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ABSTRACT

The viscous hypersonic flow past an axisymmetric blunt-body
is analyzed based upon the Navier-Stokes equations for a perfect gas
having constant specific heats, a constant Prandtl number, P, whose
numerical value is of order one, and a viscosity varying as a power,
w, of the absolute temperature, as the free-stream Mach number, M,
and the iree-stream Reynolds number based on the body nose radius,
R, go to infinity, and € = [(y-1)/(yt1l)] (where Y is the ratio of the
specific heats}) and & = [l/(y~1)h42] go to zero.

Through the use of strict asymptotic expansions, the behavior
cf the flow in the three distinct regions that comprise the interior of
the "shock structure" is found, as well as for the one, two, or three
regions that make up the "shock layer" depending on whether the quan-
tity R6” is equal to O{1/€), equal to 0(1/65/2), or greater than 0(1/65/2),

respectively.
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I. INTRODUCTION

This paper is an analysis of the viscous flow past an
axisymmetric blunt body in a steady supersonic uniform stream
(2s illustrated in Figures 1 and 2), with special emphasis on the
flow in the stagnation region. The analysis is based upon the
Navier-Stokes equations for a perfect gas with constant specific
heats, a constant Prandtl number, P, whose numerical value is
of order one, and the viscosity varying as a power, w, of the
absolute temperature, when the free-stream Mach number,

M= Uoo/me—OO—, and free-stream Reynolds number, R= pooUoo a/poo,
go to infinity and the Newtonian parameter, € = {y-1)/(y+l), and
&~ {1-€)/2¢ 1\/[2 go to zero.

This paper is the second by the author on the subject of
the solution of viscous hyperscnic flow problems by means of
singular perturbation techniques. The first (RUSH, [1]) deals
with the structure of a one-éimensional steady shock wave when
M - oo for the same conditions as prescribed in the above para-
graph except that € was fixed, P was 3/4, and the viscosity
obeyed the Sutherlanc law. Further, the ideas of this previous
analysis can be carried over intact to obtain the structure of
the detached shock wave that is supported by an axisymmetric
blunt body in a steady supersonic uniform stream when M and
R - oo such that Mzm/R -> 0 for the same conditions except
that € is fixed and P is 3/4. For this limit, the flow in the

shock layer, the region between the shock wave itself and the
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body, whose thickness is a sizable fraction of the body nose radius,
a; must be found by solving the full inviscid equations of motion
on a compuLer (cf., ©.g., VAN DYKIE, [2] ). In this papcr, since
€ = O, the shock layer is thin {i. e., the shock layer thickness
divided by the nose radiué is Ole )wO),' so that, in addition to the
flow in thc shock itself, the flow in the shock layer, at least in
part, is determined analyticaliy. As far as its treatment of the
shock layer is concerned,this paper, then, is an amplification

on the work done by CHENG, [3].

In the hypersonic blunt-body shock structure problem it
was found that, as M and R=roo with € fixed, there are two regions
to the shock structure where the behavior of the flow quantities is
described by two distinct sets of asymptotic expansions. The first
of these two regions is the very thin outer region, whose ratio
of thickness to body nose radius is O(1/R)}—+0. The orders of
magnitude of the flow quantities in this region are those for the
free-stream. The second region is the relatively thicker inner,
or principal, region. The thickness ratio of this region is
O(Mzm/R)-—h 0. The velocity components and the density here are
of the same order of magnitude as in the free-stream, but the
temperature and pressure in this region divided by their free-
stream values are O(Mz)——-roo. These two sets of asymptotic
expansions for the shock structure are shown to be the correct

ones by proving that the expansions for the outer and inner regions
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and'the expansions for the inner region and the shock layer match
in intermediate regions of common validity..

For the préblem posed in this papcr, it is found that with
€ = 0 there are not two but three regions to the shock structure
and, hence, three distinct éets of asymptotic expansions are
needed to describe the behavior of the flow quantities in the shock
structure. The first of these three regions is the outer region.

It is essentially the same as the outer region in the € -fixed
problem in that the region's thickness is O(1/R)=0 and the orders
of magnitude of the flow quantities are the same as in the free-
stream. There must be two shock structure regions interior to
the outer region in the € —0 problem rather than just one,as in

€ ~-fixed problem,because, while there is no single distinguished
region whose set of asymptotic expansions will match to both the
expansions of the outer region and those of the shock layer as

€ =0, there are two distinguished regions, called in this paper
the middle and inner regions, whose sets of expansions permit
complete matching (i. e., outer region - middle region, middle
region - inner region, and inner region - shock layer matching)
in the limit as € =0. The middle region has a thickness ratio,
{a/a}, which is O(l/R«Sw)ﬂ—O,and in this region the velocity com-
ponent ratios, {u/Uoo } and {V/UOO}, and the density ratio, {p/poo},
are all O(1) but the temperature and pressure ratios,{T/Too } and

{p/pm}, are O{1/6)—c. For the inner region, {d/a }, the thickness
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ratio is Ofe /Réw}—--{). and, as to the flow quantities in this regior,
{U’/Uoo} is Of1), {V/Um} is Ofe }»0, while {p/poo } is O(1 /e }=ro0, {T/Too}
is O{1/6)}—~cw and {P/Poo} is O(4/e §)}—co,

It should be pointed out that, in solving for the flows in the
different regions of the shock structure, therc are quantities in each
region whkich cannot be found until the solution of the flow in the region
just interior to the given region is known. This means that the flow
in the shock structurc is not completely known until the flow in the
shock layer itself is known.

The shock layer has a thickness ratio that is Ole )=+C and the
magnitudes of the flow quantities in this layer are the samec as those
in fhe inner region of the shock structure. In the shock layer equations
of motion, the ratio of the viscosity and heat conduction contributions
to the inviscid contributions is K, which is O(1/e R6%). Thus, if K—0,
then the shock layer is an inviscid one, where the (irviscid) Rankine-
Hugoniot shock relations as M-+oo and € =0 (¢ Mznroo) are the proper
boundary concitions at the outer edge of the layer (cf., CHESTER,[ 4]
and FREEMAN, [5]), On the other hand, if K is O(1) (since the thirc
alternative of K—co is ruled out as not being physically realistic), the
shock layer is a viscous shock layer and the matching of this viscous
shock layer with the inuer region of the shock structurc shows that
the proper boundary conditions at the outer edge of the viscous shock
layer are not the Rankine-Hugoniot shock reclations but, rather, are

the ones given by CHENG, [ 3], ia which the heal concuction ard



-5-

V.is'cosity terms right behind the shock are important. In the termi-
nology of HAYES and PROBSTEIN, (7], this viscous flow regime
just described is the "incipient merged layer" regime. It cannot

be e'mphas_ized too strongly that the inviscid shock layer equations
must be solved using the inviscid outer edge boundary conditions, and
the viscous shock layer equations must be solved using the viscous
outer edge boundary conditions. This rules out the "viscous layer"
regime, introduced in Ref. [7], in which the viscous shock layer
equations are solved subject to the Rankine-Hugoniot relations at the
outer edge.

It should be noted that, since the ratio of the shock wave thick-
ness to the shock layer thickness is O(K), thec shock wave is much
thinner than the inviscid shock layer but has the same order of mag-
nitude of thickness as the viscous shock layer.

The complete gsolution for the flow in an inviscid shack layer
is already known; it was found by CHESTER, [4], and FREEMAN, [5],
in terms of modified von Mises variables. The complete solution is
also presented in this paper, but in terms of modified Crocco varia-
bles, because these variables are found to be the most suitable for
treatiﬁg the shock layer and the sub-regions of the shock layer.

The complete solution for the flow in a viscous shock layer is
another story, however. Due to the complexity of the partial differ-
ential eqﬁations of motion for such a layer, their solution can be brought
about only after a large amount of time on a computer (and this was not
felt to be advisable at this time). However, due to the geometrical
symmetry of the problem and the‘ fact that the partial differential

equations are parabolic in type, the flow in the vicinity of the axis of
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symmetry is found bsr solv.i_ng a set of ordinary differential equations in
modified Crocco variables. For the special case of w =1, these ordinary
differential equations uncouple to such an extent that their solutions can
be found in terms of tabulated functions, as CHENG, [3], was the first
to show. For a genecral value of w (e.g., w = 3 is the value predicted by
kinetic theory for hard sphere molecules), one must resort again to the
computer. The results of such a computer solution are presented for
w=2, P=3/4, and a wall temperature that is zero. In addition, an ap -
pProximate method, which turns out to be quite accurate, is also presented.
When the inviscid shock layer is solved (with {u/Um} = Of1)),
it is found that the solution is non-uniform at the body surface. To
remove this non-uniformity it is necessary to introduce a correction
sublayer imbedded in this inviscid shock layer in which the order of
magnitude of u is some small fraction of U,- The proper correction
layer is the one for which the thickness ratio is 0(63/2)"’ 0, the
velocity components, {u/UOD} and {V/UOO}, are O(E%) and O(EZ),
respectively, and {p/pw} is O(l/€) — o, {T/Too} is O(1/8)>00, and
{p/pm} is O(1/€8) — . The existence of such a correction layer is
verified by showing that this layer matches with the inviscid shock
iayer. The ratio of the viscosity and heat conduction contributions
to the inviscid contributions in this correction layer is D, a quantity
that is O(Es/zRﬁwi-l, Therefore, if D — 0, this correction layer is
inviscid, but if D = O(1), then the correction layer is viscous. In
the terminology of HAYES and PROBSTEIN, [7], this viscous cor-

rection layer is the "vorticity interaction" layer. The reason
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for this designation is the f'ollowing:. the equations for the viscous
correction'iayer are the same as those for the classical boundary
layer, but the boundary con&itions differ in that, at the outer edge
of the viscous correction layer, the vorticity {(or shear), which is
a vanishing quantity in the boundary layer, is a nonvanishing quantity.

- The complete solution for the flow in the inviscid correction
layer is presented in terms of the proper modified Crocco variables.
Again, invoking the geometrical symmetry and parabolicity of the
partial differential equations arguments, the ordinary differential
equations and proper boundary conditions for the flow in the vicinity
of the axis of symmetry for the viscous correction layer are derived,
Né exact solution to these ordinary differential equations is presented,
although the expansions of the solution for small and large values of
the independent variable (i. e. expansions for ncar the wall and near
the outer edge of the layer) are given,

The classical boundary layer that is imbedded within the inviscid
correction layer is the last region discussed. For such a boundary
layer the thickness ratio is O ‘e %/Rém)ﬂ(), and the flow quantities are
{u/UOO} = Ofe %)&*0, {V/UOO} = O 'e S/Z/Rﬁw)w(], and {p/poo} = O(1/¢ )=+ oo,
{T/Tm}=0(1/6)e-roo, and {p/poo}=0(1/e §)-+co. The stagnation line
ordinary differential equations are derived, but again no exact solution
of the equations is presented, since solutions of the hypersonic boundary

layer equations have been covered quite thoroughly in the literature.
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The orders of magnitude of the shear and heat conduction at
the nose of Ithe body in the viscous shock layer, vorticity interaction
layer, and the boundary layer are examined. In the viscous shock
layer and the vorticity interaction layer the shear is of the same
magnitude but less than the shear in the boundary layer. _As far as
the heat conduction isrconcerned, it is least in the viscous shock
layer and most in the boundary layer and between these tﬁvo extremes
in the vorticity interaction layer,
Since there is suvme doubl as Lo the range of applicabilily of
the Navier-Stokes {N-S) equations, especially when it comes to describ-
ing the structure of the shock wave, there is some question as to the
nllea.ningfulness of the answers obtained by an analysis such as the one
performed in this paper. A sufficient {but not a necessary) condition
that the N-S approximation be valid,is that the ratio of the Burnett to
N-8 tecrms in the Chapman-Enskog cxpansion of the Boltzmann cquation
should go to zero, This test is applied to the results of the analysis
and it is found that all three regions of the shock structure and the
viscous ehock layer do not satisfy the condition, The outer region
fails to satisfy the condition due to M—o0 while the middle and inner
regions and viscous shock layer fail to meet the condition due to ¢ —0.
However, LIEPMANN, NARASIMHA, and CHAHINE,{9 ], solving the
Bhatnagar, Gross, and Krook (B-G-K) model for the Boltzmann equation
for the plane shock structure (¢ fixed), have shown that this method

reproduces the N-5 solution in the downstream region of the shock which
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includes the middle and inner regions introduced in this paper but
tends to a different solution in the upstream.(or outer) region.
The-refore, since the Burmnett to N-S5 ratio going to zero is only a
sufficient condition and the Burnett equations are, themselves,
open to some doubt, and since the B-G-K kinetic theory results
for a similar problem indicate that the N-5 equations may be valid
over a wider range than was, at first, thought, it is felt that the

results presented in this paper may, indeed, be meaningful,
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I, EQUATIONS OF MOTION

Consider an axisymmetric three-dimensional body as shown
in Figure 2. The orthogonal curvilinear coordinates, or "boundary
layer" coordinates, with the body surface as the reference surface,
are: X = the distance along the surface of the body measured from
the forward stagnation point, y = the distance normal to the body
surface, and ¢ = the azimuthal, or circumferential, angle. The

length element is

7= [ {1+ k(x)y}axd + T [ ay] + E’¢[{B(x)+v cos &(x)}dgl , (2.01)

X b

wﬁere #k{x) = the curvature of the body surface in the meridian
plane, positive for a convex body, B(x) = the body meridian
radius, i.e., the distance between a point on the body surface
and the axis of symmetry, and ®(x) = the angle between the body
surface and the free stream.

