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Abstract

In certain polymer-penetrant sytems, the effects of Fickian diffusion are aug-
mented by nonlinear viscoelastic behavior. Consequently, such systems often exhibit
concentration fronts unlike those seen in classical Fickian systems. These fronts not
only are sharper than in standard systems, but also they propagate at speeds other
than that typical of Fickian diffusion. A model is presented which replicates such
behavior. This model is reduced to a moving boundary-value problem where the
boundary separates the polymer into two distinct states: glassy and rubbery, in
each of which different physical processes dominate. An unusual condition at the
moving interface, which arises from the inclusion of a viscoelastic memory term, is
not solvable by similarity solutions, but can be solved by integral equation tech-
niques. Perturbation methods are used to obtain asymptotic solutions for differing
strengths of molecular diffusion and viscoelastic stress. These solutions are charac-
terized by sharp fronts which move with constant speed; the asymptotic solutions

mimic those found experimentally in polymer-penetrant systems.
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Nomenclature

Variables and Parameters

Units are listed in terms of length (L), mass (M), moles (N), or time (T). If

the same letter appears both with and without tildes, the letter with a tilde has

dimensions, while the letter without a tilde is nondimensionalized. The equation

number where a particular quantity first appears is listed, if applicable.

™

coefficient in flux-front speed relationship (2.8), units N/L3.
constant, variously defined.
the Bromwich contour for inverting a Laplace transform.

stationary point for Laplace’s method (8.20).

{): concentration of penetrant or diluent at position - and time %, units N /L3,
: binary diffusion coefficient for system, units L?/T.

: coefficient preceding the stress term in the modified diffusion equation,

units NT'/M (2.2b).

-): arbitrary function, variously defined.

-): arbitrary integral, variously defined.

: nonlinear differential operator on C' (1.1).
-|: hereditary kernel (1.1).

: Heaviside step function, defined as 0 for negative argument and 1 for pos-
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itive argument (2.2a).

-): the jth modified Bessel function (7.19).

t): flux at position - and time £, units N/LT.

: jump operator (3.9b).

: exponent for width of boundary layer (8.5a).

: indexing variable (1.1) or variable exponent in expansions (5.1).
: variable in Laplace transform space (4.21).

: dimensioﬁless parameter in dissolution problem (8.1).

f): position of phase transition front, units L (2.6).

: the inverse function of §(f), written as = 5(Z) (3.7b).

time from imposition of external concentration, units 7' (1.1).

: time from which the polymer has a memory, units T' (2.2a).

imbedding of C from one region to the fully semi-infinite region (4.11a).

internal energy density of the system, units N2/LT.
three-dimensional distance coordinate, units L.
dummy integration variable.

dummy integration variable.

: the integers.

nondimensional parameter.

: inverse of the relaxation time, units 7! (2.2b).

nondimensional parameter (4.7a).

: the Kronecker delta function.

-}: the Dirac delta function.

perturbation expansion parameter, value 3,/06, (4.1a).



jEZ:

Edwards x

dimensionless boundary layer variable, value [z — s(t)]/€™ (8.5a).

: coefficient of concentration in stress evolution kernel (3.12), units

MIL?/NT3.

nondimensional parameter (7.5a).

: chemical potential, units N/LT.
: coefficient of C; in stress evolution kernel (3.12), units M L2/NT?2.

: stress in polymer at position - and time ¢, units M/LT? (2.3b).

dimensionless boundary layer variable, value ¢ (8.5a).

: region occupied by the polymer (1.1).

Other Notation

as a sub- or superscript, used to indicate a quantity at the boundary of

the polymer (2.1b).

: as a subscript, used to indicate the characteristic value of a quantity (3.23);

as a superscript, used to indicate concentration (7.9).
as a sub- or superscript, used to indicate a quantity related to the Neumann
fictitious problem (7.23).

as a subscript, used to indicate a quantity arising from Fick’s law.

: as a sub- or superscript, used to indicate the glassy state (3.5b).

: as a sub- or superscript, used to indicate a quantity at ¢ = 0 (2.1b).

as a sub- or superscript, used to indicate a term in an expansion.

: as a subscript, used to indicate a quantity solvable from explicitly known

quantities.
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as a sub- or superscript, used to indicate the rubbery state (3.5b).
as a subscript, used to indicate a quantity arising from relaxation effects.
as a sub- or superscript, used to indicate a quantity related to the Dirichlet

fictitious problem (7.9).

: as a superscript, used to indicate stress (7.9).

: as a subscript, used to indicate at the transition value between the glassy

and rubbery states (2.7).

: as subscript, used to indicate a term in an expansion in ¢ or z.

as a superscript on a dependent variable, used to indicate a boundary-layer

expansion in the glassy region (8.5b).

: as a superscript on a dependent variable, used to indicate a boundary-layer

expansion in the rubbery region (8.13).

"1 used to indicate differentiation with respect to ¢ (3.26) or 7.

: used to indicate a quantity in Laplace transform space (4.21).

: on an independent variable, indicates a dummy integration variable (1.1);

on a dependent variable, used to indicate differentiation other than with

respect to ¢ or 7 (3.8).

: jump across the front §, defined as -9(51(£),%) — -"(87(¢), 1) (2.6).
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Chapter I: Introduction

In recent years, engineers and scientists have found a panoply of uses for poly-
mers and other synthetic materials. These new materials promise to revolutionize
entire industries and create new ones. The sudden explosion in the development of
these materials has thrust materials science to the forefront of mathematical appli-
cations, especially since there is so little mathematical 'modeling of the dynamics of
synthetic materials. Mathematicians are handicapped by the uncertainties among
chemical engineers and materials scientists as to the exact physical mechanisms
involved. However, all agree that the unusual behavior exhibited by these new ma-

terials indicates that the standard Fickian flux J = —D(C)VC, where C is the

concentration and D(C’ ) is the second-order diffusion tensor, is not general enough
to model the desired behavior accurately. It is also a growing consensus that some
sort of viscoelastic effect plays a major role in diffusion in many of these materials,
sharing dominance with molecular diffusion.

The promise that these new types of materials hold is astounding. New types
of adhesives will adhere more while weighing less [1], [2]. “Smart” polymer gels and
synthetic polymers will forever change how doctors administer medicine, as they
abandon standard global delivery methods in favor of internal or external on-site
administrations [3]-[6]. Microlithographic patterning using polymer substrates has
emerged as a major technology [7]. Polymer films have great value in protective
clothing, equipment, or sealants [8].

Polymer-penetrant systems are particularly interesting since much of the ob-
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served behavior is inconsistent with a purely Fickian diffusion model. In particular,

unless pathological conditions are met, moving Fickian fronts always proceed with

speed proportional to £~1/2. However, in so-called case II diffusion in polymers, con-
centration fronts propagate with constant speed [3], [9]. These fronts are usually
sharp, and often the concentration flux into the phase change boundary is less than
the concentration flux out! All of these characteristics are inconsistent with those of
the Fickian diffusion model. Though the concentration fronts are sharp, there is no
discontinuity in C as has been observed in other, more standard chemical systems
[10]. | |

The type of polymers which we wish to study can occupy one of two phases:
glassy or rubbery. In the glassy state, the polymer has a finite relazation time asso-
ciated with the length of the polymer in relation to the entanglement network. This
nonlocal effect implies that in any effective model there will be a hereditary integral
term associated with the “memory” of the pblymer with respect to its concentra-
tion history. In the rubbery state, the polymer swells, making the relaxation time
almost instantaneous. Hence, the “memory” of the polymer in the rubbery state
is very faint. In addition, in some cases, there is a great increase in the diffusion
coefficient as the polymer changes from the glassy to rubbery state.

In order to incorporate this more complicated behavior into the model, Cohen
and Edwards have proposed [11] the following much more general model for the

flux:

J=- i D, (C)V /Q /_; FalC&,1))Galx ~ X', &~ ¥, C(X', V)] dl dx’,  (L.1)

n=1

where the D,, are second-order tensors, the F,, are general differential operators on
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C which model the dependency of J on different dynamical processes, and the G,
are general nonlinear hereditary kernels. Each term in the expansion represents a
flux contribution from a different source, such as molecular diffusion or viscoelastic
effects. This form for the flux is general enough to model accurately many more
types of anomalous diffusive behavior than simply those associated with polymer-
penetrant systems. Furthermore, note that if we let F,, = 6;,C(X,#) and G, =
81,6(X — X', — 1) we obtain the Fickian diffusion flux.

Cohen and his colleagues have used various simplified forms of (1.1) to examine
many types of polymer-penetrant systems where viscoelastic diffusion plays a role
[11]-[18]. Further discussion of their contributions will appear in Chapter II. The
main purpose of this thesis is to formulate and discuss several classes of non-Fickian
problems involving moving boundaries. In the next section we will specialize F,,

and G,, to the particular set of viscoelastic effects we wish to consider and consider

the extra complication of dynamics at a moving boundary.
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Chapter II: Governing Equations

1. Transport and Stress Equations

Consider a domain 2 which is divided into two connected disjoint subdomains
21 and 2. € is the region in which the polymer is in the glassy state, while Q5
is the region in which the polymer is in the rubbery state. We specify the value of
the concentration in the interior of € at time # = 0 and on the boundary 99 for
all time. We could just have easily specified the flux on the boundary, though in
the systems we wish to study the concentration is usually specified. In addition,

the standard diffusion equation C; = —V - J holds for the concentration in both

domains, though the flux J may be different in each region. Specifically, we are

considering the following system of equations:

Cx,1)=Cyt), %€0Q; C&0) =Ci(x), xeq. (2.1b)

Experimentalists note several important properties in the polymer-penetrant
systems which we are trying to study. First, there is a finite relaxation time [19]
when the polymer is in the glassy state. This indicates the presence of a viscoelastic

memory term in our flux. The polymer is affected by past values of the concentration
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and its time derivative [9], [20], [21], so we make the following definitions in (1.1):

Fi1=C, Fo=H{E —t)f(C,Cs), Fu=0 n>2 G =68x-%,i-1),

(2.2a)

t
G = exp [-[ B(C(x, z))dz} ; D.(C) = D(C), Dy(C)=E(C). (2.2b)
t/
Here H(#' — 1p) is the Heaviside step function, f is some general scalar function,

B(C) is the inverse of the relaxation time for the polymer, and E(C) is a tensor.

Specific forms for f, 8, and F will be chosen later. Hence we may write the flux

(1.1) as

@Y

J = -D(C)VC — E(C)V&, where (2.3a)

G = /t: [f (é(i, #), Cx(%, E’))] exp {— ;ﬁ(é’(i, z))dz} di’. (2.3b)

The constant %o in (2.3b) determines whether the memory is state-dependent.
If the memory of the material is dependent on other properties of the system (tem-
perature, density, pressure, etc.), we set o to a finite value (in this thesis chosen to
be 0) corresponding to the time at which the system is first in the memory state. If
the polymer always has a memory, which we denote as the state-independent case,
then we take the limit £y, — —oo.

An alternative derivation of equations (2.3) is given in Cohen et al. [18]. We
outline the derivation here since it is instructive to note that equations (2.3) may
also be derived directly from thermodynamic first principles from an augmented

chemical potential. We would like to use equations (2.3) even when significant

deformation and shear of the polymer occur. Therefore, if I/ is, in some sense,
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the internal energy density of the system, then a chemical potential iz for Fickian

diffusion is given by

L
HE =56

The flux is related to the gradient of the potential ir in the following way:

J=—-E(C)Vjir

= -D(C)VC, (2.4)

where E(C) is some arbitrary tensor, and D(C) = E(C)j»(C). Note that since
KR

E(C) need not be isotropic, D(C) need not be isotropic.
Now we postulate that relaxation is also an important part of the system and
contributes to the dynamics in a fundamental way. Then we may augment the

potential by a term

Letting i = fir+[ir and following the same analysis as in (2.4), we obtain equations

(2.3). We note that if D(C') and E(C) are anistropic, their anisotropies must be of
the same form since they differ only by a scalar quantity. The above argument can
be generalized to any number of other contributions to the chemical potential, and
hence (1.1) is obtained.

Using equations (2.3) in (2.1a) and making & another dependent variable, we

have the following system of partial differential equations:

C;=V- (D(é)vé + E(C*)V&) : (2.52)
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&; 4+ B(C)e = f(C,C5). (2.5b)

Equations (2.5) have been studied in great detail by Cohen and his colleagues.
Cohen and White [12], [13] examine simplified forms of (2.5). In particular,

their relaxation time is chosen to be a smoothly varying function of C, thus elimi-

nating the phase transition model. In addition, they eliminate the dependence of f

on C~'t~. They perform steady-state analyses on a finite domain and trace the position
and stability of a moving front.

Cox [14] and Cox and Cohen [15] performed asymptotic analyses of simplified
forms of (2.5), as well as numerical simulations of equations (2.5) where some of the
variable parameters were held fixed. The problem was solved on a finite domain and
did not involve a phase transition or a moving boundary-value problem. Fickian
profiles were obtained for long time. In addition, convective terms were added to
(2.5a) and phase plane analysis was used to find traveling wave solutions.

Hayes [16] and Hayes and Cohen [17] added a bimolecular reaction term to
(2.5a). They made some of the variable parameters in (2.5) constant and allowed
others to vary in such a way that a strict phase transition problem was avoided.
They translated their equations to a moving frame and solved for traveling wave
solutions. In addition, they solved equations (2.5) numerically and using pertur-
bation methods on a finite-domain problem. In some of these solutions they found
shocks in the solution profiles.

Cohen et al. [18] extend the work of Cohen and White to multiple dimensions.
A multivalued solution which satisfies an ordinary differential equation formulation
is presented; in addition, a rule is stated which allows one to determine the position

of a shock in the multivalued solution.
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In contrast to the work cited above, we will allow discontinuities in 3(C), D(C),

E(C), and f across the front, indicating distinct values in the glassy and rubbery
regions. This is more in keeping with our phase transition model.

In equations (2.5), & is simply a mathematical artifice introduced to simplify
what would be a highly nonlinear partial differential equation into two coupled
partial differential equations. However, note that equation (2.5b) is in the form of
an evolution equation for viscoelastic stress. In addition, the additional “forces” on
the system that are caused by a term of the form of & can be thought of as analogous
to those caused by the trace of an actual mechanical stress tensor. Therefore, for
purposes of analogy and heuristic physical interpretation only, we will refer to & as
a “stress” throughout this thesis.

In order to solve (2.5b), an initial condition is needed for &, which we give as

the following:

5(%,0) = 5;(%). (2.6)

In order to allow equation (2.6) to be totally general, we will need to make slight
modifications to (2.3b) on occasion. Such modifications will be discussed in greater

detail when they are made.

