such averages. Rather it would be desirable
to have (3.2) in an integral form with limits were independent of the argument z (preferably finite
from a computational standpoint) and an integrand that is exponential in the argument 2. We now
develop such a desired form and deduce an alternate representation of the conditional BER (3.1).
Making the change of variable ¢ = Trf'gg in (3.2) and after some manipulations we arrive at the

desired result

™% cosd z

Substituting (3.3) in (3.1) we get the alternate desired representation of the conditional BER as

_fa ’y)b "2 cosg ay
Ao =55 [ g ow (~atg) @ .

3.3 Average BER over Fading Channels

Assuming that the fading is independent of the AWGN, the unconditional BER, Py, is obtained by
averaging (3.4) over the underlying fading RV giving

o
Py = /0 Py(y) py(7: 7, 8) dy, (3.5)

where i is the fading parameter associated with the fading PDF p,(v;%,¢) and is denoted by r,
g, n, and m, for the Rayleigh, Nakagami-q {(Hoyt), Nakagami-n (Rice), and Nakagami-m PDFs,
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respectively. Substituting (3.4) into (3.5), interchanging the order of integration, and grouping

together like variables yields

— a® ™2 cose _ , 9
Pb - F(b) A (Sin ¢)2b+1 EZ(IY’ a’: b’ (p) d¢) (")'6)
where
- a [ 4 = s ay .
Li(F; a,b; ¢)=/ Y Py (Vi ,4) exp (— — ) d, (3.7)
0 sin” ¢

is in the form of a Laplace transform of the function +* p(v;%,4). The form of the average BER
in (3.6) is interesting in that the integrals £;(7;a,b, @) can be obtained in closed form for the four

PDFs under consideration, as we shall show now.

3.3.1 Rayleigh Fading

Recall from the previous chapter that the Rayleigh distribution is frequently used to model multipath
fading with no direct line-of-sight (LOS) path. In this case the received SNR per bit is distributed
according to an exponential distribution given by (2.4). Substituting (2.4) in (3.7) and making use
of the Laplace transform [33, p. 1178, Eqn. (3)]

X0
/ e de = E(%;li)-; s>0, v> -1, (3.3)
0 8§

we obtain

Tb~+1) 7
L:(F;a,b, ) = brl)7

(3.9)

a b1
)

. -1
Substituting (3.9) in (3.6) and mwaking the change of variable t = (1 + —“2‘—) , we arrive after

sin® ¢

some manipulations to the equivalent compact result

— b
Pb = § B(l-l—af’_)’)_l(]‘?b)’ (3‘10)

where B, (p, q) is the incomplete beta function {53, p. 960, Eqn. (8.391)].

3.3.2 Nakagami-¢ (Hoyt) Fading

When the channel {ollows a Nakagami-g distribution [13], also referred to as the Hoyt distribu-
tion [12], it can be shown that the SNR per bit is distributed according to (2.7). Substituting (2.7)
in (3.7) and making use of the Laplace transform found in [54, p. 196, Eqn. (8)],

&0 _ I'{p+1) P
N i1 — 0 . x
/U v Iofat) e dt = ——5 P (.s_) ©> -1, (3.11)
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‘where s = 1/p? — a? and PJ(:) is the associated Legendre function [53, p. 1013, Sect. (8.7)], then
recognizing the relation (53, p. 1027, Eqn. (8.777.1)]

Po(z) = Pu(2) = 2F1< pwp+ L 1;‘) (3.12)

between the associated Legendre function and the Gaussian hypergeometric function 2 (-, -3 ;-) [53,

p. 1065, Eqn. (9.100)], we obtain

_ 144 T+ 1) 7
‘Cq (’y; a’, b! ¢) 2 b+
7 L1+qﬂ)2 IR
sin2 ¢ + 4q4
(1+c12)2
1 1 ——3‘— + L
% oFy | ~bb+1;1;= - = sin (3.13)

2 2 _ 2
@ 14-¢%)? 1—qgt
\/(sin;qb . 4;5) ) - ( 4q£ )

3.3.3 Nakagami-n (Rice) Fading

Recall that the Nakagami-n distribution [13] is the same as the Rice distribution [16]. It is often
nsed to model propagation f)aths consisting of one strong direct LOS component and many random
weaker components. Here the SNR per bit follows the distribution given by (2.11). Substituting
{2.11) in (3.7) and making use of the Laplace transform found in [54, p. 197, Equ. (20)]

- (s -+ 1/2) ex/20) a
412 1, (2 M_ol=]; p>-1/2, 3.14
e o (avad) - L wo(2)i > -1/ (3.14)

where M_,, () is the Whittaker function [53, p. 1086, Sect. 9.22], then recognizing the relation [53,
p. 1087, Eqn. (9.220.2)]

Myuo(2) = vz e 1R (—u+1/2,1;2) (3.15)

between the Whittaker function and the Kummer confluent hypergeometric function ; Fy(-,;-) [53,
p- 1084, Sect. 9.20], we obtain

2y, —n? 2
Laiab, )= SFMT PODT g fy i—“")) (3.16)
(1+n2+;_¥7;) 1=n+mis

s

3.3.4 Nakagami-m Fading

When the channel follows a Nakagami-m distribution, the SNR per bit is distributed according to
a gamma distribution given by (2.15). Substituting (2.15) in (3.7) and again making use of the
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Laplace transform (3.8), we obtain

(&)
‘Cm,(ﬁ; a,b, (ﬁ) = I (b e m) m (317)

I'(m m O\
™ (14 )
IREENDS |
Substituting (3.17) in (3.6) and making the change of variable t = (1 + m—%?;z—(g) , we arrive after

some manipulations at the equivalent compact result originally given in [52, Equ. (17); as

i

1
b= -2'I(1+a-,?/m)—1(m,b), (3-18)

where I;(p,q) is the incomplete beta function ratio [53, p. 960, Eqn. (8.392.2)].

3.4 Conclusion

We presented in this chapter a generic form for the average BER of coherent, differentially coherent,
and noncoherent binary signals with single channel reception. This generic form relies on an alter-
nate representation of the incomplete gamma function and for all the channel fading models under
cousideration leads to an expression of the average BER involving a single finite-range integral of

tabulated functions which cau easily be computed numerically.
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Chapter 4‘ Performance of Coherent Modulations
over Generalized Fading Channels - Optimum

Multichannel Reception

4.1 Introduction

In this chapter we assume that the phase shift introduced by the channel is perfectly tracked
by the receiver, and we consider the performance of coherent modulations techniques (with and
without diversity) over fading channels. This particular topic has been addressed in many pa-
pers [55, 56, 57, 58, 59, 60, 61, 62, 9, 10, 11, 63]. With some special exceptions [59, 9, 10, 11] most
of the models for these systems typically assume either single channel reception or multichannel
reception over independent identically distributed (i.i.d.) paths. These idealizations are not always
realistic since the average fading power [44, 45] and the severity of fading {24, 17, 43] may vary from
one path to the other when RAKE reception is employed to improve performance over frequency-
selective fading. In this chapter we consider a sufficiently general multipath channel model in which
the paths are not neccssarily identically-distributed nor even distributed according to the same fam-
ily of distributions. We call these channels generalized fading channels and we describe them in
more detail in Section 4.2.2. We derive expressions for the exact symbol-error-rate (SER) of linearly
modulated signals over such channels. The results are applicable to systems that employ coherent
demodulation and maximal-ratio combining (MRC) [64]. The proposed approach takes advantage
of alternate integral representations [65, 66] of the probability of exrror of these signals over additive
white Gaussian noise (AWGN) channels (i.e., the conditional SER), along with some known Laplace
transforms and/or Gauss-Hermite quadrature integrals, to derive the SER, expressions. These ex-
pressions involve a single finite-range integral whose integrand contains only elementary functions,
and which can therefore be easily evaluated.

These alternate representations have recently been used by Simon and Divsalar [67) as well as
by Hall and Wilson [68] to solve several other communication problems involving the averaging of
the Gaussian tail probability function. In addition, Tellambura et al. [63] published a recent paper
in which they used these representations to analyze the performance of M-ary phase shift keying
(M-PSK) with diversity reception over i.i.d. land-mobile satellite channels. In this chapter, we
unify and add to the above results by providing new generic expressions for the average SER perfor-

mance of various coherent communication systems with MRC diversity reception over generalized
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fading channels. We focus in this chapter on presenting the approach which enables us to unify the
performance of these systcms under a common framework. Further, since the number of different
modulation and fading combinations discussed herein is quite large, numerical results for the error
rates of these combinations and dependence on the various fading parameters are omitted here.
Some of the referenced papers cover such numerical illustrations. A more comprehensive treatment
which includes numerical results can be found in [5].

The remainder of this chapter is organized as follows. In the next section we describe the
transmitted signals, introduce the generalized multipath channel model, and present the receiver
structure. We derive the average bit-error-rate (BER) of binary signals over generalized fading
channels in Section 4.3. The average SER of M-ary phase-shift-keying (M-PSK), M-ary amplitude
modulation (M-AM), and square M-ary quadrature amplitude modulation (M-QAM) signals over
generalized fading channels is derived in Sections 4.4, 4.5, and 4.6, respectively using an approach
similar to that of Section 4.3, Last, we give a summary of our results and offer some concluding

remarks in Section 4.7.

4.2 System and Channel Models

4.2.1 Transmitted Signals

With any memoryless linear modulation technique, the complex signal transmitted over the channel

may be represented as

st)= Y 8W it pr(t —iT,), (4.1)

FR——

where the function Pp,(-) is a pulse shaping waveform of duration T, seconds, f. is the carrier
frequency, and {5 (")}f‘;_ = represeuts the sequence of symbols that results from mapping successive
k-bit blocks into one of M = 2% possible waveforms. Each complex symbol () takes on values whose
energy is denoted by E,, (m =1, 2, .., M) and the average energy per k-bit symbol (averaged over
the set of the M waveforms’ energies) is denoted by E; and is related to the average energy per bit,
Ey, by E, = log, (M) Ey.

4.2.2 Multilink Channel Model

We consider a multilink channel where the transmitted signal is received over L independent slowly-
varying flat fading channels, as shown in Fig. 4.1. In Fig. 4.1, {ri(¢)}{, is the set of received replicas
of the transmitted signal s(t) where [ is the channel index, and {a;}i,, {1}, and {n}f, are
the random channel amplitudes, phases, and delays, respectively. We assume that the sets {oy }=,,

{6i}£,, and {m}%, are mutually independent. The first channel is assumed to be the reference
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Figure 4.1: Multilink channel model.
channel with delay 7 = 0 and, without loss of pgeneralily, we assume that 13 < 74 < -+ < 7L,

Because of the slow-fading assumption, we assume that the {og}&,, {6}, and {n}, are all
constant over a symbol interval.

The fading amplitudes {a;}f, are assumed to be statistically independent random variables
(RVs) whose mean square value a_lz is denoted by ; and whose probability density function (PDF)
is any of the different distributions described in Section 2.3. The multilink channel model used in
our analyses is sufficiently general to include the case where the different channels are not necessarily
identically distributed nor even distributed according to the same farmily of distributions. We call
this type of multilink channel a generalized multilink fading channel.

After passing through the fading channel, each replica of the signal is perturbed by complex
AWGN with a one-sided power spectral density which is denoted by 2N; (W/Hz). The AWGN
is assumed to be statistically independent from chanunel to channel and independent of the fading
amplitudes {ay},. Hence, the instantancous SNR per symbol of the Ith channel is given by
vy = ﬂlj-viﬁ, where E, (J) is the energy per symbol, and 2Ny = Efj__l 2N; (W/Hz) is the total
complex AWGN power spectral density.



22
'4.2.3 MBRC Receiver Model

We assume an L branch (finger) MRC receiver, as shown in Fig. 4.2. MRC is the optimal diversity
scheme since it results in a maximum likelihood receiver [2, p. 244]. This receiver utilizes M
correlators to detect the transmittexdd waveform (symbol) with the maximum a priori probability.
Let us consider the mth waveform correlator. Each of the L received signals ry(¢) is first delayed by
1. — 71, coherently demodulated through multiplication by the unmodulated carrier ¢/ (27 fo(t=72)+61)
then lowpass filtered to remove the second harmonics of the carrier. All these operations assume
that the receiver is correctly time and phase synchronized at every branch (i.c., perfect carrier
recovery, and perfect phase {6;}£., and time delay {n}}; estimates). Using the MRC and assuming
perfect knowledge of the fading amplitude on each branch, the L lowpass filter outputs {r,, ;} L, ate
individually weighted by their respective fading amplitudes, and then combined by a lincar combiner
yielding A

L
Tm= )0 Tmg;  M=1,2,, M (4.2)
1=1

The resulting signal is passed through a matched filter followed by a baud-rate sampler. The output
of the sampler is then shifted by a bias term By, given by [2, p. 244]

L
By = - (Zaf) Epn; m=1,2,---, M, (4.3)
I=1

to form the decision variable u(S,,)'. Last of all the receiver selects the symbol correspunding to
the maximum decision variable, as shown in Fig. 4.2.

The output of the MRC combiner reduces to the sum of a desired signal component and a
Gaussian noise component. For equally-likely transmitted symbols, the total conditional SNR per

symbol, ¢, at the output of the MRC combiner is given by [2, p.246, Eqn. (5.98)]
L
Ve = Z'}fl- (44)
I=1

4.3 Average Bit Error Rate of Binary Signals

4.3.1 Product Form Representation of the Conditional BER

The user’s conditional BER in AWGN, P, (:), is given by

By(v) =@ (vZ g 7.:) ; (4.5)

1Note that if the waveforms have equal energy {as is the case for the M-PSK modulation scheme), the bias term
can be ignored since it is the same for all the waveforms.
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Figure 4.2: Maximal-ratio combining receiver block diagram (LPT: lowpass filter).

where g = 1 for coherent BPSK [51, Eqn. (4.55)], ¢ = 1/2 for coherent orthogonal BFSK [51, Eqn.
(4.59)], g = 1 + 5 for coherent BFSK with minimum correlation [51, Eqn. (4.63)], and Q(.) is the
Gaussian Q-function traditionally defined by

Q) = % / T et gy (4.6)

Although (4.5) appears to be a very simple expression, it is often inconvenient when further analyses
are required. In particular, our goal is to evaluate the performnance of the system in terms of users’
average BER, and for this purpose the conditional BER (4.5) has to be statistically averaged over
the random parameters {v }{—,. This requires the integration of the Gaussian Q-function over these
parameters, which is difficult since the argument of the function is in the lewer limit of the integral
The classical approach to bypass this problem is to first find the PDF of +; and then average (4.5)
over that PDF. In some cases of iid. channels, the PDF of 4, can be found which then often
leads to simple closed-form expressions for the average BER. However, it is more diflicult to find a
simple expression for the PDF of v, when the channels have the samne distribution (e.g., Nakagami-n
(Rice)) but with different parameters {e.g., different average fading powers and/or different fading
parameters). The most difficult case occurs when the PDFs of the different channels come from
different familics of distributions and in this case finding the PDT of -4, appears intractable.

The key concept in our approach is to rely on an alternate representation of the Gaussian-Q)

___DECISION
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‘function. This representation allows us to obtain an elegant analytical expression for the average
BER of the generalized multilink channel model which heretofore resisted a simple solution. The
alternate representation was proposed by Craig who showed that the Gaussian ¢-function could be
represented in the following definite integral form [66, Eqn. (9)]:

w/2
Q@ =2 [ exp( 2 )dqs; 220, (47)

" 2sin? ¢

which can also be implied by the earlier work of Weinstein [69] and by Pawula et al. [65]. A simple
derivation of this alternate representation of the Gaussian Q-function is given in Appendix A-1 of this
chapter. This representation has the advantage of finite integration limits which are independent of
the argument x, and also has an integrand which is Gaussian in the argument 2. Using the alternate
representation of the Gaussian-Q function (4.7) in (4.5), the conditional BER (4.5) may be rewritten

in a more desirable product form given by

_1 9%\, _ 1 ["H 9%
A= [ e (-3 )as= 1 [* TTew (~205) 0 (19)

This form of the conditional BER is more desirable since we can first independently average over

the individual statistical distributions of the s, and then perforin the integral over ¢, as described

in more detail below.

4.3.2 Average BER with Single Channel Reception (L = 1)

Since the fading is assumed to be independcent of the AWGN, the unconditional BER, Py, is obtained
by averaging the single channel conditional BER, Fy(7), given by (4.8) for L = 1, over the underlying
fading RV giving -

Po= [7 RO i) (49)

where ¢ is the fading parameter(s) associated with the distribution p,(7;7%,7) and is hence de-
noted by r, ¢, n, m, o, mo, aud AKo for the Rayleigh, Nakagami-g (Hoyt), Nakagami-n (Rice},
Nakagami-m, log-normal shadowing, composite multipath/shadowing, and combined (time-shared)
shadowed/unshadowed PDFs, respectively. Substituting (4.8) for L = 1 into (4.9), then interchang-

ing the order of integration, yields

o nf2
Po== [ T @b, (.10

where

(Vi 9; ¢) éf exp (—sigT;[g) (737, 1) dy (4.11)

0
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“is in the form of a Laplace transform. The form of the average BER in (4.10) is interesting in that the
integrals Z;(; g; ¢) can either be obtained in closed-form with the help of classical Laplace transforms
or can a.ltematively be efficiently computed by using Gauss-Hermite quadrature integration [70, p.
890, Eqn. (25.4.46)] for all previously mentioned fading channel models. We now evaluate these
integrals for each of the fading models described in Section 2.3. In 4.3.3 we will use these integrals

to obtain the average BER of binary signals with multichannel reception.

Multipath Fading

Rayleigh Substituting (2.4) into (4.11) then using the Laplace transform [53, Equ. (1), p. 1178]

oo 1
/ e ¥ dr = S 6> 0, (4.12)
0
yields .
T.(%:9;6) = (1+ — ) : (4.13)
sin” ¢

Substituting (4.13) in (4.10) then using [53, p. 185, Eqn. (2.562.1)], one can proceed further to
obtain the well-known closed-form expression for the average BER over Rayleigh fading [1, Eqn.
(7.3.7) and Eqn. (7.3.8)]

5 _ 1 97
Po==> [1- . 4.14
=3 ( 1+g7 (4.14)

Nakagami-g (Hoyt) Substituting (2.7) into (4.11) then using the Laplace transform [33, Eqn.
(109), p. 1182]

[« o]
f Ip(uz) e™* dx = (5% - uz)"lm; s> lul >0, (4.15)
0
yields
- 297, 4487 )_1/2
L.(Fg:¢) = |1+ . 4.16
1% 9:¢) ( sin® ¢ + (1+¢2)? sin®¢ (4.16)

Nakagami-n (Rice) Substituting (2.11) into (4.11) then using the Laplace transform [70, Eqn.
(20.3.81), p. 1026]

o0 u?/(4s)
/ Iy(uy/z) e dz = £ reantAE >0, (4.17)
0
vields
o (1+n?) sin¢ ( né gy ) ~
i) . : 4.18
Zn(')’aqus) (1+R2)Si112¢'+g-‘7 p (1+n2)sin2¢v-+gﬁ ( )

Nakagami-m Substituting (2.15) into (4.11) then using the Laplace transform [53, Eqn. (3), p.
1178]

® - I'(v +1)
/{)‘me’*d:t:z-——‘s—y_ﬁ—; §>0, v>-1, (4.19)
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"yields B
In(Fig; ¢) = (1 + 27 ) : (4.20)

m sin? ¢
As a side result we show in Appendix B that by substituting (4.20) in (4.10) then using an equivalence
with a known result, we obtain a closed-from expression for trigonometrics integrals which do not

exist in classical tables of integrals such as [70, 53].

Log-normal Shadowing

If the channel statistics follow a log-normal distribution, it is straightforward to show that Z, (1; g; ¢)

can be accurately approximated by Gauss-Hermite integration yielding

1 (V2 o ma+u)/10
g 10 , (4.21)

N,
1 n

Ia-(l-‘,;g;qﬁ) ~ ﬁ z -H'a:.; exp (_ sin2¢x
n=1

where N, is the order of the Hermite polynomial, Hy,(.). Setting IV, to 20 is typically sufficient for
excellent accuracy. In (4.21) x,, are the zeros of the N,-order Hermite polynormial, and H, , arc the
weight factors of the Np-order Hermite polynomial and are given by

281 NV /1

H, = o2 VT
x Ng H?Vp—l(mn)

(4.22)

Both the zeros and the weights factors of the Hermite polynornial are tabulated in (70, Table (25.10),
p- 924] for various polynomial orders IV,,.
Composite Multipath/Shadowing

If the channel statistics follow a gamma/log-normal distribution, it is straightforward to show that

o (1 g; ¢) can be accurately evaluated by using (4.19) followed by a Gauss-Hermite integration

yielding
N -m
1 [ g 10(\/5 ¢ #q+p)/10
mo V) Gt o - H, {1 4.23
- (I‘ g 9) \/7—‘: 1?:1 x ( + m sin2¢) ( )

Combined (Time-Shared) Shadowed/Unshadowed

If the channel statistics follow a combined Lutz et @l. distribution, it is straightforward to show that
Zaks(T* 1°; 9; ¢) can be broken into two terms, one which can be evaluated in closed-form and the

other which can be accurately approxzimated by Gauss-Hermite integration yielding
Zako(T 0% 9:0) = (1= A) Tu(7: 9 6) + A Zmo (1" 33 6), (4.24)

with n = VK in Z,,(7% ¢;¢) and m = 1 in Zo(1°; g; 8).
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'4.3.3 Average BER with Multichannel Reception (L > 1)

To obtain the unconditional BER, Py, when multichannel reception is used, we must average the mul-
tichannel conditional BER, P, (7;), over the joint PDF of the instantaneous SNR sequence {y}£,,
namely Doy g, yp (Y12 925+ > 72). Since the RV’s {y}{L, are assumed to be statistically indepen-

dent, then Py, ya oy (V1. Y2, VL) = H{-_I Py, (V15 771,41), and the averaging procedure resuits in

o0 poo ] L
Py =—“/ / /0 Py (w) [IpnwsTsia) dnidyz---dyz, (4.25)
o Jo Pl

L—fold

where i, represents the fading parameter(s) associated with the /th channel. Note that if the tradi-
tional integral representation of the Gaussian Q-function (4.6) were to be used in the Py () term,
(4.25) would result in a L + 1-fold integral with infinitc limits (one of these integrals comes from
the classical definition of the Gaussian Q-function (4.6) in P, ({11}£,)), and a closed-form solution
or an adequately efficient numerical integration method would not be available. Using the alternate

product form representation of the conditional BER (4.8) in {4.25) yields

P = S R g
Py = — _ %, 1) dé dyidys -+ - dyi. 4.26
b /0 L L 71’/.0 ;EIIGXP( Sin2¢) pTl(FYl "Yl:"'l) @ dyrdys YL ( )
————

L—fold

The integrand in (4.26) is absolutely integrable and hence the order of integration can be inter-
changed. Thus we have

- 1 gtk
P == I I (= e .
b T A I=IL1 (th’ ¢’) d¢’: (4 27)

where Z;, (F;; 9; ¢) is given ahove for the various channel models associated with path /. Note that
if the fading is identically distributed with the same fading parameter i and the same average SNR
per bit ¥ for all L channels, then (4.27) reduces to

/2
Po=i [7 @maio)® ao. (4.2

Hence in all cases this approach reduces the L+ 1-fold integral with infinite limits of (4.25) to a single
finite-range integral (4.27) whose integrand contains only elementary functions such as exponentials

and trigonometrics, and which therefore can be easily evaluated numerically.



4.4 Average Symbol Error Rate of M-PSK Signals

4.4.1 Product Form Representation of the Conditional SER

The conditional SER, for M—PSK, P; (4:), does not exist in closed-form. However, it can be shown
that it is given exactly by the desirable integral expression [65, Eqn. (71)], [66, Eqn. (5)], [51, Eqn.
(3.119)]

M-1)xn (M-Vn 1,

s _ Jpsk Tt _lf ™ _Spsk T
Rag=t [ 7 ew(-252) 02 [ [ow (-2 )ao (a9

=1

where gps = sin? (%) .

4.4.2 Average SER of M-PSK

Following the same steps as in {4.25)-{4.27), it can be easily shown that the average SER of M-FSK,
P,, over generalized fading channels is given by

_q g L
P=/ 1 (s o ) 5. (4.30)
Our result (4.30) generalizes the M-PSK average SER results of [55, Equ. (22)] and {60, Eqn. (21)]
for L independent identically distributed Rayleigh paths. It also gives an alternative approach for
the performance evaluation of coherent M-PSK over frequency-selective channels characterized by
a Rician dominant path with Rayleigh secondary paths [9, 11]. Furthermore, by setting L to 1, the
result {4.30) can be used to evaluate the average SER performance of M-PSK with single channel

reception. This leads, for example, to the following results:

* Rayleigh: Substitutiﬁg (4.13) in (4.30) (with L = 1), then using [53, p. 185, Eqn. (2.562.1)]
yields a closed-form expression [67, Eqn. (9)], [68, Egn. (7)] for the SER of M-P5K over a
Rayleigh channel which agrees with the results obtained using various other methods [55, Equ.
(22)) and [61, Eqn. (36))].

o Nakagami-n (Rice): Substituting (4.18) in (4.30), leads to an expression for the SER of M-PSK
over a Nakagami-n (Rice) channel which is easily shown to agree with (61, Eqn. (35)).

e Nakagami-m Substituting (4.20) in (4.30) (with I = 1) gives the SER of M-PSK over a

Nakagami-rn channel as

= 1 e (&)
P, = ;T-./Q (l -+ “——2¢) do. (431)
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Note that (4.31) yields the same numerical values as [56, Eqn. (17)] and [62, Eqo. (9)] and it

is much easier to compute for any arbitrary value of m.

4.5 Average Symbol Error Rate of M-AM Signals

4.5.1 Product Form Representation of the Conditional SER

The conditional SER for M-AM, P, {:), with signal points symmetrically located about the origin,
is given by [51, p. 631]

Py(y) = %:—ll Q (\/2 Gam fn) , (4.32)

where gam = a7~ Using the alternate representation of the Gaussian Q-function (4.7) in (4.32)

we obtain the conditional SER in the desired product form as

- 2(M 1) _ fam 7t M-y [ . Gem

4.5.2 Average SER of M-AM

Following the same steps as in (4.25)-(4.27), it is straightforward to show that the average SER of
M-AM over generalized fading channels is given by

_ 2 (M ~ 1) x/2 L .
Po=—3r | g Tiy (13 9ami 8) d- (4.34)

4.6 Average Symbol Error Rate of Square M-QAM Signals

4.6.1 Product Form Representation of the Conditional SER

Consider square M-QAM signals whose constellation size is given by M = 2% with k even. The
conditional SER for square M-QAM is given by [51, Eqn. (10.32)]

1

2
Ao)=4(1- =)0 Tam ) —4 (1-75) @ (VImmT), ()

where ggam = 2’(M—d—lf Simon and Divsalar [67] generalized the alternate representation of the
Gaussian Q-function to the two-dimensional case and showed in particular that [67, Equ. (80)]

2’ _ 1 /4 mg _
Q(z) = ;/(‘) exp (—m) d¢; =z==0. (4.36)

A simple proof of this result is given in Appendix A-2. Using the Craig-Pawula representation of

the Gaussian-@ function (4.7) as well as the Simon-Divsalar representation of the square of the
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‘Qaussian-Q function (4.36), the conditional SER (4.35) may be rewritten in the more desirable

product form given by

—_ 4 1 w/2 qqam Yt 1 \* [ Yqgam
P = w(l“ﬁ)/ ()1 (- m) [ o (5%
/2 L 2 prfa L
_ 2 L Gqam Vi é _ i _ Ggam i
= () [ O () e-s (ogm) [ ew (50w
4.6.2 Average SER of M-QAM

Following the same steps as in (4.25)-(4.27) yields the average SER of M-QAM over generalized

fading channels as

_ 4 1 "/ L
P, = ; (1 - m) HI” (71§gqam;¢) f
4 132 ”/“ L
- (l - V—ﬁ) A HIz; 7E Qqama¢) do. (4'37)

Of particular interest is the average SER performance of M-QAM with single channel reception,
which can be obtained by setting L to 1 in (4.37). For example, substituting (4.13) in (4.37) (with
L = 1), then using again [53, p. 185, Egn. (2.562.1)] yields a new closed-form expression for the
average SER of M-QAM over Rayleigh channels as

= ;' 1 Jogam ¥
P, = 2(1-— 1—1/—-&——)
) ( VM)( 1+9qam_'}7
1\ 4| geam Y 14 ggam T\ .
+ {1-—== ﬂ——arctan —— 9B L) —1f. 4.38
( VM) [ 14+ ggam ¥ ( HJaam 7 ( )

Note that (4.38) matches the result obtained by [61, Equ. (44)] for the particular case where M = 16.
Note also that (4.38) can in fact be obtained alternatively by averaging (4.35) over the Rayleigh
PDF (2.3) and by using a standard known integral involving the function erfc?(-) (63, p. 941, Eqn.
(8.258.2)]. In addition using [5, Equs. (5A.4b) and (5A.21)| in (4.37) we obtain the performance of
M-QAM over L iid. Rayleigh fading channels as

(S <1-“c>"‘fz“<ﬂ-1“> () o)
’ M 2 1=0 ! 2 M
1 p L-1 L-11 -
P el [ B _ 2(1—é)+1
X (4 - ([ arctan g, ]; 1+g - sin (arctanyc);;(l+gqam7)z cos (arctan ;)] ))
(4.39)
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.Where
JaamY
s, 2T 4,40
fhe I (4.40)
and

Ty = (21‘ 4.41
TR E -9t (4-41)

Note that equation (4.39) is equivalent to the expression [71, Equn. (12)] which involves a sum of
Gauss hypergeometric functions. Furthermore, using a partial fraction cxpansion on the integrand
of (4.37), we obtain with the help of [53, p. 185, Eqn. (2.562.1)) the average SER of M-QAM over
I, Rayleigh fading channels with different average power and with MRC reception as

— / _ Hgam i i )
P — — ——
8 2 (1 Zpl ( 1+ goam 7
43 [ a7 1+ 9gam ¥ -
+ (1=} {= 0] —2= L arctan| ) —2R2 0
( L‘— Z;p 1+ gqam ¥ Foam Vi ;P

= [li6-2) s

where

4.7 Conclusion

We have presented a unified analytical framework to determine the exact average SER of linearly
modulated signals over generalized fading channels. The results are applicable to systems employing
coherent demodulation with maximalratio combining multichannel reception. The multichannel
model is sufficiently general to iuclude paths which are not necessarily identically distributed nor
even distributed according to the same family of distributions.

The unified framework is achieved by exploiting alternate integral representations of the condi-
tional probability of error in which the conditional SNR, is inside the integrand rather than in the
limit of integration. This, combined with closed-form Laplace transforms and/or Gauss-Herruite
quadrature integrations, leads to expressions of the average SER which involve a single finite-range
integral whose integrand coﬁtains only elementary functions and which can therefore be easily com-
puted numerically. In addition, we presented as special cases average SER expressions for single
channel reception. These expressions reduce to well-known solutions, give alternate (often simpler)
expressions for previous results, or provide new formulas which are either closed-form expressions

or simple to evaluate numerically.
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‘Appendix A

Derivations of the Alternate Representations of the Gaussian
Q-function and its Square

A byproduct of Craig’s work on the probability of error for two-dimensional signal constellations [66]
was the alternate representation of the Gaussian Q-function given in (4.7). An extension of this rep-
resentation for the square of the Gaussian Q-function (4.36) was obtained by Simon and Divsalar [67].
In this appendix we present another simple method of proving the alternate representations of the

Gaussian @-function and its square.

A-1 Proof of Eqn. (4.7)

The proposed proof is an extension of the classical method to evaluate the Laplace-Gauss integral [53,
Eqn. (3.321.3)}:
o
J(a) & / e @ dg = E[g; a>0. (4.43)
0

Let us consider the double integral
- o o o] w22
/ / e 7 dudy; z20. (4.44)
0 -4

Because of separability {4.44) can be rewritten as

o 2 s e 2
/ e /2 du / e dv =7 Q(z), (4.45)
3(1/VE) VT Q(2)

where we see that each integral in the LHS of (4.45) is a well-defined function. Further, transforma-

tion to polar coordinates u = rcos¢ and v = rsing (du dv = rdr d¢) may be carried out in (4.44)

o o P 7l'/2 had 2 sr
f / e” T dudy / / e " /2 rdr do
0 ® 0 z/sin¢
2

w/ :1:2
/(; exp (—m) d(ﬁ (4.46)

Equating (4.45) and (4.46) we obtain an alternate proof of the desired result (4.7). Note that another
purely algebraic proof of the result (4.7) was implied by Weinstein [69] and Pawula et al. [65] and is
given in detail in {3, Appendix 4A].

giving

If
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A-2 Proof of Egn. (4.36)

The proof presented in Appendix A-1 can be easily extended to arrive at the alternate representation

of Q%(-) given in (4.36). Let us now consider the following double integral

. & e u2+v2
: / / e” "z dudv; xz>0. (4.47)
& &

Again because of separability (4.47) can be rewritten as

x [
/ e /2 dy f et dy=2n Q*(x), (4.48)
& x
VIT Q) ViT Q@)

where each integral in the LHS of (4.48) is the Gaussian @-function multiplied by v2n. The
transformation to polar coordinates u = rcos¢ and v = rsing (du dv = rdr d¢) is carried out in

(4.47) and by symmetry the rectangular region of integration is divided into two equal triangular

o poo w?ie? w /4 poo Y
f / e 2 dudv = 2 / / e~ ™ /2 pdr dg
z i o] z/sing
w/4

22
2 /0 exp (——2 pr ¢) do. (4.49)

Equating (4.48) and {4.49) we obtain an alternate proof of the Simon-Divsalar result (4.36).

parts giving

Appendix B
. m
Closed-Form Expressions for 0”/ 2 (ﬁ%) do

The alternate representation of the Gaussian @-function can also be used to {ind closed-form ex-
pressions for integrals not tabulated in classical table of integrals such as {70, 53]. As an example

we evaluate in this appendix the integral I, (c) defined by

A w/2 Si]lz ¢ m i}

To do so consider first the integral J.,(a, b) defined by

A o™ +00 at e
Jm(a,b):r(m)/(; el Q(Vbt) dt, m>0. (4.51)
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"This integral (4.51) has a known closed-form expression. When m is a positive rcal number the

integral Jy.(a,b) is given by [46, Equ. (AB)]

To(a,8) 2 J(c) = T +" ‘;;: e Fl(f("mzlﬁ) o F (1,m+ 1/2m + 1; l—ié) (4.52)

where ¢ = b/(2a) and 2F1(.,.;.;.) denotes the the hypergeometric series (known also as the Gauss
hypergeomelric function). When m is a positive integer, the integral Ji,(a,b) reduces to [1, Eqn.
(7.4.15)], [46, Eqn. (A13)]

Tu(@,8) £ Jm(e) = [PE™ (m - }: + k) [L = P, (4.53)
" k=0

where

1 T
7Y = — — . > (. B
P(x) 2(1 ’/1+m” x>0 (4.54)

Using the alternate representation of the Gaussian Q-function (4.7) in (4.52), we obtain

JIm(a,b) = a7 /m gmotgmt 1 /ﬂlz exp | — bt do | dt (4.55)

YT T (m) o T Jo P73 sin® ¢ ' 0
Interchanging the order of integration in (4.55), then using (4.19), gives
A 1 (™% sin?¢ \™ 1

Im(a,b) = J, =— —_— =~ ), 4.56

@2 =1 [ (Z5) @@= (450

which is the desired cloged-form expression for I,,(c). A similar equivalence can be made between
. "
a result derived by Chennakeshu and Anderson [60] and the integrals {(M~1) /M (;Zl;%f_—c) d¢

0
m
and f‘}" /™ (ﬁ%’é) d¢p. Full details on these equivalences can be found in [5, Appendix 3A]. The

rcason for mentioning these equivalences and the resulting closed-form expressions is that they can
be used, for example, to simplify calculations involving the performance of BPSK and M-PSK with

selection diversity over correlated Nakagami-m fading channels [72].
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Chapter 5 Performance of Coherent Modulations
over Nakagami-m fading channels - Suboptimum

Multichannel Reception

5.1 Introduction

In the previous chapter we examined coherent modulations with maximal-ratio combining (MRC).
As discussed in Chapter 4 MRC requires the individual signals from each path to be time-aligned,
co-phased, optimally weighted by their own fading amplitude, and then summed. MRC provides
the maximum performance improveruent relative to all other combining techniques by maximizing
the SNR of the combined signal. However MRC also has the highest complexity of all combining
techniques since it requires knowledge of the fading amplitude in each signal branch. Alternative
techniques such as equal gain combining (EGC) and selective combining (SC) are often used in
practice because of their reduced complexity relative to the optimum MRC scheme {2, Section
5.5]. Therefore, in this chapter, we examine the performance of coherent modulation with these
suboptimal combining techniques.

EGC equally weights each branch before combining, and therefore does not require estimation
of the channel (path) fading amplitudes. While it is possible to use EGC with noncoherent and
differentially coherent reception !, our focus in this chapter shall be on coherent EGC reception 2.
In its conventional form, SC diversity only processes one of the diversity branches, specifically, the
one determined by the receiver to have the highest signal-to-noise ratio (SNR). Recently Eng et
al. [73] considered generalized SC diversity technique which in reality is a hybrid scheme involving
first convertional SC followed by MRC . The main motivation behind this suboptimal hybrid scheme
is to approach the performance provided by MRC with a less complex receiver.

In this chapter we use the alternate representation of the Gaussian ¢)-function to analyze the
performance of these two suboptimum schemes over Nakagami-m fading channels. The remainder

of this chapter is organized as follows. The next section briefly outlines the system and channel

1 Although MRC is also possible for these types of detection, it is impractical [2, p. 248] since this form of combining
requires channel phase estimates to implement the complex path weights in the combiner. If these phase estimates
are available then one should opt for a coherent system thereby achieving better performance.

2We emphasize that estimation of the channel carrier phase is still required in this case since the weights applied
to each branch in the combiner are complex quantities whose phases are indeed equal to these carrier phase estimates.

311 is also possible to mate SC with other forms of diversity combining such as noncoherent EGC. Such a noncoherent
SC/EGC hybrid scheme would be a suitable choice for differentially coherent and noncoherent systems where MRC
is not appropriate because of the absence of the phase information for each branch [2].
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‘models for these two schemes. A generic expression for the average error probability of EGC for
ideal coherent deteqtion of various modulations is developed in Section 5.3, The performance of
hybrid SC-MRC is then addressed in Section 5.4. Based on two sets of numerical examples, a brief
comparison is drawn between EGC and higher order SC in Section 5.5. A summary of our results

as well as some concluding remarks are given in Section 5.6.

5.2 System and Channel Models

5.2.1 Transmitted Signals

We consider the same linearly modulated signals as the ones discussed in Section 4.2.1 of the pre-
vious chapter. However, we should point out that EGC is only appropriate for modulations with
equal energy symﬁols such as binary phase-shift-keying (BPSK) and its M-ary version. Indeed for
channels with unequal energy symbols such as M-ary amplitude modulation (M-AM) and quadra-
ture amplitude modulation (QAM), estimation of the path amplitudes is also needed for automatic
gain control (AGC) purposes and thus for these modulations MRC should be used (2]. On the
other hand, any M-ary linearly modulated signal (M-PSK, M-ary amplitude modulation (AM-AM),
and M-ary quadrature amplitude modulation (M-QAM)) can be nsed in conjunction with hybrid
SC-MRC, since the path weights are needed anyway for the MRC. Although we only consider the
performance of kybrid SC-MRC with binary signals, performance results for M-ary signals can been

derived in a manner similar to that presented in Section 5.4.

5.2.2 Multilink Channel Model

We consider a multilink channel similar to the one considered in Section 4.2.2 except that we only
consider the Nakagami-m fading distribution for each link (i.e., the transmitted signal is received
over L independent slowly varying Nakagami-m flat fading channels. Our EGC analyses are quite
general and include the case where each path may have a different value of m = my; and a different
average powet {}; = E?. As such, the probability density function {PDF) of the Ith path is given by
(2.14)

: 2 mi giml my of -
Poy () = W exp (— i ) ;0 oy >0 6.1)

The performance evaluation for hybrid SC-MRC is carried out for the special case where the L
Nakagami-m fading channels are restricted to be identically distributed (i.e., all the paths are as-

sumed to have the same fading parameter m and the same average fading power ).
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Figure 5.1: Suboptimum coherent diversity combiner receiver structure.

5.2.3 Receiver Model

We assume an L branch (finger) suboptimum receiver, as shown in Fig. 5.1. The EGC receiver
processes L. signals randomly chosen among the L received ones, equally weights them, then sumns
them to produce the decision statistic. In mathematical terms the weights wy (I = 1,:++, L) are
get equal to 1 and the remaining weights w; (I = L, + 1,++-,L) are set equal to 0. Note that
irrespective of the diversity combining scheme, one reason for choosing a small value of L. is to
reduce the complexity of the receiver. For MRC, this results in a degradation in performance since
the optimum value for L. is L. For EGC, however, under certain circumstances, increasing L. may
induce a “combining loss.” Indeed equal-weight combining of paths with very low average SNR
degrades performance since these paths will contribute mostly to noise [1]. Thus, it is better not to
include these paths in the combining process.

The hybrid SC-MRC chooses the L, out of L received signals with the highest SNR, optimally
weights them (as per the rules of MRC), and then sums them to produce the decision statistic. In
mathematical terms let @y, @, -+, g, -+ @r denote the ordered (largest to smallest) set of fading
amplitudes associated with the SC inputs. The higher order SC receiver sets the weights u; equal
tooy for ([ =1,---,L,) and w; equal to 0 for ({ =L, +1,--,L).
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5.3 Equal Gain Combining Performance

In this section we derive the performance of coherent modulations with EGC over Nakagami-m
fading chanuels. In [74] Beaulieu and Abu-Dayya employ an infinite series representation for the
PDF of the sum of Nakagami-m RVs to analyze the performance of EGC. Another approach, for
Rayleigh fading which leads to closed form solutions for particular cases is discussed in [75]. As we
shall see, our approach lead to a final generic expression for the average error probability in the form
of a single finite-range integral and an integrand composed. of tabulated functions.

