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ABSTRACT
Nonlinear feedback communication schemes proposed up to now have

been restricted to coherent channels, This paper describes a scheme
which not only lacks this restriction but yields performance better
than the coherent ones that have been analyzed, Block coded orthogonal
signals together with incoherent receiver forms are used on both for-
ward and feedback links, It is assumed that the transmitter has a high
peak power capability. However, it is shown that by increasing the code
length the duty cycle of this mode can be made sufficiently small so
that the contribution to average power 1s negligible, It is found that
the probability of error for every message is upper-bounded by
exp[-E(R)T] , where T represents the code length and E(R) is a
function of the transmission rate, R , the capacities of the forward
and feedback channels, and a parameter that determines the rate with
which the duty cycle decreases with increasing code length. When the
forward and feedback capacities are equal, say C , the E(R) versus
R curve can be made to approach a curve that starts at 2C and de-
creases monotonically to the value C at R ; ¢ . This contrasts with
the corresponding curve without feedback which starte at 0/2 and de-
creases to zero at R =C . The main advantage of information feedback
over no feedback, namely E(R =C) > 0, where C is the forward
channel capacity, can also be obtained even when the capacity of the
- feedback channel is less than that of the forward. To obtain such
behavior, existing schemes require that the feedback channel capacity

.be at least as great as the forward.
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TNTRODUCTION

It is not uncommon in engineering practice to find coammunication
systems that use information feedback to provide highly reliable
communication over an otherwise mildly reliable channel. The method
is most often restricted to a very simple vrocedure. For example, in
teletype systems the receiving equipment may ask for a re-transmission
whenever certain types of errors are detected in the incoming stream of
data. The fact that simple procedures such as this yield significant
reductions in the number of errors raises the question of just how much
improvement feedback can be made to effect,

Many authors have investigated this problem, The important
question of whether or not feedback can increase the capacity of the
forward channcl was first answercd by Shennon [1]. He showed that even
& noiseless feedback link cannot be made to increase the capacity of
the zero-memory binary symmetric channel, Iavenberg [6] has extended
this result to the zero-memory time-discrete amplitude-continuous
channel., When the forward channel has memory, however, Butman [2] has
shown that its capacity caﬁ be increased. When the signal processing
in the forward and feedback channels 1s restricted to linear operations
(Linear Feedback Communication) efficient schemes have been designed by
Butman [2], Schalkwijk and Kailath [3], omura [5] and others. Accord-
ingly, when the feedback channel is noiseless it is found that linear

_feedback can yield dramatically improved performance over the best
non~feedback schemes, Unfortunately, the slightest amount of noise in
the feedback link serves to degenerate every linear feedback communi-

cation scheme that is known. This difficulty is not encountered with
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nonlinear feedback schemes. In particular, Kramer [7] has analyzed

a scheme for the phase~coherent channel which also yields striking
improvement over communication without feedback, but which tolerates
a small amount of feedback noise. Iavenberg [6] has improved upon
this by devising schemes that tolerate almost as much noise in the
feedback channel as there is in the forward.

In this paper a scheme will be given which (1) yields improvement
over non-feedback communication for any finite amount of feedback noise,
(2) outperforms all existing schemes for any given average forward and
feedback power constraints, and (3) operates on the phase~-incoherent

as well ag on the phase-coherent channel,
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CHAPTER I. SYSTEM DESCRIPTION

1.1 Introduction

The model usually used for the phase-incoherent channel is em=-
ployed throughout the paper. The results in chapters 2 and 3, however,
are also valid if the chamnel 1s phase-coherent, provided all coding
and decoding operations remain unchanged. Thus a comparison is possi-
ble between the feedback communication scheme presented here and previ-
ous schemes designed only for the ccherent channel,

A description of the scheme is given first in fterms of the se-
quencing of events in time. In this way the peak power, average power,
bandwidth and synchronization requirements can readily be deduced, A
more complete descriptlon 1s provided by resorting to vector representaw-

tion,

1.2 Charnel Model

It is assumed that the forward and feedback channels available for

communication can each be modeled in the following way.

Input: s

Qutput: sele + n

‘where the random phase 6 is uniformly distributed on [0,2x] and
n is a zero-mean complex Gaussian [10] random vector with covariance
matrix NiI on the forward channel and NZI on the feedback channel,

In general the signal vector s may have complex components,
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Actual channels which can be modeled in this way abound in engi-
neering practice, Notable examples are systems based on ionospheric
or tropospheric scatter, but any system in which the phase of the
carrier is not regulated or tracked falls equally well into the cate=-
gory. It is assumed that the noise in these systems is additive, zero-
mean, white and Gaussian, Reference [8] gives an excellent account of
the details in deriving the model for DSB ; SC modulation on the
ionospheric scatter channel., In this case it turns out that s is
real. However, if quadrature multiplexing is used,the signal vector

becomes complex,

1.3 Time-Waveform Description

To facllitate in the description to be given it is assumed that
information is continually being generated by a source at the rate of
R bits/seec. As for reliable communication without feedback the infor-
mation is first accumulated for T seconds, This results in a se-
quence of RT bits which might be any one of Ml = ZRT possible se-~

quences., In a non-feedback scheme the communication of this sequence

is then accomplished by sending one of M, waveforns over the next

ph
T - second interval. However, in order to utilize a feedback channel
the following scheme is'proposed:

The T - second interval available for communicating the sequence
18 divided intc three equal parts., Initial communication is performed
by transmitting one of Ml orthogonal waveforms over the interval

[0,T7/3] with power P, watts. Upon reception of the signal perturbed

by channel noise,the receiver decides on the most likely waveform and
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decodes it into one of the M. possible sequences, To inform the

1
transmitter of its decision the recelver then communicates the first
aRT bits of this sequence, a <1, by sending one of M2 = ZaRT
orthogonal waveforms over the interval [T/3,2T/3] . Based on the
signal it observes and knowledge of the sequence 1t 1s trying to com-
municate the transmitter makes an estimate of the receiver's decision,
If its estimate is the same as the sequence 1t is trying to communicate,
it assumes the receiver's decislon was correct, and transmits zero
power on the remaining interval [ZT/B,T] . Otherwise it makes use of
this interval to re-lransmil the origlnul wavelorm, bul withh power

aBPl watts, Q 2 1 . The initial decision at the receiver remains
unchanged if no signal is detected on the last interval, Otherwise

the old decision is discarded and a new one made, based entirely on

the signal that is observed.

1.4 Peak Power, Average Power, and Bandwidth

The average energy & expended in the forward direction is
E = P T/3+ o®P.T/3+p
- 1 1

where P is the probability that a re-transmission is necessary. It
will later be shown that p can be made sufficlently small so that
_E == PiT/3 . Thus while the peak power required is azPl the average
power rcquircment il is only P;/3 . On the feedback channel

E = PZT/3 so that while the peak power is P_ the average power

2

P, 1is only P2/3 .
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Extension of the scheme to more than one feedback transmission is
-relatively straightforward. - Figure 1 in the next section illustrates
the sequence of events when N feedback transmissions are used. In
this case the T - second interval must be divided into 2N + 1 equal
parts. Consequently, the average forward and feedback powers become
Fl = Pl/2N+l and ?2 = NPZ/ZI\H-l , respectively.