2. Front Conditions

In our problem will be using piecewise continuous functions to model our mate-
rial coefficients. Hence, our problem will involve matching the solutions in the two
regions where the polymer is in the glassy and rubbery states. (Note that the dis-

continuity is in the dependent variable.) Thus, it is necessary to impose conditions
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at the moving boundary §(%) between the two regions. In a moving boundary-value
problem, several conditions need to be imposed at the moving front X = §(¢). One of

these conditions involves a relationship between the flux J at the front and the speed
at which the front travels. There are two main candidates for such a condition, the
first of which is used extensively in diffusion theory [22]:
32(6(0,) -n - 31680, - = [T-n]_= [é]% n, xesd). (27
However, in polymer-penetrant systems, one does not see a jump in concentra-
tion, but rather a sharp rise in concentration over a width of several nanometers
[20], [21]. Hence, we see that in our model there should be no jump in concentration
at the front. In addition, in a standard diffusion problem (2.7) is a mass balance
which does not include the possibility that some of the flux might be used up in the
phase transition. This is the case we wish to consider, so for both reasons listed we
reject (2.7).
Our above assumption of continuity of concentration at a specified transition

value C, can be written as

C=0C,, C:;:>0  x=5(). (2.8)
We include the derivative in (2.8) since we now mathematically define the glassy

region as the region where C < C, and the rubbery region as the region where

C > C.,. Note also that the relatively large width of the front, when compared with
molecular length scales, also assures us that the continuum model we use is still
valid.

At the moving boundary §(f) between the two regions a phase change takes

place. Therefore, the more reasonable candidate for a flux condition is one used
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extensively in phase transition problems. While the same physical processes do not
occur here, it is instructive to recall the boundary condition used in the classical
Stefan problem [10], where a change of phase takes place between ice and water. In

that problem, the following condition holds:

[3m = _&Cc% n, %esd), (2.9)
where a is a constant.

Here a is the phase change parameter. Equation (2.9) states that the difference
between the flux into and out of the front is used up in the phase transition. In
a standard problem, the constant @ is related to the latent heat of melting of the
substance. Here we are assuming that there is a fundamental change that takes
place in the polymer as we go from the glassy to the rubbery state; this change
can be described as a “phase transition” in the polymer. Experimentally, this has
been shown to be related to a stretching of the polymer entanglement network. The
flux used up by the polymer in this stretching is directly analogous to the energy
used up in melting in a standard two-phase heat conduction problem. However, the
direct physical interpretation of a is rather tricky and will be discussed in greater
detail later.

Now using equation (2.3a) in our flux condition (2.9), we have the following:
ds
di

[D(C’*)VC’ + E(C;)V&] n=as

s

‘1. (2.10)

This is the condition at the moving boundary which replaces the standard Stefan
flux condition; it is clearly more complicated than the standard Stefan condition,

and the interesting details of these complications will be explored in the next section.
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Lastly, we need a condition for the stress at the front. We follow the work of
Knauss and Kenner [23], where the derivative of stress with respect to a state vari-

able has a jump in slope at the phase transition, but the actual stress is continuous:

5 (57 (0),1) =& (57(0).9). (2.11)
This choice is consistent with our reasoning that though our relevant dependent
variables may change quickly near the front, they are still continuous.

Now we have all the equations necessary to facilitate a further consideration of

our problem.
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1. The Reduced Flux Condition

Edwards 111.1

For analytical tractability, we first consider a one-dimensional problem on a

semi-infinite domain. By choosing a semi-infinite interval, we have eliminated com-

plications that occur due to the swelling of the polymer entanglement network in

the rubbery region. We now denote the glassy region (the region ahead of the front)

with a superscript g and the rubbery region (the region behind the front) with a

superscript 7. In this case, equations (2.5), (2.10), (2.1b), (2.6), (2.8), and (2.11)

become

(3.1a)

(3.1b)

(3.2)

(3.3a)
(3.3b)

(3.4)
(3.5a)

(3.5b)
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We take E(C) and D(C) to be scalar non-negative strictly increasing functions of C,
reflecting the situation typically encountered in controlled-release pharmaceuticals
[3]-[5]. Note that in one dimension & can be interpreted as being analogous to stress.
The conditions in (3.3) guarantee that the polymer is initially in the glassy state,
and that the boundary is always in the rubbery region. This phase discontinuity
between boundary and polymer at time ¢ = 0 implies that our phase transition

front 3(f) must initially be at the boundary:
5(0) = 0. | (3.6)

We begin by exmaining equation (3.2) to determine its meaning. First consider
the case where the stress is negligible. This corresponds to the moving boundary
condition in a standard Stefan problem. Since now the flux is proportional only
to the concentration gradient, and a flux in larger than a flux out should force the
front in a positive direction, it is clear that we should take @ > 0. A sketch of a

concentration profile corresponding to such a solution is shown in Figure 3a.

C

T

Figure 3a. Concentration profile for standard moving boundary-value problem.
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However, it has been experimentally demonstrated that in Case II diffusion

quite different front profiles appear. In fact, it commonly happens that [Cz]s < 0.

A sketch of such a profile is shown in Figure 3b.

C

Figure 3b. Concentration profile for Case II diffusion.

In this case, the stress is non-negligible and has a maximum at the front, as

shown in figure 3c.

x = s(t)

Figure 3c. Stress profile for Case II diffusion.
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Hence, we see from equation (3.2) that in this case we must select a < 0. In
fact, in Case II diffusion, a decrease in the concentration gradient will slow the
front. This is also consistent with taking @ < 0. Like the latent heat in a Stefan
problem, a must be known in order to solve the problem. The dilemma of selecting
the correct parameter range for a for each phenomenon will recur throughout this
work. However, there are experiments which can be performed to determine a just
as there are experiments which can be performed to determine the latent heat of a
substance. One such experiment is outlined in Chapter VIII.

At first, we wish to simplify equation (3.2) somewhat. In so doing, we will
discover some interesting aspects of our moving boundary-value problem. Since we
expect our front Z = 3(£) to be monotonically increasing in , we may invert to write
the front as £ = 5(Z). We then solve equation (3.1b) subject to (3.4) and (3.5b) to

yield

We have expanded the argument of the exponential in the first term of 6" since we

expect the relaxation time to undergo a discontinuous jump at C=0C,in agreement

with experiments [20].
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In general, if we have functions

ﬁ@ﬂzlvm@%aﬁ,

B 3(z) o t o
red= [ O [ 06,
0 5(3)

then Liebniz’s rule for differentiation states that

WE=ATW%4@]

Here the prime indicates differentiation with respect to Z. Note that since we have

&1

(&, 7:5)df + & [ (7,535 — 1O, 5; 5)} . (38)

changed variables, [fz], = f3(z,5(2)) — fL(&,5H(7)).

Now using equations (3.7) in (3.8), we have the following;:

[B(C)5:] = /0 g {7161+ SB(CBC)s f exp [— {/Eﬁ(é’(:ft,z))dz} dr’

S

— E(CH3 [f(é*, C’g)]g, where (3.9a)

JIC) = [E(C**)}‘ [fj (é(@,f’), 5(5;,5’)) _ /;ﬁ’ (C’(:E,z)) 75 (F, 2) dz] (3.9b)

Simplifying and transforming to our original variables where possible, we have

which makes our flux condition (3.2)



Edwards I11.6

There are several interesting things to note in equation (3.11). First, it may seem
that we have not simplified matters much, since & still appears in our flux condition.
However, in practice it is much easier to determine & than ;. Note also that we
have a negative contribution to the left-hand side, so we cannot be assured that a
is positive, as was always true in the latent heat formulétion.

More interesting is the appearance of § in the denominator of some of our flux
terms. This condition is highly unusual and leads to non-standard front motion,
especially when one considers the fact that § may also appear in the expressions for
the concentration and the flux. In general, the behavior is highly complicated. In
the next section we will specialize our problem further, thereby making it possible

to find analytical solutions.

2. A Tractable Problem

The first simplification we choose to make is to postulate the simplest form for

f(C,Cf) =nC +vCs, (3.12)

where 1 and v are positive constants. Though at first glance this may seem overly

simplistic, it will become obvious later that this simple form does indeed produce
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the desired behavior. We choose this form because it is simple to analyze and
accurately captures the dominant physical processes in the system [12].

Then equations (3.1b) and (3.11) become

5: + 8(C)6 = nC + v, (3.13)

Now using the first of equations (3.5a) and its total derivative with respect to t, we

have

[(D( 2) + VE(CN':“)) ~g~c] + [ J[Clexp [— B(C(%, z)) dz} dt’

< =ad'(f). (3.15)

Hence we see that this particular form for f dictates a simple relationship between
the viscoelastic flux contribution and the concentration flux contribution.

The term 3(C) is worthy of special attention. It is the inverse of the relazation
time, which roughly corresponds to the amount of time one part of the polymer

takes to respond to changes in concentration in neighboring parts. In the polymer-
penetrant systems in which we are interested, ﬂ(é’) changes greatly as the polymer

goes from the glassy state to the rubbery state. Hence, its dependence on C will be
important and non-negligible. However, experiments have shown that variations in

the relaxation time wnthin phases seem to contribute little to the overall behavior.
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Therefore, we average the relaxation time in each phase and use its overall value

there. Thus we have

5(c) = { o 950 (3.16)

Under these assumptions, our flux condition (3.15) becomes

[(D(C’*) + VE(éj)) (3*4 1 /0 ) [E(é*)]5 [ 2 (é(@,f’), }(:z,f’)ﬂ a5 E) g7

8

We note that changes in E (é’ ) also do not contribute significantly to the behav-

ior of the system. Hence, we approximate E(C) by its average value in the entire
polymer, which we denote by E, a positive constant. Doing so, equations (3.1a)

and (3.17) become the following;:

C; = (D(év) ~5c)j + E63z, (3.18)
[(D(é*) + I/E) w] + BB = f, %‘;(g@ ) _ as' (@) (3.19)

Note that since 8, > (,, we have a negative contribution to the left-hand side of
(3.19) from the stress, as postulated before. Note also that the classical technique
of seeking similarity solutions will not in general solve an equation of the form of
(3.19).

In order to make the problem analytically tractable, we make one more sim-
plifying assumption. As stated before, the diffusion coefficient often, though not

always, increases dramatically as the polymer goes from the glassy to rubbery state.



Edwards I11.9

However, changes within phases are less important. Hence, we perform the same

averaging as we did with the relaxation time to obtain the folloWing form for D(C):
(3.20)

More discussion of various physically appropriate forms for D(C’), E (C~’), and

f(C, C;) can be found in Cohen and White [12]. Since we have chosen this simplistic

form, equation (3.18) may be written
(3.21)

We wish to model the penetration of solute into an initially “dry” semi-infinite

polymer where the concentration at the boundary is our known function Cj (t), the

maximum of which is C,. Mathematically, we set
(3.22)

In addition, on physical grounds we expect that as the experiment progresses, the

polymer will become totally saturated. The mathematical condition, which we will

impose only when warranted, is
C(&,00) = C,. (3.23)
We introduce dimensionless variables as follows:

~ N ..,_E Ny~
p=L t=if s)="2 =% (321)

T Te c

~ o~ = i’ ~* ~1 ~
18D - i % = 2D am
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where Z. and (. are now arbitrary, but will be chosen later as dictated by a par-

ticular physical situation. Then equations (3.21), (3.13), (3.19), (3.3b), (3.22),

(3.4)-(3.6), and (3.23) reduce to

D(C vE
Ct - ~2(,80)CII ..gﬁco':mc,
pC)
o+ o= gl O
{(D(C{ )-I—I/E)C ]S+ (ﬂé /67“) ( ( )7 ) _CL.’EQﬁc ,
C(0,8) = Cy(),  C(x,0) =0 (,0) = 0:()

where the dot now indicates differentiation with respect to t.

(3.27)
(3.28)
(3.29)

(3.30)

Since S(C) and D(C) are constant on either side of the threshold level C' = C,

we may differentiate (3.25a) with respect to ¢, and (3.25b) twice with respect to x

to yield
D(C) vE
Cu = %Cwmt + Eﬂ—cﬁmm
B(C
Ogxt + (ﬂc ) - Zc Cxw + wat

Combining equations (3.31), we have

D) +vE,  (O), , ACID(C)+nE

Cu = = - -
22 e Be 2202

C$$7

(3.31a)

(3.31b)

(3.32)
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D(C)+vE B(C) B(C)D(C)+nE

Ot = - Orxt — O¢ -+ — Topg-
2p. Be T2062 o

(3.33)

We now wish to solve these equations by using perturbation expansions in a
small paramter € to show that these equations lead to constant front speed, sharp

fronts, and other behavior characteristic of non-Fickian polymer-penetrant systems.
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Part Two: The

Weakly Diffusive Case
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Chapter IV: Governing Equations for
the Weakly Diffusive Case

Experimentally it has been shown that polymers have a near-instantaneous
relaxation time in the rubbery state, while in the glassy state these substances are
characterized by finite relaxation times. Hence, we assume that 8,/0, = €, where
0 < € < 1. One way that constant front speed can manifest itself is in the weakly
diffusive case. In this case, we assume that the diffusion coefficient is always small
and does not vary noticeably with concentration, i.e., D, = D, = Dge. Note that
such a choice of parameters implies that the effects of the contribution to the flux
will dominate the contribution from Fickian diffusion in (3.31a); thus, we would
expect to see non-Fickian behavior from this choice of parameters.

We wish to incorporate effects of both the glassy and rubbery phases in our
nondimensionalizations; hence we normalize & by our diffusive length scale in the
glassy region, and ¢ by the relaxation time in the rubbery region. Summarizing, we

have

~ Dye B
D :DT‘:Dea Te = a0 /Bc:/g'm _9:6'
’ ° By Br

Making these substitutions in equations (3.32) and (3.25b), we see that for
C < C, we have
€D0 -+ vE

E
Cg = _Cgm —ECQ+E(E+ " )nga 41&
tt DO i t DOﬁg ( )
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We now construct series for C and ¢ in € by assuming that C = C° + o(1) and

o = 0% + o(1). Doing so, we see that to leading order, equations (4.1) and (4.2)

become
Ctotg = W’C:(c):gcty (4.7a)
o) =Y, (4.7b)
Cii’ =7Cam — CF", (4.82)
o) 4+ 0% =, (4.8b)

where v = vE/Dy.

Solving equation (4.7b) subject to (4.5), we see that
0% = %, (4.9a)
Then we may use equation (3.28) to see that
o(s(t),t) = C.. (4.9b)
Our flux condition (4.3) now becomes, to leading order,

C. :
(9], - === (4.10)
S S fY
We use the integral method adopted by Boley [24]. In his paper, he extended
the equations which held on either side of the front to the entire domain. Then by
introducing fictitious boundary conditions which held in the extended part of each

equation’s domain, he was able to construct solutions to the moving boundary-value

problem. Following that method, we introduce two new quantities 79 and T" which
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extend each of equations (4.7a) and (4.8a) to the full semi-infinite region. We then

make sure that each of these solutions satisfies the correct boundary conditions as

follows:

T, =T, — T}, 0<ax<o0; (4.11a)
T =C", 0<uz<s(t) (4.11b)
T7(0,t) =1,  T"(z,0)=1- f'(x), T (z,00) = 1; (4.12)
T"(s(t),t) = Ci; (4.13)
TS =~T2.,, 0<z<oo; (4.14a)
TI=C%, s(t) <z < oo; (4.14b)
T9(0,t) = f°(t),  T(z,0)=0; (4.15)
T9(s(t),t) = Cy; (4.16)

Cy as$
T2 (s(t),t) = T3 (s(t),8) = — = Pl (4.17)
s(0) = 0. (4.18)

The new quantities 7" and T9 are simply C°" and C% extended to the full semi-
infinite range. The unknowns f(z) and f°(¢) are fictitious initial and boundary
conditions introduced in order to facilitate the solution of the problem.