The remainder of this section is organized as follows. Section 3.3.1 gives the exact average bit
error rate (BER) of bina.ry signals with EGC reception over Nakagami-m fading channels. The
results are extended to M-PSK signals in Section 5.3.2. Finally, a simple approximate approach
for the performance evaluation for EGC reception of digital signals over i.i.d. Nakagami-m fading

channels is presented in Section 5.3.3.

5.3.1 Binary Signals

We begin our discussion by considering the performance of an EGC receiver when BPSK or BFSK
modulation is transmitted over a multilink channel with L paths. Counditioned on the total fading
ap = 57, oy, the BER, Py(as), of an EGC receiver is well known to be given by [2]

Pylaw) =@ 29%0 ((Z az) ) . (5.2)

where Q(-) is the Gaussian @-fuuction traditionally defined by (4.6)

Q(z) = \/“;—7/ ™ (6.3)

Ey /Ny is the bit signal—to—ﬁoise ratio (SNR) on the AWGN channel, and g is the modulation pa-
rameter such that g = 1 {or BPSK, g = 1/2 for orthogenal BFSK, and g = % + % for BFSK with

minitnum correlation [51]. The average BER is obtained by averaging (5.2) over the joint PDF of

the channel fading amplitudes Py, ;.0 (01,02, -, L), i€

. o0 o QQEb L.
== LI et Pa o ey ) ,0 .- A F
Py /(; /u Q L. No Zaz voa,ar, (01,02, - ar ) dog dog - dag,,

(5.4)
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The L -fold integral in (5.4) can be collapsed to a single integral, narmely,

- 0 29F,
Pb = A Q ( Lf ]\;0 ) p'—"t (O!f,) dﬂ:t (5.5)

In general, there are two difficulties associated with analytically evaluating the average BER as

expressed in (5.5). The first relates to the requirement of obtaining the PDF of the total fading
RV oy. When the fading amplitudes can be assumed independent (the case to be considered in this
chapter), finding this PDF requires a convolution of the PDF’s of the o;’s and can often be quite
difficult to evaluate. The second difficulty has to do with the fact that the argument of the classical
definition of the Gaussia_\n Q-function in (5.3) appears in the lower limit of the integral which is
undesirable when trying to perform the average over ay.

To circumvent these difficulties, we now propose a new method of solution based the alternate

representation of the Gaussian ¢-function (4.7), namely,

. w/2 2
Qz) = %/.0 exp (—2;;2 ¢,) d¢; € =0. (5.6)

First using (5.6) in (5.4) gives

'Ij' ) ® q w/2 gEb (ZJIL:'ZI az)“ o d p
b-/0 /0 ;/0 €xp _W pa;(al)"‘paLc(aLc) ¢ doy dog - --dag,.

(5.7
Unfortunately, we cannot represent the exponential in (5.7) as a product of exponentials each in-
volving ouly a single oy becauge of the presence of the apa; crossproduct terms., Hence, we cannot
partition the L-fold integral into & product of one-dimensional integrals as is possible for MRC (see
Chapter 4) and thus we must abandon this approach. Instead, we use the alternate representation

of the Gaussian Q-function in (5.5) which gives after switching the order of integration

/ " / ( 260’ § ) Pa, (@) doy do, (5.8)

where A = 3&% While this maneuver cures the second difficulty by getting the total fading RV
a; out of the lower limit of the integral and into the integrand, it appears that we are still faced
with the problem of determining the PDF of o;. To get around this difficulty, we next represent
Da, (e¢) in terms of its inverse Fourier transform, i.e., the characteristic function which, because of

the independence assumption ou the fading channel amplitudes, becomes

1 f= . 1 e [ f
() = 5- / Vo, () &2 dv = = / [T e liv)| e au (5.9)
—oo -0 =1
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‘Substituting (5.9) into (5.8) gives

= m/32 A%o?
P, = 2ﬂ2 / H T, (V) / exp (_2sin2 p - jzxat) do; dv de. (5.10)

-

J(rh)

The integral J(v, ¢) can be obtained in terms of the complementary error function erfe(-) (with the
help of [53, Eqn. ()]

J(v,0) = \/z SIE;QS exp (__Si;:f y2) (1+erfc( \/_j )) (5.11)

or alternatively by separatcly evaluating its real and imaginary parts, namely, [53, Eqns. (3.896.4)
and (3.896.3)]

o0 A? mwsin? ¢ sin® ¢
fu op (‘m“) cos(var) dar = {/ =gz exp (_ﬂ)
o0 A? ) vsin® ¢ gin® ¢ 1 3 sin¢
/o o <—25in2¢a?) snlvee) doy = g exp (_ oA ”z) i ('2-;5; 24z ”2)’

(5.12)

where 1 Fy(+;-; ) is the Kummer confluent hypergeometric function [70, p. 504, Eqn. (13.1.2)]. Thus,

' sin 13 2
Y = L5 p (3552, (5.13)

letting

we can write the integral J(», ¢) in the form

T, 9) o

VEED + Y21, ¢) exp (j arctan <X§’(¢i)5))) exp (— S;‘i;b u2) . (5.14)

(X(8) ~ Y (v,¢)) exp (_ sin’ ¢ Vz)

]

In general, the characteristic function of a PDF will be a complex quantity and hence the product
of characteristic functions in (5.10) will also be complex. However, since the average BER is real,
it is sufficient to consider only the real part of the right-hand side of (5.10). Hence, we rewrite the
equation (5.10) as

. 1 w/2 poo L.
Pb = 2—"5/ f Re
I Joeo i=1

1% (ju):‘ J(v, ¢)> dv do. (5.15)
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Expressing the characteristic function of each fading path PDF by

V() = Uil)+GW)
= 4JURW)+ Vi3 (v) exp (J arctan (Ul((V)))) (5.186)

then substituting (5.14) and (5.16) into (5.15) gives

/2
Fb = 27‘_2 / f(Va (b) €xp ( 2A2¢ 2) dv d¢a (517)

where

f(w,¢) = R(v¢) cosB(v,9),

L.
Rv,¢) = VXA +Y09) [[VUF)+W (@),
=1
_ Y 9§ vi(v)
B(v,¢9) = arctan( X(9) ) - Earcta,n (m) . {(5.18)

The characteristic function corresponding to the Nakagami-m fading PDF can be evaluated with
the help of [53, Eqn. 3.462.1] in terms of the parabolic cylinder function D_, (-) [53, Section 9.24-9.25]

N 1 I‘(Zm;) 3 Q{ Qz
‘I’mz(:’?)) omi—- Py I‘(mz) D—zm; (—JV %‘-) exp (_—Sﬁ ’Uz), (5.19)

or alternatively by separately evaluating its real and imaginary parts by using sine and cosine Fourier

transforms found in [53] with the results (see Eqn. (5.16))

G) = Al) e (- v*).

Vilv) = Bi(v) exp (—4—53'{; vz), (5.20)
where
A(v): = 1 (2 mz;%; 1221),
Bilv) = F(IZ'E:;)%) f:: v1Fy (1~1n¢ g;’iﬁ‘) }(5.21)

Thus, the amplitude and phase functions defined in {5.18) become

L. L
R(v,¢) = X2 +Y2(r,¢) [[/Av)+ BHv) exp (_): 4_‘1’_1 1,2),
=1 i=1
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L
O(v,¢) = arctan (Y)?z;;;’)) + Zarctan (iﬁg%) , (5.22)
=1

with X (¢) and Y (v, ¢) as defined in (5.13) and A;(v) and By(v) as defined in (5.21). It is convenient
in this case to absorb the exponential factor in R(v,6) into the exponential factor in the integrand

of (5.17). Thus, we first write the average BER of (5.17) as

5 /2 in® Q0 ,
Py = 27‘_2/ / folv, ) exp( (s;r;lzqﬁ Z d )uz) dv do, (5.23)

where fo(v,¢) is a normalized version of (v, ¢) defined by

f()(l/‘ ¢) = RO(Va ¢) cos @(Va d’)’ (524)
with
L —
Ro(,¢) = VEI@) T V2(0,9) [] /420 + BY() (5.25)
=1
and ©(v, @) still as defined in (5.22). Finally, letting
)
n(@) = S+ Z — (5.26)

and making the change of variables © = \/n(¢)v, the doubly infinite integral is of the form

/_ fo ( m,tﬁ) z, (5.27)

which can be readily evaluated by the Gauss-Hermite quadrature formula {70, p. 890, Eqn. (25.4.46)]

yielding the desired final result in the form of a single finite range integral on ¢, namely,

b =z L fﬂ s¢ (5'28)
"'sz \/n(¢ Z (\/ (¢) )

where N, is the order of the Hermite polynomial, H N, (). Setting N, to 20 is typically suflicient for

excellent accuracy. In (5.28) z, arc the zeros of the N,-order Hermite polynomial, and H,, are the

weight factors of the Np-order Hermite polynomial and are given by (4.22)

2N—1N|\/—

H — T
™ N Hl%p—l(mn)

(5.29)

Both the zeros and the weights factors of the Hermite polynomial are tabulated in [70, Table (25.10),
p. 924] for various polynomial orders N,. Note that substituting (5.24), (5.25), and (5.26) in (5.28),
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it can be shown that the average BER in (5.28) is a function of the different average SNR/bit/path

— 2 Ey
Y1 = Ng

5.3.2 Extension to M-PSK Modulation

The symbol error rate (SER) for M-PSK over an AWGN is given by the intcgral expression (4.29)

1 {M-1)m
P, = _/ exp (_ gpsk.Ea )dd), (5.30)

T Jo Np sm2¢

where gy = sin? (—A’f?) and E;/Ny is the received symbol SNR. For EGC reception in the pres-
ence of fading, the conditional SER is obtained from (5.28) by replacing E./Ny by o E,/Ny =
(2{‘:1 a;) E, /Ny which represents the instantaneous SNR per symbol after combining. Following
the same steps as in Section 5.3.1, it is straightforward to show that the average SER is given by an

equation analogous to (5.28), namely,

P~ / = Z F )| dg (5.31)
T m— " 0 » .
s 2m? \/ npakicb ‘ Vv 77psk(d’)
where
L
sin? ¢ -~
Tpsk (D) 2 T
P8 2A;2)sk =1 4Tm
. 2 Ypsk ES_ . 2 Gpsk (1032 M )Eb 4
Apsk = 2 Aro = V/ Lc .Nb s (532)

and all other parameters and functions remain the same as for the binary signal case. It can also be

shown that (5.31) is a function of the different average SNR/symbol/path v = Qiﬁ-uéﬂ“-

5.3.3 An Approximate Approach for EGC of L Identically Distributed
Nakagami-m Fading Paths

As previously mentioned, one of the difficulties in evaluating (5.5) is the requirement of obtaining the
PDF of the total fading RV ;. Even the use of the Craig representation of the Gaussian Q-function
which leads to (5.8) does not alleviate this problem. Although there is no known closed-form exact
cxpression for the PDF of the sum of L i.1.d. Nakagami-m RVs, Nakagami [13] showed after rather
complex calculations that such a sum can be accurately approximated by another Nakagaini-m

distribution [13, p. 22] with a parameter gm and average power o) given by
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o = IR (1+(L— 1) E;%f(?ln/)—z)) ~I%Q (1 - 51;) . (5.33)

Specifically, modeling the PDF Pa, (0) by (5.1) with parameters gm and f2, the average BER for

binary signals as given by (5.5) can be evaluated in closed form as

_ - T (Lm+1 Lm 1
P, = 1\/ g7egc/m ( m+2) ( 1 ) oY (1,Lm+ -;-,Lm-kl'—-‘“—“):

DTN T (Ut Feoge/m) T(Im+1) \1+ gTege/m 14 gV ege/ ™
(5.34)
where 2 Fy (-, +;+;-) is the Gauss hypergeometric function (70, p. 556, Equ. (15.1.1)] and
_ b7 I'(m +1/2) _ 1
== L-1)——— ) ~F(1——]. 5.3
Tege ™ T (] +(L-1) m I'3(m) v 5m (5.35)

For the special case where m is integer, it can be shown (using [46, Appendix A]) that (5.35)

simplifies to

1 5 "MLt L 141y [1 5 l
L et | D DI G B Y CEYE-w1 = | R CED
2 ™ + GTege o ! 2 M+ GFege

For M-PSK, the same approximate modeling of a; can be used together with the conditional
SER obtained from {5.30) to compute an approximate expression for average SER. Using results
derived in [5, Appendix 5A] for the average SER of M-PSK over a single Nakagami-m channel, the

appropriate approximate expression for the multichannel case being considered here becomes (for m

integer)
= M-1 1 Gusk Fege l08g M T mL71 s m !
P,=—F -~ £e [(—+aa.‘ctana:) Z ( ) ( — )
M Ty m+ Gpsk 7egc 1082 M 2 =0 l 4(m + gpsk'yegc 10g2 JM)
mL-1 | m 4
+ sin(arctan o Ty ( — ) cos(arctan a))2¢=9-1] 5.37
ctone) 3 3 T (i) (costasctan) 0 (53
where
gpskﬁegc 1032 M s
a= cot —, 5.38
\/m + JpekVege 1082 M M’ (5.38)

and T;; is defined by z
2
Ty = Ty . (I ) . i
( (l—i)) 4 (2 -14)+1)

For M = 2, it can be shown that (5.37) reduces to (5.36).

(5.39)
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5.4 Generalized Selective Combining

Consider a generalized selective combiner (as described in Section 3.2.3) in which the SC chooses
the L, largest signals from the L received ones, then optimally weights (as per the rules of MRC)
and sums these signals to produce the decision statistic. We shall denote such a hybrid scheme as
SC/MRC-L./L. In [73) Eng et al. presented a thorough comparison of the hybrid SC/MRC scheme
with the 5C and MRC schemes over Rayleigh fading channels with both iid. distributions and
with an exponentially decaying average fading power on the different paths. Eng et al. limited
themselves to binary modulations and did not consider the performance of M-ary modulations in
conjunction with this hybrid scheme. In addition the performance of the hybrid SC/MRC scheme
over Nakegami-m fading by itself and in comparison with MRC, has not previously been reported
in the literature. In this section, we examine these performance issues.

The remainder of this section is organized as follows. Section 5.4.1 gives the joint statistics of

the generalized SC output.

5.4.1 Joint Statistics of the Generalized SC Output

In this section we counsider a SC that chooses the L. of its L input branches with the largest SNR.
The branch SNRs are modeled as i.i.d. RVs. Let ai,aq,- -, 0z denote the ordered (largest to
smallest) set of fading amplitudes associated with the SC inputs, each of which has average power
Q. We define the instantaneous SNR per bit for each channel v = of Ey/No,l = 1,2,-+-, L (Ey/No
is the bit energy-to-Gaussian noise spectral density ratio) and the corresponding average SNR. per
bit for each chaunel as 7, =.af Ey/Ny = QEy/No. The joint PDF of the L, largest of the 4’ is then
given by [76, p. 183}, [77, Eq. (9);

L -
P ysyre (157 'JLC):LC!(L ) [Pw(’YLc)]L Le HF’W(’Y!)a N2z, =0, (5.40})

¢ =1

where p,(7) is the PDF of y and Py(v) = [ p,{y)dy is the corresponding cumulative distribution
function (CDF). It is important to note that y1, 72, -+, vz, are not independent as can be seen from
the form of (5.40).

Rayleigh Fading Channels

For Rayleigh fading channels p,(v) is given by (2.4):

1 7)
. ex : >0, 541
(1;7) = exp ( = v > (541}
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‘and the CDF P, (v) = [; py(y)dy can be evaluated as

lﬁh):l—up(wgf),yzo. (5.42)
Substituting (5.41) and (5.42) in (5.40) yields the joint PDF given by
L N\ 2 Y
= - 1- _'TG —= 1> >'2 205
Pyi,oovre (m VL) (L — L) 71'“ ( CXP( - )) 1=1_J1:exp( 7) M2 YL,
(5.43)

Nakagami-n Fading Channels

For Nakagami-m fading p, (7) is given by (2.15):

o) (), a0 e

where T'(-) denotes the gamuna function [53, p. 942, Eqn. (8.310.1)] and the CDF Py(v) = [ p,(y)dy

P 7(“/) = 7——(;"1?) )

with v{-, ) denoting the incomplete gamma function [53, p. 949, Eqn. (8.350.1)].

can be evaluated as

¥ 20, (5.45)

For the Nakagami-m fading we shall be interested in the special cases of L. = 2 and L = 3 and

4 in which case (5.40) becomes

w)
Y\"™ 5 ,
Pyura (71,72) = 6 py(m1) Py (72) Ty ME™ (Le =2,L =38), (5.46)
and
(%)
Py (M 72) = 12 py(11) By (72) T | Y12 Y2 (Le=2,L =4). (5.47)

5.4.2 A Generic Approach for the Performance of SC/MRC over Rayleigh
Fading Channels

Average BER of Binary Signals

Based on the alternate representation of the Gaussian Q-function [66, Eqn. (9)], the conditional

BER (conditioned on the total combined SNR v; = Z,L:"l v ) of BPSK and BFSK can be written in
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the integral form (4.8)

‘ 1 [/ gV 1 [/ g
Py(Ey)= ;r-/o exp (~ ey dop == / Hexp (— de, (5.48)

TJo sin® ¢

where g = 1 for BPSK, g = 1/2 for orthogonal BFSK, and g = % -+ 2= for BFSK with minimum

27T 3x
correlation. The average BER, P,(E) is then obtained by averaging (5.48) over the joint PDF of
the instantaneous SNR sequence {'yl}ll‘:“l (5.43) yielding

o o0 oo
Pb(E)"[; f f Py(Blys) poyyyoyn. (Y1500 05 YE,) dm - dyp.—1de,
Tl ra

- I 00 pos o0 1|'/2Lc g 1
e — e @ — +_
w(L—Lc)!TL‘fo L f,/a Ex"[ (sm2¢ 7)"”]

L-L.
[l—exp (—ﬁ;"' )] d¢dyr - - dyp,—14YL,-

(5.49)

Although the integrand of (5.49) is in a desirable product form in the ~;’s, we cannot partition the
L.-fold integral into a product of one-dimensional integrals as is possible for MRC (see 4.27) because
of the v;’s in the lower limits of the semi-finite range (improper) integrals in (5.49). To get around
this difficulty, we consider the following clever transformation used by Kong and Milstein in their

derivation of the combined average SNR of GSC (78, Appendix]:

1 = M—7
Tz = Y278
EL.~1 = 7YL.,—1 — 7L,
Tr, = YL, (5.50)

Using (5.50) in (5.49) gives

I ® poo oo pw/2 Le g 1
w0 = e [ o (s Y

L—Lg
[l—exp (-— m;“ )] dodzy - --dey, _1dxy,, (5.51)

The transformation (5.50) has the advantage of transforming the lower limits of the improper inte-
grals in (5.49) to 0 while conserving the desirable product form in the x;’s. Hence partitioning the

L.-fold integral into a product of one-dimensional integrals is now possible after switching the order
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of {utegration on ¢ and on the x;’s. Applying this procedure and grouping like terms yields

E L " Ki( d 5.52
By( )-*m/ﬂ H 1(7: g: 8) do, (5.52)
where
K7 g:0) = fwex [—( J +l)lw]dm 1=12.--L.—1
177 8: = 0 Xp Sill2¢ 5 g1 £} =544 4
= [( J +l) l]_l 1=1,2,- Le—1 (5.53)
- sin®¢ 7§ ’ Tomeme )
and
o g 1 rL L-L.
K. (Wig;d) = -~ =} Le 1- - . -4
rwo [l ()] o () S

Using the binomial expansion

()] () ()

in (5.54) K1.(%; g; ¢) can be expressed in closed-form as

L—-L -1
_ (-1 (")
Ki.(%9:¢) = —t
; J?_,é,_Lﬂ +..£I.

sl

(5.56)

Substituting (5.53) and (5.56) in (5.52) and after some manipulations the average BER can be

expressed in terms of a single finite-range integral given by

By e SRR (LB (14 + )
Pb(E):(L°) f B0 () (£ a "’) d¢. (5.57)

(1 + ;;;%)LM

Switching the order of summation and integration, and defining the integral I, (6;¢1, c2) as

1 %/ sin’¢ \'[ sin®o
L(8cr,c0) = = ) g
(B¢, c2) ﬂ./c. (sin2¢+c1) (sin2¢+c‘.g) 4% (5:58)

where, in general ¢; and ¢y are two constants (independent of ¢) that might be different. we can

rewrite the average BER as

B L-- Lc . :(L Lc) g7
Pb(E)-( )Z - Ir, - 1( ,97,1+ ) (5.59)
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Since the integrals I, (0; c1, ca) were found in closed-form by Pawula (for ¢, = ¢3) and by Simon (for
¢ # cp) (see Appendix A) (5.59) presents the final desired closed-form result. This result yields
the same numerical results as {73, Eq. (9)] and [73, Eq. (12)], for the average BER of BPSK (g=1)
with L, = 2 and L, = 3, respectively. Hence (5.59) (or equivalently (5.57)) is a generic expression
valid for any L. < L without being “extremely unwieldy notationally” as would be the case if the
approach adopted in [77], [73] was pursued further for L, > 3.

Average SER of M-ary Signals

In Chapter 4 we showed that various M-ary modulations have a conditional SER which can put
in the desired product form representation. Using the fact that these expressions have the same
functional (product of exponentials) dependence on the ;s as does (5.48) we can easily extend the
analysis developed in (5.4.2) to obtain the exact average SER of any two-dimensional constellation

with GSC. We limit ourselves here to M-PSK, M-AM, and square M-QAM signals.

Average SER. of M-PSK The conditional SER for M-PSK, P; (), was shown to be given

exactly by the desirable product form expression (4.29), namely
M-1)x L_,L L.

_ 1 L—MFL Ipsk Vi Gpsk V1 =
o=l [ 7 e (e [ [Jew (-Z)ee oo

where gpg = sin® (). Hence, averaging (5.60) over (5.43) then following the same steps as in

(5.49)-(5.59) we obtain by inspection the following expression for the average SER of M-PSK:

(b-Le D =
r(B) =} ) Z U )ILc_l (———(M PR ) (5.61)

—o 1-+ o

Our result (5.61) generalizes the M-PSK average SER results of Chennakeshu and Anderson [60]
with MRC and conventional SC. For instatice for the particular case of L = L. (i.e., MRC) it can be
easily shown that (3.61) together with (5.80) agrees with [60, Eq. (21)]. Similarly, for the particular
case of L, = 1 (i.e., conventional SC) it can also be shown that (5.61) together with (5.82) reduces
to {60, Eq. (26)]-

Average SER of M-AM The conditional SER for M-AM, P, (7;), was shown to be given exactly
by the desirable product form expression (4.33), namely

=, . _2M=-1) [ ( gam')’t) 2 (M —1) [P ( Gam V!
Ps (’yt)__——Mff A exp 2¢ dé—m— A II;IISXP Sm ¢)d¢ (562)
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where gam = 575 Hence, averaging (5.62) over (5.43) then following the same steps as in (5.49)-

(5.59) we obtain by_inspection the following expression for the average SER of M-AM:

2(M 1) L Le 1 L—1L, _
PS(E) Z ( ( ) Ip -1 g;gam'_)'-a &‘E’YT . (5.63)
1+ I

Average SER of Square M-QAM The conditional SER for square M-QAM, P; (), was shown

to be given by the desirable preduct form expression (4.37), namely

1 /2 Joam Yt 4 2 Gqam 7V v
) [ () [ o 252)
( vM ) ]o‘ =P ( sin’ ¢ ) 4 T ) 0 sin® ¢ a9
1 a/2 Le g P 4 1 2 n/4 L g
1— — .dgam i _* o / (” qu.m'ﬂ)"
( \/?M") /0 ;E[lexp( sin’ ¢ )d¢ m ( M) 0 ;[;IIEXP sin® ¢ 4

(5.64)

Py(Ely)

SR RNEER N

where goam = Xﬁ Hence, averaging (5.64) over (5.43) then following the same steps as in (5.49)-
(5.59) we obtain by inspection the following expression for the average SER of square M-QAM:

L-L. L
L 1 =0'(t) 7 g
= 411 - —= § ~ N 5 ‘1‘”"
PS(E) (Lc) [ ( m) i 1+ £c Le 279(15.[1’171 1+ +

1 “i“ (=) (*7%) JoamT
- 4(1——-) St VAR S ( s GoaT, 222 ) - (5.65)
v s 1S 1T

=0

Our result (5.65) generalizes our square M-QAM SER result of Chapter 4 as well as those of Lu
al. [71] with MRC and conventional SC. For instance for the particular case of L = L, (i.e., MRC)
it can be easily shown that (5.65) together with (5.80) agrees with (4.39) or equivalently yields
the same numerical results as [71, Eq. (12)]. Similarly, for the particular case of L, = 1 (ie.,
conventional SC) it can also be shown that (5.65) together with (5.82) reduces to [71, Eq. (23)].

5.4.3 Performance of SC/MRC over Nakagami-m Fading Channels

In this section we quantify the effect of the severity of the fading on the BER performance degradation
arising from the use of SC/MRC instead of the optimal MRC scheme, The organization of this
section is as follows. The performance of SC/MRC-2/3, SC/MRC-2/4, and MRC-L binary receivers
is derived in Sections 5.4.3, 5.4.3, and 5.4.3 respectively. Numerical results and a discussion of these

results are presented in Section 5.4.3.
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Average Error Probability Performance of SC/MRC-2/3 Binary Receivers

For binary signals and a receiver that implements the hybrid SC/MRC scheme with L, = 2and L =3
(i.e., MRC combining of the strongest two of the three received branches), the BER conditioned on
the fading amplitudes is given by [51, p. 188]

Py(w)=Q (vz g %) ; (5.66)

where Q(-) is the Gaussian Q-function, g = 1 for coherent BPSK [51, Eqn. (4.55)], g = 1/2
for coherent orthogonal BFSK [51, Eqn. (4.49)], ¢ = % + 3= for coherent BFSK with minimum
correlation (51, Equ. (4.63)}, and ¢ = 7 -+ 2 denotes the total SNR. Traditionally, the average
BER is computed by determining the PDF of ; and then averaging (5.66) over this PDF, i.e.,

Py= /m Q (\/2 g ’Yt) Py, (1) dys. (5.67)

0

In fact, this was the procedure taken by Eng et al. [73] for the Rayleigh channel.
For the Nakagami-n channel, it is more expeditious to take a different approach based on the

alternate reprcsentation of the Gaussian @-function. To begin we first rewrite (5.67) as

Y1
P, —/ / 29 (n +72)) Py e (715 72) dy2 dm, (5.68)

which because of the dependence of v; and -3 would require double integration using the joint PDF

of (5.46). Now using the alternate representation of the Gaussian Q-function (4.7), namely,

/2 2
Q(z) = %/ﬂ exp (_“2-;11_2(/5) dg; x>0, (5.69)

results in

1 U g pm v (m, 72 +
== / / / 6 Py(1) Pyl72) ———( #) exp (—_————9(”'.‘ ; "*)) dy2 dvi dg.  (5.70)
7 Jo 0o Jo T'(m)

sin” ¢

At first glance, (5.70) appears formidable in that it involves evaluation of a triple intcgral. As we
shall soon sec, however, each of these integrals can be evaluated in closed form with the final result
for Py being expressible as'a single infinite series of tabulated functions. To obtain this foﬁn, we
proceed as in Appendix B with the result (see 5.94)

P 3 g/m Z (=1)°T@m +n+1/2) ( 1 )3m+n
T o)’V g7/m) &= Bl (m + n)(2m + n)(3m + n) \ 1+ g7/m

1 1
Fi{1 : ;= Fi{1 : -1y ————— 71
X g 1( ,3m+n,2m+n+1,2) 2 1( ,3m+n+1/2;3m +n 4 1’1+g§/m) (5.71)
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which is valid for any » = 1/2 (integer or noninteger). The Gaussian hypergeometric function
aFy(-y5+-) [70, p. 556, Eqn. (15.1.1)] is available in standard mathematical software packages
such as Mathematica and thus (5.71) is readily evaluated. The specifics of this evaluation will be

discussed in Section 5.4.3 on numerical results.

Average Error Probability Performance of SC/MRC-2/4 Binary Receivers

For the receiver in Section 5.4.3 with now L; =2 and L = 4 (i.e., MRC combining of the strongest
two of the four received branches), the average BER is obtained by using the Gaussian Q-function

representation of (5.69) and ., 4, (71,72) of (5.47) in (5.68) resulting in

' 2
L1 v (m22) o1 + )
.1 . - . (5.72
Po=t [ [T [Pz ) | S| e (<22 an av do. 512

As before, the triple integral in (5.72) can be evaluated in closed-form with the final result for P,
being expressible now as a double infinite series of the same tabulated functions as those in (5.71).

To obtain this form, we proceed as in Appendix C with the result (see (5.101))

p__08 g7/m i i (-1)"HT(4m + n+1+1/2) ( 1 et ntl
b= (F(m))4\ T (1+ 97/111)nzo l=o24m+”+’n!l!(m +n)m+)@Bm+n+)(dm+n+1) \1+ g"'y/m)

g 1
X o (l,4m+n+l;3m+n+l+1;—> oy (1,4m+n+l—.—l/2;4m+n+l+l;———%_——).
2 1+ g7/m

(5.73)

Note that although (5.73) is a double infinite sum as opposed to the single infinite sum of (5.71),
each term still only involves a product of two Gaussian hypergeometric functions.

In principle, the approach taken in Appendices B and C can be extended to evaluate the average
BER of the hybrid SC/MRC scheme with L. = 2 and arbitrary L. The result will be in the form of
an L—2 order infinite sum whose individual terms involve a product of two Gaussian hypergeometric
functions. The details of this extension are left to the interest of the reader since the conclusions
that we wish to draw can be deduced from the two specific cases already considered.

We conclude this section by noting that the average symbol error rate of M-ary linearly mod-
ulated signals (M-PSK, M-ary amplitude modulation (M-AM), and M-ary guadrature amplitude
modulation (M-QAM)) with hybrid SC/MRC can be derived in a manner similar to that presented
in Appendices B and C. The approach taken to achieve these results would make use of the “de-
sired” conditional symbol error rate formulas given in the previous chapter combined with new

trigonometric integrals found by equivalence with results from {60] and shown in [5, Appendix 5A].



53

Average Error Probability Performance of SC and MRC Binary Receivers

In the section on mumerical results, it will be of interest to compare the suboptimum (but simpler)

hybrid SC/MRC scheme with conventional SC as well as with optimum MRC of L branches.

Selective Combining With conventional SC the receiver processes the branch with the largest

SNR. The PDF of the SC output P, (Ysc) is then found by setting L, to 1 in (5.40) yielding

min=(3) i ()] () e

Substituting (5.74) in (5.67) yields

o (m\" L 1o (. fa my N7 m .
Py={— ey A ’Ysc Q( 29756) Tim, 5 €xp —%"" Y. (570)

7/ (C(m)*

Since no closed-form solution is available for the intgral in (5.75) the average BER of SC is computed

numerically.

Maximal-Ratio Combining For MRC diversity, the average BER is again given by (5.67) with
= Z{:l v, where now the 71’s correspond to a randomly chosen (not ordered) subset of the L
received branches including the possibility of all the branches, ie., L, = L. Since no attempt is
made to choose those ;s having the largest values, the total fading, ~, now corresponds to the sum

of L. il.d. gamnma RVs which has the PDF [79, Equ. (7)]

Prve(m) = (T)Lcm A e p( m%), Y 2 0. (5.76)
¥ [(L.m) ol - ‘

Substituting (5.76) in {5.67) and using a result obtained by Eng and Milstein [46, Appendix A, Eqn.
(A8)] which is analogous to (5.93) of Appendix B, we obtain the desired result [79, Eqn. (15)].

[ g/m  T{Lem+1) 1 Eem 1 1
1L —Lem+1; ——— |.
\/ m (1 +gy/m) ['(Lem +1) \1+g7/m 2Fy {1 Lem + g lem iy +g7/m

(5.77)

Numnerical Results and Discussions

Iliustrated in Figs. 5.2-5.5 are the average BER results (P, vs. g77) for the hybrid SC/MRC-2/3 and
SC/MRC-2/4 schemes as determined from (5.71) and (5.73), respectively, and for different values
of m. Also shown for comparison are the MRC results obtained from (5.77) for values of L, equal
to 2, 3, and 4. The abscissa g% represents the average SNR. per bit adjusted by the modulation-
dependent parameter g. Tor the purpose of this discussion we shall refer to g5 as simply SNR.



54

10

~1

10

-
o
[

Average Bii Error Rate Pb(E)
)

0 2 4 6 8 10 12 14 16 18 20
Average SNR per Bit 10 logq (g 7) [dB]

Figure 5.2: Comparison of MRC and hybrid SC/MRC over Nakagami-m channel (m = 1/2, Single-
sided Gaussian fading) (g is the modulation-dependent parameter, (a) MRC-2, (b) SC/MRC-2/3,
(c) MRC-3, (d) SC/MRC-2/4, and (e) MRC-4).

The case m = 1/2 corresponds to worst-case (single-sided Gaussian) fading. The results for m =1
correspond to Rayleigh fading and agree with those reported in [73]. The cases m = 2 and 1 =4
represent less severe fading conditions than either single-sided Gaussian or Rayleigh. The results
corresponding to the evaluation of (5.71) and (5.73) were obtained by truncating the infinite series
to 20 terms. Extending the infinite series beyond this number of terms produced no change in the
first 8 decimal places of the numerical results.

A comparison of the MRC performance for L, = 2 (the solid curves labeled “a”) with that of the
hybrid schemes (the dashed curves labeled “b” and “d”) demonstrates the significant advantage of
the latter gained by intelligent (i.e., choosing the largest) rather than random selection of which two
branches to optimally combine as determined by the SC, The amount to be gained by this intelligent
choice of the branches to be combined increases as the fading becomes more severe.

Comparison of the MRC results corresponding to (the solid curves labeled “¢” and “e”) with
those for the hybrid schemes (the dashed curves labeled “b” and “d”) demonstrates the advantage of
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Comparison of MRC and Hybrid SC/MRC over Nakagami—m Channel (m=1)
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Figurc 5.3: Comparison of MRC and hybrid SC/MRC over Nakagami~-m channel (m = 1, Rayleigh
fading) (g is the modulation-dependent parameter, (a) MRC-2, (b) SC/MRC-2/3, (c) MRC-3, (d)
5C/MRC-2/4, and (e) MRC-4).
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o Comparison of MRC and Hybrid SC/MRC aver Nakagami-m Channel (m=2)
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Figure 5.4: Comparison of MRC and hybrid SC/MRC over Nakagami-m channel (m = 2) (g is

the modulation-dependent parameter, (a) MRC-2, (b) SC/MRC-2/3, (c) MRC-3, (d) SC/MRC-2/4,
and (e) MRC-4).
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Comparison of MRC and Hybrid SC/MRC over Nakagami—m Channgl (m=4)
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Figure 5.5: Comparison of MRC and hybrid SC/MRC over Nakagami-m channel (m = 4) (g is
the modulation-dependent parameter, (a) MRC-2, (b) SC/MRC-2/3, (c¢) MRC-3, {d) SC/MRC-2/4,
and (e) MRC-4).
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Gomparison of SC, MRC and Hytrid SC/MRC over Nakagami—m Channels (L=3)
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Figure 5.6: Cowparison of SC-3, MRC-3, and hybrid SC/MRC-2/3 over Nakagami-7n channel for a
constant number of available branches L=3.

the former gained by optimally combining all received branches, i.e., making full use of the amount
of diversity available. Three conclusions can be drawn from this comparison. First, the gain of the
optimum (MRC-L) over the corresponding suboptimum (SC/MRC-L./L) scheme (i.e., curve “b”
vs. “¢” or “d” vs. “e”) is constant independent of SNR. This result is obvious from the numerical
results but certainly not obl\'rious from the analytical expressions. Second, as one might expect, the
amount of gain improves as L, approaches L. Finally, from Figs. 5.6 and 5.7, we see that for a fixed
number of available branches, the amount of gain varies inversely with the severity of the fading.
That is, for the more severe fading cases, the suboptimum hybrid schemes are closer to the true

optimum MRC scheme.
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0 Comparison of SC, MRC and Hybrid SC/MRC over Nakagami~m Channels (L.=4)
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Figure 5.7: Comparison of SC-4, MRC-4, and hybrid SC/MRC-2/4 over Nakagami-m channel for a
constant nmumber of available branches L=4.
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o Comparison Between MRC and EGC Diversity Schemes (4 Branches)
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Average Received SNR per Bit and per Branch ¥ [dB]

Figure 5.8: Comparison of MRC and EGC over Nakagami-m channel for various m paranieters.

5.5 Comparison Between EGC and SC/MRC

In Figs. 5.8 and 5.9 we plot the average BER results (P, vs. ¢7y) for EGC and the hybrid SC/MRC-
2/3, respectively, for different values of m. Also shown for comparison are the MRC results. The
performance of EGC approaches the performance of MRC for channels with low amounts of fading
(high ) whereas the performance of the hybrid SC/MRC scheme tends to MRC for fading channels
with high amounts of fading. This behavior can be explained by the following argument. For channels
with high amounts of fading EGC is combining very “noisy” branches and suffers therefore a serious
penalty with respect to MRC. Since the hybrid SC/MRC ignores the branches with lowest SNR,, this
scheme has relatively good performance for this type of chanunels. On the other hand, for channels
with low amounts of fading, EGC is taking full advantage of the combining of all the “good” branches

whereas hybrid SC/MRC suffers a serious penalty since it is disregarding information carried in some

of these branches.
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Figure 5.9: Comparison of MRC and hybrid SC/MRC-2/3 over Nakagami-m channel for various m
parameters, ((a) MRC-2, (b) SC/MRC-2/3, (c) MRC-3).
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5.6 Conclusion

We have presented a performance analysis of the EGC and the hybrid SC/MRC diversity schemes
over Nakagami-m fading channels and compared this performance to that of optimal MRC. The anal-
ysis for EGC assumes that the fading amplitude statistics for each path are completely arbitrary.
However, the analysis for hybrid SC/MRC was restricted to identically distributed Nakagami-m
channels. The generic approach used to derive the performance of hybrid SC/MRC over identi-
cal Rayleigh fading channels can be extended to the case of non-identically distributed Rayleigh
channels. Unfortunately, however it appears that the simplifications which lead to the performance
results of the hybrid scheme are not possible for the case of non-identically distributed Nakagarmi-in
channels.

Based on the numerical results of these diversity schemes, various conclusions can be drawn.
First, the performance degradation arising from the use of these suboptimum schemes instead of
MRC is independent of the average SNR regardless of the severity of the fading. Second, EGC has
a higher rate of improvement than the hybrid SC/MRC scheme as the severity of fading decreases.
As such, EGC approaches the performance of MRC for channels with a low amount of fading.
Conversely, the hybrid SC/MRC scheme approaches the performance of MRC for channels with a
high amount of fading.
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Appendix A

Evaluation of the Integral I,(6; ¢, c2)

Define the integral

_ 1 f%7 sin®¢ \"/ sin’¢
I“(G’Cl"’z)“;fo (sin2¢+cl) (siu2¢~.— Cz) e (5.78)

where, in general c¢; and cz are two constants (independent of ¢) which might be different. For
¢1 = ¢; = c¢ Simon deduced from the results of Chennakeshu and Anderson [60] a closed form

expression for I,,(#; ¢, ¢) 2 I,+1(8;¢) given by

_ e g i
Iﬂ+1(0, C) = *7; - ; [( + arctana) kzo ( )m (579)
+ sin{arctan @) ZZ cos(arctana)]z(k—i)+l] , —m<6<w (5.80)
k=1 r—l
where 8 = 1+c sguf, &« = —fcot e, and
)
T = e . 5.81
TTE) 4 2k - ) + 1) (5.81)
For n =0 {5.80) reduces to
_8_Byr .
I(6;¢) = i (5 - arctcma) . (5.82)

Another closed-form for the integral I,,..1(8; ¢) has been derived by Pawula based on a clever change

of variables due to Euler and Legendre [80, p. 316]. The final result can be found in (5, Appendix

5A] as
In1(8;¢) % - (1 * Sgn(e oy ) \/1_+cZ (Zk) [4(1 Jlr o)¥

n k-1
2k\ (=1)#*k sin{(2k — 25)T -
LB < 2w, .
1+c§%;}( ) DR 9% — 25 , 0s0<2m, (5.83)

Il

where T’ is defined by

1 N b ) 14 sgnD
T= 2arctan(D) + 7 [1 bgnN( 5 ):| , (5.84)
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with N = 24/¢(1 + ¢) sin(26) and D = (1 + 2¢) cos(26) — 1. Using the approach used by Pawula to

derive (5.83) Simon derived a closed-from expression for I,,(6; 1, c2) when ¢1 # ¢z given by

oo - (R 2) 2 (2]
<l+sgn(9-- 7r) )\/’1_::}:—_;1)( Q—MCI)n—k (?)W

n~—-1k-—1 n-k ik . o e
2 26\ (=1)#**  sin[(2k -- 25)T1]
w > U v<e<on,
T 1+Clk OJ_O(Cg~c1) (j)[4(1+cl)]k 2%k — 2 ; U= T

I(0;¢1,c2)

il

-+

-

(5.85)

with Ty and T% corresponding to T of (5.84) with ¢ replaced by ¢; and ¢y, respectively.