However, since, in this analysis, four distinct regions
are considered, each region farther away from the body than
its predecessor, and it is necessary to discuss each region

separately, it is convenient to introduce the coordinate trans-

formations:
CE=(x/2) =x, m = (y/a) - Y(x/a) =y - Y(x) =y - ¥(¢),
o _ 1 s} ' o g _ 1 0
7% - 3 Lz - V& 5l ey 3wy

(2. 02a)

(2. 02b)
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where a = the nose radius of the body, and Y(£) = the non-
dimensional "measure" of the thickness of the regions between
the -body- and the region under discus sion. At the same time, it
is useful to introduce the non-dimensional curvature of the body

surface and body meridian radius, defined by:
k(x) = &(€)/a ; B(x) = aB(g) (2. 03)

If the velocity, pressure, density and temperature are

q=eXUOOu+eyUoov,p=p00p,pzpoof)’,TZTOOT, (2. 04)
where Uoo’ o Poo? 'I‘OD = the free stream speed, pressure,

density, and temperature, andu, v, p, p, L =the corresponding
non-dimensional velocity components, pressure, density, and
temperature, then the non-dimensional equations of motion in
the coordinate system described 'xnay be written. The continuity
equation is

a(pv} 1 8(pu) Hpv , plUoin 8+ cos &) _
An ty et Tt = =0, (2. 05)
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The tangential Navier-Stokes momentum eguation is

~(E£+—QE Kuv 1-e 1 1 9

PAR % Y oan h 1te M2 1 3%

4 (_i+2? +cos@)( au Sk 1 E)
R 8n  h n E ox

2 1 9 — 2 8u —~— av usin & ~ v cos @

3 5o (& !_—1_*_{_8’55_"’“} i = ])

L

+28_m§(“ [li (4%} - Sm‘l’i"“%ﬁj :ﬂ (2. 06)

r 1 > T

(G & EYETL e ])

2 8 2cos®\/_ [ usin®B+vcosd |\
T £ =Ly ) R
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The energy equation is

~fu 8T — 8T\_ (_ ap 33_5>
F’(,H ax *Y an J i4e ax TV B

3T\, sin® [ 8T
T4 A% (h§§y = h A%

A
+ 2e M _%: H:a(_(?l + 2(1 {Bu ‘["E\T})Z

1-c an o
+2(Esin§+;cos'§ 2_1_(8;1— _IC_E_.].EEZ
= ) an h h &%
— _ o — . — o\ 2-
) % % a; +g8%:+.f_{ﬁx_r+a51n§?+wcos §) _U (2. 08)

The eguation of state, considering the gas to bhe a perfect one,
is

7 =7T. (2. 09)
The viscosity law for the gas is taken to be

= mgzumT“. {2, 10}
To shorten the writing of the continuity, momentum, and energy
equations, the guantities L, r and 8/8;:_ have been introduced,
To complete the systern of equations, it is necessary to define
these quantities, They are

d

h= 1+ k(T4n ), 7=B+(¥4n) cos 3, % = 5t - ¥ ( (E)gr - (2. 11)
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The parameters in the cquations, R, the Reyrolds number, M,

the Mach rumber, P, the Prandil number, and €, the Newtonian

parameter, are given by

— 4 —
R-meOO af 0,
MZ=p UZ/yp -+ oo,
P=Cp 'J.a)_/i‘(.coz O(i)’

€ =(y-1)/ (y+1) = © (2.12)

In order to obtair the above six equations, Egs. (2. 05)-

the bulk viscosity coefficient, pi, is zero; the specific heats

of the gas, p and ¢, and, hence, y=_.(?.. are constants; and

the heat conduction coefficient, k, is proportional to the

shear viscosity coefficient.
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III. THE OUTER REGION OF THE SHOCK
STRUCTURE

Upstream of the "shock wave", where the flow is
uniform, the flow quantities are

P=p=T=1, u=cos & V= - sin & . (3. 0L)

With the hypersonic normal shock structure as a guide post
(cf., Ref, [1]), it ie natural to postulatc that a rcgion should
exist in an outer portion of the shock structure adjacent to the
uniform upstream region which may be thought of as acting as
a very thin transition zone between the relatively cool free
stream and the hot major (middle) region of the shock struc~
ture. In this outer region one expects the magnitude of the
flow éuantities to be characterized by their magnitude in the
uniform upstream and hence, of order one. Thus, denoting
the quantities in the outer region by an asterisk, the velocity,
density, pressure, and temperature in this transition zone are

taken to be

E=-“Il] 2cos 34+ U +.ae (3. 02a)
oo

Ven = -sind+Bv4... (3. 02b)
(e 0]

“:Ffl 214 0P Fees (3. 02¢c)
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-=P o P¥ 4+ aes (3. 024}
pOO
T:Tl =T% 4 ,,. , (3. 02¢)
Q0

where a%, % and ¢% are functions of the parameters €,
M, and R, and their orders of magnitude are less than or
equal to one,

The coordinates x and y for this region are

x=E% , y=Mek 4 N YE (£%), (3. 03)
where M and A¥ are also functions of €, M, and R, The
thickness of the outer region is considered to be quite small
which means that N0, In addition, the thickness of the
region between this outer region and the body is also taken
to be small (A¥-+0) but, nevertheless, greater than the
outer region thickness so that (A% /A%)—0.

Thus, taking the above into account, as well as
remembering that € and 6=(1-¢€ )/Ze M2~—>0 while M and R=ro0,
the leading terms in the equations of motion for the outer
region of the shock structure (integrated, where possible,

using Lhe upslream boundary conditions) are

pr=(1+o¥p*) T, (3. 04a)

= : A ok ES
vk{1+0%p¥) - {pyrJo*sin® { ABf:f }gg* wE(140%p*)=0, (3. 04b)
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vk { )Ur- C\:’*

(L+o%px) [(-sind+ Piv¥) 5oz Y (cos@+ oruwk)ux]

1 ap'- W OVF
T
A*a* 1dy* 2 Bu*

%

(1 + o*p*) [(-sind+ J*v¥) 5 Bu {)\*ﬁ } % (cos &+ oFuk v

- { 1 }{Aﬁkﬂ*} dY* dp* _

I 40 E
o Lot aEw e = bt e (7 gow)

- 055 T a (T ] (. 049)

‘o sy DT 1 o BT
(L+ g% p¥) (-sind+t prvk) gog = {2x )5 e T+ go)

+{5*}{HR}T“’4<3"" { }cgg;;,

Am. 2 dY* Bu¥ dv*
-1 b3 ooF o ] - (3. O4e)

In order to keep the terms with the highest derivatives in the
momentum and energy equations in addition to the inertial terms, as
was demonstrated in the normal shock analysis, it is necessary that
MR = O(1)= 1 and also that (B%2/6), (0%%/6), (A#p*/ak), and (A%at/p%)

be less than or equal to O(l) and ﬁ%‘Mzz O(1). As a consequence of
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t hese requirements and 6~r0, it follows that ¢¥* and 3%~0.
Thus, in order to retain the density term in the continuity
equation, ¢* must go to zero sc that (e*/B%) = O(4)=1.

As a resull of the orderings introduced ir the above

paragraph, Eg. (3. 04) simplifies to

ph=T* , (3. 05a)

Nreg } dY*

v¥ - 2% sin @ - {7:- ut = 0, (3. 05b)

; 1
-v¥ gin & + {-——-———2} (La*-14)
B%M

@4 OvE o Akg¥y 4 dY¥ Bu¥ , |
™l 5w (Sl s 5] (3. 05¢)
o Qe e
wrsin 8- (A ) (BETY QX (e q)
B 5 M>
T 3u°r AkBk y 4 dYE vk L
=7 L - Y3 g el (3. 05d)
0T* 1 9 w 9T*
T sin @ = B W (T T
. {54,2 b s [4 (av*% (@*” ) dux,
5 3 e Y FEES

Axg*, 2 dY*  duk dv:
{ } 3 dEF g %?;z] . (3. 05e)
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Again using the normal shock (where, lfor P=3/4, B*~8)
as a partial basis; it is postulatéd that (a*/B%), (6*2'/6), and
(1/8 *Mz)wo, so that the préssure and dissipation effects in
the region are relatively negligible and the effect of the shock
wave shapéds differing from the body shape, i.e., dY¥/df%, is
also negligible, except, possibly in the x-momentum equation.
{These postulates are proven to be true in the section on the.
matching between this outer region and the middle region of
the shock struc.ture. } With these postulates and with a change
of independent variables from ( &, n*) to (§%, v¥), the system
of partial differential eguations of motion is simplified further

to become

ple=T% , (3. 06a)
pr=vi/sind , (3. 06b)
gi_: } %ﬁ :i :{Ag;ﬁ**}% %1; , (3. 06d)
ATE) 4R (TR1) L, | (3. 06e)
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Solving the partial differential equations, Egs.
{3. 06bc)s (3.06d) and (3. 0be), the flow quantities in the outer

region may be written as

pE(EF, v¥) = Sin"g ) , {3.07)
TH(g®, vi) = pH(EX, vE) = 14 THgnw T2 (3. 05, . 09)
> U N /3 * * ’IF °
wk(g¥, vi) = uar(ga-)v%e‘lr; _ {Aa}i } g; v, {3.10)
ik
/
rk{E%, vE) = - 4 [1+T(;"V4P’ 3] © @ .
A S 3 sin B(EF) m » (3.11)
vE(E¥)

where PS . u(‘)-l"‘ and V:;‘ are functions of £¥ that are determined
through the matching procedures that are discussed in

succeeding sections of the paper.
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Iv. THE MIDDLE REGION OF THE SHOCK

STRUCTURE

The next region downstream trom the outer region of

the shock structure is the middle, or dissipation, region of

the shock structure.

This region is a thin zone (but a thicker

one than the vuter lransilion zone) where the magnitudes of

the velocity components are still characterized by their magni-
tude in the uniform upstream region, but where the temperature

and pressurc and, possibly, the density are considerably greater

than they are in the freestream.

"tilde" over a quantity to set off this middle region, the velocity,

density, temperature, and pressure are

p=0pt...
T: 'éf—}'. LN ¥
p= Tpt. ..

~

where @, 0, and T are functions of €, M, and R. The quan-

tities are greater than or equal to O(1).

this region are

where AMe , M, R) and T\(e » M, R} both approach zero, No state-

The coordinates of

ment i1s made as to their relative magnitudes,

Therefore, choosing the symbol

(4. 01a)
(4. O1b)
(4. Olc)
(4. 01d)

{4. Ole)

(4. 02)
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From the above, it follows that the leading terms in

the equations of motion are

Lad H"E} [ d Ll
Pz{u-—-} e T,

~

~ ot ~ ~ - ~
e s B S SUL A J S
M am \Rg o 87
~ B - AT, 4Y 8p 7T\ 9p
81] oM d§ a”fl oM E
N ~ ~
= 22 (T By,
ARO an 8T
m8T (€7} Ry - (P03 40 glT
L= 55 Yl T e P!t )
E)’m 1 w 4 ,ov a3 2
A4 u

where 1?1(5_-;") is the mass flow function introduced by the
integration of the differcrtial equation of continuity.

