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ABSTRACT

Spontaneous emission competes with stimulated emission in many
interactions of light with matler. In the usual anulyses which des-
cribe the interaction of an atoﬁ with a ccherent optical field, the
spontaneous emission characteristics, e.g., probability and spectral
distribution, are not determined. The spontaneous emission from an
atom which interacts with a coherent light wave is considered. The
competition between coherent photons and spontaneous photons is treated
in detail for a system consisting of a stationary atom, an open cavity
and spatial fields. In the model chosen, a multilevel atom which spon-
taneously decays by interacting with spatial fields has two nondegen-
erate states coupled by an interaction with a single mode of the cavity.
The Laplace~transformed Schrodinger equation is solved for specified
initial conditions of the system. It is found that the interaction
with the coherent field modifies the spectral distribution of spon-
taneous radiation from the atom. For spontaneous transitions involving
an atomic state which interacts with the coherent field, the spectral
distributions can no longer be described by Lorentzian functlons. The
new distributions exhibit a broadening and splitting for strong
interactions between the atom and the coherent field. It is shown that
the gqualitative features of these distributions can be predicted from
the energy-level diagram of the atom~cavity system. The net probability
of the system geining a coherent or caviiy photon is calculated by
integrating over the emitted spontaneous Irequencies. The equivalence

of this approach to the method of computing probabilities by integrat-

ing over time is demonstrated by using Parseval's theorem.
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INTRODUCTION

The characteristics of spectral lines are determined by the
environment of the radiating atoms or molecules. The line shapes of
spectral lines can serve and have served as probes to determine this
environment. For example, the line shspes of atoms radiating in a
plasma depend on the finite lifetimes of the radiating atoms, on the
statistically varying electric field resulting from the charges in the
plasma, and on collision rates. Hence, the line shapes and breadths
are used to determine the temperastures and densities of the plasma
constituents. Many elaborate theories have been formulated and much
experimental data has been accumulated to explain these line shapes
(1.1, I.2)*. Similarly, it can be expected that the interaction of
atoms with coherent optical fields can be probed by studying the
characteristics of their spontaneéus emission spectra. ﬂ

The advent of intense coherent sources of light has made the
problem of determining the characteristics of spontaneous emission
from an atom which interacts with a coherent optical fleld of timely
importance. This problem is explored in detail in this thesis. 1In
order to focus attention on this problem and to simplify the analysis,
only the finite lifetimes of excited atomic states and their interac-
tion with the coherent optical field are considered.

As an introduction, simplificd dcrivations of lifetime broaden-
ing are presented below. The spectral distribution of spontaneous

emission resulting from a very weak interaction of an excited atom

*References follow each chaptef,
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with a coherent field is also given in the next section. These simple
concepts are covered more rigorously in the text and extended to

include strong interactions between the atom and the coherent field.

Simple Spectral Distributions

Welsskopf and Wigner (4.9) were the first to solve the
detailed equations that describe the spontaneous decay ol an excited
atom which interacts with radiative or spatial fields. They found
that, as a result of spontaneous emission, an excited atomic level
decays exponentially to lower levels. They also deduced that the line
shape or spectral distribution of spontaneous emission can be deter-
mined by simply considering each atomic state to be broadened in energy
and to consist of a continuous distribution of states with a Lewrentzian

density. That is, if normalizing terms are neglected, the distribution

of states for an atomic state i1 Ni is given by

1
N, (9,) <

2

)

(i-i—)2 + (e, - @

o) i io
Pi is the exponential decay constant of state 1 . Qi is the energy
variable in angular frequency units. AQio is the unbroadened energy
in angular frequency units of the state 1 with respect to the ground

state.

The spectral distribution of spontanecus emission depends on

the method of excitation of an atomic state. In broadband excltation each

state of the broadened atomlc distribution is considered to have equal

probability of becoming excited. Examples of processes which fit the
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description of broadband excitation are decays from higher levels and
most collision excitations. As an example, two atomic states 1 and
j are assumed to be connected by a spontaneous decay and the upper
state 1 1s excited by some broadband means. The spectral distribu-
tion of spontaneous photons of angular frequency o, between states

i and J 1is given by the sum of all the decays from the broadened
state 1 to the broadened state j . In general, the decay constants
are always assumed to be much smalier than the frequencies of spon-
taneous transitions and the distribution of spontaneous photons N(ma)

can be written as an integral over the initial states. Hence the form

of this distribution is glven by

N(w)aCJ, ' . gdni

Pi>+( 0,07 D +@

) -

=0

J "Jo

with the relation

which expresses the conservation of energy. As a result of the above

integration, the dlstrlbutlon can be expressed as

1
N ol = -
() R "o By =Rt By
A3y v (e -a )2
( 2 a i3

where Qij is the energy difference between states 1 and [J 1n

angular frequency units. It is noted that the Lorentzian half-width of

the spontaneous emission is given by the sum of the decay constants of
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the upper and lower state.

Narrow-band excitation is the excitation of an atomic state by
the exchange of definite energy with the excitation. As an example,
consider three levels in a chain of decays. The first level 1 1is
considered to be excited by some broadband means. The transition to
the second level J takes place by means of the stimulated emission
of a coherent or monochromatic photon of definite frequency w . The
level J then decays spontaneously to the ground state k (1"k equal
to zero). The distribution of spontaneous radiation of angular fre~

quency from level J to k can be written in the form

N((.l) ) - - 1 . 1
i J
—_— - = + -
with the relation
Qi = W + wa

which expresses conservation of energy. This can be rewritten as

1

N(wa) e 1
T

1.2
() + (wg= Ay

o I'. 2 5
+cu=Qij) (?g)'k(wa'ajk)
This distribution of spontaneous photons is given as the product of
two Lorentzian functions. It is noted that if w = Qij the distri-
bution is single peaked. However, if w # Qij the distribution is
double peaked.
The above analyses lead us, in a simple manner, to some of the

reseulte of Chaptere I, 5 and 6. These analyses show that for weak

interactions between the atom and the coherent field the spectral
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distributions of spontaneous emission are described by ILorentzian func-
tions. As shown in Chapters 5 and 6, strong interactions between the
atom and the coherent field modify the specﬁral distribution of spon-
taneous emission and result in distributions which are no longer

described by Lorentzian functions.

Discussion of Text

The spontaneous radiation from an excited atom which interacts
with a coherent optical field is investigated in this thesis. The com-
petition between coherent photons and spontaneous photons is treated in
detail for a system consisting of a stationary atom, an open cavity,
and spatial fields. In the model chosen, a multilevel atom which
spontaneously decays by interacting with spatial fields has two non-
degenerate states coupled by an interaction with a single mode of the
cavity. The analysis of this model leads to the spectral distribution
of spontaneous emission from the atom and the net probability of the
system gaining a coherent photon for strong interactions between the-
atom and the cavity fields.

In the first four chapters, the analytical methods used to treat
the problem are developed. In the first chapter the expansion of the
fields of a cavity in terms of the very useful creation and annihila-
tion operators is covered. The techniques in this chapter are applied
in later chapters to the interaction of an excited atom with the fields
of a quaﬁtized cavity and lead to the concept of atoms interacting with

coherent photons.
In Chapter 2, the Hamiltonian of the system,which consists of an

atom interacting with a singlee-mode cavity,is diagonalized. The
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results are then applied to typical problems in maser analysis. The
eigenfunctions of this diagonalized Hamiltonian are used in later
chapters to solve the problem of s spontaneously radiating atom which
interacts with the cavity. The energy=-levels found in this chapter are
later used to predict the qualitative features of the line shapes of
spontaneous emission.

Throughout the text the cavity is considered to be gquantized in
order to emphasize the photon nature of the interaction. This approach
has been used by Jaynes and Cummings (2.2) to treat a maser problem in
the limit that radiative decays can be neglected. The more common
approach to this problem, for example, that used by Shimoda, Wang and
Townes (2.3), considers the cavity field classically and neglects its
photon nature. The relation between these two methods is discussed in
Chapter 3. In this chapter it is shown that neglecting the non-
resonant terms in the classical field theory is analogous to neglecting
matrix elements between nondegenerate states in the quantized-field

theory.

The theories of natural line width and the decay of an excited
atom are the subjects of the fourth chapter. The simplified theory
which is accurate for times éhort compared with decay times is used to
introduce the problem. The more complete theory is introduced by solv-
ing the Laplace-transformed Schrodinger equation for an atom interacting
with the radiative fields of space. This latter theory is used in the
following.chapters Tto solve the problem of & spontaneously decaying atom

interacting with the fields of an open cavity.
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In the fifth and sixth chapters the competition between coherent
photons and spontaneous photons is treated in detail for a system con-
sisting of a stationary atom, an open cavity and spatial fields. 1In
the model used, a multilevel atom which spontaneously decays by inter-
acting with spatial fields has two nondegenerate states coupled by an
interaction with a single mode of the cavity. The frequency distribu-
tion of spontaneocus emission is found by solving the Laplace-
transformed Schrodinger equation for the spontaneously decaying atom
in the highly excited cavity. The solution also yields the net proba-
bility of ‘the emission of a coherent photon by an excited atom.

In Chapter 5, the spontaneous radiation between the states which
interact with the cavity is neglected. In Chapter 6, processes that
result from spontaneous decays between states which interact with the
cavity are covered in detail. For spontaneous transitions Envolving
an atomic state which interacts with the coherent field, it is found
that the altom=cavity Lloleraction modifies the specbral distribution of
spontaneous radiation. Some of the spectral distributions of spon=
taneous emission which are plotted in Figs. 5.2 and 5.3 exhibit a
broadening and splitting for strong atom-cavitly interactions. The
gualitative nature of these splittingscan be predlcted from the energy-
level diagram of the atom-cavity system, as shown in Fig. 5.1.

The characteristics of spontaneous emission are found to differ
greatly for different modes of excitation. Broad-band excitation
gives a characteristic frequency distribution which becomes the normal
Lorentzian as the atom-cavity interaction becomes very small. Narrow-

band excitation, excitation by means of coherent photons, gives a
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characteristic frequency distribution which for very small atom-cavity
interactions becomes the product of two Lorentzians. It is found that
this latter distribution can be derived by a simple application of per-
turbation theory.

The net probability of an excited atom emitting a coherent
photon is also calculated and the saturation characteristic is shown
in Fig. 6.2. This probability is calculated by integrating over the
emitted spontaneous frequencies. The equivalence of this approach to
the method of computing probabilitles by integrating over time is
demonstrated in Appendix 5 by the use of Parseval's theoren.

In Chapter 7 the results of the thesis are summarized and some
limitations of the analysis are discussed. Also, possible extensions

of the theory are proposed.
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CHAPTER I

QUANTIZATION OF CAVITY FIELDS

The flelds existing in an ideal cavity are expressed in terms
of orthogonal functions by means of Maxwell's equations. The transi-
tion to quantized fields is made by using the Hamiltonian formalism,
the so-called classical approach to quantum mechanics. The cavity
fields are expressed in terms of the noncommuting creation and anni-
hilation operators. The results are applied to some particular
cavities.

1.1 Cavity Fields in Terms of Orthonormal Functions

The caviiy is considered to be a source-free and lossless
volume V within a surface S . In the "empty" region within the

cavity Maxwell's equations can be written in mks units as (1.1)

E=2vxa p--2
Ko ot
2
v‘?A-ueé-—é:o, VA= 0 (1.1)
- 00 at2 -

where A 1s the vector magnetic potential, E 1is the electric field
intensity, and H 1is the magnetic field intensity. The surface of

the cavity is considered perfectly reflecting. This boundary condi-

tion is satisfied by

nxA = 0O ons (1.2)

where n is the unit vector normal to surface S .
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The vector potential A and ite curl can be expanded in the

orthonormal functions A (1.2), i.e.,

= N
A = qa(t) éa (1.3)
a
The time-independent vector functions éa are defined by
2 2 .
VA +k A =0 and, V+-A =0 in V (1.4)
—a a —a -a
and
nxA = 0 on 8. (1.5)

The orthogonality of the expansion functions can be shown by

using the vector identity

v - (ﬂbxvxéa) -V (ﬂaxVxéb) = A (vaxéb)ﬂb‘ (Vx Vx éa) .
(1.8)
If this equation is integrated over V , - then the left-hand side

becomes a surface integral vwhose value vanlshes as a result of equa=-

tion 1.5. Using equation 1.L4 one can write the result as

0 - [ s e =0

v
Thus if - a £ v and the cavity elgenfunctions are nondegenerate

(k, # &)

éa.j—\“bdv = 0 . (1.7)
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In the case of degeneracy (ka = kb), linear comhinations of the cavity

eigenfunctions can be chosen which satisfy this orthogonality condi-

tion.

The normalization is chosen as

J(A A dv = 1 . (1.8)
— -
v

The value of

J((V x‘éa) - (Vx éb) av

v

is found by considering the vector identity
V‘(éaXVXéb)z(VX_[_\a)‘(Vx.ﬂ.b)aéa’(v}(v}céb)‘ (L.9)

If this equation i1s integrated over the volume V , the left-hand
side becomes a surface integral whose value vanishes as a result of

equation 1.5. Using equation 1.4, one can write the result as

J((VX_Aa)'(VXAb) v = kﬁ féa-ébdv _ (1.10)

v

Thus, the orthogonality and normalizaticn condition can be written as

[ _A_a * Ab av = 6a.b (l.lla)
v
[ 2
J (V x _@a) - (V x ﬂb) b = k8, (1.11b)
v

where & denotes the Kronecker delta symbol.

ab



-12-

1.2 Equations of Motion

Using the orthogonality of the vector eigenfunctions (equation
1.11), the definition of the vector functions (equation l.4), and the
expansion 1.3 in the equation of motion for the vector potential (equa-
tion 1.1), one can write the equation for the individual expansion

coefficient as

'c_ia +w, g, = O (1.12)
where
ka
) B e— . (1'13)

a
\/ €
lJ'O (¢]
These equations of motion can be found from the Lagrangian L

of the system (1.3)

LELlagg === g == q 5 & == dy <=5 )
The coordinates q satisfy the Tollowing second order equatlons:

a ,oL oL
S (=y.=— - o0 { =1 @a== T
dt ) J

aqi qu

The Lagrangian conjugate momentum pi is defined by

é-E-- = p. . (1.1k)

The Lagrangian for the cavity is given by

L = K~-P
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where K , the electromagnetic "kinetice" energy, is given by

{ € B - E dv
J o= =
v

=
]
ol

and P , the electromagnetic "potential" energy, is given by

P

1}
ol

(,
| o E-Eav
v

(1.15)

(1.16)

Expanding E and H in terms of the éa‘s and using the orthogonal-

ity properties of these eigenfunctions, one can obtain:

€
S )
K =3 L4,
a

and

Also, the Hamiltonian can be defined as (1.3)

— s e —— . ——— I ot
H = H(ql a q.; P P, P )

1

T N
- oL _ g

i=1 ¢ qu

The equations of motion are:

(L.17a)

(L.17b)

(1.18)

(1.19)
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qy 55- and p; =- 3’

where q and p are the canonically conjugate coordinates.

Thus, applying defining equation 1.19

1 2 1 2 2
H=2€ ZP8.+2p. Zks.qe:-n.
o a o a
or

H = K+P

(1.20)

(1.21)

Since equations 1.20 reduce to definition 1.18 and equation 1.12, the

motion of the cavity can be found from the above Hamiltonian.

1.3 Fields as Operators*

The canonically conjugate coordinates can be considered gquantum

mechanical operators satisfying the following commutation relationships

(1.4):
[qa,qb] = 0, [pa,pb] = 0
[qa’pb} =1 % Bab -

If operators Pa and Qa are defined by

p and Q =

a a qa

1 )1/2 ‘ edma)l/E

¥

the Hamiltonian can be written as

(1.22)

(1.23)

*The quantum mechanical notation used can be found in (1.3).
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fa=
i
-

2 2
Y. (e +B) fo_ . (1.24)
a
Two Hermitian conjugate operators are defined by

+o A
(Q,a + iPa) and, a =

)

a =

L
a V2

(q, - 1p,) . (1.25)
The commutation relations, equations 1.21, become

[aa,a;] = B, - (1.26)

The Hamiltonian becomes

DLV (st at
H = 3 )3 (aa a_ +a_ aa) %ma . (1.27)

2

If the commutation relation, equation 1.26, is used, the Hamiltonian

can be written as

H = Y (afa +3) ho, . (1.28)

a
a

Using the definition of electromegnetic field quantities in terms of
the vector potential, equations 1.1, one can write the fields in terms

of the "a" operators, namely,

1/2
A= L —L)/ (a, +a.) A (1.29a)

2€
o 8

(1.29b)

| =

|

Ha
w1
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; 1/2
H = 2; i-———gz—— (aa + a;) VxA . (1.29¢)

2€op'owa

1.4 Creation and Annihilation Operators

The Hamiltonian for the cavity is given in equation 1.21 as a
sum of partial Hamiltonians. HEach partial Hamiltonisn corresponds to
a resonant mode of the cavity. The vectors (or expansion functions)
of the basis in which one of these partial Hamiltonians is diagonal

are eigenvalues of the operator equation (in ket notation)

n/v,) = vJ/v.) (1.20)
where

(va/va) > 0 and n =a a . (1.31)

In the following our attention is confined to a single mode

and the subscript "a" is deleted. Using equation 1.28, one can

derive the following:

na = a(n -~ 1) (1.32a)
and

ne’ = at(n o+ 1) . (1.32b)
Thus;,

na/v) = (v = 1) a/v) (1.33a)
and

nat/v) = (v + 1) at/v) . (1.33b)

Therefore, a/v) is the vector /v - 1) and a®/v) is the vector
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/v +1). It can be shown that these eigenvalues are a series of non-

negative integers with lower limit 0 (1.4). Since the /v)'s are
nondegenerate eigenfunctions of a Hermitian operator, the normalization

can be chosen as
(n/n') = 8_, (1.34)

where, now, a vector is denoted by its integral elgenvalue n . Any

+
vector can be found by repeated application of a on /O) , 1.e.,
=1/2 +n
/Yy = @) Y2 a0 (1.35)

Also, since

(n/a+a/n') =nd ., , (1.38)
one can write:

a/n) = n/%/n-1 (1.37a)
and

at/n) = (n-rl)l/e/na-l) . (1.370)

Therefore, in the n representation, the Hamiltonian for a single mode

of the cavity is a diagonal matrix with matrix elements
1/2 fw , 3/2 fo , 5/2 fo , 7/2 fo - - - .

