Evolutionary Techniques Applied to Mask-layout Synthesis in
Micro-Mechanical-Electronic Systems (MEMS)

Thesis by
Hui Lt

In Partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy

California Institute of Technology
Pasadena, California

1999

(Defended May 17, 1999)



ii

© 1999
Hui Li
All rights Reserved



iii
Acknowledgements

First and foremost, I would like to thank my advisor Erik. His guidance led me to initiate
this thesis work. His grateful patience, trust and encouragement sustained my confidence

throughout this thesis work.

A special thanks to Min for her love and support on every piece of my life, and for her
inspirations to me. Undoubtedly, without her companion, this work would not be com-

pleted.

To my mother, father and sister.



v

Evolutionary Techniques Applied to Mask-layout Synthesis in
Micro-Mechanical-Electronic Systems (MEMS)
by
Hui Li

In Partial Fulfillment of the
Requirements for the Degree of

Doctor of Philosophy

Abstract

This thesis reports an automatic method for synthesizing MEMS mask-layouts. This method
incorporates a forward simulation of fabrication into a general evolutionary algorithm loop.
An initial random population of mask-layouts is generated. The fabrication of each layout
is simulated through a digital process simulator to produce a 3D fabricated shape, which is
compared to a user-specified desired shape. Each evolutionary loop governs the stochastic
searching behavior such that the mask-layouts whose simulated shapes are closer to the
desired shape are more likely to survive. More importantly, the “better” masks are more
likely to be evolved among those survived mask-layouts for the next loop. Through such
evolutionary iterations, a near global “optimum” mask-layout is likely to be found. By
using this evolutionary approach, we are able to take use of existing simulations of fabri-
cation processes to achieve those mask-layout synthesis where reversing a fabrication pro-
cess simulation (so that a 2D mask-layout might be produced) appears not to be possible.
The general evolutionary loop mainly consists of a mask genetics module, an evolutionary
technique module and a MEMS simulation module. The mask genetics module provides
heuristic genetic operations on mask-layouts, which includes mask coding scheme, random
mask generation, random crossovers and mutations. The evolutionary technique module
contains stochastic selection schemes and genetic operation schemes to control the search-
ing convergence. The MEMS simulation module is the user input module, which requires a

MEMS fabrication simulation and user-specified desired shape. A test loop is constructed



for the bulk wet etching mask synthesis by incorporating a 3D wet etching simulation. The

obtained results demonstrate the feasibility of this approach to mask-layout synthesis.
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Chapter 1

Introduction

1.1 MEMS CAD

In this thesis, a MEMS (Micro Electro Mechanical System) mask-layout synthesis method-
ology and its implementation will be presented and examined.

MEMS technology emerged decades ago to create small feature size (typically micron-
scaled) mechanical devices integrated with micro-electronics on substrates (typically sili-
con wafers) [62]. As MEMS technology has grown, more and more complex devices have
been made that provide unique functional features most of which were unimaginable with
conventional macro device techniques [48, 62]. However, the difficulty of developing a
new micro device remains high. This difficulty is mainly caused by the strong dependency
on human experience in MEMS design and fabrication, and such experience is usually ob-
tained through many repeated trials and errors.

In MEMS, the formation of device shapes is primarily controlled by the initial pattern
layout through lithography followed by material removal techniques such as wet or dry
etching. Because many of the fabrication processes produce shapes that are distortions of
the mask-layout pattern, a pre-distortion of the mask-layout is required to obtain a desired
shape. The amount of pre-distortion is highly process-dependent, with some processes pro-
ducing relatively little distortion, and others (such as anisotropic wet etching) producing
significant and geometrically complex distortions. Additionally, process variations, both
globally (e.g., variations in etch rates due to ageing of the chemicals, and from chemical

lot-to-lot), and locally (e.g., non-uniform stirring, etch depletion in concave corners), add
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Figure 1.1: MEMS Design Process

additional complexity to developing an appropriately pre-distorted mask-layout pattern to
produce a desired shape. Additionally, many current devices consist of several components
which further increase the complexity level. To ensure their desired functional performance,
high accuracy of each component as well as on the assembly precision between multiple
components are required, which further requires mask-layout patterns that are robust to pro-
cess variations. In this challenging design environment, a considerable level of experience,
coupled with many repeated experiments is required. Due to the dependence on trial and
error, the design of new micro-devices and systems is commonly slow and expensive.
Figure 1.1 illustrates the same problem in a more formal and systematic way, and gives
a clearer picture of how it can be attacked. The figure shows the full spectrum of MEMS
design activities. Designers start with the desired functional features. The device design
step is taken to create a particular MEMS device. The designed outcome has to be verified
through the performance testing based on the prototyped device. Such device verification
process is referred to as the device-prototyping process. Iterations of the device design
and the device-prototyping process usually move towards an optimum design solution. The
entire device-prototyping process starts with the selection of a fabrication process and the
settings of process inputs. The typical process inputs include materials, mask-layout and

process parameters such as temperature and process duration. Then the actual fabrication




proceeds to produce the device prototype. Any fabrication failure will lead to the itera-
tion between the steps of process parameter setting and device fabrication. The iteration
involves the readjustment of the mask-layout pattern along with process parameters. The
success of fabrication here is considered whenever the geometry mismatch between the
fabricated device and the designed device meets the required tolerance. For successfully
produced devices, the device analysis step is needed to further check the device perfor-
mance against the desired functionalities. In case of functional failure, the device structural
analysis during device operation is carried out to determine the failure cause. Depending
on the analysis result, designers may have to either restart the device-prototyping process
to readjust another settings of the fabrication process or even go back to another design
process with a refined design solution. In either case, the iteration will be carried until a
successful prototyped device realizes the desired functional features. So the whole device
design is an iterative process between device design step and device-prototyping process
which further is another iteration among the steps of process parameter setting, fabrication
and device analysis.

Unfortunately, such iterations rely on the experience of the designer, and are often re-
peated in a device design process. This leads to the fabrictation of many device-prototypes,
as illustrated above. There are two obvious strategies to attack this problem. One is to
reduce and even eliminate the iterations through the continuing development of MEMS
fabrication technology (requiring smaller and less geometrically complex pre-distortion of
the mask-layout pattern); the other is to use structured design methods to automate (or
semi-automate) the steps of the MEMS design process. Both strategies have driven the
development of MEMS technology. This thesis only addresses structured design methods
for MEMS, and focuses on fabrication by wet-etching, because it requires the largest de-
gree of mask-layout pattern pre-distortion, and because it introduces the most geometrically
complex distortions.

Figure 1.2 shows several different areas where computational methods can assist the
design of MEMS. One method is the use of fabrication process simulation tools to permit
the creation of virtual prototypes. Finite element analysis can be utilized to automate the

step of stress and deformation analysis, and can include analysis of electrical forces and
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charge distribution as well as fluid flow and pressures. Combining the two, the cost and time
of device-prototyping can be greatly decreased through the use of simulation on computers
instead of physical device prototyping, with its many trials and errors. Naturally, a final
device prototype is required, to evaluate the full (rather than the modelled) fabrication and
performance of the device. The goal, of course, is to avoid wasteful and slow experiments
by carrying out much cheaper computer work to get the fabrication “right” the first time.
Recently, various process synthesis tools have been developed to automatically syn-
thesize the fabrication processes for a given device design [29]. By integrating such pro-
cess synthesis tools with process simulation and device analysis tools, the entire device-
prototyping process can be automated. In this way, the burdens of MEMS prototyping are
greatly reduced, allowing designers to fully focus on the device functional design activities.
Even though currently there are no existing software tools directly targeting it, desires
have been raised to develop future shape synthesis tools which will automatically synthesize
the optimum design solution for the desired functional features. Such a design solution
will mainly include the shape of functional elements and the interconnections among the
elements. Utilizing this approach, including the automation of both the device design step

and device prototyping process, designers can be completely released from the iterations




of design process, and only need to focus on the right device specifications within design
guidelines.