At first glance the bandwidth requirement seems to be prohibitive

for large N . It is bad enough that it grows as ZRT/T when bloeck

coded orthogonal signaling is used without feedback. With feedback the

RT

requirement becomes (2N + 1)2°7/T since the same number, 27 ,

of orthogonal waveforms must now be constructed on an interval T/2N+1 .
As will later be shown, however, using a coding delay 6T , (6§ << 1),
wilth feedback 1s as good 1T not better, as far as probability of error
is concerned, than a coding delay T without feedback. Thus to achieve

the same performance a feedback scheme requires a bandwidth of only

ggNé; 1) SROT s may easily be less than that required by the

non-feedback system,

1.0 Vector Description

The vector channel model given in section 1.2 will now be the
basis for a camplete description of the feedback communication scheme.
The scheme ﬁegins with the transmission of the vector x and se-
‘quences through the events shown in figure 1.

The M, - dimensional vector s~ is one vector in the set,cxa

1

of M, orthogonal vectors with length '\/El = NP I/eMl



T
Q% ={ Sq 0% (Si:sj) = Elﬁij » L,J-= l:---:Ml} ’
where (Si’sj) denotes the Euclidean inner product of s; end s, .
The initial estimate of s is §o , Obtained from the observation

v, by the decision rule:
D : pick 8 =s, where |(y,s.)|? = max | (y_,5.)|2
o " o k o’k i o’ i *

The set O is partitioned into M, disjoint subsets, G, SDLY
each containing the Same number of gomponents. Associated with each
subset is a unique M2 - dimensional vector chosen from the set of

orthogonal vectors
3 . ‘ '}
C ={ci P 0305) = Bdy5 0 L= LMy g

where E, = PZT/2N+1 .
The vector for the first transmission over the feedback channel

is determined fram §0 by the rule:

G : send _Wl =0, if 5, € Qi .

The estimate of w; is ﬁl , determined from s and the cbservation

z. by the decision rule:

1
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D: find m' such that S, € &, end pick

. )
o=y, omly if [(zg,0,)[% = ?2;r<](zl’ci)lz

2.z

+\(E2

} . Otherwise choose v'}l = 0, where

z 2
I(Zl:ok)l = @ax'l(zl:ci)l .
ifm
The operation denoted by F determines X from %l and S accord-

ing to

where W o
X = = + e
? 1 i

Decision rules Dis..-pDy are modified forms of D, which account
for the possibility of a null decision, For each n = i, eve, N the
ruie is

2

oA . 2 2
D : pick X =0 only if l(yh,si)l < BE] for all

i=1, -+o;M;.  Otherwise choose X, = 8, where

‘(yn:sk)‘z = méx l(yani)‘z .
i :

Operation E determines §l from il and §° by the simple assign-

ment
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S, is similarly derived from ﬁz and El ; Tthe sequence of forward
[ .

.and feedback transmisslons continuing until 8 the final estimate

N’

of sm is obtained,

2

The statistics of the randam quantities 8, , n, (k = 0,1,...,N)
and @, T (k =1,...,N) have already been described in section 1.2.
The oniy additional information necessary before analysis begins is
that they are all statistically independent. The parameters

Yoy Ogseees Oy Bl,...,BN are real numbers whose specification is

delayed until the performance is derived in terms of them.,

1.6 Full and Partial Information Feedback

The nunber of code words in libraxy“cxg is M.l = ZRT

it is M2 = 2a‘RT . When a = 1 +the receiver is able to communicate

to the transmitter its exact initial decision §o because, M, being

there is a one-to-one correspondence between the ele-

while in ‘C

equal to M, ,
ments of (U and those of Qf) . Certainly the receiver cannot communi-

cate more information about §o . Thus this case is called full infor-

mation feedback, When a <1 the recelver communicates only the subset

of CX% to which éo belongs. This case 1s appropriately called

partial information feedback.

It is natural, of course, to expect that partial feedback cannot
yield as good a performance as full feedback. Its attractiveness,
however, 1is more than academic since, as will later be shown, the main
advantage of full feedback over no feedback, namely, a positive value
for the reliability curve at R = C, can also be obtained with partial

feedback. Thus highly reliable communication without undue coding
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complexity is possible even when the capacity of the feedback channel
is much less than that of the forward. Moreover, partial feedback may
be necessary even when the feedback capacity is greater than the forward.
This can happen if the receiver has information of its own to communi-
cate, TIf it is being generated at a high rate the residual fecdback
capaclty availabhle for improving the performance of the forward channel

can easily be much less than the forward channel capacity.
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CHAPTER II., FULL INFORMATION FEEDBACK

2.1 Introduction

The main object of this chapter will be the derivation of system
performance when only one use of the feedback channel is permitted, it
being used to provide maximum feedback information. Extension to an
arbitrary number.of feedback transmissions can be accomplished in a
similar, almost identical, way. Rather than actually going through the
details, however, it will be shown that the best yerformance attainable
with more than one Teedback transmisslon 1s worse than what is attain-
able with only one feedback transmission. That this result should not
be taken seriously will be demonstrated by giving a modified scheme with
improved performance., Surprisingly enough, however, it turns out that
even this system cannot outdo the single feedback scheme, It just
matches it., This can only mean one of two things, Either there is a
still better wa& of using the feedback channel, or there is no point in
ever using it more than once per message., Indeed, it is advantageous to
make only‘a single feedback transmission since this requires less band-
width (see section 1.4), The existence of a bétter feedback communi-
cation scheme is, of course, an open question, but it is noteworthy to

point out that thus far thils one ylelds the best probability of error.

2.2 Calculation of p(e)

From here on the information rate R will be taken in units of

nats per second, permitting the size of the sets ng and 1:7 to be ex-

pressed as Ml = eRT = M

, . The symbol p(*) will denote the probabil-



~vy of the event in brackets given that

communication,

13

s has
m

been chosen for

Analysis is begun by writing the probability of error

p(e)

A denotes the event that

where
1
AZ "
A3 "
and Ay "

CX% . Now if A

1

device F will set x, = 0 . Also since §o =8

!

p(5, # sp)

i
> nlela, o)

n=1L

1

"

n

1

8
o

]
(7]

(2.1)

and W, =0
bubt W

but W

S, being the vector in ‘C wnich corresponds to the vector Sp in

occeurs it can be seen that since W. =g  the

1

1" m
the deviece H will

produce an error, §l # s; » if and only if the estimate 21 is

neither 0 nor Sm . Thus

p(cIAl) = p(ﬁl #£ 0 oxr s, I xq =

The decision rule D

1

o) .

indicates furthermore that



b
(%,400rs | x,=0)=0p|(y,s )]2>62E2 for some i
PL Xy, m ! *1 1°°4 141 ’

2 2
and I(yl,sj)l ?I(Yl,sm”

for some J#m

Xl=0) .