The energy of the cavity when in state /n) can be considered as
consisting of the zero-point energy 1/2 Hw and the energy of n
photons, n Ao . It is seen ffom equations 1.37 that "a" can be
considered as an operator that lowers the occupation number n by

one or destroys a photon. Hence, "a" 1is referred to as an
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annihilation operator. Similarly, a+ is a creation operator. The

+ .
matrix elements for a and a are given by

{(n'/a/n) nl/2 & ) (1.38a)

n' ,n"’l

and

s 1) (1.38b)

+
(n'/a /n) n',n+l .
When more than one mode is excited, the vectors of the representation
in which H 1is diagonal consist of all possible products of the indi-

vidual vectors for each mode. When in a definite state /@) ,

~.
=S
e
i
=
\
=
S
1]}

/o, "TTm, ) (1.39)
the energy of the system is given by
H = Y (o +2) Ko (1.40)
- = a 2 a ’ :

the energies of all the photons and the zero-point energies.

1.5 Typical Cavities

As shown in equation 1.29, the fields in a cavity are linear
combinations of the creation and annihilation operators. The vector
properties of the fields are given in terms of the cavity functions

A . Some examples of the A 's are:
—a _ E -8,

a) The ., mode in a circular-cylindrical cavity (1.5)
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T
Jo(e.hos -1;:) -
A =1 y T 1.41
- i Vl/2 Jl(2-%5) °

where L is a unit vector in the axial (z) direction, r

is the outer radius, V is the volume of the cavity, and r

is the radial distance from the axis of the cavity.

The TEOll mode in a circulasr-cylindrical cavity

. . 21/2
=P 12

Jl(3.83 %—) sin Bz , r<r, (1.42)
3 (3.83) °

where

1/2
B = k {1 - (-13;;1%3)2} -

Bia

The cavity extends from 2z equals QO to 2z equals L -

Both the and the ) cavities have b used in veam-
B TMOlO TbOll 1 e been e

type masers.

The TeM mode in a coaxial cylindrical cavity

2 2,1/2
(r3 - ry) sin kz
A =1, = - ;) T LTI, (1.43)
1/2 1/2 2
\' / in / ;—
1
where
kKL = nw; n=1,2,3, --— .

The outer radius is r, ; the inner radius is ry and the

cavity extends from z equals 0 to z equals L .
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d) For many structures used at optical frequencies the modes are
quasi-TEM modes (1.6). As a first approximation, these can
sometimes be considered as linearly polarized TEM modes of a
resonant cavity whose fields are independent of coordinates
transverse to the axial direction in the "cavity" region.
-This is called the one-dimensional approximation. -In this

case,

o1/2
éa = < ;17—2‘ cin kz (la)'?-)-i-)

for a mode polarized in the x direction. This is also the

TEM mode for a coaxial cylindrical cavity in the limit

r2 = rl << r2

I‘2=I‘l<<1‘l.

1.6 Matrix Blements

The electromagnetic fields in a cavity have been given in terms
of creation and annihilation operators in equation 1.29. Thelr matrix
elements in the n basis for one cavity mode are:

1/2
+ (n+1) / S n+l

(1.45a)

n',l’l*’l

(a'/ a/n) - (ﬁ)l/z éa[nl/Q 5

(a/8/n) - 102 4 [nl/2

2¢ -2

1/2 |
® al"(n+l) 5 ',n+l]
o)

n',n n
(1.451p)

(n'/E/n)

2 -4 n',n-
2€opdwa

1/2,
1t (n+1) 6n',n+l]°

(1.45¢)
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CHAPTER 2

INTERACTION OF A STATIONARY ATOM WITH A LOSSLESS CAVITY

The Hamiltonian of an idealized atom interacting with cavity
fields is developed. The stationary states of a system consisting of
the atom and cavity operating in a single mode are found. The equa-
tions of motion of this system are discussed and applied to some

typical problems in beam-type masers.

2.1 Hamiltonian of the System

The nonrelativistic Hamiltonian for a system of electrons in

the presence of an electromagnetic field is given by (2.1)

z (gi=-eéi)2 S}_i ¢
Hef=§T'2m[i‘-i'(vxﬁ)i]’ e <0~ (2.1)

The momentum and the Pauli spin matrices of the ith electron are given
by By and 0, - A and (V x é)i are the vector potential and
its curl evaluated at the position of the ith electron. The approxi-

mate Hamiltonian of the atom in the presence of the field is obtained

by adding to Hef the coulomb interaction of the electrons with the

nucleus and the coulomb interaction between electron pairs. The total

Hamiltonian of the system is given by

H = Hejora * Hatom *

E is the Hamiltonian of the electromagnetic field alone. Ha P)

field

the Hamiltonian of the atom itself, includes the coulomb energies of

tom

the nucleus and electrons, and the kinetic energies of the electrons.
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H' consists of three parts

Z Z Z
—_

o= Y Hi o+ Y HY, + § H;i (2.2a)

1 1
vhere

e

H' = o =— « A 2.2b

11 n (B A YA ) (2.20)
e

HY = - [i'-i v x A)i] (2.2¢)
o2

}13i = 5 A A (2.24)

The total Hamiltonian of the system of atom and cavity is wriltten
as
H - H +H (2.3a)

where

0o = Hrield T Hatom - (2.3v)

2.2 Matrix Elements

The matrix elements of the interaction Hamiltonian H' are
found. The cavity is assumed to be excifed in only one mode. The
basis chosen is the one in which HO is diagonal. The functions or

vectors for the expansion are products of the individual vectors of

Hatom and Hfieldfn These vectors, in ket notation, are given by

fm) = /m)/n) .

/m) - is an eigenvalue of the operator K /n) is the eigen-

atom’

value of Hfield . That is,
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Hatom/m) = Em/m)
Heioqg/?) = E /M) - (2.1)

p. 1s an operator that acts ovuly on the atom coordlnates. TIts

matrix element is found by using the commutation relation*

[d ’Ha‘bom] - EEP ? (2.5)

—-i m —i

where
= o 2 L]
d; er (2.86)
4, 1is the electric dipole moment of the itR electron and r. is the
—1 —"
position of the electron with respect to the center of the atom. Thus,

the matrix element for p., 1is found from

d,/m)

atom Hatom-—i

Be (w/p/m) = (w/ax
= (g, - B))(w'/d /m) . (2.7)

The vector potential, an operator that acts only on field coordinates,

is given in terms of its matrix elements in equation 1l.45a. Thus, the

matrix element of Hii is
(wn' /s, /m) ol Y /m)
n'n'/H' /mn = 1 m'/d, - A ./m
o] a
1/2 1/2 }
X |n Sn’,n-l+ (n+1) 6n',n+l (2.8)

*Small terms in the Eotom

lected in deriving equation 2.5.

such as spin-orbit interaction can be neg-
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gimilarly, the matrix element for Héi is:
t 1 1 .
(m n /HZi/mn) -

6n',n=l

1/2
+ (n+l1) / 6n',n+l }'

(2.9)

o2 (m'/g - (Vx A /m) 1/2
n
2m (eeo % ma)l/2 [

In the’electric—dipole approximation the matrix element for

Hl

11 is evaluated by considering the vector potential a constant over

the atom. If the magnetic field is conslidered . a constant over the
atom, the orthogonality of /m) and /m') results in a vanishing

matrix element for Héi F The magnitude of Hp; is

evaluated by considering a one-dimensional cavity as discussed in

Section 1.6. To a first approximation the (V x éa)i ie given as

21/2 1
(Vv x éa)i = ly ;172 k | cos kzou (zi=’zo) k sin kz |

where ZO is the position of the center of the atom and the index a

has been dropped from the frequency since only a single mode is consi-
dered. Thus,
1 T t ' =
(m'n /Hgi/mn) Y e(m /cyi(zi zo)/m) Hoo

- ' : (2.10)
(m'n'/H,/in) | 2me (m/d,,/m) Ep- FL

Since cyi » the Pauli spin matrix, has matrix elements of msgnitudc

one and since for the case to be considered ﬁuo:g Em= E& ’

*This is strictly true only for vanishing coupliﬁg between spin and
orbital angular momentum.
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the two terms in brackets are approximately equal to one. The ratio

(mlmt/Héi/mn) _ &z _’Eé . (2.11)
(m'n'/Hli/mn) ~ Zme  me k

=6 ‘ -6
For a transition at 1 micron (A = 10 m) this ratio becomes 10 .

Therefore, for electric-dipole transitions, the term Héi can be
neglccted.
Héi conserves the number of photons, creates two photons or
annihilates two photons. Equations 2.2 and 1.29 give Héi as
e2 +2
By o= 2B (o +ah)Pa oA, - (2.12)
3 2medm L

For the one-dimensional cavity considered sbove, the matrix elements

for H! are:

3i

2
' 2 1/2 1/2
(m'n'/H3i/mn) = -—filé——- sinkz, [(n-l) / n / Sn,’n_2+(2n+l)ﬁh},n

2me w AL
0
1/2 1/2
+ (n+2) (n+1) Sn,,n+2 5m,’m . (2.13)
The off-diagonal terms of H! do not connect degenerate states and

3i
one can show by perturbation theory (Appendix 2) that they cen be

neglected. The diagonal terms result in an energy-level shift which
splits the possible degenerate states /mn - 1) and /m'n) . The

difference in energy between these levels becomes:
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mn m'n=1 E(DAL

Z
E ~E = }ia}=(E=E)+_L Z sinekzi
1

&° -8
The additional energy A — S is approximately 3 ° 10 A for a
me cuAL

resonance at 1 micron and a cavity volume of 10 um This energy is

entirely negligible and can be neglected in the following analysce.

2.3 Stationary States

The time-independent stationary states of the system of atom

and cavity are given by the matrix equation

B/¢) = (8+®')/P) = E/F)

Since, for the present, all other interactions which result in normal
spontaneous decay are being neglected, the atom can be considered a
two-state system with states /m) and energy levels Em s m=¢e,f .

e 18 chosen as the upper state and f is chosen as the lower or
ground state. The interaction of the atom with the cavity is taken as

1 1
(B, +H,)

=
H
M~

where the terms are defined in equation 2.2. An interaction parameter

«a 1is defined by

_ B Z
or) ==1-—-————-]7-2-(f/ ,1]1 .+2 i(VXA J/e)

(2.14)

For strong electric-dipole interactions the spin term can be neglected
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and the vector potential can be considered a constant over the atom.

Therefore, in this case,

ofr) -—8% —_Dp-al(x) Ce (2.1ha)

where r 1s the position of the atom in the cavity and where D is

the electric-dipole matrix element of the atom, i.e.,

D= (ef Y a/n = (£ Y a/e) (2.15)
1 1
and
E -E
q = _‘E_K_E ) (2.16)

Also, a reduced energy and a reduced Hamiltonian are defined by

E-E, - Eiﬁm

~ f 2
€ = (2.17a)
1
and
A E-E, - -:l:')dw
h = 7 (2.17p)

The matrix equation for the stationary states becomes
A A
n/g) = &/9)

The basis {HO§ is chosen in the following order:

-/fo): /eo), /f1), /el), ===, /en-1}), /tn), === .

A
The matrix h 1is glven in this basis as



-29-

{ o 1
0o iq 17
' ‘ x
| 2
| _kQ =il
| N -
|
| ﬂxig ®
[
L
|
|-'ia12 Q-+ |
. 1
| |
I 1!
| |
(n=-1)a iaﬁﬁl
1 :
Q + - 2
o (n-l)o| ~1¥° o
L i
io AE no |
1 :
=i n2 Q+4noy
1]

Since w =~ Q the matrix elements adjacent to the main diagonal connect
states nearly degenerate. The remaining matrix clements resulting from
the interaction connect nondegenerate states. Since their value is

ordinarily very small compared to the energy difference of their

—”
m
—~
o
b
o7
ct

states, perturbation theory (Appendix 2
regarded. The Hamiltonian therefore consists of 2 x 2 matrices
along the main diagonal. Each of these matrices may be individually
diagonalized. A typical sub-matrix is:

Q+ (nil)w\ -iq nl/2

7z (2.18)

i n \ nw

The basis for this sub-matrix is /e n-1) and /fn). The exact
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diagunalization of the matrix yields the energies:

e, = BO+AzL eé‘ (2.19)
where

el = (A?+ a?n)l/2 (2.20a)
and

A = 9;“’ . (2.20Db)

The stationary states are given as

a ibn
— n —
/¢n +) = 1 | 804 /Qaa) = . (2.21)
0 n
Wwhere
(A+e')l/2 anl/2
a = _ and b = _ (2.22)
2
2 o112 o (p s e o)1

The stationary states can be put into the following forms (2.2):

cos 9 i1 sin ©
/8,) = and /P ) = (2.23)
i sin e cos ©
where
1/2
tan 20 - 2D
A

2.4 Equations of Motion

The solutions of the equation

H/¢) - E/§)

have been found. The stationary solutions of the Schrodinger equation



-31-

o/@) '

t

i —_— = 2L
where H 1is independent of time, are given by

12y

/9, = e P

From equations 2.16 and 2.19 the stationary solutions for the matrix

2.18 can be written as

=D‘ a '
1(en+ en)t

/¢n+)t = [an/en-l) + ibn/fn)] e (2.25a)
and _
—i(en= eﬁ)t
/¢nm)t = [ibn/enml) + an/fn)] e (2.25b)
where
- Ee + Ef
e T ———— DO (2925c)

n gﬁ

corresponds to the average energy of the two states /en=l) and
/fn). eé » the energy resulting from the atom-field interaction,
splits the degeneracy.

The complete solution to'Schrodinger‘s equation 2.24k can be
written as a linear superposition of the states given in equations

2.25, i.e.,
n+ ‘n+’'t

M, =T A A8 (2.26)

The values of the expansion coefficients A are determined by the

initial state of the system.
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2.5 Atom and Cavlity Interactions

The stationary states of the cavity and atom system are linear
combinations of the states /en-1) and /fn) . If at time t = O the
atom is assumed to be in state /e) and the cavity in state /n-1) ,

the initial condition for equation 2.26 is

/¥), = /en-1)

This initial condition 1s satisfied by

with all other A's zero. Therefore the time development of the system

is given by

-ie t 5 ~ie't o +ie't
/¥, =e n {/en-l) [an e " +b e ° ] +

n

-ie't +ie't
B.e B ] } (2.27)

/tn) 1a b [e

The system is, in general, in a "mixed" state or a combination of the
states /en-1) and /fn) . The probability p, of the system being
in otate /fn) is given by the absolute square of the coefficient of
/fn) in equation 2.27, i.e.,

2 2
P = hai b sin egt . {2.28)

From equation 2.22
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an;/E
anbn = Pe! * ( 2. 29)
n
Thus,
a2n 2
= i ' . .
Py ;TE sin ent (2.30)
n

The probability p_ of the system being in state /en-1) 1is given by

2
p. = 1- QL% sin” e't . (2.31)

e e!
n

Using definition 2.20, one can write these as

a 2, 2 2.1/2
Bp = 1P =—g-£§'sin(A+ocn>/t- (2.32)
A+ Qn

The probability oscillates between the two states at a rate which
depends on the difference between cavity and atomic frequenéy A,
and on the strength of the interaction o?n . If A =0, the proba-
bility Pe has a maximum of one and =z time average of one-half.
Alternatively, the cavity can be considered as gaining a photon with
peak probability of one and a time-average probabllity of one-half.
If A # 0 , the peak probability of the cavity gaining a photon is
given by

L

1+ (=17 )
+
Oml 2
which is a Lorentzian factor with halfwidth h(}nl/e in units of w .

Therefore, as the energy in the cavity and/or the interaction param-

eter a increases, the response of the atom to the cavity fields
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becomes broader.

If the initial state of the system had been /fn) , the
cavity in state /n) and the atom in the lower energy state, the
probabilities Pe and pe would be interchanged. The cavity would
be losing a photon instead of gaining a photon in the discussion

above.

2.6 Beam-Type Maser

A cavity which has been found useful for beam-type masers 1s
the circular cylindrical cavity operating in the TMOlO mode. This
cavity is mentioned in Section 1.5. The electric field is independent
of axlial distance. For excited molecules traveling along the length
of the cavity the interaction, which 1s assumed to be a strong
electric~dipole interaction, does not change and the results for
stationary atoms can be used. In this particular case the interaction

parameter o defined in equation 2.lha becomes:

Q D

%= (260K0>V)l/2 Jl(2.h05)

(2.33)

n , the number of photons in the cavity, 1s found from the energy in

the cavity.