In summary, Figure 1.2 essentially illustrates the road-map for the development of struc-
tured methods for MEMS design. More details on the process simulation tools and device
analysis tools will be outlined below. The work on the synthesis tools is recently motivated
by the success of VLSI CAD tools which will be elaborated more in the next section. The
expectation on the shape synthesis tools will be recapped as the future work in this thesis.

The development of process simulation tools, as can be expected, is directly influenced
by the technology of MEMS fabrication processes. Currently, there are mainly two types of
MEMS fabrication techniques: surface micro-machining and bulk micro-machining. Sur-
face micro-machining is used to fabricate single or multiple thin layers on the wafer. Each
layer is patterned with high-resolution 2D geometry. With the use of one or more sacrificial
layers, layer contact may not be statically bonded. Most of the techniques can be directly
borrowed from integrated circuit processes which have been well-developed through the
past decades. Therefore, most process simulation tools of surface micro-machining are ob-
tained through the slight modification of existing VLSI simulators. These simulators cover
standard semiconductor processes such as oxidation, diffusion, thin-film deposition, and
plasma etching. An example is SAMPLE for simulation of projection lithography deposi-
tion, and etching [58, 59]. Bulk micro-machining, on the other hand, as a unique MEMS
machining process, is used to fabricate 3D mechanical structures on the silicon substrate
with the use of wet (chemical) or dry (plasma) etching technique combined with masking
films or etch-resistant layers. Major effort has been devoted to developing simulations for
bulk micro-machining, especially the wet etching process due to its capability of producing
high aspect ratio structures. Up to now, several three-dimensional simulation programs for
anisotropic etching profiles have been created such as ASEP by Buser and Rooij [11], the
Slowness method by Foote and Sequin [69], the stochastic CA (cellular automata) algo-
rithms by Hubbard and Antonsson [39], Than and Buttgenbach [75], SEGS by Hubbard
and Antonsson [38], and recently, ACES by Zhu and Liu [81]. All these programs predict
the 3D geometry change of the underlying etching structure for different etching time steps

based on the input of a mask-layout and etch rate data. Different approaches were actually



used to model the entire etching process. The models of ASEP and the Slowness method
are purely based on geometric analysis while Hubbard and Than’s stochastic CA programs
use cellular automata model. The geometric analysis is fast and accurate but only limited
to basic shapes. The cellular automata approach is slow but is able to deal with complex
shapes to certain accuracy. Recently, the cellular automata approach is improved by ACES
with faster and more accurate results. SEGS uses edge segmentation approach to compro-
mise the overall performance from the geometric analysis and cellular automata. In short,
facing the currently available modeling techniques on the wet etching process, there are still
existing gaps for the simulators to achieve the true automation. The gaps comes from the
challenges of how to model the nonlinear factors in the etching process such as the change
of etch rates caused by the depletion of chemical species, the bondage between the mask
and the substrate to show the accurate undercut process and the etching stop condition, etc.

The framework of all the device analysis tools is essentially borrowed from the tech-
niques of conventional mechanical CAD. Starting with a process-simulated 3D solid model
along with specified boundary conditions, the discretization process is followed to mesh the
solid model. Finally, a PDE solver is used to generate the performance evaluation results.
Usually, the results are the strict data analysis on some function-critical properties such as
stress and deformation distributions, thermal effects and exterior forces due to fields or flu-
ids. In addition, most of these steps can be implemented through the existing commercial
mechanical CAD tools such as ABAQUS for structural and thermal finite-element simu-
lation and FASTCAP for electrostatic boundary-element simulation. The whole process,
however, is rather computational intensive. Therefore, major effort is being devoted to de-
veloping fast and accurate algorithms to improve the efficiency of the process. Senturia
et al., addressed three computational challenges which are surface exterior force computa-
tion, coupled-domain simulation on interactive performance between devices, and nonlin-
ear macro-modeling to rapidly map selected dynamical variables to the overall performance
of a system-embedded device [67]. Even though the improvement is gradually made to ef-
fectively attack these challenges (e.g., Ljung et al., shows a faster computation by using
a boundary element method discretization and solver instead of traditional finite element

analysis [46]), the gap still exists to achieve truly automated interactive device analysis.



Several MEMS CAD programs have been under development to integrate both currently
available process simulation tools and device analysis tools. The examples are MEMCAD
by MIT [68], IntelliCAD by IntelliSense [50] and CAEMEMS by the University of Michi-
gan [14]. These programs typically also have a geometric solid modeler at front for users
to construct 3D structures and also maintain material and process databases for users to
specify the materials and fabrication processes. With the use of such multi-functional tools,
designers can have much more effective way to carry “what if” experiments during the
device prototyping process. However, as mentioned above, even under these integrated de-
sign environment, designers still need to bear many “what if” tries in order to identify the
optimum design solution and the appropriate process settings. Therefore, the development
of synthesis tools to achieve a higher level of computer-aided releasing becomes rather im-
portant. Especially, through years of industrial proof, it recently becomes well recognized
that VLSI CAD synthesis tools have given great contribution to the success of VLSI tech-
nology, which provides a realistic image of the potential impact that MEMS synthesis tools

can give to the future development of MEMS technology.

1.2 VLSI CAD

Prior to Mead and Conway’s effort towards the computer-aided automation of the inte-
grated VLSI system designs [51], the designers of VLSI systems needed detailed process-
ing specifications of particular mask and fabrication firms in order to ensure the validity
and performance of the design outcome. Therefore, the large-scaled design work essen-
tially remained in the domain of highly trained and experienced specialists. Through the
use of structured design methodology, Mead and Conway successfully enforced the clean
separation between the maskmaking-to-fabrication sequence and the steps of function, de-
sign and layout. In this methodology, the circuit design is abstracted with hierarchic levels
of functional design, physical design and fabrication. The key element to achieve such ab-
straction is a set of design synthesis rules automatically used to guide and synthesize the
valid layouts according to interactive geometry input from the designers. Under such design

tools, designers can start with some informal design sketches and notes with some impor-



tant cells and end with computer-generated pattern generator files according to the verified
mask-layouts. Therefore, designers are fully released from the fabrication knowledge.
Recently, advances in the development of surface micro-machining has largely benefit-
ted from the VLSI fabrication technology, which stimulated the open question of whether
and how we can achieve the similar benefits from the success of VLSI CAD technology
for the development of MEMS synthesis tools [2]. As far as surface micro-machining con-
cerned, the structure of process flow is very similar to that of VLSI. Such similarity creates
opportunities for MEMS structured design tools to borrow much of the VLSI framework,
including the separated abstraction levels and the hierarchical system modeling based on
primitive functional elements. The recent development of schematic synthesis design tools
for surface micro-machining by Fedder et al., has demonstrated such benefits [56]. Never-
theless, MEMS systems, in general, do not have the same modularity and topological sim-
plicity as electronic circuits, and hence, pose a new challenge to both MEMS design and
process synthesis. MEMS systems typically consist of a range of unstructured non-modular
elements whose interconnections are complex especially with the inclusion of kinematics.
In addition, a function no longer has a simple correlation with any physical form, but rather
critically depends on the concrete geometries, material properties of one or multiple inter-
acting elements. All these aspects cause great difficulty to define a set of design synthesis
rules for the system structures and behaviors. The process synthesis is not simple either.
Especially for bulk micro-machining, there is no simple mapping between mask layouts and
processed structures. Moreover, the correct functional behaviors of MEMS devices relies
on constraint-satisfaction on both the geometrical dimensions and the physical properties of
materials. Such demands lead to tight tolerances which must be conservatively incorporated
into the process design rules. In summary, even though there is some common fabrication
nature between MEMS and VLSI, and thus the chance for the sharing of CAD technology,
the difference in the functional and structural domains demand much more effort to realize

a VLSI-like structured design methodology.