Appendix B
Evaluation of Eqn. (5.70) for the Average Bit Error Proba-
bility of SC/MRC-2/3

Define the integral

Y1
I(n) = fo Py(72) “f(m, %7—2-) exp (—sigl:’f ¢) dva. (5.86)

Then, the average error probability given by (5.70) can be written as

/ " / i 61{’(3)1) (—S;”zl¢) I(m) dm dg. (5.87)

To evaluate I(y;) we first substitute (5.44) into (5.86) and then make use of the infinite series

representation of the incomplete gamma function [63, p. 950, Eqn. (8.334.1)], namely,

() L (7)) o

which results in

" (2) o) ol (3 2h)
= , (= d
/0 (7) Tem) '\™ 77 ) =P 7 T inte 72] &

- ) SR (8) [ [ 3o ) o

(5.89)

I(m)

il
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Next, the integral in (5.89) can be evaluated using [53, p. 364, Eqn. (3.381.1)] which gives

- 3" s B (3 (1ak) ™ o3 e))
M=\5 I‘(m) n'(m-l—n 5 5 sin’¢ 7 "\F sinte) )

n=l .
(5.90)

Substituting (5.90) in (5.87) and combining like terms gives for the integral on 7

o« m m
></ I lexp [—(:+ gg )"/1} 7(2m -+ n, (—_ + ,gz .)’71) dy.
0 ¥ sin® ¢, ¥  sin® ¢

(5.91)
The integral in (5.91) can be evaluated using [53, p. 690, Fiq.(6.455.2)] with the result
™6 py(m) m (=1)"
— I(m)d

/0 T'(mn) PP " in? ¢ (n)dn = (I‘( 2 n! (m + n)(2m + n)
F(3m ) gy 7
W 2}'1(1,3m+n,2ﬂ'1'f‘n"‘l,l/z) (l—m s

(5.92)

where oF (-, +;+) is the Gaussian hypergeometric function [70, p. 556, Eqn. (15.1.1)]. Finally, the
integral on ¢ can be performed using a definite integral that can be derived from a result obtained

by Eng and Milstein [46, Appendix A, Eqn. (A8)], namely, [81, Appendix A, Eqns. (63), (67)]

/2 —m
1 / (1 4 ) dé = N I'(m+1/2) oF (1,m+1/2;m+1; __1_)
0

™ sin? ¢ 2 (14 ¢)m+i/2 T(m+1) 1+ 0(5 o)

Finally, substituting (5.92) in (5.87) and using (5.93), we obtain the desired result (5.71)

- 3 g7/m i (~1)"T'(3m +n +1/2) ( 1 )*””"*"’
b= ([‘(m))3 n (14 gy/m) — 2mtnpl(m 4+ n)(2m + n)(83m +n) \ 1+ gﬁ/m

x 2F(1,3m +n;2m+n+1;1/2) 2F1(13m+ni1/23m+n+1 " / ).(5.94)
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Appendix C

Evaluation of Eqn. (5.72) for the Average Bit Error Proba-
bility of SC/MRC-2/4

Define the integral

m my\]® ( 972 ) )

I . ,— - dya. 5.9
(m) fo Py (¥2) [7 (m E )} oxp|~5zg) 4 (5.95)

Then, the average error probability as given by (5.72) can be written as
/2 poo 12 p (

12 py(m) m :

- I dyy dg. 5.96
/ J Tm)” "p( san%) ) . 46 (59)

To evaluate I{7y;) we first substitute (5.44) into (5.95) and then twice make use of the infinite series

representation of the incomplete gamma function of (5.88) which results in

o= (%)Sr—;ﬁii e (m)w

n=0 =0

y / i =L [ (Z’l+ g ) 72] dva. (5.97)
o ¥ sin®g

Once again the integral in (5.97) can be evaluated using [53, p. 364, Fgn. (3.381.1)] which gives

o= (%1-) F(m Zz"*“ (fft_j):;(lmﬂ) (%)W

n=0 =0

-3m~-n—1
m g m g
- 3m L= ) 5.98
(W +Sm2¢) 7( +n+ ,(7 + 2 2¢)71) (5.98)

Substituting (5.98) in (5.96) and combining like terms gives for the integral on 1

o 12py(m)  f gm 12 m\*"EE (-1 m\"*
L™ Ty "( 2¢) Ton)dn = freys (7) 2 T mm T )( )

n=0 =0

—3m=n-I 00
m g m1 m g m g
X — exp|~{ =+ 3 n+i,| = dri.
(‘? sin2¢>) /u n p[ (7 sin2¢) "l]"( T (v ““sinﬂcz»)”") g

(5.99)

Evaluating the integral in (5.99) using [53, p. 690, Eqn. (6.455.2)] results in

o 12py(m) ( gm
5 e () roven =

I'(dm+n+1)
gdm+n+i

)n+l

(r( ))4 ZZ 'l'm+n)(m+l)(3m+n+l)

n=0 }=0

1 —4rp—-rn—1
2 Fy (1,4m+n+l,3m+n+l+1;—) (1+-mg—_77-) . (5.100)
2 m sin® ¢
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Finally, the integral on ¢ can be performed using the definite integral of (5.93) which leads to the
final desired result for average BER (5.73), namely,

50 FI/m e (1" " (dm+n+1+1/2) 1 Amtn+
Py= Cm) Y = (0 + gﬁ/m)z Z 2tmAntHnim + n)(m + (B3m + n4-)(4m +n 1) (1 i gﬁ/m)

=0 =0

1
><2F'1(1,4m+n+l;3m+n+l+1;— o Fy 1,4m+n+l+1/2;4m+n+l+l;—% .
2 1+ gy/m

(5.101)
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Chapter 6 Performance of Noncoherent and
Differentially Coherent Modulations over

Generalized Fading Channels

6.1 Introduction

In many applications the phase of the received signal cannot be tracked accurately, and it is therefore
not possible to perform coherent detection. In such scenarios communications systems must rely on
noncoherent detection techniques such as envelope or square law detection of frequency-shift-keying
(FSK) signals [51, Chapter 5] or oun differentially coherent detection techniques such as differential
phase-shift-keying (DPSK) [51, Chapter 7].

There are mauny papers dealing with the performance of noncoherent and differentially coherent
communication and detection systems over additive white Gaussian noise {AWGN) ag well as fading
channels. For example, Proakis [82] developed a generic expression for evaluating the bit-error-rate
(BER) for multichannel noncoherent and differentially coherent reception of binary signals over L
independent AWGN channels. Further, in [1, Section 7.4, p. 725, Proakis provides closed-form ex-
pressions for the average BER of binary orthogonal square-law detected FSK and binary DPSK with
multichannel reception over L independent identically distributed (i.i.d.) Rayleigh fading channels.
In [83], Lindsey derived a general expression for the average BER of binary correlated FSK with
multichannel communication over L independent Rician fading channels in which the strength of
the scattered component is assumed to be constant for all the channels. In [4], Charash analyzed
the average BER performance of binary orthogonal FSK with multichannel reception over L iLi.d.
Nakagami-m fading channels. More recently, Weng and Leung [84] derived a closed form expression
for the average BER of binary DPSK with multichannel reception over L i.i.d. Nakagami-m fading
channels. Patenaude et al. {85] extended the results of Charash [4] and Weng and Leung [84] by
providing a closed-form expression for the average BER performance of binary orthogonal square-law
detected FSK and binary DPSK with multichannel reception over L independent but not necessarily
identically distributed Nakagami-m fading channels. Their derivation is based on the characteristic
function method and the resulting expression contains L — 1 order derivatives, which can be found
for small L but which become more complicated to find ags L increases. In addition, because of
its adoption in the most recent North American and Japanese digital cellular systems standards,

differential quadrature PSK (DQPSK) has also received a lot of attention in the literature. For
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instance, Tjhung et al. [86] and Tanda [87] analyzed the average BER performance of this partic-
ular scheme over Rician, and Nakagami-m fading channels, respectively. Further, Tellambura and
Bhargava [88] presented an alternate unified BER analysis of DQPSK over Rician and Nakagami-m
fading channels.

In this chapter we unify and add to the above results by providing new generalised expressions
for the average BER performance of noncoherent and differentially coherent communication systems
with single and multichannel reception over AWGN and fading channels. The multichannel recep-
tion results are applicable to independent channels which are not necessarily identically distributed
nor even distributed according to the same family of distributions, and to systems that employ
postdetection equal gain combining (EGC) [1, Section 4.4, p. 298], [2, Section 5.5.6, p. 253]. This
unified framework relies on a new approach which docs not attempt to compute or approximate the
probability density function (PDF) of the signal-to-noise ratio (SNR) at the output of the combiner
and then average the conditional BER over that PDF. It rather exploits an alternate form of the
Marcum Q-function [89, Appendix C], [90] and the resulting alternate integral representation of the
conditional BER as well as some known Laplace transforns and/or Gauss-Hermite quadrature inte-
gration to independently average over the PDF of each channel that fades. In all cases this approach
leads to expressions of the ‘é.verage BER. that involve a single finite-range integral whose integrand
contains only elementary functions and which can therefore be easily computed numerically. Since
all possible modulation and fading combinations are too numerous to evaluate, numerical results for
the error rates as well as a study of their dependence on the various fading parameters are omit-
ted in this thesis. These numerical results will be presented in the more comprehensive treatment
in preparation [5] which will also cover communication systems with error correction coding and
multiple symbol observation.

The remainder of this chapter is organized as follows. In the next section, the multichannel and
the various fading models under consideration are described. Section 6.3 provides the performance
of noncoherent and differentially coherent modulations with single channel reception. Section 6.4
presents a new product form representation of the BER for multichannel reception with noncoherent
or differentially coherent detection, and this representation is used to derive the average BER with
multichannel reception. Finally, a summary of all the results and some concluding remarks are

offered in Section 6.5.
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6.2 System and Channel Models

6.2.1 Transmitted Signals

Let -
s(ty= Y Sel@nfitie) (6.1)

i==—0o0
denote the generic complex baseband transmitted signal, where S is a constant amplitude related
to the average sigual power. For differentially coherent modulations, f,, is set equal to 0 and the
information is conveyed via the phase ¢, = £(2m — 1) (m=1,2,---, M/2), where M is the size
of the transmitted symbol set. The modulator differentially phase encodes the transmitted symbols.
Hence if A¢; was the information to be communicated in the ith transmission interval, then the
transmitter would first form ¢; = ¢; 1 + A¢; modulo 2x and then modulate ¢; on the carrier. For
noncoherent modulation, the information is transmitted via the frequency f.,. For instance, for

binary FSK 8., = 0 and f, = £Af.

6.2.2 Multilink and Fading Channel Models

The transmitted signal is received over L independent channels, each of them being a slowly varying
flat fading channel, as shown in Fig. 6.1. Tn Fig. 6.1, {ry(t)}£, is the sct of received replicas of
the signal where ! is the channel index, and {a}f,, {61}~ ,, and {n}f_, are the random chaunel
amplitudes, phases, and delays, respectively. The first channel is assumed to be the reference channel
whose delay 71 = 0 and, without loss of generality we assume that 73 < m» < --- < 7. Because of
the slow-fading assumption, we assume that the {a;}2,, {:}£.,, and {n}{, are all constant over
a symbol interval.

The fading amplitude o; on the Ith channel, where ! denotes the channel index ({ = 1,2,---, L),
is assumed to be a random variable (RV) whose mean square value a_,z is denoted by Q;, and whose
PDF is any of the family of distributions described in detail in Chapter 2.3. Furthermore, the fading
amplitudes {a;}le are assumed to be statistically independent RVs. The multilink channel model
under consideration in this chapter is a generalized fading channel in the sense that it is sufficiently
general to include the case where the different channels are not necessarily identically distributed
nor even distributed according to the same family of distributions. With such a general multilink
channel model in hand, we are able to handle a large variety of diversity types such as antenna,
frequency, site, or multipath diversity (2, p. 238].

After passing through the fading channel, each replica of the signal is perturbed by complex
AWGN with a one-sided power spectral density which is denoted by 2N (W/Hz). The AWGN
is assumed to be statistically independent from channel to channel and independent of the fading

2
amplitudes {a;}£ ;. Hence the instantaneous SNR per bit of the Ith channel is given by v = QIITE",
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Figure 6.1: Multilink channel model.
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Figure 6.2: Differentially coherent postdetection equal-gain combining receiver structure.

where Fy, (J) is the energy per bit, and 2Ng = z‘l’zl 2N; (W/Hz) is the total complex AWGN power
spectral density.

8.2.3 Receiver Model

We consider I branch (finger) postdetection EGC receivers, as shown in Figs. 6.2 and 6.3 for dif-
ferentially coherent and noncoherent detection, respectively. Both receivers utilize M correlators
to detect the maximum a priori transmitted symbol. Without loss of generality let us consider
the rnth symbol correlator. Each of the L received signals 7(¢) is first delayed by 77, — 7, then
appropriately demodulated (symbol correlation followed by integration and dump then baud-rate
sampling). These operations assume that the receiver is correctly time synchronized at every branch
(ie., perfect time delay {r}f, estimates).

For differentially coherent detection (see Fig. 6.2) the receiver takes, at every branch [, the
difference of two adjacent transmitted phases to arrive at the decision r,,, ;. For noncoherent detection

(see Fig. 6.3) no attempt is made to estimate the phase and the receiver yiclds the decision 7., ; based

Decision
=
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Figure 6.3: Noncoherent postdetection equal-gain combining receiver structure.
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on the squared envelope (i.e., square-law detection). Using EGC the L decision outputs {rm,l}f:__l

are summed to form the final decision variable r;,
L \
Tm = Z Tm,l m=12,.--,M. (6'2)
=1

Last of all the receiver selects the symbol corresponding to the maximum decision variable, as shown
in Figs. 6.2 and 6.3.

For equally-likely transmitted symbols, the total conditional SNR per bit, -y, at the output of
the postdetection EGC combiner, is given by [1, p. 300, Eqn. (4.4.11)] and [1, p. 300, Eqn. (4.4.17)]

as

L
T = Z”n. (6.3)
=1

6.3 BER with Single Channel Reception (L = 1)

6.3.1 Desired Representation of the Conditional BER

A generic expression for the BER of differentially coherent and noncoherent modulations, Py(v;a,b,7),

over AWGN is given by [1, Bqn. (4B.21)]

; (=)

Py(v;a,b,m) = @1 (a7, by/7) — T+7 e Io (aby) (6.4)
where v is the SNR per bit, and Q1(,) is the first order Marcum Q-function traditionally defined
by '

oo 2 2
Q1 (u,w) =/ Z exp ]:— (w —;—u )] Ip(uz) dz. (6.5)
w

In (6.4) the parameters a and b are modulation-dependent and are defined in [1, Eqn. (4B.22)], and
7 = v /v, with the parameters vy, vy defined in [1, Eqn. (4B.6)]. A number of special cases are of
particular importance. For noncoherent detection of equal energy, equiprobable, correlated binary

signals, n = 1 and

2

1+ vi—E)"
b= (——T—f’——) , (6.6)

where 0 < p < 1 is the complex-valued cross-correlation coefficient between the two signals, and in

(=47E)

this case (6.4) reduces to [1, Equ. (4.3.15)]. The special case p = 0 corresponds to orthogonal binary
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FSK for which ¢ = 0 and b = 1. Note that using the relation [91, Eqn. (9)]
Qu0,w) =™/ 6.7)

along with Io(0) = 1, we see that (6.4) reduces in this particular case to the well-known expression

reported by Proakis in [1, Eqn. (4.3.19)}, namely,

1
Py(%0,1,1) = 5 V2, (6.8)

Furthermore, in the case of binary DPSK, ¢ = 0, b = v2, and n = 1, whereupon using again (6.7)
along with Iy(0) = 1, we see that (6.4) reduces to [1, Eqn. (4.2.117)]

1
Py(7;0,v/2,1) = 3 e 7. (6.9)

Finally o = V2 — v2, b = /2 + /2, and n = 1 correspond to DQPSK with Gray coding and in
this case (6.4) reduces to [1, Eqn. (4.2.118)].

To evaluate the average BER one must average the BER expression (6.4) {considered to be
the conditional BER) over the statistics of the fading. Since the second argument of the function
(which is proportional to the square-root of the SNR) appears in the lower limit of the integral in
the traditional definition of the Marcum Q-function (6.5), it is analytically difficult to perform such
averages. We now introduce an alternate form of the Marcum Q-function which leads to a desirable
representation of the conditional BER. We then show in the next section how this representation
circumvents the difficulty of averaging over the fading distribution.

In virtually all applications of {6.4) to communication system performance analysis, the parame-
ters a and b are typically independent of SNR, and furthermore b > a. Let us introduce the parameter
B = % which depends on the particular application, e.g., noncoherent detection of nonorthogonal
signals, differential detection of PSK signals, etc., but is independent of SNR. The alternate integral
form of the Marcum Q-function was presented in [90]. The goal of this alternate rcpresentation was
to have finite integration limits and an integrand with an exponential behavior in the argument w
or u. In particular, it was shown in [89, Eqns. (C-26) and (C-27)] and in [90, Eqgns. (8) and (11)]
that the first order Marcum Q-function is given by

1 [T 1+Psing
Qulw w)=5 L, 1+ 20sing + 3

_ 1 (™ %+ Bsing
Ql(u,w)——1+é—7f—/;w1+2ﬂsin¢+,32

w? ) ) u
Xp —-E-(l+2ﬂs1n¢+ﬁ) do; 0§,@=-u-;<1,

2
exp [—% (1 +2ﬁsin¢+ﬁ2)] dé; 0< 8= 5;"- <1.
(6.10)
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Furthermore, using the integral representation of the Oth order modified Bessel function of the first
kind [53], namely,
1 T —x sin g
— i 1

it is straightforward to show that

" exp (—U2 ;wZ) Ip (uw) = % /ﬂ exp [—%2— (1 -+ 2,Gsin¢+,82)] dg; fB= %:— {(6.12)

-1

Substituting (6.10) and (6.12) in (6.4), the conditional BER (6.4) can be put in the desired repre-

sentation given by

exp l:—sz’y (1+2ﬂsin¢+5z)] dp; 0< 8= % < 1.

(6.13)

This form of the conditional BER (6.13) is more desirable since we can first integrate over a statistical

1 T 1-nB%+pB(1—mn)sing

Pvabn =gy | ~1135met P

distribution for v and then perform the integral over ¢, as described in more detail below. It should
be noted that the specific form of the result in (6.13) with # == 1 can be obtained via the work of
Pawula [92] who used certain relations between the Marcum @-function and the Rice I-function,

which is defined by
L{k,z) = / Io(kt) e7* dt. (6.14)
0

In particular, combining Eqns. (2a) and (2d) of Pawula [92] and making the substitutions U =
(b+a)/2, W = (b—a)/2, and V2 = U? — W2 = gb in these same equations, one arrives at the result

l"b(’)’;a;b,l)“—'-"1-/7r il eXp[*bjl(l+2ﬁcosd)+ﬁ2) dg; 0<8=7%<1,
2r Jo 1—2Bcose+ 32 2 b

(6.15)
which in view of the symmetry properties of the trigonometric functions over the interval [—n, 0] and
[0, 7] can be shown to be identically equivalent to (6.13) with n = 1. Also as a check, again setting
n=1,ae=0and b=1 (b = +2) in (6.13), it is straightforward to see that {6.13) reduces to (6.8)
((6.9)) for orthogonal binary FSK (binary DPSK). Another special case of interest is DQPSK where
a= \/m and b= \/m In this particular case making the change of variable ¢/ = ¢ + /2
in (6.13) and using the symmetry properties of the cosine function over the interval {—, 0] and [0, 7],

it can be shown that (6.13) reduces to the expression reported in [88, Eqn. (3)], namely,

A (52 -vayeevar) =5 [(22 (0 - vBeosd)) gy, (6.16)

V2 —cos¢
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6.3.2 Average BER

Recall that the conditional BER, conditioned on the SNR per bit v, is given by (6.13). Since
the fading is assumed to be independent of the AWGN, the unconditional BER, Py (7,4 a,b,7), is
obtained by averaging (6.13) over the underlying fading RV giving

Py(¥,%0,b,m) = /0 Py(v;a,b,m) py{(7;7¥,1) dv, (6.17)

where i is the fading parameter associated with the distribution p,(7;7,1), and is hence denoted by
r, q, n, m, g, mo, and AKo for the Rayleigh, Nakagami-¢g (Hoyt), Nakagami-n (Rice), Nakagami-m,
log-normal shadowing, composite multipath/shadowing, and combined (time-shared) shadowed /unshadowed

PDFs, respectively. Substituting (6.13) into (6.17) then interchanging the order of integration yields

- 1 T 1-n8*+p(1-n)si :
Prisabn) = o | SO0 Srisa ki) dbs 0<B=F <1
™ (6.18)
where
— . a [ bz'Y . . 2 — N
Ji(V,4;a,b; ¢) :/0 exp [—*-2—- (1+28singp+ 43 )] Py(73 7, 8) dy (6.19)

is in the form of a Laplace transform. The form of the average BER in (6.18) is interesting in
that the integrals J;(%,1;a,b;¢) can either be obtained in closed-form with the help of classical
Laplace transforms or can alternatively be efficiently computed by using Gauss-Hermite quadrature
integration [70, p. 890, Eqn. (25.4.46)] for all fading channel models described in Chapter 2. We
now evaluate these integrals for each of the fading models described in Section 6.2.2. These integrals
will also be useful to obtaiﬁ the average BER with multichannel reception as described in Section

6.4.3.

Multipath Fading

Rayleigh Fading Substituting (2.4) into (6.19) then using the Laplace transform (53, Eqn. (1),
p. 1178]

o0 1
/ e®de=-; s5>0 (6.20)
o 8
yields *
cabd = (1.7 )
Te(Fia,b;9) = [ 1+ - (1+28sin¢ + 8%) . (6.21)

Inserting (6.21) in (6.18) we obtain the average BER performance over Rayleigh fading. For the
special case of 7 == 1 one can proceed further to obtain a closed form expression for the average

BER. Performing a partial fraction expansion on (6.18) with (6.21), then using the standard integral

INote that for the Rayleigh fading case, the PDF has no dependency on the fading parameter, . Hence, for
simplicity of notations we omit it in the argument sequence of the function Jr(+;-,; ).
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identity [53, Eqn. (3.661.4), p. 425]

T 1 i 1 27
/;,,. u — wsin ¢ d¢ _/0 U+ wcos ¢ d¢ Vu2 — w?’

u > |wl (6.22)

it can be shown that the average BER in Rayleigh fading is given by

1-pvy
2 \/1+b27(1+ﬁ2)+ (1’%‘1)2 (1 - 82)2

?'a(i,r;a,b,l)=% 1- ; 0§6=%<1. (6.23)

Lettinge =0 and b =1 in (6.23), it easy to see that Py checks, as expected, with the expression
reported by Proakis in [1, Eqn. (7.3.12), p. 718], namely,

— 1
Py(7,7;0,1,1) = — 6.24
s(Tor ) =57 = (6.24)
for orthogonal binary FSK. Similarly letting a = 0 and b = v/2 in (6.23), it is easy to see that Py
checks, as expected, with the expression reported by Proakis in [1, Eqn. (7.3.10), p. 717], namely,

1

Py(7,7;0,V2,1) = ST (6.25)

for binary DPSK. Another special case of interest is that for a = v/2 - V2and b= +v2+v2 In
this case, (6.23) reduces to

P (7,7';\/2—\/5,\/24—\/5,1):% {1————1_—1], (6.26)

(1+2 72
2y

which is equivalent to the expression of Py for DQPSK with Gray coding reported in [86, Equ.
(18)], [87, Eqn. (13)], namely,

o 1 VIT+(vI-1) (1427 - VIT 1 )
Py (7.rsV/2- VB V24 VEL) = VT BT Vi (i) (1 ViTE )

(6.27)

QI

or the one reported in [88, Eqn. (8)], namely,

P, ("7,7‘;\/2—\/5,\/2-}—\/-2-,1):% (1—%). (6.28)
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Nakagami-¢ (Hoyt) Fading Substituting (2.7) into (6.19) then using the Laplace transform [53,
Egn. (109), p. 1182]

/ Io(uz) e dz = (s* — uz)_l/z; s>fu/>0 ' (6.29)
0
yields

g bt 7 ~1/2
Jq(w,q;a,b;¢)=(1+b27(1+2ﬁsin¢+,8*") (1" 2 2ﬂsm¢+ﬁ’2)) . (6.30)

For ¢ = 0, (6.30) becomes

Ta(7,0;0,b;0) = (1+ 627 (1—2 Bsing+ 62) "/, (6.31)
which when inserted in (6.18) gives the BER performance over one-sided Gaussian fading. On the
other hand, letting ¢ = 1 in (6.30), it is easy to show that J¢(%, 1; a, b; ¢) reduces to J(7; a,b; ¢) as
given by (6.21) and which corresponds to the Rayleigh fading case, as expected.

Letting ¢ = 0 and b = 1 (b = v/2) in (6.30) yields the average BER perforrﬁance of orthogonal
binary FSK (DPSK) over a. Nakagami-g (Hoyt) fading channel as

— 1 4q2 g% 72 -1/2
Py(7,4;0,/2 :1)=§ (1+297+W) ) (6.32)

where g = 1/2 for orthogonal binary FSK and g = 1 for DPSK.

Nakagami-n (Rice) Fading Substituting (2.11) into (6.19) then using the Laplace transform [70
Eqn. (29.3.81), p. 1026]

00 v’/ (48)
/ Io(uvz) €% dx = T 8> 0 (6.33)
0
yields
_ 2 (1+n?) n? b2 7 (1+2 Bsing + 52)
Tn(7,m;0,b;9) = 2(1+n2)+b2% (L+2Psing+ 32) [ 2(1+n2)+b275 (L+2Bsing + 52)
(6.34)

For n == 0, (6.34) reduces, as expected, to J.(7;a,b;$) as given by (6.21), corresponding to the

Rayleigh fading case. Furthermore, as n — --00,

In(¥,n; a,b; ¢) — exp {—E;: (1+ 2ﬂsm¢+ﬂ2)]

which when substituted in (6.18) yields, as expected, the BER performance over the nonfading (i.e.,
AWGN) channel as given by (6.13).
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Letting ¢ = 0 and b = 1 (b = v/2) in (6.34) yields the average BER performance of orthogonal
binary FSK (DPSK) over a Nakagami-n (Rice) fading channel as

— 1+ n? ng¥y :
¥,7;0,4/29,1) = —————— - 6.35

Pb(’raniov ’ ) 2(1+ﬂ2+gﬁ) exp( ]._I_nz_l_g7 ? ( )
where g = 1/2 for orthogonal binary FSK and g = 1 for DPSK. Further setting ¢ = v/2 — /2
and b = V2 + V2, it can be easily shown that Py(¥,n; V2= 2,v/2+ /2, 1) is equivalent to the
expression for DQPSK with Gray coding given in [88, Eqn. (6)], namely,

(14n2) e 7 exp ( n2(1+;f) )

- [_ ntje 14+n2+27¥—+/2Fcos ¢

P V2 - V2, 2+\/§,1): / dg.

b(’y,n \/ \/ 2n o (V2 —cosd) (1+n2+2’7—\/§7003¢8 é)
6.36

Nakagami-m Fading Substituting (2.15) into (6.19) then using the Laplace transform {53, Eqn.
(3), p. 1178]

* v, _—& F(V+1)
/0 z’e mdmzsuT’ §>0, v>-1 (6.37)
yields
25 R R
TIm (¥, m; 6, b; ¢) = [Hm (1~28sing+4%)| . (6.38)

Note that for m = 1/2, Tn(¥,1/2;a,b; ¢) = J4(7,0; a, b; ¢) which corresponds to the case of one-
sided Gaussian fading. Further, for m = 1, J,,.(%,1/2;a,b; ¢) = J,(7; a, b; ¢) which corresponds to
the Rayleigh fading case. Finally, as m — +o0, accounting for the identity

lim (1 - ﬁ'—) = e'h,
m-—r+00 m
we see that
- b2— .
Tm (7, m; a,b; ¢) — exp [_T’Y (1 + 28sin¢ + 52):l ,

which when substituted in (6.18) yields, as expected, the BER performance over the nonfading (i.e.,
AWGN) channel as given by (6.13).

For the special case of 7 = 1 and m restricted to positive integers values, one can proceed further

to obtain a closed form expression for the average BER. Performing a partial fraction expansion on

(6.18) with (6.38), then using the standard integral identity [53, Eqn. (3.661.4), p. 425]

" 1 B 1 2 u
_— d = 2 d — . > | .
. - wsmap A Wt woos g = ) E m(m), w2zl
(6.39)
where P(-) is the Legendre polynomial of order k [53, Eqn. (8.911.1), p. 1044], it can be shown
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that the average BER in Nakagami-m fading is given by

1 1-08%C 1+22_”L_(1+[32
Py (¥, m; a,b, l)w— 1+Z (1-6°) Gk k/gpk—l 2 m - 2) |-
S e (57) 0o (1o + (52) a-07)
(6.40)
where
il
On =~ |
1 d'm.—k. 1
Cr = = - k=1,---,m - 16.41)
(m = k)t dum= [(1+ﬂ2+1—u) (1+%7n'l(1+ﬂ2)+u)mj| _

~1-$-2 (1+6%)

Note that when m = 1, which corresponds to Rayleigh fading, (6.40) reduces to (6.23) since Py(z) =
1.

Letting @ = 0 and b = 1 (b = v/2) in (6.38), it is easy to see that Py checks, as expected, with
the expression attributed to Barrow [93] and reported in [52, Eqn. (11)] and in [94, Eqn. (B1))] for
orthogonal binary FSK (binary DPSK), namely,

Py(7,m;0,+/29,1) = -;-( i __)m, (6.42)

m+ gy

g = 1/2 for orthogonal binary FSK and g = 1 for DPSK. The other special case of interest is that for
a=4/2-+v2and b= /2 + 2. In this case, it can be easily shown that Py (7, m; V2 —v2,v/2+ V2, 1)

is equivalent to the expression for DQPSK with Gray coding given in [88, Eqn. (7)], namely,

Pb(’)’,m,\/2 a2+ 3, 1) — (m:r"ﬁ)m [(\anw) (1 Frwd” dg.
(6.43)

Log-normal Shadowing

If the channel statistics follow a log-normal distribution, it is straightforward to show that J, (i, 0; a, b; ),

can be accurately approximated by Gauss-Hermite integration yielding

(6.44)

N,
1 L4 B2 10(\/5 o Tp+)/10
Tolps 030,05 ¢) o Tr E H,, exp (— ,
n=1

1+ 28sing + 52

where N, i5 the order of the Hermite polynomial, H. N, (-). Setting N, to 20 is typically sufficient for

excellent accuracy. In (6.44) z,, are the zeros of the Np-order Hermite polynomial, and H;, are the
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weight factors of the Np-order Hermite polynomial and are given by

L AR

H,, = o2 VT
* N3 le\fp—l(wn)

(6.45)

Both the zeros and the weights factors of the Hermite polynomial are tabulated in [70, Table (25.10),

p. 924] for various polynomial orders Np.

Composite Multipath/Shadowing

If the channel statistics follow a gamma/log-normal distribution, it is straightforward to show that
Tmo (1, mo; a, b; @) can be accurately evaluated by using (6.37) followed by a Gauss-Hermite inte-
gration yielding

(6.46)

N, —m
1 » b2 10(\/5 & Tptp)/10
Tna (i, mo; a, by @) = -\/—7_; Z H, (1 +
n=1

m (1 + 28sin¢ + (?)

Combined (Time-Shared) Shadowed/Unshadowed

If the channel statistics follow a combined Lutz et al. distribution, it is straightforward to show that
Tako (7 1, K, 0;a,b; ¢) can be broken into two terms, one which can be evaluated in closed-form

and the other which can be accurately approximated by Gauss-Hermite integration yielding
Tao (T, 1%, K,030,6;,0) = (L~ A) Ta(7", VK;0,5,9) + A Tno (4, mo;0,b;0),  (6.47)

with n = VK in Jn(7%,7n;,b;¢) and m = 1 in e (1%, mo; e, b; 0).

6.4 BER with Multichannel Reception (L > 1)

6.4.1 Desired Product Form Representation of the Conditional BER (Gen-

eral Case)

Many problems dealing with the BER performance of multichannel reception of differentially coher-
ent and noncoherent detection of PSK and FSK signals in AWGN channels have a decision variable
which is a quadratic form in complex-valued Gaussian random variables. Almost three decades ago,
Proakis [82] developed a general expression for evaluating the BER when the decision variable is in
that particular form. Indeed the development and results originally obtained in [82] later appeared
as Appendix 4B of [1] and have become a classic in the annals of communication system performance
literature. The most general form of the BER expression, i.e., [1, Eqn. (4B.21)] obtained by Proakis

was given in terms of the first order Marcum Q-function and modified Bessel functions of the first
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kind. Although implied but not explicitly given in [82, 1], this general form can be rewritten in
terms of the generalized Marcum Q-function, @Q(.,.), as

L— _
Q1 (a7, b/ 1) — |:1 - M} exp [—M] Iy (abry,)

Pb(L, Vt; @y b, 77) (1 + ,7)2L—1 2

+

=2

L
T [Z (7 20) ey by - aute %,bm]

1=2

L
- '(r;ljﬁ_? [Z (2£:ll)nL‘”‘ [@u(by/Fe, /) —Qu (b %,a\/@]] (6.48)

2L—1)

where ( T

= (ﬁ% denotes the binomial coefficient, and where all the modulation-
dependent parameters have already been defined previously. As a check for L = 1, the latter two
summations in (6.48) do not contribute and hence one immediately obtains the result (6.4), as
expected. Note that although the form in (6.48) does not give the appearance of being much simpler
than [1, Equ. (4B.21)}, we shall see shortly that it does have particular advantage for obtaining the
average BER performance over generalized fading channels.

As in the single channel reception case the parameters a and b in (6.48) are ’cypically independent
of SNR and furthermore b > a. Let us introduce again the modulation dependent parameter
8 = £ which is independent of SNR. With this in mind, we now show how the alternate integral
representation of the generalized Marcum Q-function yields a desired product form representation

of the conditional BER. In particular, it was shown in [89] or equivalently in {90, Equs. {7) and (10)]
that

_ (1) g~ [cos(l — 1)¢ + Bsinlg) w? ) .
Qi(u, w)= —/;" 1—~2,Bsm¢+,82 p[——z- (1+2ﬂsm¢+/5‘2)] do;
0t <B= 3 <1, I odd,
T (- 1) B~ [sin(l — 1)¢ — ﬂcosl¢] w? . . )
Qi (u, w)= 271_ - 15 28sing + 02 [ —é—(l+2ﬁ51n¢+ﬂ1):| de;
0+<B=3<1 l even,
1 t lo+ 0 l-1)¢ 2 .
gt & [ U O] [ s ]
o<ﬁ=9'i<1 I odd,
1)z g l Bsin(l—1 2 )
Qi(u,w)=1— 271' - " (=D 1~[:(;S,Bfm¢jl,gg )¢] exp [—%— (1 +2,Bs1n¢+/5'2)] do;
0<f= % <1, I even, (6.49)

with the special case of ! = 1 being given in (6.10). Now, using (6.10), (6.12), and (6.49) in (6.48),

it can be shown after tedious manipulations that the entire conditional BER expression (6.48) can
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be written as a single integral with an integrand that contains a single exponential factor in v of the

form exp [ 22t (1+28sing + ﬁz)], namely,

‘ T f(LBm b?
Po(L, ve: 0, by1) = n / F(L; Bymi 8) exp[—Jﬁ

2m(1 +m)2L-1 J_, 1+20sin¢ + B2 2
(6.50)

where

F(L; By 9) = folLs 8,13 6) + f1(Ls B, 15 8) + fa(L; B, m; 8),

with

2L~1 _—
FolZ3 8,5 6) = [ﬁ(if;’l— =Y (D)ot n"l)} B(8+sing),
=1

(1+2ﬂsin¢t+ﬁ2)} dg; 0t <p@= %

L
ALBme) =Y (2L i 1) (1) [(n7'B7H — 9B cos((t — 1)¢) + (n7'B7H2 — ' 18" sin(lg)]

L-1
I=1
1 odd

pesg =3 (7)) COb (-t -6 - 16) - (78714 — o100 cont

=2
! even

As a check, for the special case of L = 1, we obtain

fo(,Ame) = 0,
_ 2 _ o
hgme) = L rALZwe
f(L8,m¢) = 0, (6.52)

and hence (6.50) reduces to (6.13), as expected.
The form of the conditional BER in (6.50) has the advantage of being a single finite-range integral
with limits independent of the conditional SNR and an integrand which can be written in a product

form, such as

+7 x 1+ 2Bsin¢ + 52

L 7|' . .
PL, 0, b [ [L:5,7:¢) Hexp[ L(142Bsing+ %) | dgs 0F <=3

{6.53)
Furthermore, the form of (6.53) is desirable since we can first independently average over the in-
dividual statistical distributions of the ;’s, and then perform the integral over ¢, as described in
more detail below {Section 6.4.3). Before showing this, however, we first offer some simplifications

of (6.48) and (6.50) for some special cases of interest.

¢)] -

(6.51)

<1,

< 1.
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6.4.2 Desired Product Form Representation of the Conditional BER (Spe-
cial Case (1 = 1))

For n = 1, and any L > 1, which corresponds to the case of multichannel detection of equal energy
correlated binary signals, the conditional BER expression (6.48) becomes

) 2 b2
Py(L,ve; 0, 0,1)=Q1 (a/7s, b\/'%) - %—exp [u .(E___%.ﬁjl Io (aby)

=1

+22—i_-1{2 (%~ )@ (0T~ @1 T )~ (@ o/ b7~ b/ o)

2 2
=Q1 (a7, by/7e) — %exp (—(i—t;)&) Iy (aby;)

e (P ) QU b )~ (T T~ § 0 (TR~ o

=

(6.5

where we have added back the ! = 1 term in the sums of (6.48) since they have zero value anyway.

However, comparing Eqns. (40) and (42) of [95],

u? + w?

Q1(u,w) — exp ( 5 ) Iy (uw) = [1 — @1 (w,u) + @1 (u,w)]. (6.55)

Thus, combining (6.54) and (6.55) gives the simplified expression

Pb(L7 i 4y b 1) 22L ~1 Z (2L ) [Ql (a i1 bﬁ) - Ql (b\/%’ a ’Yt)] (656)

which appears not to be given in [82, 1]. Setting a = 0 and b = 1 (b = v/2) in (6.56), then using the
relations [91, Eqn. (9)]

Ql(O,w) _ _wz/ZZ (w2/2)k,

Ql(u) 0) 1,

along with the identity S5, (*f~1) = 221 it can be shown that (6.56) reduces to the well-known
expression reported by Proakis for multichannel binary orthogonal FSK (binary DPSK) given by [1,
Eqn. (4.4.13), p. 301], namely,

L1
Pb(L,’Yt’O \/ al) 22L -1 eI ch (g7t)l9 (6'57)
1=0
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5 L1t
2L -1
a= Z‘Z ( )

g = 1/2 for orthogonal binary FSK, and g = 1 for binary DPSK. Note that an alternate (equivalent)

where

form to (6.57), involving the confluent hypergeometric function, ; F1(-;;+), and given by Charash 4,
Eqn. (32)] as

~20% Ll D(L 41
AL 60.vE D) = w31 ) AR(L+ 5 Lign), (6.58)

has also been used in the literature for the BER of mulficha.nnel binary orthogonal FSK and binary
DPSK [96, 97].

The conditional BER. expression (6.54) for the special case of n = 1 and any L > 1 can also be
put in the desired product form. Indeed it can be shown that in this particular case fo(L; 8,1;¢) =0
and hence (6.50) reduces to

1 L s 1 L ’ L b
Py(L,v;0,b,1) = 2Ly | fl( f-}- 2%)5_;1‘2?2- ﬂg ¢) P [ 2%
(6.59)

where the functions fi(-;-,+;-) and fa(;+,+;+) are now given by

A(L; 8,15 6)= Z (Qf ) (=1)F [(67 ~ ) cos((1 - 1)g) + (67 - §') sin(ig)]
1'5da

L

A o= 30 (P17 ) C0FE7 - 5 sin@ - 1)0)- (37 = 6 costte)] 6.0

1=2
! even

Again as a check for L = 1, we obtain

1- ﬂz’
0, (6.61)

f1(158,1;8)

which, when substituted in (6.59), gives an expression for the BER which agrees with (6.13) forn = 1,
as expected. Note also that as 8 — 0 (6.59) assumes an indeterminate form and thus an analytical
expression for the limit is more easily obtained from (6.57) with g replaced by b%/2. We further point
out that the limit of (6.59) as 8 — 0 converges smoothly to the exact BER expression of (6.57).
For example numerical evaluation of (6.59) setting 8 = 1073 (¢ = 1073, b = 1) gives an accuracy of
5 digits when compared with numerical evaluation of (6.57) for the same system parameters. The
representation (6.59) is therefore useful even in this specific case. This is particularly true for the

performance of binary orthogonal FSK and binary DPSK which cannot be obtained via the classical

(1+2ﬂsm¢+62)] dg; 0t < 8= % <
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representation of (6.57) in the most general fading case but which can be solved using the desirable

conditional BER expression (6.59) as we will show next.

6.4.3 Average BER

To obtain the unconditional BER, Pp (L, {7,}{‘=,,{i;}f'm1;a, b, 17), we must average the conditional
BER, Py(L,:; a,b,n), over the joint PDF of the instantaneous SNR sequence {y}[,, namely
Doy1yayyz (Y1, Y2 -+ -5 7L)- Since the RV’s {1}, are assumed to be statistically independent, then

Prya vz sy (Y15 Y20 VL) = 15, By (Wi; 15 @), and the averaging procedure results in

[ve] o0 oo L
Po (L, (), {ir}Er; 0, by ) = fo / /0 Po(L, 530, b,1) LHPm(’Yzﬁniz)] dvidva- - dv
0
v . - J =1

L—fold
(6.62)

If the classical representation of Py(L,v:;a,b,n), as given by {1, Equ. (4B.21)] or equivalently (6.48),
were to be used, (6.62) would result in an L+ 1-fold integral with infinite limits (one of these integrals
comes from the classical definition of the generalized Marcum @-function in Pg,(L, Y;a,b,n)), and
an adequately efficient numerical integration method would not be available.

Using the desired product form representation of P,(L,¥:; @, b, ), namely (6.53) in (6.62) yields

— ~ , ~ © [ [T LB e
Py (L, (FiHers i dEnsa,b,m) = m}iw/o /0 /0 /_ﬂ1+(2gsjn7;4u)ﬁ2
———

L—fold

L
[H exp[ > (1+2Bsin ¢+ 57) H [pr,,(vm,n)} dg dyydys -

=1

The integrand in (6.63) is absolutely integrable and the order of integration can thereforc be inter-

changed. Thus grouping like terms we have

L T L ﬁ’ b
(L {’Yl}t 1,{11}1_1,0. b,n) o (1_7_77)% 1/;7r 1_{(213511125?52

[H/ exp [ 2 (1+28sing+ 4 )] Py (V05715 1) d‘ﬂ] d¢

L T L
- U F(L; B,m; ¢) -
o (1+ )Lt /7,1+2,6sin¢+,52 11;11‘7”(7”“’“’1”"5) dé,

(6.64)

where J;, (7, 4; a, b; ¢) is given above for the various channel models associated with path {. Note

that if the fading is identically distributed with the same fading parameter ¢ and the same average

d“/L.