The molecule enters the cavity in the upper state, travels
along the axis of the cavity with velocity v , and leaves the cavity
after tréveling a length L . The probability of the cavity gaining

a photon is given by equation 2.32 with

t = Lfv



_35ﬂ

This probability

1/2
1 o [ A2 2 1? .
Py = 5~ sin 5+ o0 =5 (2.34)
142 v v

-z

an
is plotted in Figure 2.1 as a function of the "frequency" A % for

2
various values of the "power-level" parameter a?n 55 . For small
v

values of this parameter the maximum probability occurs when the
molecular frequency equals the cavity frequency. As this parameter
increases the probability has significant secondary maxima for values
of A unequal to zero. For still larger values of the parameter the
probability can have its maximum value at a cavity frequency different
from the molecular frequency. For very large values of this parameter
llates between O and s
of the peak values is given by the ILorentzian factor in eqﬁétion 2.34.

The above discussion gives, for a molecule with a particular
veloclity, the probability fox; giving up a photon to the cavity. In a
typical ammonia beam maser the average velocity v is about

2
6.0 x 10 m/sec. (2.3). Assuming that a ™o Baser cavity is loaded

0]

only by wall losses and the input, one can find that the cavity input

power P 1is given by

2
P o~ 107 (aen 2%9 vatts
v

for the above velocity¥. Therefore, the operation described previously

would apply to the maser operating at very low power levels.

*Dhe values of the cavity and molecule parameters are given in (2.3).
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CHAPTER 3

SEMICLASSICAL THEORY

The term semiclassical theory will be used to describe the
formulation of the problem of excited atoms (or molecules) interact-
ing with electromagnetic fields when the atom 1s quantized and the
electromagnetic field is treated classically (3.1). The interaction
energy in the Hamiltonian exhibits the explicit time dependence of
the classically-described field. The semiclassical theory will be

developed and compared with the quantized-field theory of Chapter 2.

3.1 Interaction of an Excited "Atom" with a Classical Field

The type of interaction between the atom snd the classical
field will be that discussed in Chapter 2, the =o-called electric-
dipole interaction. The Hamiltonian for the atom interacting with

the field is:

atom

Hatom , the Hamiltonian of the atom itself, is defined the same as in

Chapter 2, Section 1. The interaction Hamiltonian in the notation of
Chapter 2 is:
Z
H' = E: H'. ’
7 1i
where

°p.) - (2.2)

’ éi + Ai =j

€
HI, =~-—
11 2a (Bi
A, 1is nov the time-dependent field. Using the gauge relation

V - A=0, one can write
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o= - P (3-1)

A -
= !

glo

[ g TN

The relationship for the momentum in terms of the commutator of the

electric-dipole moment and H_ is found from equation 2.5 as

atom
e z i z
- = ; = - . .2
m Z-P-i i ZE:L’Hatom (3-2)
1 1
Thus,
3 Z
H' = = a4 .
}rié [ g i’ Hatom] (3-3)
The atom is considered to be a two-state system with upper
state e and lower state f . The expansion functions used to solve

the problem of the atom interacting with the field are

-i(E_ /)t
/e)t = Jfe) e © (3.4a)
and
-i(F:f/]A)t
/f)y, = /f)e . (3.4p)
Thus, the Schrodinger equation of the system
W, = (B, EVY, (3-50)
with
/W)y = a(8)/ )y + B(E)/ ), (3.5v)
becomes

ifa = - iq ewC (D-A)D (3.68)
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and

D -Aa . (3.6b)

Equation 3.3, the definition of the dipole moment D, and @ the
angular frequency corresponding to the energy difference of the two
atomic states, have been used to find equations 3.6 . The field A
is the field at the position of the atom and it is a function of
spatial coordinates and time.

For a stationary atom interacting with a cavity field, A

can be taken as

A = A(x) cos ot . (3.7)
The equations of motion 3.8 become the following set of nonlinear
coupled differential equations:

+iQt
- biQ e 1 D - A(r) cos wt (3.8a)

1pa

]

b aig &b D - A(r) cos wt . (3.8b)

This set of equations is greatly simplified and easily solved if only

the resonant terms are kept. "The resulting equations are:

i o= = "%Z I p ) (3.92)

Q. e-l(Q-w)t

= - A(x) . (3.90)

b = a

o

Equations 3.9 are used as the differential equations for both the

motion of the atom and its initial conditions. The solution of these
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equations is called the Rabi solution (3.2) .
These equations can be combined to yield uncoupled equations

with constant coefficients, i.e.,

. 2
o . rabd - Alr
& - i(g-w) a + __:__;:&:Z a = 0 (3.10a)
i 2f
v ) ap - A(r)]?
b 4 i(Q-w) b + [—-=‘—“===;J b = 0 . (3.10b)
2
3.2 Comparison of the Semiclassical and the Quantum Theory
As 1s shown in Appendix 1, the parameter
< A
apD- Az _ 1/ (a1.7)

2%

The solutions to equations 3.10 give identical probabiliities

for the same initial conditions as found in Chapter 2, equation 2.32,
i.e., if at t = 0 +the atom had been in state /f) the probebility
of its being in state /e) 1s found to be:

2

¥ = p = 2B sinE(A?+ o?n)l/2 t
A2+ agn

and the probability of being in state /f) is found to be:
aa* = 1 -Dbb

Therefore, both the semiclassical theory and the quantum theory give
the same result for the probabilities of finding the atom in states
e and f . Also the semiclassical theory gives the correct result

for an atom interacting with a cavity containing a small number of
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gquanta or even with a cavity excited by only its zero-point energy,
if the magnitude of the field is chosen properly*.

The correspondence between the two theories is shown more
precisely by solving the atom and cavity problem of Section 2.4 by
using an expansion with time-dependent coefficients. The expansion
functions in this case are solutions to the Schrodinger equation with
the Hamiltonian equal to Hatom + Hfield . Thus, instead of diagon-

alizing the matrix for the complete Hamiltonian of Chapter 2, expan-

sion 2.26 is written as
/v, = Er:l A (t)/en)  + A, (£)/tn) . (3.11)

The terms of Hint connecting "non-degenerate" states are, as in

Section 2.3, neglected. As a result, the differential equations for
the time~dependent A's reduce to sets of two coupled equations,

namely

. _ 1/2 i(Q-w) t
Al = Afn an e (3.128a)

and

A

Afn en-1

1/2 -i(Q-w) t
an/? o~Ha-w) (3.12b)
Noting the equivalence stated in equation Al.7, one can see that the
equations 3.12 and the equations 3.9 are identical. Therefore, for
the case treated, the semiclassical theory and the quantized field

theory are identical. The neglecting of the nonresonant terms in

*See Appendix 1.
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gguation 3.9 can be considered somevwhat analogous to the neglecting

of matrix elements between "nondegenerate" states.

3.3 g ° E TInteraction

In both the semiclassical theory and the quantized field
theory the electric-dipole interaction between an atom and the field

is often added (2.2, 3.1, 3.3) to the Hamiltonian in the form

kB (3-13)
instead of the form
2
' —--g— - . °
i = 2m - (Ei éii'éi Ei) (3.14)
used in Chapter 2. - + E 1s analogous to the static energy of an

electric dipole in an electric field. y , the electric-dipole
operator, is endowed with the characteristic that its matrix elements
in the basis Hatom for the ideal two-level atom considered in

Chapter 2 consist only of off-diagonal terms given by

(m/p/m*) = D (1 - Bmm‘x (3.15)

where D , the electric dipole matrix element, has been defined in
equation 2.15.

As has been shown previously in Section 2.4, the equations
of motion of an atom interacting with a cavity depend on the matrix
element (en - 1/H'/fn) . From definitions 2.1k and 1.45, the ratio
of this matrix element for the two types of interaction is found to

be:



w
= 3 (3.16)

where H' 1is understood to be that given in equation 3.14. Tn the
approximation w = Q@ these matrix elements are approximately equal
and therefore no distinction will be made between the form of the
interaction for electric-dipole interactions. However, in many cases,
such as interactions with a distribution of w's extending from O to
oo, the above approximation is not satisfied and the p - E interac-

tion cannot be used.
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CHAPTER L

RADIATIVE TRANSITIONS

In this chapter the decay of an excited atom to lower-lying
states by means of zero-point interactions with "empty" space is con-
sidered. The subject is introduced first by considering the theory
which neglects the decay of an initial excited state. The more exact
theory which considers the decay of the initial state is then formu-

lated and extended to cascaded decays of an arbitrary multilevel atom.

4.1 Simplified Theory of Decaying States

The concept of a spontaneous radiation is introduced by con-
sidering the simple theory which neglects the decay of an initial
state. This discussion is similar to that presented in many textbooks
(4.1, 4.2).

The Hamiltonian for the system of atom and radiation fields is
given, as usual, by

H = Hatom + Hrad + Hint . (4.1)

The interaction Hamiltonian Hint is the same as that which was given
previously in equations 2.2 and 2.3 as H' . The Hrad is discussed
in Appendix 3. It is given in terms of creation and annihilation
operators as

Brag = Z (a; %a +-2]:) l/“Da (4.2)
a



46

where the a; and a.a are the creation and annihilation operators

for the traveling-wave modes described in Appendix 3. The kets forming

the basis Hra are given, as in equation'l.39, by the product of the

d
individual kets for each particular mode, i.e., by

Tfn) = /asmy -« --) (b.3)
a

where n is the number of photons in each traveling wave. -The kets

atom
equation for the system

forming the basis-'{H % are given by /m) . The Schrodinger

ik 2L e - w/v, (5.%)

is solved by assuming /W)t as an expansion in time-dependent solu-

o * L3 o 3 <+ H -
tions of the Schrodinger equation with the Hamiltonian Hatom rad

, *
Only single-photon processes are considered.

For an atom initially excited to level /e) and none of the

field oscillators excited, the initial state of the system is given

by

/¥), = /&) / 00000 = - - ) =/e) . (k.5)
Furthermore, from the above discussion

/¥, = L A (%) /ma), (4.6)
m,a

*Multiplewphoton processes can be neglected in the problems to be
considered.
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where

/ma)

/m) /Ox 0, 0, ===, la.’ “‘")

signifies that the atom is in state /m) and that one of the field
oscillators is in its first excited state. Here the index a
replaces the more conventional use of the double indices k and €
where k 1is the wave vector of the particular mode and € is the
polarization of the transverse field.

The problem is solved for a time short enough so that the
initial state of the system is considered unchanged. Thus, the

single-photon states of the system are coupled to the initial state

by the equation

an (t)

if —EEEL—— = t(ma/Hint/e)t m#e (k.7a)

with the initial condition

Ama(O) = 0 mte . (4.70)

If the matrix elements are defined by

(mafuy (/o) = WL (4.8)

the probability of being in state /ma) 1s found to be:

" 2 . 2 [(‘Da“ Qem)t:|
Aa(0)]% = ot R 2 (4.9)
®g= oy | 2

2
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where o  1is the anguler frequency of the field photon and Q is
the angular frequency corresponding to the energy difference between
the state e and state m, 1i.e.,

Ee —'Em

em ﬁ

The total probability of being in states other than the initial state
is given by the summation of equation 4.9 over all states. The summa-
tion over a can be expressed as an integral over k wusing the
relationship A3.22.

In terms of the angular frequencies of emitted photons, this

total probability we can be expressed for isotropic radiation as

(w.- 0 )t]
) H;a e.2 sin2 { a 2em |
= Y = . 2 .=
o= L |4 T I —Ta 3
m,a m a a em :
2 j
(-8 )t
3 D () |2 sinzl-——-—-—ei—
me., e ' 2 2 4
73 E: ¥ - 5 » 4w . (k.10)
B : G m w - em:
2
The factor

— (k.11)
a

2

em

is a function of Wy peaked at

4N =
a Qem

with peak value t2 and. width in units of W, given approximately by



If the assumption is made that the time is'sufficiently long for the
factor 4.11 to become very sharply peaked, this factor can be consi-
dered as a delta function in w, - Using the results of Appendix U4,

one can express this factor as

- )
. 2[ «Da Qem) tJ

P = 21t aﬁna- Q) - (4.12)
ma. em
2

Any high-frequency divergences occurring in equation 4.10 are handled
by assuming an appropriate cutoff function as explained in Section
A3.3. Thus, it is seen that the total probability of being in a
state other than the initial state 1s proportional to time.” Since the
integration is carried out only over positive w's, a finite probabi-
lity for decay exists only for atomic states having a lower energy
than the original excited state. The time proportional probability
We can be written in terms of Pe ; tha total transition probability

per unit time, i.e.,
W = 1—\ t ¢ ()+°l3)

Combining equations 4.10, 4.12 and 4.13 and denoting all the lower
states to which the excited state e decays by the symbol £ , one

finds Pe to be:

(4.1%)
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where
fa,c |
Teoe = Z, l"_ﬂ__ en 6(®au Qef) (k.15)
For isotropic radiation this can be written as
QE Hll
T L | fa, e 2
e-f = ——§A J 6(wam Qef) w dw - (k.16)
0

The general relation given by equation 4.15 is used to define the

decay constant Pe For transitions involving polarized states,

-f °

e.g., two states which define a magnetic sublevel, H. can have an
fa,e

angular dependence.

P; is found to be the lifetime of the excited state by the
following argument {4.l). Consider at a particular time t , Ne(t)
excited atoms. In the additional time 4t , Pe at Ne(t) patoms will
statistically decay to lower states. Thus, the number of atoms at

any time is given by

v (t) = W_(0) e-Pet . (4.17)

The above calculation for short time does not give the distribution of
photons emitted by the excited atom. This distribution will be found
in the following section.

The range of validity of the simplified theory considered
in this section can be found by comparing the probability of
state /ma) as giﬁen in equations 4.9 and L.50. The latter

equation results from a more exact theory which considers the decay of
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the initial state and the intermediate state m . These two equations

are found to be approximately equal when

1

T <<€ —
(v +T)
e m

where Fe is the decay constant of the initial state and Fm is the
decay constant of an intermediate state m . If the decay 1s to a
ground state (Fm = 0) , clearly,this is recognized as the normal
restriction on the analysis of a dissipative system when dissipation
is neglected. That is, the analysis is valid for time short compared
to the decay time. Also, the factor given by expression 4.1l can be
considered a delta function in integration 4.10 only if the function
to be integrated has only a small variation over the main peak of this
|2 is

factor. ©Since for electric=dipole interactions the term .H;a e
2

inversely proportional to w , the above condition can be stated as

t>> A
E -E

e m
This relation is also true for the magnetic and electric multipole

Hll

proportional to k™ where n is
ma,e

interactions which give

a relatively small integer. Thus, for decay to a ground state the

probability can be considered proportional to time in the range

or & time short compared to the decay time and long compared to the
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period of the transition frequency.
Assuming that the excited state of the atom is coupled to a
lower state f Dby a strong electric-dipole interaction, one can find

that the decay constant given by equation 4.16 is

Die(Ee_ Ef)3
r = : (4.18)
e->°f )+ 3
i €.c
The matrix element H%a e has been evaluated by using the definition
J

of a strong electric-dipole interaction (equation 3.3) and by using
expansion of the vector potential in terms of creation and annihilation
operators (equation A3.20). Therefore, for electric-dipole transitions,
the decay constant depends on the square of the dipole matrix element
between the states and the cube of the energy difference between the

states.

4,2 Damping Theory

In order to treat the problem of the decay of an excited atom
the quantum mechanical equations of the motion must be solved for times
long enough for the state of the system to differ appreciably from the
initial state. The easily solved equations 4.7 do not adequately
describe the system for longer times.

When an attempt, similar to that in Section 4.1, is made to
solve the Schrodinger equation for an atom interacting with the zero-
point energies of space, high frequency divergences occur from the
integration over k . In addition, there occur low-frequency diver-

gences. The high=frequency divergence or ultra-violet catastrophe may
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be handled within the framework of the nonrelativistic theory by use
of an appropriate cutoff function as described in Appendix 4k, The
low-frequency divergence or infrared catastrophe can be shown not to
exist if the theory is properly reformulated (4.3, L4.h).

These divergences, which result from the interactions of the
atomic electrons with virtual photons, also exist when the problem is
solved in the framework of & completely relativistic theory. The
low-frequency divergence does not exist if the "proper" field is used
(4.3,4.4). The high-frequency divergence still remains in the relativis-
tic theories and the concept of mass renormalization™ must be used
(4.5, 4.15). Any radiative correction not accounted for by.mass
renormalization can result in a shift of the atomic energy level, the
Lamb shift (4.6) .

The problem of an atom interacting with the zero-point
energieé of space may be formulated within the framework of the
nonrelativistic theory by introducing the concept of the counter-term
(4.7). The Hamiltonian given in equation 4.1 is rewritten as

H= H + H d+ Hc

atom ra & Hin s B B (4.19)

t mn ct

where Hatom is the atom Hamiltonian using the experimental mass of
the electron, Hmn is the mass-normalization term, and Hct is the
counter-term introduced to account for any energy level shifts not

compensated for by Hmn' The unperturbed Hamiltonian Ho will be

*The divergent terms can be included as a correction to the mass of
the electron. Hence, the experimental mass of the electron is assumed
to include the effect of these divergent terms.
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=5k=

= 4,20
Ho Hatom+ Hrad+ Hct ( )

and the perturbing Hamiltonien H" will be taken as

" o— - E - . .21
i = Hint mn Hct ( )

It can be shown (4.8) that for hydrogen-like atoms, o

the mass-renormalization term, is able to account for most of the

energy level shifts resulting from H

1nt’ and any energy-level shift

remaining is negligible compared to energy-level differences for

optical transitions.