1.3 Thesis Contributions and Chapter Overview



1.3.1 Contributions

My research area has been focused on the development and implementation of a method-
ology for MEMS mask-layout synthesis. The contributions of my research work can be
summarized in the following aspects: formalized a general methodology of using the tech-
niques of evolutionary algorithm to achieve the MEMS mask-layout synthesis; developed
an algorithmic architecture for the implementation of the synthesis methodology which is
open to any forward fabrication process simulator; obtained automated mask-layout syn-
thesis results for a wet-etching simulator.

The development of MEMS synthesis tools is an emerging area. Several methodologies
have been proposed and are still under development whose details will be covered in the
next Chapter. All these methodologies are based upon specific features of either surface
micro-machining or bulk micro-machining. Therefore, they can only be applied to a partic-
ular set of design domain. A synthesis methodology which can be applied to MEMS design
in general is badly needed. Facing the variety of MEMS functional design, the methodol-
ogy should rather focus on the design of high-level synthesis framework such that once any
automated low-level design activity is embedded into the framework, the corresponding
synthesis is automatically provided. The key element here is that the synthesis framework
has to be applicable to a broad set of MEMS design processes. With such an approach,
one candidate methodology is proposed in this thesis to use an evolutionary algorithm to
realize mask-layout synthesis applicable to any forward process simulation. Evolutionary
algorithms are a global stochastic optimization technique. It is non-problem specific which
means it can be applied to virtually any problem if only its objective function measure-
ments are available. In particular, due to its unique method of searching solution space,
evolutionary algorithms have a strong ability to optimize information flow in complex do-
mains. These two features produce a unique advantage of using evolutionary algorithms
as the driving engine to optimize some complex solutions for process synthesis such as
mask-layouts. Furthermore, it is later shown that such approach can be easily extended to
cover more general synthesis steps such as the direct synthesis from function to process,
illustrated in Figure 1.2.

An object-oriented software architecture has been created to implement such an evolu-
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tionary algorithm based framework. With the use of object abstraction, a set of base level
objects is constructed to represent all the critical components of the evolutionary algorithm.
Each base level object has a set of abstract interfaces corresponding to each implementation
component of the evolutionary algorithm. In this way, the framework of evolutionary algo-
rithms can be established independent of any application-specific modules. In addition, the
development of various evolutionary techniques on top of the established framework be-
comes completely separated from the effort towards the embedding of various application
components into the framework. Therefore, a high level of software modularity is obtained.

A bulk micro-machining wet etching simulator SEGS [38] has been plugged into the
mask-layout synthesis application to demonstrate a synthesis outcome using the evolution-
ary algorithm. The high complexity level of wet etching mask-layout synthesis comes from
the fact that there is no simple geometrical correlation between masks and the evolved 3D
structures. Successful results have been obtained for several challenging tests. Of course,
the full verification of such synthesis methodology has to be based on further tests on vari-
ous other applications. Nevertheless, the demonstrated success over such complexity level

of synthesis gives enough justifications to continue the development of such methodology.

1.3.2 Overview

The rest of the thesis consists of three parts. The first part is background materials which
spans Chapter 2, 3, 4 and 5. Chapter 2 will overview the current development on the MEMS
synthesis which covers both surface micro-machining and bulk micro-machining. Chapter
3 introduces the evolutionary optimization techniques. A full spectrum of the stochastic
searching techniques will be examined with the main focus on genetic algorithms. Since the
constructed mask-layout synthesis algorithm is tested through a bulk wet etching simulator,
a brief background on bulk wet etching process is provided in Chapter 4 with focus on the
chosen simulator (SEGS). Chapter 5 will cover the topics of shape matching algorithms
mainly including the matching between two polygon shapes. This technique will be mainly
used to test whether the shape produced under any simulated process close enough to a
specified desired shape, which is a critical component to achieve mask-layout synthesis.

Chapter 6 examines the design and implementation of the mask-layout synthesis method-
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ology based on evolutionary techniques. Chapter 7 provides the test of the mask-layout syn-
thesis for a bulk wet etching simulator. The presented test results are focused on evolving
the mask-layouts with compensation features.

Chapter 8 is a conclusion with a summary and a discussion on possible future work.
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Chapter 2

MEMS Synthesis

2.1 Overview

The goal of MEMS synthesis s to automatically generate optimum solutions for both de-
yice design and fabrication process. Especially, as mentioned previously, process synthesis
is the key element to achieve a rapid prototyping environment for MEMS design, which al-
lows designers to fully focus on the design of the function of the device and thus effectively
help increasing the complexity level of MEMS devices. With the effort towards the future
VLSI-like standardization of MEMS fabrication processes, it is very promising to eventu-
ally achieve the goal of process synthesis. Due to the involvement of mechanical systems
whose modularity and topology are rather complex, the synthesis of device design or the
shape synthesis, as illustrated in Figure 1.2, is essentially limited to specific domains. Nev-
ertheless, any effort towards such synthesis will increase the overall reuse level of design
knowledge.

In general, a formal method for MEMS synthesis that is robust and accurate to the whole
MEMS design domain is still under investigation. Several methodologies based on the spe-
cific features of surface micromachining or bulk micromachining have been proposed. The
synthesis of surface micromachining has been a main focus due to the similarity between
the surface micromachining and VLSI technology which creates opportunities for directly
borrowing the structured design methodology from VLSI.
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2.2 Surface Micromachining Synthesis

There are essentially two major research efforts involved with the synthesis of MEMS sur-
face micromachining. One is the process synthesizer MISTIC developed at the University
of Michigan; the other is the device design synthesis tool based on VLSI-like schematic
representation of MEMS systems which is being created at Carnegie Mellon University.

Gogoi et al. [29], introduced a method which automatically generates fabrication se-
quences for surface micromachined structures starting from a two-dimensional geometrical
description. This method essentially translates the device geometry into layers and a math-
ematical representation of layer order. By using topological sorting techniques, all possible
process sequences can be extracted from the layer order in terms of fundamental processing
steps like deposition, lithography and etching. In general, since the fabrication sequence
is not unique, an optimal sequence is determined from the candidate set by using a cost
function based upon a database of materials and processes. The synthesis program called
MISTIC has been implemented which includes both the sequencing algorithm and opti-
mization. A complete optimal fabrication sequence is synthesized with the output in a
human-readable format.

Mukherjee and Fedder proposed a hierarchically structured design approach to assist
an efficient design of complex surface MEMS devices [56]. The method is compatible with
standard IC design. A graphical-based schematic and structural view are used to represent
MEMS as a set of interconnected lumped-parameter elements. Once the complex device is
decomposed into components, the simulation at the component level can be carried through
a simulation interface provided by the schematic representation. Furthermore, MEMS com-
ponents can be synthesized with common topologies so as to provide the system designer
with rapid, optimized component layout and associated macro-models. As an example of
the application, a synthesis module is developed for the popular folded-flexure microme-
chanical resonator topology. The algorithm minimizes a combination of total layout area
and voltage applied to the electro-mechanical actuators. The effectiveness has been shown
through the synthesis effort towards the design limits of behavioral parameters such as res-

onant frequency for a fixed process technology.
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2.3 Bulk-micromachining Synthesis

Synthesis in bulk-micromachining has been focused on the generation of mask-layouts used
in bulk wet etching processes. Wet etching is a widely used fabrication technique in mi-
cromachining. The key process input is the mask-layout, which is the major element in
determining the final etched shape. Unfortunately, due to the geometric complexity of the
etching, there is no simple mapping between a mask-layout and the corresponding etched
shape. Thus, there is a critical need to automate the design of the mask-layout for any
desired etched shape. Long et al., [47] proposed a method to synthesize the mask-layout
geometry through a direct inverse of a forward etch simulation. An inverse mechanism
was developed earlier based on a forward simulator called slowness method [69]. During
the inverse process, the desired etched shape is decomposed into planes and vertices. The
etch rate of the planes is determined by the etch rate diagram. Each vertex is categorized
according to its convexity and whether or not there new planes will appear during the etch.
From there, a local mask shape that will produce the vertex corner is obtained. The overall
mask-layout is formed after considering the global interactions between all the local mask
shapes.