(6.63)
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SNR per bit 7 for all L channels, then (6.64) reduces to

- . T f(LiBims y
PoL i) = ooy [ i Akl ds. (669

Hence this approach reduces the L + 1-fold integral with infinite limits of (6.62) to a single finite-
range integral (6.64) whose integrand contains only elementary functions (i.e., no special functions)

and which can therefore be easily evaluated numerically.

6.5 Conclusion

The myriad of results obtained by the cited authors for the error probability performance of non-
coherent and differentially :coherent modulations over generalized fading channels can now all be
obtained as special cases of a unified approach to the problem. Aside from unifying the past results,
the new approach also allows for a more general solution to the problem in that it includes many
situations that in the past defied a simple solution. The best example of this occurs for multichannel
reception where the fading on each channel need not be identically distributed nor even distributed
according to the same family of distributions. It is now possible to obtain results for this case
corresponding to a wide variety of modulation/fading channel combinations. Other situations of

comparable complexity are also now solvable in simple and elegant forms.
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Chapter 7 Performance of Multichannel

Reception over Correlated Fading Channels

7.1 Introduction

In studying the performance of diversity systems, the usual assumption made is that the combined
signals arc independent of one another as discussed in previous chapters. As pointed out in [98, 56,
79, 99, 85] there are a number of real life scenarios in which this assumption is not valid because,
for example, of insufficient antenna spacing in small-size mobile units equipped with space antenna
diversity. As a result, the maximum theoretical diversity gain cannot be achieved and hence one must
revamp their analysis to account for the effect of correlation between the combined signals. Hence, it
is important to assess the effect of correlation on the outage probability and average error probability
of diversity receivers, in particular, dual selective combining (SC), coherent maximal-ratio combining
(MRC), and noncoherent equal-gain combining (EGC) receivers which are the specific cases to be

considered in this chapter.

7.2 Selective Cdmbining

Of the three types of linear diversity combining MRC, equal gain combining (EGC) and SC) normally
cmployed in receivers of digital signals transmitted over multipath fading channels, SC is the least
complicated of the three since it only processes one of the diversity branches. Specifically, the
combiner chooses the branch with the highest signal-to-noise ratio (or equivalently with the strongest
signal assuming equal noise power among the branches) [100, Sect. 10-4, p. 432). Since the output
of the SC combiner is equal to the signal on only one of the branches, the coherent sum of the
individual branch signals is not required. Therefore, the SC scheme can be used in conjunction with
differentially coherent and noncoherent modulation techniques since it does not require knowledge
of the signal phases on each branch as would be needed to implement MRC or EGC in a coherent
system.

Some special cases of the performance of various modulation schemes with dual SC over inde-
pendent and correlated Rayleigh and Nakagami-m slow fading channels have been reported in the
literature [101, 102, 103, 104]. For instance, [101] studied the performance of noncoherent binary
frequency-shift-keying (BFSK) with dual SC over independent identically distributed Nakagami-m
fading channels. Adachi et al. [102] analyzed the performance of differentially coherent quadriphase-
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shift-keying (DQPSK) over correlated unequal average power Rayleigh fading channels. Okui [103]
studied the probability of co-channel interference for selection diversity reception in the Nakagami-m
fading channel, whereas Wan and Chen [104] presented simulation results for DQPSK with dual SC
over correlated Rayleigh fading channels. Finally Fedele ef ol [105] analyzed the performance of
M-ary DPSK with dual SC over independent and correlated Nakagami-rn fading channels.

To evaluate these performance measures it is necessary to obtain the curmulative distribution func-
tion (CDF) and the probability density function (PDF) of the SC output, i.e. Ry = max(R;, Ra),
where R;, Ry are the signzﬂ envelopes that are input to the SC. The SC output CDF is used to
evaluate outage probability while the SC output PDF is used to evaluate average error probability.
One method of obtaining the CDF of the SC output is to evaluate the joint CDF of the SC inputs,
namely, R; and R; and take the special case where both arguments of this function are equal. Having
the SC output CDF one can then simply differentiate this result to obtain the SC output PDF. For
a Rayleigh fading channel model, the envelopes are correlated Rayleigh random variables (RVs) and
thus what is needed is the bivariate Rayleigh distribution. In a recent paper [106], Tan and Beaulieu
presented an infinite series representation of the bivariate Rayleigh CDF in the form of an infinite
series where each term of the series is the product of a pair of incomplete gamina functions. Using
an alternate representation [89, Appendix C], [90] of the first-order Marcum Q-function, Simon was
able to find an alternate expression for the bivariate Rayleigh CDF in the form of a single integral
with finite limits and an integrand composed of elementary (exponential and trigonometric) func-
tions [107]. As we will see, aside from its simplicity, this single integral form has the added advantage
that it immediately gives the SC output CDF in the same simple form. Furthermore, differentiating
with respect to the argument of the CDF gives the PDF of the SC output in a form that can be
readily used to unify the evaluation of average error probability for coherent, differentially coherent,
and noncoherent communication systems over correlated Rayleigh fading channels.

The organization of this Section is as follows. In the next section, we evaluate the CDF and
PDF of the SC output for Rayleigh fading channels. Following this, we make use of the SC output
CDFs to evaluate the outage probability for the cases of identical channels and nonidentical Rayleigh
fading channels. In Section 7.2.3, we make use of the SC output PDF for Rayleigh fading to evaluate
the average error probability for a large class of coherent, differentially coherent, and noncoherent
modulation/detection combinations. In Section 7.2.4, we present various numerical examples to

illustrate the effect of various parameters on the performance of the system.
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7.2.1 CDF and PDF of SC Output

CDF

For the dual diversity case as considered in this section, the joint CDF of the SC inputs, namely,
Fp, R, (r1,Q1;72,Q2|p) was previously found by Simon in the form of a single intcgral [107, Egs.
(8),(9)], with an integrand dependent on the average powers {2y, (s associated with these inputs and

the correlation coefficient p between the two signal envelopes defined by

2 p2
p:,_COV_M_ 0<p<l. (7.1)

/var(RE)var(RZ)’
Defining the instantaneous SNR per symbol for each channel v; = r2Es/No, i= 1,2 (Es/Np is
the symbol energy-to-Gaussian noise spectral density ratio) and the corresponding average SNR
per symbol for each channel ¥; = EES/NO = LE;/Ny, 1 = 1,2, then the joint CDF of v1,72 is
equivalently given by [107, Egs. (8),(9)]

. 1 /" L+ L +2,/plLsing
Fyym (1M 72:M2lP) = '.1_G(H(71771)5H(72a72)|9)+ﬂ/ exp | ~— -
-7

2
(- )R + VAL - p)y /22 (ﬂ—+l)smo

x de, (7.2)
(P%*‘?\/P%‘%Sin@%—%:-) (:’—+2 p smGerlz)
where

f H (v2,%2) » 0< 2 <plt

YH () + H (o m), 2 =p%
G (H(v, M), HvyM)lp) = H(y,m) + H (12,72),  pR <2< (7.3)

FH (v2,72) + H (11,71) %‘2,; = %%

| H ), lzcp,

with H(v;,¥:;) = exp(—7i/%;), i = 1,2. Defining the instantaneous SNR at the SC output by
v = 7sc = max(71,72), then the CDF of v, namely F.,(vy), is immediately obtained by substituting
Y1 =Y2 =Y in (72) i.e.,1

w

Fy) =1 - GUHO) B w0 + 5 [ eml=y 1) halBle) o, (1)

-7

where

ha(8ip) = T+ Fa + 2PV V2 sin b
(1- PV 72

1Note that when 3 = 2 = < as will be the case for the SC output PDF and CDF as well as outage and average
error probability expressions derived from these, the five regions of validity for G(:,-|p) of (7.3) are independent of v

and become: 1) 0 £ F; < pV3, 2) F1 = 472, 3) M2 < T1 <2/, 4) 1 = Fa/p, and 3) Fa/p < 7.

(7.5)
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and
(1= p*) 7172 + /P — )V 72(F1 +72) sin b
(072 + 2v/P 71 V2 sin 6 +7,) (T2 + 2v/p71 72 5in 8 + p7,)

Before continuing, we wish to mention that an expression of the CDF of the SC output in terms of

h2(8lp) = (7.6)

first-order Marcum Q-funcfions is presented in [100, Eq. 10-10-4] for the general case of nonidentical
channels (§, # 7¥,). For the particular case of identical channels (7, = 7,) the expression given
in [100, Eq. 10-10-4] simplifies to a result still in terms of first-order Marcum @-functions and which
is given in [100, Eq. 10-10-7] and [108, Eq. 5.2-21].

PDF

To obtain the PDF of v we differentiate (7.4) resulting in

B() = -6 Hon T HonT)i0) 5 | ml@lp)ha(0ls) expl- ma(0lo)] a0

-7

= GH ) ~H Tl — o [ m(@loha(0in) exply m(6le) o, (7.7)

-7

where the prime denotes differentiation with respect to v and thus —H'(v,7%;) = (1/7;) exp(—v/7;),
i=1,2.

In the particular case of identical channels (¥; = J, = 7) Adachi et al. [102, Eq. 42] expressed
this PDF in terms of the modified Bessel function Jy(-) and the Rice function I.(-,-) and then used
an approximation of that PDF, namely [102, Eq. 44],

py(7) = -(T+2P—)7 [6_% — T "] (7.8)

in their average BER calculation of 7/4-DQPSK. On the other hand our exact expression of the
PDF (7.7) is expressed in terms of a single finite integral and an integrand with a dependence on ~y
which is entirely exponential and as such resembles the behavior of the instantaneous SNR per bit
corresponding to a single Rayleigh RV, namely, p,(v) = 1/5exp(—~/7%). Because of this similarity,
it is possible to draw an analogy with results previously obtained for the average error probability
performance of single channel (no diversity) coherent, differentially coherent, and noncoherent detec-
tion of digital modulations transmitted over a Rayleigh fading channel (see Chapters 4 and 6), and
to develop therefore ezact simple average BER formulas for a wide range of modulation/detection
schemes. However, because of the additional integration on # required by the second term in (7.7),

the functional form of the final results will be some what different, as we shall show in Section 7.2.3.
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7.2.2 Outage Probability Performance
The outage probability, Poyus, is defined as the probability that the SC output SNR v = max(v1, y2)
falls below a given threshold, say . Since this probability is simply the probability that neither v,

nor -y, exceeds the threshold, 4, then by inspection the outage probability is obtained by replacing
4 with v, in the CDF expressions. Given below are the results for Rayleigh fading.

o Case 1: Identical Channels (¥, =7, = 7)

T 1 ing
Py =1-2exp (—"—%‘-‘—)ﬁ ”/ 1 exp [—2'1“‘( +\/f;m )]do. (7.9)

2r J_p14+p+2,/psing ¥ 1

Note that this result is equivalent to [100, Eq. (10-10-7)] which is expressed in terms of
the Marcum Q-function. Note that even for this simpler case of identical channels, Tan and
Beaulieu’s result as given in (106, Eq. (4)] (or equivalently the result found in [109]) does not
simplify considerably since it is still an infinite series of squares of integrals. Furthermore, in the
limiting case of uncorrelated branches, i.e., p = 0, (7.9) reduces to Poys = (1 — exp(—ve/7))?

as expected.

¢ Case 2: Nonidentical Channels (7, # 7,)

Pyt = 1-G(H(vnT1): H(vm, 72)lp)
" ¥ 4+ Ty + 2/ V7o 5in 8
+ = exp (_%h’)’l ’Yi_ £Y17Y2SL )
27 J & F172(1 - p)

(1= p*V71 72 + A1 — P)VF V(T +72) sin b do
(072 + 2v/ P17z sin 0 + 71) (T2 + 2071 T2 sin b + p71)

(7.10)

where G (H{(Ven, V1), H(Yens ¥2)|p) is obtained from (7.3) by setting v1 = 72 = n. Note
that (7.10) is equivalent to [100, Eq.(10-10-3)] which is expressed in terms of the Marcum
Q-function. Furthermore, in the limiting case of uncorrelated branches, ie., p = 0, (7.10)

together with (7.3) reduces to Pous = (1 — exp(—¥en/71))(1 — exp(—n/72)), as expected.

7.2.3 Average Error Probability Performance

To assess the average error probability performance of a SC diversity receiver in the presence of
fading we must first provide an expression for the conditional (on <) error probability and then

average this expression over the PDFs of v as given in Section 7.2.1, i.e.,

P(E)= [ PER ) (7.11)

We now present the specific results for various classes of modulation/detection schemes.
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Differentially Coherent and Noncoherent Detection

Binary Differential Phase-Shift-Keying (BDPSK) and Noncoherent Binary Orthogo-
nal Frequency-Shift-Keying (BFSK) The conditional bit error rate (BER) for BDPSK and
noncoherent BFSK is given by [1, Eqs.(4.3.19),(4.4.15)]

Py(Ely) = % exp(—g7) (7.12)

where g now denotes a modulation constant, i.e., g = 1 for BDPSK and g = 1/2 for BFSK.
Substituting (7.7) and also (7.12) into (7.11), we obtain the following expression for the average
BER: i

RE) = [6(a+em) et - 5 [ O]y
The integral term in (7.13) can be evaluated in closed form by first expanding the integrand into a
partial fraction expansion then making use of a well-known definite integral. In particular, identifying

h1(8}p) and hz(f|p) from (7.5) and (7.6), respectively, it is straightforward to show that

hi(Blp)ha(Blp) _ Ti T2 + 2PV Vo sin b
g+ h1(8p) g(1 = p)F1V2 + 71 + V2 + 24/P71 V2 sin 0
(1 = p°)71 72 + v/P(L — P)VA1 72 (71 + 7,) sind (7.14)
(072 + 2PV V2 8in 6 +7,)(F2 + 271 72 500 + 1)’
which is in the form .
: 9 L
g h1(8lp) ¥1 T2+ 97172
hi(0lp)ha(8lp) A+ Bsing+ Csin?8
g+hi(8lp) (a1 +bsin)(az + bsind)(as + bsind)
_ Cc1 Co C3
B a,1+bsin9+a2+bsin0+a3+bsin6” p#0. (7.16)
with
a; = g(1-p)V1T2+51+72
a2z = pPa+Th
03 = P+ 7
b = 247172
A = (1-p77:00 +7)
B = 2yp(1-p)F72)? +vB(L ~ PIVTIT (1 + T)
C = 2p(1-p)/7172(F1 +72)- (7.17)
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The coeflicients of the partial fraction expansion are readily determined as

A — a1bB + a2C

c =
! (a1 — az2)(a1 - ag)b?
o — - 24 — azbB + a%C’
2 ((11 — az)(ag - ag)bz
24 2 Y
o A — aghB + a5C (7.18)

((11 - a3)(a2 - ag)bz ’

Finally, substituting (7.15) and (7.16) into (7.13) and making use of the definite integral [53, p. 425,

Eq. (3.661.4)],
LMl e L ass (7.19)
2r J_pa+bsing aZ-p2 .

we get the desired closed form result?

Py(E ; (5,2 72 B —fB=1,0=-1), p=0, 7.20

»(E) = ;ﬁ 1+g7 (73 3+ =52 B3 ) P (7.20)
_1 R - S A

Pb(E) - 9 |:G((1 -+ 9'71) 1(1 + 972) Ip) ; \/mg y P # O (7'21)

Note that for the special case of 7, = 7, and g = 1 (BDPSK), (7.20) is in agreement with [2, p
242, Eq. (5.88)).

Quaternary Differential Phase-Shift-Keying (DQPSK) with Gray Coding and Non-
coherent Binary Correlated Frequency-Shift-Keying (BFSK) The conditional BER for
DQPSK with Gray coding and noncoherent correlated BFSK is given by (see Chapter (6))

I

T 2 2
(7.22)

where ', b’ are modulation constants, i.e., for DQPSK with Gray coding

=y2-v2, ¥ =y2+V2 (7.23)

and for correlated BFSK with complex correlation coefficient A, (0 < |Aj < 1)

a = \ = 12_ l )\_|2, b= 12— AL (7.24)

Note that (7.22) has the same functional (exponential) dependence on <y as does (7.12). Hence,
substituting (7.22) into (7.11), we obtain by inspection the following expression for the average

2Note from (7.17) that it can easily be shown that a; > b for ¢ = 1,2, 3. Hence, (7.19) applies.
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1 7 1__(2 3 1
aE) = 3 [ |rreemsral [;ﬁ‘—wg(e)m} @

1-¢ (A2 _ 79
[ Zﬁ;%z \/(1+#(1— - },p 0. (7:25)

) + 2

1 fm -2 N1 1 3 c; (0
L N de
2@ =1 [ [ mmare) [G((l +OM) (140077 ) = 3 g 6, £
(7.26)
where g(0) = (¥'2/2) [1 + 2¢ sind + (], a2(0) = az, ag(é) = ag and a1(0), c1(8), c2(9), and c3(0) are
obtained by substituting g(6) for g in (7.17) and (7.18), respectively, and the same substitution is

made in G((1+ ¢7,) 7, (1 + ¢72) "1p)-

Multiple Differential Phase-Shift-Keying (M-DPSK) The conditional symbol error rate
(SER) for M-DPSK is easily derived from the SER for an additive white Gaussian noise (AWGN)
channel [65, Eq. (44)], [51, Eq. (7.7)] and is given by the integral expression

Py(Ely) = gps 2 exp (—v [1 — /T~ gpsx cosb]) i

/2 lw\/l—gpskcosﬁ

(7.27)

where gps = sin”(n/M). Again noting that (7.27) has the same exponential dependence on «y as
does (7.12) and (7.22), then substituting (7.27) into (7.11), we obtain by inspection the following

expression for the average SER, for p =0,

3

_ \/9? 1
= / w2 900) [Zﬁ 1+9(9)'rz] “

i=1

3 = 1+ 2%, + 7.2
2 v Yi T Yi Gpsk
= = [mctan (—'—‘“1 Took ) - Z,Bi Yiv ek arcta.n( \/ L )] ,
T" J—

(7.28)
and for p # 0
\/g—p—s— 1 -1 ci(f)
Py(E) = /_ 9@ [G((1+g(9)71) (14 9(0)72) " 'p) - Z \/_2(_5_1)_2] do, (7.29)

where now g(6) = 1 — /1 — gpax c08 0, a(f) = a9, a3(9) = as and a1(8), c1(f), c2(8), and c3(f) are
obtained by substituting g(#) for g in (7.17) and (7.18), respectively, and the same substitution is
made in G((1+g7%,) 1, (1+9%,) }|p). If Gray coding is assumed, then for large average SNR, where

it can be assumed that the only significant symbol errors that occur are adjacent symbol errors, then
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the average BER is approximated by [51, Eq. (4.135)]

Po(E)

Ri(B) = = S

(7.30)

Coherent Detection

Binary Phase-Shift-Keying (BPSK) and Binary Frequency-Shift-Keying (BFSK) Based
on an alternate representation of the Gaussian Q-function [66], the conditional BER of BPSK and
BFSK can be written in the integral form (see Chapter 4)

AEm) =1 | i exp (~ 2 ) @ (7.31)

sin” 0

where g = 1 for BPSK, g = 1/2 for orthogonal BFSK, and g = 1 + — for BFSK with minimum
correlation. Recognizing the analogy between (7.31) and (7.27) in so fa.r as its functional dependence

on v, we can immediately write the average BER as

|

/2 3 =
Pb(E)=1/ {Z@Hg(g) ]de%[l—;ﬁi Tl p=0  (7.32)

1+ g7%;

3

7/2 e
B -1 [ [G((l+g<om>-1,(1+g(0m)"1|p > x/_%_] Bp#0 (139

where now g(6) = g/sin?8, ay() = ag, a3(f) = a3 and a;(8), c1(8), c2(6), and c3(0) are obtained
by substituting ¢(#) for g in (7.17) and (7.18), respectively, and the same substitution is made in
G((1+ g71) ™ 1+ g72) o).

For identical channels (¥, = ¥, = %) using the Adachi et al. approximate expression of the PDF
(7.8) it can be shown that the average BER of BPSK can be written in closed form as

1 1+p [ g7 l—p | (-0 97
Py(E) = - — + —1. 7.34)
E) (1+p){ 2 1+95 2 V2+(1-p)g¥ (734
Since it would be useful to know the relative accuracy improvements of the exact expressions (7.32)
and (7.33) over the approximation {7.34) we plot all of them in Fig. 7.2. Note that the approximation
tightly upper-bounds the exact BER expression and the bound gets tighter as the average SNR

increases and as the correlation coeflicient decreases.

Multiple Phase-Shift-Keying (M-PSK) The generalization of (7.31) to M-ary signaling is
straightforward in view of the form of the symbol error rate for M-PSK on the AWGN [65, Eq.
(71)], [66, Eq. (5)], [61, Eq.(3.119)] which on the fading channel becomes the conditional SER (see
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Figure 7.1:

Figure 7.2: Exact and approximate average BER of BPSK versus average SNR of the first branch
for equal average branch SNRs (¥, = ¥,) and for various values of the correlation coefficient ((a)
p=0.9, (b} p=107,(c) p = 0.5, (d) p=0).
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Chapter 4)

1 pM-Vr/M 5
Py(Bl) = ~ /0 exp (-gii’l-j-‘;la) db. (7.35)

Thus, by inspection we immediately obtain
1 M-1n 3 1
P,(FE — /  ———— | df
«(5) 7 Jo [Zﬁ 1 +g(9)7i:|

gpsk'Y-;, 1 1 + gpskV; ((M — 1)7‘—)
= E 1+ — arctan —— tan , p=0
( ) ﬁ’V 1+ gpacV; [ m (V IpskVi M g

(7.36)

1 O m/M 1 -1 Cz(g)
rie) = [ G((L+ g(6T) ™% (1 +9(8)7) o) - Z e L

(7.37)
where now g(8) = gpa/sin” 8, az(0) = az, a3(f) = ag and a1(0), c1(8), c2(6), and c3(#) are obtained
by substituting g(#) for g in (7.17) and (7.18), respectively, and the same substitution is made in
G((1+g71)~ L, (1 + g7,) Y p). Note that (7.36) is valid for M > 2 (for M = 2 use (7.32)) where the
arctangent function is defined with respect to the standard principal value as avé.ilable, for example,
in the Mathematica routine for that function. Again for large average SNR the average BER can

be obtained by applying the approximate relation in (7.30) to (7.36) or (7.37).

M-ary Amplitude Modulation (M-AM) and Quadrature Amplitude Modulation (M-
QAM) Without belaboriing the details, it is a simple matter to extend the previous analyses to
M-AM and M-QAM. For M-AM, again using the alternate form of the Gaussian @-function enables
one to arrive at an expression for the conditional SER in a form analogous to (7.31), namely (see

Chapter 4),
’ P(Ely) = 1) / xp( 9“““"’) 46, (7.38)

sin? @

where gam = 3/(M? — 1). Hence, the average SER is given by

(M -1) /2 [ 3 . 1 (M- _ Gam¥i _
po= 272 [ e o= () | Z"z T gos | 7

(7.39)

AM —1) 2] . 5. e(d
re =250 [T e gm0 000 - 3 x/%] B, p#9
(7.40)

where now ¢{#) = gam/ sin? 9, a2(8) = ag, as(8) = as and a; (), c1(8), c2(9), and c3(8) are obtained
by substituting g(#) for g in (7.17) and (7.18), respectively, and the same substitution is made in
G((1 + g91)7 % (1 + g7,) " p). Also for M = 2, (7.39) and (7.40) reduce to (7.32) and (7.33), as

expected.
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For square M-QAM, the expression for the SER on the AWGN involves both the Gaussian Q-

function and the square of this function. Using an alternate representation for the square of the
Gaussian Q-function [67, Eq. (80)], the conditional SER for the fading channel is given by (see
Chapter 4)

4 1 /2 ~ 1 2 em/4 n
P,(Ely) = = (1 - VTZ) /0 exp ( i?:“g) d — = (1 - m) /0 exp (—g?}g) de,
(7.41)

where ggam = 3/[2(M — 1)]. Hence, by inspection, the average SER is given by

o = o) [ B -3 () [ [ #
() 2
- (1 ~ \/—1=> [1 - Zﬁ iy | el - i“;‘:az% arctan (1/%)} , p=0 (7.42)

n/2 _ Y 3 C; /]
(1_\/%{_) /0 [G((1+g(9)""71) LT O ) - Y s ) ]
1

P(B) =

= Vo -7

2 /4 ¢
- 2(-om) [ [G((Hg(e)m (14 0m) M) - Z \/_E")_b] @, p#0,

(7.43)

where now g(f) = gyam/ sin? 8, a2(8) = a2, az(6) = ag and a1(6), c1(0), c2(0), and c3(8) are obtained
by substituting g(6) for ¢ in (7.17) and (7.18), respectively, and the same substitution is made in
G((1+g7) 7" (A + 975) " 1e)-

7.2.4 Numerical Examples

Figures 7.3 and 7.4 plot the outage probability, Py, versus the normalized threshold SNR for
various values of the correlation coefficient p for equal average branch SNRs and unequal average
branch SNRs, respectively. Figures 7.5 and 7.6 plot the average BER of BDPSK versus the average
SNR of the first branch for various values for various values of the correlation coefficient p for equal
average branch SNRs and unequal average branch SNRs, respectively. Figures 7.7 and 7.8 plot the
average BER of BPSK versus the average SNR of the first branch for various values of the correlation
coefficient p for equal average branch SNRs and unequal average branch SNRs, respectively. Note
in all figures that the diversity gain decreases with the increase of the correlation coefficient, as

expected. Comparing the equal average branch SNR figures (Figs. 7.3, 7.5, 7.7) with the unequal
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average branch ones (Figs. 7.4, 7.6, 7.8), observe that: (1) unbalance in the average branch SNRs
always leads to lower overall system performance, and (2) the effect of correlation is more important

for equal average branch SNRs.

7.3 Maximal-Ratio and Equal-Gain Combining

In this section we assess the effect of correlation on the average error probability of coherent MRC
and noncoberent EGC receivers. There is a large number of papers dealing with this topic and
along these lines several correlation models have been proposed [98, 13, 99], and using these models
scveral authors [98, 56, 79, 99, 85] have analyzed special cases of the performance of various systems
corresponding to specific detection, modulation, and diversity combining schemes. For instance,
Pierce and Stein [98] considered the performance of binary coherent and noncoherent systemns over
correlated identically distributed Rayleigh fading channels. In particular they obtained the aver-
age bit error rate (BER) of coherent binary phase-shift-keying (BPSK) when used in conjunction
with maximal-ratio combining (MRC) [64], [2, Section 5.5.3, p. 24], and of noncoherent frequency-
shift-keying (BFSK) when used with postdetection equal-gain (square law) combining (EGC) [1,
Section 4.4, p. 298], [2, Section 5.5.6, p. 253]. Miyagaki al. [56] analyzed the outage probability
and the average symbol error rate (SER) performance of M-ary phase-shift-keying (M-PSK) for
various dual-branch diversity receivers over correlated identically distributed Nakagami-m fading
channels [13]. Al-Hussaini and Al-Bassiouni [79] obtained a closed form expression for the average
BER of noncoherent BFSK with dual-branch MRC reception over correlated non identically dis-
tributed Nakagami-m fading channels. More recently Aalo [99] analyzed the outage probability and
the average BER of various coherent, differentially coherent, and noncoherent binary modulations
with multichannel MRC reception over identically distributed Nakagami-m fading channels with
two correlation models, namely the constant (equal) correlation model and the exponential correla-
tion model. Finally, Patcnaude et al. [85] extended the results of Al-Hussaini and Al-Bassiouni {79}
and of [99] by providing closed form expressions for the average BER of orthogonal noncoherent
BFSK with postdetection EGC reception over two correlated nonidentical and also L equicorrelated
identically distributed Nakagami-m channels.

In this section we obtain general results for the exact average BER or SER of M-ary coherent,
differentially-coherent, and noncoherent modulations over equicorrelated and exponentially corre-
lated slowly varying Nakagami-m fading channels. Aside from allowing for many detection, mod-
ulation, and diversity combining cases not previously treated, these general results provide often
simpler forms for the average BER or SER. expressions corresponding to the special cases treated by
the cited authors. In particular, each average BER or SER expression is obtained in the form of a

single integral with finite limits and an integrand composed of elementary functions.
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Figure 7.3: Outage probability versus normalized threshold SNR for equal average branch SNRs
(F; = F5) and for various values of the correlation coefficient ((a) p = 0.9, (b) p = 0.7, (c) p = 0.5,

(d) p=0).
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Figure 7.4: Outage probability versus normalized threshold SNR for unequal average branch SNRs
(7, = 1079,) and for various values of the correlation coefficient ((a) p = 0.9, (b) p = 0.7, (c) p = 0.5,
(d) p=0).
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. ' Bit Error Rate of DPSK (Equal Average SNR)

Average Bit Error Rate (BER)

Average Signal-to—Noise~Ratio (SNR) ¥,=¥, [dB]

Figure 7.5: Average BER of BDPSK versus average SNR of the first branch for equal average branch

SNRs (¥, = ¥,) and for various values of the correlation coefficient ((a) p = 0.9, (b) p = 0.7, (¢)
p=0.5, (d) p=0).
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o Bit Error Rate of DPSK (Unequal Average SNR)

Average Bit Error Rate (BER)

Average Signal-to—-Noise—Ratio (SNR) ¥,= 10 ¥, [dB]

Figure 7.6: Average BER of BDPSK versus average SNR of the first branch for unequal average

branch SNRs (7; = 10 ¥,) and for various values of the correlation coefficient ((a) p = 0.9, (b)
p=0.17,(c) p=035, (d) p=0).
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Figure 7.7: Average BER of BPSK versus average SNR, of the first branch for equal average branch

SNRs (¥, = 7,) and for various values of the correlation coefficient ((a) p = 0.9, (b) p = 0.7, (c)
p=0.5, (d) p=0).
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o ' Bit Error Rate of BPSK (Unequal Average SNR)

Average Bit Error Rate (BER)

Average Signhal-to—Noise—Ratio (SNR) ¥;= 10 y, [dB]

Figure 7.8: Average BER of BPSK versus average SNR of the first branch for unequal average

branch SNRs (¥, = 10 ¥,) and for various values of the correlation coefficient ((a) p = 0.9, (b)
p=0.7, (c) p=0.5, (d) p=0).
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The remainder of this paper is organized as follows. In the next section, the various channel
correlation models under cq_nsideration are described. Section 7.3.2 provides in a generic fashion the
performance of coherent modulations with MRC reception. Section 7.3.3 extends these performance
results to differentially coherent and noncoherent modulations with postdetecti;)n EGC reception.
Some numerical examples illustrating the effect of various system performance on the performance

of binary modulations are presented in Section 7.3.4.

7.3.1 Channel Correlation Models

In this section we present the three channel correlation models (models A, B, and C) of interest in
this paper. Since both of the diversity schemes (MRC and postdetection EGC) under consideration
are known to have conditional error rates which are function of the sum of the combined individual
signals’ signal-to-noise ratio (SNR) per symbol, v; = r2E,/Np (I = 1,2,---,L), where [ is the
branch index, L is the number of combined branches, 7; is the {th branch fading amplitude, and
E, /Ny is the symbol energy-to-Gaussian noise spectral density ratio, we present for every model the
probability function density (PDF) for the combined SNR per symbol, v = E{‘:l ;. Furthermore
since our generic approach to evaluate the average error rate performance relies on the knowledge of
the moment generating function (MGF) of the combined SNR PDF we derive this quantity for the
three channel models under consideration. In what follows, p;(;} denotes the PDF of the combined
SNR per symbol, with the index ¢ identifying the model type and is hence equal to a, b, or ¢. In
addition, the MGF of p;(7;) is denoted by M;(s) and is defined by

Mi(s) = E,, [e_s%] =/ pi(ne) €757 dry;. (7.44)
’ o

Model A: Two Correlated Branches with Nonidentical Fading
Model A was proposed by Nakagami [13, Section 6.4] and corresponds to the scenarios of dual diver-

sity reception over correlated Nakagami-m channels which are not necessarily identically distributed.

PDF In this case the PDF of the combined signal envelope, p,(r:), is given by [13, Eq. (142),
p.34]

Pa(re) =

2r/T (ﬁ
L(m)(c102(1 — p))™ \ 28

where I,(-) denotes the vth-order modified Bessel function 70, Sectioni0.2, p. 443,

m-
) Ly e nezo, (7.45)

2 .2
PR G i1 VY P (7.46)

Vvar(r?)var(r3) ’
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is the envelope correlation coefficicnt between the two signals 2, and the parameters o (I=1, 2), a,

and 3 are defined as follows:
Q

4
= — =12 7.47
a; m’ (l ’ )7 i ( )
o= M, (7.48)
20’10’2(1 - p)

g% = (01 —03)2 +40109p
4of03(1 — p)?

By using a standard transformation of random variables, it can be shown that the PDF of the

(7.49)

combined SNR per symbol, p,(7:), is given by

A m T\ .
Pa(%) = [ﬁﬁz(l—p)] ("27%’) Ly 3 (B'%) €7 720, (7.50)

where the parameters o’ and 3’ are normalized version of the parameters o and 3, and are given by

s a m(¥ =~ Fa)

YT BN - ‘ (75
o B m(tT) - mmi - ;
PSR 377201 — ) (752)

For the cases of identical channels (7, = F, = %), (7.50) reduces to

For the Rayleigh fading case (m = 1) using the identity [70, Eq. (10.2.13), p.443]

sinh 2

Iy(2) = (7.54)

2z2

where sinh(-) denotes the sin hyperbolic function [70, Section 4.5, p.83], it can be shown that (7.50)

reduces to

F1+52— \/("/1"")’2)2—4'71’72(1 £) 71+72+\/(71+’Yz)2 47,7, (1- P)
exl’[ 77172 (1-7) ] exl’[ 172 (1)

2 ('Yt) =

Ve 2 07
(7.55)

3We use the envelope correlaﬁi_on coefficient throughout this paper as a measure of the degree of correlation between
the fading signals since, as pointed it out in [98, 99], experimental data on the correlation between fading signals are
typically given in terms of this figure because of its relative ease of measurement.

VL +72) = 7.(1 - p)
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which itself reduces to the well-known expression for the case of identical Rayleigh channels originally
derived in [110] and which can also be found in {98, Eq. (40)], [108, Eq. ()]

MGF Substituting (7.50) in (7.44) then using the Laplace transform [53, p. 1182, Eq. (110)], it
can be shown after some manipulations that the MGF of pg(y;) is given by

— — 1 . — — -m
Ma(8373,72:m; p) = Ma(s) = (1+ (71:172) s+ ( Ti);mz 32) ; 820, (7.57)

Model B: L Identically Distributed Branches with Constant Correlation

Model B was proposed by Aalo [99, Section 1I-A] for identically distributed Nakagami-m channels
(i. e., all channels are assumed to have the same average SNR per symbol ¥ and the same fading

parameter m). This model assumes that the envelope correlation coefficient p is the same between

all the channel pairs (I,k) ({ =1,2,.--,L) and (k=1,2,.--,L), ie.

cov(13, )

=py = ,
p=a +/var(rf)var(rs)

I#k 0<p<l, (7.58)

and may therefore correspond to the scenario of multichannel reception from closely placed diversity

antennas.

PDF Based on the work of Gurland [111], Aalo showed the the PDF of +, is given in this case
by [99, Eq. (18)]*

(@)Lm_l exp (—(——mi—;) +F (m Lm; Lm /oy _)
Pb(%) N T 1—/P)7 1 ) * (1-/P)(A=vp+L PV | . N >0 (7 59)
(Z) =A™= (1= 5+ Lyp)™ T(Lm)

where 1 F1(-,;-) is the confluent hypergeometric function [70, Chapter 13, p. 503]. For L = 2
using [70, Eq. (13.6.3), p. 509}, namely

1Fi(m,2m;2z) =T (m n 1) (E)—WH%

5) G In_3(2) €, (7.60)

41t should be noted at this point that in [99, Eq. (18)] the symbol p is used to denote the correlation coefficient
of the underlying Gaussian processes that produce the fading on the channels. This correlation coefficient is equal to
the square root of the power correlation coefficient. Based on the work of [112, p. 62] it is shown in [98, Appendix V]
that for all practical purposes the power correlation coefficient can be assumed to be equal to the envelope correlation
coeflicient which is denoted by p throughout this paper so as to follow what seems to be the more conventional usage
of this symbol.
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as well as the identities [70, Eq. (6.1.12) and Eq. (6.1.8), p. 255] yielding

then it can be shown after some manipulations that (7.59) reduces to {7.33) of Model A, as expected.
MGF Substituting (7.59) in (7.44) then using the Laplace transform [53, Eq. (4), p. 864],
® () i
21 Fi(a;c kx) 7% da = —5 oFy | a,b;¢; <) |sl > |k|,b>0,8s>0,8>k, (7.62)
0
together with the identity [70, Eq. (15.1.8), p. 556], [99, Eq. (A-5)]
2Fi(a,b;b;2) = (1 —2)7¢, (7.63)

it can be shown that

=(1 _ . - ~(1 — ~m(L-1)
Mi(s;%m; p3 L) £ My(s) = (1 + 7 \/Z Ly/p) 3) (1 + ’Y(l-—m_i@ S) p 820

(7.64)

For L = 2, as a check, it can be easily shown that (7.64) agrees with (7.57) for 7, = 7,

Model C: L Identically Distributed Branches with Exponential Correlation

Model C was also proposed by Aalo [99, Section II-B] for identically distributed Nakagami-m chan-
nels (i. e., all channels are assumed to have the same average SNR per symbol 7 and the same fading
parameter m). This model assumes an exponential envelope correlation coefficient pjx between any

channel pairs (I,k) (I =1,2,---,L) and (k=1,2,---,L) as given by

cov(r,ri)

Pk = /var(r})var(r})

and may therefore correspond to the scenario of multichannel reception from equispaced diversity

=pl*o<p<y, (7.65)

antennas in which the correlation between the pairs of combined signals decays as the spacing

between the antennas increases.
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PDF Based on the work of Kotz and Adams [113], Aalo showed the the PDT of v, can be very
well approximated by a gamma distribution given by [99, Eq. (19)]°

mLs g
"}’t e exp (_ T’:Lﬁ_‘lt)
pe(m) = o m >0, (7.66)

where® L
25 (- F)
ro=1L+ L- . 7.67)
4 1— \//_) 1— \/ﬁ (
MGF Substituting (7.66) in (7.44) then using the Laplace transform [53, Eq. (3.381.4)], namely
oQ
/ 2 e dp = L, (7.68)
0 8
it can be shown that
_rn.Lr2

Me(5;%m; ;L) & Me(s) = (1 + 2 s) " sx0. (7.69)

7.3.2 Coherent Multichannel Reception

To assess the average error probability performance of a diversity receiver in the presence of slow
fading we must first provide an expression for the conditional {on +;) error probability and then

average this expression over the PDF's of «y; as given in Section 2, i.e.,

P(E) = [ @) niw) dne (7.70)
We now present specific results for different coherent modulations with MRC reception.

Binary Phase-Shift-Keying (BPSK) and Binary Frequency-Shift-Keying (BFSK)

Based on an alternate representation of the Gaussian Q-function [66], the conditional BER of BPSK
and BFSK can be written in the integral form (see Chapter 4)

n/2
Py(Elv) = % /0 exp (— I )d¢, (7.71)

where g = 1 for BPSK, g = 1/2 for orthogonal BFSK, and g = —;— + g%; for BFSK with minimum
correlation. The average BER, P,(F) is then obtained by averaging (7.71) over (7.50), (7.59), or

5Based on the work of Kotz and Adams [113], Aale [99] points out that the approximation (7.66) is valid for high
values of L but is still accurate for values of L as small as 5.

We remind the reader that contrary to its usage in [99] the coefficient p denotes in this paper the envelope
correlation coefficient. :
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(7.66) yielding after interchanging the order integration the desired generic result

_ 1 w/2 9
P (B) =~ fo M (m) do. | (7.72)

For model B, (7.72) with (7.64) should be contrasted with the previous available equivalent result [99,

which is typically not available in standard mathematical software libraries such us Mathematica,
Matlab, and Maple, and which is defined either in term of an infinite range integral of a special func-
tion [99, Eq. (A-12)] or alternatively as a double infinite sum [99, Eq. (A-13)]. For model C, (7.72)
along with (7.69) is equivalent to [99, Eq. (40)] which is expressed in terms of the hypergeometric
function 5 Fy (-, -, +;-) [70, Chapter 15, p.555].

Multiple Phase-Shift-Keying (M-PSK)

The generalization of (7.71) to M-ary signaling is straightforward in view of the form of the symbol
error rate for M-PSK on the AWGN [65, Eq. (71)], which on the fading channel becomes the
conditional SER (see Chapter 4) l

1 M-/ GpskVt
P, (E|v) =~ —ZE22 0 ) dep, 7.73
Eh =2 [0 e (<225 ) 2o (779

where gpg = sin® (Z) Thus, by inspection we immediately obtain

P =L [T ()
s = - il ——=— . 7.74
@)=z () a0 (r.74)
It should be noted that for model A (7.74) together with (7.57) is an ezact expression equivalent
to [56, Eq. (54)] with the advantage of being expressed in terms of a single finite-range integral
(contrary to [56, Eq. (54)]) and whose integrand is much simpler than [56, Eq. (54)], and hence

easier to compute for any arbitrary value of the fading parameter m.

M-ary Amplitude Modulation (M-AM)

Without belaboring the details, it is a simple matter to extend the previous analyzes to M-AM
with signal points symmetrically located about the origin. Again using the alternate form of the
Gaussian @Q-function enables one to arrive at an expression for the conditional SER in a form

analogous to (7.71), namely (see Chapter 4),

oM —1) [2 am
Pu(Ep) = K20 [ e (L2t ) g, (7.75)
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where gam = 3/(M? — 1). Hence, the average SER is given by

2A0M —1) [? ( Jam )
P =—— i . 7.
\ T A M = do | (7.76)

M-ary Quadrature Amplitude Modulation (M-QAM)

Consider square M-QAM signals whose constellation size is given by M = 2* with k even. For
these type of constellations, the expression for the SER. on the AWGN involves both the Gaussian
Q-function and the square of this function. Using an alternate representation for the square of the
Gaussian @-function [67, Eq. (80)], the conditional SER for the fading channel is given by (see
Chapter 4)

_ 4 1 4:> /2 Ggamt 1 2o/ JoamYt
rEm =2 (1- =) [ owp (-0 gy - 2 (1- =) [ enp (g )(ddn

where ggam = 3/ [2(M — 1)]. Hence, by inspection, the average SER is given by

_.A_l. — 1 /2 9gam 4 ___1_ 2o [ 9gam
=S [ ) ) [l o

7.3.3 Differentially Coherent and Noncoherent Multichannel Reception

For differentially coherent and noncoherent detection, MRC is not practical since it requires channel
phase estimates for its implementation. As pointed out by Stiiber [2, p. 255], if in fact it were possible
to estimate the channel phases on each channel, then the reasons for employing differentially coherent
and noncoherent detection would become mute and instead one should resort to coherent detection
since it results in superior performance. In view of this observation, post-detection EGC [1, Section
4.4, p. 298], [2, Section 5.5.6, p. 253] is the more common form of diversity combining for these type
of reccivers [85]. We present in this section a generic result for the average BER for differentially
coherent and noncoherent multichannel receivers when used in conjunction with post-detection EGC

over correlated Nakagami-m fading channels.