But for any two events X and Y the probability p(XNY) is less than

either of p(X) or p(Y) . So letting X be the event "I(yl,si)lz
2n2 . 2 a
> pE] for some 1" and Y the event "l (yl, Sj)l > l(yl, sm)l for

some Jj#m " it follows that -
2

2 2 . .
P(elAl) < P( l(yl,si)l > BB, for some i

xl=0) . (2.2)
Application of the union bounding technique [8] yields

=)

P(elAl) < Ml P( |(yl,si)lz > BiEi

= 1:( |(ny,5,)1% > BiEi)

where the equality follows from y, = Q.X elel + n. and the given
i 171 1

condition X, = 0 . Since ny is complex Gaussian with zero mean and
. 2 . 2
covariance NI, and Hslﬂ = E; it follows that I(nl,si)l has
the Exponential probability density with mean NlEl . Thus
BZE /N
p(elAl) <M e 1e1/51

RT . s P1/3
» Ey =P T/3 eand defining €, = --EI—

Recalling that M1 = e
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yields

2
P(eIAl) < e"T(plCl - R) (2.3)

The considerations which led to (2.2) also indicate that

X

P(elAz) = p( }?1740 or & 1°n )

m l

2 -
s-p( l(yl’sj)l > l(yl,sm)[z for some j#m ‘ xl=sm)

But the term on the right is Just the probabllity of crror in communi-
cating one of Ml = eRT messages over an inccherent channel by using
equal energy orthogonal signals and a type Do decision rule., It is
known [9] that this is bounded above by exp[ -TCE(R/C)] , wheve ¢ is

the channel - capacity defined as the signal power-to-noise ratio, and

/2 - x , 0<x=1/4
E(x) = ¢ (1-4%)°, 1h<xs1 .
0 ,' X>1

It should be recalled that the signal energy in the cobservation ¥y is

2 2 2 2 .
o4y = 0P T/3 . Thus C = °‘1P1/3N1 = QC; and it follows that
-T2 0E (R/05CH )
plefa,) < e TOEWOLL) (2.%)

Event A3 represents the case when the transmitter fails to detect an
error in the receiver's initial estimate, Since it is almost certain

that the receiver will persist in its error, the trivial bound
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p(eIA3) <1 (2.5)

is appropriate., Event Al¥ , on the other -hand, represents the case
when the transmitter does detect an error in the receiver's decision.

It will thus re-transmit Sm with energy cxiEl . Now

]

P(elAq) »( iliésm ] X =8, )

p( }'El=0 [ X,=8 ) + p( il,l_o or s le=sm ) (2.6)

where it can be seen that the second term on the right is just

p(eiAz) . For the first term, reference to decision rule D,

indicates that

~ 2 | 2.2 .
p( Xl=0 | Xl=sm) P( l(yl:si)l < ﬁlEl for all 1

Xl'—'sm )

P( JogEye ™™ + (e, < %Ei)

X175 )

A

P( ‘(yl’ Sm)lz < B:ZLE]Z_

where the last equality follows from the fact that y, = ozlxlelel + 1 .

In the complex plane that represents the domain of the random variable

. ie 2
(nl, sm) , the region ialE el 4 (nl,s )¢ < Bl :L is a disc of radius

B,E; centered at -alElelel . See figure 2. Since (n 155, ) is a

zero mean complex Gaussian random variable with variance Nl v the

probability that it falls wi‘thin this disc is

j____ -|z]%/myEy av(z)
Ny By



17
a
2, 1 ~(E1-B1E1)"/M1E]
1 T E]

< nBiE

2
a2 «TCq (Cly =B+ )
”BlClTe 1L\SLTPL

where the integral is taken over the disc.

/:Z;,/”’F%EI

i

<

,/’jZ:”’/’ (“3'#J£i

N

area = ﬂBiE:ZL

Figure 2 : Disc of integration
Substituting this result together with (2.4) into (2.6) yields
2. . =1C,(a-B1)° | -ToECE(R/0C,)
p(ea,) <BIC T eT T IVITPL 4 e THRLVL Y, (2.7)

Calculation of the probabilities p(A ) for n =1,2,3, and b

follows next, The trivial bound

p(A;) s 1 | (2.8)

igs chosen for Al since this event occurs most of the time if communie

cation is reasonably reliable in both forward and feedback directions.

For event A2 s
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p(Az) = p( wl;écm but 8 =s )
= p( o, | wy=o) ) p( =5 )
< p( ﬁl;éO'm I Wl=0'm )e

According to decision rule D,

p( wl;éc l wy=o ) p( I(zl_,crj)l2 + YEES > | (zl‘,crm)l2 for some

)

p (o) |% + 55 > [m,e ™0 4 (]2
for some J%m)

2 i 2 2.2
X{P( E(ﬂl,cj)l > IEzel(Pl + (Tll:dm)l -y EZ

for some J#m i (M,9,) 5 cpl)} (2.9)

]

where EX stands for the expectation operafor, taken here over the
random variables (nl, om) and @ . By the union bound the quantity

in brackets is less than

(11,917 > (™ = (1,017 = 47

Myo,) 5 cpl)

and, since |( T]lcj)]z has the Exponential probability density with

mean N2E2 , this in turn equals
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1 .
Ml exp { - ﬁ‘;ﬁg . [IEzelcPl + (TllJ Gm)lz - 'YZEZZ:l } .

But the quantity in brackets, in (2.9a), being a probability, is also

less than 1, and hence less than

. 1 . i(pl 2 2.2
min {Ml exp( - ——-——NZEZ []Eze + (T]l,cm)\ -y Ez]) , 1 } .

Now for any positive numbers X,Y, if Y <min {X,1} then ¥ <xf

where p can be any number in [0,1] . Making the obvious choice for
X, it follows that

272

2
_ P PYCT L -pCaT/ltp
- Ml ' L+p ’

plhy) <X { W exp (- i 2™+ (o) el )}
0=sp=s1l

P./3
where C2 é— -T%T—- . The expectation has been performed by first taking
it over (T]l, Gm) whose density is zero mean complex Gaussian with

272
Since the bound is valid for any O < p < 1 1t follows that

variance N.E. and noting that the result is independent of Py -

- . -—E—- 2
p(A,) < exp( TC,, o, [l+p - p(y" + R/Ca)]) .