Integrating equation (4.”'11a) using (4.12), we have

T =~T,, +(1-T"), 0<z <oo. (4.19)
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Now writing 7" = 1 — e 'T", we have

T

0 <z <o (4.20a)
T(0,t) =0,  T“(x,0) = fi(x). (4.20b)

We introduce the standard notion of a Laplace transform:

fo = [ e 0= 5 [ fweran

where B is the Bromwich contour. Taking the Laplace transform of equations (4.20),

we have

A

pT" — fi(z) =~T%,  T%(0,p) =0. (4.21)

The Green’s function for this problem is

Glela) = = L sinhac /o) exo (—m\/g) ,

so we have that

T(x,p) = ﬁ,y_; /0 i) [e—'m—z'\/m . e*<z+1>\/m] dz. (4.22)

The inverse Laplace transform of (4.22) is

T"(x,t) = 2\/% /Ooo fi(z) {exp {—(3%] — exp {—(‘”—;tz—)—%” dz. (4.23)

Therefore, we have

T (z,t) = 1—55\/% /Ooo fi(z) {exp {—@4_7—:)2} — exp [—@%ﬁ” dz. (4.24)
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From a cursory examination of (4.24), we can see that sharp fronts are possible.

This is because for long time, the behavior away from the front is basically 1 —e™*

b

which will cause an extremely sharp front to form as the solution plunges from 1 to

C, in the neighborhood of the front.
Next we solve for T9. Using our initial condition (4.15), we may integrate

equation (4.14a) once with respect to t to obtain the following:
TY =~T9,. (4.25)

We once again use the Laplace transform on (4.25). Doing so and using equation

(4.15) yields

pTg = 7T£x> Tg(o,p) = fb(p)a

).

2\/__/ t_iz)?’»/z exp [’Z&”(%Q_—z)} dz. (4.26)

79(z,p) = f*(p) exp (—w

NS

T9(x,t) =

Now we may substitute equations (4.24) and (4.26) into (4.13), (4.16), and

(4.17) (omitting explicitly the dependence of s on t) to yield the following;:

- 2\6/__%_? /Ooo £i(2) {exp {_%} ~ exp {_%TZ)—QH dz=C,, (4.27)

2

fb(2) s
2¢— (t—2p2 P {“w —2)

} dz = C,, (4.28)



2 2

s | i [ oo )

(s — 2)°

—Zfﬁe—\—/;__—jﬁ/ooofi(z){(s—z)‘exp[— o ] (s +2)e
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s+z
d
4yt H K

Q as
3 .

Equations (4.27)-(4.29) now constitute three equations for our three unknowns

s(t), f°(t), and fi(x). We now seek asymptotic solutions to these equations for

small and large t.
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Chapter V: Asymptotics

1. Small Time

We begin by looking at the solution for ¢ near 0. We note that for small ¢ the
dominant contribution to the integrals in (4.27)-(4.29) is from z near s(t) (hence
near 0) and from ¢ near 0. Thus, we make the following assumptions for the forms

of our unknown quantities:

F@~ s a—0 PO~ st)~2s08"F, t—0.  (5.1)

Here n > 0 by (4.18).

Making these substitutions in equation (4.27), we have the following:
1 — fle terfsot™1/? = C,. (5.2)

Note that if n > 1/2, then equation (5.2) becomes C, = 1, which we consider to be

a vacuous case. So we know that 0 < n < 1/2. Substituting (5.1) in (4.28), we have
feerfe sot™ 12 = C,. (5.3)

Note that if n < 1/2, then equation (5.3) becomes C, = 0, which we also consider
to be a vacuous case. Hence, we conclude that n = 1/2.
At first glance this result, which is standard in classical Fickian diffusion, would

seem to be at odds with our claim that we are modeling non-Fickian systems.
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However, it has always been our contention that the term which causes the non-
Fickian behavior is the viscoelastic memory integral term. For small time, this
memory term has not fully developed, since the polymer has no long concentration
history. [Note that taking o;(z) = 0 is equivalent to letting #5 = 0 in (2.3b).]

Using the fact that n = 1/2, equation (5.2) becomes

§ = 4
fO erf SO ? (5 )
and equation (5.3) becomes
C
b *
fo = erfc s (5:5)

Using (5.1) and the fact that n = 1/2 in (4.29), we have

i b
J6 —Jo s _ A% (5.6)

Vit VT

Substituting equations (5.4) and (5.5) in (5.6), we have the following:

e~ 56 (erfc sg — C..) = asg erfc sg erf s94/7. (5.7)

Figure 5a shows a graph of equation (5.7). Note that as we increase a or C,, the
value of sg at the intersection point (i.e., our velocity coefficient) decreases. This is
perfectly consistent with our physical intuition of the problem. As a increases, the
difference in the flux needed to move the front- a preset distance increases, so we
would expect the speed to slow. As C, increases, the value of the concentration at
which the transition takes place increases, thereby slowing the speed of its advance.

This slowing takes place even in the limit C, — 1, where so — 0. This is also
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consistent with our argument above, since in that case n > 1/2. We also note from

Figure 5a why we chose a > 0, since in this region there is always a unique solution

of (5.7).
/ (80)

0.6 f ___right-hand side

0.4l

0.2t

............ RS SO
) S 2.9
S left-hand side

Figure 5a. Graphs of equation (5.7). Dark lines: C, =1/4, a = 1.

Light lines: C, =1/2, a = 2.

We may now complete our representations for small ¢.

s(t) ~ 2s0v/yt, t—0, e % (erfc sg — C,) = asg erfc sq erf sg\/. (5.8)

Using equation (5.5), we may conclude immediately from equation (4.26) that

CY%(x,t) ~ t — 0. (5.9)

G e (o
erfc sg 2/t )’

Using equation (4.9a), we have the following:

C z
V9 ~ —2 erfi t — 0. 5.10
(@) erfesg (2~/’yt> v (5.10)



Edwards V.4

Using equation (5.4), we see from equation (4.24) that

1-C x
C” (z,t) ~1— et . .
(z,1) P erf (2 'yt) , ©—0 (5.11)

Using equation (5.11) in (4.8b), we have that

ethr_l_C* x —t—ex ~$—2 + 11 27 rfi v + erf a
~erfsg | Vom P 4yt 2y erie 2/t 2/t

+ f(z),

where we use f(z) to satisfy (4.9b). Our final expression is

gy < UGt [ [T 2 () Y
o (z,t) = of s x pom exp o + (1 > erfc NGT
(Cy — erfcsg)e™

T
2\/7y—t)j| * erf so

+terf < xz— 0. (5.12)
Note in equations (5.9)-(5.12) that the asymptotic variable for the expansion is
the independent variable for the fictitious boundary condition. Hence, in equations
(5.11) and (5.12) since f*(z) does not depend on t, this is a small z asymptotic
expansion good for all £.

Figure 5b shows graphs of our concentration results (5.9) and (5.11) for a
certain set of parameters [which satisfies (4.4)] and differing time values. The gap
in the graphs of the different equations is due to the fact that our expansions are
only good to leading order in £. The shape of the graphs can easily be seen to be
of the general qualitative shape of a standard Fickian system as shown in figure
5c. This is consistent with the fact that the memory of the polymer has not fully

developed at this point.
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x
0 0.1 0.2 0.3 0.4 0.5
Figure 5b. Concentration profiles: a = 0.5, C,, = 0.15, v = 1.
In decreasing order of darkness: ¢ = 0.001, 0.01, 0.1.
x

5 10 15 20 25 30

Figure 5c. Standard Fickian profile.

Figure 5d shows graphs of our stress results (5.10) and (5.12) for the same
parameters and times. One thing to note is that the stress at the boundary is be-

ginning to decay away. This trend will become more pronounced as the experiment

progresses.
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0 0.1 0.2 0.3 0.4 0.5
Figure 5d. Stress profiles: a = 0.5, C, = 0.15, vy = 1.

In decreasing order of darkness: ¢ = 0.001, 0.01, 0.1.

2. Large Time

Next we look at the solution for ¢ — co. We begin by examining the last two
terms of equation (4.29). For any s(t) not proportional to ¢, one of these terms
will be growing for large t. We expect the derivatives of the concentration to be
bounded for large ¢, so this large term would have nothing to balance it. Therefore,
we conclude that s(t) ~ 2s..t,/7 for large .

This means that for large ¢, any solutions with error functions in them will
die exponentially. Hence, a naive assumption that f°(¢) behaves like a constant for

large t will be incorrect. In fact, what we need is a growing exponential. Thus we

assume the following form for f(¢):

Fo(t) ~ fhe®t, t— co. (5.13)
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Note that since f°(t) is a fictitious boundary condition, it does not make any dif-

ference that it is unbounded as t — oo as long as TY behaves properly for z > s(t).

Using (5.13), (4.26) becomes the following:

T9(z,t) ~ %)‘ie“‘it [exp <—f\17b_a£> erfe (2\/_ + Ab‘/_)

+ exp (—é\-’}f) erfc (2\/_ - Ab\/ﬂ . (5.14)

Now asymptotically expanding equation (5.14) for large ¢ [using our assumption for

s(t)] and putting the result in equation (4.28), we have

fo | exp (—s2t) )
2 { (50 + Ap)v/7l + exp [(A7 — 24ps00)t] erfe {(sOO — Ab)\/ﬂ } - C,,

from which we have

foo=Cr,  Ap =250 (5.15)

Special care must also be taken with T". Once again, from examination of
(4.24), we see that for s(t) o t all terms arising from a bounded f*(z) are exponen-

tially small. Therefore, we expect f*(z) to be exponentially large:
fix) ~ fi et 2z — oo A; > 0. (5.16)

Using (5.16) in equation (4.24), we have the following;:

fi

T (z,t) ~1— ?’o exp [(A7y — 1)t] x

[eA”” erfe (—-2-\/—: — A \/“> = orfc <2_x—\/% . AZ-\/%)] . (5.17)
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Upon substitution of equation (5.17) and our expression for s(t), the leading orders

of equation (4.27) become

)

;O exp [(Ay — 1)t] {eQAis“’tﬁ erfc [—(3OO + Az\/ry)\/f]

e~ 2Aiso VY orfe [(:50o - Azﬁ)\/q} =1-C,. (5.18)
Solving equation (5.18), we have

A = _Soo+\/8C2>O+1

¥ fio=1-0C.. (5.19)

Now we must solve for s., by substituting our new results into equation (4.29).
Before proceeding, we see that the only terms in the derivatives of (5.14) and (5.17)
which are not exponentially decaying for s(t) o t are the derivatives of the expo-

—Apz

nentials e and e4*. Keeping that argument in mind, we have the following for

equation (4.29):

- exp | Ait — —— ] erf — AVt
2./7 P\ s NG ey s ,— b

Ai(1-C,)
L

exp [(Afy — 1)t + A;s] erfe ( — A; \/_) > % (5.20)

NG

Substituting our expressions for A;, Ay, and s(t) and expanding for large ¢, we have

20,800  (Ci —1)(8c0 — V82, +1)  2ass C.
- + = +

= : (5.21)
VY Vel VY 28007
Rearranging terms, we have that s, is one of
1[1-2Ca—3C, +(1—C)yI—4C, —4Ca]™”
Socot & 3 (522)
2 2(1+a)(Cy + a)
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Since a > 0 by (4.4), the requirement that

C.< 1

e < m (5.23)

guarantees that s.,4 are real.
Since we have two possible solutions, the natural next step is to check their
stability. Thus, we introduce an o(1) perturbation §(t) > € into equation (4.17),

which yields (to leading order in 6)

T

T8 (s(t), £) — T (s(t), £) + 6T, (s(t),) — T", (s(t),8)] = 2= + %5 4.2 (95 _ %) .

Using (4.13), (4.17), (4.19), (4.25), and our expression for s(t), we have

Soo Sco

Using the total derivative of the first of equations (3.28) with respect to z, we have

5, . 6(4as?, — C.)
; (_S[Tw]s +1- C*) - 4Sgo :

Using equation (4.17) and our expression for s(t), we have

6(4as>, — C,)

6(1 —2C, — 4as? ) = 152
SOO

(5.24)

Since the other quantities are always positive, the criterion for stability is that
the ratio of the two parenthesized quantities is negative. This will make § decay

exponentially as ¢ — oo.
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The parenthesized quantity on the left is zero when

1 A2
-1

— _ 2 _ 9 _ 2 _
ac. 10, Where (Co = 1A +2(1 — 3C, +2C2)A + 5C, — 8C? — 1 =0,

a =

but the discriminant of the quadratic is negative, so the parenthesized quantity on
the left is always of the same sign (namely positive). The parenthesized quantity

on the right is always negative for so.—, and it is positive for s, when

< 1— (14 2a—2va2 +a)?
- 4(1+a) ’

C. (5.25)

which for a > 0 is stronger than (5.23). Thus, we have our compatibility condition

(4.4).

0.2r

0.05 ¢

0.5 1 1.5 2

Figure 5e. Graphs of equations (5.23) and (5.25).

Note from Figure 5e that as a — oo, condition (5.25) approaches condition
(5.23). We also note that as a — 0 or a — oo, the range of validity for our solution

is very thin. As a — o0, we see that the second term on the left-hand side of
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equation (4.10) becomes negligible. Therefore, we would be left with a standard

Stefan condition where the front would move with speed proportional to t~1/2. As
a — 0, we see that equation (4.10) would allow solutions with fronts that moved at
speeds faster than a constant.

We may now complete our representations for large ¢.

s(t) ~ 2800tr/y, t— 00; (5.26a)
_1[1-2C.a—3C, — (1-C,)yI=4C, —4Ca]"”
o =9 { 2(1 +a)(C, +a) } ' (5.26b)

Using equations (5.15) in (5.14), we immediately have

4siot
C(x,t) ~ Cue [exp <2800x) erfc < + 2300\/—>
2 VY

2V

+exp (— 2?;”) erfc (25% - 2500\/E>} . t—oo, (5.27)

and from equation (4.9a) we have

%9 (2, ¢) Cueto=t ex 2S00 erfc
o9z, 5 p e 2\/_‘

+exp (- 2?;‘;) erfc <2_£"\/§f - 2300\/1?)} . t—oo. (5.28)

%)

Using equations (5.19) in (5.17) we have

—800 + /5%, +1

Ai: 3
Val

(5.29)

C

CO(z,t) ~ 1 — ! _2 ® exp [(AZy — 1)t] x

erante (-5 - AWAT) -

21 - Az‘\/‘ftﬂ , x—o0. (5.30)

T erfe T
2/t
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Now we continue by solving for 6% for large . When taking the derivative of (5.30),

we see that the dominant term is the following:

O?'I‘N__( C);Avml)eXp[(AQ’}/“l)jl

erfc< .y A\/_>

We may now take the error function to be approximately equal to 2, and plug into

equation (4.8b) to obtain the following:

2(1 — C)seo

o (z,t) ~ —
Soo — /8%, +1

exp [—(800 — /52 +1) (—- - 2soot)] + f(w)e™,

where f(z) is chosen to satisfy (4.9b). This yields
2(1 - Ci)seo

N exp [—(sOO —/s2, +1) (% _ 2%&)}

o (xz,t) ~

+ |k — ( )3oo exp< a —), x — o0o0. (5.31)
\/sgo—kl——soo 2300\/"—)’
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Figure 5f. Concentration profiles: a = 0.5, C, = 0.15, v = 1.