Conditional BER

Using an alternate integral representation of the generalized Marcum Q-function [89, Appendix
C], [90], it was shown in Chapter 6 that the conditional BER of a wide class of differentially coherent
and noncoherent modulations can be written in the desired form consisting of a single integral
with finite limits and an integrand which is composed of elementary functions and where the total

instantaneous SNR per bit v; (over which we must average) appears only in the argument of the
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exponential term, namely,

- " Li g,m; .
Py(E|v)= 271_(1()_1_7)’7)2L_1/_ @ f—(bz ’_: 22;211@ exp [w(az2 +b% + 2absm¢)%] de, 0t <a<b,
" ‘ (7.79)
where
F(L; B3 0) = folL; B,m; 8) + fr(L; B, m; 8),
with
ar-1 L _
R ll) o+ nl‘l)] B(6 + sin),
I=1

L
AL B d) =Y, (25 __ll)[(n“’ﬁ"+1 —nf 13 Y cos((L - 1)(¢ + 7/2))—(n"' 872 —n' "1 ) cos(U(¢ + 7/2))] .

=1

(7.80)

In (7.79) the parameters a and b are modulation-dependent and are defined in [1, Eq. (4B.22)],
and 7 == vy /v;, with the parameters v1, vp defined in Recall that a number of special cases are of
particular importance. For noncoherent detection of equal energy, equiprobable, correlated binary

signals, n = 1 and

2

1+ /i)
b = (—2“—) : (7.81)

where A (0 < |A| < 1) is the complex-valued cross-correlation coeflicient between the two signals.

- (=)

The special case A = 0 corresponds to orthogonal noncoherent BFSK for which ¢ = 0 and b = 1.
Furthermore, in the case of binary differential phase-shift-keying (BDPSK), a = 0, b = /2, and
7 = 1. Finally a = \/m, b= m, and n = 1 correspond to quaternary differential
phase-shift-keying (DQPSK) with Gray ceding. It should be noted that as a — 0 (7.79) assumes an

indeterminate form but the limit converges smoothly to the exact conditional BER expression.

Average BER

To evaluate the average BER one must average the conditional BER expression (7.79) over one of
the fading PDFs under consideration as given by (7.50), (7.59), or (7.66). Recognizing the analogy

between (7.79) and (7.71) in so far as its functional dependence on v;, we can immediately write the
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0 Comparison Between MRC and SC (BPSK Equal Average SNR)

Maximal Ratio Combining (MRC) :
Selection Combmlng (S ) )

Average Bit Error Rate (BER)

Average Signal—-to—-Noise-Ratio (SNR) §, = ¥, [dB]

Figure 7.9: Average BER of BPSK versus average SNR of the first branch for equal average branch

SNRs (7, = ¥,) and for various values of the correlation coefficient ((a) p = 0, (b) p = 0.5, (c)
p =07, (d) p=0.9).

average BER as

By (E) = — 00 T I Lgme) ‘(a2+b2+2absin¢') »

2n(1 +n)2L-1 J_. (a? + 0% + 2absin @) 2 (7.82)

Letting o — 0 and b = 1 (b = v/2) in (7.82) yields the average BER performance of orthogonal
BFSK (BDPSK), and in this particular case (7.82) is equivalent to the closed-forms [85, Eq. (21)]
and (85, Eq. (16)], for models A and B, respectively.

7.3.4 Numerical Examples

As examples Figs. 7.9 and 7.10 compare the performance of dual branch maximal ratio combining

and selection combining diversity over correlated Nakagami-m fading channels, for equal and unequal

average SNR, respectively.
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o Companson Between MRC and SC (Unequal Average SNR)

Maximal Ratio Combining :
Selection Gombining

Average Bit Error Rate (BER)

107

107k -
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Average Signal-to—Noise—Ratio (SNR) 7, = 10 ¥, [dB]

Figure 7.10: Average BER of BPSK versus average SNR of the first branch for unequal average
branch SNRs (5, = 10 7,) and for various values of the correlation coefficient ((a) p = 0, (b)
p=05, (c) p=0.7, (d) p=0.9).
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7.4 Conclusion

We studied the effect of correlation on the performance of SC and MRC diversity receivers. For
SC it was shown that using a simple finite integral representations for the CDF and PDF of the
output of a dual diversity selective combiner, it is possible to express the outage probability and
error probability performances of this system in the presence of slow correlated Rayleigh fading
either in closed form or in terms of a single integral with finite limits and an integrand composed
of elementary (exponential and trigonometric) functions. Having expressions in this form readily
allows numerical evaluation for specific cases of interest. These expressions and numerical results
have been extended by Simon to correlated Nakagami-m channels and can be found in [72].

For coherent MRC and noncoherent EGC receivers we obtained generic easy-to-compute expres-
sions for the average error rate of multichannel reception of digital signals over equicorrelated and
exponentially correlated slowly varying Nakagami-m fading channels. The results are applicable
to coherent detection with maximal-ratio combining as well as to differentially coherent and non-
coherent detection with post-detection equal-gain (square law) combining. Aside from extending
previous analyses of diversity reception over correlated Nakagami-n fading channels to include the
performance of M-ary modulations, these results provide equivalent forms for known expressions
corresponding to the performance of binary modulations. Because of their simple forms, these re-
sults offer a useful analytical tool for the accurate performance evaluation of various systems of

practical interest.
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Chapter 8 Capacity of Rayleigh Fading Channels

8.1 Introduction

The radio spectrum available for wireless services is extremely scarce, while demand for these service
is growing at a rapid pace [114]. Spectral efficiency is therefore of primary concern in the design of
future wireless data communications systems. High overall spectral efficiency of a wireless cellular

system may be achieved at several levels of the system design [2]:
e at the radio coverage planning level by minimizing cell area and the co-channel reuse distance.

s at the network/system level by using sophisticated channel allocation schemes that maximize

the overall carried traffic.

e at the communication link level through a skillful combination of bandwidth efficient coding

and modulation techniques.

In this chapter we focus on the link spectral efficiency, defined as the average transmitted data
rate per unit bandwidth for a specified average transmit power and bit-error-rate (BER). Over the
last three decades researchers have looked at various ways to improve the link spectral efficiency of
wireless systems. In what follows, we first briefly summarize the major steps and progress achieved

in that arena. We then present the objectives and outline of this chapter.

8.1.1 Spectral Efficiency over Fading Channels

Muttilevel modulation schemes, such as M-QAM, increase link spectral efficiency by sending multiple
bits per symbol [115]. Unfortunately, mobile radio links are subject to severe multipath fading due to
the combination of randomly-delayed, reflected, scattered, and diffracted signal components [108}.
Fading leads to serious degradation in the link carrier-to-noise ratio (CNR), resulting in either
a higher BER or a higher required transmit power for a given multilevel modulation technique.
Thus, fading compensation is typically required to improve link performance. One compensation
technique, proposed by Sargpei and Sunaga [116], uses pilot symbol assisted modulation (PSAM).
This technique inserts a tfaining sequence into the stream of M-QAM data symbols to extract
the channel-induced attenuation and phase shift, which are then used for symbol detection. Space
diversity, which combines signals received over several antenna branches, as discussed in previous
chapters, is another powerful technique to combat fading [64]. Diversity can often be combined with

other fading compensation methods to mitigate most of the fading degradation. For example, joint
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use of PSAM and maximal-ratio combining (MRC) antenna diversity was proposed in [117], and
field trials with this technique demonstrated considerable performance improvement over M-QAM
without compensation {118, 119].

Other fading compensation techniques include an increased link budget mal:gin or interleaving
with channel coding [2]. However, these techniques are designed relative to the worst-case chan-
nel conditions, resulting in poor utilization of the full channel capacity a good percentage of the
time (under negligible or shallow fading conditions). Adapting certain parameters of the transmit-
ted signal to the channel fading leads to better utilization of the channel capacity. The concept
of adaptive transmission, which requires accurate channel estimation at the receiver and a reliable
feedback path between that estimator and the transmitter, was first proposed around the late six-
ties [120, 121, 122]. Interest in these techniques was short-lived, perhaps due to hardware constraints,
lack of good channel estimation techniques, and/or systems focusing on point-to-point radic links
without transmitter feedback. The fact that these issues are less constraining in current land mobile
radio systems, coupled with the need for spectrally-efficient communication, has revived interest
in adaptive modulation methods. The main idea behind these schemes is real-time balancing of
the link budget through adaptive variation of the transmitted power level [120]\, symbol rate [121],
constellation size [123, 124, 125, coding rate/scheme [126], or any combination of these parame-
ters [122, 127, 128, 129, 130, 131, 132]. Thus, without sacrificing BER these schemes provide a much
higher average spectral efficiency by taking advantage of the “time-varying” nature of the wireless
channel: transmitting at high speeds under favorable channel conditions and responding to chan-
nel degradation through a smooth reduction of their data throughput. The performance of these
schemes is further improved by combining them with space diversity [133]. The disadvantage of
these adaptive techniques is that they require an accurate channel estimate at the transmitter, ad-
ditional hardware complexity to implement adaptive transmission, and buffering/delay of the input

data since the transmission rate varies with channel conditions.

8.1.2 Objective and Outline

The aim of this chapter is to investigate the theoretical spectral efficiency limits of adaptive modu-
lation in Rayleigh fading channels. This fading channel model applies to land mobile radio channels
without a line-of-sight path between the transmitter and receiver antennas, as well as to iono-
spheric [7] and tropospheric scatter [6] channels.

The Shannon capacity of a channel defines its theoretical upper bound for the maximum rate of
data transmission at an arbitrarily small BER, without any delay or complexity constraints. There-
fore, the Shannon capacity represents an optimistic bound for practical communication schemes,
and also serves as a bench-mark against which to compare the spectral efficiency of all practical

adaptive transmission schemes [132]. In [134] the capacity of a single-user flat-fading channel with
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Figure 8.1: Transmission system block diagram.

channel measurement information at the transmitter and receiver was derived for various adaptive
transmission policies. In this chapter, we apply the general theory developed in [134] to obtain
closed-form expressions for the capacity of Rayleigh fading channels under different adaptive trans-
mission and diversity-combining techniques. In particular, we consider three adaptation policies:
optimal simultaneous power and rate adaptation, constant power with optimal rate adaptation, and
channel inversion with fixed rate. We investigate the relative impact of MRC and selective combining
(SC) diversity schemes in conjunction with each of these adaptive transmission schemes. Note that
an analytical evaluation of the capacity in a Rayleigh fading environment with the constant power
policy was carried out in {135, 136, 137]. We extend this analysis to derive closed-from expressions
for capacity with MRC and SC, and compare it to the capacity of the other adaptive methods.
The remainder of this chapter is organized as follows. In Section 8.2 we outline the channel
and communication system model. We derive the capacity of a Rayleigh fading channel (with and
without diversity) for the optimal adaptation policy, constant power policy, and channel inversion
policy in Sections 8.3, 8.4, and 8.5, respectively. In Section 8.6, we present some numerical examples
comparing (i) the Rayleigh channel capacity with the capacity of an additive white Gaussian noise
(AWGN) channel, and (ii) the Rayleigh channel capacity for the various adaptation policies and
diversity-combining techniques under consideration. We review our main results and offer some

concluding remarks in Section 8.7.

8.2 Channel and System Model

In this section, we describe the channel and communication system model. A block diagram of the
transmission system is shown in Fig. 8.1.

We assumne that the channel changes at a rate much slower than the data rate, so the channel
remains constant over hundreds of symbols. We call this a slowly-varying channel. We assume a

Rayleigh fading channel so that the probability distribution function (PDF) of CNR, v, is given by
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an exponential distribution (2.4)

e— /7
Py(7) = = 720 (8.1)

where 7 is the average received CNR.

We consider both MRC and SC diversity combining of the received signal. MRC diversity
combin.ing requires that the individual signals from each branch be weighted by their signal voltage
to noise power ratios, then summed coherently [108, p. 316]. In our MRC analyses we assume
perfect knowledge of the branch amplitudes and phases, which we call perfect combining. MRC
with perfect combining is the optimal diversity scheme [108, p. 316], and therefore provides the
maximum capacity improvement relative to all combining techniques. The disadvantage of MRC is
that it requires knowledge of the branch parameters and independent processing of each branch. Let
7, denote the average CNR on the kth branch. For independent branch signals and equal average
branch CNR 7:

¥, =7 forall ke{1,2,3,., M}, (8.2)

the PDF of the received CNR at the output of a perfect M-branch MRC combiner is a chi-square
distribution with 2M degrees of freedom [108, (5.2-14), p. 319] given by

'YM_]' 6_7/5-

mre —

y20. (8.3)

SC diversity only processes one of the diversity branches. Specifically, the combiner chooses the
branch with the highest CNR [108, p. 313]. Thus, this diversity-combining technique is simpler than
MRC, but also yields suboptimal performance. Since the output of the SC combiner is equal to the
signal on one of the branches, the coherent sum of the individual branch signals is not required?.
Assuming independent branch signals and equal average branch CNR (8.2), the PDF of the received
CNR at the output of an M-branch SC combiner is given by [108, (5.2-7), p. 316]

M _ _
P == (- e VML ey >0 (8.4)

Note that using the binomial expansion, we can rewrite (8.4) as

M= M-1 -
o) =3 Sk (M) e, (85)
k=0

1The SC scheme can therefore he used in conjunction with differential modulation techniques, in contrast to MRC,
which is restricted by design to coherent modulations.
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where (M,;' 1) denotes the binomial coefficient given by
M-1 (M -1}
= 8.6
( k ) (M —k—-1) & . (86)

We assume throughout our analyses that the variation in the combiner output CNR 7 is tracked
perfectly by the receiver. We also assume that the variation in v is sent back to the transmitter
via an error-free feedback path. The time delay in this feedback path is assumed to be negligible
compared to the rate of the channel variation. All these assumptions, which are reasonable for
high-speed data transmission over a slowly-fading channel, allow the transmitter to adapt its power

and/or rate relative to the actual channel state.

8.3 Optimal Simultaneous Power and Rate Adaptation

Given an average transmit power constraint, the channel capacity of a fading channel with received
CNR distribution p., () and optimal power and rate adaptation (< C >oprs [Bit/Sec]) is given in [134]

as

+ 0o
<C>op1'a= B 108'2 (3") p’y("/) d, (87)

ﬂ’D o
where B [Hz] is the channel bandwidth and 7, is the optimal cutoff CNR level below which data

transmission is suspended. This optimal cutoff must satisfy the equation

[ (=

To achieve the capacity (8.7), the channel fade level must be tracked at both the receiver and
transmitter, and the transmitter has to adapt its power and rate accordingly, allocating high power
levels and rates for good channel conditions (7 large), and lower power levels and rates for unfavorable
channel conditions (- small). Since no data is sent when v < +,, the optimal policy suffers a

probability of outage Pout, equal to the probability of no transmission, given by

Yo +o00
Py = Ply < 7] = fo py(r) dy=1- / pr(7) d. (8.9)

Yo

We now obtain closed-form expressions for the optimal cutoff CNR +,, capacity < € >gpra, and
outage probability P,y of this optimal adaptation technique with and without diversity combining.

No numnerical integrations are required, though numerical root finding is needed to find ~,.
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8.3.1 No Diversity

Substituting (8.1) in (8.8) we find that -y, must satisfy

w(3)-5(3) = oo

where Ey,(x) is the exponential integral of order n defined by
+oo
En(z) = / t™" e *t dt; z > 0. (8.11)
1

In particular, E¢(z) = e~*/z, so (8.10) reduces to

"'To/'_Y
Let z = 7,/7 and define
f@) = = - By(a) - 7 (8.13)

Ed

Note that @}wﬂ = =%~ < Ofor all z > 0. Moreover, from (8.13), lim,_,o+ f(z) = -+oo and
lim; 4o f(z) = — 7 < 0. Thus we conclude that there is a unique z, for which f(z,) = 0 or,
equivalently, there is a unigue +, which satisfies (8.12). An asymptotic expansion of (8.12) shows
that as ¥ — 400, 7, — 1. Our numerical results show that «, increases as ¥ increases, so v, always
lies in the interval [0,1].

Substituting (8.1) in (8.7), and defining the integral J,(u) as
+co
Tn(p) = f "1 Inte#?t di; n>0n=1,2,.., (8.14)
1
we can rewrite the channel capacity <C > as

<C>opra= B log,(€) % .71(17‘—’). (8.15)

The evaluation of J;{u) is derived in Appendix A and given in (8.71). Using that result we obtain
the capacity per unit bandwidth < C'>gpra /B [Bits/Sec/Hz] as

<O>O Ta Q
= = logy(e) Br (%) . (8.16)

Using (8.12) in (8.16), the 6’ptimal capacity per unit bandwidth reduces to the simple expression

<C>opra (6_70/5 _)
———— = log,(e -5 8.17
522 = loga(e) (S 7 (817)
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Using (8.1) in the probabi]ﬂy of outage equation (8.9) yields
Poy=1—e /7, (8.18)

8.3.2 Maximal-Ratio Combining

Inserting the CNR distribution (8.3) in (8.8), we see that with MRC combining ~, must satisfy

T (M :r:o-)
[ Yo\ _ —_
—z - I‘(M _1, 5) = (M —1)7, (8.19)

where I'(.,.) is the complementary incomplete gamma function defined in (8.65). Let z = +,/¥ and
define

(M, z)

fmrc(m) = - F(M - 1’1') - (M - 1)' 7 (820)

Note that ﬂ%m—) = _—P(ﬁ!—"fl < 0forall z>0and M > 2. Since lim,_ g+ furc(2) = +oo and
limg_s 4 oo frare(Z) = —(M — 1)! ¥ < 0 we conclude that there is a unique z, such that fmrc(z,) =0
or, equivalently, there is a unique 7, which satisfies (8.19). An asymptotic expansion on (8.19) shows
that v, — 1 as ¥ — +00, 50 v, € [0,1]. Comparing this with the results in Section 8.3.1, we see
that as the average received CNR grows to infinity, the optimal cutoff value is the same for both
diversity methods.

Substituting (8.3) in (8.7) we obtain the channel capacity with MRC diversity, < C >g55,
[Bits/Sec], in terms of the integral Ja(.) as

mec _ B loga(e) (%)™ (%
<O>5= I (7) Tu(Z)- (8.21)

The evaluation of J,(x) is derived in Appendix A and given in (8.70). Using this result we obtain
the capacity per unit bandwidth < C > /B [Bits/Sec/Hz| as

opra

<C >om;fa

—22 = logy(e) (El(’Yo/")’) + Z Pu(ro/7 'Y)) , (8.22)

where Py(.) denotes the Poisson distribution defined in (8.67). The corresponding probability of
outage P™I° is obtained by substituting (8.3) into (8.9), and using [53, (8.381.3), p. 364] and (8.66):

Pout” =1~ Pulve/7)- (8.23)
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8.3.3 Selective Combining

Substituting the CNR. distribution (8.5) into (8.8) we find that v, must satisfy

M-1 _ — ()Y /T \
S0t (M) (s - B0+ kD) =7/, (8.2)

k=0

Let & = 7,/% and define
M-1 M—1 e—(1+k)z B
fsc(-f) = ?—;0 (—l)k ( k ) ('(-m)—m - El((l -+ k):l.')) - ’)’/M (825)

Note that %)- = Zk -0 ! ax(z), where ag(z) = (~1)* (M 1L) ﬁ:;i; Since ap(z) = e */z%* > 0
and, for all k¥ < M, |eg+1(z)| < |ar(z)| we have éi%_wl < 0 for all z > 0. Moreover, from (8.25),
lim, o+ fee(Z) = +00 and lim;—, ;o0 foe(z) = — F/M < 0. Thus we conclude that there is a unique
x, for which fi.(z,) = 0 or, equivalently, there is a unique 7, which satisfies (8.24). An asymptotic
expansion of (8.24) shows that as ¥ —+ +00, 7, — 1. Therefore, as in the no diversity and MRC
diversity cases, v, always lies in the interval [0,1].

Inserting (8.5) into (8.7), we can express the channel capacity with SC diversity, < C >,
[Bits/Sec], in terms of the integral Ji(.) as

1+&
<C>%.=BM 1og2(e) Z( 1)k ( ) ((T)) ) (8.26)
k=0
Using (8.71) from Appendix A, we obtain the capacity per unit bandwidth, <C >3, . /B [Bits/Sec/Hz],
as
<C>g§)ra k El((l + k) 'Ya/’)')
—T7opta _ ar | )
Zore _ ogz(e)g_%( o (M) 2 (627)
The corresponding probability of outage P55, is obtained by substituting (8.5) into (8.9):
M-1 -
M-1 e‘(l"i‘k)’yo/'y
SC 1 _1Yk
P =1 Mkz:%( 1)( L ) T (8.28)

We see from (8.28) that as ¥ tends to infinity (and +, tends to 1), PS5, tends to zero, as expected.

Similarly, we can also see from (8.28) that as v, tends to zero (i.e., total channel inversion), Pao,

tends to zero.
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8.4 Optimal Rate Adaptation with Constant Transmit Power

With optimal rate adaptation to channel fading and a constant transmit power, the channel capacity
< C >ora [Bits/Sec| becomes [134, 138],

-+00
<C>pa= B / logo (1 +7) py(7) dv. (8.29)
0

< C >ora Was previously introduced by Lee [135] as the average channel capacity of a flat-fading

channel, since it is obtained by averaging the capacity of an AWGN channel
Cawgn = B logy(1+7), (8.30)

over the distribution of the received CNR v. In fact, (8.29) represents the capacity of the fad-
ing chanmnel without transmitter feedback (i.e., with the channel fade level known at the receiver
only) [136, 139, 140], under some mild regularity conditions on the fading process. In the follow-
ing analysis, we first obtain the channel capacity without diversity (correcting some minor errors
in [135]), and then derive analytical expressions as well as simple accurate asymptotic approximations

of the capacity improvement with both MRC and SC diversity.

8.4.1 No Diversity

Substituting (8.1) into (8.29), the channel capacity < C'>ora of a Rayleigh fading channel is obtained

as
oo e~ /7
<O >ora= B logy(1 +7v) — dn. (8.31)
0
Defining the integral Z,, (i) as:
+oo0
T.(p) = f t" ! In(1+1¢) e dt p>0;n=12.., (8.32)
0
we can rewrite <C >, 38
(/5
<C>era= B logy(e) Li/ll (8.33)

Using the result of (8.80) from Appendix B, we can write <C >o, /B [Bits/Sec/Hz] as

< C>ora

5 = logy(e) €7 Br(1/7)- (8.34)

Note that the exponential-integral function of first order, E(.), is related to the exponential-integral
function, E;(.), used in [135] by Ei(z) = —E;(—=z).



128

Using the first series expansion for E1(.) [135, (6)], and substituting it into (8.34), yields

f.ggﬁfi = log,(e) e}7 ( —E+Ing - Z =~ (- 1/7)k) ‘ (8.35)

where F is the Euler constant (E' = 0.577215665). Therefore, for ¥ >> 1, we get the following

approximation for (8.34):

ZL Zorn CB>°“* ~ log,(e) e/7 (—E +Iny+ %) . (8.36)

Using the second series expansion for F;(.) given by [135, (7)] and substituting it in (8.34) yields

<C>ora= B 10g2(e) Z(_l)(k-H) (k - ]-)l Tyk + R, (8'37)
k=1

where R, is a remainder term. Taking the limit as the channel bandwidth approaches infinity yields

<85>
i ora™ 1 )
i, <O bse) S

(8.38)

where < § > [W] is the average carrier power and N, [W/Hz] is the noise density power per unit
bandwidth?.

8.4.2 Maximal-Ratio Combining

Substituting (8.3) into (8.29), we obtain the channel capacity < C >5¢ [Bits/Sec] with MRC in

ora

terms of the integral Tps(.) as

Zu(1/7)

mrc__
<C>F*= B logy(e) e (8.39)
Using (8.78) from Appendix B, we can rewrite <C >0 /B [Bits/Sec/Hz] as
mre _M"ll-\ —k1/7
<G§ora — ].Ogg(e) el/“y Z ( 7’; /’Y)’ (8.40)
k=0

where I'(.,.) is the complementary incomplete gamma function defined in (8.65). Note that by
using [53, (8.359.1), p. 951], the capacity with the MRC diversity scheme (8.40) with a single
branch (M = 1) reduces to (8.34), as expected. Note also that by using [53, (8.352.3), p. 950] and

2In [185), the average CNR, 7 is denoted by I'. Note the typo error in [135, (4)] (vy instead of I" in the denominator),
and the resulting sign difference in the argument of the exponential term e'/7 between our result (8.34) and [135,
(5)], and between (8.36) and [135, (9);. There is also a sign difference between (8.37) and [135, (10)}. However, the
limit (8.38) matches the limiting expression [135, (11)], so the sign error in [135, (10)] was corrected in the limit.
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[53, (8.359.1), p. 951], one may express (8.40) in terms of the Poisson distribution as [137, (7)]:

mrc M-1 ~ _ 1/~
<C§ora. — ].ng(e) (PM(_]-/'_Y-) El(l/ﬁ) + Z Pk(]./r)’) le—k( 1\/7)) . (841)
k=1

Moreover, using the first series expansion for E;(.) [135, (6)] in (8.41) we obtain an asymptotic

approximation (7 >> 1) for <C>55’ /B as

ora.

mre Ml F -1/
<CB>m-a ~ log,(e) (PM(-—l/ﬁ) (~E+1117+ %) i ;_1 Pr(1/7) P_Zf—k( 1/'7)) ] (8.42)

Fig. 8.5 compares plots of (8.40) with its asymptotic approximation (8.42) and the results are

discussed in Section 8.6.1.

8.4.3 Selective Combining

Substituting (8.5) into (8.29), we obtain the channel capacity <C >3, [Bits/Sec| with SC in terms
of the integral 7;(.) as

<C >f‘;f.a—

M oga(e) Z( 1)k (M 1) 11(1:k> (8.43)

Then, using (8.80) from Appendix B, we can write <C>2¢, /B [Bits/Sec/He| as

<> Nk (M1 e B R)/A)
_T_Mlogz(e) ;0(—1) ( , ) TE (8.44)

We again note that for a single branch (M = 1), (8.44) reduces to (8.34) as expected.
Using the first series expansion for F;(.) [135, (6)] and substituting it into (8.44) yields a simple
asymptotic approximation (¥ >> 1) for < C > /B given by

<C>5,

e o M logy(e) MZI H)k: (Mk‘l) SR [E-Hn(l;k)— (I;k)] (8.45)

Fig. 8.6 compares plots of (8.44) with its asymptotic approximation (8.45) and the results are

discussed in Section 8.6.1.

8.5 Channel Inversion with Fixed Rate

The channel capacity when the transmitter adapts its power to maintain a constant CNR at the

receiver (i.e., inverts the channel fading) was also investigated in [134]. This technique uses fixed-rate
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modulation and a fixed code design, since the channel after channel inversion appears as a time-
invariant AWGN channel. As a result, channel inversion with fixed rate is the least complex technique
to implement, assuming good channel estimates are available at the transmitter and receiver. The
channel capacity with this technique (< C >q¢ [Bits/Sec]) is derived from the cal;acity of an AWGN

channel and is given in [134] as

1

<C>up= B log, (1 + = ) . (8.46)

Jo 7 py(n)/y dy
Channel inversion with fixed rate suffers a large capacity penalty relative to the other techniques,
since a large amount of the transmitted power is required to compensate for the deep channel fades.
A better approach is to use a modified inversion policy which inverts the channel fading only above a
fixed cutoff fade depth 7,. The capacity with this truncated channel inversion and fixed rate policy
(< C >y [Bits/Sec]) was derived in [134] to be
1

<C>ugp= B log, (1 + —== ) (1 — Pous), (8.47)
v Py(0)/7 dv :

where P,y is given by (8.9). The cutoff level 7, can be selected to achieve a specified outage
probability or, alternatively, to maximize (8.47). The choice of «, is examined in more detail in the
following subsections.

‘We now derive closed-form expressions for the capacity under channel inversion with the different

diversity combining techniques.

8.5.1 No Diversity

By substituting the CNR distribution (8.1) in (8.46), we find that the capacity of a Rayleigh fading
channel with total channel inversion, < (' >, is zero. However, with truncated channel inversion
the capacity per unit bandwidth < C >y /B [Bits/Sec/Hz] can be expressed in terms of 7 and 7,

as

<C>ﬁf1‘ —_ ’_y- —Yo /7
5 = log, (1 + AT e . (8.48)

Fig. 8.2 shows the dependence of < C >y /B on v, for different 7 values. All these curves show
that capacity is maximized for an optimal cutoff CNR +} which increases as a function of 7. Recall
that we proved the existence of a unique optimal cutoff CNR. for the optimal adaptation policy in
Section 8.3.1. However, for optimal adaptation the optimal cutoff CNR 4, was always bounded
between [0,1] (i.e., smaller than 0 dB), whereas for this policy 7 is bigger than 0 dB when ¥ > 5
dB. This means that, for a fixed ¥, truncated channel inversion has both a smaller capacity (see Fig.

8.9) and a higher probability of outage (see Fig. 8.10) than the optimal policy of Section 8.3.



131

Capacity of a Rayleigh Fading Channel with Truncated Channel Inversion
T T

(5]

-8

Capacity per Unit Bandwidth <C>1ift/B [Bits/Sec/Hz]
N W

-

0
-10 -5 5 15 20
Cut off GNR , [dB]

Figure 8.2: Channel capacity per unit bandwidth for a Raleigh fading channel versus cut off CNR
v, with truncated channel inversion and ¥ = (a) 5 dB, (b) 10 dB, (c) 15 dB, and (d) 20 dB.
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Capacity of a Rayleigh Fading Channel with Truncated Channel Inversion and MRC Diversity

Capacity per Unit Bandwidth <C>tifr/B [Bits/Sec/Hz]
K

5 10 15 20
Cut off CNR y, [dB]

Figure 8.3: Channel capacity per unit bandwidth for a Raleigh fading channel versus cut off CNR
~, with truncated channel inversion, MRC diversity (M = 2), and 7 = (a) 5 dB, {b) 10 dB, (c) 15
dB, and (d) 20 dB.
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8.5.2 Maximal-Ratio Combining

We obtain the capacity per unit bandwidth for total channel inversion with MRC diversity combining,
< C'>7r¢, by substituting (8.3) into (8.46) and using [53, (3.381.4), p. 364]:

mrc
“’% = logy(1 + (M — 1) 7). (8.49)

Note that the capacity of this policy for a Rayleigh fading channel with an M-branch perfect MRC
combiner (8.49) is the same as the capacity of a set of M — 1 parallel, independent AWGN chan-
nels [141, (15)].

Truncated channel inversion improves the capacity {8.49) at the expense of outage probability
Pric. The capacity of truncated channel inversion with MRC combining, < C >§7°, is obtained by
inserting (8.3) in (8.47) and using [53, (3.381.3), p. 364]:

<C>me (M -1)!5 ) T(M,7/7) (8.50)

=1 .
B % (1 T -1,/ ) (- 1)
Using property (8.66) of the complementary incomplete gamma function, we can rewrite (8.50) as

the simple expression

< C >mrc

i (M-1)7
Btfl‘ =10g2 (1+

m) Pr(Ye/7), M >2. (8.51)

Fig. 8.3 shows the dependence of < C >5§° /B on v, at different ¥ values for 2-branch MRC
diversity. Comparing Fig. 8.2 and Fig. 8.3 we see that, for a fixed 7, the maximizing cutoff CNR. v}
increases when MRC diversity is used. In addition, the relative flatness of the curves in Fig. 8.3 for
Yo < 73 indicates that the capacity improvement provided by truncated channel inversion (y, = 7})
compared to total channel inversion (v, = 0) is relatively small, and this little improvement comes
at the expense of a highef:.proba,bility of outage (see Fig. 8.12). This suggests that, as long as

diversity is used, total channel inversion is a better alternative than truncated channel inversion.

8.5.3 Selective Combining

We obtain the the capacity per unit bandwidth of a Rayleigh fading channel with total channel
inversion and SC diversity, <C >%, by substituting (8.5) in (8.46),

cifr?

< (>3

cift . 1q i . N
B % (” M Iy oy SR () B (L4 ) u/T)) (8:52)
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When truncated channel inversion is used in combination with SC, the capacity per unit bandwidth

becomes

<O>:fﬁ, ( ¥ ) 1sc
= ]'Og 1+ — - (1 - Pout
B N M DRG0 () B (@ R) v/

). (8.53)

Recall that PSS, tends to zero as 7, tends to O (i.e., total channel inversion). Hence, as expected,

we see that {8.53) reduces to (8.52) when -, tends to zero.

8.6 Numerical Results and Comparisons

In this section, we start by comparing the capacity of an AWGN channel (Cawgn) with the capacity
of a Rayleigh channel with optimal rate adaptation, < C >ora, constant transmit power, and various
diversity-combining techniques. We then compare the Rayleigh channel capacities for the various

adaptation policies and divérsity—combining techniques.

8.6.1 Comparison with AWGN Channel Capacity

In Fig. 8.4, channel capacity without diversity, < C >, given by (8.34), as well as its asymptotic
approximation (8.36), are plotted against 7. This figure also displays the capacity per unit bandwidth
of an AWGN channel, Cowgn (8.30). With these results we find, for example, that

e For ¥ =10 dB, <C > =~ 2.91 B, whereas Cawgn = 3.46 B.
e For 7 =25 dB, < > = 7.50 B, whereas Cowgn = 8.31 B.

Therefore, the channel capacity of a Rayleigh fading channel is reduced by 15.9% for ¥ = 10 dB
and by 9.756% for 7 = 25 dB®. Note in Fig. 8.4 that the asymptotic approximation (8.36) closely
matches the exact average capacity (8.34) when ¥ > 5 dB.

Fig. 8.5 shows plots of < C >r¢ /B (8.40) as well as its asymptotic approximation (8.42) as
functions of the average CNR per branch, 7, for various values of M. We use the CNR per branch
for this comparison so that we can later compare the improvements provided by MRC and SC
diversity schemes on a fair basis, as we will explain in more detail below. Note the large diversity
gain obtained by two-branch combining: the capacity with two branches in fading exceeds that of a
single branch AWGN channel. Fig. 8.5 also displays the capacity per unit bandwidth of an array of
M independent AWGN channels with optimal combining (MRC) [141, (15)]:

le'c

awgn

B

3These results correct the 32% and 11% values reported in [135]. Moreover, from Fig. 8.4, note that a smaller
value of ¥ results in a smaller difference between Cawgn and < C >ora, contrary to what was concluded in [135].

=log,(1+ M 7). (8.54)
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Capacity of a Rayleigh Fading Channel (No Diversity)
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Figure 8.4: Average channel capacity per unit bandwidth for a Raleigh fading and an AWGN channel
versus average carrier-to-noise ratio ¥ (with no diversity).
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Capacity of a Rayleigh Fading Channel with MRC Diversity
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Figure 8.5: Average channel capacity per unit bandwidth for a Raleigh fading channel with maximal-
ratio combining diversity versus average CNR per branch ¥ ((a} M =1, (b) M =2, and (c) M = 4).

Note that the capacity of an array of M independent Rayleigh channels with MRC combining
approaches the capacity of an array of M independent AWGN channels as M tends to infinity.
Note also the diminishing capacity returns that are obtained as the number of branch increases.
This diminishing returns characteristic is also exhibited when the performance evaluation is based
on outage probabilities [108]. Finally, note again that the asymptotic approximation (8.42) closely
matches the exact average capacity (8.40) when ¥ > 5 dB.

Fig. 8.6 shows plots of < C >5¢ /B (8.44) as well as its asymptotic approximation (8.45)
as function of the average CNR per branch ¥ for various values of M. Comparing Fig. 8.5 and
Fig. 8.6 we sec that, as expected, the SC scheme provides less diversity gain and a lower rate of
improvement than the MRC scheme. However, the greatest irnprovement is still obtained in going
from a single-branch to two-branch combining, which again yields a higher capacity than that of a

single branch AWGN channel. Fig. 8.6 also displays the capacity per unit bandwidth of an array of
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Capacity of a Rayleigh Fading Channel with SC Diversity
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Figure 8.6: Average channel capacity per unit bandwidth for Raleigh fading channels with selective-
combining diversity versus the average CNR per branch ¥ ((a) M =1, (b) M =2, and (c) M = 4).

M independent AWGN channels with selective-combining:

cx L1
AwWgn -
Bg =logy(1 + E P ¥). (8.55)

n=1

We again note that the capacity of an array of M independent Rayleigh channels approaches the
capacity of an array of M independent AWGN channels as M tends to infinity. Finally, for all M
the asymptotic approximation (8.45) closely matches the exact average capacity (8.44) when 7 > 5
dB.

For the M-branch MRC diversity scheme, the average combined CNR <« >p,;. is related to the

average CNR per branch 7 by [108, (5.2-16), p. 319] <¥>mwc= M 7. We can therefore also express
<C>mrc /B in terms of <v>mpre 88

5= (52) & (55 T+ =52)
——%2% —log,(e) exp { —— — | { -k, — . 8.56
B gz( ) P <7 Zmrc kz=0 <Y >mre <Y >mre ( )
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Capacity of a Rayleigh Fading Channel with MRC Diversity Scheme
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Figure 8.7: Average channel capacity per unit bandwidth for a Raleigh fading channel with maximal-
ratio combining diversity versus average combined CNR <y >y ((8) M =1, (b) M = 2, and (c)
M = 4).

Fig. 8.7 shows plots of < C >T* /B versus the average combined CNR <+ >y, for various values
of M. These plots show the same numerical results as [135, Fig. 2] for M > 2, and [137, Fig. 1]
for M > 1. These results,§how that, when expressed in terms of the average combined CNR, the
capacity of a Rayleigh channel can never “beat” the capacity of a single branch AWGN channel, but
it comes close to the AWGN channel capacity as the number of diversity branches M approaches
infinity.

For the M-branch SC diversity scheme, the average combined CNR <« 7 >4 is related to the
average CNR of a single branch 7 by [108, (5.2-8), p. 316] <y >s =7 M L We can therefore

n=1n"

also express <C >, /B in terms of <y>4 as

M-1 M 1 M 1
<C>3a (—1)* (M—l) (L+k) Dpers (L1+k) > iy
——=8 = M logy(e) D exp | ———="=0 ) By | 0= 0

B g2(€) £ Ttk k P <Y >se ! <Y >sc

(8.57)
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Capacity of a Rayleigh Fading Channel with SC Diversity
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Figure 8.8: Average channel capacity per unit bandwidth for Raleigh fading channels with selective-
combining diversity versus the average combined CNR < v >4 ((a) M = 1, (b) M = 2, and (c)
M =4).

Fig. 8.8 shows plots of < C'>%¢, /B versus the average combined CNR <> for various values of
M. In fact, Fig. 8.7 and Fig. 8.8 are very similar, since < C' >5°, approaches the capacity of the single
branch AWGN channel C as the number of diversity branches M increases. However, a close look
at the numerical results shows that for a fixed M, < C >D is always slightly bigger than <C>8,
for an equal average CNR at the output of the combiner (i.e., for <y >mc=<7>5). Note that this
slim difference is due to the fact that the average CNR per branch for SC (¥ =<y >4 / Eﬂil ;1;) is
bigger than the average CNR per branch for MRC (§ =<y >mrc /M) for an equal average combined
CNR. That is why, as mentioned above, we believe that a fair comparison between the MRC and SC
diversity schemes should be based on the average CNR per branch (Fig. 8.5 and Fig. 8.6). However,
when looked at individually, Figs. 8.7-8.8 are also of interest since they show that the capacity of
a single branch AWGN channel with CNR 7 (> 0) is always bigger than the capacity of a fading
channel with the same average received CNR ¥ at the output of the diversity combiner, regardless

of the adaptation and diversity-combining strategy in the latter case.
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- Capagity of a Rayleigh Fading Channel (No Diversity)
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Figure 8.9: Channel capacity per unit bandwidth for a Raleigh fading channel versus average carrier-
to-noise ratio 7 for different adaptation policies when M = 1.

8.6.2 Comparison of the Different Policies

Fig. 8.9 shows the calculated channel capacity per unit bandwidth as a function of 7 for the different
adaptation policies without diversity-combining. These curves confirm the previous numerical results
reported in [134] using the closed-form expressions (8.17), (8.34), and (8.48) instead of numerical
integration. From this figure we see that the optimal power and rate adaptation (8.17) yields a small
increase in capacity over just rate adaptation (8.34), and this small increase in capacity diminishes as
% increases. The corresponding outage probability (8.18) for the optimal adaptation and truncated
channel inversion (with optimal cutoff 4}) are shown in Fig. 8.10.

Fig. 8.11 shows the channel capacity per unit bandwidth as a function of 7 for the different
policies with MRC diversity. As the number of combining branches increases, the capacity difference
between optimal power and rate adaptation versus optimal rate adaptation alone becomes negligible
for all values of 5. For any M, fixed rate transmission with total channel inversion suffers the largest

capacity penalty relative to the other policies. However, as M increases, the fading is progressively
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Figure 8.10: Qutage probability of the optimal adaptation and truncated channel inversion.
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Capacity of a Rayleigh Fading Channel with MRC Diversity
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Figure 8.11: Channel capacity per unit bandwidth for a Raleigh fading channel versus average
carrier-to-noise ratio 7 for different adaptation policies with MRC diversity ((a) M =1, (b) M =2,
and (c) M =4).

reduced, and this penalty diminishes remarkably. Thus, as M increases, all capacities of the various
policies converge to the capacity of an array of M independent AWGN channels (8.54). However, it
is not possible in practice to completely eliminate the effects of fading through space diversity since
the number of diversity branches is limited. This is especially true for the down-link (base station
to mobile), since mobile receivers are generally constrained in size and power.