It can be shown | 9] that

i =
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Hence

2
~TCE(Y" + R/C5)

p(a,) <e (2.9)

As mentioned before, event A, represents the case when an error

3
occurs on the initial forward transmission but the transmitter fails to
detect it on the subsequent feedback transmission, It is not difficult
to see that the overall error probability must be at least as great as

the probability of this event. That it need not be any greater is a

fact which will be demonstrated after driving an upper bound for p(e) .

n

p(A3) p( @ =0, but 8 4 )

o n

il

o( Fy=0, | wfo, ) B( B fs,) (2.10)

The second factor on the right is Just the probability of error in

communicating one of Ml = eRT orthogonal signals over an incoherent
channel with capacity Cl . As previously mentioned this is bounded
above by exp[—TClE(R/Cl)] . It can also be shown, incidentally, [9]
that it is bounded below by exp[-T{ClE(R/Cl) + o(1)}] . For the

first factor, reference to decision rule D indicates that

p( ﬁldsm l Wy=0, , say )

i}

p{ ﬁlﬂm I Wl;éO'm )

it

2
o 1620 > 1zgo)1% + Vel sor ana

fm

Wl=(5k )
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2 2
= P( I(ﬂl: Gm)l > l(ﬂl;UJ)I + YZEZ for all j}ém:k

and \(nl’dm)lz > lEzei(Pl + (T}l;ck)lz + YzEg ) *

Since l(ﬂl,cm)lz has the Exponential probability density with mean

NZEZ , conditioning on it yields
[+]

p( W.=0_ | w,=0, ) = [ p[ x> |(7;,0 )I2 + 2E2 for all j#mk

17%m t ¥17% 1773 Yt J7t,
0 iy 2 22
>
and x lEze + (“1’°k)| + Y'E,

12 1l  -x/NSE
22
The conditioning ](nl,dm)lz = x may be dropped since the random
variables (ﬂl,cj) , J =4l,...,Ml, are statistically independent,

Inspection of the integrand reveals that it is zero for x < YZEg )

so the lower limit of integration may just as well be YZEg .
Making the substitution y =x = YZEg yields
[+2]

2.2
- 2 i
eV 2 /NZEEIP( y > [(po5)|" for a1l jAwk and

0 .
v > \Ezellpl + (M1, 9) \2) . ﬁiﬁg /e g

The integral factor may be written as

p( (g, 01" > |1y, 00) 17 for 11 s

and l(ﬂl,qm)lz Z lEzein + (ﬂl,Uk)lz ) ’
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which is just the probability of making the particular error o, in
communicating one of Ml orthogonal signals over a C2 capacity
incoherent channel terminating in a type Do decision rule. Since
the probability of making some error in such a scheme is bounded above
vy exp [-IC,E(R/C,)] , (and below by exp( -T[C.E(R/C,) + o(l)]) ),

the probabllity of making any particular error is Il./Ml - th of this

(actually i f - ), or exp( ~T[C,E(R/C,) + R]) . Thus

2
p( W =0 | W) . o )< ™Y C2T | e-T[CzE(R/Cz) * R].(Z.lla)
Substituting this result into (2.10) yields

(8, < ~TICIE(R/C1) + CoB(R/CZ) + B + voCp] (2.110)

From the lower bounds mentioned above it also follows that

p(a,) > ,~TICLE(R/Cy) + CEE(R/Cy) + R + voCa + o(1)] . (2.11c)

Finally,

P(ALL) = p( §O ;é'sm and ﬁl;é o, )
<p( 8, Fs,)

< e-TclE(R/Cl) (2.12)
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This completes the calculations necessary for using formuls {2.1)

in obtaining an upper bound for p(e) . The result is
—T[B_—?_CJ_-R] -T[aiClE(R/a;ZLCl) + CE(Y + R/C2)]
ple) < e + e 2
. ~TCIB(R/CT) + CoE(R/CZ) + R + v7C,]
P CICE B1)% + C1E(R/C1)]

. e-T[aiClE(R/Ot;ZLCl) + C1E(R/Cy)] (2.13)

2.3 Specification of System Parameters

A lower bound to the probability of error is readily obtained
from the results of the previous section. Since p(e) = p(e|A3) p(A3)

Eip(A3) , it follows from (2.11c) that

p(e) > o~T[CIE(R/Cy) + CoE(R/Co) + R + YZCZ + o(1)] . (2.14)

To show that p(e) is also bounded above by the same expression
one need only observe how al and Bl control the bound in (2.13) .
It is clear that the third term on the right can be made the dominating
component by choosing these parameters sufficiently large, To sub=-

ordinate the first lLerm it is only necessary that

c ¢
2 2 R 2 2
B > E(R/Cl) + E—J-- E(R/Cz) + 2 a-]-- + v a—i' .
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For the second and last terms it suffices to set
aiClE(R/aiCl) > ClE(R/Cl) + CZE(R/CZ)} R + YZCZ .
But
a.C

2
2 2 171
olelE(‘R/alCl) z—==-R .

Thus choose

R_
Cy

O‘Jz. C, R
> - >E(R/cl) + -é—iE(R/cz) + Ei* v o—

Tais will be sstisfied if of > 280 . For the fourth term, on the

other hand, it is necessary that

C c
a 2 R 2 2
(@ = )" >z EB@®R/C) +F+ Y 5
1 1 1 2 Cl Cl
Letting o = lBl yields
c C
2.2 2 R 2 72
(A, = 1) > ==E(R/C,) +3 + v =
1 1 C 2 Cq ¢, ’
but since
2 Cy R 2 Ca
B, > E(R/C)) + EIE(R/CZ) + 2 g, + Gl

it is enough to choose
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C C
2 : 2 R 2 72
(o, = 1) [E Cl)+-é—E(R/Cz) * 23 +'y-c-]
1 1 1
C c
2 R 2 72
= EB(R/C,) +F + v =—
1 2t G Cp 72
or,
_ CZE(R/CZ) + R+ yzcz
A, > 1+

z
ClE(R/Cl) + cZE(R/cz) +2R + Y°C,

Since Al must also be greater than VG;, ( ai > zsi ), it follows

that sufficient conditions for eliminating all but the third term in -

(2.13) are
/ C c. 7
2 R 22
By >JE(R/Cl)+FE(R/CZ)TZT+Y T
1 1 1
and ) (2.15)
o = NPy )
where

pA
CZE(R/CZ) + R+ ¥C,

Al > max VE;, 1+

2
C,E(R/C;) + C.E(R/C,) +2R + v°C,
Thus p(e) can be bounded above by

o(e) < a o~TICIER/CL) + CE(R/CE) + B+ v°e,] ’ (2.16)
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where A 1s greater than 1 but decreases to 1 exponentially in T .,
The selection of yz ils restricted by the requirement that the

peak power oz?_Pl be used infrequently. If p(re - tr) denotes the

probability that a re-transmission is required,then

p(re - tr) = p( ﬁl £ o )

]

p( ﬁl # oy s éo = sm.) + p( ﬁl £a , §° # Sp )

p(a,) + p(4y)

2
< oTCE(Y" + R/Cp) , ~TC1E(R/C1)

where the bound follows from (2.9) and {2.,12), Thus p(re = tr) can be
made arbitrarily small by increasing the coding delay, T , only if
ve 4 R/C, < 1 and R < C; . The first condition will automati-
cally be met by introducing a positive number v < 1 and setting

YZ + R/C2 = Vv .