This thesis presents a new approach to realize the mask-layout synthesis by incorporat-
ing a forward simulation of fabrication into a general iterative loop as shown in Figure 2.1.
In this approach, the user can specify a desired 3D shape. The loop starts with initial can-
didate mask-layouts. The fabrication of each layout is simulated through a digital process
simulator to produce a 3D fabricated shape, which is compared to the desired shape. If
the best comparison result is not close enough, the initial mask-layouts are refined and the
process is repeated. The iteration stops either when the simulated shape is close enough to
the desired shape, or the specified maximum searching effort (such as the total number of
iterations) has been reached. Evolutionary techniques have been developed as part of this
research to refine the, tried mask-layouts during each iteration. An evolutionary algorithm
has been constructed and tested to use these evolutionary techniques to synthesize mask-
layouts for a bulk wet etching simulator. The results obtained demonstrate the effectiveness
of this approach. In this way, one is able to make use of existing simulations of fabrication

processes to achieve mask-layout synthesis where reversing a fabrication process simula-
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Figure 2.1: A General Approach to Realize Mask-layout Synthesis Through An Iterative
Loop.

tion (so that a 2D mask-layout might be produced) appears not to be possible.
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Chapter 3

Evolutionary Techniques

3.1 Introduction

An evolutionary algorithm is a global stochastic optimization technique based on the adap-
tive mechanics of natural genetics [35]. Figure 3.1 illustrates the linkage between the natu-
ral genetics and evolutionary algorithms through the comparison of the used terminologies
between the two. The strings of artificial evolutionary systems are analogous to chromo-
somes in biological systems. In natural systems, one or more chromosomes combine to
form a genetic package called a genotype. In artificial evolutionary systems, the total pack-
age of strings is called a structure. In natural systems, the organism formed by the inter-
action of the genotype with its environment is called phenotype. In artificial evolutionary
systems, the structures decode to form a particular solution form. In natural systems, chro-
mosomes are composed of genes, which may take on some number of values called alleles.
In artificial evolutionary systems, strings are composed of features, which take on different
values.

An evolutionary algorithm maintains a population of candidate solutions known as in-
dividuals. Typically, each individual is encoded into a string of characters or digits, through
which the original solution space can be converted into an encoded space, in order to search
for the global optimum. By analogy with genetics, the individuals in the original search
space are referred as phenotypes; those in the encoded space are referred to genotypes. The
initial population is generated randomly. During each iteration, within a population known

as a generation, all individuals are evaluated to determine their performance values (called
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fitness values), and then go through genetic operations such as selection, crossover etc., to
form individuals of the next generation. The role of each genetic operation is rather dif-
ferent. Selection is used to choose individuals with better fitness performance. Crossover
is applied to those selected individuals (parents) to evolve new ones (children) who are
likely to preserve good features from their parents and more importantly grow new features
that will outperform their parents. Mutation is applied to individuals to disrupt part of the
existent features. The rationality of processing individuals in this way lies in the concept
of survival of the fittest in the biological world. It is the fundamental belief that better-
performing children are more likely to be evolved from well-performing parents because
they have more chance to inherit, as well as combine, good gene features from their par-
ents. Such iterative processing stops whenever the performance of an individual satisfies
the desired goal, or the limit of the search effort is reached.

In general, evolutionary algorithms are a non-problem specific technique which can be
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applied to virtually any problem if its objective function measurements are available. In
particular, what makes evolutionary algorithms distinct among other stochastic optimiza-
tion techniques is the involvement of a generation of individuals. Such individual pool
participation provides efficient feature information used by genetic operations to maximize
the chance to balance the search effort between exploration and exploitation, in the sense
that every new exploration direction taken is based on the proper exploitation on currently
preserved search regions. Such balance will further ensure a proper bias on the search re-
gion as well as increase the robustness to overcome the deception traps. Deceptions refer to
any misleading the evolutionary process towards a local optimum. Evolutionary algorithms
have been shown to successfully solve problems in various complex domains [30].

Finally, a clarification on the terminology should be made here. In this thesis, the ma-
jor focus is on the evolutionary techniques. Any algorithm that uses those techniques will
conduct an evolutionary search for a global optimum solution and therefore is treated as
an evolutionary algorithm. Genetic algorithms are a major subset of evolutionary algo-
rithms. Thus all the techniques described as genetic algorithms can be regarded as part of

evolutionary techniques.

3.2 Coding Scheme

The task of any coding scheme is to encode a solution of the problem into a particular repre-
sentational format which can be further manipulated by genetic operators. Using biological
terminology, such represehtational format is referred to as a chromosome. Consider a prob-
lem with several parameters to be optimized, each chromosome will correspond to a vector
of the parameters and it can be expressed using either binary bits, real numbers or integer
numbers, which are the three widely used representation techniques. A chromosome with
binary bits will encode each parameter as a bit string using either a standard binary coding
or a Gray coding. The bit strings for the parameters are concatenated together to give a
single bit string which represents the entire vector of parameters. In this case, each bit po-
sition corresponds to a gene of the chromosome and each bit value corresponds to an allele.

Under standard binary coding, there is a direct mapping between a bit string and an integer
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parameter, just as how the integers are stored in a computer. However, a value cutoff will
be involved when a real parameter is mapped to a bit string. Let x; denote the ith single
parameter with its lower and upper bounds /; and u; respectively, then the binary coding of
x; using n bits will correspond to the binary code for the integer k for 0 < k < 2" and k
is such that x; falls between I; + k%%zl and [; + (k + 1)1% For example, if {; = 0 and
u; = 4 and n = 5, then any real values between % and % would correspond to the same
binary code 00011. Certainly such representation resolution can be increased with larger n.
Gray coding is another way of coding parameters into binary bits which has the adjacency
property that an increase of one step in the parameter value corresponds to a change of a
single bit in the code. The conversion between binary coding and Gray coding is attached
in Appendix A.

A chromosome with real numbers or integer numbers will simply encode each param-
eter with a real or integer number respectively which is then concatenated with others to
represent the entire vector of parameters. In this case, a gene corresponds to a real or integer
parameter and an allele corresponds to a real or integer value.

Holland’s work [35] on the creation of genetic algorithm was based on binary strings.
In addition, it was once believed that the principle of minimal alphabets should be used to
guide the coding design in various problems, and obviously binary strings offer the possi-
bly minimum number of alphabets [30]. A minor modification is the use of Gray code in
the binary coding. Hollstien [36] investigated the use of genetic algorithm for optimizing
functions of fwo variables, and claimed that a Gray code representation worked slightly
better than the normal binary representation because of its adjacency property. Later on, as
the canonical genetic algorithm is applied to more and more applications, it was realized
that the bit string coding is not a natural coding scheme for some of the problems, espe-
cially the ones from industrial engineering world where real-valued parameters need to be
optimized. So direct coding with real-value chromosomes raised some considerable inter-
est [31, 79, 40]. There are essentially three primary motivations for using a real number
coding scheme. First, real-coding of the genes eliminates the worry that there is adequate
precision so that good values are representable in the search space. Whenever a parame-

ter is binary coded, there is always the danger that one has not allowed enough precision



20

to represent parameter values that produce the best solution values. Second, the range of
a parameter does not have to be a power of two. Third, genetic operations on real-coded
genes have the ability to exploit the gradualness of functions of continuous variables. The
gradualness here means that small changes in the variables correspond to small changes
in the function [79]. The integer coding scheme is mainly used for sequencing problems
where each solution is coded as a numerical sequence [26]. In case any of the above string-
based representation pose difficult and sometimes unnatural answers to some optimization
problems, some other coding techniques can be explored such as embedded lists for fac-
tory scheduling problems [53], variable element lists for semiconductor layout [53], matrix
encodings for VLSI modules [13] and even LISP S-expressions [44].