In order to keep all three terms in the energy equation,
where the last term is the dissipation term, it is necessary

that D=0(1/6)=4/6—+a0 and X = O{1/0R6“)=1/o R §*~ 0.

(4. 03a)

(4. 03b)

(4. 03c)

(4. 03d)

(4, 03e)
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Further, in order to retain the complete equation of
state, /o 6 = O(1)=1. This mezins that the pressure terms
in the mOfnentum and energy equations drop out and the

system of equations simplifies to

§=Ef , (4. 04a)
5=, | (4. 04b)
~~ 4~ By _ =T
mv--= T gﬁ = Pn(g) s (4. 04c)
~~ > Bu =
mu- T — =F(§), (4. 04d)
o t
noT_ 1 8 me of) o (3 (ﬁ)z 4'(—8‘3—)21 (4. O4e)

where Tvn('é') and 'fzc('é) are momentum functions that result
from the integration of Equations (4. 03c¢) and (4. 034d).

As in the previous section, these equations are
most easily solved by employing a modified Crocco trans-
formation where the independent variables are changed

from ('é, ;) to (E, %), where

Vav - ("1511/51). | (4, 05)
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The partial differential equations to be solved in terms of

these new variables are

AC I 2 2 =0 0=3- (B,/m), (4. 06a)
oV v

4P
2 ( TR ~ 2
EN_’I; .3 8T & p[_‘;_- + (2% 7] =0, {4. 06b)
oV v a¥v av
P~ Nm
32 _ 4 ’E = 0. {4. 06c)
oV 3m v

Solving these equations, the flow quantities in the middle

region of the shock structure are:

~ e e e o~ 43
af £,v) =(B,/m) + u(£) [ v-(B /m)] ) (4. 07)

— N - . 4P/3
T(& v) = T(€) + T, (£) [ v-(P_/m)]

~ o~ e~ 2 ~ ~2 oW W ~8/3
- [P/ (3-2P)] [v-(Pn/m)] - [ P/2(2-P)] u [v-(Pn/m)] s
(4. 08)
(&, V) =m/~, | (4. 09)
plE. %) = (m/v) T(E, W), (4. 10)
o
WE ) = EF) + —2 g & (4. 11)
3m Yo [v-(P /m)]
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V., THE MATCHING BETWEEN THE OUTER AND MIDDLE REGIONS

OF THE
SHOCK STRUCTURE

In the preceding two sections, the postulated leading lerms
in the outer and middle expansions for p, u, T,y p, and y were
found in terms of the outer region and middle region variables,
(E£*, v*) and (g, ;), respectively, However, if thcsc outcr and
middle expansions are indeed valid, they must match in a region
of the shock structure that is intermediate to the outer and middle
regions.

The outer region expansions are of the "boundary-layer"
type. They have a certain behavior as the outer region or
"i)oundaryulayer" variable v¥—~00 which must match to the middle
region expansions as Y+ - sin & The l;natching can be carried
out by taking an intermediate limit of each set of expansions.

An intermediate variable is one which is not quite in either the

outer or middle regions, Let

v, = Hn2ty (5. 01)
Ay

where

-— i
Bl =+ 0 and Bl/ﬁ*wroo as 3% — 0, (5. 02}
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define the class of intermediate variables. An intermediate

limit is performed if §* — 0 keeping vy fixed. Thus,
~ hodihid

v o= - sin§+Bl vito- sin @

in the intermediate iimit., Matcking to O(1) means that
xim - {r -T i=(f), =0.
3% —r 0, Y fixed outer middle

Consider first the matching to O(41) for the density,

?. The intermediate limits of the outer and middle expansions

are
¢§-4+
7)) alla wl, V
D= * 0% = F‘%vqc = 11
p i+u. p +ll. 1+ W*‘av. i+‘-§‘i"n—§_ +--.
— * m ¢ m
Pqp'l'... = """‘W'_'l'nnl = ey +nno
(-sin & + { w+...)
- G m _ ﬂ'm}glvl +
- sin . 2 vee
sin” &
Therefore,

~ A

—_ _ g m
<p>i“1+—-é—i‘ra_§'+-lo

(5. 03a)

(5. 03b)

(5. 04)

(5. 05a)

(5. 05h)

(5. 06)
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Matching requires that

a=0(1} =41, m(f} = - sin &. (5. 07)

A further consequence is that i=(1/R6w) ard T=0=1/6.

The intermedizte limits for u are

u=cos®+ grur+,..

B3 R
_ . | A Axj3* dY® 1
=cos ®+ g% I_'U.g (—g';:;‘} - { TES } dEw (_B_.—)]+ s (5. 08a)
—c.or:@-i--—i;— u—‘(ﬁlvl) +... N
Byc
i;,t B .4/3
1_.1: — + u [V - n J + iee
m © m
= + u [- sin 2 -—-—I~3—+ﬁlv] e {5. 08b)
m m
The matching equation is
. s A~ 4‘./3

. B o/
-u [- sin & - o + ,31 vl] .0 = 0. (5. 09)
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The matching requirements can be seen to be

~

a* ~ — w . = oain?
—“_;5}"./3_ Oo(1)1=1, Pt—- sin® cos &, Pn sin” &,

w¥ (£%) = u (E). | (5.10)

Since a*/B*4/3 =1, g%/B% = 3*1/3 ~ 0 so that also
Ara*/B* — 0. This verifies one of the postulates of the outer

region section,

Looking at the temperature T, the intermediate limits

are

T=T* +... = 4 + T* wdP/3
Tg 451 « 4P/3
( v, ) +Il. (5. 11&)
~4B/3 1

(g#)*F/
_ ~ o~ 2 Pu- Vv
Te L4 = L[R4T ¥R/ B "% T g,

& [ o 1 3-2P 2(2-P)

1 - 4P/3 P(E“)z

-— fast T “ " v
=5 [T+T (B ) - AV ] 4., (5. 1lb)

3-2P

Inspection shows that matching to O{41) is accomplished if

j

P< 3, pr=0(s¥*) = 6¥/4F | T (E)=0, Trex)=T (E).
(5.12)

This means that, in the outer region, a*=61/P
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Finally, consider the matching for ¥, For the middle

and outer regions, the coordinate ““57 is written as

~

y=AM(E, VHAT(E). . . =hn(e, V)4 M(amhé/ﬂ;)] Fores (5.13a)
FENERR(EX, vE )} AETR(ER) 4, L.

=g, vt [ XA e G(0)] .., (5. 13b)

where rig, igard KLgLare the contributions to the normal
coordinate of the middle region of the shock structure, the
inner region of the shock structurc {which is discussed next)
and the shock iayer, the region behind the "shock wave" and
adjacent to the body, respectively,

Using Equation (5. 13}, the intermediate limits of outer
ard middle region expansions are

- y
y-?n_‘/-?\L_é/L——E-aé+ —1—1{.—4-

A=

Ve

7 % 4P/3
= _..-{j_ + ..l_ [— 4 S (1'T:§V’ / )wdv ] +
r§©@ R 3 sin @ Yy v LR
o
*  4P/3
9, By
; S L - ] v
lf 1 4 o RE
= =ttt lmeme T4. ..
R&® R 3 sin® )
Hexr Xe
—2
A
. o o 4Pw/3 _
= — | _(/““ oo Byvy) S U {5.14a)

K&
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_-‘\ — =j_
TR A = ..
Ré&
v o~
_ 1 i - 4 T v +
3sind v+ sind v

w
Ro -sin®
~ oW
I U R (G. ;,)41303/3 + (5.14b)
R&% Puwsind 171 e :
Thus, the expansions for y match to Of1) if
Lig) = Y& - (5.15)

With the information gained through the matchings just com-

pleted, the flow quantities in the outer region may be rewritten as

— /.~ 4/3 1/4Py ¥ _ |
u=cosd+ 6/ [uo v / -{€e/8 / }E-E,Tvk]-f . o« 5 {(5.16a)
T=1+T v Fuee, D=1+ flv*4p/3+.., , (5.16b,c)

{v¥/sind) + ... , {5.16d)

;' (KL‘gL+i'[/+E.6%-)

- v (l+f v4P/3)m v -
: —]:— . - 4 S‘ l .E+ > * 0 (5 160)
R { 3sind v ] ! ‘
vk
QO

where the result that A* = ¢ has been anticipated., Iurther, it should
be noted that, since Eq. {3.04) is invariant under the transformation

¥ {m* + constant), one should not expect to determine vé‘ .
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The flow quantities in the midéle region are

u={cosd+ Eo(sin§+ ;)4/3 e (5.172)
T = % [f (sin® + v)4P/3 - 3_E2)P {sind + ;)2
Pu : - 8/3

- W(SIHQ‘F V) ] + ... N (5.17]3)

P = (-sin®/¥)+ ..., (5.17¢)

p=% [(-sind/v) T] + ..., (5.17d)

;

= 'I' “ay

y - B g ¥ Kf/)_ [-(/ 3smi) 5 sin® + v I+ ... (5.17e)
-sin®

A few loose ends concerning the orders of magnitudes of parame-

ters in the outer region may now be taken care of by showing that the

assumed orders are the correct ones. It has already been shown that

(e /6+*/%) = 1 s0 that (@ /B¥) and ( A% &% / B%) go to zero. The quantity

(8*2/6) is equal to O(Ba') where a = [(—g— ~ P)}/P)I>0 since P« 3 and,

hence,

2
(32‘2/5) and (0% /8) go to zero.

The two remalining parameters and their assumed behavior are

pem? = 6374 M2 - e3PV EP sy (5.18a)
i‘..z*ﬁ - ¢ /5" *F< oq). (5.18b)

These relations imply that
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€ << 0(6(3—4P)/4P) ’

¢ < o(s1/4Py |

In order that Eq. (5.19) be satisiied it follows that
61/49 s 6(3-—4P)/4P
or, since & is going to zero,

Pz

W

Therefore, in order that the matching may be accomplished it follows

that the condition on the (constant) Prandtl number is

(5.19a)

(5.19b}

(5. 20a)

(5. 20b)

1 _
s> $P<3/2 (5.21)

However, if ( A%f* /o) = O(1), the upper bound, then the restriction

on the Prandtl number is

1

§-< P <

oo w

The question now arises: 3Since the outer region is of the
"boundary-layer" type, can the outer and middle regions problem,
as formulated, where the uniform upstream conditions are reached
as N* >~ w, be replaced by a middle region problem where the uniform
upstream conditions are actually reached at a finite vaiue of the
space coordinate Fﬁ , and where, upstream of this point, the flow
quantities are constant, leading to discontinuities in derivatives at

this point ? This question can be answered in the affirmative.

. (5. 22)
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As 71-** g, the outer edge of the middle region, u — cos &,
v — -sin 2, ; — 1, which are the uniform upstream conditions.
F‘u.ft_he'r.‘, as :1' — &, % and I; - 0, which are the proper uniform
upstream values, since the middle region is a high temperature
and pressure region in comparison with the uniform upstream
regjon. For a more complete description of this viewpoint the

reader is referred to the work of SYCHEV, [8].
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VI. THE INNER REGION OF THE SHOCK STRUCTURE

The inner region is the thin, dissipationless transition zone
between the middle region of the shock structure and the shock layer,
the region behind the "shock wave". In this region there is a de-
crease in the normal velocity, v, and a corresponding increase in
the density; the temperature remains high; and the pressure gets

even higher. Denoting the quantities in this region by a circumflex,

one has
T=WE)+aut ..., a=ale,MR)<O(), (6. 01a)
v=3vt ..., BlE,M,RK<OQ), (6. 01b)
PEopt ..., o€, MRP>0(), (6.0Lc)
T:%[@(én 8T+ ...] , 6(e,M,R)<O(l), (6. 01d)
P=apt ..., mle,M,R)>>0(1), (6. 0le)

o~ PE

¥ = an+ AY(E), A{e, M,R)}<O(L),
Ale, M, R)<<O(1), A/A<O(l) . (6. 0Lf)
The leading terms in the equations of motion are

p={o/16} o, (6.02a)

plv - {2y W+ aa)= 5V = m(E), (6.02b)
B at
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-{ }pfc{W+au) = 2{=5} {ﬁ} op

B'n B” p ¢ am
N SN a(hwav)“{ﬂ}%gzﬁar(&w%)
BARE L2 an  om B a¢ dn  an
X . 7+ Qa)si :
MR A (W+Qujsin 2 ])] , (6. 02c)
3 an dg B
m 2 (A wran W e ynbyd¥ %
an ap 4ag ag o dE ony
=-T}—w[[i’:(3“8—2}-{i‘;§}%d7—a,($“£)
SBARS an B o d€ an amn
;\ b AW— 1 -~ 1
-{= = (% fc[W+au])Jl ) (6.02d)
o 9n
BT, (A} hwean) 29 2EyaE )i B
an of dE 6 o o1
L L0 3ell) (hydY it o]
a-BXR& an on 8 dE an

o

S {B }«9»0’ ]:z( ) + z{ }([ ] +[(W+au)sm§] )
oBAREY B : 371 ;J, &, 5

- - - 2
Pl A rwy
B on B

2-
|2 arv+ {h}[dW (W + qu)sin D) ]| , (6. 02e)
o B df B

where the shorthand notation ¥= ® T 6'f has been employed.
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In order to retain the complete equation of state, {7§/c)=0(l)=1.