In decreasing order of darkness: ¢ = 6, 24, 96.
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Figure 5f shows graphs of our concentration results (5.27) and (5.30) for the
same set of parameters as before. Since (5.30) satisfies our boundary condition
C(0,t) = 1, we have used it as the plot for the entire domain 0 < x < s(t). The only
difference between (5.30) and the more reliable (5.11) to leading orders as x — 0 and

t — oo is the coefficient of e™%; hence for the purposes of graphical interpretation
the two are indistinguishable. Once again, the gaps in the graphs are due to the
fact that we are graphing asymptotic solutions, not exact solutions. Note that as
t — 00, our front is sharper than the standard Fickian behavior shown in Figure 5c.
Our profile, where the concentration is almost identically 1 behind the front before
plunging sharply downward at the front, has been seen in numerical simulations of

Case II transport [25] and experimentally in polymer-penetrant systems [9].

oY 0.2

0.173 ¢
0.15 | ﬁ

0.125 ¢

0.1F

0.073

0.05 ¢

0.025

15 é; 25 30
Figure 5g. Stress profiles: a = 0.5, C, = 0.15, v = 1.

In decreasing order of darkness: t = 6, 24, 96.
Figure 5g shows graphs of our stress results (5.28) and (5.31) for the same
parameters and times. An argument similar to the one outlined above can be made

for plotting (5.31) for & — 0 rather than (5.12). As expected, our stress now has a
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maximum slightly behind the front (the position of which can be ascertained from
the gap). Recall that in Chapter III we stated that we wished to model a case
where the stress had a peak at the phase transition. However, in that chapter we
also postulated that such a profile would probably imply that a < 0, which is not
true in the weakly diffusive case. In Chapter VIII we will consider a case where
a < 0 and the stress has its maximum at the phase transition.

Lastly, note that in the region where the concentration of the penetrant is

nearly 1, the stress in the polymer is nearly 0; that is, the polymer is fully relaxed.
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Chapter VI: Remarks

The results in Chapter V clearly demonstrate that in polymer-penetrant sys-
tems where the diffusion coefficient is small, non-Fickian behavior ensues. The
addition of the non-negligible nonlinear viscoelastic stress term to the chemical po-
tential introduces memory effects which greatly change the character of the solution.
Though thé moving boundary-value problem which results is ﬁo longer solvable in

closed form, thankfully Boley’s method yields analytical results.

Since the system of integro-differential equations which results cannot be solved
in closed form, an asymptotic approach is expedient. For any a > 0, a solution was

1/2 " as expected from a diffusive

found which moved with speed proportional to ¢~
system. This is indicative of the fact that as ¢t — 0, the effect of memory is not yet
important, since our definition of the stress implies that the time history begins at
t=0.

However, as time progresses, the effect of memory becomes more and more
important. This memory effect, which makes its presence felt in the second term
on the left-hand side of (4.10), eventually forces the front to move with constant
speed, a phenomenon not seen in Fickian systems with bounded initial and boundary
conditions. In addition, as time grows ever larger, our equations lead to solutions
where an increasing portion of the rubbery polymer is fully saturated. Lastly, the
width of the region in which the solution decays from 1 to C, is much narrower

than in Fickian systems. This behavior successfully models some of the phenomena

seen in polymer-penetrant systems [9], [25].
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Obviously, (4.4) is a restrictive class of parameters. However, this does not
mean that there do not exist solutions when C. does not satisfy (5.25). What can
we say about such systems when a is positive? Well, our discussion in the first para-
graph of Chapter V.2 still holds; that is, the front must move with constant speed
in order to satisfy (4.29). However, our solution (5.26) is based on the assumption
that the next order in the asymptotic expansion with respect to t is O(1). If the
next term is larger than O(1), then our expansions for 79 and T" would be expo-
nentially decaying or increasing. Therefore, it is possible that solutions do exist for
our problem which move with constant speed with a correction that is greater than
O(1). These solutions cannot be obtained by using such simplistic expressions as
the simple exponentials in (5.13) and (5.16) for our fictitious boundary conditions.
However, to leading order the front would still move with constant speed.

In the next part of this thesis we will consider a problem which involves the
use of singular perturbation techniques. The solution profiles for these cases will

share some similarities with the solutions found here, but in other ways will be quite

different.
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Part Three: The

Heavily Stressed Case
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Chapter VII: The Heavily

Stressed Case: Preliminaries

1. Governing Equations

We now wish fo model polymer systems where the stress is very large compared
to other quantities in the problem. Since the polymer still has a rubbery and
glassy phase, we retain the same nondimensionalizations and relationships between
relaxation times as in Chapter III. We once again assume that the variation in the
diffusion coefficient is minimal, so we expect D, = D, = D. However, now we let

D = O(1). In such a polymer-dissolution system, we expect the effects of the stress

to be important, so we let n = noe~2. It will be shown that these choices of orders of
magnitude for our parameters lead to solutions which mimic the desired behavior.

Summarizing, we have the following:

D By

Dy=D.=D, &=\lo  6=Fn ’

= €, n=1"p€ “.

Making these substitutions in equations (3.32) and (3.25b), we see that for

C < C, we have the following equations:

E
Ci, = aeC?,, —eC? + <62 + 77_0_> ce., (7.1a)
BeD
—1
of +e0? = W oy cy, (7.1b)

Vidg
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while for C > C, we have

CTt - aecmmt Ctr + ( 7 ) C;aw
By D

1
0
C" + CT,
v, ¢

o, +o" =

where v = vE/D and o = 1 + . In addition, equation (3.26) becomes
(D + vE)C,], + vE(e — 1) 22000 o —s,

and equation (3.25a) becomes
Cy = eCry + V€O 1.
We postulate the following expansions for C and ¢ in e:

C=C"+0(1), o=eclta"+o(e?).

(7.2a)

(7.2b)

(7.4)

Note that these forms, which are dictated by our choice of parameters, indicate that

the effects of the stress will dominate those of Fickian diffusion in (7.4). Therefore,

we expect to see non-Fickian behavior in this system. Inserting these expressions

into equations (7.1)-(7.4) and retaining terms to leading order, we have the follow-

ing:
2 ~0g
C’t =K C'm,

2
0 K

Or __ 2 ~0r Or
Ctt "chzc——ct ’

(7.5a)

(7.5b)

(7.6a)
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Or Orr ’i2 Or
Y
O(s(t),t
P AL UL (.7)
Cf = 'yagm, (7.8)

where k* = noE/B,D.

If there is no boundary layer in the concentration to balance the stress term
(which will always be positive) in equation (7.7), we see that a < 0. Therefore,
a cannot be considered as directly analogous to a latent heat. This result may
seem odd at first, but recall that we have now defined our total flux to include the
gradient of the stress. Hence, even though the jump in the concentration lux may
be positive at the front, the jump in the total flux may not be. Even if a boundary
layer does exist, it is plausible to assume that there will indeed be cases where a < 0.

Indeed, these are precisely the cases we will examine in this part of the thesis.

2. Using the Integral Method

From further examination of (7.7) it is clear that the method of similarity
variables will also not work for this problem. Once again, we will need to use
Boley’s integral method. We begin by stating that it will not be necessary to use
Boley’s method to solve for the concentration or the stress in the glassy region.
The truth of this statement will be demonstrated later. Therefore, we need only
introduce a new quantity 7 which extends equation (7.6a) to the fully semi-infinite

region.
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Note that (7.6a) is a hyperbolic equation, and thus we will need to have a
fictitious condition for T)(x,0). Due to the form of (7.7), we will also need to know
the stress in the rubbery region to solve our system of equations. To solve for the
stress, we note that since (3.32) and (3.33) are identical, equation (7.6a) holds for

0% as well. Then we use Boley’s method with the new quantity 77. We denote

our unknown Dirichlet conditions by the following:
T(z,0) = Cy(x), T (z,0) = oy (). (7.9)
From equations (7.6b) and (7.8), we have the Neumann boundary conditions:
K2
T (2,0) = SCufa) oula),  Ti(e,0) = 10l(e). (7.10)
We may also solve for the stress at the boundary using equation (7.6b):
k2 [t
o’ (0,t) = o, (0)e™ + —;y—/ Co(2)e= (%) gz, (7.11)
0

Here we have imposed continuity for reasons which will differ from experiment to
experiment; the reasons will be discussed in later sections.
We now extend our equations to the entire semi-infinite region, which yields

the following:

T = kT — Tf, 0 <z < oo; (7.12a)
T°=C", 0<az<s(t); (7.12b)
7¢(0,t) = Cu(2); (7.13)

T = 2Ty, = T7, 0<z <oo; (7.14a)
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T° =0", 0<z<s(t); (7.14b)
T°(0,t) = 0°7(0,1); (7.15)
s(0) = 0. (7.16)

Note that we have not included any front conditions in our equations. This is
because the front conditions will differ depending on whether there are boundary
layers in our solution or not. These possibilities will be explored in later chapters.

For now, we wish to solve only for our solution fields.
The solution of equations (7.9), (7.10), (7.12), and (7.13) can be written as T°¢ =
Tk 4+ T°% 4 T° where each solution solves only one of the boundary conditions.

Here T°* is the part of the solution which solves only the boundary condition at
z=0:

Tl = &2Tgy = TF, 0 <z < oo (7.17)
T(0,t) = Cy(t) — Cu(0),  T%(z,0)=0, T*(z,0)=0. (7.18)

Equations (7.17) and (7.18) describe the telegraph equation, the solution of which

is given in Carrier, Krook, and Pearson [26], equation (6-64):

I (VK222 — 22/2k)

dz
Vi2s2 — 72

T (z,t) = H(xt — x){g /m/’g e *2[Cy(t — z) — C, (0)]
+ [Co(t —z/K) — C’u(())]e_w/z'“}, (7.19)

where I is the first modified Bessel function. Note that equation (7.19), with k = 1,

is a correction to Cox [14], equation (3.25).
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T is the part of the solution arising from the Dirichlet initial condition, so it

solves the operator in (7.17) and
T(0,8) = Cu(0),  Tx,0) = Cyulz), T%az,0) = 0. (7.20)
We begin by applying the Laplace transform to equation (7.17) subject to (7.20):

Cu(0)
=

(p* +p)T — (p+ 1)Cu(z) = k2T

cu T°%(0,p) = (7.21)

Equation (7.21) is in exactly the form of equation (4.21), so we may immediately

write the solution as

C(0)e==VPPt1)/x

T (z,p) =

p
N QL [p+1 / T o) [e—|w—z|\/p<p+1>/n _ e—(m+z>\/p<p+1)/n} .
K b 0

Inverting the Laplace transform, we have

T (x,t) = Cyu(x) + &/0 [Cl(z+ Kk2) — Cl(|Jx — k2|)] gu(z,t) dz, where (7.22a)

—2z/2 t
gu(z,t) = {e 2/ +Z/ e—y/zfl(v\/?{%ﬂ) dy| H(t — z). (7.22b)
z yc —z

Finally, T is the part of the solution arising from the Neumann initial condi-

tion, so it solves the operator in (7.17) and

T°40,t) =0,  T°%z,0)=0, T%x,0)=~0"(x). (7.23)
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Once again applying a Laplace transform to (7.17) subject to (7.23), we have
(0* +p)T° —voy () = T8, T°(0,p) = 0. (7.24)

Equation (7.24) is also in the form of (4.21), so we may write

Tz, p) =

____1_____ /°° ")’UZ(:U) 1:6_.|93—z|\/p(13+1)/m _ e—(x+z),/p(p+1)/n} da.
2ky/p(p+1) Jo

Inverting the Laplace transform, we have

( ,ye—t/2 T+Kt
‘ / on(2)ga(z — z,t)dz, = > kt;
2K r—Kt
d ’ye_t/2 T+rKt
Tz, t) = < 5 l:/ on(z)ga(x — 2,t) dz (7.25a)
0

Kt—zx
——/ o (z)ga(x + z,t)dz|, =x < kt, where
0

9d(y,t) = Io(v/K?t2 — y2/2k). (7.25Db)

Note that with the exception of T°* all our solutions are continuous across the line
T = kt.

Similarly, the solution of equations (7.9)-(7.11), (7.14), and (7.15) is T° =
TR H(kt — x) +T% + T°% where

¢ V222 —72/9
17400 =3 [0, 2) - ou ) IV T2
2 Ja/n K222 — x

+[T7(0,t — z/K) — 0, (0)]e™/2"; (7.26)

T7%(z,t) = oy(x) + F&/o o0, (z + kz) — o, (| — Kk2])] gu(2, 1) dz; (7.27)
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( e~t/2 TRt L2
—Cy(2) — 0oy ~z, ’ :

T 1) = { e;:g { /O o {%Q-CU(@ _ au(z)} gale — 2,1) dz

- /ONH [%20“(2«) - au(z)] ga(z + 2,t) dz} . o<kt

(7.28)
Now that we have the representations for our solutions, in the next two chapters
-we will select particular boundary conditions and parameter ranges for two specific

problems.
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Chapter VIII: The Dissolving Polymer

1. Governing Equations

We now wish to model a polymer entanglement network dissolving in the pres-
ence of a solvent. Here C is the concentration of the solvent. Imagine an experiment
in which a polymer matrix is exposed to a infinite well of diluent. Though the con-
centration of the diluent may be 1 at the edge of the polymer matrix, it is clear that
at the instant that we introduce the polymer into the solvent, the concentration can
be no greater than C, which is now defined as that concentration at which the en-
tanglement network dissolves. We would expect that the maximal concentration of
the diluent at the boundary will be achieved only in the mathematical limit £ — oc.

This motivates our boundary condition
C0T,t) =Ch(t) =1— (1= C.e ", (8.1)

where r is a constant.

We also choose to model this experiment by the state-dependent case, where
to = 0. This reflects the case where some other physical parameter, such as tem-
perature, density, or pressure, affects whether the polymer has a memory. Here we
postulate the memory “turns on” when the polyfner is first plunged into the diluent.