With the above in mind, the problem of the decay of an

excited atom will be solved with the following assumptions;

a.

Schrodinger equation with the Hamiltonian H

A counter-term and a mass renormalization term exist
in the Hamiltonian to counter any energy level shifts

of a state due to

Hint
Any shift remaining after mass renormalization is very

small compared to relevant energy level differences.

All corrections to the energy level of the atom result-
ing from Hin will be absorbed into the definition of

v
E , the energy level of the atomicec state.
m

To a first approximation; the wave functions of the
atomic states will be given by solutions of the

atom’

.Therefore, in all cases Em will be the experimentally determined

energy.

Assumption d follows from assumption c¢ since if any energy

level correction is very small, then any ?orrection to the wave
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function would be expected to be small.

Neglecting the portion of Hin causing decay to lower states,

t
one assumes that stationary states of the Hamiltonian of an atom
interacting with the zero-point radiation fields exist and that, to a
first approximation, the wavefunctions of these stationary states are
given as solutions of the Hamiltonian Hatom'

The check on the validity of the above assumptions lies
within the realm of relativistic quantum mechanics (4.3, 4.k, 4.8,
L.15). This is beyond the scope of the analysis presented here.

In order to illustrate the method of solution, the problem
of an excited atom decaying to the ground state by means of a single-
photon transition will be considered. The solution of the coupled
equations resulting from the Schrodinger equation were firs} solved
by assuming exponential decays (4.9) and more recent methods use
transform methods (4.10, 4.11). The procedure used here will be
similar; the convenient Laplace transform method (4.12) will be used.

The Schrodinger equation for the system ie solved, as in
Section 4.1, by expanding in the time-dependent solutions of Ho

defined in equation 4.20, with the perturbing Hamiltonian H"

defincd in equation 4.21. Thus, equations 4.4 and 4.6 become
. N _ '
BA L~ mza A g(m'et/H"/ ma), (&.22)
2

where m now refers tp a "bound" atomic state of HO . For the
problem of an excited state coupled to one ground state g by a

single-photon transition, equation 4.22 becomes the following set of



eguations:
14 Ae - }; Aga. t(va/ a"/ ga)t (h.23a)
" and .
1K Aga = A t(ga/ 5"/ e)t (4.23p)

where, as previously, the index e refers to the excited state of the
atom, the Index g +to the ground state of the atom, and the running
index & %o excited states of the field containing one photon of a
given frequency, direction and polarizatioﬁa If at time .t =0 it is
assumed that the fileld is in its ground state and the atom is in the

excited state e , the initlal conditions are:

Ae(O) = 1 (4.24a)
and

Aga(o) = 0 , (4.240)

These differential equations are transformed from the variable t %o

the complex variable s by means of the defining equation for [aplace

transforms (4.12), namely,

(os)
£(s) = [ e rt)at , s=o0+iw (4.25)
0

where f(s) is the Isplace transform of the function £(t) .
v o 'and. » both real, denote the real and imaginary part of

s . Eguations 4.23 and 4.24 become
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ih [l + s Ae(s)]:= ) HY g8 Aga(sai[Qeg- wa]) (4.26a)
a J

and

if s Aga(s) = H;a,e Ae(s+i [Qeg= wa]) (4.26b)

wWhere W, is the angular frequency of the field photon and Qeg is
the angular frequency corresponding to the energy difference between

the excited and ground state, i.e.,

= £ _ 8 . (b.27)

The coefficient of the excited state is found, from equations 4.26 to

be:

a(s) = > . (4.28)
1

e,ga
s+i(w - Q )
a eg

1

s+ )
a
Equation 4.28 can be rewritten as

1

2 c==i(wa= Qeg+ w) (k.29)
2 2
o + (wa= Qe * w)

HH
e,ga

A

se ¥

a

In general, Ae(t) is given by the inversion theorem, i.e.,

T+ioco
A () = —=— &5t
e 2ni
v-1ico

Ae(s) ds . (Lk.30)

Since the summation in equation 4.29 is really an integration over W,
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with the limits 0 %o oo, Ae(s) clearly has a cut along the

imaginary axis for
- <w<Q
eg

The contour indicated in equation 4.30 can be deformed to give

A (t) as
e
0
a6 = f % [¥ (@) - 7 (0)] (5.31)
-
where
1
I'(w) e ga |” g k.33a)
= 11 L.88 . )
2 cgl& = | B o+ (0= Q_+ ©)® (h-332
and
BE(w) E g 1
D) .y |—=2E2 . 4.33b
% za: ¥ (4.33b)

(u)a= Q.eg+ w)

The index a 1is retained to differentiate between the photon frequency
and the imaginary part of the variable s . The deformation of the
contour is shown in Figure L.1.

If one considers

1im g

g - O+ 02+(<.u-$2 + )
a eg

5 = zra(wh- Q.g* w) |, (4.34)

equation 4.33a can be written as
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2

b (0, 0y, + ) (4.35)

H"
Nw) _ . e,ga
2 a

where the summation over a 1s thought of as an integration over
. . If equation 4.35 is compared with equation 4.15, one can see

: SE(0)

that TI'(0) =T

eog is the principal value of the integral
>

or the energy level correction to level e as found by second-order
perturbation theory. Since it has been assumed that energy-level

corrections were included in the counter-term of equation 4020,
8E(0) = 0 . (4.36)

The term F+(w) - F (w) in equation 4.31 becomes

F (w) - F (o) = L) - = (4.37a)
Eorpmee

a sharply peaked function® about the point w =0 if

'M0) < Qeg . (4.37b)

If this condition is satisfied, the term in equation 4.37a can be

represented in equation 4.31 to a good approximation by

F+(w) - F (w)sc~—42191-—-— . (4.38)

*For electric-dipole transitions TI(w) changes linearly with fre-
quency and BE(w) can be considered a comstant (0) in the vicinity
of ® = 0, cf. (4.10).
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If this approximation is used, equation 4.3l can easily be integrated
to yield
_ r(o)

—_—
ale) = 5 (4.39)
Therefore, as found in the previous section, the probability of being
in the initial state decays exponentially with decay constant ré_’g-
Furthermore, the choice of function along the cut in equation 4,31
is found to satisfy the boundary condition at t =0 .
If the result given by equation 4.39 is used, Ae(s) can be

written as

A(s) = ——— (4.%0)

instead of as in equation 4.28.
The relation between equation 4.40 and the above derivation

can more clearly be seen by rewriting the approximation given in

equatlon 4.38 in the form

P (0) - F (@ = ll,(m - L o7 (4.h0a)
gy + 5 - ia>-f 5

For t >0, Ae(t) is evaluated from equation 4.3l by taking a
contour encircling the upper half of the "w" plane. Since Fm(w)
has only a pole in the lower half of the "" plene, it does not con-

tribute to the integral in equation 4.31, hence

+00
1 iwt
Ae(t) =5 J( e F+(w) dw t >0 (4.40b)
e s}
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or rewriting,

iwt
A () = = e diw t>0 . (4.40c)
e 2n (o)
=ico iw + 5

Comparing equation 4.30 and equation 4.40c, one notes that the latter
integral is just the contour for the inversion integral along the
imaginary s axis and Ae(s) can be given by equation 4.40. There-
fore, the function given in equation 4.28 which was not analytic along
the axis of imnginaries has been approximated by the analytic function
given in equation 4.40. Clearly, the analytic form can be obtained
from the non-analytic form by evaluating the summation in equation
L4.28 as the

H" 2

e,ga.

.

1
5 + i(ma= Qeg)

Re 1im Z
s— 0+ a

(4.40d)

This evaluation can be justified somewhat by the physical arguments
that the frequencies (real or imaginary) of any variations in Ae(t)
are expected to be small compared to the angular frequency neg P
that decaying rather than growlng exponentials are expected, and that
any energy level shift given by H" has already been included in the
definition of energy levels.

The coefficient of state /ega) 1is given by equation 4.26b.
This coefticient can be found for times long compared to the decay
constent by using the final value theorem for Laplace transforms
(4.13). This theorem relates the behavior of s f(s) near the
origin of the complex plane to the behavior of f£(t) as t becomes

infinite. This ‘theorem is stated as
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lim s F(s) = 1lim F(t) (4.41)
s -0 t >
where F(t) must satisfy the same conditions as for the inversion
theorem for Laplace transforms (4.14) and the function s F(s) must
be analytic on the axis of imaginaries and in the right half-plane.
Therefore, from equations 4.41 and L4.26b,

. - "
lim iﬁAga(t) = lim Hga

e e o Ae(s-+i [Qeg— wé]) 5 (b.42)

where it is understood that the Ae(S) is given by the approximation
that is analytic along the axis of imaginaries. Using equation k.40,

one can Write thjs as (Pe = Pe—>g in this case)

1
ip A (o) = H : bk
Aaglo) = B o . (4.43)

T + i(Qeg"‘ (.L)a)

The probability of ending in state /ga) 1is given as

— L (bbb

)2

1 k_§ + (o Yog
Therefore the probability of giving off a photon of frequency w is
a Lorentzian function centered at Qeg with width Pe . The total
probability of emitting a photon is given by summing equation L.kl

over all values of a . This sum is evaluated by using equations 4.3k

and 4.35. The result is as expected, namely,

£

3 ‘Aga(oo){e - 1.

=
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4.3 (Cascade Processes

Cascade processes have been covered in detall by Weisskopf and
wigner (4.9). In order to illustrate the method, an atom in an excited
ctate e which decays to an intermediate state { , which finally
decays to the ground state g will be considered.

Equation L4.22 can be transformed to the Laplace transform

varliable s

m'a'(s)] =
Em'a' ) Ema
[ e

if [- Am,a,(0+) + 8 A

1"
2: Hm'a' ma Ama
m,a ?

where A(O+) is the initial value of A(t) . For the above cascade

this equation becomes

g [ -1+ 8 Ae(s)] -

g H;,fa Afa(s -1 [Qef - wa] ) , (4.46a)
il e Afa(s) = Hga,e Ae(s +1[9, -w] Y o+
g; H}’gdg gaa'(s -1 [Qfg - ma'] ) , (4.481)
and
ifs Agaa,(s) = Hga',f Afa(s + i [Qfg - wa,] ) (k.46c)

vhere the index a refers to the photon emitted in the. decay from
state e to state f , the index a' refers to the photon emitted in
the decay from state f to state g . From equations 4.46, Ae(s)

is found to bé:
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A_(8) = T
© He,fa

K

s+ )

a

1
F 1

. . 1 H."a'f
b+l(0.)a {zef)+ Za:/ jKL_

| s+i(wa+o%{= Qef)
(4.47)

As is shown in Section 4.2, the summation over a' contributes a term

T
of the order of f% to the denominator. This, as usual, is assumed

to be small compared to level differences and can be neglected in
evaluating the summation over a . Thus Ae(S) is given by equation
4.4, i.e.,

1

A(s) = —F— (L.40)
€ Tenr
s + )

From equations 4.46 and 4.40 the behavior of the intermediate state f

can be found to be:

A () = -1 f;’e . = - : (4.48)
e—Tf . f-g ,
[S t—— o+ 1R m “’a)] [S+ 5 }

Therefore, the coefficient of the intermediate state is given as a

function of time by

CEp e"[re/e + 1(Q,p- ‘”a)]t i e"Pf/e t
Afa(t) =-1 7 T (4.49)
5

+ 1(wa= Qef)

where it is understood that for this example
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r =71 and r'n = T .

The probability of being in an intermediate state f is given by the

absolute square of equation 4.49 or

2
lAfa(t)‘ -
rT+7T
_( e f)t
Hvl 2 2 F - ].-‘
f;,e 2e 5 cosh 82 Lt -cos[(ma- Qef)t] ,

' ~-T .
g e 2
e + (0. =- 2 )

( 2 a “ef (4.50)

The probabllity of ending in state gaa' " can be found from equations

b 46, 4.48 and 4.41, the £inal value theorem, to be:

2
lAgaat(m)l =
Hga’,f 2 Hf"'a,e 1
% 7 T2 SlTTs 12 2
-gi + (Q_ .- @g+ Q= a:oa,) {—2—- +(Qfg==ma,
(4.51)

The probabllity of giving off a photon wy is given by summing equa-

tion 4.51 over all possible ®, 1 's . This probability is found by



-67-

~using the relation

lim i . — 0 I {5.2:) MR S (k.52)

2 2 2
a->0+ X +a (x+y) + b2 y2+ (a-f-b)2
b - 0+

This relation, which assumes that y 1is small enough to allow the
neglecting of any variation of the function to be integrated, can be

found by the method of residues. Thus the desired probability is

given by
) (Pe+ rf)
2 fa,e 2 2
A @ l = 2 = . .
}é; gaa (©) 7 T ST (4.53)
5 + (maa Qef)

Equation 4.35, which relates the decay constant to an integration
over the frequencies of the emitted photons, has been used”to find
equation 4.53. As is seen, the probability of emitting a photon of
frequency w, is a Lorentzian function with width Pe+ Pf .
Similarly, the probability of emitting a photon of frequency Wy ¢
can be found to be a Lorentzian fuanction with width Pf .

Tf the excited state "e decays directly to a group of states

f which in turn cascade through any number of states to the ground

state*, the equation describing the initial state is given by

a(s) = —=e (b.5%)

where now Fe is the total decay constant; i.e.,

*Any of the intermediate states may be the ground state.
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r=Yr : (k.55)
T

As found previously, the states which fnllow the £ states in the
cascade can be neglected in finding equation 4.54. The equation des-
cribing the behavior of any state u in terms of a decay from a state

t 1is given as

A {s) =
ua; 8, %%
e, »t
u 1
A (s +ifQ, ~o_ 1) (4.58)
iﬁ .. IE tala2= - =8y tu Tay
2

where, as described in Section 4.2, the A's are given by their analytic
spproximation. The subscripts on the A's denote the different pos-
sible photons emitted in the cascade from the initial state. The ground

state for a particular mode of decay is denoted by the coefficient

A (s)
ga,8, = = = ag

This coefficient can be found in terms of Ae(s) » the coefficient

of the initial state. The final value theorem can be used to
evaluate the probability of being in a certain ground state as

t - . Prom the integration over all possible modes of decay, the
probability of emitting a photon of angulér frequency W, in the

decay from e to f 1s found to be given by equation 4.53, where

now Fe and Pf are the total decay constants for these states.
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The decays of atomic states which interact with an optical field
cannot be expressed in terms of simple exponentials as shown in Chapters
5 and 6. If the transformed time behavior of an atomic state e which
interacts with an optical field is given by Ae(s), the probability of
emitting a spontaneous photon "a" in the decay from state e to state

J is found to be:

" " P w =0 2
Hka';j 8 1 ﬂ Ja,e

a ‘ej
A {-1
a' }i r,2 e{ [m’- ])
- )+ (0gi- ay)° I a” Tk

(4.57)

States J and k are assumed not to interact with the optical field.
a' signifies spontaneous photons emitted 1n transitions from state j
to lower states k . If IAe]2 is considered to have the form of a

delta function in the integration over a' , expression 4.57 becomes

" +00 r
H‘a e 2__;# J A=t [w=0 + z]) 2 az (h.58)
yi 2% - r 2 2 € a eg
-0 (79) + 2

where the integration is along the real z axis. Expression 4.58 gives
the frequency distribution of spontaneous emission from state e to

state j
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CHAPTER 5

INTERACTION OF A STATIONARY ATOM WITH CAVITY AND RADIATIVE FIELDS

The results of Chapter 2 are extended to include spontaneous
radiative transitions. The equations describing the motion of the
system are found. Some distributions of emitted spontaneous radiation
and the probability of an excited atom emitting a coherent photon to
the cavity are calculated in an approximation which neglects the spon-

taneous decay between "laser" states.

5.1 Cavity and Radiative Fields

The cavity is considered to be an open cavity, i.e., a cavity that
is transparent to spontaneous radiation. The effects of the zero-point
energies of the cavity modes on spohtaneous emission are neglected¥.
Such effects as -amplification of spontaneous emission or superadiance,
and radiation trapping are not considered.

A stationary atom interacting with the fields of a lossless
single-mode cavity and with the zero-point energies of space which
result in spontaneous radiation is considered. The Hamiltonian of the

system is written as

*It 1s assumed that the denslty of modes for spontaneous emlssion
differs negligibly from the free-space value. These cavity conditions
are satisfied in the Fabry-Perot structures ordinarily used in gas
lasers. 1In small fiber systems (5.5) where the transverse dimensions
of the cavity are of the order of a wavelength of the radiation: the
free-sPace mode density is greatly suppressed; the spontaneocus- emis-
sion results mainly from interactions with the zero-point energies
of the cavity; and spontaneous emission effects can be considerably
changed from their free-space values.
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H = H, - +H,+ Hrad + H + H" + Hcavity (5.1)

where the terms H +H , K6 +H determine, as described in Section
atom ¢t rad

4.2, the stationary states of the atom and the radiative fields. H"

is, as in equation 4.21, the perturbing Hamiltonian which results in

radlative decay; Hc is the cavity Hamiltonian; and H' 1is the

avity
interaction energy of the atom and cavity. The representation used

will be that in which the Hamiltonian

1
Hatom * Hct +H o+ Hrad * Hcavity (5.2)

is diagonal. This representation is chosen in order to exhibit more
clearly the approximations used in the analysis. The perturbing
Hamiltonian is H" .