This, of course, will require that R < Vv C, .
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2.4 Limiting Performance

In section 1.4 it was pointed out that the average power, fi P

required in the forward direction is given by

+ ozi - p(re - tr) .

Clearly, the approximation P, == Pl/3 follows if R < min [vcz,cl]

1
and T is large enough. Under these circumstances ﬁl = C; , where
ﬁl a ?l/l\Tl is the capacity of the forward channel, Also 52 =C,
since ié = P2/3 . In terms of 51,52, and v , then, the performance

that can be obtained with full information feedback and only a single

use of the feedback channel is gilven by

SR+ oM o gy < T ®) + o(1)] (2.17)

and
p(re - tr) < e-TEZE(v) + e-TEIE(R/al) (2.18)

where

5Y(R) = CB(R/G)) + TE(R/G,) + VG, (2.19)

1

provided that R < min [vﬁz , ﬁl 1 .

* - -
A plot of E (R) versus R when C, =C; and v =1 is shown
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< Nﬂl
T

Full Feedback

No Feedback

ol

Figure 3 : Full Information Feedback
Performance
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in figure 3, As far as the probability of error is concerned the best
performance is obtained if v = 1 . However, because E(1) = O
the bound for p(re - tr) degenerates at V=1, If v < 1 then
E(v) > 0O and increasing T reduces p(re - tr) to any desired
value., Thus while the limiting case V =1 is not allowed, any value

arbitrarily close to 1 is permissible,

2.5 Extension To N Feedback Transmissions

It will now be shown that for given average forward and feedback
powers the performance of the scheme with N > 1 is not better than
with N =1,

{a) The scheme of figure 1

By analogy with the method in section 2.2 the probability of error

for arbitrary N can be found by writing

py(e) = p( 8 #s, )
I
(D (I
= ZP(GIAn ) p(A, )
n=L
where
o tes th that 3 W
Al denotes the event Sn-l ~ Cm and Wy = o
(WM

1" 1 i n

oo
0>
T
B
i
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(N

A3 denotes the event that Syl # s =~ but W =9,
an n n N n ° ] ~
and Ay, Sy F Sy and W49,

S being the vector in Q:? which corresponds to the vector s
(W . . .
Event A3 represents the worst possible situation, The receiver
has made an error, Em;l # S, » but the transmitter fails to detect it,
%N =q . Thus, since the transmitter will not repeat the message, the

()
receiver will persist in its error. In other words, 1::(e[A.3 ) = 1 .

(am
It follows that pN(e) > p(A3 ) . But

P(A3 ) = p( {‘\’N=Gm; é\N_liéSm')
=P(€7N=Gm|WN?éGm)P(gN_liésm) .

A probability similar to the first factor on the right has already been

calculated in section 2.2, There it was shown that when N =1 ’

»( Wl = Om \ Wl ;é Gm Yy > e-T[C-aE(R/Cz) + R+ Y2C2‘+ O(l)]

(see the paragraph preceeding (2.11la) ). It should be recalled that
E /T
= ~E where E_, 1is the energy in the feedback signal, When N =1

2 NZ 2

fhis energy is derived from expending P2 watts for T/3 seconds, hence
P./3
the definition C, = -1%-- . When N > 1, however, only T/2N+1
2

seconds are avallable Tor each Teedback transmission, Thus
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PZ/ZN + 1

N

Since p( W =0 | L # o, )

32 =P,T/2N+ 1 and C, =

depends on N only through E_, it follows that by defining 02 in

2
this way,

~

p(wN—cm\w

LEo ) > ~TICE(R/C,) + R + ¥°C, + o(1)]
m

Thus

~

2
p(8y=s,) > p( 8, #s, ) o~T[C,E(R/C,) + R + v°C, + o(1)]

Now p( §o # S, ) 1s the probability of error in communicating one
of Ml = eRT orthogonal signals with energy El = Pl'I'/zN + 1 over the
Pl/ 2N + 1

1 Nl

forward channel. ILetting C it follows [9] that

p(8 48 ) > e TLOER/CL) + o(1)]
e} m .

By induction on N it can thus be concluded that

PN(GI) > o~TICIE(R/Cy) + NCRE(R/Cg) + ch(y2 + R/C5) + o(1)]

But in order to keep the probabillity of an N ~ th re-transmission
small, that is p( Xy = 8 ) << 1, YZ + R/C2 must be kept less

than 1. The reason for this is that

p(XN=Sm)=p(%Niécm)
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s p( W # oy [ Wy = 0 ) + p( §N-l £ s, )

2
-TCZE('Y + R/Cz) ~
< e +p( 8y, #s )

where the last inequality follows from (2.9) with C, redefined as in

this section, Thus

pyle) > e_TKClE(R/Cl) + NCoE(R/Cg) + NCp + o(1)]

Before a comparison with pl(e) can be made it remains to express

. . s A = = A s
this bound in terms of & = Pl/Nl and C, = PZ/NZ s

where Fl and ?2 are the average forward and feedback power expendi-
tures required, Well, since with high probability no power is used in
the forward direction after the initial tramsmission, P, =P /2N+ 1 .

In the feedback direction P2 watts are expended on each of the N

feedback transmissions. Consequently, PZ = NPZ/ZN + 1 ., Therefore

¢, = Cl s Gy = NC2 , and

e-T[GlE(R/él) + EZE(NR/Ez) + 62 + o(1)]

pyle) >

This can now be compared to the limiting performance that can be

approached when N =1, ( (2.17) and (2,19) with v =1) ,

-T[ﬁlE(R/él) + EZE(R/éz) + 62 + o(1)]

p,(e) = e
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Since 'E(R/ﬁz) > E(NR/EZ) it follows that pl(e) is exponentially

smaller than pN(e) .