If the magnitude of the dissipation term is to be negligible compared to

that of the heat conduction term in the energy equation, then ﬁz,aa,

;\2<< o+ 0. It is postulated now (and verified in the matching later)
that a = & = 6<<e%, (i/a)«o(l), (K/e <1, i = O(E/;Rﬁw)fa/;Rﬁwu

With these postulates, just the normal pressure gradient term re-
mains of the left hand sides of Eqs. (6.02c), (6.02d), and (6.02e) and

the equations of motion become

l; = ;® s (6.03a)

PV - {g‘}gms oV = m(£), A/B<O) , (6. 03b)

z%@ _g_®w§% Gy (6. 03c)

i @wg‘iz ﬁt(g) , (6.03d)
n

] @: 38%= E(E) . (6.03¢)

Changing the independent variables from {£,n) to (§,V), the

solutions of these equations are

p(E,V) = =)

—_ (6.
v

SE.) = mEed) (6

=) 3

v

04z)

. 04b)
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~ A .y

a(E,V) = u(E)

APE) oo o e
- iﬁ [[Zm (EYB(E)-P_(E)V -2m (E)6(E)log_ |2m(E)®(E)-E (E)V |
3PE(E)
.. 4PE) ...
= u_(§) - == [F(E, V)1, (6. 04c)
3P2(E)
T(E, V) = 'fo(é) - 45’3(?) [F(E, V)] , (6. 044)
3PA(E)
- s ~ m Py - -~
(V) = LE) + :‘1’22(‘5)’ [FE VI . (6. 04e)
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VII. THE MATCHING OF THE MIDDLE AND INNER
REGIONS OF THE SHOCK STRUCTURE

In the previous section on matching, it was shown that the outer
and middle expansions, to be valid, must match in a region that is
intermediate to both the outer and middle regions with respect to v.
The matching of the middle and inner regions is, again, done with
respect to v. The middle region expansions, as \7“) 0, must match
to the inner region expansions, as ]fr [ —+ oo. The appropriate class

of intermediate variables for this matching procedure is

¥, =L where B,~0, === as 0. (7. 01)
5, p

-~

In the intcrmediate limit, (i.e., §—0, ‘;2 {fixed}, v and v are

2‘;:“2 T, 4 ... =0, (7.02a)

I

v=4% %, .. >wm. (7. 02b)
&

To perform the matching to C(l) means that it is necessary to find

lim

f -z = fy=
5> 0,%, fixed Friddie ™ Tinner ()= 0- (7.03)
rra2

The first and simplest matching is that for p, the density. The

quantity {(p) , i8

(3>2=[-:.§i—f.—§+---]-[;5..m +...] =0. (7.04)
Pava Py
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Density matching thus requires

c=O0O(/p)=1/B, m= - sind. (7.05)
The u matching equation is
~ “r P
(u)z [cos® + u. (sm§>) 4/3 + %uo (sin@)l/3 ;32 vyt .]
P
S (wrs =BV, .00 =0 (7.06)
Pn
Therefore,
~ . 4/3 e ~ . 1/3
W = cos® + u (sin@) / . Pt/Pn =u, (sin®) / (7.07a)
A more useful form of this equation is
~ cos@&-W t cos®-W
T = - y S o e—m— (7.07b)
o (sin@)éig PL sin®
For the temperature T, one has
~2, . _.8/3
. 2 Pu (sind)
=y o1 g . 4P/3 P(sin®) o)
(T), =5 T} (sin®) " 3Zp T T TTTIECE)
- ~2 .. -.8/3
B,V L 5)4P/3 2P(sing)’ 4P u, (sind) '
Eind® mn B % - T 3(2-P)
- e 4 - .
—%[@*rﬁzvaP;E-—-r...] =0 . (7.08)
n

Thus, there is matching if
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~2, . .8/3
® = F. (sing)*F/3 . P(sing)® FU (sin®)
= 4y sm 3-2P 2(2-P) ’
ﬁ 1 smzé 1 2
; = - -5 [ > - ®)+ > (cos@-W)™] . (7.09)
n

The final matching is for y. The y matching equation is

PR 4 @ e B*

(Y>2 [{y 3&11@5 sin@-l-x"f}"? . 2 p2v2+6 QF]

Ssind sin 2
- W 22 A
- '1w -EQ%—@— 52‘{?2+‘3?L+..,] = 0. (7.10)
RrRs“ P
Therefore
0

B=0€)=¢ P_=sin“d y_34_ S dv_o-=¢ (.
sin® B+
—sind sSin v

From the above conditions, it can also be seen that

P | - € 1 - 1
o= B=-.-==B=E,—:—=——-->03,1T=«-——,
- F}2 € €5
N = b zem=e'i—>0,%=i—>0,
0‘€R6 R&
- o sinzé

P, = -sin® {cos2-W), E = - sind [ { - @)+ %—(cosé-W)Z]. (7.12)

2

Using the results of this matching, the equations for the inner

region can be written as



—4]-

w-a - smi’{co’jé—W} (y-"‘f]) , (7.13a)
@
T=T, - IS82 (3 ‘s ®) + 3 (cosa-WS] (/-7 , (7.13b)
®
L2 0 ind 2 3 sin’@
|sin“8 (V +Sm§) | = exp[ 3= (V+ slns'l}) ;"lﬁu (9 , (7.13c)
p=-22 o Gemd (7.13d, e)

v v

This is the form of the equations that is the most useful in the sections

which follow.
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VII. THE SHOCK LAYER

The region between the "shock wave" and the body, called the
shock layer, both viscous and inviscid, has been the subject of much
discussion and the orders of magnitude of the flow quantities have
been correctly determined by CHESTER, [4]. and FREEMAN, [5],

to be

E:uL+..., (8. 0ia)
x_r=EvL+ e, (8. 01b)
-1

p :e_ pL+ . N (8001(2)
— 1 .

T=§TL+°"’ (8. 01d)
— 1

P =% pL-l' e (8. Ole)

The normal space coordinate is

y=éng . (8.02)

The leading terms in the equations of motion for the shock layer are

Pr, = Py, Ty, (8.03a)
BPL l BV Sln§

5 5 BuL
. (§§+ san )(TL 31‘% )]] , ‘ (8.03c)
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du Bu 1 5 © BuL
= . . 0
| 9T, BT ! o 9T, du, 2 |

The shock layer is inviscid for K = (1/&R6m)<<0(1) and viscous for

K = O(1). Since theinertial terms in the energy and tangential momen-
tum equations must be retained and, thus, K cannot be greater than
O(l), and the right-hand side of Eq. (8.03c) must go to zero. This

means that the equations to be solved are

pr, = pp,Ty (8.04a)
—E (B PLY) t 5 (B PrYvy) =0, (8. 04b)
2 zzi -k ppu; =0, (8. 04c)
pL (uL%ugI:‘Jr VL%)-KE%(TI‘f %) , (8. 044)
S "L%%“K[éﬁ”ﬁ;%’ T“’(zu )1. (8.04e)

It should be noted the ratio of the thicknesses of the middle region of

the shock structure and the shock layer is

%:1/12.5 __1 - K. (8. 05)

L ER &

Therefore, if the shock layer is inviscid, then the thickness of the

"shock wave" is much less than O(€a). However, if the shock layer
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is viscous, then thicknesses of the "shock wave" and the shock layer
are of the same magnitude, O(€a).

The boundary condition.s for the shock layer, in part, must be
determined by matching between the inner region of the shock struc-
ture and the shock layer and; hence, this matching must be examined.
The matching in this case is with respect to y. The intermediate
region is the zone that is just interior to the outer edge of the shock

layer so that the appropriate class of intermediate variables is

egL'y -
n = ——= : M>0,
A
* % . % AR&”
where — == =0, —= - o as ek, G/Rﬁw—>- 0. (8.06)
A€ FTTE |

- -~
In the intermediate limit {i.e., A=0, ?1’ fixed), n and n;, are

- ‘KRw
o )
ns= - 66 nt ... > -oo, (8.07a)
bt
— _ MM
n, =Y -t Y (8.07b)

The equation for matching to O(l) is

lim > - =
finner - flayer }-(£>3 = 0. {8.08)

-

L o
A =0, n fixed
The u matching equation is

->u
(T), = [W _%_i ):an Sm@f(;zsé-w) tood] slup +...] =00 (8.09)
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For the viscous shock layer where K = O(l), since ‘}Z/E -0, it is clear

that

o (. YN, e = [WIE] : (8.10a)

Visc

where [W(£)] is yvet to be determined. For the inviscid shock layer

visc
with K— 0, the requirements for matching are not quite so clear.
However, since K czn go to zero at an arbitrary rate, in order that

ug be finite, it is necessary that

lu (&, Y, = [W(EN,, = cosE(E) . (8.10b)

The temperature matching yields

nibig 2
An Psin® sin @ 1 2 .
= e {{ 5 - @)+ 5 (cos &-W) Yol

(Ty=5l0-g

%—[TL+...]=0. (8.11)

Employing arguments that parallel those for 1, the boundary conditions

for TL al the outer edge ol the shock layer are found to be

2
[T .Y, =loE], =382, (8.12a)
[TL(E.,_Z/L)] visc = [@{g)]visc , to be determined. (8.12b)

The matching for v is interesting. As was seen in the previous

o o~
section, the expression for v({§,n) is
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3
.2 M - 8in® 3, 2@ 3 sin~ & I
| sin "2 (V+ sin@) | = exp ]-8212:‘) ¢ sm@) Olh-m (y"ﬂ}]
- A
R A 8.13
(V v - {= }—g W) . ( )

The intermediate limit of this equation (since A = LL =3=€, Y= é/L) is

26 3 sin°® WR§Y

. Dy g N -
Ism & (V- sintﬁ)l_ exp [ - B Ol+u z ne .. .] 0. {8.14a)
This means that
dy
s 2@ - L _ 2@
V—--sin§+..., V—E—W Siné-l- .o . (8.14b)

-

The condition for matching between the inner region and the shock

layer is given by

d .
(Ph=e[g2 W - 22+ ... -e[vy+...] = 0. (8.15)
Hence,
ay
[VL(g’-(/L)J iy = ~Sin@+ _&_EL— cosd , (8.16a)
g Y
[VL(g’gL)]ViSC = _“g“gl“‘“‘"‘é"]' '—d—é W . (8-1.613)

Since the matchings for p and p follow directly from those for
T and v, the boundary conditions at the outer edge of the shock layer
for Py, and Pp, are presented now, omitting the intermediate steps.

They are
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2

Lo (6 Sy ) sy =1 Do t6 I i = P (8.17)
. sin“®

[pp (€. Y, =[P &Y, =25— . (8.18)

The last step in determining the boundary conditions at the
outer edge of the shock layer is performing the matchings
(85/8-3}'):5 = (BT/B?):j = 0. In the inner region of the shock struc-

ture these gradients are

o2, o g Hnfleost W), (8.19a)
By L 1] o
a_‘.'f: —La & _?.__ri‘ 4
5 N on
1  Psind [, sin’d 1 2
" ER — [( > -®)+§(cos§-W)]+... {8.19b)
®
In the shock layer the gradients are
E’El_aruiT @:1BTL+ (8. 20)
oy ¢ L 5y €0 9
Therefore,
() aU'L
K@ [T(ﬁ,,ﬁ/ }} = sin®(cosd -W) , (8. 21a)
1, L

() 2
E%—" [Bn (&, _é/ ) = sing| n 2 @} + %(cos@—W)Z] . (8. 21b)
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It must be noted tha.t. the inviscid boundary conditions are exactly the
leading terms of the Rankine-Hugoniot relations as € and & both approach
zero. The quantities gL (for both the viscous and inviscid cases) and

and ®vi are found by solving the equations of motion in the

visc 8C

shock layer.