The importance of choosing an appropriate coding scheme can not be overstated. A
coding scheme determines the linkage between the solutions in phenotype space and the
genetic structures in genotype space. An inappropriate coding scheme could lead to inef-
ficient or even incorrect communication between the genetic information and the solution
fitness of each individual and thus slow down or mislead the entire evolution. The ideal
coding for a complex problem is a difficult choice. Often more than one coding strategy is
possible for one problem. Thus some general rules are needed to guide such decision mak-
ing. The literature indicates that codings should be chosen according to several properties
among which the two most important ones are the following: the coding should embody
the fundamental solution structures that are important for the problem type [30], and be
amenable to a set of genetic operators that can propagate these solution structures from
parent genotypes to the children genotypes [26]. The first rule requires an analysis of the
solution features, followed by a choice of coding scheme such that the important solution
features can be reflected through the chromosome in a simplest and most direct way. The
second rule indicates that the chosen coding scheme should make it convenient for the
genetic operators to recognize those important solution features and preserve them. Both
these rules will be used to guide the later development of the coding scheme as part of the

evolution techniques applied to mask-layout synthesis.
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3.3 Initialization

As an initial start for an evolution process, a generation of individuals need to be randomly
generated. During the initialization, the genotypes are usually the ones to be directly gen-
erated through a pseudorandom operator. Then, each genotype is decoded into phenotype
which will give the fitness evaluation for each individual.

The ultimate goal of the initialization is to ensure a uniform distribution of individuals
in phenotype space, or in other words, the sampled solution points uniformly cover the
search space. To achieve this goal, all the genes in all the chromosome that belong to each
genotype (one genotype can have multiple chromosomes) are randomly generated such that
their allele values are uniformly distributed within each valid value regions. Under a proper
coding scheme, the uniformity of genotype distribution should automatically lead to the
uniformity of phenotype distribution. Here again, the coding scheme plays an important
role. Especially, the coding scheme that has the property of one-to-one mapping between
a genotype and a phenotype is strongly desirable. Any representational redundancy in
genotypes can lead to inefficiency in obtaining a uniform phenotype distribution.

The generation mechanism on the allele values of all the genes depends on the coding
scheme used. In a binary bit string coding, the bitstring-uniform procedure (BU) is tradi-
tionally used: it assigns value of 0 or 1 with probability 0.5 to every bit. This procedure is
favored by its uniformity in the binary space. All points of n bit string have equal probabil-
ity 1/2™ to be drawn. Moreover, the bit-wise diversity is maximal too: at every bit position,
there will be in mean as many O’s than 1’s. Recently, such procedure has been questioned
by Kallel et al., with different views of distribution uniformity [65]. As an improvement on
these distributions, they proposed two new procedures to initialize the bit strings. One is
the uniform covering procedure under which a density of 1’s is uniformly selected in [0,1]
for each bit string, and then choose each bit to be 1 with that specific probability; the other
is the homogeneous block procedure under which a bit string is initialized to a default value
(e.g., 0) and then gradually “add” homogeneous blocks of the other value (1).

Under a real coding scheme, the initialization can be rather different depending on
the genotype structures under a particular application. In most applications, each gene

represents an independent parameter and thus the initialization procedure can simply assign
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a random value uniformly picked within its boundary range for each gene. Since each
real-valued gene directly represents a solution value, the distribution uniformity should be
assessed based on the sampled solutions in the phenotype space.

In an integer coding applied to a sequencing problem, usually the allele value of each
gene represents an sequence order and the number of genes exactly matches the number of
the interested orders. So it is the sequence of the allele values in each chromosome that
needs a uniform distribution. One approach is to assign the genes with increasingly ordered
values and then randomly shuffle those values for a specified number of times which is
usually the number of genes in each chromosome [77].

In some situations, the domain specific application knowledge can be incorporated into
the initialization so that a more effective initial sampling can be obtained. One example is
to pre-seed the initial population with fit individuals, or lying in regions of the search space
known to be of some interest [33]. A more general approach is that the initial population is
built by taking the best of n randomly chosen individuals [49]. Another general approach
is used by Eshelman [24] to re-initialize the population whenever a preconverged evolution
is detected and during the re-initialization, a best currently evolved individual is maintained

and the rest of individuals are introduced by randomly regenerate partial genes of the best

one.

3.4 Crossover

3.4.1 Overview

In most applications, crossover is used as the vital force to evolve new individuals based on
the ones in the current generation. Each time, a crossover is normally applied to a pair of
parent individuals and produces one or two child individual(s). The goal of crossovers is
to grow the genotype structures with better performing gene features which will ultimately
lead to the global optimal solution. To do so, each crossover should be able to not only rec-
ognize and preserve the existing good-performing genes among the paired parents but also
disrupt bad performing ones and replace them with other explored features so as to increase

the chance to form even better overall features. Usually, the individuals being applied with
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Figure 3.2: Several Binary Crossovers.

crossovers are relatively better performing ones selected from the fitness competition. The
good gene features between any two paired parents is simply taken as their common or
closely matched features. With a random processing, doing so will maximize the likeli-
hood to recognize the well performing features, unless some deceptions occur which will
be explained below. The rest of the dissimilar gene features are likely to experience more
rigorous exploration with the replacement of rather different allele values. As will be seen,
all the following crossovers have taken this approach to preserve the promising characteris-
tics of the parents. However, the implementations vary to different coding schemes as well

as applications.

3.4.2 Binary Crossover

Figure 3.2 shows several popular crossovers based on a bit string coding scheme. The first
crossover is called single crossover or one-point crossover, during which a crossover point is
randomly chosen among all the genes and then the bit values of the genes after the crossover

point are exchanged between the two parents. As shown in the figure, C'P is the crossover
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point, all the bits right to the CP are exchanged between the parents to form the chil-
dren. The second crossover is a generalized version of one-point crossover which is called
multiple-point crossover. This crossover has more than one crossover points randomly cho-
sen among all the genes. The bit values of the genes inbetween the regions formed by every
other pairs of crossover points as well as the beginning and ending genes are exchanged..
As an example, a three-point crossover is shown in the figure with the crossover points
CP,, CP,, CP;. The bit values between CP; and C P, and those between C P and the
ending gene are exchanged. The third crossover is called uniform crossover which first
generates a crossover mask with the same number of genes as the parents. For each gene in
the crossover mask, if its allele value is 1, it means no allele value exchange for that gene
between the parents; if its allele value is O, it means the exchange. The figure shows a ran-
domly generated crossover mask and the correspondent allele value exchange between the
parents. There are also some other binary crossovers such as the reduce-surrogate crossover
which guarantees that exactly half of the non-matching alleles are exchanged. In this way,
the generated children will always have the maximum Hamming distance from their two
parents, where the Hamming distance is defined as the number of genes having different
allele values between any two binary strings. Note that all the crossovers are implemented
through exchanging the bits between the parents. Therefore all the common bits in both
parents will be automatically preserved in their offspring.

The preference of which crossover to use is debatable. Eshelman et al., have conducted
several experiments for various crossover operators [23]. A general comment is that each
of these crossovers is particularly useful for some classes of problems and quite poor for
others, except that one-point crossover is indicated as a “loser” experimentally. Although
one-point crossover was initially inspired by biological processes and used in Holland’s
work [35], it has one major drawback that certain combinations of solution features can not
be combined in some situations [33]. A multipoint crossover can be introduced to overcome
this problem. As a result, the performance of generated offspring is greatly improved. Fur-
thermore, DeJong [21] concluded that a two-point crossover seemed to be an optimal num-
ber for multipoint crossover. However later, this has been contradicted by Spears and De-

Jong [71] as two-point crossover could perform poorly in a situation where the population
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has largely converged because of reduced crossover productivity. This low crossover pro-
ductivity problem can be resolved by the proposal of reduce-surrogate crossover [9]. Since
uniform crossover exchanges bits rather than segments, it can combine features regardless
of their relative locations; however, it has strong power to disrupt some solution features. It
is shown [73] that the former advantage may outweigh the later disadvantage, which makes
uniform crossover a superior operator for some problems. A further example of this is the
CHC, a nontraditional genetic algorithm, which uses uniform crossover combined with a

conservative selection scheme to outperform traditional genetic algorithms [24].