(b) A modified scheme with improved p.(e)

With the scheme in figure 1 the receiver always feeds back its
current estimate, §n . This, of course, is why it uses power P,
watts N times. Suppose, instead, that the scheme is modified as
follows:

Change G so that the receiver transmits its current estimate only

if it differs from the previous estimate. That is,

G: send w, =0, , where §o =8

1 i i’

but for n =2,3,...,§ send

0 if § . =8,
W, = ’
Oy A B A8,
where § ., = 8y

Without going into the detalls of what other modifications must be
made in order to accommodate this one, the event which determines a
lower bound to the probability of error can immediately be determined.
For suppose that an error occurs on the initial forward transmission

and on the first feedback transmission in such a way that the trans-
(1)
3

occurs, In this case the transmitter will send, X, = 0 . The receiver

mitter fails to detect the former error. That is, suppose event A
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will then imagine 1ts initial estimate to be correct and the error will
persist, According Lo G Lhe second feedback lransmission wlll be
W, = 0 8o that from here on 0 will be pointlessly transmitted back

and forth K +times, The initial error will never be corrected, Thus

(1 (1)
pN(e]A3 Yy >~ 1 and pN(e) > p(A3 ) . But just as in subsection

2.5 (a),
(L - ~
(A ) = pCiy =0y [y Aoy ) B3, £ sy )
S e-T[c_lE(R/cl) + CoRB(R/Cp) + Cp + o(1)] ’
P /2N + 1 PE/BN + 1

where C; = ——— and C, = —5—— . Also, as before,

L 2
@l ~c, . 52 , however, is spproximately C, in this case, rather

than NC2 , because it is very likely that no power will be transmitted

on all feedback iterations after the first. Therefore,

ole) > o~TLCIE(R/Cy) + TE(R/Cp) + Tp + o(1)]

It is possible, at the expense of laborious calculatvions, tvo show
that pN(e) is also bounded above by the same expression. This is
simply a consequence of the fact that all other events that contribute
to pN(e) nave probapilities which are monotonicaliy decreasing func-

tions of o, and xn , n=1L...,N . Consequently these {erms can be

{1 .
subordinated %o p(A3l ) by choosing the parameters sufficiently large.
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In any case it can be seen, at least, that this scheme has the
ypotential for better performance than the scheme of figure 1. The
reascn, apparently, is that it is better to expend all the available
feedback power on the first iteration than to distribute it over many
iterations, This supports the idea that a single iteration scheme is
best of all.

Comparison of pN(e) with pl(e) shows that the modified scheme
can, at best, only match the performance possible with the single

feedback scheme.
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CHAPTER III. PARTTAL INFORMATION FEEDBACK

3.1 Introduction

Equation (2.19), it will later be shown, indicates an advantage of
communication with full information feedback over communication without
feedback, As long as 52 = El this superiority prevails at all rates
below the forward channel capacity. However, if €. < C. . then for

2 1

rates above the feedback channel capacity, (and below the forward),
full information feedback is inferior to no feedback (see the Appendix).
But no matter what quality feedback channel is available, so long as it
can carry some reliable information, it seems natural to expect that its
use should improve communication over the forward channel, In this
chapter 1t 1s shown how partlal information feedback bears out this
expectation, Fortunately, many useful calculations have already been
performed in the previous chapter, so the analysis here will be fairly
straightforward.

It should be recalled that with partial information feedback the

aRT

recelver communicates only which of the M2 =e subsets of ng

§, belongs to, rather than §  itself. Thus the feedback channel
need only handle a rate of aR nats/sec , rather than R . However,
this procedure gives rise to an event that is impossible with full
information feedback, yet which is the determining factor in the
Probability of error for partial feedback. This event is denoted by

B below,

3 2
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3.2 Calculation of p(e)

As in section 2,1 let s, be the vector chosen by the transmitter
for communication, Iet Qm, be the subset of QB to which sy be~

longs, and define

B, , the event that & =s and ﬁl =0_, ,

B, , " " " B =8, and W fo, ,

Bs " " " §O # s, 0 Wy =9, and Wy o=0,,
B, , " " " §O # s, Wy # O, and @ =q, ,
Bs S #s ~and W oFo, .

It is readily verified that these events are mutually exclusive, their
union exhausting the space of possible outcomes. Thus p(e) can be

expressed as

>
p(e) = »(ep) @) . BENEES

n=1

The considerations leading to a bound for p(e]Bl) p(B,) are

-identical to those used for p(eIAl) p(Al) in section 2,2. In fact,

p(e(B,) »(3;) = »p(e[B;)
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(% #0 or s, | %

0)

[
]

It

| p(e lAl)

2
I (3.2)

where the last inequality follows that (2.3). Similarly,

p(e[B,)

p( % £0 or sm[xl=sm)

p(ela,)

2 2
< o~TCE (R/alcl)

(n the other hand, p(Bz) is not quite p(Az) .

)

P(BZ) P( SO = Sm > wl 74 Umt )

A

p(‘.?l;éﬁm,igo:Sm)

o)

RO Y

which leads to the same bound given by (2.9) except for aR replacing

R . Thus

2
p(8,) < -~TCE(y" + aR/C,)
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and
~T{05C1E(R/EC,) + C,E(Y: + aR/C,)]
p(e|B,) p(B,) < o T AICIEIR/AICL) + CpEly 2/, (3.3)
Now
P(B3) = p( §O # Spr 2 Y = 9 )
=P(Wl=dmtl§oiésm):9(so Sm)
n -TC.E(R/C

< Wy =0, | 8, # s, ) e L (B/ l) .
But p( Wy =0, [ §0 # s, ) 1s just the probability that of the
M, - 1 equiprcbable errors, §o =55, =1 ..,m-1ml .. LN,

the receiver chooses one belonging to the subset Qm' . Since there

*
are Ml/.M2 -~ 1 possible candidates in this set it follows that

M
~ ) _ l l
r( Wy = Opr | 5o # Sn ) = M o-1° it
2
<
1/M2
-aRT
= e .

¥
Each subset has Ml/M2 elements, but the - 1 1s necessary because
the particular subset Qm, contains the vector Sy o
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Thus

o-T[C{E(R/C]) + &R]

p(ely) p(By) < E (3.14)

Event BL‘_ is similar to event A3 :

it

P(Bu)

p(go#sm’ﬁl%cm’,ﬁl=dm!)

i

Sp(ﬁi Um|lwl7écma)P(§ofésm)

< Py =, |w Ao, ) e TR/

A bound for p( ¥y =9, | Wy # 0., ) can be obtained by cbserving that
if the calculations leading to (2.lla) were carried out with aR re-

placing R, as is appropriate for partial feedback, the result would

be

2
A -T{C-E(aR/Cs) + aR + v°C
p( iy =0, [wy £, ) < e 2B (aR/Cp) ¥7Cel

Thus

’ L2
~TICIE(R/CL) + CoE(aR/Cy) + aR + v°Cp]

p(elBu) P(Bu_) < (3.5)

Finally, p(elB5) p(Bs) can be bounded by the same expression used

for p(elAu) p(A,) as given by (2.7) and (2.12), namely,
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2
p(e[85) p(B) < poc,T o~TlC1(og-pD® + C1E(R/C1)]

2
. o~TloACiE(R/afCy) + CIE(R/CY)] (3.6)
Substituting the results of (3.2) - (3.6) into (3.1) yields
-T[ﬁzcl-—RJ -rlofc E(R/OtZC ) + CoE( . aR/Cs)]
p(e) < e 1 4+ e 1~1 1v1 2 Y 2
o~TICiE(R/C1) + aR]  -T[CIE(R/C1) + CoE(aR/Cp) + &R + y202]
2
. BiClT e-T[cl(al-sl) + C1E(R/C1)]

o~TICLE(R/C) + oa_-fE (R/a_-?_cl).] (3.7)

3.3 Selection of Parameters

In (3.7) the third term can be made the dominant component by
choosing oy and sl sufficiently large. The derivation of suffi-
cient conditions 1s quite analagous to the method in section 2.3.