In this case, the stress must be 0 initially by definition, so we have

oi(z) =0, ou(z) =0. (8.2)
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Equations (8.1) and (8.2) imply that

2
1-C.
o' (0,t) = Eli-ety ¢
¥ 1—1r

(et —e ). (8.3)

Here we have assumed that r # 1. A solution still exists for »r = 1, but the algebra
is messier. We have assumed continuity of the stress, which follows trivially from
the fact that o = 0. In this section we will derive the interesting result that r
is actually determined by thé material properties of the matrix. Thus, there is
actually a self-requlating mass uptake at the boundary.

In this problem, we expect that the dominant mechanism by which the front
moves is the release of stress accumulated in the entanglement network. As the
polymer dissolves, the stress is reduced, which forces the front forward. Hence, we
expect [0;]s < 0; in fact, we expect [0,]s to be so negative that a < 0. In addition,

for reasons that will become later we wish to restrict a to the following range:
—-1<a<-C,. (8.4)

We begin by examining equation (7.5a). Since this is a hyperbolic equation
and our initial condition is C%(z,0) = C?9(x,0) = 0, we see that for z > xt the
solution is exactly 0, unless there is a boundary layer in that region. It will be
shown that our choice of a in (8.4) precludes a boundary layer in this region. The
case of a boundary layer for > xt will be covered in Chapter IX. Hence, we expect
there to be a discontinuity around the line z = kt. For a first guess, we assume that
C(kt™,t) > C,. This means that our glass-rubber interface lies in the boundary

layer around z = kt. Thus, we introduce the following scalings:

0 0 0

=2y 2 emP 90 mO (8.5a)
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Co(z,t) = C*F (¢, 1) +o(1), o?(w,t) = o ((,m) +o(1), (8.5b)

where the dot now indicates differentiation with respect to 7. Then equations (7.1)

become the following, to leading orders:

—256—"‘02:’ + e"zmé2022' = —-a.éel_?’mcggz e 2m (k2 + e)CgEL, (8.6a)
o€

—ée—magJ“ +eot = ——V—B———C(H - ﬁe_ng+. (8.6Db)
g

‘We note that if § = k, then the ¢ 2™ terms cancel, leaving the dominant balance
asm=1/2. However,i from equations (8.5a) and (8.6b) we see that both C°* and
o%* are O(e1/2), which means that there is nothing to balance the right-hand side

of equation (7.3). Hence we conclude that our scaling is wrong,.

;ﬁ:,,:_\».:;.ﬂ_ » :L'

Figure 8a. Regions of validity for different outer representations.

Now we have already determined that there must be a discontinuity at z =
kt. Therefore, we will call the line z = kt the primary front, the word primary

referring to the fact that it is the first signal to reach a certain point. We define the
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secondary front x = s(t) to be the curve where the network is completely dissolved.
Mathematically, the secondary front is given by (3.28). It is clear that s(t) < st for
all t. We see from equation (7.5a) that characteristics carry some constant value
C = C} forward with speed &, so there must exist a “mushy region” s(t) < x < kt
where C' = Cy. This is illustrated in figure 8a.

In order to determine Cy, we see if there can be a boundary layer in C% around
our secondary front. Since $ ;é Kk, we see that the O(e¢=2™) terms do not cancel in
(8.6a) and that m = 1. Therefore, we have

2 0+ - 0+ 2 ~04
§°C¢; = —asCcl +r°Cel,

the solution of which is

S

I€2 . ,§2
O™ (6) = ol + Fin)C + far)esp |2 87)

However, since § < x, we see that in the matching region { — oo, equation (8.7)
becomes transcendentally large. Thus there is no layer in C% and Cj = C,.

Our next step is to retain the smoothing internal layer around z = kt, since
equation (7.1a) cannot support a discontinuity there. Hence, we use equation (8.6a)
with our choice of m =1/2:

—20%F = —aCPL (8.8a)

with the initial condition

C™(¢,0) = C,H(—(). (8.8b)



Edwards VIIL.5

Equation (8.8a) is simply the heat equation on an unbounded interval, the solution

of which is, subject to (8.8b),

O (¢ 7) = % erfc < Jz%—) . (8.9)

Next we solve for 0. Using equation (7.5b) in the region where x > kt, and
recalling our new initial condition (8.2), we see that 09 = 0 there as well. In the

mushy region, we may immediately solve (7.5b) to yield

0% (2, 1) = “if* (t— g) (8.10)

Hence, in order for 0% stay bounded (which is what we expect both on physical

and mathematical grounds), we see that
5(t) ~ Kt — 500 + 51(t) as t — o0, (8.11)

where s, > 0 and s1(t) — 0 as t — oco. Using equation (8.10) evaluated at our

secondary front, we see that equation (7.7) becomes

ae[Cyl, — 52—0— {t —~ it—)-} = as. (8.12)

8 $ K

Next we consider the possibility of a layer in C°" around our secondary front.

Performing the same analysis as that prior to (8.7), we see that if we let C"(z,t) =
C=(¢,7) +0(1), equation (8.7) is a representation for C°~ which is bounded in the

matching region ( — —oo. Matching and using (3.28), we have

c'=(¢,7) = COT(S(T),T) + [C* — C(s(1), T)] exp [(—K———Si} ) (8.13)



Edwards VIII.6
Now let 0" (z,t) = € 1027 (¢, 7) + o(e™!). Note 0%~ (s(t),t) # 0 since we are
matching to equation (8.10). Using our scalings (8.5a) with m = 1 in (7.2b), we

have

o2
—ée'lag_ +o00 = 200 — /102_.
i

Thus there is no boundary layer in ¢°" and one of our front conditions for Boley’s

method is

T (s(t),t) = %Q_ lt - —"’%2] . (8.14)

In addition, we must solve one of the following two sets of conditions. If there

is no boundary layer in C°", equation (8.12) becomes

K2C, [t — ﬂ] = |a|$%. (8.15a)
K
In addition, we have from (3.28) that
T°(s(t),t) = Ck. (8.15b)

However, if we do have a boundary layer, equation (8.12) becomes

—an_ — k20, [t — fﬁz} = as.
K

Using equation (8.13), we have

[CP7(5(2),t) — C.] (k% — §%) — K2C. {t - ﬁt—)-] = as’. (8.16)

Note there is no condition analogous to (8.15b).
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Now we have completed enumerating our front conditions. In the next section,
we will perform asymptotic analyses for small and large time to obtain solution

profiles.

2. Large Time Asymptotics

Now we perform asymptotic estimates for large ¢. In order to complete our
- solution, it will be necessary to do large-time asymptotics for the following integral,

the form for which is inspired by (7.28):

s+kt
F(t) = /O F) (/R = (5 = 22 /25) dz, (8.17)

where s = kKt — 5o and s« is a constant. This form for s(¢) is motivated by equation
(8.11). From AMS 55 [27], I,,(z) is O(1) for moderate values of z, but diverges for

z — oo large as

In(z) ~ \/;E (1 - 4"282“ 1) . (8.18)

Hence the dominant contribution to F'(t) comes from the neighborhood of

z = s. In this region, the argument of the Bessel function is O(t). Outside this

neighborhood, the argument of the Bessel function is O(t'/2). Therefore, we may

approximate F'(t) by the following:

1+6
4
)~ K f(xty) exp | =2y — y?| dz, (8.19)
s (y—y2)t 2

where y = z/xt and we have neglected the terms with s, in them.
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We now wish to use Laplace’s method on (8.19). From Bender and Orszag [28]

(6.4.35), we have a general expression for a Laplace integral:

A
b gy |2 [ L[ [@8D @)
PEEL el e {f ( ”t[ 267(0) T B[O

(@9 (e) 518 ())*f(e)
29" (c)]? 24[¢" (c)]?

+

]} t—o00, (8.20)

where ¢'(c) = 0. Using Laplace’s method on (8.19) to leading order, we have
F(t) ~ 26f(rt)e'/?. (8.21)

We note that since o, (x) = 0, T% = 0. We also note that T is exponentially
decaying. Therefore, the dominant contribution to the stress is from (7.28). Using

our form for o, (z), we then have

T (s(£), £) ~ G;ZQ {2,@ {%(Jn(m)} et/z}. (8.22)

Using (8.22) and our assumption for s(¢) in (8.14), we have

2 2 _
R K Ch [t— it 8”} . (8.23)

K

In order to construct our solutions for long time, we postulate the following expan-
sion:

Cu(z) ~ Co +0(1), x— o0. (8.24)

Using equation (8.24) in (8.23), we have
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Coo ~ . o (s(t),t) ~ ””C;S“’. (8.25)

Next we examine the concentration for large time. We note that in this case,

T = 0 and T°F is exponentially decaying. Therefore, we have
T¢(s,t) ~ Cy(xt).

Using (8.25), we have

Ci8c0
—

T°(s,t) ~ (8.26)

If there is no bounda,ry layer, then we immediately have from (8.15b) that so, = k.

However, with no boundary layer, we also must satisfy equation (8.15a), which

becomes
KCy 800
- = akK.
K
Since so, = k, we have C, = |a|. However, each of these parameters is supposed

to be independent. Hence, we conclude that there must be a boundary layer unless
we are in a very special case.
If we have a boundary layer, then we use equation (8.16), which becomes

—-C (1 - S%) (k? = §%) — KC\ 500 = aK?,

I |
S —_
oo C*7

CO(s(t),) ~ |al. (8.27)

Then we see that from C, < C% < 1 we have our compatibility condition (8.4).
Physically, we see that if the absolute jump in flux needed to move the front is too

small, the front will try to move faster than s, but cannot since the boundary layer
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solution does not hold. In addition, we see that if the absolute jump in the flux

needed is larger than the saturation concentration (in some appropriate nondimen-

sionalization), the front cannot move at all. We interpret this as a deficiency in our

model which reflects a physical phenomenon, in the same way that the fact that

the Fickian model is unstable for negative diffusion coefficients is indicative of the

fact that negative diffusion coefficients are not physically reasonable.

Summarizing our results, we have the following:

C T — ki
C%(x,t :——ief< ),
(1) g ¢ 2aet

k2C,

%9 (z,t) = (t— %) H(kt — x),

CY (2,t) = T°(z,1) + [Cu — T*(s(2), )] exp { (" = &)z = s(t)] } 7

aes

t—o00, O0<KLx <kt

lalx

Cy’

s(t) ~ Kt —

T%(z,t) ~ |a| + [1 (- 0*)6—’"@—%/'*)] /2%

t /3.3 2
x/ e %/2 {1 —(1- C’*)e_’"(t"z)] h(VK>2? — 2%/2k)

+ = dz,
I Vi2Z _ 12

2

t T (VK222 — 22/9
¥ (z,t) ~ E‘/ e"*2T7(0,t — 2) 1(VP2? = 2 /2r)
z/k VK222 — 2

—t/2 Kt
+i@e—/ ga(z,t) dz.

2’7 —kKt

(8.28a)

(8.28b)

(8.28¢)

(8.29a)

(8.29b)

dz +T7(0,t —x/k)e /2"

(8.29¢)
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Figure 8b shows our large-time asymptotic expansion of C for a selected set of
parameter values which satisfies (8.4). Though not quite so pronounced for ¢t = 6,
we see the three-stage concentration profile we predicted. The concentration profile
starts out at 0, rises quickly to C, at the primary front, remains at C, in the
mushy region, which for large time is of constant finite width, rises quickly to |a| at
s(t), and then slowly rises for z < s(t). Since these concentration profiles are only
good for x — oo, we see that they rise above 1. We would then expect the true

concentration profile to depart from our long-time asymptotics and converge to 1

at x = 0.

CO

0.8}

0.6}

0.4r

0.2}

] 100 200 300 400 200 o

Figure 8b. Concentration profiles: a = —0.75, C, = 0.4, vy =2, a = 3,
e = 0.0001, k = 5. In decreasing order of darkness: t = 6, 24, 96.

Figure 8c shows our large-time asymptotic expansion of ¢ for the same param-
eters and times. The gap for t = 6 is due to the fact that we are graphing analytical
asymptotic expansions. Once again, we see that the asymptotic expansions do not
hold for z near 0; straight lines have been drawn to indicate the value of ¢°(0,¢)

for the times indicated. Note the steep rise of o over the relatively small scale of
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the mushy region. It may seem as if there is a discontinuity in o, at the primary

front, but this is not the case. Since there exists a boundary layer in C across the

primary front, there exists a boundary layer in 0% as well. Thus, though the deriva-

tive changes rapidly, there is no discontinuity. Note also that in this case there is
no peak in o, but that the rise in ¢ is much slower once the polymer entaglement

network has begun to dissolve. It also difficult to ascertain the position of the sec-

ondary front from this graph. That is because o0 is nearly identical on both sides

of that front.

] 100 200 300 400
Figure 8c. Stress profiles: a = —0.75, C, =04, vy =2, a = 3,

e = 0.0001, k = 5. In decreasing order of darkness: t = 6, 24, 96.

3. Small Time Asymptotics

Now we construct our asymptotic solutions for small . We postulate the fol-



Edwards VIII.13

lowing expression for our ficititious initial condition as z — 0:

2

Cu(z) ~ Co + Crz + Caz” . (8.29)

We then perform small-time asymptotics on equations (7.26) and (7.28) (recalling
that 79" = 0), keeping only those terms that are O(1), O(t), O(z), O(t?), O(xt),
and O(#*). Note that by keeping only these terms we are making an implicit as-
sumption that s(t) = o(t3/2). We will verify this assumption shortly.

Since the value of the bracketed quantity in the integral in T°% near 0is 0, T°F
doesn’t contribute since its terms are all o(xt). To expand T7¢, we first construct

a Taylor series in . For some arbitrary function f(z), we have

rkttax
Fi(:E?t) EL f(Z)gd(.fE:FZ,t) dZ,

Fy(z,t) /f Yga(z,t) £ x | f

26V K2 — 22

(5t)Io (0 /f VR —22/2r) ]

Using our expressions for C,(z) and o, (x), we have

tCL (Kt I (VK2 — 22/9
F_'_(./L',t)—F_((E,t)N2$ {CO+HtCl+t O (Kz) hmt 1( 52 22/ fi)} }
pa— K2 — 4
t=0

~ 2xCy + 2rxtC.

Therefore, we have

T4 0 2200 + -’%t <n(11 - @> . (8.30)
vy
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We expand (8.3) for small ¢ and z to yield

T°(0,t — z/K) ~ C*j2 (t— .33) + .’ij/_t.[(l —C)(l+7r)—1] (% _ f)

K K

21— CHL +r+7r2) — 1)
6y

3

C.K? ( ;v> N K22 [r(1 - C,) — C,]
2y

2 _ _ 3
_@[T(l_c*)_g}_n[r(l Co)(1+7)—C.t .
¥ _ 2 6y
(8.31)
Using (8.30) and (8.31) in (8.14), we have the following:
K2C, 8 C. k2 s Co— C,
S (t—g)— S (t—;)—st{r(l—C*)—{— 5 — kCy
t2 1 - *x ) T * ]- - * - * 3
LB rl-C)—-Cd &lr(1=-Co)(1+r)-C.Jt +5Co. (8.32)

2 6

It is clear that the first terms on each side cancel.