3.4.3 Real Crossover

Under a real coding scheme, crossovers can be mainly classified into three groups: conven-
tional operators, arithmetical operators and direction-based operators. The conventional
operators are made by extending the operators for binary representation into the real coding
case. The arithmetic operators are constructed by borrowing the concept of linear com-
bination of vectors from the area of convex set theory. The direction-based operators are
formed by introducing the approximate gradient direction or negative direction into genetic
operators. Note that for real-valued genes, the common characteristics of parents lie in the
inclusive value regions defined by all paired genes. All the three operators are constructed
such that there is an intrinsic bias towards exploring those inclusive features and thus pre-
serve the common parent features.

There are mainly two kinds of crossovers that belong to conventional operators. One
is simple crossovers which include one-point crossover, multi-point crossover and uniform
crossover. The implementations of all the three crossovers are exactly the same as those
binary crossovers except now the exchanging materials are real element values instead of
binary bit values. For details, see Spears and DeJong [72] and Syswerda [73]. The other
kind is random crossovers which create children within a hyper-rectangle defined by the
parent points. The basic one is given by Radcliffe [64], called flat crossover, which pro-
duces an offspring by uniformly picking a value for each gene from the range formed by
the values of two corresponding parent genes. Eshelman and Schaffer presented a gener-

alized crossover of Radcliffe’s work [25], called blend crossover and denoted as BLX-c.
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Figure 3.3: BLX — a.

It uniformly picks values that lie between two points that contain the two parents, but may
extend equally on either side determined by a user specified parameter o.. As shown in
Figure 3.3, BLX-a picks parameter values from points that lie on an interval that extends
oI on either side of the interval I between the parents. Even though both blend crossover
and float crossover exploit the parameter intervals determined by the parents, it is shown
that blend crossover has more advantages. Because of the extended intervals, the crossover
will have the chance to explore the values outside the parent intervals which means it can
disrupt the inclusive features formed by the parents. Such disruptive power can be useful to
break deceptive features carried by parents if needed and thus increase the robustness of the
crossover. In particular, since the range of the extended intervals is linearly proportional to
the parent interval, the provided disruptive power can be automatically synchronized with
the convergence of the parent features as needed. To make it more clearly, at the initial
stage of a typical evolution, the individuals are expected to be rather different which leads
to large parent intervals and thus high disruptive power from the crossover. Meanwhile,
any inclusive features formed by parents at this stage are rather suspicious even though
both parents perform well. So these features are likely need to be disrupted in time to pre-
vent any premature convergence. As the evolution goes on, individuals become converged
which leads to small parent intervals and thus low disruptive power from the crossover. At
this stage, any inclusive features formed between parents are more likely to be good fea-
tures and need to be preserved for future exploitation. Through various tests, Eshelman
and Schaffer [23] further demonstrated the best o value to be 0.5, and explained that such
a value will lead to the probability that an offspring will lie outside its parents equal to
the probability that it will lie between its parents and thus the convergent and divergent

tendencies can be naturally balanced if without any selection pressure.
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Arithmetical operators are defined as the combination of two vectors (chromosomes) as

follows:

c1 = A1p1+ Aop2 3.1
c2 = Aip2 + Aopi.

where

c1 = firstchild

¢cg = second child

py = first parent

pa2 = second parent

A1 = first real multiplier

Ay = second real multiplier.

According to the restriction on multipliers, three kinds of crossovers can be defined. When:
M+X=1, A >0, Ay>0,

the weighted form (3.1) defines the convex crossover; if nonnegativity condition on the
multipliers is dropped, it leads to the affine crossover; if the multipliers are simply required
to be in real space, it yields the linear crossover. The convex crossover is the most com-
monly used one [53]. When restricting that \; = As = 0.5, it yields a special case, which is
usually called average crossover by Davis [20], or intermediate crossover by Schwefel [66].
The affine crossover was first proposed by Wright [79]. Let p; and ps be any two paired par-
ents. During each crossover, three new points are generated, namely %pl + %pg, %pl - %pz
and — %p1 + %pg. The first point is the midpoint of p; and ps, while the second and the third
points lie on the line determined by p; and po. Then, the best two of the three points are
selected as the offspring. The linear crossover was first tried by Cheng and Gen [12]. They
restricted the multipliers as: A; + As < 2, A1 > 0, A2 > 0. A geometric interpretation on

all the arithmetic operators was given by Gen and Cheng [28]. Consider any two parents
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Figure 3.4: Tllustration on Convex Hull, Affine Hull And Linear Hull Embedded in Two-

Dimensional Space.

p1 and po. The offspring generated with the convex crossover will lie in the space called
convex hull. Similarly affine hull refers to the space containing the offspring generated by
the affine crossover and linear hull is the space produced by the linear crossover. Obvi-
ously linear hull contains affine hull which further contains convex hull. Figure 3.4 gives
an illustration on the three spaces embedded in two dimensional space.

The direction-based operators use problem-specific knowledge to produce improved
offspring. As an example, Michalewicz et al. [52], constructed a direction-based crossover
which uses the values of objective function in determining the exploration direction. The

operator generates a single offspring c from two parents p; and ps according to the follow-

ing rule:

c = r(pa — p1) + p2,
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where

r = arandom number between O and 1.

The above form assumes that the performance of parent py is not worse than that of p;.
This crossover is essentially an affine crossover which always generates the offspring points
lying in one side of the affine hull that is close to the better performing parent.

Among the above crossovers, the choice of which one to use always depends on individ-
ual application. Recently, BLX-a has become popular because of its superior performance
with easy implementation [16]. In addition to the previously mentioned superior charac-
teristics of BLX-« crossover, borrowing the concept shown in Figure 3.4, the advantage of
BLX-a crossover can also be seen from its ability to explore the offspring uniformly over
a restricted linear hull space surrounding the two parents. Such restricted hull includes the
entire convex hull and two sides of affine hulls near to the parents. On the other hand, all
the arithmetical crossovers only assign offspring with discrete points which could be fur-
ther limited within either convex hull or affine hulls. While for the above direction-based
crossover, the strong bias towards the better performing parents may aggravate the prema-

ture convergence during the early stages.

3.4.4 Integer Crossover

Since an integer coding scheme is mostly used for sequencing problems, each chromosome
represents a particular sequence and each gene within a chromosome represents an order
within a segence. So the integer value of each gene are different from each other. The
particular concern for integer crossovers is to make sure that all the order numbers of a
sequence are assigned to all the genes of each generated chromosome. The particular focus
of each crossover is how to reorder the sequences defined by the parents. There are quite
a few operators developed to crossover two parent sequences under different applications.
In particular, four major operators are widely used which are order crossover (OX) [18],
cycle crossover (CX) [60], partially mapped crossover (PMX) [30] and edge recombination

(ER) [77]. Among all these operators, the common features between any two parents are
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considered as the same relative orders existing in both parent sequences. Effort has been
made to preserve those common features to the offspring during the construction of various
crossovers. The details of OX and ER will be introduced below to show how the common
relative orders of allele values existed in both parents are preserved through the crossovers.