The inviscid boundary condition at the body for the shock layer

is
vL(g,O) =0. | (8.22)
The viscous boundary conditions-‘at the body are
up (€,0)=v; (£,0) =0, (8. 23a)
TL(g, 0) = TL’“@), a given function. (8.23b)

It is convenient to introduce a modified Crocco transformation
for the equations of motion, for the reason that the solving of the equa-
tions is made simpler by introducing the new independent variables.

The independent variables are transformed from (g,nL) to (s,tL) where

s=&, tp=ug /W(E)=u /W(s), (. 24a)
o _ o _ O /% 5 _B"L » (8. 245)
FI 3T (BnL/StL) 8ty 7 Oy, W TLc:o Bt

if T, = (Tﬁ"/ﬁ) (BuL/unL). The equations in the new variables are

pL = PLTL ) . (8.25&)



——e (8. 25b)
T 1-w
L L

(8. 25¢)
L L

| (8. 25d)
L T 'I‘]"'“J

BT

'r 8
*"(—T {1- P} . % PW )
L L

P 9T 9T
L L. L dw L

I Tw VW - 35 L 8tL) . (8. 25e)
LT

The boundary conditions at the outer edge, written so as to be

suitable whether the layer is viscous or inviscid, become, with

f(s,1) = (f)e,

sinzt}
(PL)e = 2 H (8.26&)
K(TL) _ 8in¥%(cos&-W) ’
e —
B
g7 _ . 2 - P
K( L) - Weind - Wz cz.in ( I]_-J )e , (8. 26b)
atL e E 'E s TLTL-(»



L _B0-

(Tl)e
oT . . 2
K (_'TL)e ( dg_‘ )e = PWﬁu@ [(311:21 L -®) + % (cos@—W)Z] . (8.26c)

B

The inviscid boundary condition at the body is written most simply

as

vi(esty, ) =0 (8.27)

The viscous boundary conditions at the body are

BTL
W (S,O)-'_-O, TL (S,O)ETL,W(S) s (8-28)""

* From all the above, it should be noted that the viscous shock layer
exists only in the limit of € — 0 and not for € fixed, a fact previously
pointed out by VAN DYKE, [6], among others.
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IX. THE INVISCID SHOCK LAYER

For K—+ 0, it has been shown in Section 8 that the inviscid

equations of motion in the shock layer are

_gE . E(s)cos?’i" (s) 1:2 (P

x s 2= 0 (9. Ola)

cos &(s) 5% (—;-’I‘%_-E) - K(s)sin &(s)t 5?5 TTl‘“) =0, (9. O1b)

cos® (s) % - K(s)sink(s)t o= = O, (9. 01c)

v - 2 cose(s)t + K(s)sind (s)cos3(z) tz% —B— =0, (9. 01d)
B{(s) TT

?.12._ cos@(s) T . P y_g, (9. Ole)

Bs)y P o1l@

where the subscript L has been dropped since this should introduce

no ambiguity. The boundary conditions for these equations are

sin? .2
p(s,l):ﬂl}.;;(s)’ T(s,1)=51n,@(s) ,
—'i:}::__m (s,1) = _—_wgis) — 9. 020)
TT K{s)cos®(s)
v(s,t {s)) =0, n(s,t_(s)) =0 . (9. 025)

The solutions of Eqs. (9.0lb) and (9. 0ic) that satisfy the boundary con-

ditions are
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Bitcos®) _  B(u) , (9.03)

p = < -
T Tl-w fcos® K{LCOSP) . )

(9.04)

T = % {1 - {tcos@}z) = —]é- (l-uz) R

Knowing the result of Eq. (2.03), Eqg. (9.0la) integrates directly to give

_ cos®(s)
p=1 [sinzﬁ(s) Kls) YBl)dy ] (9.05)
B(s)tcosé(s) K(v)
The coordinate n (using the shorthand notation c = cos®(s)) is
; 2 2=
1 (‘ (L-c“v“)B (cv )dv ) (9. 06)

" B0, ¢ :
c)i-c ’tw(s)vmcv}[l_ 7(c) hE(h)éhJ
Bleli-c®) Y, ®n)

The boundary condition of no normal flow at the body, making use of

Egs. (9.03}-(9.06) becomes
A T

K(e)dl-c“ t= ¢ _
szoz(%wtwc" - = —W( Ii—w)w
B{c) Pw 7T
Blt_c) dt T
_ _ _K(c) W 1-c2 t, (- ,t_c_.. s (9.07)
K{t._ c) Bfc) w Py
This boundary condition is satisfied only if
(9.08)
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X. THE VISCOUS SHOCK LAYER

A. The Equations Near the Axis of Symmetry
It has been shown in Section 8 that the equations for pressurec,

shear, and temperature in the viscous shock layer, where K is fixed,

are,dropping the subscript L for convenience, given by

— 3.2
.KFE _2__ -0, {10.01a)
2B TT

ot 1L wlaw 26 p

atz K %TH? ot JI ByE

N ) (—P =0 (10. O1b
RZ2tes 1o "0 - OLb)

T
2 2

'%%t(ﬁcﬁ%‘l‘szo . {10. 01c)
T

The boundary conditions for the pressure, shear, and temperature in

the viscous shock layer are

55.112§

P(S,l) = 7 ) (10.02&)

aT _
—5}: {S,O) - D,

sin®{cos®-W)

T(S,l) - - ]
KB
. 2 .
'38%(5’1) = _ Wsind 3 W sin® dwW , (10. 02b)

KB 2B @ “(cosa-W) 9°



T(s,0) = T (s) .

T(s,1) = @(s) ,

A (s.1) = (Cf:;_w) [(5122@ - @) + L (cosz-W)F (10.02c)
where ’I‘W{s) is considered to be a known even function of s. k is impor-
tant to remember that, in addition to determining 7{s,0) and 8T /8t(s, 0)
from the solution of the above equations, the functions W(s) and ®(s)
must also be determined from suck a solution.

Consider now Eg. (10.01) as the following system of five first-

order partial differential ecuations for the variables p, 7, T, Zl=(8'r/8t),

and Z, = (8T /at):

5 al(s)tzp
L e o {10, 03a)
TT
2 2
82.1 ) az(s)t ap . az(.a)t le
ot T Tl—m ot TZTl—m

(l-m)az(s)tzp Z
2-w

N 2

T T

a3(s)t 9p a3(s)tp 97 (l-w)a3(s)tp 5T

" . - -0, (10. 03b)
~~1 % B85 " 7?2 I-w 85 —Z2-» B3
TT @ S S At 5 i N s

82, u-p) 2

e S A

2
Pa,(s)t™pZ, Pag(s)tp )
* 2 I-w - T o5 - 0> {10.03c)
T T T°T
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a7 _
3t - 4179
9T _
i 2'2, =0,
where
o (s) = KV W(s)
1 2 B(s)
2
I W7{s) dW{s)
C (S) Sl 7 3 H
az K Ez(s) das
3
1 W{s)
a,(s} = =
3 KFZ(S)

If the equation of the characteristics is

¥(s,t) = constant,

{10. 03d)

(10. 03e)

(10, O4a)

(10. 04b)

(10. 04c)

(10. 05)

the characteristic condition, thus, for lIf,C = (9¥/0t) and \Ifs= (8% /8s),

becomes
!IJL 0 0
A5 Az A3
0 C A33
0 \Iit
0 \lft
if 2
—azt 1Ilt 1131:11I
Al = 1
21 1-w l-w °?

= 0, {10.062)
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i} ~~a.31tp\IfS
22 7_2 Tl~c.o

‘(1“*’)33131"1'5

A = 3
23 - TZ-m
33 'TZT -0

This determinant simplifies to

(¥ )5 =0. (10, 06b)

This means that the system of equations given in Eq. (10.0l1) or Eqg.
(10._03) is of the parabolic type and that the characteristics are the
lines s = constant. Ior such a system, one needs to be given initial
data on the characteristic s = 0 as well as along the lines t = 0 and
t =1, as given in Eq. (10.02).

Now, from the symmetry of the problem, near the stagnation
line where s = 0, the pressure, shear, and temperature must have

expansions of the form

pis,t) = po(t) + pz(t)s2 +oiee, lslf;) p(s,t} = po(t} , (10.07a)
r(s,t) = 7 ©)+ Ty ..., B oa(s,t) = 7 (r), (10.07b)
T(s,t) = T {t) + T,(t)s" + ..., UM s, = T_fe) (10.07¢c)

Also, from symmetry considerations, the expansions of the other

pertinent quantities near the axis of symmetry must be
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W(S)_: Wls + O(s3) s S]'Lmo WS(S) = Wl’ constant,

®(s) = @ + Ofs”) , | ™ ®(s) = @, constant . (10. 08)
Hm sy =1, ES(S) =1, (10.09a)
Hm sing(s) =1, Hm cose)_ (10. 09b)

Therefore, in Eg. (10.03), as s — 0, the coefficients of (3p/8s),
(87/8s) and (8T /9s) go to zero. Hence, at s = 0, the system of par-
tial differential equations of Eq. (10.03) becomes a system of
orainary differential equa.tinns.with two-point boundary conditions.

The solution of this system of ordinary differential equations,
subject to its boundary conditions, generates the initial data on s = 0
that are necessary for completely specifying the parabolic type
system. However, this system of ordinary differential equations
is important in its own right since it describes the behavior of the
flow in the vicinity of the stagnation line, a region of great interest
to the aerodynamicist for both practical and theoretical reasons.
With this in mind, as well as the greater degree of difficulty in-
volved in solving the more general problem, the rest of this section
is devoted to solving the system of ordinary differential equations
near tﬁe axis of symmetry.

Substitution of the expansions of Eqs. (10.07), {(10,08) and

(10.09) into Eq. (10.01) or Eq. {10.03) yields the desired ordinary
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differential equations along the stagnation line which are

dpD
2 =0, (10. 10}
alr WS P 1o (10.11)
Jc2 K dt ' pl-w

o O
2 3,2
d 'ioJr 1-P Zo dc;l;o B Pwlzt 1;0 d;" = 0. {10.12)
dt To K'ToTo-w

The boundary conditions associated with these equations are

1
P, =5 (10.13)
d-ro
= (=0
3
l-Wl d'ro Wl Wl
Ty —— , —=— (1) = - + s {10.14)
o) K dt K z@l""(l-w )
o 1
dr_  PW,(3-€)
TO(O) = TO,W ,To(l) = @O, T (l) = TW]__ » (10.15)

where T _ is a specified constant. From Ec. (10.10) and Ecg. (10.13)

it is clear that the pressure along the axis of symunetry is constant

and is
pit) =73 . (10.16)

Consider new shear and temperature variables, F{t) and G(t),

deiined by



. _5G.
w? |
]"* F(t), T,(t)=®, Glt). (10.17)

T (t) = [
2K@®"

o]

(L0.16) and (10,17) the momentum and energy equations

Using Eqgs.
become
2 2
d°F t aF (]—m)t il
+ = 0, {L0.18)
dtz FzGl w dt FGZ w dt
d*G, (1-P) dF dG Pt dG
S i e 4 + = 0. (10.19)
@2 F o dt ¢ pZ.T-e dt
The boundary conditions for the new variables are
1
Fe® W
_ O,W _ . _ ) i
G(0) = ®, Git)=1, G'(1)=P ( )(FWT)' {10.20)
®1 o %
1 —_
FI0) =0, F()= (- Wl)( +)
1
2@1 ©w 1 KW3
P = -wy (—2 ) ( . (10. 21)
1 3 I- W @l
KW, ®,
From these equations, it can be seen that
- 1
w, = —EWE) (10. 22)
L-F(L)F' (1) +T(1)
\
®, - ?P 1 | (0. 23)
G' (1)+W1[ P-G' (1)}
20-w )’ !
K = o (10. 24)