Since channel inversion is the least complex technique, there is a tradeoff of complexity and
capacity for the various adaptation methods and diversity-combining techmnigques. The diversity
gain for all policies is quite important, especially for total channel inversion. For example, in Fig.
8.11 we see that the capacity with total channel inversion and two-branch MRC exceeds that of
a single branch system with optimal adaptation. Note that this figure also illustrates the typical
diminishing returns obtained as the number of branches increases. In addition, for M = 1 total

channel inversion suffers a large capacity penalty relative to truncated channel inversion. However,
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Figure 8.12: Qutage probability of the optimal adaptation and truncated channel inversion with
MRC diversity.

as the number of combining branches M increases, the effect of fading is progressively reduced, and
this penalty diminishes remarkably. In particular, as M increases, we see that truncated channel
inversion yields a small increase in capacity over total channel inversion, and this small increase in
capacity diminishes as the ayverage CNR 7 and/or the number of combined branches M increase. The
corresponding outage probalbility (8.23) for the optimal adaptation and truncated channel inversion
(with optimal cutoff v3) policies with MRC are shown in Fig. 8.12.

Fig. 8.13 shows the channel capacity per unit bandwidth as a function of ¥ for the different
adaptation policies with SC diversity. As expected, SC provides less diversity gain than MRC, with
rapidly diminishing returns as M increases. However, the diversity impact on channel inversion is
still important for SC diversity, since the capacity with this policy and with two-branch combining
exceeds that of a single branch system with optimal adaptation for all ¥ > 8 dB.

Fig. 8.14 compares the channel capacity per unit bandwidth as function of ¥ for the different
adaptation policies with (a) 4-branch MRC diversity and (b) 4-branch SC diversity. These curves
illustrate the extra diversity gain provided by MRC over SC. We see from this figure that MRC
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Capacity of a Rayleigh Fading Channel with SC Diversity
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Channel capacity per unit bandwidth for a Raleigh fading channel versus average

carrier-to-noise ratio 7 for different adaptation policies with SC diversity ((a) M =1, (b} M = 2,
and (c) M =4).
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Capacity of a Rayleigh Fading Channe! with 4—Branch Diversity
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Figure 8.14: Channel capacity per unit bandwidth for a Raleigh fading channel versus average
carrier-to-noise ratio ¥ for different adaptation policies with (a) 4-branch MRC diversity combining
and (b) 4-branch SC diversity combining ((a) M =1, (b} M =2, and (c) M = 4).

provides about 1 Bit/Sec/Hz improvement over SC at any ¥ and for any of the considered adaptive

transmission policies.

8.7 Conclusion

We have examined the Shannon capacity or, equivalently, the upper-bound on spectral efficiency of
three adaptive transmission techniques over Rayleigh fading channels. In particular, we obtained
closed-form expressions for the capacity when these adaptive schemes are used in conjunction with
diversity combining.

We first compared the capacity of an AWGN channel with the capacity of a Rayleigh channel
with optimal rate adaptation and constant transmit power. When expressed in terms of the average
CNR per branch, the capacity of an array of M independent Rayleigh channels is bigger than the
capacity of a single branch AWGN channel, but is always smaller than the capacity of an array of M
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independent AWGN channels, and converges to it as M tends to infinity. On the other hand, when
expressed in terms of the average combined CNR, the capacity of a Rayleigh channel with diversity
cannot “beat” the capacity of a single branch AWGN channel, but comes close to it as the number
of diversity branches approaches infinity.

We also compared the channel capacities of the various adaptation policies both with and without
diversity combining. Optimal power and rate adaptation yields a small increase in capacity over just
optimal rate adaptation, and this small increase in capacity diminishes as the average received CNR
and/or the number of diversity branches increases. In addition, channel inversion suffers the largest
capacity penalty relative to the two other policies. However, this capacity penalty diminishes and
all capacities approach the capacity of the AWGN channel with increasing diversity.

Diversity yields large caf)a.city gains for all the techniques with diminishing returns on the number
of branches. The diversity gain is most pronounced for channel inversion. In addition, selective-
combining provides less diversity gain than maximal-ratio combining for all the adaptive policies, as
expected.

Although the resulis derived herein are Shannon bounds, similar analysis has been applied to
adaptive M-QAM modulation without diversity [130]. Thus, we expect that the vsame general trends

will be observed on any adaptive modulation method, although the spectral efficiency will be smaller.
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Appendix A

Evaluation of J,(u) (8.14)

We evaluate the integral J, (1) defined in (8.14) using partial integration, namely:

+o0 +oo

/1 udv = t_l}r_}pm(u V) ~ Pﬂ(u v) — /1 v du. (8.58)

First, let
u=Int. (8.59)

Thus

du= %f. (8.60)

Then, let
dv=1t""1e ¥t dt. (8.61)

Performing n — 1 successive integration by parts yields [53, (2.321.2), p. 112]

a1 gnF
v=—¢# Z(n i (8.62)

Substituting (8.59), (8.62), and (8.60) in (8.58), we see that the first two terms go to zero. Hence,

+o0
Tnlps) = Z k(n k)' / grEl o h gy (8.63)

The integral in (8.63) can be written in a closed-form with the help of [53, (3.381.3), p. 364], giving

(n—1)! = Tk,p)
Tnlw) =05 kzz;) o (8.64)

where I'(., .) is the complementary incomplete gamma function (or Prym’s function as it is sometimes

called) defined by [53, (8.350.2), p. 949]

+o0
Mo, z) = / 121 et gt (8.65)

For k positive integers,

ko) = (k= D! Pulu)y k22, (8.66)
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where Py(.) denotes the Poisson distribution defined as

k—1 3
Pelp) =e* Y L
=0 7°

For k = 0 [53, (8.359.1) p. 951}

F(O’ N) = El(”‘)a

where E;(.) is the exponential-integral of first order function defined as

+oo -zt
E]_(m) =/ 7
1

Thus, for n positive integers, (8.64) can be written

Tl = B (El(u>+i PkT(#))
B k=1

In particular when n = 1, (8.70) reduces to

Ji(p) =

Appendix B
Evaluation of Z,(u) (8.32)

We evaluate the integral T, (1) defined in (8.32) using partial integration, namely:

“+00 +oo
/ udv= lim (u'v)—lim(uv)-/ v du.
0 t—+o00 t-30 0

€

as

A
)

dt.

First, let
u=In(1+1).
Thus
dt
du = ——,
ST
Then, let
dv=t""1e#?t gt

Performing n — 1 successive integration by parts yields [53, (2.321.2), p. 112]

= _ g ht Z(

(n—1)} -k
-

n - k)!

7

(8.67)

(8.68)

(8.69)

(8.70)

(8.71)

(8.72)

(8.73)

(8.74)

(8.75)

(8.76)
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Substituting (8.73), (8.76), and (8.74) in (8.72), we see that the first two terms go to zero. Hence,
™
(n - ]_)l /‘+0° =k o=t
—_—dti 77
Z pk(n — k)! 1+t dt . (8.77)
The integral in (8.77) can be written in a closed-form with the help of {53, (3.383.10), p. 366], giving

To(p) = (n—l)'e“z L= "+k’“), (8.78)

where I'(.,.} is the complementary incomplete gamma function defined in (8.65). Note that when
n = 1, (8.78) reduces to

I
Ty = e ZOH) (8.79)
7
which can be written as
E
Ti(p) = ¢ 1;“ ), (8.80)

where E;(.) is the exponenf;ial-integral of first order defined by (8.69).
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Chapter 9 Adaptive Modulation over

Nakagami-m Fading Channels

9.1 Introduction

In this chapter we first investigate the theoretical spectral efficiency limits of adaptive transmission
in Nakagami-m multipath fading (NMF) channels [13]. We then propose and study adaptive multi-
level quadrature amplitude modulation (M-QAM) schemes which improve link spectral efficiency
(R/W [Bits/Sec/Hz]), defined as the average transmitted data rate per unit bandwidth for a specified
average transmit power and bit-error-rate (BER). We also evaluate the performance of these schemes
relative to the theoretical spectral efficiency limit. More specifically we use the analyses developed
in Chapter 8 to obtain closed-form expressions for the capacity of NMF channels under different
adaptive transmission schemes. We consider the same adaptive policies as in the previous chapter:
optimal simultaneous power and rate adaptation, constant power with optimal rate adaptation, and
channel inversion with fixed rate. We then present numerical results confirming that rate adaptation
is the key to achieving high link spectral efficiency. Rate adaptation can be achieved through a
variation of the symbol time duration [121] or constellation size {124]. The former method requires
complicated hardware and results in a variable-bandwidth system, whereas the latter technique is
better suited for hardware implementation, since it results in a variable-throughput system with a
fixed bandwidth. Based on these advantages we analyze the performance of constant-power variable-
rate M-QAM schemes for spectrally eflicient data transmission over NMF channels. Similar analysis
has been presented in [130] for a variable-power variable-rate M-QAM in Rayleigh fading and log-
normal shadowing, and in [142] for constant-power variable-rate M-QAM in Rayleigh fading. We
extend the results of [130, 142] to constant-power variable-rate M-QAM by analyzing the resulting
spectral efliciency and BER. for the more general NMF distribution. We also analyze the impact of
time delay on the performarnce of adaptive M-QAM.

The remainder of this chapter is organized as follows. In Section 9.2 we outline the channel
and communication system models. In Section 9.3 we derive the capacity of NMF channels for
the optimal adaptive policy, constant power policy, and channel inversion policy, and we present
some numerical examples comparing (i) the NMF channel capacity with the capacity of an additive
white Gaussian noise (AWGN) channel, and (ii) the NMF channel capacity for the various adaptive

policies. In Section 9.4 we propose and evaluate the performance of an adaptive constant-power
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Figure 9.1: Adaptive communication system model.

variable-rate M-QAM system assuming perfect channel estimation and negligible time delay. The
BER degradation due to time delay is analyzed in Section 9.5. A summary of our results is presented

in Section 9.6.

9.2 System and Channel Models

9.2.1 Adaptive Communication System Model

A block diagram of the adaptive communication system is shown in Fig. 9.1. A pilot tone continually
sends a known “channel sounding” sequence so that the channel-induced envelope fluctuation o
and phase shift ¢ can be extracted at the channel estimation stage. Based on this channel gain
estimate @&, a decision device selects the rate and power to be transmitted, configures the demodulator
accordingly, and informs the transmitter about that decision via the feedback path. The constellation
size assignment for the proposed constant-power variable-rate M-QAM scheme will be discussed in
more detail in Section 9.4.1. The transmission system keeps its configuration unchanged (i.e., no
re-adaptation) for a duration 1/7; [s]. Meanwhile, the phase estimate ¢ is used at the receiver for
full compensation of the phase variation (i.e., ideal coherent phase detection), whereas the channel
gain estimate & is used on a continuous basis by the automatic gain controller (AGC)/demodulator
for symbol-by-symbol maximum-likelihood detection.

For satisfactory operation the modulator and demodulator must be configurated at any instant
for the same constellation size. Efficient error control schemes are therefore required to insure an
error-free feedback path. However, such schemes inevitably introduce a certain time delay 7¢p [s],
which may include decoding/ARQ delay, and propagation time via the feedback path. Hence, even
if perfect channel estimates are available at the receiver, the system will not be able to adapt to the
actual channel fading but rather to at best a 7y delayed version of it. In practice, the choice of the

power and/or constellation is based on a channel estimate at time ¢, but the data are sent over the
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channel at time ¢+7 such that 77, < 7 < 73, where 7; is the rate at which we change the constellation
size and power. The goal is to operate with the smallest possible 7y, to minimize the impact of
feedback delay, and with the largest possible 7; to minimize the rate of system reconfiguration. This

issue will be further discussed in Section 9.5.

9.2.2 Channel Model and Fading Statistics

We consider a slowly-varying flat-fading channel changing at a rate much slower than the symbol
data rate, so the channel remains roughly constant over hundreds of symbols. For NMF channels
the probability distribution function (PDF) of the channel gain « is given by (2.14) and the received
CNR, 7, is then gamma distributed according to the PDF, p, (), given by (2.15)

py() = (g)m ;7(7;; exp <~m %) , 720, (9.1)

where 7 is the average received CNR.

9.3 Capacity of Nakagami Fading Channels

9.3.1 Optimal Adaptation

Following the same steps as in Section 8.3.2, it can be shown that the channel capacity of NMF
fading channel with optimal power and rate adaptation (<O >gps [Bit/Sec}) is given by

<C>opra _ log, () = M (9.2)
w 2 kzzo k!

where I'(.,.) is the complementary incomplete gamma function (or Prym’s function) and +, is the

optimal cutoff CNR level below which data transmission is suspended, and which must satisfy

r (m’m %a‘) Yo
T—mr(m—l,m %‘) = [(m). (9.3)

For the special case of the Rayleigh fading channel (m = 1), (9.2) reduces to (8.16)

<C >opr Yo
—BOB-E = log,(e) By (?) . (9.4)

As for the Rayleigh fading case, it can be shown that there is a unique <y, which satisfies (9.3), that

4, increases as ¥ increases, and that v, always lies in the interval [0,1]. Note that equation (9.2) can
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also be written as . :
<C>gpr & Pr(mye /T
_W_fggg = log,(e) (E1(mfyo/fy) + Z k(—];y/l)-) ) (9.5)

k=1

where P (.) denotes the Poisson distribution defined by (8.67),
Bl
Pr(p) =™ Z 5 (9.6)

Since no data is sent when v < 9o, the optimal policy suffers a probability of outage Poyt, equal
to the probability of no transmission, given for NMF channels by

T'{m, mv,/7)

Pout =1~ F(m)

=1—Pm(m 7/7). (9.7)

9.3.2 Constant Transmit Power

Following the same steps as in Section 8.4.2, it can be shown that with optimal rate adaptation to

channel fading and with a constant transmit power, the NMF channel capacity <C > s [Bits/Sec]

is given by
m—1 k
<C>gra /T m m
_T/V—Br— = log,(e) e™/7 Z (—’Yr) I‘(—k, ;) . (9.8)
k=0
One may also express (9.8) in terms of the Poisson distribution as
<C>, - 1 = Pem/7) Prni(~m/7)
— o = loga(e) (Pm(—m/’Y) Ey(m/7) + kzml k : (9.9)

Note that Yao and Sheikh [143] provided a closed-form expression for the capacity of NMF channels
in terms of the complementary incomplete gamma function. However, their derivation is different
than ours and their resulting expression [143, Eqn. (7)] contains mth order derivatives. For the

special cage of the Rayleigh fading channel (m = 1), (9.8) reduces to (8.34)

<C>ora
W

= log,(e) e'/7 E1(1/7). (9.10)
9.3.3 Channel Inversion with Fixed Rate

Following the same steps as in Section 8.5.2, it can be shown that the channel capacity when the

transmitter inverts the channel fading is given for all m > 1 by

< C >eir m—1 _
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Thus the capacity of a Rayleigh fading channel (m = 1) is zero as found in Section 8.5.1. Note that
the capacity of this policy for an NMF channel is the same as the capacity of an AWGN channels
with equivalent CNR=2=1,

The capacity of NMF channels with truncated channel inversion and fixed rai;e policy (< C >g
[Bits/Sec]) can be found as

<C>up 7 [(m) ) L(m, m%/ﬁ)} Ym > 1. (9.12)

=] 1

W °g2( T Tm - Lmye/y)) T T(m)
For the special case of the Rayleigh fading channel (m = 1), the capacity per unit bandwidth with
truncated channel inversion reduces to (8.48)

<C>t1fl‘ _— 7 _’70/7
W o8 (1 * _El(v_o/%) e (9.13)

9.3.4 Numerical Results

Figures 9.2, 9.3, and 9.4 show the capacity per unit bandwidth as a function of ¥ for an NMF
channel under the three different adaptive policies for m = 1 (Rayleigh channel), m = 2, and m =4,
respectively. We see from these figures that the capacity of NMF channels is always smaller than
the capacity of an AWGN channel for % > 0 dB but converges to it as the m parameter increases or,
equivalently, as the amount of fading decreases. We also see that optimal power and rate adaptation
yields a small increase in capacity over just optimal rate adaptation, and this small increase in
capacity diminishes as the average received CNR and/or fading parameter m increases. Note finally
that fixed rate transmission with channel inversion suffers the largest capacity penalty. However,

this penalty diminishes as the amount of fading decreases.

9.4 Adaptive M-QAM Modulation

9.4.1 Proposed Adaptive Schemes
The BER of coherent M-QAM with two-dimensional Gray coding over an additive white Gaussian
noise (AWGN) channel assuming perfect clock and carrier recovery can be well approximated by [130]

BER(M, 7) ~ 0.2 exp (—%) . (9.14)

Exact expressions for the BER of “square” M-QAM (when the number of bits per symbol n is even)
are known [115, Chapter 5], and are plotted by the solid lines in Fig. 9.5. On the other hand, tight
upper-bounds on the BER of “non-square” M-QAM (when the number of bits per symbol n is odd)

are also available [1, p. 283], and are plotted by the cross/solid lines in Fig. 9.5. For comparison,
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Figure 9.2: Capacity per unit bandwidth for a Rayleigh fading channel (m=1) under different
adaption policies.
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Figure 9.5: BER for M-QAM versus CNR.

the dashed lines in this figure show the BER approximation (9.14) for different values of M. Note
that the approximate BER expression upper bounds the exact BER for M > 4 and for BER < 1072,
which is the BER range of interest. We will use this approximation when needed in our analysis since
it is “invertible” in the sense that it provides a simple closed-form expression for the link spectral
efficiency of M-QAM as a function of the CNR and the BER. In addition, (9.14) and its inverse are
very simple functions which 41ead, as shown below, to closed-form analytical expressions and insights
that are unattainable with more complicated BER expressions.

Assuming ideal Nyquist pulses and given a fixed CNR (v) and BER (BERy), the spectral effi-

ciency of continuous-rate M-QAM can be approximated by inverting (9.14), giving

R _ . 3
W logy (M) = log, (1 +3 Ko) , (9.15)

where Ko = —In(5 BERy). The adaptive continuous rate (ACR) M-QAM scheme responds to

the instantaneous channel CNR fluctuation by varying the number of bits per symbol according to
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(9.15). In the context of this chapter, continuous-rate means that the number of bits per symbol is
not restricted to integer values. While continuous-rate M-QAM is possible [144], it is more practical
to study the performance of adaptive discrete rate (ADR) M-QAM, where the constellation size M,,
is restricted to 2™ for n a positive integer. In this case the scheme responds tc; the instantaneous
channel CNR fluctuation by varying its constellation size as follows. The CNR range is divided into
N + 1 fading regions, and the constellation size M,, is assigned to the nth region (n =0,1,..-, N).
When the received CNR is estimated to be in the nth region, the constellation size M, is transmitted.

Suppose we set a target BER equal to BERy. The region boundaries (or switching thresholds)
{7} are then set to the CNR required to achieve the target BER, using M,-QAM over an AWGN
channel. Specifically

y1 = l[erfc™}(2 BERg))?,
o= 2K (-1 n=023,0N,
INt+1 = +og, (9.16)

where erfc™?(.) denotes the inverse complementary error function. Then, region n corresponds to
values of v between <, and 7,41. When the switching thresholds are chosen according to (9.16), the
system will operate with a BER below the target BER, as will be confirmed in Section 9.4.4. Note
in particular that all the y,s (except vy which corresponds to M=2) are chosen according to (9.14).
Since {9.14) is an upper-bound of the BER only for M > 4, v, is chosen according to the exact BER
performance of 2-QAM (BPSK). The thick line in Fig. 9.6 shows the number of bits per symbol
as a function of the received CNR for ADR M-QAM with 8-regions, along with the corresponding
switching thresholds. For comparison the thin line in this figure shows the bits per symbol of ACR
M-QAM.

9.4.2 OQOutage Probability

Since no data is sent when the received CNR, falls below -4, the ADR M-QAM scheme suffers an
outage probability, Puyt, of

T I'im, =2
Pyt = [] p'y('Y) dy=1- (—;’— (9'17)

Figs. 9.7 shows the outage probability for various values of the Nakagami fading parameter and for
target BERs of 10~2 and 1078, respectively.
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Figure 9.6: Number of bits per symbol versus CNR.

9.4.3 Achievable Spectral Efficiency

Integrating (9.15) over (9.1) and following the same steps of Section 9.3.2 which obtained (9.8), we
find the average link spectral efficiency, < R>.., /W, of the ACR M-QAM over NMF channels as

M m-—1
W @) ¢ 3y

The average link spectral efficiency, < R>,4, /W, of the ADR M-QAM over NMF channels is
just the sum of the data rates (log,{M,] = n) associated with the individual N -+ 1 regions, weighted
by the probability a, = f::“ po(7) dv that the CNR 7 falls in the nth region:

N
<R>,
ot o (9.19)

n=1
where the a,s can be expressed as

r (m, —7"—7'&) -T (m,ﬁ—%ﬂ'—‘-)

D) (9.20)

Ap =

Figs. 9.8, 9.9, and 9.10 show the average link spectral efficiency of ACR, M-QAM (9.18) and
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Figure 9.7: Outage probability in Nakagami fading.
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Achievable Rates in Rayleigh Fading (m=1) for a Target BER = 107
10 T T T T T

* ¥  Capacity {(Optimal Rate and Constant Power) :
9!+ +  Continuous Rate Adaptive M—QAM R RNy

Discrete Rate Adaptive M—QAM :
- - - Non Adaptive 2-QAM (B-PSK)

7 Reglons

‘5 Regions

Spectral Efficiency <R>/W [Bits/Sec/Hz]

ol N S AT S S RIRESE FETTRsRI L

23 Regions
1.’ .................................................................... .I_._.._A_____._,
T . . . I
0 | { | | | ]
0 5 10 15 20 25 30

Avérage Received Carrier—to-Noise—Ratio 7 [dB]

Figure 9.8: Achievable spectral efficiency for a target BER of 1072 and m = 1 (Rayleigh fading).

ADR M-QAM (9.19) for a target BERy = 1073 and for m=1, m = 2, and m = 4, respectively.
The Shannon capacity using constant-power and variable-rate (9.8) is also shown for comparison,
along with the spectral efficiency of nonadaptive 2-QAM (BPSK). This latter efliciency is found
by determining the value of the average received CNR for which the average BER of nonadaptive
BPSK over Nakagami fading channel, as given by (9.24), equals the target BER. Note that the
achievable spectral efficiency of ACR M-QAM comes within 5 dB of the Shannon capacity limit.
ADR M-QAM suffers a minimum additional 1.2 dB penalty, whereas nonadaptive BPSK suffers a
large spectral efficiency penalty.

9.4.4 Average Bit Error Rate

ACR M-QAM always operates at the target BER. However, since the choice of M, in ADR M-QAM
is done in a conservative fashion, this discrete technique operates at an average BER, < BER >,4,,

smaller than the target BER. This BER can be computed exactly as the ratio of the average number
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Figure 9.9: Achievable spectral efficiency for a target BER of 1072 and m = 2.
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Achievable Rates in Nakagami Fading (m=4) for a Target BEFg =107
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Figure 9.10: Achievable spectral efficiency for a target BER of 1072 and m = 4.
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of bits in error over the total average number of transmitted bits: -

N -
<BER>adr= Z.P_E}V_LBE.IS_“_’ (9.21)
=1 Gn .
where
Yn+1
BER. = [ BER(M.) p,(y) b (9.22)

Using (9.1) and the approximation (9.14) in (9.22) BER, can be expressed in closed-form as

e 0.2 m\™ F(m, bn'Yn) - F(m1 bn77l+1)
BER, = ——= (:) , 9.23
T(m) \ 7 (bn)™ (5:29)
where
m 3
—_— e - =1.2-.. .
=5t oy "TLEOON

BER,, can also be computed exactly by using the exact expressions for the BER(M,,vy) as given
in [115, Chapter 5] and {142].

Figs. 9.11, 9.12, and 9.13 show the average BER for ADR M-QAM for a target BER of 1073
and for m = 1, m = 2, and m = 4, respectively. The BER calculations based on the approximation
(9.23) are plotted as solid lines whereas the exact average BERs are plotted as star/solid lines. The
average BER of nonadaptive BPSK over Nakagami fading channel is given by

o m"™ T(m+1/2)
w (m+7)m /2 T(m+1)

<BER >ppek= % 2 Fy (1, m+1/%m+1; mlw) . (929
where 2F1(.,.;.;.) denotes the Gauss’ hypergeometric function [53]. We plot (9.24) in Figs. 9.11,
9.12, and 9.13 in dashed lirfes for comparison with (9.21).

In these figures we observe similar trends in the average BER for various values of the m param-
eter. For instance, we see that the average BER of ADR M-QAM is always below the 1072 target
BER. Recall that the approximation (9.14) lower bounds the exact BER for M=2 and that ADR
M-QAM often uses the 2-QAM constellation (B-PSK) at low average CNRs. This explains why the
average BER based on the approximation (9.23) lower bounds the exact average BER for 7 < 10
dB. Conversely, because of the fact that the approximation (9.14) upper bounds the exact BER for
M > 2 and because ADR M-QAM often uses the high constellation sizes at high average CNRs the
closed-form approximate average BER for ADR M-QAM tightly upper-bounds the exact average
BER for ¥ > 10 dB. Since ADR M-QAM uses the largest available constellation often when the
average CNR is large, the average BER prediction as 7 increases becomes dominated by the BER

performance of that constellation.
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Figure 9.11: Average BER for a target BER of 1073 and m = 1 (Rayleigh).

9.5 Impact of Time Delay

Recall from Section 9.2.1 that the choice of the constellation size is based on a channel estimate at
time £, whereas the data are sent over the channel at time ¢ 47 such that 75, < 7 < 7. If a delay of
7fb degrades BER significantly, then this adaptive technique will not work, since 74 is an inherent
and unavoidable parameter of the system. However, if a delay of = > 74 has a small impact on
the BER then we should choose 7; as large as possible so that we meet the BER requirement while
minimizing the rate of system reconfiguration. In this section we analyze the impact of time delay

on the performance of adaptive M-QAM over NMF channels, assuming perfect channel estimates.

9.5.1 Fading Correlation

Investigating the impact of time delay requires the second-order statistics for the channel variation,
which are known for Nakagami fading. Let o and o, denote the channel gains at a time ¢ and ¢+ 7,
respectively. For a slowly-varying channel we can assume that the average received power remains

constant over the time delay 7 (i.e., @ = E(a?) = E(a2)). Under these conditions the joint PDF
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Figure 9.12: Average BER for a target BER of 10~2 and m = 2.
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Figure 9.13: Average BER for a target BER of 10~3 and m = 4.
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Pa,a. (@, o) of these two correlated Nakagami-m distributed channel gains is given by [13, (126)]

T = p) T(m) gt 0I72

e (8 (R () o

Q (1-p)2, (1-p) Q2

where I,,—1(.) is the (m — 1)th-order modified Bessel function of the first kind [53], and p is the
correlation factor between « and «,. Since Nakagami fading assumes isotropic scattering of the
multipath components, p can be expressed in terms of the time delay 7, the maobile speed, v [m/s],
and the wavelength of the carrier frequency M. [m] as p = JZ(2rfpT), where Jy(.) is the zero-
order Bessel function of the first kind [53], and fp = v/A. [Hz| is the maximum Doppler frequency
shift 108, p. 31].

The PDF of o, conditioned on a, p,, /o{0r/a), is given by

par,a(a-r: a)

Pa(@) (9.26)

Pa./alar/a) =
Inserting (11.3) and (9.25) in (9.26) and expressing the result in terms of the CNRs «y and vy, yields

i)(m—l)/z Im—l(w) exp (_."i(w) (9.27)

m "
Py iy (¥r/7) = aT-p7 (p v 1-p7 1-p7

9.5.2 Analysis
Adaptive Continuous Rate M-QAM

For all delays 7 let the communication system be configured according to v (CNR at 7 = 0) such
that M (vy) is given by
37

M(r) = 1+ 5 (9.28)

The constellation size M () is based on the value « at time ¢, but that constellation is transmitted
over the channel at time ¢ + 7, when «y has changed to «,. Since M does not depend on v, (CNR at
time 7), time delay does not affect the link spectral efficiency <log, M >, as calculated in Section
IV-C. However, delay affects the instantaneous BER, which becomes a function of the “mismatch”
between v, and ¥:

BER(y,/v) = BER(M(v),v,) =02 (5 BERO)%/". (9.29)

Integrating (9.29) over the conditional PDF (9.27) yields the average BER conditioned on +,

BER(7),
(7), as e

BER(y) = A BER(Y7/7) Py, /2 (¥2/7) d7r- (9.30)

Inserting (9.27) and (9.29) in (9.30), BER(7) can be written in closed-form with the help of the
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generalized Marcum @-function of order m, Qn(.,.) [145, p. 299, (11.63)]

_ m 5y mx _ pEKymny pm?+°
BER(”"O'z(mww(1—p)__,Ko) o (- ) Qm(ﬁﬂWﬂ)(m7+“'7(1—p)-go%;;))'

Using the recurrence relation [145, p. 299, (11.64)]

Q@) = Quia) + (1) Ini2vam e, (9.32)

we get that for all z, @, (z,0) = @1(z,0), which can be shown to cqual 1. Therefore, BER(7)

reduces to:

™y " pKomeoy
BER =0.2 - . 0.33
™ (m’7+7(1“P)K0) e"p( m’Y+7(1—P)Ko) (6-83)

Although this formula was derived for integer m it is also valid for all non-integer values of m > 1/2.

Averaging (9.33) over the PDF of  (9.1) yields the average BER of ACR M-QAM, <BER>,q, as

+o0
<BER >a0r= / BER(Y) py(7) dv. (9.34)
8
Finally, using (9.33) in (9.34) and making the substitution u = a—,yﬁ’;—_"m yields
_02(1-pm Ky [t uPm? Kou(l — pu) )
<BER>;0:= T(m) . A—wm exp T du, (9.35)
where
m 71

U = .
P my+ (- Koy
Since this analysis assumes continuous rate adaptation and since Mu(y) £ M(vy) for all v, (9.35)

represents an upper-bound on the average BER degradation for ADR M-QAM, as will be confirmed

in the following sections.

Adaptive Discrete Rate M-QAM

Suppose now that the constellation size M, is chosen based on the value of v according to the ADR
M-QAM scheme described in Section 9.4.1. This constellation is transmitted over the channel when
v has changed to vr. As in the continuous rate M-QAM case, we can easily see that the link spectral
efficiency of ADR M-QAM is unaffected by time delay. However, delay affects < BER >,4;, which
is computed from (9.21) with BER,, replaced by m;, where

Yn41p00

BER,= A BER(My, 7r) Py, v (ve/7) dvr Dy (7) dr.
In
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Using again the generalized Marcum @Q-functions, it can be shown that

w02 [(m\™ D(m,b,y,) ~ T(m,byvnt1)
— m A nInt1) 9.36
=1t (5) L -
where
; m 3 pm
_m . —=1.2.....N.
i e emE ) P RRTT

Note that as p—1(ile, 7—0),b, - by, and BER;1 (9.36) reduces to BER,, (9.23), as expected.

9.5.3 Numerical Results

Figs. 9.14 and 9.15 show < BER >,; and < BER >4, as a function of the normalized time delay fpr
for different values of the Nakagami m parameter, for a target BER of 102 and 107, respectively.
Tt can be seen from Figs. 9.14 and 9.15 that a normalized time delay up to about 1072 can be
tolerated without a noticeable degradation in the average BER. For example, for a 900 MHz carrier
frequency and a target BER of 1073, a time delay up to 3.33 ms can be tolerated for pedestrians with
a speed of 1 m/s (3.6 km/hr), and a time delay up to 0.133 ms can be tolerated for mobile vehicles
with a speed of 25 m/s (90 km/hr). Comparing Figs. 9.14 and 9.15, we see that systems with the
lower BER requirements of 10~% are more sensitive to time delay, as they will suffer a higher “rate
of increase” in BER. For example, in Rayleigh fading, systems with a 1073 BER requirement suffer
about one order of magnitude degradation for fpT between 1072 and 10!, whereas systems with
a 1076 BER requirement suffer about four orders of magnitude degradation for the same range of
fpT. However, in both cases these systems will be able to operate satisfactorily if the normalized

delay is below the critical value of 1072,

9.6 Conclusion

We have studied the capacity of NMF channels with an average power constraint for three power
and rate adaptation policies. We obtained closed-form solutions for NMF channel capacity for each
power and rate adaptation strategy. Our results show that optimal power and rate adaptation
yields a small increase in capacity over just optimal rate adaptation with constant power, and this
small increase in capacity diminishes as the average received carrier-to-noise ratio, and/or the m
parameter increases. Fixed rate transmission with channel inversion suffers the largest capacity
penalty. However, this pehalty diminishes as the amount of fading decreases. Based on these
results we conclude that rate rather than power adaptation is the key to increasing link spectral
efficiency. We therefore proposed and studied the performance of constani-power variable-rate M-

QAM schemes over NMF channels assuming perfect channel estimation and negligible time delay.
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Figure 9.14: Average BER vs. normalized time delay for a BERg of 1073, =20 dB, and 5 fading
regions.
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We determined their spectral efficiency and compared this to the theoretical maximum. Our results
show that for a target BER of 102, the spectral efficiency of adaptive continuous rate M-QAM
comes within 5 dB of the Shannon capacity limit and adaptive discrete rate M-QAM comes within
6.2 dB of this limit. We also analyzed the impact of time delay on the BER of ‘adaptive M-QAM.
Results show that systems with low BER requirements will be more sensitive to time delay but will

still be able to operate satisfactorily if the normalized time delay is below the critical value of 10~2.
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Chapter 10 Simultaneous Voice and Data

Transmission over Fading Channels

10.1 Introduction

Future wireless communication systems will have to support not only voice services but also data
services including facsimile, file transfer, e-mail, and Internet access. The need for spectrally-efficient
communication has recently led to the development of adaptive transmission techniques as described
in the previous chapter. In general, voice transmission has low data rate requirements with real-time
delay constraints, while data transmission demands higher rates with less stringent delay require-
ments. This suggests that fixed-rate transmission combined with power adaptation, where the
transmitter adjusts its power to maintain a constant CNR at the receiver, is well-suited to voice,
while bursty variable-rate transmission which maximizes average spectral efficiency is best suited to
data communication. In addition, voice and data typically have very different bit-error-rate (BER)
requirements which must be incorporated into their respective transmission schemes.

Several Media Access Control (MAC) proposals have been presented in recent years to allow
the integration of voice and data for wireless systems [146, 147, 148, 149, 150, 151]. Other tech-
nigues have been developed for simultaneous voice and data transmission over the general switched
telephone network [152]. In this paper we propose a new hybrid adaptive scheme which supports
simultaneous voice and data transmission over fading channels!. The originality of the proposed
scheme is that it offers a link layer solution to the voice and data integration problem by designing
the modulation to support their respective requirements.

The remainder of this chapter is organized as follow. The next section describes the channel
model. Section 10.3 presents the details of the proposed scheme. The performance of this scheme
assuming perfect channel estimation and negligible time delay is analyzed in Section 10.4. In partic-
ular closed-form expressions for the outage probability, average allocated power, achievable spectral
efficiency, and average BER for both voice and data transmission are derived. Numerical and simu-
lation results that allow discussion of the behavior of the proposed scheme are also presented. Our

conclusion are given in Section 10.5.

1More generally the proposed scheme is capable of handling two independent information streams which are
inherently different: i.e., they may be generated by different sources and may also differ in their delay and BER
requirements.
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10.2 Channel Model

We consider a slowly-varying flat-fading channel changing at a rate much slower than the symbol
data rate, so the channel remains roughly constant over hundreds of symbols. We assume that
the multipath fading environment is characterized by the Nakagami-m probability density function
(PDF). Hence the channel fading amplitude o is given by (2.14)

m\m™ 0!Z'm--l a2
— hiid P > 1
Pol) =2 (Q) T(m) exp( mg), o >0, (10.1)
where Q = E(a?) is the average received power, m is the Nakagami fading parameter (m > 1/2),

and I'(.) is the gamma function defined by [53, p. 942, (8.310.1)}:
+oo
I(z) = / t*"letdt; 2>0. (10.2)
0

Given the channel fading amplitude «, a signal power P [W], a signal bandwidth of W [Hz],
and a noise power density of Ny [W/Hz|, let us define the CNR v = If,’:—g,. By using a standard
transformation of random variables, it can be shown that the CNR, =, is distributed according to a

gamma distribution, p,(¥), given by (9.1)

Py(y) = (g)m % exp (—m %.) , =0, (10.3)

where 7 is the average CNR.

As discussed in Section 2.3.1 we use the Nakagami-m distribution since it can represent a range
of multipath channels via the m parameter. Another feature of the Nakagami-m model is that the
fading parameter m, when restricted to integer values, can be interpreted as the order of diversity
available for a Rayleigh channel with maximal-ratio combining (MRC). Hence all the expressions
derived herein can be used to obtain the performance over a Rayleigh fading channel with m-fold

MRC diversity, assuming that m is an integer.

10.3 Proposed Modulation Scheme

The proposed modulation scheme is a generalized and adaptive version of the Unbalanced Quadra-
ture Phase Shift Keying (UQPSK) [153], {51, p. 622], which also offers the capability of handling
two different types of data. For instance, UQPSK was used by the space shuttle and the Tracking
and Data Relay Satellite System (TDRSS) to communicate scientific data on the inphase (I} channel
and operational/telemetry data on the quadrature (Q) channel. In our case we propose to devote

the I channel to data communications while transmitting voice over the Q channel. In contrast to
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UQPSK, where binary phase shift keying (BPSK) modulation is used on both channels, our scheme
uses BPSK on the Q channel for voice and M-ary amplitude modulation (M-AM) [51, p. 219], [1,
p. 272] (also known as M-ary amplitude shift keying (M-ASK)) 2 on the I channel for data. In
this section we first introduce the hybrid BPSK/M-AM modulation scheme. We then present the

details of the proposed adaptive scheme.

10.3.1 Hybrid BPSK/M-AM Modulation Scheme

A block diagram of the proposed hybrid BPSK/M-AM modulation scheme is shown in Fig. 10.2.
Following the form of the UQPSK modulation [51, p. 622], the hybrid BPSK/M-AM transmitted

signal can be written as

s(t) =2 [\/IPT, d(t) cos(wet) ~ /Py u(t) sin(wct)] , (10.4)

where w, is the radian carrier frequency, and P; and P, are the powers of the I (data) and Q (voice)

components of s(t), respectively. In (10.4) d(t) and v(f) correspond to the data and voice symbol

streams, respectively, that is,

d(t)y = i d; p(t —iT;)

ot = ) uip(t - T, (105)

i=—00

where p(t) is a unit power shaping pulse of duration T (the signal bandwidth is hence W ~ 1/T5).
In (10.5) {d;} (d; = £1,+3,---,£M — 1) are the Gray-mapped data symbols of the data bits {d;}

2We use here a symmetric M-AM constellation in which the signal points are symmetrically located about the
origin as shown in Fig. 10.1.
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(as depicted in Fig. 10.1) and {v;} are the voice bits.

The channel introduces a multiplicative fading gain v, a phase shift § and additive white Gaussian
noise (AWGN) term n(t) with power spectral density Nog/2 [W/Hz]. Hence the received signal can

be written as
r(t) =2 [\/ITd d(t) cos(wet + 8) — /P, v(t) sin(w,t + 0)] + n(t). (10.6)

Assuming perfect channel estimation (& = « and § = 6), the received signal is first coherently
demodulated, then the I (data) signal is passed through an adaptive gain controller (AGC). Both I
and Q signals are passed through matched filters, then sampled (at times ¢ = (i +- 1)7}) to form the

decision variables V; and V, ; given by

Vii = a+/Pidi+ Ny,
Vv7,: = a4 P, v; + NQ, (10.7)

where N; and Ng are independent zero-mean Gaussian noise samples with the same variance NoT% /2.
For uncoded data and voice streams and independent hard decisions on the I and Q channels (see
Fig. 10.2), the conditional (conditioned on o) symbol error rate (SER), SER4(M,v4), for data and
BER, BER,(+,), for voice are given by [51, p.631]

SER4(M,v4) = MA/; ! erfc (”]\_;%Y—il_) , (10.8)

BER,(n) = j erfe(v), (10.9)

2 2 . 0 .
where v4 = j‘\’,o—{,’,,i, and v, = ;'{,0—1;;; are the “data” and “voice” instantaneous CNR, respectively, and

erfc(') 18 the CO?npleﬂ?,entm y error ﬁlnctzon defi]:led by
\/_ 2

The data symbol estimates d:,- are then passed through an M-ary Gray de-mapper to obtain an
estimate of the source data bits d;. Using the same procedure described in [154], [115, Chapter 5]
to obtain the exact BER of square M-ary quadrature amplitude modulation (M-QAM) with two-
dimensional Gray coding, we derived exact BER expressions for the M-AM modulation with Gray
coding as shown in Fig. 10.1. The procedure as well as the exact BER expressions are given in
the Appendix. These exact BER expressions are plotted by the solid lines in Fig. 10.3 and are in
excellent agreement with Monte-Carlo simulated BER values which are plotted by ‘o’ on the same

Fig. 10.3. For large CNR, where the probability of symbol error is dominated by the probability
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Figure 10.2: Block diagram of the proposed adaptive systern.

of adjacent symbol error, the BER with Gray encoding can be approximated by [51, p. 210], {1, p.

265]
SER4(M, 7a)

BERd(M7 ‘Yd) =~ ].Og M
2

(10.11)

For comparison, the dash lines in Fig. 10.3 show the BER approximation (10.11) for different values
of M. Note that (10.11) lower bounds the exact BER expressions {as given in the Appendix) for all
values of M and the bound is tighter for low M and high CNR. Using the Chernoff-bound on the
erfc(-) function in (10.11), it can be shown that (10.11) is upper-bounded for large CNR by

SERd(M’ 'Yd)

BERd(M, 'yd) jad log M
2

< 0.1exp (“"mf%:‘f)) . (10.12)

For comparison, the BER upper-bound (10.12) is plotted in Fig. 10.3 by star/solid lines for different
values of M. Note that (10.12) tightly upper bounds the exact BER. expressions (as given in the
Appendix) for all values of M and for BER < 10~4, which is the BER range of interest for data
transmission. Hence we will use this upper-bound (10.12) to derive closed-form expressions which
upper-bound the average data BER. In addition, (10.12) has the advantage of being “invertible” in

the sense that it provides simple expressions for the data “switching thresholds,” as shown below.