OX creates children which preserve the order and position of symbols in a subsequence
of one parent while preserving the relative order of the remaining symbols from the other
parent. First, two cut points are randomly selected among the paired parent genes. Then, the
allele values between the cutpoints are copied from the first parent into the same genes of the
first child. Next, copy allele values starting from the gene right after the second cutpoint of
the second parent one by one into the genes of the first child with the same starting position.
If current allele value is a duplicated one, the copy of that allele is skipped. If the end gene
is reached for either the second parent or the first child, the copy is continued with the first
gene. The process is finished until the copies of all the allele values of the second parent
have been tried. The second child can be constructed by switching the roles of the parent

sequences. An example is illustrated below:

Parentl: ABCD | EFG | HIJK
Parent2: KAGF | BDH | IJCFE
Childl: ABDH | EFG | IJCK
Child2: CEFG | BDH | I1JKA.

So after each OX operation, for both parents, the relative orders between the two cutpoints
are directly preserved by their children and the rest of the orders are also kept as much as
possible without any duplications.

ER creates children which preserve edges, or immediate predecessor/successor rela-
tionships found in the parent sequences. It is implemented by constructing an edge map
that lists the neighbors of each gene in the sequence. The allele value of the first gene to
be placed into the child is chosen at random. The next one is chosen from the list of the
first gene’s neighbors. This process is continued until either the allele values of all genes
are chosen or there are no neighbors to choose from for the left allele values. In the later

case, any of the remaining allele values is chosen at random. In the following example, A
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is chosen first, followed by B, after that the choices are arbitrary. The child produced in this

way preserves the entire edges from its parents.

Parentl: ABCDEF
Parent2: DFBACE

EdgeMayp : B,C
ACF
A, B,D,E
C,E F
C,D,F

F: AB,DE

m o QW e

Child: ABFDCE.

Inspired by the above operators, Fox and McMahon later introduced intersection and union
operators to directly capture the common characteristics of two parents by using the prece-
dence matrix which stores the common predecessor/successor relationships between two
sequences [26]. Another operator also often used is the subtour-chunking operator intro-
duced by Grenfenstette [33], which works by alternately selecting segments (chuncks) from
the two parent chromosomes and incorporating those into the offspring. Some other opera-
tors are designed to solve the specific problems which are examined by Gen and Cheng [28].

There is essentially no unified view on which one is better.

3.5 Mutation

Mutation has been traditionally considered as a “background” operator whose main contri-
bution is to assure that no information is permanently lost from the maintained population.
So mutation in general takes a subordinated role to amend the weakness of crossover. Usu-
ally, once the parent features are all closely matches or identical to each other, crossover
will no longer produce much new information and thus lose its evolution power. This often
happens as an evolution process gets converged. Under these circumstances, mutation can

be used to bring diversity and introduce new features to the population. Thus, the design
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of mutation should focus on its disruptive power to alternate existent features of individ-
uals. Mutation is usually applied to a single parent each time and generate a single child.
Just like crossover, the implemenation of mutation varies to different coding schemes and
applications.

Mutation on a binary bit string is simply to flip several randomly chosen bits indepen-
dently. Usually, during each mutation, all the bits in the parent chromosome is visited and
for each bit, whether flip it or not is determined according to a specified probability called
mutation rate. Usually the mutation rate is fixed as 0.5 so that on average, half of the parent
bits are flipped.

Under real coding scheme, mutation can be rather different. In general, a gene is mu-
tated within a certain value range with defined lower and upper boundary values. The basic
mutation is called uniform mutation, which simply replaces a randomly picked gene with
a randomly selected value within its value range. A mutation called boundary mutation
goes to the extreme case which always replaces the randomly picked gene with either its
lower or upper boundary value [52]. Janilow and Michalewicz introduced a mutation called
nonuniform mutation which is designed for fine-tuning capabilities aimed at achieving high
precision [40]. Under such mutation, a gene to be mutated is randomly determined among
a given parent. Its allele value can be mutated in one of the two ways, which is randomly

determined. The two ways of mutation are:
= pe+ AP}~ pr)
Ck D » Pk Dk
or
= b — Alt,pe — pf)
Ck = Pk y Pk — Pk
where
t = iteration number of an evolution process

ko= Kk parent gene to be mutated

pr = allele value of & parent gene
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¢, = allele value of k** child gene
pﬁ = lower allele bound of k** parent gene
pg = upper allele bound of K parent gene.

The function A(¢,y) returns a value in the range [0, y] such that the function value ap-
proaches 0 as ¢ increases. This property causes the operator to explore the space uniformly
during the early evolution stages while later focus on narrow portion of the space. The

function A(t, y) is defined as:

Alty) =y (1= )

where

r = random number from [0, 1]
T = maximum iteration number of an evolution process
b = nonuniformity parameter.

Gen et al., gave another mutation based on the idea of Taylor expansion of a continuous

differentiable function [27]. The mutation formula is:

ck=pr+7-d
where
k = k' parent gene to be mutated
p, = allele value of k** parent gene
¢ = allele value of k" child gene

r = anonnegative random number.
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And d is the gradient value determined by:

d= f(ph oy Pkt Apk: '-'7pn) - f(p17 --s Pk apn)

Apy
where
f = fitness function
n = length of each chromosome
Apr = asmall real number.

Here d is approximated as the gradient direction of the fitness function, by updating the gene
along such direction, the mutation essentially increases the chance to replace the gene with
better performing feature. The vein of such approach is quite similar to the direction-based
CTOSSOVer.

Most used mutation for integer coding scheme is to randomly select two genes of each
to-be-mutated chromosome and their allele values are exchanged. Such mutation is called
swapping mutation.

Again, there is no golden rule of choosing the right mutation for any applications.
Recently, heuristic mutations have been often constructed to take advantage of particu-
lar knowledge in solution space so that they become more effective to either disrupt some

predicted bad features or insert certain expected good features [28].

3.6 Schemata Theorem

In Holland’s work, the dynamics and the power of genetic algorithms were explained by
using the concept of schema, which is based on the strings whose string elements are drawn

from a finite alphabet set.
Definition 1 Schema

A schema is a similarity template describing a subset of strings with similarities at certain

string positions.
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The above definition can be applied to the schemata (schemas) of binary strings under
the terary alphabet {0, 1, *} with * denoted as don’t care symbol. As an example, con-
sider the strings and schemata of length 5. The schema *111* describes a subset with four
members {01110,01111,11110,11111}. In another example, for a given subset such as
{00001, 01001, 00011, 01011}, all the members have common Os in the first and third
bits and common /s in the fifth bit and therefore the set can be represented as 0¥0*1. So
the defined bits of a schema represents the common bits shared by all the members of the
underlying string set. In other words, each schema carries the information of similarities
among a set of strings. On the other hand, consider any single binary string of length 5:
11111, for example. This string is a member of 2% schemata because each position may take
on its actual value or a don’t care symbol. In general, a particular string with length ! con-
tains 2’ schemata. For a population of size n maintained under a genetic algorithm, there
are somewhere between 2! and n - 2! schemata existing in each generation. Therefore, the
process of selecting individual strings and evolving them through genetic operators (mainly
crossovers) to produce new different strings can be effectively viewed as the process of se-
lecting a correspondent set of schemata and evolve it into a new set during which some old
schemata are disrupted, some old ones are preserved and some new ones are generated. In
this way, although on the surface level, a genetic algorithm directly evolve a moderate size
of individual strings, a large amount of schemata flow which represent the important feature
similarities are effectively processed on the background. It is the evolution of such huge
amount of information flow that brings the true power to the genetic algorithms. In partic-
ular, such evolution is achieved completely in parallel without any special bookkeeping or
extra memory and thus is named as Implicit Parallelism by Holland [35].

It is further shown that not all the schemata are processed equally even without selection
bias. Depending on the properties of each schemata, some are easier to be disrupted while
some are easier to be preserved and generated. Two important properties of a schema are

its order and defining length defined below:

Definition 2 Schema Order
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The order of a schema H, denoted by o(H), is simply the number of fixed positions (the

number of 1s and Os for binary strings) present in the template.

Definition 3 Schema Defining Length

The defining length of a schema H, denoted by 6( H), is the distance (the number of string

positions) between the first and last fixed position.