WA (1)
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Defining F{0) as FOI and G'(0) as Q0 and taking the temperature at the
wall as zero, i.e. G(0) = 0, the power series solutions for F(t) and

G(t), valid near the wall, are

2t w
F(t) = F[1 - — o — o™ 29, (10.25)
' (1+w)(2+w)F Q
&t
_ P 1-P 1-w t 45 2w
G(t)=Q_t I - i) {1- 5 1m} ZQ w+0(t }]. (10.26)
o}
Consider now the quantities
t 4F t 4G G t3 2w
¢ Far Vo m RTo M ager vt o 1020

If these quantities are substituted into Eqs. (10.18) and (10.19), four
first order ordinary differential equations for ¢. ¢, Q, and v as

functions of { are obtained. These four equations are

% - cp(cigé);;_[:f—lh(ljl]-w)tbl ’ (10. 28)
% _ q;[gpl-?)l_);g:ﬁ)_ﬂ;ﬁﬂ ) ' (10.29)
- [3-23-‘2‘:@)11»] ’ -39
- z;[sc-zzg-_(ll)-mmﬂ ' Ho-21

Making use of Eqgs. (10, 25) and {10. 26), it can be seen that, if the

temperature at the body is zero, the case that shall be considered,
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the boundary conditions at the wall are

bw = 05 ¢;V=0: b =1 Ry =R, v, =0, (10.32a)
d 1-w d _ P 1-P l-w
(dg)w = '(f?a) ! (E%LN-_ Hw (- P liw) ’
PQ
dv 2~ 1-w aQ, o 1-P l-w
(EC)W =F, Qo ’ {Eg)w T T 2te)(3t ) 1~ 55 - (10. 32b)

The boundary conditions at the outer edge of the shock layer (t = 1) are

K w2
L, = —To——
[ =)
2@, “11-W,)
W, KW13
= +
Pe “1TW :

Q =v_=1. (10.33)

It should be noted that the guantities Wl’ @O, and K, in terms of the

boundary conditions at the outer edge of the shock layer, Qe, qbe, and

-.pe, are
(t -¢.)
W. =
Pt -¢.)
® = € c

2y +PL -0 )]

2 P9 1+ (¢ _-¢ )] '
K = o Ve -5 (10. 34)
(o9 o) “ly +PL -0, )]
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If, instead of Q and v ,. one considers the variables @ and v, defined by
G-/ ,7=v/FQ "% (10. 35)
o’ o 0 ! .

then Eqs. (10.28) and (10.29) are unchanged and Egs. (10.30) and (10. 31}

are changed (just slightly) to

v _ (2tw) v aQ _ _@W-1Q
T 7 3-20--o] | T g[3-20-(1-0)]

(10.36,.37)

The boundary conditions for @ and v are

. aQ, 1-P 1l-w 1
8y =L @ - wramrs LT Fe feTa (10. 38a)
— ar, _ - _ 1
v, =0, (G, =L V= —Z.To (10. 38b)
O 0

B. The General Procedure for Solution of the Equations

From the differential equations, Eqgs. (10.28), (10.29), (10.36)
and {10.37). and the boundary conditions at the wall, Egs. (10.32) and
(10.38), it can be seen that solution of these differential equations may
be initiated at the wall ({ = LW = 0) without prior knowledge as to the
#alues of K, Fo, Q.O, Wl’ or @o. These quantities are then deter-
mined by the choice of E,e which terminates the solution of the equa-
tions.

The preceding means that the general procedure for computing
the solution of the equations is the following:

(i) Integrate Eqs. (10.28), (10.29), (10.36) and (10.37)

starting at § = 0.
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{ii} Choose the value of E‘e and, thus, determine
¢’e(§e), LPe(Ee), Ge(z"e) and Ve(f,e) from the
integrations.

(iii) Calculate Qo and Fo from

[

Q= —— ., F =7 ] . 0. 39)

o = o fo
g (t,)
{iv) Xnowing §e and qbe(?;e) and qJe{l_’.,e), calculate

W,, ®,, and K using Eq. (10.34).

In general, a numerical solution of the equations is required.
However, the special case of w =1 should be discussed because it is
the one case for which the solutions can be expressed in terms of

tabulated functions. For w=1, Eqgs. (10.18) and (10.19) reduce to

&°F, 1 aF _

a2 g2 4t

2G. (1-P) dF 4G , Pt? 4G

?+ N LY (10. 40)

The only solution for F consistent with boundary condition F'{0) = 0

is
F = Fo = constant. {10, 41)

Making use of Eqs. (10.21) and (10.41), a little algebraic manipulation

gives
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1 1 1 .
1 z 3 3
po= [LHEKI-(2K)2 _(+2K)P2-1

. w (10. 42)
o (14 2K)E - 1 1 K
With F = Fo = constant, the energy equation simplifies to
2 2
48, B = o. (10. 43)
dt ¥
(o]
Thc solution of this equation is
2
F “1/3 3
G- (%) TE, 2, (10. 44)
o ‘9P 3 2
3F
where I' is the incomplete gamma function. QO and @  are deter -
mined from /
-1/3
® 2 /9P)
Q = —=2
O i P ?
Tig, ——p)
3Fo
PWl
@ = . {10. 45)

°  20-W)[Q, exp(-P/3F 2y P(W, /1-W))]

The quantities FO and Wl in this equation are those determined by
Eq. {10.42).

The numerical calculations for the stagnation region of the
viscous shock layer were performed in the manner described above
for the case of w = 1/2 and P = 3/4. Under the supervision of
Dr. M. T. Chahine, these calculations were carried on the Jet
Propulsion Liaboratory's IBM 7090 digital computer using the

fourth-order Runge-Kutta method.
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C. Approximate Solution of the Equations

In Part B of this section the method for obtaining numerical
solutions of the equations is presented. This procedure also oifers
a starting point for an iterative process, the first step of which will
be considered to give approximate solutions of the equations.

From a consideration of Eqgs. (10.28), (10.29}, (10.36), and
(10.37) the equations relating the successive approximations are

taken to be

L
Wy WP o g T kgt

s (10.46a)

d‘)(j-i—]_) 2[3'25;)(‘]-}' (l‘m)L!‘(J)]
d'~|-'(.+1) _ [(qJ(J)']-)" (1'P)¢(j)+P§] ar | (10. 46b)
Y1) L03-2¢ ;)= G-yl
dv .
j(ﬁl) = > s dg , (10.46¢)
R S JO R ATt
daq;, Y. -1

(Gt (i) at , (10. 46d)

Qi LI3-2¢)-(-l, ]

Once the forms of (’b(o) and LI.J(O), the zeroth approximations, have been

assumed to initiate the iteration process, , , V,.v, and @,,, can
P @y Fay ") (1)
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be determined from the above equations, using the boundary conditions
of Eqs. (10.32), (10.33), and (10.38). Knowing the first approximations

for 4), §, v, and Q, the second approximation may be calculated, and

so forth.
The forms of the zeroth approximations are chosen so as o
satisfy the ¢ and § boundary conditions at { = 0 and are

Py~ " (};_3”' » Wy =t [31:w (- lﬁpi;z)] L=1-bL . (10.47)

Substituting Eq. (10.47}) into Eq. (10.46), one gets

4)(1):0 forw=1

1-
= - (o - qum:mil, (10.48a)

(K, 8)

LlJ(l) = exp (-bl) forw=1

i
iE— for w#l , (10. 48b)
(1|'k2§) 3
5 -_& (10. 48¢)
1) 1+k2§ ’ *

6(1) = exp {(-b{/3) forw=1

1

e for w#1 , (10. 484d)

4
1k, )
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where kl’ kz, k3, and k4 are constants given by

2
- 2wtb {1+ w)°
S (1-w)[ 2+ b(l+w)) (10. 49a)
_ (1-w)[2+b(1—l—oa)]
5 = e e (10.49b)
kg = b/k2 ;o ky s k3/(2+co) . (10. 49¢,d)

Thus, taking £, as the parameter, the solution of the equations gives

(petl): 0 forw=1
4
= - (L_;:}) —...-..-—-.-—-...e—-—kl for w# 1 R (10. 50&)
1k, §_)

LlJe(l) = exp (—b@e) forw=1,

= 1—k for w# 1, {10. 50b)
3
(I+k,8.)
_ be
pe(l) = .m , (lOe SOC)

Ge(l) = exp {—b?;e/?:) forw=1

= for w# 1. (10. 50d)
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From the boundary conditions at the outer edge of the shock layer, it

follows that

Qo = "Q'l_ = exp (bée/S) forw=1
e(l)
kg
= (Lt ky4 ) “for w#l , (10. 51a)
~1/2 k
FO = [Qol_w ;e(l)] = (1+k2§e) 5/@:/2 » (10.51]))

where kg = [1/{2+b(I+w)}]. In addition, W, ®, and K are determined

by substituting Eqgs. (10.50a} and (10.50Db) into the right hand side of

Eqg. {10.34).

in Table 1 and Fig. 3 are shown Gf and Ch as functions of K

for w = 1/2 and P = 3/4,where

W13 1/2
C.=(———) F _=r7_{t=0)
£ 2K®1~w o Q
°
and
c - (®0Qo )G = 'ro(t-—-O) clT0
h ™ W1 £~ W1 dt

(10.52a)

(10, 52b}

are the shear and heat transfer at the nose of the body. For given

values of € and §, it can be seen that the shear and heat transfer at

the nosc decreasce as the Reynolds number decrcascs (K incrcascs).

The reason for this is that the velocity gradient at the nose, Wl’ and

temperature at the outer edge, ®O, decrease much more rapidly than
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Fo and Qo increase as K increases, From the table and figure, the

approximate results are seen to agree quite well with the exacl unes,
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XI. THE CORRECTION (OR VORTICITY INTERACTION) LAYER

The inviscid shock layer solution presented is non-uniform at
the body surface {ct. CHESTER, [4]). This suggests that there should
exist a correction layer to the inviscid shock layer which will remove
this non-uniformity. Subject to verification by matching with the

inviscid shock layer, the quantities in this correction layer are taken

to be
_ 1
u=63uc+ T (1L, Ola}
vEE Vot e (1. 01b)
— 1
P=g Pt eee (11. 01c)
= _1
T=gTct oo (11. 01d)
P=ggPt (il. Ole)
P=E3 P T oere .
7 =e/? e . (11. 01f)
The leading terms of the equations of motion for this region are
P, = P T, s {11. 02a)
8 = 5 — _
ag (5 Ple) ¥ gz (B ecve) = 0 (11. 02b)
8pc .
o, | (1L. 02c)
ou auc ch 5 © auc
pc(uc 9 v an, 2 9L =D an (T, anc) , (11.024d)
ot oT D 8 W aTc:
Pl 3 Y Vewn ) TP (T, ET ) (11. 02e)
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where D= (l/E5/2R5m). The quantity D goes to zero for an inviscid
correction layer and is O(l) for a viscous correction layer. Note
that there is no dissipation term in the viscous correction layer's
energy equation, due to the low velocities in the layer.