The quiltonian of a statlonary atom interacting with cavity
fields has been diagonallized in Chapter 2. The stationary states as.

given by equations 2.25 are:

-i(e + e')t
/¢n+)t = {an/enml) + ibn/fn)] e non (5.3a)
and
~i{e_ -e")t
/B0 = [ibn/en=l)-+an/fn)] e - B {5.30)

where the symbols in equations 5.3 have been defined.previously by )
equations 2.1k, 2,22, 2.20 and 2.25c. The upper "laser" state is
denoted by e , the lower "laser" state by f , and the number of
photons in the cavity is denoted by n . States of the atom-cavity

system which are not mixed by H', of course, also exist as statlonary



=73

states and are denoted by

E 1
-1 [ 7%“— + (n+§)a>]t
/mﬂt=/mﬂe ' m#£ e,f . (5.3c)

The stationary states of the Hamiltonian defined in equation 5.2 are,
therefore, products of the wave functions of equations 5.3 and the
wave functions describing the radiative fields.

In the "interaction representation" (equation 4.45), the wave
function of the system is expanded in time-dependent stationary states
of the unperturbed Hamiltonian. The time-dependent coefficient of a
stationary state 7y dis coupled to all the coefficients in the expan-
sion by the following equation:

i [mA (0+) + s A (s)] = H' A (s-i[_l;__E] ) . (5.4)

s Y Y % Yp P B

The energy-level scheme is shown in Figure 5.1. The states

and = t
/¢n+) n /¢n—) are coupled to lower-energy state /¢n-l+)’
/¢n 1 ),/m) and /mn-l) by means of radiative transitions. In other
words H", the perturbing Hamiltonian, has for single-photon decays
matrix elements between states /¢n+) and. /¢n_) , and states
/¢n-=l+a)’ /¢n“l_a), /ma)  and /mn-la) where a denotes a radiation

photon of a given polarization, direction and frequency.

5.2 Decay of an Excited State

It is assumed that the system of atom, radiative fields, and

single-mode cavity exists at time + = O with none of the radiation
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field oscillators excited* and the atom-cavity system in a linear com-
bination of states ¢ and @ with initial values C and

n+ N n+
Cn=’ The equations connecting the initial states of the system to

other states become for single-photon decays

if [=0n€ + 8 Ahe(s)] =

E =E .
. € m.a
Zv“ 5 H;;e,mn'a Amn'a(s-l[ - # } )+
m,n »

Y E A (s«i[En;En“le'a])

e ne,n-le'a “n-le'a Y
where the summation over n' has values only for n' =n and
n' = n-1, and the index € denotes the signs + and - .

For the present, only the evolution of the initial states will
be considered. As in Section 4.3, the reaction of states not
directly coupled to the initial states by single-photon decays can be
neglected. Therefore, in this case the equations for states /ma'a)

and /n-le a) to be used for substitution into equation 5.5 are given

by

E =E .
anf _ " - ne mna .6t
Do Agea(®) = I Eopig e Ane(b+i[——-—=ﬁ————]) (5-62)

and

*This, of course, neglects the high-frequency virtual states which
contribute to the mass-renormalization term and any other virtual
states contributing to the energy-level shift resulting from H.y-
These are assumed to be included in the definition of the atomic
states.
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. y= Y m A (s+1 “ne” Po-1c'a ) . (5.6b)
ifs Anmle'a.(S ~ & T'n-le'a,ne ne # ’ ’

Equations 5.5 and 5.6 can be combined to give

o ' P ﬁ. v =y
A (s) - Cn+ [s i2en+ rh_(s 12en)] Cn= an+

[s+-?n+(s)] [sei2e5+f?n_(s=12ea)] -Bn+(s) Bnn(s=i2eﬂ)

(s)

(5.78)
and
Se'+ T (84 v]'=
A (s) = Cna[s+i en+ Th+(s+lzen) Cn+ Bn-(s)
n-=
8+ Y i2e'+ ¥ ' } - '
[ Ynn(s)][s+ e+ Tn+(s+12en) Bn_(s) Bn+(s+12en)
(5.70)
where
" 2
3 1
?_ (8) - Z nezmn a T g +
ne m’nva ?‘. S—i( ne mn'a)
¥
Y 1 ne,n-le'a 1
€,a 7 - & ’ (5.8a)
ne n-l€'a
s—i( )
B
-2 ] 1" .
B (s) = E: ﬁ' Hn+;mn'a Hmn'a,nm .
n+ -
m;n',sa S=i( ‘:n-i- mn'a)
) -2 " "
2: A Hn+,n=lea Hn=lea,n-
€8 B+ " En;lea
5= 1( =) (5.80)

A



-7

and B (s) 1is obtained from equation 5.8b by interchenging the

indices n+ and n- .

A_.(t) 1s found from equations 5.7 by use of the inversion
theorem which has been given in equation 4.30. Similar to equation
4,28, Ane(s) has & cut along the imaginary axis. The contour for

the inversion integral can be deformed to give

+

8

A (8) = 2= S A ), - A @) Jw (5-9)

8—

where Ane(m)+ is the value of Ane(s) as s approaches the imagi-

nary axis from the right half-plane and Ane(w)_ is the value of

Ane(s) as & . approaches the imaginary axis from the left half-plane.
It is now assumed that at t = 0 the atom is in the upper

laser state and the cavity is in state n-1, i.e., in equation 5.5

= a = - .b . -
Co. N and Cn_ ib, (5.10)

With these initial conditions An+(w)+ becomes

o ian&n- EeA - i:%i)
o+ k= (5.11)

(o + Bi + Di)(w+ B, - D,)

where

_ L, (w) BE, () ( )
. = -1 , 12
P%i = 2 B 0 1ea




1 ,=- -
- L ol .
Bi =-e -i3 (1"f + T, ) s (5.120)
+ +
and .
- i = = \]2)1/2
Di = {a n + [A + 35 (rf+= pe+)] } . (5.120)

Equations 2.20 and 2.22 have been used to evaluate equations 5.8 .

A 1is one-half the difference hetween the laser transition angular
frequency and the cavity angular frequency. «& , which gives the
interaction between the cavity and atom, is defined in equation 2.1k4.
eg is the energy-level shift, which results from the atom-cavity
interaction. Similar to equations 4.33, Pi(m) , the total decay

constant for the ith level (i = e,f), is defined by

I, (o) W=
>— = lim Y I;im 5 g 5 (5.13a)
o—0+ m,s o+ (ma= Q.+ )
and BEi(w), an energy-level shift, is defined by
BE, (w) " 2
; - 5 L (5.13b)
m,a (- Q. + )
a m

where now the index m includes all lower atomic states coupled to the
ith state by direct radiative decay. TIn deriving equation 5.11 the ap-
proximatiqn that in equations 5.13 both eé and A are small com-
pared to a frequency Qim has been used. Also, as in Chapter U,

it has Dbeen assumed that .the total decay constants of any two



-79-

states connected by radiative decay are very small compared to the
frequency difference between these states.

From equation 5.11 it is seen that the factor in the inversion
integral, equation 5.9, is a function localized at w = 0 . There-
fore, in evaluating the inversion integral the I''s can be approximated

by their values at w =0, i.e.,

_ ri(o) B ry
r, ® —— = - . (5.14)

For t > 0 equation 5.9 can be evaluated as a contour integral

enclosing the upper half of the complex "w" plane. The equation for

A e(s) can be derived in the manner explalned in the discussion fol-
n

lowing equation 4.4O. Since with approximation 5.l4 Ancﬁn)_ has no

poles in the upper half "o" plane, equation 5.9 can be rewritten as

+ico
(t) 1 int A (

TN me—— e

ne 251 ne
=ico

im)| diw . (5.15a)

From the inversion theorem, the analytic approximation to Ane(s) can

be given by

A, c(8) = A (o), (5.15b)

1=8

and Ane(t) can be found from ﬁhe Ane(s) in the usual menner. This
analytic approximation to Ane(s) cen, as in equation 4.40d4, be found
by evaluating the summations of equations 5.8 as their real parts in
the 1limlt as s - 0+ . Hence, for the system initially in state

/en=1), An+(s) can be written as
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£
- 1 C——
an(s i 2en + 5 )

A (s) = T T (5.16a)
[s - ieﬁ +—p— + 1 Dn][s-1e£+ m -JiDn}
Where
P .1 q2) /2
D =dcdn+|n+t (£_8 (5.16b)
n 2 2 )

Similarly, for the system initially in state /en-1), An (8) can be

written as

f
-] top
ib (s +1 2e 2)

An”(s) = (5.16¢)

.+ Fe Pf+-Fe
R ' ea
[s+ 1en + 5 + iDn] [s+ ien + — iDn

The wave function of the system of cavity, atom and radiative

fields can, from equation 5.3, be stated as

/W)t = Z Ap/p)t =

-:. t
/en=1) eiA“’[ A () e lent+ ib A (t)‘eietllt ]+
t n n+ n n-
SIAL =ie£t ieﬁt
/), i A () e Praa . (t)e |
other terms (5.17)

where it has been assumed that the initial state of the system is some
linear combination of /fn) and /en-1) and where the states to which
the initial states decay have not been written explicitly. The coef-

ficient multiplying a particular state in this expansion determines the
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probability of being in that state. The coefficients Aen_l(s) and

Afn(s) can be written from equations 5.17 as
_ s . . L st .
A _1(8) = anAn+(s in+iel) + 1o A (s -1A- de)) {5.18a)
and

Ap(s) = 1b A (s+iA+iel) +a A (s+1A- ie}) . (5.180)

If the initial state of the system is assumed to be /en-1) ,
that 1c, initial conditions 5.10, the coefficient of states /fn) and

/en=1) are found from equations 5.16 and 5.18 to be:

(r.+1r)
-iat fE =t o nl/2
Ap = e 5 sin Dnt (5.19a)
and

At - (Pf+ Pe)t [A . 1 Pf- Pe)}

i R T
A =e e cos D t-1 2 e sin D t

en-1 n D n
n
(5.19p)

Similarly, if the initial state of the system is assumed to

be /fn), i.e., initial conditions

c = - ib and, cC = a 5 (5.20)

n+ n n- n

the coefficients of states /fn) and /en-l) are found to be*:

*These, as well as the initlal condltions, can be defined with an
arbitrary phase factor.
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. I r
1At - —T—~(Pf+ Ft [A+% ?f - '22)]
A, =e e cos Dt + 1 o sin D & (5.21a)
and
(r+ 1)t
iAt ~ f! = o nl/2

= = e — Sin Dt . (5'21b)

en-1 Dn n

The analysis in Section 2.5 which neglects radiative decay
gave similar equations. For example, with cavity and atom initially in
state /en-1) the coefficient of state /fn)t found in expansion 2.27
can be stated as

e-iAt o nl/2

et
n

sin eﬁt (5.22)

where

(2 2 ,1/2

el = (A" +a"n) (2.20a)

Relation 5.19a may be obtained from relation 5.22 by replacing the
T
energy Ee by complex energy Ee- 1 7; and the energy Ef by the
T

complex energy Ef - i?§ . This might be considered analogous to the

usual case of interaction with the zero-point energies of empty space

where the exponential decay of an initial state /m) can be obtained

Et
by replacing the atomic energy Em in the coefficient exp(-1i —%%0 by
r
the complex energy E - i -; . Similarly, equations 5.16 and 5.21

can be obtained from the results of Chapter 2 by using this concept of
complex energy. Also, these same results can be obtained from the semi-

classical theory of Chapter 3 by introducing a "phenomenological
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damping term into equations 3.9 (5.1, 5.2). That is, the wave equa-

tion of the atom is given by

/), = alt)/e), +p(8)/f)y (3-9a)

and for an electric-dipole interaction the equations for the coeffi-

cients of the upper and lower laser states can be given by

" 10t Te
ifd = - iba e D - A(r) cos wt-ifi(x)e (5.23a)
and
. -i0t Ie
ifpb = iaQ e D - A(r) cos cut—i}{(—e)b . (5.23p)
If in equations 5.23 the substitutions
T r
(5]
- ?t - -;-t
a' = ae and b" =Db e

are made, the resulting equations are the same as the original equa-
tions without the damping term except for the substitution of
r,-T

(—EL-JE) for @ . These resulting equations are easily solved

when only the resonant terms are retained and yield the same results
as given by equations 5.19 and 5.21.

The probability of being in states /fn) or /en=l), which
is given by the absolute square of the coefficients given by equations
5.19 and 5.21, is in general a complex combination of decaying expon-
entials and oscillating terms. However, these expressions become
greatly simplified when the upper and lower laser states have the same

lifetime, i.e., when Fe = Ff = I' . In this case, for the system
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initially in state /en=l) the probability of being in this state

Pop.1 1s given by

2

=Tt o , 2 2 251/2

Py = ¢ ——5 sin ([2°+ nJ t) (5.2k4a)
A+ QOn

and the probsbility of being in state /fn) is given by

=Tt 2
o“n 2, 2 241/
Doy =€ 1amsin([A+anJ/t) . (5.2kb)

These probabilities with the exception of the damping term reduce to

those found in Section 2.5.

5.3 Spontaneous Emission in Zero Order

Zero order is defined as the approximation that neglects the
atom=cavity interactions which are the result of a spontaneous decay
from the upper laser state to the lower laser state*. According to
Figure 5.1, the zero=-order approximation neglects the radiative decays

from states @  and ¢n- to states ¢ and ¢n-l- but does

n=1+
include radiation to a reservoir state /fn-l1).
This zero-order analysis has been used by some authors in a

semiclassical theory that obscures the degree of approximation

involved (5.1, 5.2, 5.3). Higher-order processes that are the result

*This zero-order approximation is exact if the spontaneous radiation
between the upper and lower laser state can be considered vanishingly
small compared %o spontaneous radiation from the upper and lower
laser states to other states. As shown by equation L4.18, for a micro-

wave interaction between two states decaying to lower-=lying states by
allowed optical transitions this condition is readily satlsfled.
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of the atom spontaneously decaying from the upper laser state to the
lovwer laser state and subsequently interacting with the cavity fields
are covered in the next chapter.

First, the equations for Aenal(s) and ‘Afn(s) will be
derived in a more transparent manner than the previous section. The
wave function of the system is expended in a representation where the

Hamiltonian

Hatom * Hct * Hrad * Hcavity

is diagonal and where H', the interaction of the atom and cavity,

and H", the interaction of the atom with the zero-point fields of
space causing radiative decay, are perturbations. The coefficients
of the states /en-1) and /fn) are connected to lower states /mn-la)
and /mna) by means of single-photon decays. The equations of the

initial states are found as in equations 5.23 to be:

r

if [-Ce + (s + ?g) A (s}] =

n-=1

1 - g ¢2
Hen-l,fn Afn(S * EA) (5 Sa)

1 [-cp + (s + .;fl) A ()] -

Hl

fn,en-1 Aen_l(s + 1 2A) (5.25b)

where C_ =1 and C, =0 if the initial state is /en-1), and
where C_, =0 and C, =1 1if the initial state is /fn). The matrix
element H' has been defined previously in expression 2.18 as

en-1,{n
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mi.anl/2. The conditions on the derivation of equation 5.25 have been
found in Section 5.2. They are: the total decay constants of any two
states connected by radiative decay are very small compared to the
frequency difference between these states, and the frequencies eg

and A are much smaller than the frequency difference between the
laser states and any states connected to the laser states by direct
radiative decay. The aﬁove equations can be solved for the individual

coefficients to give the following:

a) If the initial state is /en-1)

T
5=-1 2A + 7?
Aenul(s) = T + ', 2 (5.26a)
(s=-iA + —E-—§) +D°
n n
and
o n1/2
Afn(s) = R (5.26b)

b) If the initial state is /fn)

2

en-1 Fe+ Pf 2 5

(s=1A+=-—):—-—) +D, (5.26c)
and
r
5 +i2A+—2e-

A, (s) = : . (5.264)

fn Tetle2 5

(s+iA+__T) + Dn

The initial conditions used, i.e., that the atom is either in its

upper or lower laser state at time zero, correspond most closely in a
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gas to excitation by direct electron impact or the resonant transfer
of energy from a metastable atom to the lasering atom. In general,
these initial conditions apply to processes in which excitation
occurs very quickly compared with the decay times of the excited
atomic states. For slower excitation processes such as spontaneous
decay from a higher excited atomic state to the laser states, the
equations for the state of the system become more complex.

In order to 1llustrate the method of analysis, the first prob-
lem considered will be the calculation of the distribution of
spontaneous emission in a direct decay from the upper laser state to
a lower ground state. The ground state in this case does not have to
be the true ground state of the atom, but can be any metastable state
or any state whose lifetime is very long compared with the lifetime of
the upper and lower laser states.