We now expand our concentration field for small time. In this expansion,
we keep only those terms which are O(1), O(t), O(z), and O(¢?). (Note that
our assumption about s(t) is now slightly weaker.) We know that the integral in

T = o(xt). It can be shown that the integral in T¢* is O(xt), and we know that

T°% = 0, so we are only left with expanding
’:1 . Cu(O) . (1 _ C*)e—r(t—a:/n)] e—m/2n

— _ 242
NC'*—C'O—]-rt(l—C*)_%[T(l_c*)_’_C*QC'o _(1 02*)7”75 .
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Once we add on C,(x), our final expression is

(1-C.). (8.33)

_ 242
T(z,t) ~ C*—i—tr(l—C*)_]_% l,icl —r(1-C.) + Co ; C*} Tt

2

Now we use equation (8.33) in our boundary condition (8.16). Letting s = sgt”,

we have (to leading orders)

n ‘ _ 24201 _
{tr(l —-Cy) + So [/ﬁCl —-r(l1-C\) + Co C"‘:l _red C*)} X
K 2 2
, (Kz _n282t2n—2) _ k20, e — ﬂ — an2s242"2_ (3.34
0 * | = an sot . (8.34)

Now we must strike a balance among the O(t), O(t"), and O(t**~2) terms.
The first obvious balance is n = 3/2, which balances the right-hand side with
the O(t) terms. However, note how this assumption will affect (8.32). In order
to balance the t? term therein, we would have to introduce an z*/3 term in our
expression for Cy,(z). However, we expect our functional forms will be everywhere
twice differentiable, which z*/3 is not. Therefore we conclude that n # 3/2.

Thus, the O(t) terms must balance one another. This can only happen if

r(1-C,) =C,. (8.35)

What does this mathematical constraint mean physically? It says that in order for
our dissolution front to propagate, the concentration at the interface between the
polymer and the reservoir must be regulated by the polymer network itself. Thus r
in some sense represents the internal dissolution rate of the polymer and could be

related to the strength of the entanglement network.



Edwards VIII.16
Using (8.35), the next orders in (8.34) become the following:

k2C2t2

a=c) + KCy50t™ = an?s3t*" 2, (8.36)

Co — O,
sokt™ |kC1 — Cy + 02 ]—2

from which we have that n = 2. Therefore, our supposition above that s(t) = o(t%/?)

is correct. Using (8.35) in (8.32), we have

. 3
st (Iﬁ)Cl — CO ;_ C*> - Rri*t + SCO = 0.

So we may conclude that Cy = 0, and we have

C, kC?
So (K,Cl - 7) - m =0. (837)

Using the fact that Cp = 0 and n = 2 in (8.36), we have

3C, k2C? 5

SoR (K)Cl — ——2—> + S()K,C* - m = 4a80. (838)
Using (8.37) in (8.38), we have that
S0 = ~C. . (8.39)
2¢/3la|(1 = Cy)
Using (8.39) in (8.37), we have
C. |1 |al

=— | = —_— - 8.40
Gi="r gt 3(1—0*)} (8.40)

Note that (8.40) gives us that C is positive, as we expect. This means that our
fictitious initial condition starts off with zero and a positive slope, so it is reasonable

to conclude that it remains positive.
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Summarizing our results, we have the following:

t—0
s(t) wCt? S (8.41a)
24/3la]1=C,)’ S 1-c '
c Ciz |1 [a‘| —r(t—z/k)| ~z/2k
T¢(z,t) — 13 30— ) —|—[1—(1—C’*)e ]e

¢
I (VR222 — 22
+59/ e=2/? [1— (1-—0*)e“"(t—2>] L(VRP2? = 0%/26) 5 (8.41b)
2 z/K \/H2Z2,—$2
¢ I a1
, T 2,2 _ 22/9
" (x,t) ~ f/ e™*/2T77(0,t — 2) L(Vri2? — 27/2x) dz +T°(0,t —x/Kk)e"2/2"
2 Ju/n Vi222 _ 22

x+Kt Kt—x
[/ zg4(x — z,t)dz — / zga(x + z,t)dz| . (8.41c)
0 0

T =Kt

2 10 15 20

Figure 8d. Front diagram with superimposed asymptotic expansions.

a=-075,C,=04,v=2,a=3,e=0.0001, k = 5.
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Figure 8d shows a plot of our superimposed asymptotic expansions for the
listed set of parameter values. The grey line is the primary front. The narrow lines
are the graphs of our actual asymptoic expansions (8.28a) and (8.41a), while the
thicker line is simply a sketch of the way the actual front would interpolate between
these two expansions. Note that there are several important results here from
an experimental point of view. By simply performing the experiment heretofore
outlined, one can determine x (from the front speed), C, (from the concentration
in the mushy region), and a (from the width of the mushy region).

o |

0.4l

0.3

0.2 H

0.1H

u :L‘
0.1 0.2 0.3 0.4 0.5

Figure 8e. Concentration profiles: a = —0.75, C, = 0.4, v =2, a = 3,

e = 0.0001, & = 5. In decreasing order of darkness: ¢ = 0.001, 0.01, 0.1.
Figure 8e shows a graph of C for smal times. Note that we have made sure
that € = o(t) for all graphed values. While difficult to ascertain from the graph
for t = 0.001, it is clear from the other graphs that we have once again reproduced
our three-stage process. The concentration starts out at 0, then rises quickly to C,
at the primary front. C remains at C, in the mushy region (which for ¢ small is a

much larger relative area), and then slowly rises for z < s(t).
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Figure 8f shows a graph of o for the same times and parameter values. The
graph for ¢ = 0.001 can only be ascertained as an extra pixel in the lower left-hand
corner of the graph; the stress is that small for small time. Note that we have linear
growth in the mushy region, which now encompasses nearly the entire graph. Note
that it is once again difficult to ascertain the position of the secondary front from

these graphs because of the small discontinuity in o.

CO
0.5 .

0.4
0.3
0.2t

0.1f

0.1 _ 0.3 0.4 0.5

Figure 8f. Stress profiles: a = —0.75, C, =04, v =2, aa = 3,

e = 0.0001, k = 5. In decreasing order of darkness: ¢t = 0.001, 0.01, 0.1.



Edwards IX.1

Chapter IX: Can Our Front Move

Faster Than a Subcharacteristic?

1. The Unstressed Case

We now wish to examine the case of penetration of some liquid or gaseous

substance into a polymer. Here we consider the case where the memory is state-

independent, that is where #; = —oo. This corresponds to the case where the
polymer always has a memory. The mathematical manifestation of this physical
property is the fact that o,(z) # 0. In addition, we want to examine the case
omitted in chapter VIII, namely that of a boundary layer in the glassy region. For

this case we need another set of parameter values for a, namely

The expression for C°T in such a boundary layer is given by (8.7). We note that
for our solution to be bounded, s(tf) > xt. Hence, there can be no corresponding
boundary layer in C°" around s(¢) in this case. Since we know that our outer

solution is C% = 0 for £ > xt, we have a boundary condition which gives our

solution as

as

C™ = C, exp {MJ . (9.2)

Is a layer possible in ¢97 No, since in that case equation (7.1b) becomes (to
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leading order)

This shows that ¢ = O(1), which implies that
" (s(t),t) = 0. (9.3)

In addition, since 6" does not contribute to our matching in equation (7.7), we

have
aC'g+ = as$,
C,
s(t) = Kt .t a (9.4)

Note from equation (9.4) why our compatibility condition (9.1) becomes important.
Note also that equation (9.4) is good for all time.

We note that we must use our boundary condition (8.15b) since there can be
no boundary layer in C° for > kt. Now in this region, we see that T°* does not
contribute when we try to match our solutions together. Therefore, any solution
which we construct will necessarily be independent of Cy(t).

Now we perform our asymptotic analysis for small ¢ and z. We assume the

following forms:

O’2$2

2 ?

ou(x) ~ o9+ o1 + Cu(z) ~ Cy + Chz, x — 0. (9.5)

We begin by expanding 7°¢, which is now nonzero:

42
TCd(:c, t) ~ yoot + yosxt — —72—02. (9.6)
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T°* does not contribute (since z > kt), so we may combine (9.6) with our previous
expansion for T°* to obtain an expression for (8.15b) to O(t), recalling that O(s)
is now also O(t):

Cy = Co+ Cys+ vosat.

Using (9.4), we have

Cy

Co=C,, C
0 1K C. +a

= —Y02. (97)

Next we turn to the stress. Once again T°F does not contribute, and our

asymptotic expansion of T7" is

2
T7%(x,t) ~ o0 + 015 + % + Kkoyt?. (9.8)

By using an analogous form of (9.6) to expand 7°¢ to higher orders, we rewrite

(9.3) to O(t?):

2 2 2 2 2
t
0= 0'0—}—0’18+g22§—+l€20'2t2—|—t (ﬁ—C() — O'o) + (E—Cl — 0'1> St-——2— (iCO - 0’0) .
Y Y

Using equation (9.7), we have

2 2C*t 2 QC*tQ
op — 0, 018+ “—'028 +l€20'2t2 + r + E—Cl — 01 st — r = 0. (910)
2 Y g 2y

Using equation (9.4), we have the following, matching the O(t) terms:

oy = IV C:(Ceta) (9.11)

’Y
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Using equations (9.4), (9.7), and (9.11) in (9.10), we have, matching the O(t?)

oy C. kC, [ C.  C.
211 N 2 =, 12
2 [ +C*+a}+ T Ve e T 0 (912)

Combining equations (9.7) and (9.12), we can solve for o9 and Cj, yielding

terms:

o Ci(Cx + a) o |C, + a?/2/C,
2= —, 1= -

ay lalk

(9.13)

However, note that C; > 0. Though this solution is mathematically valid for our
fictitious problem, it is not a solution of our full problem since it says that for some
z < s(t) (that is, in our rubbery region), C°" < C,, which is a violation of the
definition of the rubbery polymer.

The only other assumption we have made about our solution is in our compat-
ibility condition (9.1). However, we see that if a < —C,, s(t) is imaginary. If a > 0,
s(t) < wt. Therefore, if the stress is initially zero, there does not exist a solution

where the front moves faster than the subcharacteristic z = «t.

2. The Prestressed Case

In order to continue to find a solution of the form we seek, we now consider a,
polymer-penetrant system which has an initial stress distribution. This is perfectly
reasonable in certain polymer-penetrant systems, where polymers may have stresses
imposed upon them even before any penetrant is introduced. Such systems arise in
pharmaceutical delivery applications when substances are imbedded in the polymer

matrix above their natural solubility limit [6]. For simplicity, we consider the case
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where the polymer is uniformly stressed:
oi(z) = 0x. (9.14)

We no longer require (9.1) to hold.
What happens in this case? Well, equation (9.2) still holds, and there is still

no boundary layer in g9, so equation (9.3) is now replaced by
" (s(t),t) = o,. (9.15)

Thus our choice of the asterisk subscript is appropﬁate, since o, is also the transition

value of the stress. Equation (7.7) then becomes

C\CCO+ . Yo
¢ N

S

., [K2Cs — o,

Note from equation (9.16) that we have the restrictions on our parameters that the

= as,

argument of the square root be larger than x2. Note once again that our expression
for the front (9.16) is good for all time.

This time we perform our asymptotics for large ¢t and 2. We begin by assuming
that both C,(z) and o, () are bounded as x — co. When we make that assumption,

we see that all of the derivatives in our integrals vanish as © — oo, so equations

(8.15b) and (9.15) become, to leading order,

—t/2  pstrt[ L2
O = 0y(8) + P / [——C’u(z) —ou(2)| ga(s — z,t) dz. (9.17b)
s—Kt
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Now since s(t) is still in the range of integration of 7°¢, we may use equation (8.21),

so (9.17b) becomes

2

K
Ox ~ ou(8) + jy—C’u(s) — ou($), (9.18)

yo,. ~ K2C,,
which contradicts our assumption that o, is a free parameter. In addition, (9.16)
implies that s(¢) ~ 0.

All is not lost, however; we have some options. Since they are fictitious con-
ditions, we may allow: one or both of C,(z) and o,(z) to become unbounded as

x — oo. We begin by letting only o, (x) grow without bound. How will this help

us? Well, the correct form of (9.18) is

o~ 0ou(s) + [1 +0 <—>} [——Cu(s) —ou(s)],

where the error comes from our Laplace’s method asymptotics of (8.17). Therefore,
the simplest way to introduce a nonvanishing contribution is to let
Cu(z) ~ Coo, ou(x) ~ oo, x — 00.
We immediately note that (9.17a) still holds, so we have

Coo = C,. (9.19)

Since o,,(z) is constant and the integral in 7" does not contribute, equation (9.17b)

becomes, neglecting terms which are vanishing,

o—t/2

o s+rt
—= / 2Io(\/K2t2 — (s — 2)2/2K) dz.

2k —kt

2
K

Ou ~ 0y(s) + —Co —
Y



Edwards IX.7

We may now exploit the fact that we have a representation for s(t) by writing

5(t) = sookt. We use both terms in (8.18) to yield the following:

2
Ox ~ 0008 + —C,
Y

et 2g  kt3/2 [t yexp(ty/1 — (500 — ¥)2/2)

1
- 2ym So0—5 [1— (500 —y)?]}/4 {1 * 4t/1 — (800 — y)? } a-

It is trivial to see that the st;atibnary point is y = s.,. We know that the leading
order term arising from the first braced term will cancel o, s. We then use the full
expression for Laplace’s method given by (8.20) to yield our final answer. It is clear
that we need the second-order term for Laplace’s method only for the first braced
term. We denote the kernel for the first braced quantity f; and the kernel for the
second braced term fs.

In order to use (8.20), we construct a glossary of functions. It is clear that ¢(y)

is even about the point s.,, 50 ¢® (s5,) = 0. The rest of the terms needed are as

follows:
_ Y e .
fl(y)_ [1—-(800—@/)2]1/4’ fl(soo)_soo7
" 3y — 280 5y(S00 — y)? 1" Soo |
1 (y) = 2(1 — (Soo _ y)2)5/4 + 4(1 — (Soo — y)2)9//47 1 (Soo) = _é_)
_ Y 800
fQ(y) = 4t[1 — (500 — y)2]3/47 f2(3c>o) - E’
" 1 " 1
¢ (y):_2(1_(800__y)2)3/27 ¢ (Soo):__;
¢(4)( ) - 3[1 + 4(300 - y)Q] ¢(4)(8 ) 2
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Using those terms, we have

2 —t/2 3/2
K e okt 4m s s
Or ~ OooSogkl + =, — S Tl __t/2<oo__°°_ _zo_)

TooSookt+ 2 2/ 16 Ty Ty

~2c,
fy

as before.