Since the inviscid shéck layer was solved after the introduc-
tion of a modified Crocco transformation, in order to perform a
matching of the correction layer with this layer, it is convenient to
employ a similar transformation on the correction layer. This

transiormation is defined by

{£,n,) > (s,t ), s=£, t_=u_fecos®, (11. 03a)
Tcw du

T = . 11. 03b

C E 81'](: ( )

The pertinent equations after this transformation are

8&7 2

P — P
Do [tcc"‘”’@‘é% 1)Kt simbge— ()
at B T T c 77T
¢ c’c _ cre
B COZSQ - dsc 81? (Tc 'C]_..w)] = 0, (11. 04=z)
Yo ¢ TCTC

2
D, |:8 Tc+ (1-P) ar. AT, :l+ cos’s ( Pe ) X
P C 8t 2 TC 3tc atC FZ T T].-LIJ
c c
BTC _ 2 BTC 2 Tc dpc BTC
X [ -tc cos@w + K 1:C sin® atc + cosgﬁg 5 atc. :|= 0. (11. 04b)
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- D E BTC
PeVe © cosd atc
+[PCCOS¢' ¢ 31’]C _ fsin@coséta( Pe )_E 3 c ( C )
Tc c os B c ' Tl—w 5 P. ds v Tl-m
c c cTcC

(11. 04c)

The rmatching between the correction layer and inviscid shock

layer takes place with respect Lo L. The correction layer expansions,

as tc'* o, must match with the shock layer expansions, as tL — 0.
The class of intermediate variables is
-~ 3 - o
t—:;-——i—..,where 0!'""0,-1—/2"*00 B_SE_"O, (11.053.)
 cos® €
t =3? + ~~ 0, t -—-a?-i— — oo for t fixed (11. 05b}
L »oas s c evz ° e N .
The intermediate expansions for p are
> _ cos®(s) -
—=__1 |sin 8(s) k(s) vB(v)dv 4
p - 66 2 _ ____ . ko J
2B(s) 9 K (v)
=1 [ 06
.—ﬁ pC(S)+ .-.] 3 (]-]-' )
so that
_ cos®(s)
PC(S) _ 5in &(s) K{s) 5' v B(v)dv . a1. o7)
0
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For the temperature the intermediate expansions are

?zcoszé(s) + ' :l

oo 1[1-3
= 5
=L T (s,00)+ .. ] (11. 08)
5 s “es
and, hence,
T (s,0) = % (11. 09)
¢’ 2
The matching for the shear is a little more difficult. First of all,
6]
Te_ 1 ‘L M, 1
—_— = . — 311 ree B TL +
B ay €& B L €6
€V
_ 1 Tc Bu _ 1
== — +_‘,.-.—m?‘c+ (11.10)
€5 B c €6
For the inviscid shock layer
_ pL(s,tL) thos§ K (thos§)
'TL(s,tL) == s {11.11)
T, “s,t. ) B(t. cosd)
_ ' L "L L
and, therefore, the intermediate expansion for T is
(s, BT~ 0) P.(s)
T (s, &t —>0)=——+— + ... {(11.12)

Therefore, whether the correction layer is viscous or inviscid, from

Eq. (11.10),
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i-

7 (s,00) = 2 mpc(s) ) (i1.13)

The inviscid boundary condition at the body is
vc(s,tc,w) =0. (11.14)

The viscous boundary conditions at the body are

TC(S,O) = Tcaw(s), a known function,

w
::C (s,0) = § <052 d(fc 1;(:((5,(;); , (11.15)
C B s c'®
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XII. INVISCID VORTICITY LAYER

For the inviscid vorticity layer the equations of motion are

) 2 8 P

t cosd — ( )-.'{t 8in®d —— (ww—i——)
Os 'T'T ot TTl»—w

2 1dp 8 )
= B0 (p B__y-p, (2. 01a)
cos® p ds Ot TT]' w

9T .2 . _ 8T 2 T dp oT _

beostps KU SR 5 ~ GosE pds & - O (12. 01b)

—_—ts—) =0, (12.01c)

81: -E" p TTI"LL)
v_tcoség_n_i_.'{sm@cosﬁ 21( }
8 B P ppl-
2 ‘I‘2 d
+:_'7 d_lg_(_%&)_—_o , (12. 01d)
B p 7T

where the subscript c has been dropped and where

cos®(s)

(s) 5' vBl)dv | (12.02)
0

RI

p(s) = 2 [sin®a(s) -

(s) K(v)

The inviscid vorticity layer boundary conditions are

B (s,0)=1, T(s,0)==% | (12.03a)
l-w 7 ’ F A )

7T

n(s,tw) = v(s,tW) =0. : {12.03h)

The only solutions of Eqs. (12.0la) and (12.01b) that satisfy

the boundary conditions of Eq. (12.03a) are the constant solutions,
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_El_._ = 1, (12.04)

e

TT

=l (12.05)
— 2 - (]

In turn this means that the normal coordinate, 7, is given by

_ cosd(s)

[t -t (s)] - (12.06)
2B(s)p(s)

Finally, the substitution of Egs. (12,04), (12.05), and (12.06)

gives the normal velocity as

' dt
v =1t cosd [c;.i_s (G-QE’E-— . {t—tw} - C28§ __‘ﬁv]
2B p 2B p
tzﬁ sin®cos® 1 dp
- — - —3 35 ° {12.07)
2Bp 2Bp

Applying the boundary condition at the wall, it is found that the normal

velocity here is

2

twcoszé

d
v(s,tw) =0= - - I ( > + loge p) . (12.08)
2Bp

To satisfy this boundary condition it is necessary that
1 1
_ - 2
u_f{s)=t_(s)cos@(s) = [(consfaant) + 2 1oge {ﬂa}]
2 { 1 } :
=[2 log,_ IO | | (12.09)

where the constant of integration is chosen so that the requirement that

both sides of the above equation be zero when s = 0 is satisfied.
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XIII. VISCOUS VORTICITY LAYER

In Section 11, when D is fixed, it was shown that the vorticity

layer is a viscous one.

the equations that define it are

82TJr {(1-P) or 8T
w2 T Bt 8t
ot
P cos @ P aT 2 aT __ TdpdT
i) 52 (TZT )[ tcos@—uﬂct sind g+ + —— 5T .5.._]

The boundary conditions for this system of equations are

T{s,0) = TW(S), a known even function,

coszé [ 1 dp Tw(s,O)]

87 (s,0) = &
et 7’ D —B-Z cos® ds T(s, 0}

H

1-w

T{(s,w)==, 7(s,m)=2 p(s) ,

B

where
s

_@ S\ B(v) sind{(v) cosd(v) dv]

p(s) = 3 [sin’(s) -
B(s) 0

Dropping the subscript ¢ for convenience,

{13.01)

(13.02)

{13.03)

(13.04)

(13.05)
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As in the caée of the viscous shock layer, the compleiity of
these partial differential equations makes their solution quite difficult.
However, using arguments that are essentially the same as those for
the viscous shock layer concerning the system of equations near the
stagnation line, one can find the solution of a system of ordinary
differential equations that describes the flow in this region. There-
fore, this tack is fo]_.lowed.. The expansions of 7, T, and p near the

axis of symmetry are

T =T_(t) + O(s%) , (13. 06a)

r= T _(6)+ O(s?) , (13, 06b)
1 Py > 4

pP=3 [1 - =~ 8+ Ofs7)] , p, = constant> 0 . (13.06c)

Similarly, the quaatities k, B, sin® and cos?® near the stagnation line

may be expanded as

=1+ 0(s%), (13.07a)
B-s+ Ofs)), (13. 07b)
sind = 1+ O(s?) , (L3.07c)
cosd = 5+ O(s) . (13.074d)

Hence, substitution of these expansions into Egs. (13,01} and {13.02)
gives the following ordinary differential equations for the flow near

the axis of symmetry:



dZT w
o) 1 ' d o) 2 d 1
: + o [2p, g7 (=) -7 = ]
dt2 2D 2 dt ‘TO dt T T 1-w
[o I
a’T dr 4T aT
o, (1-P) o o, P [tZ o
4 2 T dt dt 2D
t o

The boundary conditions for T, and T  are

T (0)=T » a known constant,
fa 0,w

aT szT;"m)

1
W(O}z_ﬁ[_—w] ’

T (o) = % , 7o) = Lw i

z={5) t F{z)=2"7_(t), Glz)=2T_(t}.

The eguations become

where

a’G, (-P) dF 4G , P(z*-AC)dG_ |,

dzz T z Z FZGl-m Z !

a’F , 2°-AG_ dF _ _ ({1-w}z°r ©AG) 4G

dzz FZGl-—w dz F GZ-m dz
@ 2/3

aT

T 2P Tox;

O

]

=0 .

(13.08)

(13.09)

{13.10)

(13.11)

(13.12)

(132.13)

(13.14)

(13.15)
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The boundary conditions associated with these equations are

[6)]
aoy=21, . Fo=-aEl, (13.16)
G(oo) =1, F(o)=1. (13.17)

Hence_, the four parameters of the original problem, D and p, and P
and w are reduced to just three, A and P and w in the system of Eqgs.
(13.12) - (13.17). |

Taking as a special case the case where the temperature at

the wall is zero, the four boundary conditions at the wall are
_ -0, 009G o) -
FO)=F_, G(0)=0, g~0F07-(0)=Q_, (13.18)

where FO and Qo must be chosen so that when Egs. (13.13) and (13.14)
are solved, the outer edge boundary conditions of Eq. (13,17) are
satisfied. Expanding F(z)} and G(z) in power series of z and substi-
tuting these series in Eqs. (13.13) and (13.14), one finds that the

behavior of the solution near the wall is given by

Qw z.1+ w

2tw
. A -
Flz) = F [l g %y - — 9024002729 13,19)
F, () (2t )F Q,
AQ:;ZHM P{l’lT;E%:‘g} a 2+ 2w
G(z)=Q z[l+ s——— +0(z"" ““)] . (13.20)

(1+m)(2+o))F§ i (2+0)(3+)F Q)

At the outer edge of the vorticity layer, where z goes to infinity
and ¥ and G both approach one, asymptotic solutions of Eqs. (13.13)

and (13.14) may be found. Consider
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F=l-§-i'1+f.2+,,,, 1>>f1>>f'2... g =z ~* o, {13. 21a)

G=l+gl+g2+..., 1>>g1>>g2...asz—>oo. (13, 21b)

Then the equations that determine g; and fl are

a’g 2 98 dg,
—d:-'z"-‘l" Pz Xz 0, gl, —dz—‘—"O as z ™ o, (13.22&}
d° df dg af
1, 2% 2 98 1 o
2 g = -{l-w) = 3o fl’ T 0as =z © . (13. 22h)

Solving for gy, one gets

dg 3

'a“zl = G, exp (_lzz ) » G, = constant, (13.23a)
C 3
1 1 1 Pz
g = - [F&E)-TE, 5], {13.23b)
1 (9P)173 3 3' 3

where I'(m,x) is the incomplete gamma function and C1 is an undeter-

mined constant.

Using Eq. (13.23), the equation for f; becomes

di de 3

2 P
2+ 2 g - (1-w) Clz exp (- ;

) . (13. 24)

Solving this equation for .fl for thc case of (1-P) of order one, one gets
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1 23 l-w Pz3
: ~—d--z—=(:2 exp (———3-) T Cl exp(-—-3—), (13.25a)

C
2 1 w 1 1 Pz
'QT?[F(-?) F(ss 3}]“” pm[r()r(z‘, M.

(13. 25b)

where C2 is a second undetermined constant.

Thus, the leading terms in the asymptotic expansions for G

and F for {(1-w} and {1-P) of Of1) are

3
1 1 P
<:T=1-{1<1 [r(-3—) -r(-g,—_f,)]}+... , (13.26a)

3
F=i+{k(IG5)-T6G, %] + S8k [TE)-TE. Pz FE) ... (13.26b)

where kl and kZ arc undetermined constants.
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XIV. THE BOUNDARY LAYER

The "classical" boundary layer is imbedded within the inviscid

correction layer. The quantities in the boundary layer are

1

u = €? uBL+ cee s (14.01a)
— 3/2 i
v =( / /R6%)2 Ve T cee s (14. 01b)
-1
P‘-'-e— pBLJ‘-"" (14:a01C)
Tl 14.01d

=5 Tgpt oo s {14.01d)
- 1
P=gg Ppp, T - > (14.0le)
ek
y = (€2/R8)% ng; . (14. 01f)

Note that the ratio of the boundary layer thickness to the inviscid cor-
L L i

rection layer thickness is )\BL/)\C = [(ez/Réw)z/EB/Z] = D2 and, of

course, D ~— 0 for the inviscid correction layer.

The leading terms of the equations of motion are

PBL = PBL TBL’ (14.02a)
3 = 3 = _

o (B pgp up )+ T (B pgp vpr) =0, (14. 02b)
PBL _ | (14.02c)

gy,
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du du

RI. RL pr.  a dug

. W L
Ppr, (Upy, 3~ T VBL T It 252 “Tngy (Tg an'B"L_) ;
(14. 02d)
Prr, (g, 8"'T'5?BL+ VBL ZTBL) = % 5 g (Thy, ‘_‘"‘"ZTBL’ ' (14.02e)
R, "BL "BL,

It should be noted here that the dissipation is also negligible in the
boundary layer.