The coefficient for this ground state /gn-l) is given by

s A

go1a(®) = Hiy o A (- tle- a 1) (5.27)

ga,e

where, as usual, the index a refers to a definite photon emitted in
the decay. The cavity-atom system is considered at time +t = 0 to be
in state /en-l) . Aen=l(s) is given by equation 5.26a. The final
value theorem for Iaplace transforms is used to evaluate the coeffi-
cient Agn—la(t - 00) vwhich determines the probability of the system

ending in state /gn-la). This probsbility is
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2
Agn»la(oo). =
Hga,e 2 i(Qeg - - 20) + =
s {r + T . 2 P -7 72
f & 2 i,"f “e
( =) + i(Q__~ ® - A)] +Q n+[A+—(-—-—-—-—-——)}
§ eg & 2 2 (5.28)

Similar to the above, the coefficient of a ground state con-

nected to the lower laser state by a direct decay is given by

ifs Agna(s) = Hga,f A, (s-i[w, - afg]) . (5.29)

If the system is initially in /en-1), the probability of ending in

the ground state /gn) with a radiated photon a is given by

2
ot -
9" 2 2
Hga,f 2 an
' .+ T 12 r.-T ]2
. £f e 2 i, f e
{1(Qfg” w_+ A) + (_TW)J + a1+ [A+—2-( 5 )}

(5.30)

For the system initially in the state / fn) the probability
distribution of radiation from the upper laser state would be given by
equation 5.30 and the probability distribution of radiation from the

lower laser state would be givemn by equation 5.28 with the interchange

of H" and H" , I and T
e £

ga,e ga,f ;, and <A and A . The
2 7

interchange of =-A and A changes the asymmetry of the distributions.
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Decay to an arbitrary state rather than to a ground state

could also have been considered. The resulting distribution would, as

in Section h.3, depend on the lifetime of the arbitrary state.

The distributions given by equations 5.28 and 5.30 can be

written in terms of
2
‘Agn-la(oo)\

and

(@)

lA
gna

Normalized variables

h(wa
T,
h(wa
Te

normalized distributions as

Hll 2

= ga,e 4 2
| T, v
B |2
- ga,f ( b )2 7
r+7T 2
e f

are defined by

- Q
eg)

+ Pf)

- Qfg)

+ Ff

LA

I +
e

and.

e r+r
e

and the normalized f

Pe+ Pf

1/2

ban

I

f

requency distributions F

1 and

(5.31)

(5.32)

(5.33a)

(5.330)

(5.33¢)

(5.334)

(5.33e)

(5.33f)

F2 are given by
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-i(x + 2y) + 2, 2

[mi(x +¥) + 1]2 + n2 + [y4—i(yf - Yé)]g

(x + 2y)2 + href

2
- Goe )P e y® = O - 1)) kv - v - (o)
(5.34)

Fo = 1 (5-35)
; [mi(x'm y)4-1]2+ q2+ [y + 1(yp- re)J2 .

In order to illustrate the characteristics of these freqguency
distributions,; the special case of upper shate lifetime equal to lower

state lifetime, namely,

Y, = T - % (5.36)

is considered in the following discussion. The normalized frequency
distribution Fl is plotted in Figure 5.2a for y = 0 as a funclblion
of the normalized frequency x with qz as & parameter. TFor q2 =0
the curve given is the normal Torentzian distribution of emission for
an atom initvially in the upper lasar state not lnteracting with the
laser cavity. For increasing q2 the interaction of the atom with the
cavity becomes greater, the modulation of the laser energy levels by
cavity fields increases and consequently the spontaneous emission
begins to depart from a Lorentzian shape. As the laser transition
approaches saturation, the spontanecus emission no longer resembles a

Lorentzian and in fact becomes double-peaked with a hole "burned" in

the center of the line. The spacing between peaks is given approximately
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FREQUENCY DISTRIBUTION OF SPONTANEOUS EMISSION

Probabllity versus frequency for atom fre-
guency equal to cavity-field frequency with
atom-cavity interactions as a paraneter.
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by 21] in terms of x or by ’E(xnl/2 in terms of wa . This is +the
expected difference between peaks since, as illustrated in Figure 5.1,
the radiation comes from two states separated in angular frequency by
Eer'l which 1s equal to 2unl/2 under condition 5.36. Moreover, as
expected, the area under the curves, which represents the total proba-
bility of decay by this mode, decreases as n2 increases.

The distribution F2 for y =0 1s plotted in Figure 5.2b as

2
! for various values of 1 . It is noted that for

2

a function of x
small values of ng the distribution is single-peaked. As 7
approaches saturation values, the distribution becomes double-peaked
with spacing beftween peaks given by 2oml/2 in terms of o, -

The probability distributions Fl and F2 are plotted in
Figures 5.3a and 5.3b for a given n2 with y as a parameter. Dis-
tributions for positive y's only are plotted. The distributions for a
negative y 1is the mirror-image about the line x = 0 of the corres-
ponding distribution for positive y . As expected for large vy ,

Fl approaches the Lorentzian curve found by neglecting the atom-
cavity interaction. The asymmetries in Figures 5.3a and 5.3b are
readily explained by referring to Figure 5.4 where the energy-level
diagram for decay to the ground state is shown. It is noted that the
energy-level difference between state /gn) and the states ¢n+ and
¢n- increases as A (or y) increases and, as shown in Figure 5.3b,
the spontaneous emission -is shifted to higher frequencies. The energy-
level difference between state gn-1 and the states @ snd @

decreases as y increases. This tendency toward lower emission fre-

quencies is counteracted by a change in the values of ap and bp ;
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Figure 5.3b

FREQUENCY DISTRIEUTION OF SPONTANEOUS EMISSION

Probability versus frequeacy for a certain
atom-cavity interaction with the difference
between cavity-field frequency and atom
frequency as a paraneter.
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Figure 5.4
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as A increases an increases and bn decreases. Thus, as A
increases, the fraction of the upper state ¢n+ which decays to gn-l
increases and the fraction of the lover state ¢n- which decays to
gn-1 decreases. As a result, the emission is shifted toward
higher frequencies. As expected, the spacing between peaks 1s given

) . r 2 21-1/2
approximately by the energy-level difference 2e£ or 2§ n+y |

in terms of x .

5.4 Coherent Emission and Absorption in Zero Order

In the following, the probability of the cavity gaining or
losing a photon, i.e., a coherent photon, is calculated in zero order
for certain initial conditions. As outlined in Section 4.3, the
probability of the atom-cavity system which is initially in an
excited state ending in a ground state is given by the summation over
all possible modes of decay in the cascaded transitions to this ground
state.

If the atom-cavity system is initially in the state /en-1l)
or /fn) , the probability of the system terminating in a ground state
/en) by means of a certain cascade /aal - = - ag) 15 symbollzed by
Pro - . . g 8nd the probability of terminating in state /gn-1) by

. /Jg) 1is

g
the ground state of the atom and /a - - - ag) are the wvarious spon-

g
cascade 8 - = =& is symbolized ©
/ g) yu U N

taneous photons emitted in a certain cascade to the ground state.

Pn’ the total probability of the cavity ending in state n , is given

by
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Pn = Z Pna-n-a
D;8;==-,8 g
and Pn=l’ the total probability of the cavity ending in state n-1

is given by

L ) Pho1 777 B
P:ay”=“:ag

where the summations include all the various cascadeé. Neglecting the
cavity interaction with lower laser states which are the result of
cascaded as well as direct spontaneous decays from the upper laser
level, one can write the above probabilities as

" |2
= l lAfn(“i[wa - Qfm])kz (5-372)

and

(5.370)

H" 2 2
Aen--l(ui[wa - Qem])l

where the summation over m includes all states conneqted by direct
spontaneous decays to the initial states. The A's are found from
equation 5.26.

If the system is initially in the state /ehnl), Afn is found

from equation 5.26b to be

‘ o n/? 2
‘Afn(mihba- Qfm])\'2 - _ . (5.38)
{Pf+P
Looh

e

[
+1(§1fm+A=ma) + D
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. 1/2 .
Since, as usual, A , Pe 3 Pf and an are considered small com-

pared with @Q the function in equation 5.38 is sharply localized

fm ’

near the point W, = Q and can be considered in equation 5.37a as

fm

a delta function in the variable W, - The magnitude of the delta

function is found, as explained in Appendix 4, from
+00
A (~ifw = 0_ 1) 2. o(w - Q. ) }A (-i[w_ - @ ])|2 aw_ - (5.39%a)
fn a fm a fm fn a “fm a
-
The integral can be evaluated by the method of resldues to give

2
2o n(l'., + T )
r e . (5.39%)

(Ff+ Pe L Ff+ r 2 5o

e 2 2 2
=_° L€ - ¥
5 ) o+ ( 5 ) 2(Dn + D¥ ) + (Dn Dn )

Using the defining equations 5.33b and 5.33c, and noting from equation

4.15 and A3.22 that

2
7 8w - Q
a

Hll
ma., £

1

T
£ o
T - L

m,a

(5.39¢)

fm.) J

one finds that the probability of the system initially in state /ennl)

gaining a coherent photon is given by

2
A i s (5.40)
0+ b ve(l+y7)

The symbols used in the above equation have been defined in eguations

2-33.
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Similarly, for the systcm initially in state /en-1) the
probability of the cavity state remaining unchanged can be found from
equations 5.37b and 5.26a to be:

2 2
n+ by (L y)

Foo1 ™ Te 3 = (5.41)
N+ by v (L+y7)

If the system had initially started in state /fn) , P.1

would be the probability of losing a coherent photon and Pn would
be the probability of the cavity state remaining unchanged. In this

case Pn would be given by equation 5.40 and Pn by equation 5.41

-1

with L and Yf interchanged in both equations.

Clearly, in both cases probability is conserved, i.e.,

+ P = 1.
Pn n-l
It is noted from equation 5.40 that an atom initially in the

upper laser state has a probability

of emitting a -coherent photon in the limit of very large atom-cavity
interaction. The saturation factor in equation 5.40, or the relative

probability of gaining a coherent photon,

2 .
L = F (5.42)

2 2 3
N+ by v (1+y7)

is plotted in Figure 5.5 as a function of 17 ; the normalized interac-

tion parameter, for various values of the "frequency difference"
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uveyf(lﬂ-yg) . As the interaction between cavity and atom increases,
the probability of emitting a coherent photon approaches the saturation
value on a curve which depends on the frequency difference between the
cavity photons and the laser transition. From Iigures 5.2,.5.3 and
5.5, it is noted that as the spontanecus emission becomes non-
Iorentzian, the probability of emission or absorption is no longer
proportional to n (or energy density in the cavity); hence, the
atom-cavity interaction is said to be in a saturation condition.

Also, the probability of emitting a coherent photon can approach one,

only when the lower laser lifetime 1s very small compared to the upper

laser lifetime, i.e., when

e >> T
The probabilities Pn and Pn-l can also be found from the
following expressions (5.1, 5.2, 5.3):
©
P = I‘fj ‘Afn(t)]2 at (5.L42a)
0
and ©
Ppo1 © 1_\e j kAen-l(t)\g as . (5.h2b)
o]

The relation between equations 5.37 and 5.42 is discussed in Appendix
5.

Equations 5.42 lend themselves more easily to physical inter-
pretation. For example, by defining a time-dependent probabllity from

equation 5.42b
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2
p._(8) =T | |a (t)‘ dt (5.43a)

en-1

O%d

and differentiating this equation, a rate of spontaneous emission

n-1 [ 2
P = T \Aen_l(t)\ (5.43b)

can be found. Therefore, this rate of probability (or flow of proba-
bility resulting from radiative decays) is proportional to the
probability or "population" of an initial state.

The probability of emitting or absorbing a coherent photon is
modified when higher-order processes are included. This point is
covered in Chapter 6.

The methods of this chapter can be extended in a fairly straight.
forward manner to more complicated initial conditions, such as the atom
decaying from a higher level to one or both of the laser levels, or to
the problem of cascaded laser transitions.* The spontaneous radiation
resulting from the decay of a higher excited state to either of the
laser states would not be Torentzian since, as seen in Figure 5.1, the
decay is really to two lower states which are split in energy by the
atom-cavity interaétion. A further refinement on the theory presented
could include the mode of excitation of the atom (5.4). Some contri-
butions to spontaneous emission by the higher-order processes that
result from the spontaneous decay of the upper laser state to the lower

laser state are discussed in the next chapter.

* Upper or lower laser level connected to another atomic level by yet
another laser interaction.
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5.5 Decay to a State with Arbitrary Lifetime

In Section 5.3 we found the spectral distributions of spon-
taneous radiation resulting from decays of atom-cavity states to long-
lived atomic states. The frequency distribution of spontancous radia-
tion from the atomic states (e and f) which interact with the cavity
to states (g) which have arbitrary lifetimes is given by equation 4.58.
The probability of emitiing a photon "a" which results from the decay
of state /en-l) to state /gn-1) is given by
e r

2

“ 1
2n T

H"
ga,e

B

2
A (wiknaw Qeg+ z])| dz (5.4k)

en=1

Where Pg is the decay constant of atomic state g . Similarly, the
probability of emitting a photon "a" which results from the decay of

state /fn) +to state /gn) is given by

" 2 +O,O IN 2
a4, 1 .
g;i’ x| T |Rea(otegm g 2])| az . (5.43)
-C0 (75) v zZ

The spectral distributions of spontaneous emission between
states e and f are algebraically more complex since both states
interact with the cavity fields. These distribubtions are found in

Section 6.5.
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CIAPTER &

HIGHER~ORDER PROCESSES

The results of the previous chapter are extended to include
higher-order processes that are the result of an atom spontaneously
decaying from the upper laser state to the lower laser state and sub-
sequently interacting with the cavity fields. The probabilities of
emitting and absorbing coherent photons and some characteristics of

spontaneous emission from the laser levsls are calculated.

6.1l Spontaneous Decay from Upper to Lower Laser State

In this chapter only direct spontaneous decays from the upper
to lower laser state are considered. The theory can easily be
extended to include the more general case of spontaneous decays from
the upper laser state through one or more intermediate stétes to the
lover laser state.

The energy-level diagram including the direct spontaneous
decay from the upper to lower laser s*ate is shown in Figure 8.L1.
Although separate indices may be used to keep track of the individual
sponténeous decays, in the cases to be considered it is sufficient to
use a single index for decays from the degenerate levels ej-1 and
fj. That is; the index a 1is used to signify spontaneous photons
emitted from the initial states /en-1l) or /fn) ; the irdex a, 1is
used to signify spontaneous photons emitted from the states en-2 and
fn-1; eté. As alvays, only the effects of spontaneous emission are

being considered; the excitation of the radiative fields is considered

to be too small to cause induced effects.
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en-| jL |

RADIATIVE DECAY BETWEEN LASER STATES

Figure 6.1
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The behavior of the initial states /en-l) and /fn) has been
derived previously and the results are given in equations 5.26. The
equations for the next two states in the chain, /en-2a) and /fn-la},

can be written in terms of the initial state /en-1) as

I\

f
i cams = 18 - _
(s + =) Ap1a(8) Hfa Ao l(s o - a_.1) +

¥ . . ) )
Hi 1 en-2 Aep.za(® * 128) (6.1a)
and

r
. e . » §
if(s + 2) Aen=-2a(s) = Henm2,fnml Afn«sla(s i2A) . (6.1b)

These equations are solved for the individual coefficients by using

expressions 2.18 and 5.16b. The results can be stated as

1%

_ fa,e . _ \
Afnﬂla(s) - nnl( ) iki Aenml(s i[(l)a Qef]) (6028,,
and
l!
- ia e o _ o o
Aeana(s) K ( ) % enal(s l[wa w]) (8.2b
where r
s + ia2A + 7;
R (S) =
. Ié+ Pf 2 2
(s + 14 + N ) + D, (6.3a)
and- ‘
| - anl/? .
Kale) = e vl 3]
(s = 1A+ ===} + D
4 n

Equations 6.2 can easily be generalized to states further down the
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chaln to yileld

A (s) =
fn-ka - = -ak—l

11

R (s) _f%k-1,%

n-k' ' TTgf  en-ka- - _ak_g(s -ifw, -0 ) - (6.1)

k=1

The evolution of the laser states is found by solving the above chain
of equations. From the defining equations 6.3, it is noted that the
atom-cavity interaction decreases as cavity photons are converted to
spontaneous photons. Also, it is noted that as a result of interac-
tions with a "dissipative" atom the cavity has a probability of

terminating in any of its lower states.

6.2 Coherent Emission and Absorption

In the following, the probabilities of the cavity terminating
in its various excited states are calculated for the system initially
in the state /en=1) or /fn) . The calculations follow the method
used in Section 5.k4.