Therefore, the constant terms which we hoped would arise from the next order
in Laplace’s method exactly cancel. Our next guess might to be let oy, () ~ ooz
This would have the iadvanta(ge that T°¢ would now contribute a constant term
to (9.17a), thus making Cw a free parameter. Unfortunately, the terms arising in
the second order of the Laplace’s method asymptotics of 7°¢ [which are now O(t))
do not cancel, even with the terms arising from 7%. Therefore, a quadratically
unbounded o, (z) leaves an unbounded stress field, and similarly for other forms for
o (x) we might try.

Our next guess then would be to make C,(z) unbounded. Unfortunately, in
order for equation (9.17a) to remain true, o, (z) would have to behave like z2C,, (z),
which would then introduce other non-cancelling unbounded terms in (9.17b). Note
that our assumption of a uniform initial stress field has no bearing on the situation,
since this conflict would arise unless vo;(z) — £2C, as  — oo.

Once again, note that nowhere in our analysis did we use a specific form for
Cy(t), and we have used no other assumptions.  Therefore, it seems clear that our
system of equations (7.1)-(7.4) does not allow solutions which move faster than the

subcharacteristic z = kt.
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Chapter X: Remarks

The results in Chapter VIII clearly demonstrate that when the stress is large
enough to dominate other quantities in the system, non-Fickian behavior ensues.
Rather than a regular perturbation problem as in Part Two, here we are faced
with a singular perturbation problem with two boundary layers. The first arises
from the hyperbolicity of the outer ekpansion partial differential equations (7.5a)
and (7.6a). These hyperbolic equations can propagate discontinuities which the
full equations (7.1a) and (7.2a) cannot; hence, a boundary layer ensues. This “pri-
mary front” tracks the first “signal” of the solvent in the polymer network, and is
therefore analogous to the penetration front in a more standard polymer-penetrant
system. Behind it, there is a “mushy region” of finite width where the polymer
changes from glass to rubber as it dissolves. The second boundary layer at our
front s(t) arises due to the form of our front condition (7.7); a sharp concentration
gradient is needed to balance the effects of the stress. Each of these behaviors is
unobtainable with a standard Fickian model. However, the results in Chapter VIII
do seem to replicate experiments involving dissolving polymers, notably toluene or

chlorobenzene dissolving poly-methyl-methocrylate or polystyrene [29].

In Part Three we chose a < 0; therefore, in cases where the stress is important,
a cannot be directly related to the latent heat in a Stefan problem. However, note
that [Cy]s > 0. The jump in the standard Fickian flux was positive, as found in
a standard Stefan problem; it was the non-Fickian stress contribution to the flux

which forced a < 0.
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We also found another unusual result: the self-regulating mass uptake of the
dissolving polymer. Perhaps related to the strength of the entanglement network,
this uptake reflects the internal dissolution rate of the polymer. However, note
that when we derived an expression for r, we did so having assumed the form of
C(0™,t) asin (8.1). Though (8.1) is certainly a reasonable first approximation to the
actual kinetics at the boundary, certainly other forms could be postulated. Linear
and quadratic uptake models at the boundary would also lead to undetermined

constants for which one could solve in a similar fashion to that outlined in Chapter

VIII

Chapter IX is m(;re than just an exercise in futility; it illustrates a very sys-
tematic attempt to try to get equations (7.1)-(7.4) to yield solutions which move
faster than the subcharacteristics of the outer problem. Such an exercise, though
doomed to failure by the nature of the aforementioned equations, illustrates the
pitfalls encountered when trying to solve this very complicated set of equations for
various parameter ranges. In some sense we could have predicted that no solutions
could be found, since from elementary perturbation theory we know it is rare for an
O(1) disturbance to occur ahead of a subcharacteristic [30]. However, it was worth
trying since with such an unusual front condition as (7.7) it is difficult to tell what
sort of solutions may occur.

In the next section we will consider the case where the diffusion coefficient is

a piecewise constant function of the concentration (or the phase). Such an analysis
will lead to solutions which are in many ways similar to the results in previous

sections, but which differ in several key respects.
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Part Four: Varying the

Diffusion Coefficient
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Chapter XI: Varying the Diffusion

Coefficient: Preliminaries

In Chapter III, we mentioned that in some polymer penetrant systems, the
effect of a varying diffusion éoefﬁcient is pronounced. Now we will examine such
a case by abandoning the assumption used in previous chapters that D, = D,.
We retain (3.20), but note that in certain polymer-penetrant systems, the diffusion
coeficient in the rubbery region is much greater than that of the glassy region.
This motivates the choice D, = Dge~!. We still expect the effects of stress to be
important, so we let n = nge~!. It will be shown that these choices for the relative
magnitudes of our parameters will lead to solutions which replicate the desired
behavior. Also in contrast to the previous chapters, we use the relaxation time in
the glassy region, which is on the order of seconds, as our characteristic time rather
than the much shorter relaxation time in the rubbery region. We normalize length

by a mixture of the two scales. Summarizing, we have the following:
T, = — ﬂc:ﬂg, D, =D0€—1, 77:7706_1-

Making these substitutions in (3.32) and (3.25b), we see that for C < C, we

have the following equations:

D
Clh = eagClyy — CY + (%Og + '€2> Cizs (11.1a)



Edwards XI1.2

2
o +09="C9 409, (11.1b)
Y€

where k% = noE/B,Do, v = vE/Dy, and ag = Dg/Dgy + . Similarly, we see that

in the rubbery region we have

Cl=(1+€y)Chpy — € 'C + (71 + £2)Cy, (11.2a)

2
ol + 0" = %C’“ +eCT. (11.2b)

In addition, equation (3.26) becomes

a €09 (s(t), 1) — CT (s(t), 1) — 15—("5-8@—’3 = as. (11.3)

Upon examination of equations (11.1b) and (11.2b), we postulate the following

expansions for C' and o in e:
C =C°+0(1), o" =o' +o(1), o? =%t 1 0(1).

We note immediately from the above that either 6%9(s(¢),t) = 0 or we have a max-
imum in the stress at the front as sketched in Figure 3c. Inserting our expansions

into (11.1a), (11.2a), and (11.3) and retaining terms to leading order, we have the

following;:
Col = —CY9 + £2CY9, (11.4)
o = o, (11.5)
Og
ag€CY (s(t),1) — CO (s(t),t) — la—-if-(—t-)’—t—z = as. (11.6)

€S
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From equation (11.5a) we see that there are three separate cases to consider:
$ =K, § <k, and s > k. We restrict ourselves to the case where $ < k. In order to

consider such cases, we need to introduce boundary layer variables as follows:

_x—5(7) _ o _,0
(=—0p > T=t Frinkii (11.7a)
0 0 0
= L gemm q ~ O
5% = Br Se ac’ CI(x,t) ~ C"T((, 1) + o(1). (11.7b)

Substituting equations (11.7) in equation (11.1a), we have the following (to leading

orders):

——2.§e_m08f + E"QmSQCSEL = —61_37”04950222 + e_méCg+ + e_2mm2082“. (11.8)

First we consider the case where $ = k. In this case, the two C’ggL terms cancel,

and the balance is m = 1/2. However, we note that with this scaling equation

(11.1b) becomes to leading order, with ¢9 = o:

2
-1/2 k-

ve

—€ mag +ot = —-C — ne"l/ZCEH. (11.9a)
For a balance in equation (11.9a), we have that o™ = O(e~'/?). However, equation

~1/250—

(11.2b) becomes to leading order, with o” ~ ¢ in order to match with o*:

2
—kol" + e /200 = oo e'/2kCY. (11.9b)
Y

Note that there is no balance in equation (11.9b). So we conclude that our assump-

tion is wrong.
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Therefore, we see that m = 1 and (11.8) becomes

04950222 + (8 - /$2)ng' =0.

However, we see that for s < xt there is no bounded solution as { — oo, which is the
matching region for the glassy polymer. Thus, there is no layer in the concentration
in the glassy region. Since (11.1a) also holds for o9, we see that there is no layer
in the stress, either. So in order to match " = O(1) to 09 = O(e™!), we need a
boundary layer in the rubbery region around z = s(t). Introducing the scalings in
(11.7) with o"(z,t) ~ e '6°=((,7) and m = 1 into (11.2b), we have (to leading
order)

2
K .
—e 1500 + 7160 = 0" — sCr.
¢ y ¢

Using the fact that ¢ = O(1), we note that ¢°~(—oco,7) = 0. Therefore, the

solution becomes

o9 (¢, 7) = %9 (s(r), 7)es’?, (11.10)

which decays as ( — —o0, as required.
Substituting our scalings (11.7) in (11.2a) in order to find the boundary-layer

equation for C"(z,t) ~ C°~({,7), we have
0= 0—

¢¢

the solution of which is, subject to our boundary condition (3.28),

CO=(¢,7) = CO(s(7),7) + [Cu — C (s(7),7)] €°/%. (11.11)
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Note that in this case that (11.6) becomes, to leading order,

Cor(s(t),) = O 70 (s(8),1)

$ S

=0, (11.12)

which does not explicity involve a. Therefore, in this case we see that the feature

which controls the dynamics is a balance between the two contributions to the flux.
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Chapter XII: Calculations

1. The Integral Method

Now that we have constructéd the necessary boundary conditions for our prob-
lem, we will once again have to use Boley’s integral method and fictitious boundary
or initial conditions to complete the problem. However, since we have only equation
(11.12) to solve in the rubbery region, we note that we have too many unknowns
if we use Boley’s method there. Fortunately, we note that the boundary layer in
this problem can play the role of “adjusting” the rubbery concentration instead of
the fictitious initial condition in Boley’s method. Therefore, we consider the case
where the fictitious initial condition is the actual initial condition for the problem:

that is,

C(z,0) = Ci(z) = 0. (12.1)

Note that in some sense the two approaches are equivalent. If we were not using a
perturbation method and were tackling the full equations directly, some fictitious
initial condition C°"(z, 0) could be constructed which would replicate the boundary-
layer behavior of our problem.

For reasons that will become clear later, we consider the case where
C.(1+r%) < 1. (12.2)

In Chapter X we pointed out that there are various types of boundary conditions
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which we could impose at = = 0, induding a linear profile which ramps the concen-

tration up to 1. We use that approach here:

Co(t) = Cot+(1-Cot/r, 0<t < (1-C)/7 . 1-C,
’ 1, t>r; KCy (ky/T + 1) Cor?

(12.3)

The restrictions on r will also become clear later.

Once again we use Boley’s method for our problem by introducing fictitious
variables T" and TY9. Therefore, equations (11.5), (12.3), (12.1), (11.4), (3.27),

(3.28), and (11.12) become
Tr =17, 0<z<oo; (12.4)

=TT

T" =0, 0<z<s(t);

T7(2,0) =0, T7(0,) = { f A =Gt/ ?;if £ (12.5)
15 = k*T9, —T¢, 0<x < oo; (12.6)

TI=C%, s(t) <z < oo;
T9(0,t) = fp(t), T9(x,0)=0, T9(z,0)=0; (12.7)
T9(s(t),t) = Cy; (12.8)
T7(s(t), t) —vo™ (s(1),t) = Cs; (12.9)
s(0) = 0. (12.10)

From the form of equation (12.9) we see that in order to solve our problem we

will need to calculate o%. We once again take the case of an unstressed polymer
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by setting to = 0, which implies that oi(z) = 0. An easy way to solve for ¢% is to
note that equation (12.6) also holds for 6%9. Our initial conditions are the same, so

009(0,t) may be calculated from (11.1b):

o ket [ 3
0°9(0,t) = " /0 fo(2)e* dz. (12.11)

Note in equation (12.11) we have enforced continuity of stress at (z,t) = (0,0)

because o = 0.
The solution of equations (12.4)-(12.5) is given by (4.26). We begin by substi-
tuting our expression for T" (0,t) in the case where t < r:

T"(z,t) = {(% ki x22)£1 — ) + C’*] erfc (25\6/%) _a _TC*)m -;T—exp (—-—ai) .

We may solve similarly for the case where ¢t > r:

e (25) -0 (1= Z52) o (27) - ()

52 () ol 55 o

The solution of equations (12.6)-(12.7) is given by (7.19). Since our region of
interest is where s < xt, we may omit the Heaviside function and equation (12.8)

becomes

dz+ fo(t —s/k)e™/2 = C,. (12.14)

s/t e_z/sz(tﬁz)fl(\/mzzz-82/2/‘4:)

5 s/k Vv K222 — g2

However, note from (7.19) that there is a discontinuity around x = st which our

full equation (11.1a) cannot propagate. Therefore, we then let $ = x and m = 1/2
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in (11.8), which then becomes, to leading order,
—2kCe = —aghCe + KCET.
Letting C%t = e~7/2T% and integrating once with respect to ¢, we have
2T = —a T (12.15)
Our initial condition is found from (12.14) to be

TH(C,0) = fo(0)H(—C). (12.16)

Solving (12.15) subject to (12.16) yields

0 _ fo(0)e7/? ¢
cor(¢,T) = ————é————erfc <\/W) . (12.17)

2. Small Time Asymptotics

We begin by performing small time asymptotics. We postulate the following

expansions of our unknown functions:
fo(t) ~ fo, s(t) ~ sot™, n>1, (12.18)

where our restriction on n comes from the case we are considering. Substituting

(12.18) into (12.14), we have

foSotn /t e_z/2 Il(\/ K,222 e 82/2143) dz + f 1— Sotn ~C
2 s/k VK2z2 — 52 0 2K *
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We see immediately from the leading-order balance that

fo=Ci. (12.19)

Now we may immediately solve for ¢°9, which is also valid only for = < xt:

t
[ (VRZ222 — 22
o%(x,t) = E/ e #2690, — 2) (VP2 — 27/2K) dz + 0%9(0,t — x/k)e™/?",
2 z/K V K222 — x2
(12.20)
Using (12.19) and (12.11) in (12.20), we have
a%9(s(t),t) ~ G p— ot (12.21)
¢ bl ")/ K . .
Using (12.21) and the leading orders of (12.12) in (12.9), we have
C,sot™1/2 t(1—Cy) k20, Sot™
Ci — — — ) t= = C. 12.22
VR ! ( g ) ( K ) (12:22)
Matching the leading order of (12.22) gives
C* tn—l/2 1-C,
_x0 + -G _ K2C,t + kC,s0t™ = 0. (12.23)

Nis r

Upon examination of (12.23), we see that the dominant balance is n = 3/2, which

yields

S0 = (1 — G ,<;2) V. (12.24)
Cyr

Note from equation (12.24) that in order to have 0 < sy < K as required, then the

compatibility condition in (12.3) must be true.
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Summarizing our results, we have the following, where we recall (11.10) and

(11.11):
OO (2, 8) ~ T7 (2, 8) + [Ce — T" (s(1), )] exp { - ;(t)} | o250
E AP ERRL [on(£). 1

- (1- x2;~2t> i (577) = (32|

2

B Y [ |

L r/m 4t 4t —r)
(12.25b)
o9 (a,t) = 0%9(s(t), 1) exp [”" ‘;(t)} , (12.25¢)
t— 0
s(t) ~ (15 f — mQ) 32 /7, (12.26)
x < Kt

t S22 _ p2 /o
C%(z,t) ~ C, E/ 6_2/211( it ) dz 4+ e™2/2%
2 z/K VK)ZZQ'—CUQ

—t/2 _
—g*—e———erfc oz , (12.27a)
2 204€t
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vy G [ /t =121 o~ N a/2)
’y 2 m/K \/m
- e_(t_m/n)]e_w/zn] ., (12.27b)
x> Kt
, C.o—t/2 T — Kt
C%(x,t) ~ = f ) e
(33 ) 5 erc(@) ( )
CO
0.8p.
" % _________________________________
0.6 5;
0.5 Eg
sl |
0.3¢ E
|
0.2} %
0.1¢ %
E’x

0.0l 0.0z 0.03 0.04 0.05 0.06
Figure 12a. Concentration profiles: C, = 0.75, r =1, v = 0.5, a4 = 1, € = 0.0001,
k = 0.5. In decreasing order of darkness: £ = 0.001, 0.01, 0.1.