The matching between the boundary layer and the inviscid
correction layer takes place with respect to y. The boundary layer
expg.nsions, as nBL =+ oo must match with the inviscid correction

layer as M. ™ G. The clase of intermediatc variables is

e -
- Vi A S
N = e, T “"“O, —r-e———7 > o , (14.03&.)
x| e/? (€2 /R6% )z
4'{ B “i’ -
= il L
n. = -0, n > (14.03b)
The pertinent quantities in the inviscid correction layer are
cosd(s)
_ p_(s) — =
p= ;_’6 ... . p(s) =%[sin2§—i(——s)— Ml] . (14.04a)
B(s) 0 K(v)
= _1 1
T-——a—Tc-i-..., Tc-z, (14. 04b)
1 1
— £ 1 1 —
€2 z
u=€2[(2 1oge{m}) + ZB(s)pc(s)'qC] . (14. 04c)

Therefore, the velocity and temperature boundary conditions at the
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outer edge of the boundary layer (nBL - o) are

: Y
upy (6,00) = (-2 log _{2p_(s)})% , Ty (£,00) =3 ,

(14.05)
and the pressure across the boundary layer, PRy, is pc(s).

The boundary conditions at the wall are

upp,(6:0) = vy, (£,0) =0,

TBL(E, 0) = TBL,w(g)’ a known function. (14.06)

In order to be able to compare the heat tranafer and shear

for the boundary layer with that for the viscous shock and correction

layers, it is convenient to introduce again a modified Crocco trans-

formation. This transformation is defined by:

(§,nBL) - (s,tBL) ,

s = £, tBL = uBL/uBL(S,oo) = U’BL/U‘BL,e’ (14.07a)
T > au

Top, = — ok, (14.07b)
Bp, TBL

The pertinent equations after the transformation are {upon dropping

the subscript BT, for simplicity)



§_21+ (i‘?.)zi&[(l_ t_z)-a_(T_m)+ £ 3T
31:2 5 P, s 2T ot ' T 27 TZ-w at
u, 2 tu 9 1
+ (=) == | )=0, (14.08a)
B Pe 08 “pql-w
o°T, 1-P o7 BT _ple 2 Mo ¢ 2 a1
atz T 0t ot 5 P ds TZ 2T’ ot
u_ 2tu
P 2 — =2 = 0. (14. 08D)
B c T°T
The boundary conditions for these equations are
2 du w
ot Ye 2 e (T }w
(5).. = - (&) = —= s, (1) =0, {14.09a)
ot 'w ¥ P, ds iTiW e
_ . ! et - L
(T), = T, {s), & known function, (T)_ =73 . (14.09b)
Taking the temperature at the wall to be zero, as was done in the
other cases, the boundary conditions at the wall reduce to
(Z0) =(T)_ =0 (14.10)
ot ‘w w * )

Again looking for the solution near the stagnation line, since,

for s —+ 0,

T{s,t) = To(t)+ ees 5, Tis,t) = To(t)+ oo {14.11a)



-87-

u du

=w,t ..., e =w 4+ L (W

1 = constant).

T
It
o[
+

L]

: &
c = i

(14.11b)

The ordinary differential equations for the flow in this region are

2 W
d’r 2 T 2 dr
o 3 t d o] t o .
+awr [t - ) 53 (2 + ] =o, (14.12a)
o O
42 o
da°T dr_ 4T 2 T*dT
o, 1-P 3 + o o _
YRR S G ] (L - 55—} 2w - 0. (14.12b)

The boundary conditions for these ordinary differential equations are

ar

—(ﬁ-‘l (0)y=0, T ) =0, (14.13a)
- I

T {0)=0, T (I)=7%. (14.13b)

Consider the following new variables:

T, ()
z=t, F(z)s= 7 . Glz)= 2T (t) . (14.14)

(Zz—wwlf‘!)z

In terms of these new variables, the equations to be solved are

2 Lo, e
a Ifz“ + 2 -l<_3 %_E: ; w(z_ G) dG_ 4 | (14.15a)
dz FegtT@ 9z rGgc®? z
4G _ 1-P dF dG . P(z%-G) 4G
ST =2 8s g, Z =~ = 0. {14.15b)
d 2 F 7z dz l-w dz

= TG



~-88-

The boundary conditions associated with these equations are

T @=F1=0, GO =0, GL)=1. (14.16)

It should be noted that the equations to be solved, Eqs. (14.15a)
and (14.15b) have exactly the same form as the equations for the vis-
cous correction layer, Eqgs. (13.13) and (13.14), but that these sets of

equations are subject to far different boundary conditions for each

rcgime.
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XV. THE SHEAR AND HEAT TRANSFER

IN THE VISCOUS LAYERS

Having derived the equations for the three regimes of flow in
the shock laver, it is of interest to compare the shear and heat con-

duction for these regimes.

A. THE VISCOUS SHOCK LAYER. (The notation is that of Section 10.)

In the viscous shock layer, the shear and the heat transfer are

w
L pleu/oy) T au_ 1 L auL+ U (15.0la)
B I'LooUco/a B 8y ¥ B any, .
oT
k(8T/0y) _ Twa i W 1
=T _1 g ol . (15. 01b)
kCDTCD; a 8? Eal‘l‘(.u L 81’]L

Inn terms of variables of the modified Crocco transformation,

w
—E[— BuL =T, =T (t. )+
£ onp L~"L,o%L

_12_
3 1-w -

= (W1/2K®O ) FL,o{tL;K)+ cea (15.02a)
- Ty, B . Ty 1 , dTy, o .

L 9my ~ W LBt W, L.o adty

o “w 4G

= OZK ) FL,O(t]_ﬁK) TL_ (tL;K) toee o (15.02b)
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B. THE VISCOUS VORTICITY LAYER. (The notation is that of
Section 13.)

- For the viscous vorticity layer,

_w — T ou
E T 1@ & =Sl (15.03a)
B by €0 B M

= aT
=w aT 1 w c
T — = T = + ... {(15.03b)

ay 63/26]_+L0 c aTIC

where
T:) Buc
__-E 311C = TC(s,tC) = 'rc’o (tc) R S
=1 ; 5.04
'z_ch (A )Y -on (15.04a)
w 8TC ﬁ 8TC ch [e]
Te 5m. ~ cos® 1.c(s’tc) ot (S’tc):Tc,o_d_t"" LERE
C 84 [
L 2" /3 | dGc

= e (B Flzgal) Tz, (z AN+ v (15.04b)

C. THE BOUNDARY LAYER. (The notation is that of Section 14.})

The shear and heat conduction in the boundary layer are

T 5u 1 Tgp, gy,
TD A BL _BL , (15. 05a)
T 8y Dpicg® B 'BL -
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aT

= OT 1 w BL
TYZ= = T L., (15.05b)
9y  p:ze3/2glte BL gy

where, for the boundary layer, D — 0 and

W

T du

Bl BL, _ _ i
_“B' rqBL = pc(s) TBL(s,tBL) =3 TBL,O(tBL) + ...

3,00

= (w) J2™)? Fpp (agp)t oor s (15.06a)
_ BTBL= Bp, . Mgy, N 4TgL,,0 .

BL BnBL “Bi.,e BL a-qBL Zwl Bi.,o a:tBL

dG

_ 2rwg BL
= (wl/z > Fgp, {zgy) EE;I:-. (Zpp )t ... (15.06b)

In writing the above, the dependence of the solutions upon P
and w has been suppressed because these parameters are chosen
once the gas to be cunsidered has been chosen.

From the above, it can be seen that the shears in the viscous
shock layer and the viscous vorticity interaction layer are of the
same order of magnitude and lcss than the shear in the boundary
layer. As for the heat conduction, it is equally clear that

{T* (8T/o7)}, < {TT/o7)}, < {T% (6T/oW)ipy, -
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APPENDIX

THE KINETIC THEORY ASPECTS OF THE PROBLEM

The question has been raised as to the validity of the use of
the Navier-Stokes (N-S) equations to describe the structure of a
shock wave because of the large gradients in the variables that occur
within the shock. (See, for example, LIEPMANN, NARASIMHA,
and CHAHINE,[9].) The question, in part, can be answered by
considering the ratio Q= 8v/dy) /p. This ratio is a characteristic
parameter of the problem and a dimensionless measure of the
gradients mentioned. £ is essentially the expansion parameter
in the Chapman-Enskog expansion procedure for solving the Boltz-
ma:nn equation (CHAPMAN and COWLING, [10]) and it can be shown
that the N-S equations must apply (at least in a monatonic gas) if
0«']. Writing £ in terms of the quantities introduced in the

analysis, one has

2

_ltc M“ T ov _ e M® TY ov
U= " === I-€e R = =° (A.01)
p 9y p 9y
For the outer region of the shock structure,
o M263/4P Bk N M(4P-3)/2P (. 02a)
e BmE . 3/4P ¥ y
Taking € ~ M_2/4P+1, s0 that KEq. (5.18b) is an equality,
% 2 (4P-2)/(4P+1) _
£ ~(M™) . (A.02b)
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Therefore, since for this case P> %—, Q* will tend to infinity and

the results for the outer region, based on the N-S equations, should
be suspect. This unsuitability of the N-S equations in the outer
region is predicted by LIEPMANN et al., [9], where they compare
the normal shock structure based on the N-S equations with that
found by solving the Bhatnagar-Gross-Krook (B-G-K) model for

the Boltzmann equation, which can be shown to be correct in both
the N-S and free molecule limits.

In the middle and inner regions of the shock structure,

R =T _ 8. ~: ~ o, (A.03)
2ep 9m

-~ m -

=8 N4~ (A.04)
2¢p 97

This means that the shock structure solutions for the middle and
inner regions, based upon the N-S equations, are also questionable
since ¢ has been taken to be a parareter that is going to zero. For
€ a quantity of O(l), the middle and inner regions become just one
inner region (BUSH,[1]), and the ratio @ for this region is of O(l)
and the results should still be quesiivnable. However, LIEPMANN
et al.,, [9] have shown that results for this region, based upon the
N-S equations for large values of M, in this limnit, are more than
adequate when compared with results using the B-G-X method.
Therefore, before saying that the N-S equations for the middle

and inner regions are not suitable as € — ¢, it would be interesting

to have results based upon a B-G-K approach for € — 0,
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For the shock layer and the vorticity layer,

eKTLm oy
2 = — = t ... ~€EK—0, {A.05)
P, 11,
E3DTC avc 3 .
Q = % gt e "€ D—0. (A.06)

However, in the shock layer and the vorticity interaction, the more

pertinent parameter is the ratio ' = p(du/dy)/p. Therefore,

3]
KTL BuL

Q!
L ZpL BnL

EB/ZDT(: du,
1 —_ ~
Q' = = gt - €

C C

3/2

Thus, the N-5 eguations should be valid for the lnviscid shock layex
and the vorticity interaction layer (viscous or inviscid), but the
validity of the viscous shock layer solutions, based on the N-S equa-
tione, should be suspect. Hopefully, since the N-8 equations were
shown to be adequate when the gradient parameter was of O(1) above,
this may also be true for the case of the viscous shock layer.
Finally, it should be pointed out that the flow regime is
definitely not the free molecule flow regime. To demonstrate this,
it must be shown that the ratio of mean free path in the free-stream
to body nose radius goes to zero. In terms of guantities introduced

in the analysis, this ratio is

¥ ... ~K=<0{), (A.07)

D—0. (A.08)
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Since K is less than or equal to order one and the viscosity exponent,

w, must be % < w < 1, based upon physical reasoning, the ratio

does, indeed, go to zero.
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Table 1
C Wf 3 _ 8.9,
£7 i) For Gu T ) Gg s K
° e=4 P=3

K Cf(exact) Cf(approx.) Cﬁl(exact) C&l(approx.)

. 403 .616 411

.419 .610 . 404

.435 .603 .396

. 453 .596 . 388

L472 .590 . 380

. 495 .583 .372

.518 574 . 364

. 545 . 565 . 354

.576 . 555 . 343

610 .545 . 334

647 .534 323

.692 .522 512 .311 .307

. 746 . 506 . 297

. 808 . 492 . 285

.878 L 476 VAN

. 984 .461 .2h4
1.09 . 432 . 236
1,24 . 405 . 217
1.32 .398 214
1. 44 . 376 . 197
1.73 . 340 .173
2,08 .306 . 152
2.20 .284 144 :
2.83 .251 .119
3.02 .238 112
3.12 .234 .110
3.59 .213 . 099
3.95 .199 .092
4,82 171 .076
5.15 .163 .076
11.6 . 0827 .034

14.6 .0709 .032
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