The result is,

8, >, JBR/C)) + (+a) R/C, | (3.82)

and

o = AB o, (3.8b)
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where

: aR/Cy
b > mex{ [z, l+,\/E(R/Cl)+ Ty w38

Thus,

~T[CE(R/C1) + aR + o(1)]

p(e) = e (3.9)

Selection of a is constrained by the requirement that p(re-tr)

be very small,

p(re-tr) = p( @y £, )

~

< p( W Fo,, 8, =8 )+ (8§ #s )

P(By) + P( B8 #s)

2
< o~TCRE(Y" + &R/Cp) , ~TCIE(R/C;)

Thus it is necessary that Y° + aR/C, < 1 amd R < C In the

l .
first condition the choice yg = 0 may as well be made since the p(e)
performance is independent of Yy , Then to satisfy a.R/CZ < 1,

introduce a positive number v < 1 and let

a = min(l, sz/R] . (3.10)
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Note that this restricts R to be greater than W, , for otherwise
a =1 and full information feedback beccmes the mode of operation.

Assuming that p(re-tr) is sufficiently small so that

P, =P, /3, and therefore ¢ =0, , it follows that
ple) = -IICER/C,) + vc':z + o(1)] , (3.11)
and
premtr) < o-TCZE(Y) | _~TC1E(R/Cy) , (3.12)

provided that VCZ < R < Cl and 0 < v < 1 ,

That p(e) is also bounded below by the right side of (3.11) can

be seen as follows:
p(e) = ple|B;) p(B;)

z P(B3) .

S [;_ _ }__], e-chlE(R/cl) + o(1)]

M2 Ml

5 ~TIGE(R/CL) + aR + o(1)]
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Since € =C, and a =min[l, vC,/R] , it follows that

e-T[E:lE(R/El) + VG + o(1)]

ple) > (3.13)

if V02 < R < Cl .

3.4  Overall System Performance

When \)C2 = Cl

performance is given, for all 0 < R < 51 , by (2.17) - (2.19) .

the system is in the full feedback mode so the

When v@z < (., the performance is that of Ffull feedback for

1

0 < R =< W and partial feedback for \)52 < R < €&, . By

L
combining (2.17) - (2.19) with (3.11) = (3.13) the overall system

C, ,

performance can be written as,

~TLE(R) + o(1)] e-T[E*(R) + o(1)]

< ple) = s

and

p(re-tr) < e"TCzE(V) + e-TClE(R/Cl)

2

provided 0 < R < G, and 0 < v < 1, where

1

élE(R/c”:l) + EZE(R/EZ) + vc’:z , 0 = R < min[véz,él]
E*(R) =

ClE(R/Cl)+ e, , min[vC,,C ] < R s &

(3.1%)
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CHAPTER IV, COMPARISON WITH EXISTING SCHEMES

4,1  Introduction

At present there exist two other feedback communication schemes
which tolerate noise in the feedback channel, one due to Kramer [T7] ,
the other due to Lavenberg [6] . Kramer uses block coded orthogonal
signals and a matched filter receiver in a scheme quite similar to the
one presenbed in this paper. The receilver always sends back its
current estimate of the message. The transmitter sends the actual
message only on the initial transmission. Thereafter it transmits
only the difference between the message and its estimate of the re-
celver's decision. ILavenberg has modified this scheme by employing
a similar differencing technique on the feedback channel. That is,
rather than always sending back its current estimate, the receiver
sends only the difference between its last two estimates. The added
complexity, it turns out, is rewarded by a greater lmmunity to feed-
back noise, In the following sections the scheme of thils paper will be
compared to each of these schemes. It should be pointed out, however,

that the comparison is only valld for the phase-coherent channel,

4,2  Comparison with No Feedback

When block coded orthogonal signals arc uscd to communicatc over
the band-infinite phase-incoherent channel without the use of feedback,

the probability of error is given by

~T[Eyp(R) + o(1)]

e-T[EZ\;F(R) + O(l)] < p(e) s e ’
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provided 0 < R < GC where

lJ
E;F{R) = CE®R/A) , 0 < R < c; .
That this is the best possible performance that can be obtained with-
out feedback would follow if the orthogonal signal set were optimum,
For two complex dimensions this has recently been proved by Schaffner
[11], but for an arbitrary dimensionality it remains an unproved con-
jecture.
Assuming the conjecture ls valld, comparison of E;\:,F(R) with

E*(R) , (3.14), shows that the use of feedback substantially improves
on the best performance possible without feedback. The improvement is

- *
particularly striking when R 1is close to G, . Here ENF(R) is

1

close to zero, indicating the necessity for large T 1o obtain small
* .

p(e) . E (R), however, remains bounded away from zero as long as

52 > 0 .

4,3 Comparison with XKramer's Scheme

o

Kramer [7] showed that the performance of his scheme with N

feedback transmissions is given, for 0 < R < al , by

B(R) = (N + 1) GyE[R/(W1), ]

provided that G, = N(N + 1) El , where

2

Eg(R) 4 lim [- % lnp(e)] .
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* - -
This can be compared to E (R) . If C, =z N(N+ 1) C, then

2 1

B(R) = CB(R/G) + N(N+ 1) CEIR/N(N + 1) &1+ wN(N + 1) g .

' * *
Since the most striking comparison of E (R) with ENF(R) occurs

* - * -
at R=2C it is interesting to compare E (R = Cl) with EK(R = Cl)

lJ
- * - -
for varying C2 . The curved portion of EK(R = Cl) versus C2 B

in figure 4, is only a rough guess to the actual curve, made with the
*
help of Lavenberg's upper bound to EK(R), [6], in the range

Nal < 52 < NI+ 1) 51 . For the purpose of comparison, however,

it is clear that an exact knowledge of the curve is not important.

* - -
Note that EK(R = cl) =0 when C, < NC, .

L.}  Comparison with Lavenberg's Scheme

With N feedback transmissions the performance of Lavenberg's

scheme for 0 < R < C, 1is given by

1
ClE(R/Cl+ CZE(R/CZ) » 8 = T, = N
3
E;(R) =
(N+l)%§mﬂm1ﬁﬂ , % 2(N+l)%
where
E;(R) A lim [-%lnp(e)] .

* * -
It can be seen that E (R) > EL(R) for a1l 0 < R < &

and for any 52 . Figure 4 shows E;(R = 51) versus 52 . Note that



the curve vanishes when 52 < 51 .

* - * -
Note also that while EL(R = Cl) and EK(R = Cl) saturate at
(0 + l)@iE(l/N + 1) for large 52 , E@R= 51) continues to grow.