10.3.2 Proposed Adaptive Scheme

We now describe the details of our proposed system shown in Fig. 10.2. A pilot tone continually

sends a known “channel sounding” sequence so that the channel-induced envelope fluctuation o can

Estimates
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Figure 10.3: Bit-error-rate vs. received CNR for M-AM.
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be extracted at the channel estimation stage. Assuming a perfect channel fading amplitude estimate
& = a (equivalently, a perfect channel CNR estimation 4 = «) and a peak power constraint of P [W],
variable-power P,(7) < P [W] is used on the BPSK of the Q) channel to insure continuous fixed-rate
voice transmission at the target voice BER, BER,,, i.e., the power allocated to \;oice P, (%) is set to
just meet the voice BER requirement, BER,,. The remaining available power Py(y) = P — Py(y)
[W] is dynamically assigned on the I channel to support the (adaptive) M-AM below the target
data BER, BERg,. Specifically, based on the channel CNR estimate and on the available power
P4(y), the decision device at the receiver selects the signal constellation size M to be transmitted
on the I channel, configures the demodulator accordingly, and informs the transmitter about that
decision via the feedback path. We now describe the power allocation for voice and data as well as
the constellation size assignient for data transmission in more detail.

Qur proposed modulation scheme uses the channel state information at the transmitter to min-
imize its average power consumption subject to the peak power constraints. Specifically, voice
transmission is not a.ttemptéd when the power P, () required to meet the target voice BER exceeds
the peak power constraint P, and in this case a voice outage is declared. Furthermore, since the
voice has to operate at the target BER,,, we see from (10.9) that the power allocated to voice

transmission must be set to

"% P Py(vy) < P (or equivalentely, v > 7y,)

Py(v) = (10.13)

0 otherwise

where v,, = [erfc_1(2 B]E}R,,u)]2 and erfc""l(-) denotes the inverse complementary error function.
For data the scheme responds to the instantaneous channel CNR fluctuation by varying its constella-
tion size as follows. The data CNR, range is divided into IV 4 1 fading regions, and the constellation
size M,, = 2" (where n is the number of bits per M,,-AM symbol) is assigned to the nth region
(n=0,1,---,N). When the received data CNR is estimated to be in the nth region, the constella-
tion size M,, is transmitted. The region boundaries (or switching thresholds) {vg, }X; are set to
the CNR required to achieve the target BERg, using My-AM over an AWGN channel. Specifically
from (10.12) we have

1 2%
Ye, = 3 111(10 BERdD); n=0,1,2,---,N,

Vins:r = —oo. (10.14)

If during voice transmission the remaining available power Pi(y) = P — P,(¥) is not able to support

BPSK on the I channel then no data is transmitted, and a data outage is declared. Hence the power
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allocated to data transmission can be written as

(1 — 'Y%) P yg > vg4, (equivalently v > (Yo, + Yay))

otherwise.

Py(y) = (10.15)

10.4 Performance Analysis

In this section we analyze the performance of the proposed scheme and we present both numerical
and simulation results which are in perfect agreement, as can be seen in Figs. 10.4-10.11. All our
numerical and simulation results are plotted as a function of the average CNR 7 for different values
of the Nakagami fading parameter m and for different maximum constellation sizes (“levels”). Note
that all these numerical and simulation results assume a target uncoded voice BER, BER,,,, of 1072,
and a target uncoded data BER, BERy,, of 107%. We used these values to speed-up our simulations,
however our analytic derivations apply to any set of BER requirements.

We use the MATLAB Communication Toolbox for our computer simulations. The powers allo-
cated for voice and data as well as the constellation size for data transmission are determined at
each symbol time according to the fading level, as explained in Section 10.3.2. We assume perfect
channel estimation, coherent phase detection at the receiver, and Gray coding for bit mapping on
the M-AM constellations, as shown in Fig. 10.1. All our simulations use a “4 level” modem which

is able to support up to 16-AM modulation for data transmission.

10.4.1 Outage Probability

Since no voice is sent when the required power P,(7) exceeds P, the voice transmission suffers an

outage probability, P2, of

ut?

r (m,mlgl)

— Ty (10.16)

Vey
P:utIA P‘y("Y) dy=1-

where T'(.,.) is the complementary incomplete gamma function (or Prym’s function) defined by [53,
(8.350.2), p. 949

“+o00
() = / 71 et gy, (10.17)
n

For z = k positive integers [53, (8.352.2) p. 949,

Dlhy) = (k= 1) e Py(u); k21, (10.18)
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where Pg(.) denotes the k — 1 degree polynomial defined by

k-1

i
Pele) =3 - | (10.19)
j=0 7"

Thus if we restrict ourselves to integer values of m, (10.16) can be expressed as
Pg’ut =1- e—m‘y—%l- P‘m (m %) * (1020)

For the special case of the Rayleigh fading channel (m = 1), (10.20) reduces to

T

Pl =1—¢7. (10.21)

Since no data is sent when the available power P; is insufficient to support BPSK on the I

channel, data transmission suffers an outage probability P2, of

T (m,mM)
g

I(m) ’

d Yy +'7d1
Pho= [T mn dy=1- (10.22)

where 74, is the first data switching threshold. If we restrict ourselves to integer values of m (10.22)

can be expressed as

Tog +7,
Pl =1-e™ 5" P, (m’—y—l—l;il—) : (10.23)
Hence for the special case of the Rayleigh fading channel (m = 1), (10.23) reduces to
“up T 1
Phy=1-¢" R (10.24)

Fig. 10.4 shows the outage probability P?,, and P2, for voice and data transmission, respectively.
In the high average CNR region (i.e., higher than 4 dB for voice and higher than 9 dB for data),
the higher the average CNR, the lower the outage probability, as expected. Furthermore, for a fixed
m data suffers a higher outage probability than voice at all average CNRs. Although these outage
curves appear simple and intuitive, they will in fact be crucial to explain many of our subsequent

performance results.

10.4.2 Average Power Allocation

The normalized average power allocated for voice transmission < P, >/P is given by

Yo
<Py> _ /00 Pv(’)’) » ( ) dy = MY, r (m— lam—ﬁl') (10 25)
P p PMEa=E— T(m) ‘ '
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Probability of Outage in Nakagami Fading
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Figure 10.4: Outage probability for voice P?,, and data P2, vs. the average CNR 7.
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If we restrict ourselves to integer values of m > 2, (10.25) can be expressed as

<Py> m Yoy —_mIz Yz
= —— — —]. 10.26
P — e  Ppoalm | ( )

For # = 0 we have [53, (8.359.1) p. 951]

I'(0, ) = Ex(p), (10.27)

where Eq(.) is the ezponential-integral of first order function defined by

oo e % t
Ey() = f iy (10.28)
1

Thus for the special case of the Rayleigh fading channel {m = 1), using (10.27) in (10.25) we obtain

<Py> Yoy ,

The normalized average power allocated for data transmission < Py>/P is given by

Yoy +Ydy Tvy T4,
<Pd>=/°°Pd(")’) ( )d _F(m’m 17 ) _m’leI‘(m—'l’m K ) (1030)
P a p P\VAT= I'(m) ¥ '(m) '
If we restrict ourselves to integer values of m > 2, (10.30) can be expressed as
P Yvy +Yd
S eyt p, (et ) T Tup (pYetYa)) (1031
P gl m—1 7% ¥

For the particular case of the Rayleigh fading channel (m = 1), using (10.27) in (10.30) we get

(10.32)

<I;j> C R Mg (%1 tm)'

Fig. 10.5 shows in dasil lines the normalized average power allocated for voice transmission,
< P,>/P. This figure also displays in solid lines the normalized average power allocated for data
transmission, < P;>/P. The overall normalized average power <P >/P = <P,>/P+ <FP;>/P is
shown in Fig. 10.6. The behavior of the curves in Fig. 10.5, which varies in the different regions
of average CNR, can be explained by the outage curves in Fig. 10.4. In particular, we see in Fig.
10.4 that at low Fs both voice and data suffer a large outage probability. Hence, since there is no
transmission during outage, the corresponding power consumptions in Figs. 10.5 and 10.6 are low.
Consider now the region of extremely low average CNR (l.e., ¥ < 2.5 dB). Observe that for a fixed
% in this region, as m increases (i.e., the amount of fading decreases) the power consumption for

voice decreases. This can be explained by the following argument. At these extremely low values
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Figure 10.5: Average power allocation for voice < P, >/P and data < P;>/P vs. the average CNR
5.

of ¥ note from Fig. 10.4 that the outage probability for voice is essentially the same for all ms.
However, whenever voice transmission is possible more power will be needed to “invert” channels
with a higher amount of fading. Thus, in this region power consumption for voice increases relative
to the amount of fading. In the medium CNR region (i.e., 2.5 dB < 7 < 12.5 dB), we see that a
larger value of m corresponds to a larger power consumption for voice and a smaller one for data.
This can be explained by observing that in Fig. 10.4 the data outage probability in this region is
essentially independent of m but the voice outage probability decreases as m increases. Thus, as m
increases, we are transmitting voice more often and therefore we must allocate a larger percentage of
our power to voice. In the region of high average CNR (i.e., 12.5 dB > 7), voice outage probability is
small, and since the channel is quite good, a small fraction of the total power is needed for the voice
transmission. Thus most of the power is allocated to data transmission. In this favorable region a
large m (i.e., a small amount of fading) implies that less power is needed for voice transmission and

therefore more power can be allocated to high rate M-ary data transmission.
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average CNR 7.
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10.4.3 Achievable Spectral Efficiency

The average link spectral efficiency for voice transmission < R, > /W is given by

Ju
B> _ o pv =—F(m’m7). (10.33)
w out I‘(m)
When m is restricted to integer values (10.33) may be written as
Sh2 L P, (m ”’T) : (10.34)
w
which reduces to
<Ro> _ % (10.35)

w

for the special Rayleigh fading case (m = 1). The average link spectral efficiency for data transmis-

sion, < Ry > /W, is just the sum of the data rates (log,[M,] = n) associated with the individual
’Y'ul +’Yd

N + 1 regions, weighted by the probability a,, = oy Y d:“ py(7) d that the data CNR ~4 falls in
the nth fading region:
<Ryg> N
5 = nz::l n an, (10.36)

where the a,s can be expressed as

an = e (10.37)
in the most general case and may be written as
Yo ’de
Oy = e ™ [e“ml’ifm P (m—%‘ t"/d") —e ™ P, (m—%‘ * Vani )} (10.38)
Y v
when m is restricted to integer values. For the Rayleigh fading case (10.38) reduces to
il ddpt+1
an = e~ [e-%‘ —e dw“] (10.39)

The dashed lines in Fig. 10.7 show the average spectral efficiency for voice transmission, <
R, > /W. This figure also shows the average spectral efficiency for data transmission, < Rg> /W,
for different maximum constellation sizes. The overall average spectral efficiency < R > /W =<
R, > /W+ < R4q> /W, is shown in Fig. 10.8. At high average CNR a large m corresponds to a
large overall average spectral efficiency for voice and data. However, at low average CNR (i.e., less
than 4 dB for voice and less than 10 dB for data) a large m corresponds to a low overall average

spectral efficiency. This may seem surprising at first but can be explained by the following argument.
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Figure 10.7: Achievable spectral efficiency for voice < R, > /W and data < Ry> /W vs. the average
CNR 7: (a) m =1, (b) m =2, and (c) m =4.

Channels with a small m exhibit significant fading and a corresponding wide range of CNR. values.
Channels with a large m will have most of their CNR, concentrated around the average CNR which
is small in the low average CNR region. Hence channels with a smaller fading parameter m will have
a slightly higher spectral efficiency since the larger CNR fluctuation results in a lower probability of

outage in this low average CNR region (as can be seen in Fig. 10.4).

10.4.4 Average Bit Error Rate

Voice transmission is always operating at the target BER, BER,,. On the other hand, since the
choice of the consteliation size for data transmission is done in a conservative fashion, data is
transmitted at an average BER, < BER; >, smaller than BER4,. This average BER can be computed
exactly as the ratio of the average number of bits in error over the total average number of transmitted

bits
>N  nBER,

<BER4>=
EnN=1 n an

(10.40)
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Figure 10.8: Overall spectral efficiency < B> /W vs. the average CNR 7: (a) m =1, (b) m =2, and
(c) m =4.
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where
Yoy tVdp gy

BER, = [ BER(Ma, 7 — %uy) B4(7) 1. (10.41)
Yoy +Ydn

It can be shown using (9.1) and (10.12) in (10.41) that BER,, is upper-bounded by

— 0.1 3Yay

A

T (m,m bn('YvT""de))_I\ (m’m bn(7v1;’7dn+1))
X in=1,2,---,N—-1,
(Ba)™
7v1+7d s
N 0.1 3vy, \ T(m,mby-==08)
< 10.42
BERy < T(m) exp (22N —1 R , ( )
where
37
= =12,---,N
bn 1+m(22n_1); n )y ’
When m is restricted to integer values these bounds become
0.1e ™%
BER, <
N CH L
- bp Tdg, '
[e_mb ’delpm (mbn(7v1_+ 'de)) e il'Pm (mbn(‘y 1 i_ﬂydn—}-l))] n= 1, .. 7]\1' . 1’
v Y
01 _m(‘w1+biv Ydp ) b
BERy < -2 P (mM) , (10.43)
(bn)™ g
which reduces in the Rayleigh case (m = 1) to
—_— -L;L bn V4, bn Y4, .
BER, < 0'1:— [e‘ T e “]; n=1,2-,N—1,
n
01 _('vv1+b£; “M)
BERy < —° R (10.44)

by

Fig. 10.9 shows the average BER for both voice and data, for different maximum constellation
sizes or levels. Note that voice transmission is always operating at the target BER, BER,,. On
the other hand, data is transmitted at an average BER, < BER4 >, smaller than the target BER,,,
as expected from our conservative choice of constellation size. Since data transmission uses the
largest constellation often when the average CNR is high, the average BER prediction as 7 increases
becomes dominated by the BER performance of that constellation. In addition, at high average
CNR as m increases the average BER for data decreases, as one might expect. However, at low
average CNR. (i. e. ¥ < 10 dB) the average BER for data actually increases as m increases. This
behavior may seem surprising at first, but can be explained by the fact that for y < 10 dB a large

m implies that only a small amount of power is allocated to data transmission, as can be seen in
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Figure 10.9: Average BER for voice < BER, > and data < BERy> vs. the average CNR 7: (a) m
=1, (b) m =2, and (c) m =4.

Fig. 10.5. Hence since data can only use a small fraction of the power, its BER increases.

We show the simulated BER for Rayleigh fading (rn = 1) and for Nakagami fading with m = 2
in Figs. 10.10 and 10.11, respectively. The BER simulation results for voice transmission in these
figures are in perfect agreement with the analytical calculations. However, the simulated BERs for
data transmission are slightly lower than the analytical calculations since the latter are based on
the upper-bound (10.12) of the BER performance of M-AM with Gray coding. The fact that this
bound is tighter (10.12) for lower M (see Fig. 10.3) combined with the fact that the scheme often
uses the smallest available constellation at low average CNRs explains why the overall average BER

upper-bound for data transmission is tighter at low average CNRs.

10.5 Conclusion

We have proposed an adaptive modulation scheme which offers a simple and energy-efficient solution
to voice and data integration over fading channels. The proposed design is intended to provide the

user with a high average spectral efficiency for data communications while meeting the stringent delay
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Average Bit Error Rate in Rayleigh Fading (m=1)
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Figure 10.10: Average BER for voice < BER, > and data < BER4 > vs. the average CNR 7 for
Rayleigh fading (m=1).
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Average Bit Error Rate in Nakagami Fading (m=2)
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Figure 10.11: Average BER for voice < BER, > and data < BER4 > vs. the average CNR 7 for
Nakagami fading (m=2).
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requirements imposed by voice. For favorable channel conditions most of the power is allocated to
high rate data transmission by using M-AM with a large constellation size. As the channel degrades
the modem reduces its data throughput and reallocates most of its available power to insure a
continuous and satisfactory voice transmission. We evaluated the performan;:e of our proposed
scheme in terms of outage probability, average allocated power, achievable spectral efficiency, and
average BER for both voice and data transmission.

There are several possible improvements to our adaptive scheme. One possibility is to further
increase the spectral efﬁciéhcy by using a speech activity detector (SAD). A SAD can be used to
segment a conversation speech into talkspurts and silences [155]. Hence a SAD can be used in
conjunction with an adaptive multimode modem to send adaptive M-QAM for data transmission
during the silences when voice is not transmitted on the Q channel, and our proposed scheme for
simultaneous voice and data transmission during the talkspurts. Another area of study is how to

superimpose coding on the proposed modulation scheme.
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Appendix

Exact BER Expressions for M-AM over an AWGN Channel

In this appendix we derive the exact BER expression for 4-AM with Gray coding over an AWGN
channel, and give the exact BER. expressions for §-AM and 16-AM.

For 4-AM the 4 symbols are symmetrically distributed about zero with equal distance between
two adjacent symbols as shown in Fig. 10.1. In Fig. 10.1 A is the amplitude level, 7} is the symbol
duration, d = 2 A T, is the distance between two adjacent symbols, and the dashed vertical lines
represent the decision boundaries. Since we consider an AWGN channel with a noise power spectral
density of Ny, the noise is normally distributed with zero mean and variance o? = M2LT3

Consider first the left bit of each 4-AM symbol, as shown in Fig. 10.1. A bit error occurs when
the bit 1, corrupted by noise, falls into the boundaries of bit 0 or vice versa. For example, the left bit

of the symbol 10, i.e., 1, will be interpreted 0 when the noise is larger than %. Hence its probability

of error P; is given by
3d .

where @(.) is the Gaussiaﬁ Q-function which is related to the error complementary function as
defined in (10.10) by

Q) = % erfc (%) (10.46)

Similarly, Py = Py = Q (5%), and Py = Py = Q( 3d), Assurning each of the 4 symbols has equal
probability, the error probability of the left bit P,; is

1
P, = Z(P” + Py + Py + Py)

-31o(8)+<(9)

Consider now the right bit of each 4-AM symbol as shown in Fig. 10.1. Following the same procedure
it can be shown that its probability of error P,, is given by

d 1 3d 1 5d
Py = Q (é—;) + 5@ (-2;) -5 (53) : (10.48)

Hence the average BER for 4-AM is given by

1 3 d 1
BER4-am = 3 (Per + Par) = 7Q (—") +39

1o(£)+le(H)-2o(2).  uoam
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On the other hand the average power per symbol is Puy:

Py = i(g +1+14+9)A% =542 (10.50)

fi_ 2 AT, _ 8 Pav
o [NeT. VOENgW’
__02_.1 0
where W ~ Tl; is the signal bandwidth. The exact BER of 4-AM can hence be rewritten in terms

P,
Lay
N, B* as

BER4 am = %Q (\/_?7) + %Q (3\/?) - %Q (5@) . (10.51)

The exact BER expressions for 8-AM and 16-AM can be calculated in a similar way and are

Thus

of average CNR, 7ay 2 v =

given by
7 2 1 2 1 2
BERg_aM = EQ ( 5'1-"/) + EQ (3 5‘1“)’) - EQ (5\/ ﬁ‘?)
1 2 1 2
15 2 14 2 5 2 6 2
BER1s-am = 3—2Q \/ g’)’) + =Q (3\/ -8—5'7) + ﬁQ 54/ 57) - ﬁQ 7 g?)

7 2 6 [2 1 2 2
3 {2 2 /2 1 /2
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Chapter 11 Area Spectral Efficiency of Cellular

Systems

11.1 Introduction

Spectral efficiency is achieved by cellular systems which exploit the power falloff with distance
of signal propagation to reuse the same frequency channel at spatially separated locations [156].
However, while frequency-reuse provides more efficient use of the limited available spectrum, it
also introduces unavoidable co-channel interference [157, 158, 159, 160, 161, 162], which ultimately
determines the bit-crror-rates (BERs) available to each user. Thus, there is a tradeoff between
the system spectral efficiency, measured in [bits/sec]/[Hz - m?] or Erlangs/[Hz - m 2], and the
communication link quality, measured in terms of the BER provided to the users [159, 162].

Another technique to increase spectral efficiency is to use multilevel modulation, such as M-
QAM, which increase link spectral efficiency, measured in [bits/sec]/Hz, by sending multiple bits
per symbol [115]. However, wireless channels are subject to severe propagation impairments which
results in a serious degradation in the link carrier-to-noise ratio (CNR), and even if efficient fading
compensations techniques are used, multilevel schemes will still require higher power levels than
binary modulations for a specified BER. Therefore, to keep the co-channel iuterference at an ac-
ceptable level it is necessary to increase the frequency-reuse distance (or equivalently the cluster
size) which in turn leads to a lower system efficiency. This problem has been recently addressed
by Haas and Belfiore [163], who showed that there is a tradeoff between the system and link spec-
tral efficiencies. This was also confirmed by Morinaga et al. {164], who claimed that 4-QAM is the
optimum multilevel modulation for high capacity cellular systems, and that opting for higher mod-
ulation levels will just reduce the system spectral efficiency. This is essentially due to the fact that
fixed modulation systems are designed relative to the worst-case interference and fading conditions.
However, adapting certain parameters of the transmitted signal relative to the CNR leads to better
link and system spectral efficiencies.

Previous studies of the system spectral efficiency for cellular systems assumed that the data rate
is constant and equal for ail users, regardless of interference conditions and channel quality [158,
159, 162, 163, 165, 166, 167]. In these papers spectral efliciency was based on a criterion introduced
by Hatfield [165] and defined as the ratio of the carried traffic per cell (in Erlangs) to the product of

the total system bandwidth and area supported by a base station. This criterion is not suitable for
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data systems since Erlangs are just a measure of traffic loading rather than throughput intensity. A
more pertinent measure of spectral efficiency in cellular data systems is the total throughput, i.e.,
number of [bits/sec]/[Hz - m?] associated with each base station (BS).

In this chapter we investigate the theoretical limits of this spectral eﬂ'icienéy for cellular data
systems where mobile users continuously adapt their rate relative to their fading and interference
conditions. This efficiency, called the area speciral efficiency (ASE), is defined as the sum of the
maximum average data rates per unit bandwidth per unit area for a specified BER. The ASE
definition captures the tradeoffs between a cellular system’s spectral efficiency, the users’ link spectral
efficiency, and the communication link quality provided to these users. We take into account the
effect of the random user locations in their respective cells as well as the impact of shadowing and
multipath fading superimposed on path loss, with propagation parameters for both macrocells and
microcells. Although both shadowing and fading will typically be superimposed on path loss, we
first consider these two phenomena separately to assess their respective impact. We then study
their combined effect on the ASE. For our analyses and simulations, we analyze only the uplink
(mobile to BS) of systems using frequency-division multiple access (FDMA) or time-division multiple
access (TDMA). We first consider fully-loaded cellular systems. We then generalize our analysis to
partially-loaded systems, and determine the effect of traffic loading on the ASE.

The remainder of this chapter is organized as follows. The next section describes in more detail
our propagation, co-channel interference, adaptive transmission system, and user’s random location
models. Section 11.3 introciuces the concept of ASE for fully-loaded cellular systems. Section 11.4
presents analyses, computer simulations, and numerical results for the ASE when only path loss
is considered. The impact of shadowing and multipath fading on the ASE are studied in Section
11.5 and 11.6, respectively. Section 11.7 considers the combined effect of shadowing and multipath
fading on the ASE. Section 11.8 deals with the ASE of partially-loaded systems. Finally, the paper

concludes with a review of the main results.

11.2 Channel and System Models

In this section we first outline the models for the different propagation impairments affecting cel-
lular systems. We then present our assumptions for the co-channel interference and the adaptive
commuuication system under consideration. We finally describe the random location model for the

users’ positions.

11.2.1 Propagation Models

As described in Chapter 2, signal propagation in a radio mobile environment is affected by three

independent phenomena: (i) deterministic path loss variation with distance, (ii) random stow shad-
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owing, and (iii) random fast multipath fading.
Path loss is due to the decay of the intensity of a propagating radio-wave. In both our analyses
and simulations we use the two-slope path loss model [168] to obtain the average received power as

function of distance. According to this model the average received signal power, S [W], is given by

K

§= ré (1+7/g)t St

(11.1)

where K is a constant, r [n] is the distance between the mobile and the BS, a is the basic path loss
exponent (approximately 2), b is the additional path loss exponent (ranges from 2 to 6), and S; [W]
is the transmitted signal power. The parameter g [m] is called the dreak point of the path loss curve
and is given by g = (4 hg hm)/Ac, where hp [m] is the BS antenna height, iy, [m] is the mobile
antenna height, and A, [m] is the wavelength of the carrier frequency. We use the following typical
values in our analyses and simulations [169]: h,, = 2 m, hg = 10 m for microcells, and hp = 50 m
for macrocells. The resultant break points for 900 MHz systems are g ~ 240.3 m for microcells and
g ~ 1212 m for macrocells. For 2 GHz systems the break points increase to g 2z 533 m for microcells
and g ~ 2667 m for macrocells.

In urban microcells systems the link quality is also affected by the shadowing of the line-of-
sight path from terrain, buildings, and trees. The shadowing is generally modeled as log-normal
distributed [2, Sec. 2.4]. The probability density function (PDF) of the slowly-varying received

signal power is thus given by the standard log-normal expression

2
ps(s) = ﬁg— exp (——%—I‘—Q—) 7 820, (11.2)

where £ = 10/1n10 = 4.3429, p = £1n(S) is the area (logarithmic) mean power which is related
to path loss and which is expressed in decibels (dB), and o is the shadow (logarithmic) standard
deviation in dB.

Mobile radio systems are also subject to fast (relative to the shadowing effect) multipath fading
due to the combination of randomly-delayed reflected, scattered, and diffracted signal components.
We consider slowly-varying ﬂa.t-fa.ding multipath channels. The slowly-varying condition holds when
the channel fading changes at a rate much slower than the data rate, so the channel remains constant
over hundreds of symbols. Flat-fading occurs when the symbol time duration is much greater than
the delay spread so the signal is just affected by a degradation in its strength without a distortion
in its shape. We assume that the multipath fading environment is characterized by a Nakagami-m

distribution such that the PDF of the amplitude of the received signal, A, is given by [13, (11)]

pala) =2 (%)m a;zn—m_)l exp (—m%z) ;o a>0, (11.3)
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where 2 = Fg[S] = EalA?] is the local mean received power which is related to path loss and
shadowing, m is the Nakagami fading parameter (m > 1/2), and I'(.) is the gamma function defined
by [53, p. 942, (8.310.1)]: " |

[(z) = /0 " letdt; =z>0. (11.4)

Thus, the PDF of the received signal power § = A2 is a gamma distribution given by

m\m sm—-l

ps(s) = (ﬁ) T(m) exp (—m %) ;7 8=0. (11.5)

Although path loss, shadowing, and multipath fading simultaneously affect a radio mobile com-
munication link, we first analyze their effects separately to quantify their respective impact on the
ASE. We then study their combined effect on the ASE. This separation is valuable since in many
cases log-normal or Nakagami distributions give the best fit for the overall fading process. For
instance Suzuki [22] concludes that the distribution of the path strengths within a site tends to
follow a log-normal or a Nakagami distribution. In addition Abbes and Sheikh [170] recently showed
that both log-normal and Nakagami distributions fit the overall fading data for LOS microcells, and
argued that the segregatioﬁ’of slow and fast fading components (e.g., log-normal and Nakagami) is

therefore unnecessary.

11.2.2 Interference and Adaptive System Models

To simplify the analyses the following assumptions have been made in the co-channel interference
model. First, we consider interference-limited systems in which the thermal noise power is negligible
relative to the co-channel interference power [166]. Thus, the ratio of carrier power to noise plus in-
terference power reduces to the carrier-to-interference power ratio (CIR). We also neglect co-channel
interferers outside the first dominant tier of interfering cells and all inter-channel interference [166].
Therefore, the desired user CIR, 4, can be written as

Ya(nr) = g—j = %; nr=1,., Ny, (11.6)
where Sg [W] is the received power level from the desired mobile at a distance r from its BS, S
[W] is the total interference power, and S; [W] is the received power level from the ith interfering
mobile at a distance r; from the desired mobiles’ BS. We assume throughout our study that the
co-channel interfering signals add up incoherently since this leads to a more realistic assessment of
the co-channel interference in cellular systems {159]. In (11.6) ns is the number of active co-channel
interferers in the first tier, and Ny is the maximum number for n;. For example N; = 6 for non-
sectorized cellular systems, yvhereas N; = 2 for 120° cell sectorized systems or linear highway cellular

systems. The interference model for the uplink of a fully-loaded non-sectorized (N; = 6) cellular
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system is shown in Fig. 11.1.

Since the signal powers of both the desired and interfering mobiles experience fluctuations due
to multipath fading, shadowing, and the random location of users in their respective cells, 74 is also
a random variable which dépends on the distribution of the 55 and 5;s. Accu;*ate techniques for
“real-time” estimation of these variations in the CIR are available {171}, and we assume throughout
this paper that the fluctuations in the CIR ~4 are tracked perfectly by the BS receiver. We also
assume that this information is sent back to the transmitting mobiles via an error-free feedback path.
The time delay in this feedback path is also assumed to be negligible compared to the rate of the
channel and interference variations. All these assumptions, which are reasonable for slowly-varying
channels, allow the mobiles to adapt their transmission rate relative to the actual CIR state. A

block diagram of the adaptive transmission system model is shown in Fig. 11.2.

11.2.3 Users’ Random Location Model

For analytical convenience we assume that the cell shape is approximated by a circle of radius R. All
the mobiles (desired and interfering users) are assumed to be mutually independent and uniformly
distributed in their respective cells. Thus, the PDF of the mobiles polar coordinates (r,6) relative
to their BSs are

2(r—R,)

or(7) R-E)? R, <r <R, (11.7)
m(®) = 5= 0<0<om (11.8)

R, corresponds to the closest distance the mobile can be from the BS antenna, and is approximately
equal to 20 m for microcellular systems and 80 m for macrocellular systems. Note that we do
not use mobility correlation statistics in this model because they do not affect the adaptive model

(instantaneous adaptation) and its corresponding ASE.

11.3 Area Spectral Efficiency

In this section we introduce the concept of area spectral efficiency for fully-loaded systems in which
the cell’s resource (serviced channels) are fully-used and the number of interferers is constant and
equal to Ny. We generalize the ASE to partially-loaded systems in Section 11.8.

Define the reuse distance D [m)] to be the distance between two BSs using the same set of
frequencies. The ASE of a cell is defined as the sum of the maximum bit rates/Hz/unit area
supported by a cell’s BS. Since frequencies are reused at a distance D, the area covercd by one of

these partitions is roughly 7 (D/2)? [m?]. The ASE, A, [bits/sec/Hz/m?], is therefore approximated
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D= Reuse Distance

~ by

R= Cell Radius]

g

Figure 11.1: Co-channel interference on the up link at a desired BS. In fully-loaded cellular systems
there are 6 primary co-charmel interfering mobiles.
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by
N;
A = k=1 Ok
¢ x W (D/2)?’

(11.9)
where NN, is the total number of active serviced channels per cell, C}, [bits/sec] is' the maximum data
rate of the kth user, and W [Hz| is the total allocated bandwidth per cell. We define the maximum
rate C}, to be the Shannon capacity of the kth user in the cell, which depends on 7y, the received CIR
of that user, and Wy, the bandwidth allocated to that user. The Shannon capacity formula assumes
that the interference has Géussian characteristics. With FDMA or TDMA, there are usually only a
few dominant interferers coming from the first ring of interfering cells, so the central limit theorem
does not apply and the Gaussian assumption for the interference signal may not be valid. However,
for capacity calculations, Gaussian interference is a worst-case noise assumption {172, 173}, and
under this assumption the capacity-achieving transmit spectrum for all users (i.e., desired and in-
terfering users) is Gaussian [174]. Our ASE (11.9) is not parameterized by BER Since Shannon’s
capacity formula indicates an arbitrarily small BER. The ASE thus quantifies the tradeoff between
the increased system efficiency induced by a small frequency reuse and the decreased capacity of
each user resulting from the corresponding increase in co-channel interference. In particular, if we
shrink the reuse distance, then the denominator of (11.9) is reduced. However, decreasing the reuse
distance increases intercell interference, thereby reducing the CIR, of each user, and its corresponding
channel capacity. Therefore, there should be an optimal reuse distance which maximizes (11.9).
For 7y constant, Cy, is given by Shannon’s formula: Cp = Wy log(l + v%). However, 7 is not
constant in our system since both the interference and signal power of the kth user will vary with
mobiles locations and propagation conditions. When -y varies with time, Cy equals the average

channel capacity of the kth user [135, 137], given by

Cr=Wg / loga(1 + V&) Pye (V%) d¥k; (11.10)
0

where p., () is the PDF of the kth user’s CIR. The average capacity intrinsicly assumes that the
users’ rate are continuously adapted relative to their CIR (i.e., interference conditions) in such a
manner that the BER goes to zero asymptotically. We therefore define the average area spectral
efficiency, A [bits/sec/Hz/m?|, as the sum of the maximum average data rates/Hz/unit area for
the system, given by (11.9), with Cj, replaced by Cj. If all users are assigned the same bandwidth
then C(= C) becomes the same for all users, and A, can therefore be written as

- 4N, C

=-=— 11.11
Ae m W RZ R?’ (11.11)

where R, is the normalized reuse distance, R, = D/R.

Consider first FDMA systems, where all users are allocated the same bandwidth Wy, = W, =
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W/N,. Substituting in (11.11) yields

—FDMA 4 +oo
R -y /0 logy(L+7) p2(7) dv. (11.12)

In TDMA systems the total bandwidth is allocated to only one active user per time slot (/N =1 and
Wi = W). Substituting this in (11.11) we see that TDMA systems have the same ASE as FDMA
systems, so

ALPOMA _TPMA _ 7 (11.13)

11.4 Effect of Path Loss

In this section we study the ASE of fully-loaded systems, ignoring the effects of shadowing and
multipath fading. We obtain the reuse distance which maximizes the ASE and also determine the

impact of the cell size, carrier frequency, propagation parameters, and cell sectorization.

11.4.1 Analyses

Recall that due to the random location of users in their respective cells, v4 is a random variable
depending on the random positions of the (N + 1) desired and interfering mobiles. To simplify our
analysis, we reduce the problem from (Ny + 1) dimensions to 1 dimension by computing 4 and the
corresponding ASE for the worst-case (-) and best-case (+) interference configurations. Without
power control to compensate for path loss the worst-case interference configuration corresponds to
the case where all the N; co-chanmnel interferers are on the near boundary of their respective cells,
at a distance r; = D — R [m] from the desired mobile’s BS. On the other hand, the best-case
interference configuration corresponds to the case where all the Np co-channel interferers are on the
far boundary of their cells, at a distance r} = D + R [m] from this BS. The worst-case and the
best-case interference configurations are illustrated in Fig. 11.1. Assuming that the transmitted

power of all users is the same and substituting (11.1) into (11.6) yields

. S, 1 [R(R.£1)]°[g+ (Ru £ )R]
TE(NLT) = e = [ ( )] [g (R 2 1) ] . (11.14)
EF 5= M r g+r
Note that 4 is function of r, so the desired user capacity is
— . _
C™(N1,7) = W, logy(1+ 753 (Ni, 7)) (11.15)

for 4 given by (11.14). Substituting (11.15) in (11.11) yields the ASE conditioned on the desired
mobile position r, for a fully-loaded system. Integrating (11.15) over the desired user’s position PDF
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(11.7) yields the average ASE for the two extreme interference configurations as

— 4 R
< ALNr) >i=7r— / logy (1 +75(Nr, 7)) pr(r) dr. (11.16)
u R, .

In (11.16) and in what follows the brackets denotes the operation of averaging over the desired user’s
position PDF (11.7). In practice, when each interferer i is uniformly distributed at a distance r;
between 7, and 7‘}", the average ASE will be between these bounding values, as we will confirm by

Monte-Carlo simulations.

11.4.2 Monte-Carlo Simulations

The exact analytical value of < A, >, averaged over the random positions of the desired and in-
terfering users, requires a numerical (N7 + 1)-fold integration, which is not only computationally
burdensome but also subject to roundoff and stability problems. Rather than computing this in-
tegral, we instead opted for a Monte Carlo simulation to estimate it. The simulation algorithm is

composed of the following steps:
1. The position of the desired user is randomly picked according to (11.7) as follows:

e generate a pseudo-random number u uniformly distributed in [0,1].

e deduce the user’s position r according to (11.7) using the percentile transformation
method [76, p. 226]:
r= R, + (R~ R,) Vu. (11.17)

2. The polar coordinates (z;, ;) of the Ny co-channel interferers are randomly picked according
to (11.7) and (11.8) as follows:

o generate N pseudo-random, pseudo-independent numbers u; and v; uniformly distributed
in [0,1].

e deduce the N7 polar coordinates (z;, 6;) as:
2 = Ry (R— Ry) i, (11.18)

6; =27 v;. (11.19)

3. The distance r; from each co-channel interferer to the considered BS is calculated as (see Fig.

11.3):

r; = \/D2 + .E? +2 D z; sin(8;). (11.20)
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4. The Ny + 1 average received signal powers of the desired user and interfering mobiles (S4 and

S;s) are calculated using the two-slope path model (11.1).
5. The CIR of the desired user, 74, is then obtained according to (11.6).

6. The ASE A, is calculated as

4
A= cagm s+ ). (11.:21)

Repeating the above process (step 1 to step 6) 10,000 times, we can estimate the value of <A.> by
taking the average of all the observations of the ASE as given by (11.21). After 10,000 computations,

<A, > converges to within 3-digit accuracy.

11.4.3 Numerical and Simulation Results

In this section we compute the effects of propagation parameters, the cell size, and the carrier
frequency on the ASE of fully-loaded cellular systems. The ASE for the worst-case (< A, >7) and
the best-case (< Ae >1) interference configurations are numerically computed for specific system
parameters. The value of < A, > for average interference conditions is also computed using the
Monte Carlo simulation described in Section 11.4.2 for the same system parameters of interest.

Fig. 11.4 depicts the effect of path loss propagation parameters on the ASE. Qur computer sim-
ulations confirm our analysis, since the simulated values always lie between the predicted theoretical
bounds corresponding to the two extreme interference configurations. As expected the spectral ef-
ficiency improves as the additional path loss exponent b increases, since the interfering signals are
more attenuated.

Fig. 11.5 shows plots of the ASE versus the normalized reuse distance for typical microcellular
systems ((a) R = 200 m and (b) R = 800 m) and macrocellular systems ((¢) R = 5 km). We see
from this figure that the spectral efficiency is increased by decreasing the cell size. This observation
is further investigated in Fig. 11.6, where we plot the ASE as a function of the cell radius. The ‘o’
points in Fig. 11.6 correspond to simulation results, whereas the curves correspond to the best fit
in the mean-square-error sense of these simulated values. We found that the ASE decreases as an
exponential of a 4th order polynomial relative to the cell size. Thus we have exactly quantified how
spectral efficiency of cellula_r systems increases as cell size decreases.

Figs. 11.4-11.5 both indicate that, based on the worst-case interference configuration curves,
the optimal reuse distance to maximize the ASE is 4. In fact, the actual optimum occurs for a
reuse distance of about 3. However, our statement is based on the fact that R, is constrained, by
definition, to be an even number. On the other hand, the best-case interference configuration and the

average interference configuration (simulation) curves do not show an ASE maximum. This implies
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Dependence of the Area Spectral» Efficiency on the Cell Radius

OO O )

N\ —— fc=900 MHz
AR % : : - - fc=2 GHz

Average Area Spectral Efficiency <ASE> [Bits/Sec/Hz/Km"2]

Cell Radius R [Km]

Figure 11.6: Average up link spectral efficiency versus cell radius for different reuse distances ((a)
R, =4, (b) R, = 6, and (¢) R, = 8) and carrier frequencies ((-) f; = 900 MHz and (- -) f. = 2
GHz.). (Fully-loaded system with Ny = 6; R, = 20m; Antenna heights: 10 m BS, 2 m mobile;
Propagation parameters: ¢ = b = 2.)



212

that, for typical interference conditions, the spectral efficiency is maximized by a reuse distance of
2 (i.e., frequencies are reused every cell), and is monotonically decreasing for R, > 2. Note that
because our ASE is defined. in terms of Shannon capacity, this increase in specpral efficiency is not
obtained at the expense of a higher BER. In fact, smaller frequency reuse results in a higher BER
only if the data ratc of the system is not adapted to compensate for the resulting higher level of
co-channel interference [158, 159, 162]. We will see in the following sections that all these results
still hold when shadowing and fading are taken into account.

The ASE is increased if interference can be reduced while maintaining the same number of users
per cell and the same reuse distance. Cell sectorization [175] is commonly employed to accomplish
this, whereby directional antennas are used at the BS. In fully-loaded systems, 3-sector antennas
(or 120° cell sectorization) reduce the number of primary co-channel interferers from Ny = 6 to
N; = 2, Fig. 11.7 shows the improvement in ASE when a 120° cell sectorization is employed for
a R = 200 m microcellular system. Note the ASE increase in both the upper and lower dashed
curves compared to the omni-directional case (solid curves). Further improvement in the ASE can
be obtained with 60° cell sectorization (6-sector antennas) since the number of primary co-channel

interferers is reduced in that case to Ny = 1.

11.5 Effect of Shadowing

In this section we consider the ASE of a fully-loaded cellular system when both the desired and

interfering users are affected by log-normal shadowing superimposed on path loss.