With the above initial conditions, Pn , the probability of
the system terminating with the cavity in state n , 1s the same as

that given in equation 5.37a, namely,

g" 2

_m%g

2
P, = Y lAfn(-i[ma- Qfm) . (6.5a)

m,a

Since the atom can decay from the upper laser -state to the lower

laser state and subsequently decay to lower states, anl is no
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longer glven by equation 5.37b but by

Hl'l'la e 2 | 2
= mee -ifw -
Pn—l - Z ¥ Aen- ( l[wa Qem])‘ *
m,a
¥ Hnay £ |2 2
A (-i[w_ - Q ])’ m#Ef . (6.50)
m,a,al ﬁ fn-lsa al fm .
Similarly,
Hoay e |2 2
P o= L L ‘A (-ilo, = a_1)] +
n=2 m,a,al z en<2a al em
Hpa ¢ |° 2
oot e - | ¢
m aii »a ® AanQEal(-l[mhz Qfm]) mEt
O R (6.5¢)

The computation of the high-order probabilities is- clearly”a.n exten~

sion of these equations. In all the discussions to follow, the index
m does not include the lower laser state f and therefore the ine-

quality m £ f is eliminated. Using the expressions given by

equatlons 6.2 and 6.3, one can write anl a8

P = Y S‘&’-—%z IA (-i’[(l)-Q ])IE +
n=1 m‘:‘a ] en-1 a Tem
Hieo o |2 g" Wg-lep
Lo Faalileg - ap)) i 75| Mol )
m,a,8, B n-1 &) fm en-1 “’al‘ 'ﬂfm
(6.68)

Similerly,
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1" 2 D =W 2
P = ) e U ‘K (-ilw. -0 ])‘2 fra,e[? b (1] )
n-2 n,a8, ] n-1 a, em’’| i en-1 “hlfgem
H 2 HY 2 W -0 7112
mag’f l2 fay,e K ( o8 e ‘)i
e s _ -1l Vi
* L 1 'RH-E( l[(Da2 %)) ERREE tb -0
m,8,8 58, ) fm ] |
- 2
) 5 ma w
fa,e _ -
—71— Aen_l( i wal Q) . (6.6b)
wae-gfm
the ab ions the functi A 21 2 |2
In e above expressions e functions ‘ en-1| ? [Kn—ll 3 Rn-l 3
2
and 'Afn-l‘ are sharply localized functions and cen be considered

as delta functions in evaluating the summations (or integrations) over

the spontaneous photons. The customary approximation Q:Qef is

made. The frequencies of emitted spontaneous photons are localized
in the region appropriate to each delta function. For example, in
the last summation of equation 6.6b the spontaneous photons are

localized in the region

The summations can be most easily accomplished in the order of

-~ st

a,al,az, gtc. ' The fuﬁctions E, R, Aen-l and Afn for use

in the integrations are defined by

AL

K, (-12) % = K| 2xd(2) (6.78)



: \ 2
j anl(mlz) l

[Aenml(-iz)’2
and
‘Afn(-iz)‘g

!
i

These delta functions have been evaluated in Chapter 5.

equations 5.26, 5.40,

relations:
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= R, 2n8(z)
= A1 2n85(z) .
= an 21(5(z)

A o~

F.R = 1- r X,

Te App = 1= Te Aep
If the initial state is /fn)

Aen—l - Kh
and if the initial state is /en-1)

e Aen-l = 1- I-\f‘ Kn

where

—~ F

Kn = 3 .

I, +Tp

(6.7b)

(6.7¢)

(6.74)

By using

5.41, 5.42 and 6.3, one can find the following

(6.8)

(6.9)

(6.10a)

(6.10b)

(6.11)

By using the above relations and equation 5.39c the probabilities can

be written as



Po= LpAg (6.12a)
P1 = ToA 4 (1 - L Kn_l) (6.120)
Poo = T A1 (L - L Kn-E) ToLeKo1 (6.12¢)

where Pe is the decay constant for spontaneous emission from

-f
state e to state f . By extending these, it is found that in

general

a~

~ 1-T_ ¢ Kn-3-1
Pne3-1= Pnog Tenr ®ao ;s > 3 »1 . (6.12d)
1Ty s K,
The factor T_ . E; 3 can, in a sense, be considered a "branching

ratio" or a factor which relates the probability of a certgin mode of
decay as shown in Figure 6.1 to a preceding (and in this case similar)
mode of decay. As seen from equation 6.12d4, the successive probabili-

ties decrease except for the special case
P = P I} P = 0 ° (6'13)

Since for conditions 6.13 Pe.a . E; equals one (f is now the ground
state of the atom), the probabilities in equations 6.12 are not
defined. To simplify the analysis this case is not considered. For

a highly excited cavity, the sﬁccessive probabilities can be

evaluated with great accuracy by neglecting any change of Kn with

n . Thercfore, for a highly cxecited cavity, the total probability

can be written as
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oo
P=2 P .
j=0 "7
= I1f Afn * I-‘e en-l( e-f Kn) Z (Pe—*f Kn)
k=0
(6.14)
The series is readily summed to give
P=- Tph, +T A _ (6.14a)
and from eguations 6.9
P = 1. (6.14b)

Therefore , probability is conserved.

The expected number of photons in the cavity after all decays
have taken place is given by the ususl quantum mechanical average,

namely,

<o>=_(¥/n/¥) - (6.15)

The indicated operation is performed by using the definition of the

operator n as given in Section 1.4, The result can be written as

<n>= Pn+P n-1) + ane(n~2) + == (6.16a)

1

If the previous result that the sum of all the probabilities is equal
to one and equation 6.124 are used, <n> can be rewritten for a

highly excited cavity as

0
_ _ . ~ . j-1
<n> = n-P j};l (Jl"e_)f Kn) (6.16b)
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The series is easily summed and by using equationg 6.12b, 6.10 and

6.11, one can find the following:

If the initial state is /en-1),

(rg = v') Fy
<n> = n-1+ (6.17)
1-yF
L
If the ilnltial state is /fn) ,
F3
<n> = N o= 7 ———, (6.18)
C1-y'F
3
The normalized decay constant y' is defined by
r
yo= =21 (6.19)
I + 7T
e by

Hence, for the atom initially in the upper laser state, the average

probability of the cavity gaining onec coherent photon is denoted by

P+ . From equation 6.17 P+ can be given as
(Yo = v")F
P = <a>-(n-1) = —0 3 | (6.20)
+
1-9 F3

For the atom initially in the lower laser state, the average probabi-
lity of the cavity losing one coherent photon is denoted by P_ .

From equation 6.18 P_ can be given as

F
P =n-<n> = y —2— (5.21)
- ©l-v'F
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These average probabilities P+ and P_ give, in the usual
guantum mechanical sense, the statistical averages of the measurements
performed on a large number of identically prepared systems.

In the limit
<K T

these expressions revert to those found in Section 5.4.

-BEquations 6.20 and 6.21 can be written as

Yo V'
P = —————— FL (6.22)
+ 1 -9
and
Y-G‘
P = —— F, (6.23)
1 - !

where the saturation factor F), is given by

(l = TI)FS
F) = —3 (6.24)
1L~ F3

Some of the characterlstics of this factor are exhibited in Figure 6.2.

Tf the lower atomic state f 1is considered to have an

extremely long lifetime, that is, if

T, = 0, (6.25a)

and if the upper state e decays to other states in addition to state

f , namely, if
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r > ¥ (6.25b)

then equatlions 6.20 and 6.21 predict

!
p, =—L
1-v! (6.26a)
and
P oo = (6.26D)
- Loy

Hence, in this case, the cavity loses photons to the atom with an
expectation which is independent of the interaction a2n and the
frequency difference A . This result is not surprising since the
atomic state f can only be raised to the state e by interacting
with the cavity photons. The successive decays and reexcitations of
state I give the results in equations 6.23. This conclusion is true
only under the conditions of the analysis, namely, that infinite time
is allowed for the interactions. 1In an actuasl physical system other
processes which have not been considered in this analysis, e.g.,
collisions, would have a probability of occurrence and would modify
the above conclusions.

The time for a state /fn) of the system to decay can be found

from equation 5.2la. This equation, for the conditions
<< T (6.27a)

and

azn << A2 or ofn << Fi (6.271)

gives the probability of state /fn) as
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1-‘f' 1 aen £ (6.28)
exp -T T‘-+E ]_"2 . .
e
22, (T§)

The decay constant is

T 1 azn
r | L4z : (6.29)
e | T L 2+ (22)2
L

Thus, for = metastable state under conditlons of small atom-cavity
interaction or cavity frequency much different from the atom transi-
tion frequency the decay constant can be very small. The probabilities
ol other states coupled to the state /fn) cannot become slgnificant
until state /fn) appreciably decays. Under conditions 6.27‘the state
/fn) can have a very long lifetime and processes not considered in
the analysis could disturb this state and "break" the chain which

gives the results in equations 6.23. In general, this same criteria
could be used to check the applicability of egquations 6.20 and 6.21 to

an actual physical system.

6.3 Spontaneous Fmission to a Ground State

In this section the analysis of Section 5.3 is extended to
include the effects of spontaneous emission from the upper to the lower
laser state. -The scheme for the spontaneous decays 1s shown 1ln Figure
6.1.

The equations for the successive coefficients of the ground

states connected to the atomic state e by spontaneous decay can be
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written as

Al

s Ay 1a(8) = —%%&3 Apop(s-ilo, - a1) (6.30a)
Agn=2aa1(S) = ?%3%13 Aen_la(s- &Dalfgeg]) . (6.30b)
The general expression is given by
8 gn-k 8---a (s) =
"
ga e
""“{%:l:‘ Aen-xk a-—-—ak_l(s ai[wak-i—ﬂeg]) . (8.30c)

The probabilities of spontaneous radiation to the
ground states from the upper laser state are given by the asbsolute
square of the appropriate coefficients in the limit as t - oo.
This is easily accomplished by using the final value theorem for
Laplace transforms in equations 6.30. These probasbilities can be

stated in terms of their radiated frequencies w,  as

J
A (5|7 famse (=i ])le (6.318)
’ gn'=la - yi ell =1 1 (D - Q °
H, 2
2 gal,e o
|Ag§~2aal(ag' = 1 %:\ en ga(‘ [m l° N ])‘ (6.31b)
HH 2
2 gan,e A
(@)|" = [=2=| L |Ap-z0a (-tle, - 2 D"
aal’ gn=3aala2 l i as, en~3a§l a,” ‘eg

(6.31c)
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etc., where the summations are over-all intermediate decay quanta
between laser states. The individual coefficients can be restated in
terms of the initial coefficient Aen-l by using equations 6.2b.

and 6.3b. The summations in equations 6.3l have been done previously
in Section 6.2 in the limit of a highly excited cavity. In this limit,
with the use of equations 6.7 through 6.11, one can write the probabi-

litles in equations 6.31b and 6.31c as

H&a 2
2 1€ . 2 ~
5 |a ()% = 'K (-i[o - )|
& gn-2aal 1 n al eﬂf en-l (6.32a)
and
H" 2

2 ga’g)e i 2 A ~
7. |a (0)]? = |2 K (-tlo, - a,.]) KT A .
aal gn-Eaalag ﬁ n a, ﬁf N e=f “en-l

(6.32b)

“~s

All. succeeding probabilities have an additional factor F F Kn .
This is the same factor found in equation 6.124 which had been consi=-
dered as a "branching ratio" relating successive levels. The net

probability distribution is the sum of the above probabilities and can

be written as

"
ga,e

Hhatettog P+

: 2. 7
5, ilo- 0 D] T, B L} (6.33)

e-f “en-l

e-f Kn

where all the probabilities have been written in terms of one frequency
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variable W, and the resulting geometric series has been summed.
Similarly, for decay from the lower laser state the probability

of emitting a photon of frequency o, is given by

" ~

ga,f it .2 it 2T . A
——Kl— {iAfn( 1[(.0a Qfg]) + an( 1hna Qfg]) l?fi e%El .
e>f "n
(6.34)

These probability distributions can be easily compared with those of
Section 5.3 if use is made of the definitions given by equations 5.33,

5.34 and 5.35 and two new functions F! and F! are defined in terms

1 2
of Fl and F2 as
1 = o
y >=y
and
YooY
f e -
FA(x) = Fy ) (6.35b)
y €2>-y

where the symbols in the brackets are interchanged to give the primed

functions. From equations 6.3, it is noted that

a2, 2 D] (?ﬁ—f{)g Py (x) (6.36a)
and
[8,(~110,- 2, 1)|® - (?-i*_-.f_,)2 i) (6.36b)
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Therefore, if the initial state of the system is /fn) the probability
distribution of spontaneous emission from the upper laser state,

expression 6.33, becomes

H" 2 l

( )" FA(x) —— (6.37)
e £ l"T“Fg

and the probability distribution of spontaneous emission from the

lower laser state, expression 6.34, becomes

2
(

11
ga,f
i

L
re+ Ff

1
l-7'F

2
) Fi(xﬁ (6.38)

3

If the initial state of the system is /en-l) » the probabllity distri-

bution of sponteneous emission from the upper laser state i=s

H"
ga,e

A

n
' +T
e

(

Y (1 - v F.)
f3 ] (6.39)

T (1 - Y'F3)

3 [Fl(x.) + FL(x)
f

and the probability distribution of spontaneous emission from the lower

laser state is

Hé@Lﬁ ° ( 4 f [Fz(xi) + Fi(x')IL&EiEfEZJ . (6.40)
A r+ T, Te(l-7'F )

Thus the Aistribution of spontaneous emission from the laser atates to
a ground state is given by combinations of the distributions found in

Section 5.3 with the probabilities modlified to take into consideration

the spontanecus decay from upper to lower laser states.
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In this section Wwe have found the probability distributions of
spontanecus emission from the atomic states e and f to a long-
lived atomic state g . These probability distributions of spontaneous
emission are given by equations 6.37 through 6.40 with distribution

functions Fl’ F2, Fi and Fé . If we consider that the state g

has an arbitrary decay constant Fg , the probability distributions
of spontaneous emission from states e and f +to state g can be
found by the method of Section 4.3. F¥or this case the probabilities
can be found from equations 6.37 through 6.40 if each of the distri-

bution functions Fl, F2, Fi and Fé is replaced by the following

integral function:

+00
= ————— F(x+2) dz
T (2y ) + 22

=0 g
In this integral F represents the distribution function (Fl’ FE’

Fi and Fé) which is being replaced in equations 6.37 through 6.40

and Vo is the normalized decay constant of the state g defined by
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6.4 Method of Excitation

From equations 6.37 through 6.40 it is seen that there are two
modes of spontaneous decay from the laser states. One mode is des-

cribed by the distribution F., and the other by the distribution F

1 2’
The distribution P, (and Fi) gives the spontaneous emission from a
laser state which has been excited by some broadband means such as
spontaneous decay from another state or collisions (b.4). F2 (and
Fé) gives the distribution of spontaneous emission from a laser state
which has been excited as a result of an interaction with the cavity

photons. A similar result was found in Sectlon 5.3. These two modes

are fundamentally different; according to Figures 5.2 and 5.3, the

difference between Fl and F2 persists even for small atom-cavity

interactions. If the atom and cavity interact only weakly, that is,

if
2
7 << 1 (6.41)

F2 , as given by equation 5.35, can be written as

2
0 (6.42)

[(x' + 2y)2+ hri] [x'2+ hvi}

a product of two Lorentzian functions. This result can be justified
by the following argument which was originally used by Weisskopf and
Wigner (4.9).

As a result of the zero=-point interactions, the upper and lower
laser energy levels are considered to be broadened into Lorentzian

energy distributions centered at the original energy with widths Pe
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and Pf respectively. For the atom in the upper laser state, the
giving up of energy by the atom to the cavity in the form of a
coherent photon w and the decay of the lower laser state to a ground
state with the emission of spontaneous photon ®w, can be considered

a two-step process. The probability for this process can be written

as proportional to the product of these two steps, namely

1 — L . (6.43)
) f.2 }2

(=) + (@+o, -0 (37 + (@, - 9,

eg 2

If this expression is written in terms of normalized variables it is
the same form as that given by expression 6.42. This argument, of
course, is accurate only for small perturbations and does nobt give the

exact answer when condition 6.4%1 is no longer satisfied.

6.5 Distrivution of Spontaneous Emission between laser States

The distribution of spontaneous emission between laser states
can be found by the metnod used in Section 6.3.. However, in this
case, the result is more complex since the decay of both the initial
and final state must be considered and, as shown in Figure 5.1, the
decay isactually from two initial states to each of two other states.

The probability of emitting a spontaneous photon of frequency Wy is

glven by
H 2 N (1l-v.F) o
I5.e o 3 1 R (x") + Fglx") (6.44)
A (P, +Te)" [y (- ' F))
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if the atom is initially excited in the upper laser state by some

method of broadband excitation and by

[Radl) 2
Hfa,e

A

2
16 . kq R, () (5.145)

2 ?
' -Y'F
(I‘e 4 I"f) l-1 3

if the atom is initially excited in the lower laser state by some
method of broadband excitation. The normalized frequency variable is

given by

" h(wa - S2ef‘)
X =

(6.46)
Pe + Ff

The distribution F5 is given by the integral

iy S rple-ay e [
1 YN+ Yp|E-ey+ier,
rv PYE 5 4z (6.47)
o I(z-y-+1) - dn| ‘

(z+x"+y+ i)e— d_

and the distribution F6 is given by the integral 6.47 with an addi-

tional fsctor

Zz + 2y + x" + 1 2Yf.2

multiplying the integrand, and where

2 _ 2 [ 2 JQ
d = 1 +|y+ 1(Yf - Yé) . (6.48)
F6 which results from the direct decay of the upper laser state
2
becomes the normal Lorentzian as the interaction n -0 . F_ 1s

>
the distribution which is the result of the excitation of the upper

lager state by a coherent photon.
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CHAPTER 7

DISCUSSION

The results of this thesis are summarized, some practical limi-
tations of the analysis are discussed, and possible extensions of the

theory are introduced.

7.1 Summary

The spectral distribution of spontaneous radiation from an
excited atom which interacts with a coherent optical field is inves-
tigated in this thesis. In the model chosen, a stationary multilevel
atom which spontaneously decays by interacting with spatial fields
has two nondegenerate states coupled by an interaction with a single
mode of an open cavity. The interaction between the atom and the
cavity fields is treated by considering the cavity flelds fo be
classlically time-varying and also to be quantized. It is found that
neglecting the non=resonant terms in the classical field theory is
analogous to neglecting matrix elements between nondegenerate states
in the gquantized field theory. The quantized-1ield theory is used
throughout the text in order to better emphasize the photon nature of
the interaction between the cavity and the excited atom. 1If the
classical Tield theory had been used the results in the text would be
unchanged. However, the interpretation of the results would no%t be
as clear since the cavity photon number does not appear in the classi-
cal field theory.