Figure 12a shows graphs of our concentration field expansions for small times
[though they are large enough that € = o(t)] and for parameters which satisfy (12.2)
and (12.3). Note that we once again see a three-stage profile. The concentration
starts at 0, then rises through the boundary layer raround x = kt. The bound-
ary layer doesn’t seem that sharp since our z scale is so small. Then there is a

relatively flat region in the glassy polymer until the second boundary layer brings
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the concentration from the transition value C, to the rubbery region described by

(12.25b).

0.035¢
0.031
0.025¢}
0.02}
0.015¢}
0.01}

0.005}

0.01 0.0z 0. 03 o.04 0.03

Figure 12b. Stress profiles: Ci = 0.75, r =1, v = 0.5, ay = 1, € = 0.0001,

k = 0.5. In decreasing order of darkness: ¢t = 0.001, 0.01, 0.1.

Figure 12b shows graphs of our stress field for the same parameters and times
as before. The case where ¢t = 0.001 appears only as an extra pixel near (0,0). Note
that in this case we truly do have a maximum at x = s(¢) as promised in Chapter
ITI. Therefore, the stress which builds up in the polymer as the penetrant builds up

in the glassy region is nearly totally released when the polymer enters the rubbery

state. Note also that there is no discontinuity at x = st since 6%9(0,0) = 0.

3. Large Time Asymptotics

Next we perform large-time asymptotics. We begin by noting that for long
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time, equation (12.6) behaves like
K*TY, = T7 + o(1), (12.29)

and equation (11.2b) behaves like

KZ2
0% = 0%, (12.30)
¥

Hence, using equation (12.30) evaluated at the front, equation (12.9) becomes
T™(s(t),t) = Cu(1 + K?). (12.31)

From our condition that C' < 1, we see that (12.2) must hold. Then using

equation (12.13) in (12.31), we see that

) 000 () () (=)

2

-2 iy (7) i -} -

The only way to get an O(1) balance is if s(t) ~ 25,1/t. In this case, when we
asymptotically expand for large time, only the first term contributes to leading

order, so we have

erfc 5o = C\ (1 + K2). (12.32)

Now we wish to expand our rubbery solution. From the form of (12.29), we

see that (4.26) is now a long-time asymptotic solution in the rubbery region. We

see that the dominant contribution to (4.26) for © oc v/% and ¢ large is from the

neighborhood of z = t. Therefore, we postulate the following expansion:

fo(t) ~ foo +0(1), t— 00.
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Substituting our expression into (4.26), we immediately see that

x
T9 ~ foo erfc (2#;\/%) . (12.33)

Using (12.33) in (12.8), we have that

C.
Joo = m- (12.34)

Summarizing our results, we have the following:
t— 00

5(t) ~ 2500V, erfc s = Cy(1 4 K?), (12.35)

x < Kt

C(z,t) ~

2

L _a_:_/t 6_2/211(' K22* ——.’L‘2/2/£) dz +€—$/2K)
erfc(seo/K) o)k Vi222 — 22

—t)2 _
Cre ] erfc <£t___x_> . (12.36a)

9 erfc(seo /K 2a g€t

o%9(z,t) ~

_ G f/t o—z2 (VK22 —a?)2K) e
yerfe(soo/K) |2 Juyn VK222 — 12 ,

(12.36b)

T > Kt

—t/2 _
C%(x,t) ~ _Cem” erfc woz . (12.37)
2erfe(soo/K) 2c4€t
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5] 7.5 10 125 15 17.3 20

Figure 12c. Concentration profiles: C, = 0.75, r =1, v = 0.5, oy = 1, € = 0.0001,

k = 0.5. In decreasing order of darkness: t = 6, 24, 96.

Figure 12¢ shows graphs of our long-time concentration field expansions for the
same parameters as before. The three-stage behavior is not as pronounced in this
model since C%(kt, t) is exponentially decaying. The clearest picture of the sharp
front at x = kt is shown for t = 6. The glassy region has a nearly Fickian profile, as
does the rubbery region, but they are still separated by the sharp boundary layer

at x = s(t).

Figure 12d shows graphs of our long-time stress field expansions for the same
parameters as before. Note the gap that arises for ¢ = 6. This is due to the fact
that figure 12d is a graph of (12.36b), which is not uniformly valid up to the front
z = kt. However, the error behaves like e~*/2, and thus becomes negligible for the
larger values of £. Once again note the slow Fickian rise of the stress, which reaches

its maximum at x = s(t) before plunging quickly down to 0.
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0.4
0.35¢F
0.3}
0.25 ¢
0.2¢

0.15¢

2.5 5 ?.5 10 12.5 15 17.5 20
Figure 12d. Stress profiles: C, = 0.75, r =1, v = 0.5, ag = 1, € = 0.0001,

k = 0.5. In decreasing order of darkness: t = 6, 24, 96.
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Chapter XIII: Remarks

When discussions about non-Fickian polymer-penetrant systems take place,
the subject of the molecular diffusion coefficient naturally arises. It is known that
in some systems the diffusion coefficient greatly increases as the polymer changes
from the glassy to the rubbery state. What is only surmised is the degree to which
such a change inﬁuenqes the qualitati\}e structure of the solution. The results in

Part Four shed new light upon this subject.

In Chapter XI, we derived results for a case where the diffusion coefficient
varied from O(1) to very large. Some of the salient features of the solutions derived
in previous parts were reproduced. The moving boundary condition which resulted
was still not solvable by similarity variables, and Boley’s method had to be used.
The moving boundary condition still involved matching two different operators at
the front, rather than the same operator with different coefficients. The solution
for the concentration exhibited two fronts, as in the heavily stressed case. There

was a leading subcharacteristic front z = «t, as well as our true front z = s(t).

However, upon comparison of the results of this part with the results of other
parts, there are substantial differences. The parameter a did not play a role here
to leading order; hence the flux used up in the phase transition is not a dominant
effect. The dominant balance is between the concentration and stress contributions
to the flux.

Since D(C') had vastly different values on either side of the front, this caused

a large difference in the size of the flux from the glassy and rubbery regions. This
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discrepancy manifested itself by making the stress in the glassy region an order
of magnitude larger than the stress in the rubbery region. This produced the
first results in this dissertation where the stress had its maximum ezactly at the
secondary front. However, this behavior is directly dependent on our choice of D(C')
as piecewise constant. If D(C) were made to depend smoothly on C throughout
all phases of the polymer, the flux contributions would be of roughly the same size
at the moving front. Regardless, other models which do not incorporate a phase
transition but do have a rapidly increasing diffusion coeflicient still have steep fronts
[25]. |

Therefore, upon ekamiﬁaﬁioh of these results, it seems that while introducing a
varying diffusion coeflicient does affect some aspects of our solutions, other aspects
remain the same. Thus, it would behoove each individual investigator to exam-
ine both cases carefully, weighing the qualitative changes induced by a changing

diffusion coefficient against the additional computational work involved.



Edwards Five

Part Five: Conclusions
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Chapter XIV: Conclusions

New materials and their large number of widely varied applications have revo-
lutionized several scientific fields. This has led the engineering community to seek
coherent mathematical models in order better to control the design of such materi-
als. The standard Fickian diffusion model is insufficient to explain the phenomena
observed, including sharp fronts moving with constant speed and ffonts where the
concentration flux behind the front is less than that ahead of the front.

By postulating the extremely general model (1.1) for the flux in these polymer-
penetrant systems, we are able to model the most salient nonstandard feature of
many classes of polymer-penetrant systems: a non-local “memory” effect which
induces a viscoelastic stress. This effect varies between the polymer phases, as
can the diffusion coefficient. The moving boundary-value problem which ensues
is not solvable by similarity solutions. Hence, we rely upon an integral method
developed by Boley [24] which gives solutions which are not in closed form. In
order to use such a method, we simplified our model, using experimental data as a
guide, to determine the dominant physical processes in the systems we wished to
study. By using a perturbation expansion in a suitable small parameter, we were
able to obtain asymptotic estimates for the motion of the front and the functional

form of our solution profiles.

We note that even after making several simplifying assumptions, our resulting
equations (3.25)-(3.30) are extremely versatile. By making the effects of o small

enough, we can reproduce Fickian diffusion. Hints of this can be found in the
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small-time asymptotics of the weakly diffusive case. In addition, we were able to

construct three different types of solutions by adjusting the relative size of our

constant parameters.

In the weakly diffusive case, we solved a complicated regular perturbation prob-
lem. The moving boundary problem is unusual in two respects. First, rather than
matching the same operator with two different coefficients, as in the standard Ste-
fan problem [10], our problem involved matching two different operators—a problem
we have yet to find in the literature. Second, the moving boundary problem was
not solvable by standard similarity variable techniques; the full partial differential
equations had to be solved. By using asymptotic techniques, we were able to con-
struct small- and long-time solutions. For small time, the effects of the memory had
not fully manifested themselves. However, as time passed, the effects of memory
grew stronger, distorting the solution profile from the standard Fickian type into
one which is much sharper and which has a phase transition front that moves with

constant speed.

In the heavily stressed case, some of the difficulties of dealing with even the sim-
plest of nonlinear equations manifested themselves. We could not obtain solutions
with certain kinds of behavior, for the problem would not allow it. We obtained
two feasible solutions in certain parameter regimes, and were forced to use stabil-
ity analysis in order to determine which was stable. In the cases where we did find
results, the departure from Fickian behavior is astounding. Two “waves” of concen-
tration wash through the polymer. The first, moving with constant speed, provides
the first strong signal of diluent to the polymer. The second, moving initially like
2 but eventually converging to a fixed distance behind the primary front, heralds

the beginning of the dissolution of the entanglement matrix. This result, which
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matches well with other numerical simulations and experiments [29], provides great
confidence in our model’s ability to replicate the behavior in non-Fickian systems

correctly.

When the diffusion coefficient is allowed to vary with concentration, the re-
sulting solutions replicate several additional features of polymer-penetrant systems.
The singular perturbation problem which resulted led to sharp fronts moving with
constant speed, which :We have come to expect. However, now the stress has its
maximum exactly at the phase transition: something we had not seen in previous
simpler models. Such a system did not allow fronts which moved with speed greater
than the subcharacteristc speed. In addition, it was only in this section where D(C)
varied did we get vastly different sizes of the ingoing and outgoing concentration
fluxes. This behavior forced the leading order balance at the front to be between the
concentration and stress contributions to the flux, rather than a balance involving

the front evolution term, which contains a.

In each of these three cases, we chose to use analytical and asymptotic methods
rather than numerical ones. Obviously no choice is without disadvantages. We sac-
rificed computed profiles for all x and ¢ and avoided the challenges which a numerical
implementation of our problem would entail. In addition, attacking the problem
analytically necessitated making many simplifying assumptions. However, the an-
alytical problem is certainly not without challenges, and by remaining true to the
analytics, we now have solutions with explicit dependence on various physical and
state parameters. These results are worth the sacrifice, for they provide chemical
engineers a way to check these results in the laboratory. If these results are shown
to have broad-based merit, then chemical engineers, who can now custom-design

a polymer with specific properties, can estimate the form of penetration fronts in
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such polymers.
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Chapter XV: Areas

for Further Resarch

As is the case with most dissertations, this work raises as many questions as
it answers. There are certainly many areas in which the work in this paper could
be expanded, and there a number of applications which this thesis has not even

attempted to model.

Of course, one of the easiest ways to extend the work of this thesis would be to
eliminate some of our simplifications outlined in Chapter III. Some of the constant

parameters could be chosen to vary in a piecewise constant or more complicated

manner as a function of C. Throughout this dissertation we solved problems in
a semi-infinite medium. This is convenient from an analytical point of view, and
simplifies the mathematical problems caused by swelling in the polymer. However,
there are a variety of interesting problems on finite domains that need to be solved.
By placing the problem on a finite domain, the effects of swelling could be mea-
sured. In addition, the penetration of substances through thin polymer films is one
on which chemical engineers would like to see numerical results. This problem also
raises the spectre of multidimensional analysis. Though there are some numerical
results on multidimensional problems [18], there is still much room for multidimen-
sional analytical work. Perturbation methods could easily be used if one of the

dimensions is much greater than the other, as is the case with thin films.

There are several scientists currently working on numerical analysis of math-
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ematical models of polymer-penetrant systems. Though some follow the general
mode of reasoning outlined here [21], [25], others choose to begin with more com-
prehensive equations of thermodynamics and directly implement them on the com-

puter [29]. Certainly the work herein could be numerically analyzed in a variety of

ways.

Most generally, suitable forms based on experimental data could be chosen
for D(C), E(C), B(C), and f(C,Cj;), allowing equations (2.5) to be implemented
on the computer. In this case, one must take great care that the algorithm used
could handle‘the sharp frontsb present in such systems. Other seté of equations that
could be discretized include (4.1)-(4.3) or (7.1)-(7.3). Once again, an adaptive grid
scheme should be used when discretizing. Another way to approach the problem
numerically would be to solve the integral equations arising from the use of Boley’s
method [for instance, (4.27)-(4.29)] approximately on the computer. This would
yield solutions for our fictitious boundary conditions and our front position for the
entire ranges of their arguments. Such an implementation would require the use of
integral equation solvers, rather than partial differential equation solvers. Certainly
each of the methods above would yield a difficult problem in numerical analysis and
significant results from a practical point of view.

A facet of this problem which we discussed only briefly was that of the depen-
dence of memory on state as signified by our choice of #y. In Part Two, it made no
difference; we never had to explicitly choose fy. In other cases, it did make a dif-
ference. There are certain polymers which fall into each category: state-dependent
and -independent. A more thorough study comparing and contrasting the relative
properties of the two types of substances would be welcome.

Lastly, there is the problem of our general expansion (1.1). We have confidence
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in this model for the flux because it is so general. However, our choices for the terms
in the flux expansion were motivated by the types of polymer-penetrant systems
we wished to study. Thus, for different types of polymers different forms of the
flux and chemical potential would have to be chosen. Hence, even though there are
several significant results in this dissertation, we have only scratched the surface of

the mathematical problems involved in modeling polymer-penetrant systems.
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