11.5.1 Analyses

The desired user’s signal is assumed to be log-normally shadowed according to (11.2) with area
mean power 4 and standard deviation g4. There are Ny mutually independent log-normally shad-
owed interferers, each with mean g; and standard deviation ;. The interferers are assumed to be

statistically identical so that

wi = pn i=12,...,Np, (11.22)

ag; = 0Of; iﬂl,g,...,NI. (1123)

We will refer to all these assumptions as the independent identically distributed (i.i.d.) hypothesis
on the S;s. Assumptions (11.22) and (11.23) hold when all the Ny interferers are constrained to be
on a circle of radius r; from the considered BS. Note that these assumptions are not essential in our
derivation of the ASE. Our analyses can be easily generalized for interferers which are not i.i.d., but

this assumption makes our analyses more tractable.
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Effect of Cell Sectorization
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Figure 11.7: Average up link spectral efficiency versus normalized reuse distance with 120° cell
sectorization. (Fully-loaded system with Ny = 6; Cell Radius R= 200m; R, = 20 m; Antenna
heights: 10 m BS, 2 m mobile; Carrier frequency f. = 900 MHz; Propagation parameters: a = b = 2).
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PDF of the Desired User CIR

The total interference power S; is the sum of N7 ii.d. log-normally distributed RVs. Although
no exact closed-form expression for the PDF of the sum of log-normally distributed RVs is known,
it is widely accepted that such a sum can be accurately approximated by a.not‘her log-normal dis-
tribution [2, Sec. 3.1]. Several methods have been proposed to find the mean and variance of the
resulting log-normal PDF {176, 177]. A very thorough description and comparison of these methods
is available in [2, Sec. 3.1]. Here we use the Fenton-Wilkinson method [176] for its relative simplicity.
According to this method, the logarithmic mean pgs, and the logarithmic variance og, of S; can be

found by matching the first and second order moments, which yields

2 _ al/e?
gf & Ni—-1+4¢%1
= - . T = ]‘ M
1S, pr+ £ In(Nyp) + 26 2 In (—N: ) , (11.24)
2 /p2
Ny —1+ eo1/¢
ok, = & m(_f%_). (11.25)

Since the ratio of two log-normal RVs is also a log-normal RV, the desired user CIR, +q4, is also

log-normally distributed with the following logarithmic mean ., and logarithmic variance a?y %

Hyy = Hd— 5 (11.26)
o2 = oi+o3,. (11.27)
The PDF of 4 can therefore be written as
6 ( (6 111(’7) — I-"’Yd)z)
=——= exp|->—" T ). > 0. 11.28
Py (7) \/ﬁ Oy Y Xp 2 Usz 7 ( )

Desired User Average Capacity

Inserting (11.28) in (11.10), the average capacity of the desired user can be written as

= Wo logy(e) € [**° In(1+7) ( (é1n(y) — p )2)
C=—2_2=27>5 —_ RER T F AR it (- LR IV 11.29
A S exp P Ya (11.29)
Using the following inequality in (11.29):
1
In(1++) <In(y) + 5120 (11.30)

we obtain an upper bound on the desired user average capacity Cup given by

—C—" S ‘C’.up = Wo loge (e)

By Pra | %
% + exp (_—f_ + 2—22)} . (11.31)
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On the other hand, using the following inequalities in (11.29):

1
In(1 > In —
n(l+7) 2 ('7)+1+7

In(y)+ (1 —=7)Poyly)i 720, \ (11.32)

Y

where Pyo,1j(y) = 1 when 4 € [0,1} and 0 otherwise, we obtain a lower bound on the desired user

average capacity Clow given by

2
T 2 Ciow = W, log. (¢) [ﬁ‘-{— +Q (;’j—) ~exp (“T " ;’—5) Q (g— + %—)} . (L3

where Q(.) is the Gaussian integral function defined as

Q(z) = \/% / - e t/2 dt, (11.34)

ASE for the Two Exireme Interference Configurations

Substituting (11.29) in (11.11) yields the ASE for the two extreme interference configurations in

a shadowing environment as

(11.35)

Similarly, substituting (11.31) and (11.33) in (11.11) yields an upper and a lower bound on the ASE

as given by (11.35) for the two extreme interference configurations:

—t —+
4 Ol (T) —-+ 4 Cup(r)
—_—W L A < — 11.
W RE A S e (11.36)
k| —E .
Note that C™ (r), Cy,(r), and Cigy, () are computed using
Mf., = Hd~— H:ch,
- [R(B.=1)]*[9+ (But DR]’ 0%, —of
= glnH S } [ - € In(Ny) + =255, (11.37)

and o2, given by (11.27). Since the expressions in (11.35) and (11.36) are conditioned on the desired
mobile position, they are averaged over the user’s position PDF (11.7) to obtain the overall average

ASE <A, > for the two extreme interference configurations.
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Effect of Shadowing
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Figure 11.8: Comparison of the bounds and the exact values for the average up link spectral efficiency
with shadowed users (- -) with o4 = o7 = 4 dB. (Fully-loaded system with Ny = 6; Cell Radius
R= 200m; R, = 20 m; Antenna heights: 10 m BS, 2 m mobile; Carrier frequency f. = 900 MHz;
Propagation parameters: a = b = 2).

11.5.2 Numerical and Simulation Results

Fig. 11.8 compares the closed-form upper and lower bounds (11.36) averaged over (11.7) with the
exact value < 4, > found by averaging (11.35) over (11.7) with o4 = o7 = 4 dB for the two extreme
interference counfigurations. The bounds are very tight for the best-case interference configuration.
As R, increases the bounds become tighter. On the other hand the bounds are quite loose for the
worst interference configuration when R, < 3. This is because the inequalities (11.30) and (11.32)
are not tight when ~ is small. However, the bounds improve as R,, increases and become very tight
for R, > 4. The ‘0’ points in Fig. 11.9 correspond to simulation results obtained using an algorithm
similar to the one described in Section 11.4 except for step 4 which is changed to incorporate the
effects of shadowing. The changes in the simulation algorithm are described in detail in Appendix A-
1. Note again that the simulated values corresponding to average interference configurations always

lie between the predicted theoretical values for the two extreme interference conditions.
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Effect of Shadowing
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Figure 11.9: Comparison of the average up link spectral efficiency versus normalized reuse distance
with non shadowed users (-) and shadowed users (- -) with o4 = o7 = 4 dB. (Fully-loaded system
with N; = 6; Cell Radius R= 200m; R, = 20 m; Antenna heights: 10 m BS, 2 m mobile; Carrier
frequency f. = 900 MHz; Propagation parameters: a = b = 2).

Fig. 11.9 compares the ASE with and without shadowing. We see in all cases that the ASE
curves for different interference configurations have the same relative shape. However, the ASE with

shadowing is always smaller. We will see in the next section that multipath fading also reduces the
ASE.

11.6 Effect of Multipath Fading

In this section we consider the ASE of fully-loaded cellular systems with Nakagami fading superim-
posed on path loss. Specifically, we study how the ASE is affected by diffcrent amounts of fading
on the desired and interfering users. This is of particular interest for microcellular environments

in which the desired signal typically experiences less severe fading then the co-chanmnel interfering

signals.
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11.6.1 Analyses

The fading of the desired user’s signal has a Nakagami parameter mg and a local mean power
S4. There are N; interferers, each with mutually independent fading and with Nakagami fading
parameter m; and mean power S;. The interferers are assumed to be statistically identical so that

the S;s are i.id.:

Si = S5, i=12,...,Np, (11.38)

m; = My i=1,2,...,NI. (11.39)

Assumption (11.38) holds when all the N; interferers are constrained to be on a circle of radius 71
from the considered BS. This assumption is convenient for deriving the ASE in the worst-case and
best-case interference configurations.

PDF of the Desired User CIR

Let ®g,(.) denote the characteristic function (CF) of the received power of the i-th interferer.

As a CF of a gamma RV, ®g,(.) is given by

1

&5, (w) = B(e™5) = = . 11.40
) = (%) = (11.40)
Since we assume that the S; are i.i.d., the CF of Sy is just ®g,{(.) raised to the power Nj:
1
Bg, (w) = (11.41)

(1 —jw§1/m1)"‘1NI )

Thus Ny Nakagami interferers are equivalent to a single Nakagami interferer with parameter my Ny

and with local mean power N; S1. Therefore, St is gamma distributed with a PDF given by

SmIN]—l s

myNy
_ [ s i — Y-
ps,(8) = (FI) T(mz ;) exp( my :571) ;. s=>0. (11.42)

Since S4 and S are independent, the PDF of v, is given by [76, p.138, (6-43)]

4+ oo
Pre(7) = /0 St ps,(v S1) ps,(Sr) dS;; v 2 0. (11.43)

Substituting (11.5) and (11.42) in (11.43), the PDF of v, is found using [53, p.364, (3.381.4)]:

mq myNy mg—1
mg my Y 4
pn(r)') B (gd) (-S-I ) ma+miNg’ (11'44)
B(md, mINI) (%"—:’)’-l‘ %L)



219
where B(.,.) is the bela function defined by [53, p.957, (3.380.1)] as

i
B(p,q) = / Pl (1 - )7 dt; p>0,qg>0, (11.45)
0 «

and related to the gamma function by

B(p,q) = %. (11.46)

Defining the parameters p = mg + m;Ny and y = -ﬁ%, we can rewrite (11.44) in a more compact

form as
Y A (v +y) 7P
B(mda P md) '

Pra(Y) = (11.47)

Note that for the special case where m,; and m; are restricted to be positive integers, p,, () reduces

to
(p—1)!

p’Td(Ff) = (P_ mg — 1)!

yPm T (y ) A (11.48)

Desired User Average Capacily

Inserting (11.48) in (11.10), the average capacity of the desired user can be written as

_ p—mg +oo mg—-1
o Wolog(e)y /‘ ¥ In(l +7) (11.49)
0

B(mg, p — ma) (y+y)

The integral in (11.49) can be viewed as the pth order generalized Stieltjes transform (GST) [178, p.
213), Go{fma(); ¥}, of the function fi,,(7) = v™¢~! In(1 + 7). Thus C can be written as

W, log,(e) y*~ ™4

C =
B(mdsp - md)

Go{ fma(7); y}- (11.50)

The GST as well as some of its properties that will be useful in our analyses are reviewed in Appendix
B. We restrict ourselves in this section to integer values of mg4 but we do not put any constraint on

my. The evaluation of G,{ fm,(7); ¥} is derived in Appendix C and is given in (11.82). Using that

result, we can rewrite C as

o W, logy(e) v Ml (~1)f (mdj_l)

B(ma, p — ma) PR F,Lp-31-y)|, (11.51)
’ =0

where F(.,.;.;.) is the Gauss’ hypergeometric function defined as [53, p. 1065, (9.100)]

Flo, B;72) = L(v) ZP(aﬂ)F(ﬁﬂ) i (11.52)

~ I(a) T(B) T(vy + ) ik
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and (}) denotes the binomial coefficient.

For the special case of y = 1 (Le., 24 = -g—’l-), using [53, p. 589, (4.293.14)] C reduces to

’md

C =W, logy(e) (%(p) — ¥(p — ma)), | (11.53)

where 9(.) is the Euler’s psi function defined by [53, p. 952, (8.360)]
d .
P(z) = iln[l‘(z)]. (11.54)

Note that in this special y = 1 case, (11.53) applies even if my is not restricted to be an integer
(contrary to (11.51)). If my is restricted to be an integer, we can applies [53, p. 954, (8.365.7)] to

(11.53) to get a very simple expression for C as

mg—1

C =W, log,(e) Z

=0

1

e (11.55)

ASE for the Two Exztreme Interference Configurations

Substituting (11.51) in (11.11}, we get the ASE averaged over the multipath fading and condi-

tioned on the desired mobile position 7 as

* ma-l —1)F (mat
A0 = B N 2 (mdi;)ué,—]j)—l)zp (tima - malNy = 531 =4%))
” (11.56)
where . ' b
yiz% [R (R::I:I)] [g+(;zi::1)3} | (11.57)

Integrating (11.56) over the user’s position PDF (11.7) yields the overall average ASE < A, > for

the two extreme interference configurations.

11.6.2 Numerical and Simulation Results

Figures 11.10 and 11.11 show the ASE for the two extreme interference configuration computed
numerically for different values of the Nakagami m fading parameter. These figures also show the
exact value of < A, > based on a Monte Carlo simulation algorithm using the same system and fading
parameters. The simulation algorithm is similar to the one described in Section 11.4.2 except for
step 4 which is changed to incorporate the effects of Nakagami fading. The changes in the simulation
algorithm arc described in detail in Appendix A-2.

First, note again that our computer simulations confirm our analyses, since the simulated values
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Figure 11.10: Effect of the desired users’ amount of fading on the average up link spectral cfficiency.
(Fully-loaded system with N; = 6; Cell Radius R= 200m; R, = 20 m; Antenna heights: 10 m BS,
2 m mobile; Carrier frequency f. = 900 MHz; Propagation parameters: a = b = 2).
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Figure 11.11: Effect of the co-channel interferers’ amount of fading on the average up link spectral
efficiency. (Fully-loaded system with Ny = 6; Cell Radius R= 200m; R, = 20 m; Antenna heights:
10 m BS, 2 m mobile; Carrier frequency f. = 900 MHz; Propagation parameters: a = b = 2).
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always lie between the predicted theoretical bounds. Comparing these ASE results with our ASE
results without fading we see that both sets of ASE curves have the same relative shape, although
the ASE with fading is always smaller. Recall that the same behavior was observed for shadowing.

Fig. 11.10 shows how the desired user’s AFy = 1/mg affects ASE by ﬁxiné my = 1 (Rayleigh
fading) and setting mg to 1 (Fig. 11.10-a), 2 (Fig. 11.10-b), or 3 (Fig. 11.10-c). We see that the
ASE curves with fading (dashed lines) approach the ASE curves without fading (solid lines) as mg
increases. Hence as the channel quality between the user and its BS improves (i.e., severity of fading
decreases), the system average ASE increases.

Fig. 11.11 shows how the interferers AF; = 1/m; affects the ASE by fixing m4 to be 3 and
setting my to 1 (Fig. 11.11-a}, 2 (Fig. 11.11-b), or 3 (Fig. 11.11-c). The interferers’ AF seems to
have little impact, since the average ASE is about the same (in fact, slightly decreasing with AFy)
for all cases in Fig. 11.11. Hence, the ASE is predominantly affected by the channel quality of the

desired users, rather than by the fading parameters of the interferers.

11.7 Combined Effect of Shadowing and Multipath Fading

In this section we consider the ASE of fully-loaded cellular systems in a shadowed/Nakagami fading
environment, consisting of Nakagami multipath fading superimposed on log-normal shadowing and
two-slope path loss. This is typically the scenario in congested downtown areas with a high number
of slow moving pedestrians and vehicles. Under these conditions the system does not average out the
envelope fading due to multipath but rather adapts to the instantaneous composite shadowed/faded

signal power.

11.7.1 Analyses

The desired user’s signal is assumed to follow a Nakagami distribution with parameter m, and a
slowly-varying local mean power Sg, which is itself log-normally distributed with area logarithmic
mean pg and logarithmic standard deviation 4. There are Ny i.i.d Nakagami faded interferers, each
with parameter m; and a log-normally distributed local mean power S; with area logarithmic mean
1; and logarithmic variance o;.

Combining (11.2) and (11.5) we see that the composite shadowed/faded received signal power
for all users follows a gamma/log-normal PDF given by [2, p. 92, (2.187)]

+90 L\ ™ gme1 s ¢ (S -p)?®\ =
8) = = — e -m=| ——= € —=—] ds. 11.58
ps(s) /0 (S) T(m) xp( S) V2mo§ xp( 202 ) (11.58)
This integral form of the PDF requires numerical techniques for solution and becomes computation-

ally burdensome when further analysis is required. Fortunately, Ho and Stiiber [2, p. 92] showed that
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the composite gamma/log-normal PDF can be accurately approximated by another log-normal PDF
with logarithmic mean i and logarithmic variance 2. These parameters are obtained by matching
the first two moments of (11.58) with the first two moments of a log-normal approximation giving 2,
p. 106] L

B o= &((m)-In(m))+p, (11.59)
&2 = ¢2¢(2,m)+ o, (11.60)

where 9(.) is the Euler’s psi function defined in (11.54), and ((.,.) is the generalized Heimann’s zeta
function defined by [53, p. 1101, (9.521.1))

¢(z,m) = Z(nﬂ i z>Lin#£0,-1,-2,---. (11.61)

Therefore, all the analyses of Section V applies in this case, with the substitution in all the expressions

of the u's by ji’s and the o%’s by 62's, for the desired user as well as for the co-channel interferers.

11.7.2 Numerical and Simulation Results

The combined effect of shadowing and Nakagami fading on the ASE for the two extreme/average
interference configurations is shown in Fig. 11.12 and Fig. 11.13 with different sets of shadowing
and fading parameters. Thé ASE for the average interference configuration is determined using a
simulation algorithm similar to the one used previously except for the generation of the desired (Sy)
and interfering (5;) signal powers, which are obtained as described in Appendix A-3.

Comparing these resulis with Figs. 11.10 and 11.11, we see that the ASE curves still conserve
the same relative shape. However, simulations show clearly that for the same amount of multipath
fading on the desired and interfering mobiles, shadowing further reduces the system ASE. It is
reported in [159, 167, 177] that the Fenton-Wilkinson method loses its accuracy for o > 4 dB and
leads to optimistic results for the co-channel interference calculations in that case. This, combined
with the fact that the Ho and Stiiber approximation increases the shadow standard deviation to
incorporate the effect of Nakagami fading (11.60), explains the slightly high theoretical predictions
of the ASE under the combined impact of shadowing and fading. More accurate ASE predictions can
be obtained for high shadow standard deviation if the Schwartz and Yeh's method [177] as reviewed
by Prasad and Arnbak [167] is used. This remark also applies to the analytical results in Section
11.5 when o > 4 dB. Specifically, a more accurate ASE for ¢ > 4 dB is obtained by using the same
analysis in Sections 11.5 and 11.7 with (11.24) and (11.25) recomputed according to the Schwartz
and Yeh'’s recursive technique {167, 177].



225

(a) Sigmaé 4 dB; md=1; mi=1 (b) Sigma= 4 dB; md= 3; mi=1

©w
o

w
14

—No Shadowing/Fading
— Shadowing and Fading

—No Shadowing/Fading
- Shadowing and Fading

W
o
w
(=]

N
(341
N
(S

— — N
=) oy o
-—t -t N
o (4] o

o
[+

Average Area Spectral Efficiency <ASE> [Bits/Sec/Hz/Km*2]
Average Area Spectral Efficiency <ASE> [Bits/Sec/Hz/Km*2]

2 4 6 8 10 2 4 6 8 10

Normalized Reuse Distance Ru Normalized Reuse Distance Ru
Figure 11.12: Combined effect of shadowing (o4 = o7 = 4 dB) and Nakagami fading on the average
up link spectral efficiency. {Fully-loaded system with Ny = 6; Cell Radius R= 200m; R, = 20 m;

Antenna heights: 10 m BS, 2 m mobile; Carrier frequency f. = 900 MHz; Propagation parameters:
a="b=2).
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Figure 11.13: Combined effect of shadowing (64 = o7 = 6 dB) and Nakagami fading on the average

up link spectral efficiency. (Fully-loaded system with Ny = 6; Cell Radius R= 200m; R, = 20 m;

Antenna heights: 10 m BS, 2 m mobile; Carrier frequency f, = 900 MHz; Propagation parameters:
a=>b=2).
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11.8 Partially-Loaded Systems

In Section 11.3 we introduced the ASE for fully-loaded cellular systems in which (i) the cell’s serviced
channels N, are all used, and (ii) the number of interferers is constant and equal to Ny. In this
section we consider partially-loaded systems in which the cell’s serviced channels and the number of
interferers are random variables depending on the traffic loading. In what follows, we first briefly
describe a fixed channel assignment scheme. We then study the effect of traffic loading on the ASE
when this fixed channel assignment scheme is employed.

11.8.1 Channel Assignment Scheme

Fach cell has a dedicated and constant number of channels, V;, with the same bandwidth W, =
W/N, [Hz]. In this scheme, if free channels are available in the cell, the BS allocates randomly
one of its free channels to a new connection request or handoff attempt. On the other hand, if all
serviced channels are busy, any new/handoff connection is blocked or dropped. We assume that
the calls are not dynamically ordered/rearranged in order to minimize the number of co-chaunel
interference channels. We also assume that queuing is not provided for connection requests which
have been initially blocked or dropped. This channel allocation scheme is obviously quite simple.
Besides making our analyses tractable, this scheme offers the advantage of being “instantaneous”
(no delay in calls rearrangement), fully distributed, and of very low complexity.

The serviced channels are considered to be independent and active with the same probability
pa. Hence the blocking/dropping probability B is given by B = (p,)":. Equivalently, we have
pa = BY/N=, Thus, the probability that n, serviced channels are active has a binomial distribution,

P, (ny) given by

N, -
Py, (ne) = (n ) (Pa)™ (1 —pa)™e~",
8
_ (Ns) Bre/Ne (1 — BUNNa—na = 0,1,2,..., N, (11.62)
Ns

where (J::) denotes the binomial coefficient.
For a cell with n; active users, let the number of active co-channel interferers of the kth desired
user be denoted by ngk), and let ny be the vector [ngl),ngz), ...,n&"”)]. We assume that the {ngk)}

are mutually independent. Hence the joint distribution of the {ngk)}, Py, (ny), is given by
Mg &
Pn1 (nI) = kI_‘[IPngk) (ng )). (11.63)

In addition, the {ngk)} are assumed to be independent from n, and the traffic loading conditions

are considered to be uniform so that the blocking/dropping probability B is the same for all the cells
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(desired cell and co-channel interfering cells). Hence the {ngk)} are identically distributed according
to a binomial distribution P, (n;) given by [157]

Po,(ng) = (ZI’) Bri/Ne (1 — BMNoWNi-nr - = 0,1,2,..., Ny (11.64)

11.8.2 Analyses

Recall that in partially-loaded systems the number of active users, n,, and the number of active
co-channel interferers {nf,k)} are random variables. Let A.(n,, ny) [bits/sec/Hz/m?] denote the ASE

conditioned on 1, and ny and given by

— 4 SNk
Ae('n,s, nl) = W E Ok(n_(l )). (11.65)
k=1

Averaging (11.65) over the joint distribution of the {n{®}, Py, (ny), yields

Ae(ne) = — R2 =D ch(n] Pry (np). (11.66)

Substituting (11.63) in (11.66) yields

A = g e Y 5° Tun®) P, (11.67)

k=100 —g

Using the fact that all users are assigned the same bandwidth, and that the {ngk)} are independent
from n, and are identically distributed according to Py, (nr), (11.67) simplifies to

Ny
— 4 ng —
Ae(ns) = TR MZ:uC(n,) Py, (ng). (11.68)
Averaging (11.68) over the binomial distribution of n, (11.62) yields the average ASE for a partially-

loaded system as a function of N,, N, and B as

- 4 N, BN, J1
Ae(Noy N1, B) = —2—a D Clur) Pry(n). (11.69)

ny=0

Integrating (11.69) over the user’s position PDF (11.7) yields the overall average ASE, < A.(Ny, N,, B) >=,
for a partially-loaded system, and for the two extreme configurations. Recall that the traffic loading

is directly proportional to the blocking probability B. In the limit of heavy-loaded traffic conditions,

B — 1, so that Pp,(n;) — &(n; — Ni), where (k) denotes the Krdnecker delta function which is
equal to 1 for k=0 and 0 otherwise. As expected the ASE in this case < A.(N, Ny, B) >* B2
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A.(N7)>%, corresponding to the ASE of a fully-loaded system.

11.8.3 Numerical and Simulation Results

The effect of system loading (as parameterized by B) on the ASE for the two extreme and the
average interference configurations is shown in Fig. 11.14 for a microcellular radio system with a
cell radius R = 200 m.- Since the effect of shadowing and fading has been thoroughly studied in
previous sections, only path loss has been taken into account in computing the desired user average
capacity C(ns) in (11.69). These results can be easily generalized to include the effects of shadowing
and fading by recomputing C(n;) in (11.69) according to (11.29) and (11.51), respectively. The ‘0’
points in Fig. 11.14 correspond to simulation results obtained using an algorithm similar the one
described in Section 11.4.2 except that the number of co-channel interferers ny is randomly picked
following (11.64). Partially-loaded systems have a lower spectral efficiency than fully-loaded systems
since the ASE increases as the blocking probability increases. Therefore, although the desired users
in a partially loaded system have less interference and can achieve higher rates this effect is more
than offset by the fact that there are fewer active desired users, and thus only a fraction of the cell

allocated bandwidth is used.

11.9 Conclusion

We have presented a general analytical framework to guantify the overall spectral efficiency of
cellular systems in which mobile users continuously adapt their rate relative to the variation in their
respective carrier-to-interference power ratio. This overall spectral efficiency, named the area spectral
efficiency (ASE) is defined as the sum of the maximum average data rates/unit bandwidth/unit area
supported by a cell’s base station. The ASE captures the tradeoff between a cellular system’ spectral
efficiency, the link spectral efficiency, and the communication link quality provided to the users. We
have calculated this efficiency for FDMA and TDMA systems as a function of the reuse distance
for the worst-case and best-case interference configurations. We have also developed Monte Carlo
simulations to estimate the value of this efficiency for average interference conditions. Our theoretical
analyses are in good agreement with the corresponding simulated values.

We haven take into account the effect of the users random location in their respective cells and
have presented numerical results showing the impact of propagation parameters, cell size, carrier
frequency, and cell sectorization on the spectral efficiency. Results indicate that, based on the
worst-case interference configuration, the optimal reuse distance is approximately four. However,
this optimal reuse distance is two for the best-case and the average interference configurations (i.e.,
frequencies should be reused every cell). Moreover, simulations show that area efficiency decreases

as an exponential of a 4th order polynomial relative to the cell size.
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Figure 11.14: Comparison of the average up link spectral efficiency versus the normalized reuse
distance for different traffic loading conditions. (Interferers N; = 6; Cell Radius R= 200m; R, = 20

m; Antenna heights: 10 m BS, 2 m mobile; Carrier frequency: 900 MHz; Propagation parameters:
a=>b=2).
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We have also studied the area spectral efficiency under the influence Nakagami multipath fading,
log-normal shadowing, and combined shadowing and fading when superimposed on path loss. Results
show that both shadowing and fading reduce the area spectral efficiency but do not affect its general
behavior relative to the reuse distance. In addition, the spectral efficiency is preaominantly affected
by the fading parameters of the desired users, rather than by the fading parameters of the interferers.

This chapter also presented initial steps toward the determination of the area spectral efficiency of
partially-loaded systems. Results reveal that heavier traffic loading (i.e., higher blocking probability)
leads to a higher area spectral efficiency with a simple fixed channel allocation scheme is used. A
study with more sophisticated channel allocation schemes should be conducted to better assess the
impact of partial loading on the area spectral efficiency.

Our results are useful for the prediction of the spectral efficiency of cellular systems with variable-
rate transmission under various “realistic” conditions. Furthermore, they provide system engineers
with valuable input information for the efficient design, planning, and dimensioning of such systems.

In particular, these results give guidelines for optimizing reuse distance and cell size.
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Appendix A

Monte Carlo Simulations

A-1 Shadowing

The step 4 of the algorithm described in Section 11.4.2 is changed as follows to incorporate the effect

of shadowing:

e The Ny + 1 area mean powers (ug and p;s) at the considered BS are calculated using the
two-slope path model (11.1).

e The instantaneous received power from the desired and interfering mobiles (S4 and S;s) are
randomly generated according to a log-normal distribution (11.2) with area means pg and p;s

respectively, and standard deviations ¢4 and oy, respectively.

Since we need to average out the additional effect of shadowing, a higher number of iterations is
required (typically 100.000) than in section IV-B for the same degree of accuracy in the estimation
of <4, >.

A-2 Multipath Fading

The step 4 of the algorithm described in section IV-B is changed as follows to incorporate the effect
of Nakagami multipath fading:

e The N; + 1 local mean powers (54 and S;s) at the considered BS are calculated using the
two-slope path model (11.1).

e The instantancous received powers from the desired and interfering mobiles (S; and S;s) are
randomly generated according to a gamma distribution (11.5) with fading parameters my and

my respectively, and local mean powers Sg and S;s respectively.
The same number of iterations as in the shadowing case is typically required to average out the

additional effect of multipath and to estimate < A, > within a 3-digit accuracy.

A-3 Combined Effect of Shadowing and Multipath Fading

The step 4 of the algorithin described in Section IV-B is changed as follows to incorporate the
combined effect of shadowing and Nakagami multipath fading:

e The Ny + 1 area mean powers (pg and p,;s) at the considered BS are calculated using the

two-slope path model (11.1).
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e The slowly-varying local mean powers from the desired and interfering mobiles (S4 and Sis)
are randomly generated according to a log-normal distribution (11.2) with area means p4 and

14i5 respectively, and standard deviations o4 and oy respectively.

o The instantaneous received power from the desired and interfering mobiles (S; and S;s) are
randomly generated according to a gamma distribution (11.5) with fading parameters mq4 and

" my respectively, and local mean powers Sy and S;s respectively.

Since we need to average out the effect of both shadowing and Nakagami fading, a higher number
of iterations is required (typically 300.000 iterations) than in the previous cases for the same degree

of accuracy in the estimation of <A, >.

Appendix B
Some Properties of the Generalized Stieltjes Transform (GST)

In this appendix, we review some basic properties of the GST. We restrict our review to the properties
that are useful in our derivation of the ASE in Nakagami fading environment. A more detailed
summary of the GST and its properties can be found in [178, Chapter XIV].

The GST of order p of the function f(z) is defined by

: +oo
Go{f(x)iu} = g(y;0) = A f(z) (z+y)™° du, (11.70)

where y and p can be complex variables. The relationship between g(.;.) and f(.) can also be

expressed symbolically by a GST transform pair as

() €3 g(y; p). (11.71)
Theorem 1 (Differentiation property) [178, p. 233, (5)]

Assuming (11.71) then

%f(ﬂc) &% pglyp+ 1) —y* £(0). (11.72)

Theorem 2 (Multiplication by x property) [178, p. 233, (2)]
Assuming (11.71) then
asT .
z f(z) & g(ysp — 1) —y 9(y; p)- (11.73)
Theorem 8 (A useful GST pair) [178, p. 233, (9)]
For p>n —1 and assuming (11.71) then

zn L(n) T(Q—n+p) y"°
th ip) =
1+$’ en g(y,ﬂ) r(1+p)

If f(e) =

F(1,m1+p;1—y), (11.74)
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where F(.,.;.;.) i Gauss’ hypergeometric funciion defined in (11.52).

Appendix C
Evaluation of G,{f.(z);y} = g.(y; p)

In this appendix, we evaluate the GST of f,(z) = 2"~ ! ln(l + z). To simplify our notations, let us
denote G,{ fn(m); y} by g,.(y; p). First of all, note that

fi(z) =In(1 + 2), (11.75)
so that
%fl(w) = 141—:10’ (11.76)

Using the differentiation property of the GST {11.72), note that the second term vanishes so that

Gpf = Fr @0} = p (i p 1), (aL.7)

Using the GST transform pair (11.74) applied (for n = 1) to (11.76), then substituting the result in
the left-hand side of (11.77), yields

2—p
9n(y;p) = @{—1)2 F(1,5;,51 - y), (11.78)

where F(.,.;.;.) is defined in (11.52). Note that since p = mg + Ny my and n = my, we have
p—n=Nymy > —1 and therefore (11.74) always applies with no singularities.
As a second step of our derivation, we apply the property (11.73) to f,_1(z). This provides a

difference equation given by

(¥ p) = gn-1(¥30 — 1) — ¥ gn—-1(y; p)- (11.79)

Then it can be show by induction that for n positive integer,

n—-1

D (1Y (n 3_ 1) gilyip—3) y*i (11.80)

=0

Inly;p) =

is solution for the difference equation (11.79) where (”;1) denotes the binomial coefficient given by

(" N 1) N (L (11.81)

i) tr—-j-1
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Finally, inserting (11.78) in (11.80), we find g, (y; p) as

n—p+1

n—1
cfn—1 Y .
n(yip) = | D (-1) ) s FLLp—551-9) | (11.82)
e s ( J )(10*.7—1)2 g ‘
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Chapter 12 Summary of Contributions and
Further Work

12.1 Introduction

This final chapter summarizes the main contributions of this thesis and discusses further work to
extend these results. A summary of these results is presented in the next section whereas interesting

and important future research directions are suggested in Section 12.3.

12.2 Summary of Contributions

Collectively, the main contributions of this work are twofold. First it presents a new approach for the
performance evaluation of digital communications over fading channels. Second it discusses various
methods of adapting to random channel variation in order to increase spectral efficiency of wireless

systems, and evaluate their performance.

12.2.1 Performance of Diversity Techniques

The first half of the thesis presents a new unified approach to the performance analysis of digi-
tal communications, with and without diversity combining, over generalized fading channels. In
particular in Chapter 3 we derive a generic form for the average bit-error-rate of coherent, differ-
eutially coherent, and noncoherent binary signals over fading channels. The generic form relies on
an alternate representation of the incomplete gamma function. For all the channel fading models
under consideration we obtain an expression for the average bit-error-rate which involves a single
finite-range integral of tabulated functions which can easily be computed numerically.

In Chapter 4 we present a unified analytical framework to determine the exact average symbol-
error-rate of linearly-modulated signals over generalized fading channels. The results, which are
based on an alternate representation of the Gaussian @-function, are applicable to systems em-
ploying coherent demodulation with optimal maximal-ratio combining muitichannel reception. The
analyses assume independent fading paths which are not necessarily identically distributed nor even
distributed according to the same family of distributions. In all cases the proposed approach leads
to an expression of the average symbol-error rate involving a single finite-range integral which can

be easily computed numerically. In addition, as special cases, expressions for single channel recep-
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tion are obtained. These expressions reduce to well-known solutions, give alternate (often simpler)
expressions for previous results, or provide new formulas which are either closed-form expressions
or simple to compute numerically. k

Since optimal diversity-combining requires more hardware complexity and more sensitivity to
channel estimation errors, in Chapter 5 we study ideal coherent detection of various modulations
with suboptimal diversity combining techniques. These suboptimal schemes are less complex (hence
more practical for actual implementation) and more robust to imperfect channel estimation. In par-
ticular, we develop a generic expression for the probability of error of coherent equal gain combining
over Nakagami-mn fading channels. The final form of this expression is a single integral with finite
limits and an integrand composed of tabulated functions. In addition a performance analysis of
the generalized selective combining scheme over Rayleigh and Nakagami-rn fading channels with a
flat power delay profile is presented. Our numerical results show that the performance degradation
of equal gain combining or generalized selective combining relative to maximal-ratio combining is
independent of the average signal-to-noise ratio regardless of the severity of the fading. In addition
the performance of equal gain combining approaches that of maximal ratio combining for channels
with low amounts of fading, whereas the performance of higher order selective combining approaches
that of maximal-ratio combining for chanuels with high amounts of fading.

In many applications the phase of the received signal cannot be tracked accurately in which case
differentially coherent or noncoherent modulation must be used. In Chapter 6 we present a unified
approach to determine the exact bit-error-rate of these modulations with single and multichannel
reception over generalized fading channels. The multichannel reception results assume independent
fading in the channels and are applicable to systems that employ postdetection equal gain combining,.
Our approach relies on an alternate form of the Marcum @-function and leads to expressions of the
bit-error-rate involving a single finite-range integral which can be readily evaluated numerically. As
in the case of Chapter 4, the new approach provides simple BER, expressions for general modulations
and channel models which previously defied a simple solution as well as unifying past known results.
In particular we obtain simple BER. expressions for multichannel reception where the fading on each
channel need not be identically distributed nor even distributed according to the same family of
distributions.

In order to obtain significant diversity gain, independent fading in the channels should be
achieved. However, this i not always realized in practice because, for example, of insufficient
antenna spacing in small-size terminals equipped with space antenna diversity and as a result, the
maximum theoretical diversity gain cannot be achieved. In Chapter 7 we assess the impact of corre-
lation on the outage probability and average error probability of dual selective combining, coherent
maximal-ratio combining, and noncoherent equal-gain combining diversity receivers. For dual selec-

tive combining we use a simple finite integral representation for the cumulative distribution function
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and the probability density function of the output of the combiner to express the outage probability
and error probability performances of this system in the presence of slow correlated Rayleigh fading
either in closed form or in terms of a single integral with finite limits and an integrand composed of
elementary functions. For coherent maximal-ratio combining and noncoherent eqﬁal—gain combining
we obtain generic easy-to-compute expressions for the average error rate of multichannel reception
of digital signals over equicorrelated and exponentially correlated slowly varying Nakagami-m fading
channels. In all cases, because of their simple forms, these results offer a useful analytical tool for
the accurate characterization of the impact of correlation on the performance of various systems of

practical interest.

12.2.2 Adaptive Techniques

The second half of the thesis proposes several adaptive transmission schemes for flat fading fading
channels and studies their performance. The Shannon capacity of adaptive modulation with diversity
combining is derived in Chapter 8. This capacity provides an upper bound on spectral efficiency
using these techniques. We obtained closed-form solutions for the Rayleigh fading chanmnel capacity
under three adaptive policies: optimal power and rate adaptation, constant power with optimal
rate adaptation, and channel inversion with fixed rate. Our numerical results show that optimal
power and rate adaptation yields a small increase in capacity over just rate adaptation, and this
increase diminishes as the average received carrier-to-noise ratio or the number of diversity branches
increases. Channel inversioh suffers the largest capacity penalty relative to the optimal technique;
however, the penalty diminishes with increased diversity. Although diversity yields large capacity
gains for all the techniques, the gain is most pronounced with channel inversion. For example, the
capacity using channel inversion with two-branch diversity exceeds that of a single-branch system
using optimal rate and power adaptation. Since channel inversion is the least coraplex scheme to
implement, there is a tradeoff between complexity and capacity for the various adaptation methods
and diversity-combining techniques.

In Chapter 9 we extend the capacity results to Nakagami-m fading channels for the three power
and rate adaptation policies discussed above. As for the Rayleigh channel, numerical results show
that most of the spectral efliciency increase comes from rate adaptation alone. We therefore analyzed
the performance of constant-power variable-rate M-QAM schemes over Nakagami-m channels. We
obtain closed-form expressions for the outage probability, spectral efficiency, and average bit-error-
rate of these schemes assuming perfect channel estimation and negligible time delay. We also analyze
the impact of time delay on the BER of adaptive M-QAM, and show that adaptive systems can
operate satisfactorily if the time delay is below a critical value, regardless of the severity of fading.

The basic premise behind adaptive modulation is to take advantage of good channel realizations,

at the expense of some delay and complexity. We use this concept in a new adaptive modulation
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technique for simultaneous voice and data transmission over fading channels in Chapter 10, and
study its performance. The proposed scheme takes advantage of the time-varying nature of fading
to dynamically allocate the transmitted power between the inphase (I) and quadrature (Q) channels.
It uses fixed-rate binary phase shift keying modulation on the Q channel for voicé, and variable-rate
M-ary amplitude modulation on the I channel for data. For favorable channel conditions most of
the power is allocated to high rate data transmission on the I channel. The remaining power is
used to support the yariabfe-power voice transmission on the Q channel. As the channel degrades
the modulation gradually reduces its data throughput and reallocates most of its available power to
insure a continuous and satisfactory voice transmission. The scheme is intended to provide a high
average spectral efficiency for data communications while meeting the stringent delay requirements
imposed by voice. We present closed-form expressions as well as numerical and simulation results
for the outage probability, average allocated power, achievable spectral efficiency, and average bit-
error-rate for both voice and data transmission over Nakagami-m fading channels. We also discuss
the features and advantages of the proposed scheme.

Finally Chapter 11 introduces a general analytical framework quantifying the spectral efficiency
of cellular systems with variable-rate transmission. This efficiency, the area. spectral efficiency,
defines the sum of the maximum average data rates per unit bandwidth per unit area supported
by a cell’s base station. Analytical expressions for this efficiency as a function of the reuse distance
for the worst-case and best-case interference configurations were derived. Moreover, Monte Carlo
simulations were developed to estimate the value of this efficiency for average interference conditions.
Both fully-loaded and partially-loaded cellular systems were investigated. The effect of random user
location was taken into account and the impact of log-normal shadowing and Nakagami-m multipath

fading was also studied.

12.3 Future Research Directions

We conclude with some brief remarks on future extensions of the work presented in this thesis. These
extensions fall into two categories. In the next section we present some of the potential applications
where our unified approach can be applied to obtain accurate performance results. We then discuss

the potential of adaptive schemes for multimedia transmission over fading channels.

12.3.1 Applications of the Unified Approach to Performance Analysis of

Diversity Systems

One of the main contributions of this thesis was to develop a unified approach for the performance
evaluation of digital communications with diversity reception over fading channels. Since various

communications applications use the diversity concept in one form or another, we believe that many
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of the performance analyses of these applications can benefit from our approach. For example, our
results can be extended to include the performance of direct sequence code division multiple access
(DS-CDMA) systems with RAKE reception, thereby generalizing the results ol;rtained by Eng and
Milstein [96], Prasad et al. [179], and Efthymoglou et al. [97]. This particular interesting subject
will be reported in a forthcoming paper [180], as a part of a general analytical framework for the
performance evaluation of coherent, noncoherent, differentially coherent single carrier and multi-
carrier DS-CDMA systems. Another interesting application of our generic results is Beamfomer
Bi-dimensional RAKE receivers. These structures, also called smart antennas, exploit both the
temporal and spatial dimension for diversity and use adaptive beamforming techniques to reduce
co-channel interference. Since cellular systems are mainly limited by fading and interference, smart
antennas are currently receiving a great deal of attention as very promising techniques to improve
the performance of DS-CDMA cellular systems. As another example the performance evaluation of
wireless packet communications which use a certain form of diversity can also benefit from our ap-
proach. Although this thesis has offered many performance analyses of communication systems over
fading channels, several related problems remain open. In particular all our performance analyses
assumed receiver diversity. A generic approach for the accurate performance evaluation of transmit
diversity (also know as simulcast transmission) over fading channels is also an interesting future

research topic.

12.3.2 Adaptive Schemes for Multimedia Transmission over Fading Chan-

nels

This thesis proposed a new hybrid adaptive scheme which supports simultaneous voice and data
transmission over fading channels. The originality of the proposed scheme is that it offers a simple
link layer solution to the voice and data integration problem by designing the modulation to support
their respective requirements. Similarly, support of multimedia services over wireless channels will
require the development of communication schemes capable of handling various information streams
which are inherently different not only in their nature but also in their quality of service requirements
(e.g., priority, delay, rate, and BER). Therefore, the design of elaborate adaptive techniques which
incorporate into their respective transmission schemes these very different information streams’

requirements will also be another interesting future research direction.
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