It is found that the interaction with the coherent field modifies

the spectral distribution of spontaneous radiation from the atom. For
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spontaneous transitions involving an atomic state which interacts with
the coherent field, the spectral distributions can no longer be
described by Lorentzian functions. The new distributions exhibit a
broadening and splitting for strong interactions between the atom

and the coherent field. It is shown that the qualitative features of
these distributions can be predicted from the energy-level diagram of
the atom-cavity system. The net probability of the system gaining a
coherent or cavity photon is calculated by integrating over the
emitted spontaneous frequencies. The equivalence of this approach to
the alternate method of computing probabilities by integrating over

time i3 demonstrated by using Parseval's theorem.

7.2 Distribution of Photon States

Throughout the analysis the cavity has been assumed to be
initially in a definite photon eigenstate /n) . For this definite
state the quantum-mechanical expectation of the fields glven by
equation 1.29 is zero. This 1s not surprising since the expectation,
an ensemble average, is an average over the phase of the field.

A claggical cavity corresponds to a Poisson distribution over
photon eigenstates (7.1)* . The characteristic of the Poisson dis-
tribution (the minimum uncertainty state) which is of interest is that
the standard deviation of the distribution over the states /n) is
given by (H)l/e where n is the expected number of photons in the

cavity. In the limit of large n the distribution over states /n)

*Suggested by D. Close.



-128-

can, in fact, be considered a Gaussian centered at n =n with width
- 1/2

(n) / . If for a highly excited cavity the initial state of the
cavity is taken as a Poisson or any other narrow distribution centered

at n , the probabilities computed in the text would be unchanged.

7.3 Application to an Actual System

The conditions of the analysis are most closely satisfied in a
very dilute gas system where cooperative phenomena among atoms can be
disregarded and where colllsions would be infrequent. However, ln a
gas system the atoms are moving and the stationary theory can be used
only as an approximation to predict the saturation characteristics of
the medium.

A typical cavity and the 1.15u Ne transition are considered in
Section A2.2. For the cavity freqguency equal to the atom transition
frequency, equation 6.24 predicts that for a Ne atom at the electric
field maximum, saturation occurs at a power level of about 1 milliwatt.
If the moving atoms in a Ne laser are considered to correspond to an
inhomogeneously broadened line which has a Doppler spread of approxi-
mately 1 kme and which interacts with the average field of the laser
cavity, equation 6.24 predicts that for the above cavity in a single-
mode operation, the line would begin to saturate completely at a cavity
field which corresponds to an output power level of approximately 1

watt.
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7.4 Possible Extensions of the Theory

The analysis can he extended to include the case of two sets
of degenerate states coupled through an interaction with the cavity
fields. In this case one would expect that the differences in the
interaction with the ecavity fields among the various states would
cause additional splittings in the energy levels of the atom-cavity
system.

The case of two or more cavity modes which simultaneously
interact with the atom can also be considered. In the gquantized
cavity picture one would find that as a result of the interactions
with the atom an exchange of photons among the cavity modes can take

place.

The analysis in the text also applies to the case of an excited
moving atom which interacts with a TEM traveling-wave field. This can
be most easily seen by considering the fleld as a classical time-
dependent field. The vector potential for a TEM field polarized in

the x-direction and propagating in the z~direction can be written as

A

1 A cos(kz - wt)
X 0

where
k

1]

w/c .
For an atom moving slowly compared wlth the speed of Light
z = z % vzt

where \ is the component of the atom velocity in the z-direction.

Thus the field as seen by the atom is given by



A= 1_A cos(kz - [l - ——]t)
- X0 o c

The field frequency at the atom is Doppler shifted to the frequency

Vo %
w(l - T§) . The probabilities computed in the text would give the
spectral distribution of spontaneous emission in the moving frame of
the atom provided the frequency of the coherent field is taken as

Ve
m(l = 7;) instead of w .

References

(7.1) W. H. Louisell, Radiation and Noise in Quantum Electronics,
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¥  Any variations of the field in the transverse plane are being
neglected.
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APTENDIX I

1/2

EVALUATION OF THE PARAMETER an

1/2

The parameter ¢&n ' , which in Chapter 2 was found to determine
the motion of the atom and single-mode cavity system, can be stated
in terms of D , the electric-dipole matrix element of the atom, and
the strength of the cavity electric field at the aton.

For a guantum mechanical cavity operating in a particular mode

and energy state as described in Chapter 1, the energy W is given

by

W = nyﬁwa (AL.1)

where the zero-point ener L has been dedeted. The interaction
gy 5

parameter « 1is given by equation 2.lka as

BEPTIRCCE (2:1ke)
o a
and the interaction can be written as
1/2
2
ant/? - 91/2 w DA - (A1.2)
(2¢ ) foo

W 1is given as the sum of the electromagnetic "kinetic'energy

and the electromagnetic "potential'" energy, i.e.,

(Al.3)

=
il
M
m
o
<
|3
=
o
+
|-
w
o
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From equation 1.3 and equation 1.12 the vector potential is chosen as

(AL.4)

A = CA cosw
— -, at

where C 1s a constant which determines the strength of the cavity

fields or the level of excitation of the cavity. The electromagnetic

energy is given by

W = =€ uvC . (AL.5)

The definition of the electric and magnetic fields in terms of the vec-
tor potential, equation 1.1, and the normalization, equation 1.11, hgve

been used to find equation Al.5. Therefore, anl/2 is given by

1/2

an’ = -é%zg - A(x) (A1.6)

where the vector potential A(r) 1is given by

Alx) = ca - (A1.7)
] . . 1/2
For an electric-dipole interaction the parameter an depends
on the strength of the electric field at the position of the atom.
1/2 X X . .
For n=1, an gives the interaction of the excited
atom cavity containing only zero-point energy. The zero-point inter-
action with the cavity may be given by using the field corresponding

to one photon in the semiclassical expression given by the right-hand

side of equation Al.6.
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APPENDIX 2

PERTURBATIONS

Corrections to the eigenvalues and eigenfunctions of the atom-
cavity system which is diagonalized in Chapter 2 are considered in
this appendix. The corrections are estimated for a typical laser

cavity.

A 2.1 Perturbation

The eigenvalue problem, in the notation of Chapter 2, is
written as

(B, +E')/0) = E/pP) - (42.1)

Since no diagonal elements of the perturbation H' exist in the rep-

resentation given by expression 2.21, the corrected elgenvalues and

eigenfunctions can be written in lowest order as (A2.1)

/o) =/p )°+ y /p'>° (o’ /H'/D)o (A2.28)
"

and

’ (A2.2v)

where the superscript ° signifies uncorrected terms. In the above

representation H' has matrix elements between state /¢n ) eand
- +

both /¢n_2i) and /¢n+2i) . If the usual approximations

AL o and. anl/2 <<

are satisfied, the magnitudes of the coefficients in expansions A2.2
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can be given as

o] (@]
(o' /H'/ p) anl/?
< . (A2’3)
EO'=' EOY w
¢ 18]

A2.2 Typical Laser Cavity

For an idealized one-dimensional cavity operating in a TEM

mode, the expected number of photons n can be given by

P L
cT Foo

where P 1s the power output, I 1is the length, c¢ 1s the speed of

n =

light, T is the mirror transmission coefficient at each end, and w
is the operating frequency. If one assumes the following typical

values for a gas laser

P = 10,3 watts

L = 1m

T = 1077
and

w = lO15 cps 5
it is found that

n o~ 107,

The parameter « has been defined in equation 2,14a._ For a

18 . g.5. (A2.2), the

=L 2
above energy level of the cavity, and a cavity cross section of 10 m,

typical elechric-dipole matrix element D of 10

2
the interaction «o nl/ is found to be:
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Otnl/2 = lO7 sin kz .

Hence, for these conditions the magnitudes of the coefficients
given in A2.3 are of the order of 10-8 and the corrections to the
eigenvalues and eigenfunctions of the diagonalized problem can be

neglected.

REFERENCES
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APPENDIX 3

SPACE FIELDS

The fields existing in space can be expanded in terms of
orthogonal functions satisfying appropriate boundary conditions.
Among the orthogonal functions commonly used are: the standing waves
of a large cubical box (A3.l), the spherical waves of a large sphere
(A3.2) or the traveling waves of a large cubical box (A3.3). The
latter is particularly useful for isotropic interactions and will be

developed in the following.

A3.1 The Vector Potential in Terms of Traveling Waves

Since the discussion parallels that in Section 1.1, only the
galient features and the differences with the previous snalyeies will
be given,.

The vector potential A , a real function of space

and time coordinatco, con be expressed as

= ’ t) A+ g¥(t) A* A3.1
A - Loe0)a g 4 (A3.1)
where the éa are the traveling-wave solutions of equations 1l.4k. The

Aa are chosen to satisfy periodic boundary conditions on the surface

of a large cube of length L . The A, are of the form
= - L] 02
A Cst €_e (A3.2)

The gauge relation V - A =0 gives
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= 0 . (A3.3)

k - €

—-a -a
Therefore, the polarization vector Ea is transverse to the wave
vector ka . For each wave vector Ea’ two independent polarizations
can exist. These two polarization vectors can be considered as unit

vectors orthogonal 4o each other and to the wave vector. The wave

vector, in terms of its cartesian components, is

ko= 1Lk +1 k +1k (A3.4)

ax ax L

2 n a ositiv
k = 1 bt nax’ ay’ naz ny P ©

&y ay L or negative integer

kaz = n = - (A3.5)

The orthogonality and normalization can be chosen as

*
féa-éb v = B, . (A3.6)
'

The expansion functions are given by

ika- r
e

A= L . (43.7)



~138-

The expansion coefficients in equations A3.1l satisfy the equa-

tions of simple harmonic motion, i.e.,

B, (%) +a. g (t) = 0 . (23.8)

In order to be consistent with the description in terms of traveling

iw ©
waves, the g, are chosen as either proportional to e or
e~iwat
The electric energy in the cavity is found to be

o Jf 2 *

— cEdv = € ® - - * ]

= JE-E 0}; (88, - 8,8, - 8 &) (23.9)

A

where g g is the expansion coefficient for the mode travéling in the
direction opposite to the "&" mode. The relationships between the "a"

and the "-a" mode are:

ko~ i (43.10a)
€. % (A3.10b)
© = w (A3.10¢)

From the relations:

Jo xa) g xaha - x (A3.112)
v
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/ 2
:’ (-l-{a % éq) ' (—l:-ax -A-m-a) dv = -ka (A3'l]b)

\4

the magnetic energy in the cavity is found to be given by

1 1 2 % %
————— 1 A - r—— k ¥ - 3 2 Ar)- . A
n JE B dv N ( t g8 tes ) . (A3.12)
v

0
The total energy W , the sum of the electric and magnetic energy, is
given by

2
W=e é wa(gag; + gz ga) . (A3.13)

The oscillating terms iavolving two oppositely traveling waves
cancel in equations A3.9 and A3.11 and the total energy
is just the sum of the energy in each wave.

In order to put equation A3.13 into a more recognizable form

it is written in the form*

1 2 2 2
W= 3 % waQ’a+Pa

or

1
W= g ‘Tg (g @, + 1P ) (w0, Q, ~1P ) + (0, Q - 1P ) (0, Q + 1P.)

(A3.14)

where Qa and Pa are both real.

*The Q's and P's defined here are not the same as in Chapter 1.
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By comparing equations A3.13 and A3.1k4, the identity

1/2 1 .
e/ Tweg =3 (u)aQa + 1Pa) (A3.15)
is chosen. Therefore,
_ Lo *
%= % (ga * ga)
and
. _1/2 *
= - € =
P =1 (e -g)

The Q's and P's satisfy Hamilton's equations (equation 1.20) with
W =H . Therefore, Qa and Pa are canonical coordinates satisfying

the commutation relation

[Qa,Pb] = ihB . (A3.16)
Define & &and at by
a &

g, = (2—;@-(—10-)1/2 a_ (A3.17)
o &
and

g = (—L)l/e af . (A3.18)

a 2€ a
o) wa

The a and at satisfy the commutation relations for creation and

annihilation operators, namely,

[a08f] = 80 (43.19)
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and the Hamiltonian is gilven in the standard form,
H = Z (at a +3)yﬂw . (A3.20)
py a a 2 &

The vector potential isygiven in terms of creation and annihilation

operators as:

/ E - r -1k ' r
1/2 e
.‘!.3‘. Za geow ) (8.& —;VET—— ——3-,7—2—— (A3.El)

A3.2 Summation over All the Space Modes

In calculations there often occurs the summstion
Y. F(k)
5 a

where the summation is over all the space modes. In the limit L - o
this summation can be converted into an integration over the different
k's.

First consider the radiation oscillétors in k space as defined

in equations A3.5. BEach radiation oscillator occuples a volume

( )3 The factor % results from the two independent polarizations.

For wavelengthe very small with respeect to L the nurber of radiation

oscillators between k and dk , N dk (the system is considered

k

isotropic), is given by the volume in k space between k and k+dk

divided by the volume occupied by each radiation oscillator, namely
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2 32

Nk - mEdk _ L E ax . (A3.22)
EIEE

VT

Therefore, for isotropic problems, the summation }‘ F(ka) over all
a

the field oscillators in the limit L—-0 becomes an integral over k

L3 .2
with the kernel = k™, i.e.,
7
00
L3 2
y jF(ka) becomes F(kx) kK“dk . (A3.23)

A3.3 Cutoff Function

In the nonrelativistic theory of electron interactions (and
consequently atom interactions) used in Chapter L, the effect of the

zero=-point fields of space takes the form of the integral -

0]

Jf \H“(k)\2 Kodk (a3.2h)
0
This integral, as a result of the interactions with high freguency
virtual photons*, is divergent (A3.4, A3.5). The high frequency
photons contributing to the divergence are photons possessing appre-
ciable momentum. Hence, when interacting with many of these photons,
the electron would tend to be moved about and the interaction would no
longer be local but would be spread out over an appreciable volume in

space. The high frequency photons would therefore be ineffectual in

*In some problems low frequency divergences also appear. These are
handled by reformulating the theory (A3.6).
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interacting with the electrons. To be rigorous this effect would have
to be treated within the framework of a completely relativistic
theory. However, the postulate of the cutoff function is sufficient
to salvage the nonrelativistic theory for problems involving the
emission of optical frequencies by excited atoms.

The integral A3.24 is written as

e o]
jc(k) |5 (0) |2 P (A3.25)
O

where C(k) is the cutoff function. The cutoff function may be

chosen by attributing a certain spatial extent to the electron (A3.L4).
However, for many applications the éimplest cutoff function suffices,
i.e., interactions with the virtusl photons possessing eneféy less than
the fest energy of the electron are considered to interact with the
electron without any correction and the virtual photons exceeding this

energy are considered not to interact at all with the electron. Thus,

the cutoff function in its simplest approximation takes the form:

c(k) = 1 k<%f—

c(k) = o k>£nﬁ9 . (A3.26)
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Appendix L4
DELTA FUNCTIONS
A number of delta functions have been used in Chapters h, 5
and 6. The magnitude or weight of these delta functions can be found
by appropriate contour integrations in the complex plane. This tech-
nique is illustrated for the first delta function (a tabulated function)
appearing in the text. The other delta functions are evaluated simi-
larly but with somewhat more labor.
, 2
sin x

2

X
dered under certain conditions a delta function in x . Its value is

The factor which appears in Section 4.1 can be consi-

evalualed by considering the definition of a delta funcllon, namely,

+00
j F(x) 8(x - x ) ax = F(x) - (ah.1)

-Q0

Thus, under appropriate conditions,

2 +® 2
sn X _ g(x) f S10 X gy (Ak.2)
X X
-0

The integral in AL.2 is evaluated by the method of residues.

Since the integral is an even function,

ain2 (1 iEx)
j mxdx:Ref-—-i—Z———dx:ReI . (ak.3)

X

Consider the contour integral
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ifz
]( -(-l—'—g-—l az (A1)
pA

around a closed contour along the boundaries of the upper right half
of the complex 2z plane. The integral I of Ak.3 is just the por-

tion of this contour along the real axis and by the method of residues

ReI':no

Hence, equation AL.2 becomes

Singx .
—— ) = I E(X) . (Ah"5)
X
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Appendix 5

PROBABILITY COMFUTATION

The probabilities related to the absorption or emlssion of a
coherent photon, as discussed in Section 5.4, can be given in the form
of equations 5.37, or alternatively by equations 5.42. The relation
between these two forms i1s discussed in the following.

Since the discussion i1s similar in every respect for Pn-l and
Pn , the following is confined to Pn . Pn is expressed as

2
me,f

TR

P = g{

Ty &

ag (tlog- 0, DF (5.37a)

H"
\ fn

. X 2
In Section 5.4 it is shown that |Afn(-i[wa- Qfm])l is a delta func-
tion in the variable Wy and from equation 5.39a and 5.39c Pn can be

written as

+00

Pn = 1-‘f 7%; _[‘ iAfn(mi[wa- Qfm])}2 da% ) (AS.l)

=00
Using the definitions of the Laplace transform given by equation 4.25,

one can modify equation A5.1 to read
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-0

+i(¢%- Qfm)(t-t')dtdt' ) (a5.2)

o'—_g

e 0]
.j’ A, (%) A;n(t') e
0



~-148-

The integration over o, is carried out first by using the relation

400
_;__ﬂ_ j’ ei(t-t') (a)a=a)o) dwa= 5(t - ') (45.3)
=00

P

and Pn is found as

€M)

P=T, f \Afn(t)\e a (5.428)
Q .

The above discussion parallels the derivation of Parseval's

theorem (A5.1).
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