This is somewhat misleading. The peak-to-average power ratio in the
schemes of Kramer and Lavenberg is 2(2N + 1) , independent of 52 .
For the scheme in this paper, however, the ratio is 30[2 , &an increas-
ing function of 52 , (see (2.15) ) . If 3a§ is constrained

to be equal to 2(2N + 1) , so that the schemes have equal peak-to-
average power ratioé, it turns out that E*(R = 51) also saturates at

large values of G This behavior is depicted by the dashed curve

2 L]
in figure 4, Note that the saturation value is actually below that for
the other schemes. It must be remembered, however, that since the
present scheme uses only one feedback transmission its bandwidth re-

quirement is less, by the factor (2N + 1)/3 , than that required by

the schemes of Kramer and Iavenberg.
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CONCLUS IONS

The dramatic effectiveness of feedback communication, up to now
applied only to phase-ccoherent channels, 1s now extended to include
phase-incoherent systems as well. Since such systems are less expen-
sive teo build this constitutes an important contribution to communi-
cation technology, especially in the field of relay communication where
the maintenance of phase~coherency requires special equipment at each
relay station.

The practical scheme presented in this paper was found to yield
better performance than what was possible with previous schemes. The
advantage lies not only in improved reliability for any given forward
and feedback average power constraints, but in the ability to tolerate
any finlte amount of noise in the feedback channel, Of course, increase
ing the noise progressively deteriorates the performance, but, unlike
the previous schemes, complete degeneracj never occurs, This 1s ime
portant in designing systems that carry on two-way communication, Here
each channel must fransmit information of its own in addition to any
feedback information for the other channel, Since the available power
on each channel must be shared between these two, it is certainly ad-
vantageous, if not essential, that the amount of power required for
feedback purposes be small.

An interesting question arises in this context. Perhaps the
essential advantages of feedback can be obtained even with asymptoti-
cally zero feedback power. If this were true, it would mean that both
channels in a two-way communication system could operate arbitrarily

close to capacity, and still galn the more important advantages of
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feedback, The basis for this conjecture lies in the observation that
while the rate of feedback transmission is R bits/sec, (for full feed=-
back, say), the average information communicated to the transmitter is
very small., With high probability the receiver always sends back a
correct initial.estimate. Since the average feedback information is
small, it would seem that the required feedback channel capacity should
also be small,

There is one more feature of the scheme presented in this paper
that is worthy of notice. It was found that increasing the number of
feedback transmissions serves only to increase the required bandwidth,
without any corresponding improvement in reliability, Although it
is strongly suspected, it is not known for sure whether this phenomenon
can also be expected when the ultlmate performance of feedback communl-

cation is determined.
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APPENDIX
DEGENERACY OF FULL INFORMATICN FEEDBACK AT RATES
- GREATER THAN THE FEEDBACK CHANNEL CAPACITY

Here it is shown that when ¢ < R < El’
2

full information feedback is inferior to communication with no feed-

commurication with

vack, Only the case N =1 1s considered:
N
B(e) = ) B(e|a,) B(a,)
n=1

= plela,) p(ay)

- P(é’\l."ésm\go?ésm’ﬁl%gm)P(go’ésm’V"}.'J.?écm)

X

1 sm)P(go%Sm’ﬁl#Gm)

= p(ﬁl;ésmlxl sm)p(ﬁl;écm|wlgésm)p(§oyésm).

(A.1)

P(Xliésmix:L:Sm):

According to decision rule D, it is clear that if ](yl,si)lz

> l(yl,sm)lz for some i#m, then % #s_ . Thus

PRy oy i xy=ay) 2 5 [yl > |yl

for same 1 % m ‘ xl = Sm) .
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But the right hand side may be regarded [9] as the probability of error
Ain comnunicating one of Ml = eRT messages over the phase~incoherent
channel using orthogonal signals and corresponding optimum receiver.

This is bounded below by exp {~T[CE(R/C) + o(1)]} , where € is the

capacity of the channel. In the situation of interest ¢ = ozicl .

et 2
( il % s l x, =& ) > e-T[CXlClE(R/CXlCl) + o(1)] . (A.2)

1-p(#y =0 |w #£a )

b=y
=>
'_l
e
qQ
B
=
.
Q
=]
p —
1

' 2
> 1 . o~T[C2E(R/C3) + R + ¥°C5]
where the bound follows from (2.1la), Thus
p( Wy fo |w fo )=1 . | (4.3)

p( 8, # s, )¢

The same argument as for p( Wy # s, \ X, =8 ) applies here

'too, except that C =C; :

» > o~T[CE(R/CL) + o(1)]

o 5, # s ) (8.4
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Substituting (A.2) - (A.4) into (A.l) yields

' 2 2
ple) > e-T[ochlE(R/alCl) + ClE(R/Cl) + o(1)] . (A.5)
It will now be shown that for large T
G o= (1L+a°) ¢
1 SRE

This will follow fron

2
PPy

1 =5 3 p(re~tr)

if it can be shown that p(re-tr) -1 as T = |,

In section 2.3 it was shown that
p(re-tr) = p(A) + p(4,) .
But

p(4,)

I
=
=
)
“Hw
Q
=
-
]

oy ) (8 =5 )

il
o]
N

=
l-_l
N
Q

0, ) [-p( 5, # 5, )]

[
H

> p( ¥y Fop v =0 ) [1-e~TC1E(R/C1)
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Now

|
Q
~
1

” a 2.2 2
B(hy £ oy I =0, ) = 3 1Go)l% s 32 > (a0,

for some J #m ’ Wl=0m)

)%

p( (23,9017 > [(zy,0)17

for some j #m ‘ WJ_:Gm)
which is the probability of error in communication over a C2 - capacity
phase-incoherent channel using block orthogonal signaling and corres-
ponding optimum decision rule. Turin [12] has shown that when R > C,

this approaches 1 as T -« , Thus if 52 < R < Cl 5

plA) » L as L-o= .

Also
p@a,) = (W Fo,, 8 #s,)
= p( 8, #s,)

which approaches 1 as T-« if R > C Thus

1 .

p(re-tr) -1 as T - if R > (—32 5
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and it follows that

P
= 2 1
P, - (1 + al) 3= s To® ,

Thus making the substitution 51 = (1+ ai) ¢, in (A.5) yields

O‘i - 2\, 2= 1 . 20
p(e) > exp(-T ;:;5 ClE[R(1¢al)/alCl] + I;;E ClE{R(1+al)/Cl] + o(1)] 7.
1
(A.6)

1#&1 o o
But 5 > 1 and l*ai > 1 for any al . Thus
"
1

E[R(L40})/ofC,] < E(R/E))

and

BIR(1+5)/C) < E(R/E)) ..

It follows that

ple) > e—T[élE(R/al) + o(1)]

Cn the other hand, the probability of error obtainable with the

same average power expenditure, but without the use of feedback, is

pNF(e) < e'TaiE(R/él)
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