As an illustration, the order and defining length of the previously presented schema 0 %0+ 1
are 3 and 4 respectively. Based on the intuition, a schema with low order and small defining
length is more likely to survive during crossover and mutation as compared to the one with
high order and large defining length. A strict relationship has be given by Holland with the

schema theorem [35]:

Theorem 1 (Schema Theorem) The expected number of copies of a particular schema
H from one generation to the next under selection, crossover and mutation is given by the

Jollowing relationship:

Ht 0(H
m(it+ 1) > m(i ) B2 - p 078 o), 62
where
H = schema to be examined
t = iteration number
m(H,t) = expected number of copies of schema H at iteration ¢
f(H,t) = observed fitness of schema H at iteration ¢
f (t) = observed average fitness of entire population at iteration ¢
pe(t) = crossover rate at iteration ¢

Pm(t) = mutation rate at iteration ¢
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0(H) = defining length of schema H

o(H) = order of schema H.

The fitness (performance level) of a schema is measured through the average fitness value
of all the maintained individuals that instance the schema. The schema theorem shows that
short, low order, above-average schemata receive exponentially increasing trials while those
below-average schemata receive exponentially decreasing trials in subsequent generations.
Even though it is only directly applicable to a single generational cycle, one can get an
intuitive feeling for the dynamics of genetic algorithms by considering what happens to a
schema that consistently has an observed fitness that is higher than the population average.

The schema theorem also tells that certain kind of schemata play an important role in

the action of genetic algorithms and they are defined as building blocks:

Definition 4 Building Blocks

The building blocks are defined as those highly fit schemata with short defining length and

low order.

With the introduction of building blocks, the overall dynamics of genetic algorithms is

often expressed as “Building Block Hypothesis™:

Theorem 2 (Building Block Hypothesis) A genetic algorithm seeks near optimal per-

formance through the juxtaposition of short, low-order, high performance schemata, or

building blocks.

The building block hypothesis essentially indicates that an evolution search is the process of
evolving the building blocks with increasing orders. At any iteration, the maintained build-
ing blocks represent all the common features of highly performing individuals and define
the promising search regions for the next iteration. During the initial stage of an evolution
process, individual features are rather different and thus the individual performance levels
are rather scattered. The survived building blocks remains many with low orders. Due

to the selection pressure, more individuals are sampled within the region defined by the
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relatively better performing building blocks because they will give larger chance to obtain
individuals with higher fitnesses. As the process moves on, such competition will evolve
more and more individuals within fewer and fewer regions defined by the decreasing num-
ber of survived building blocks. This will lead to closer features between individuals and
increase the chance to grow building blocks with higher orders. Again, the higher order
building blocks will further direct the search towards a narrower region. Therefore, such
iterative process will eventually lead to a searched optimum point within a high-fitness

narrow region defined by an optimal high order building block.

3.7 Deception Analysis

As no surprise, genetic algorithms could fail. The above section indicates that a genetic
algorithm depends upon the recombination of building blocks to seek the best points. How-
ever, if the dominant building blocks are misleading during an evolution, the outcome may
only stay at some local optimal point. The discussion of deceptions here is to show what
are the main factors that lead to the deceptions and how the dynamic behavior of a genetic
algorithm is affected and finally how to make the best try.

Davidor summarized three elements contribute to deceptions [{7]: the structure of the
solution space, the representation of the solution space and the sampling error as a result of
finite and often small generation sizes. These three elements are not necessarily linked and
the effect of each of them is not fixed. Davidor introduced the concept of epistasis which
is borrowed from genetics and further discussed the connection between epistasis and the
three influencing elements and showed that the level of deception can be quantitatively

measured through the level of epistasis. As a start, the definition of epistasis is given below:

Definition 5 Epistasis

Epistasis refers to the situation where one gene masks or modifies the expression of another
gene or in other words, the fitness contribution from one gene depends on another gene of

the same chromosome.
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The motivation of applying an epistasis analysis is the following. If a representation con-
tains very little or no epistasis, no individual string element is affected by the values of other
elements, and therefore optimization can be simply achieved by a greedy algorithm with a
bit-wise maximization. At the other end when a representation is highly epistatic, too many
elements are dependent on each other. Unless a complete set of unique element values is
found simultaneously, no substantial fitness improvements can be noticed. This well in-
dicates that there is too little structure in the solution space and a genetic algorithm will
most likely drift and settle on a local optimum. Therefore, the level of epistasis contains
the information about the amount of nonlinearity in terms of gene interaction embedded in
a given representation, and thus gives an indication of the exposed structure of the solution
space. A further investigation has been conducted to show that the level of epistasis is con-
siderably sensitive to the sampling error. As the generation size diverts from a grand large
size to smaller finite ones, the genetic algorithm suffers more and more nonlinearity. The
calculations have indicated that the epistasis consists of two elements: the base epistasis
resulted from the representation and an extra epistasis resulted from sampling noise. Even
though the calculations on the level of epistasis conducted by Davidor were based on the
binary strings with simple fitness functions and may not be applicable to general genetic al-
gorithms, the demonstrated connection between the epistasis and the factors leading to the
deceptions provides a strategy to make an overall prediction on the hardness of a problem
through some judgments on the epistasis of any constructed chromosome.

Grefenstette further exposed two aspects that challenge any genetic algorithm to prop-
erly process schemata and thus lead to evolution failure [32]. One is the collateral conver-

gence and the other is the fitness variance within schemata. As an example to illustrate the
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collateral convergence, consider the following two first-order schema competitions:

f(H)
Hp: O #4449
Hp: 4. 444 1

Ho: #4404, 6
Hp: #4. #14... 4,

f(H) is the observed fitness of each schema based on the actual sampled individuals. As-
sume that initial population is selected uniformly and the generation size is large enough so
that the observed fitness at time ¢t = O well approximates the true average fitness of each
schema. Then, the schema theorem predicts that the expected allocation of trials in the

second generation is as follows:

Pop% in H at timet =1

Ha: O it 90
Hp: 14 d4t4k... 10
Ho: #i4h. 04, 60
Hp: #4414 40,

Because the relative fitness ratio is higher in the first competition between H4 and Hp
than the second competition between H¢ and H p, the theorem predicts that the population
will begin to converge more rapidly with respect to the H 4 than Hc. Such phenomenon
is referred as collateral convergence. Because of that, the expected sampling of each com-
peting schema becomes biased and thus their observed fitnesses are no longer aligned with
the true average fitnesses. For example, it is expected that 90% of the observed representa-
tives of Ho would have a 0 in the first position because of the convergence effect from H 4.

Therefore, the schema theorem can no longer predict the actual convergence behavior of the
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next iteration. In other words, depending on the degree of collateral convergence, the ac-
tual evolution convergence trajectory in the end may be far away from what building block
hypothesis predicts. The second aspect tells that if the fitness variance within schemata is
high, due to a limited generation size, the sampling error in the initial random generation
will produce large errors in the estimate of each schema’s true average fitness which again
could lead to improper schemata processing.

In general, the sampling error is unavoidable due to the limited sampled generation size
and the used pseudorandom generators. What is crucial here is the schemata variances. If
schemata have high variance, the convergence behavior will be very sensitive to sampling
error as well as collateral convergence and thus more likely to be improperly processed and
mislead the evolution direction. One way to measure the schemata variance under a specific
representation is through the epistasis analysis. Obviously, one effective way to improve
this is to choose a good representation so that the epistasis level and schemata variance are
low. However, in reality, the choice of representation are quite limited. Another approach is
to choose appropriate evolutionary strategies so that the evolution process can be converged
more gently which can provide more chances to make the self-adjustment if anything goes
wrong. Various selection schemes and genetic operations have been proposed to provide

such active control which will be covered in the following sections.

3.8 Selection Scheme

3.8.1 Overview

The task of each selection is to select individuals to be evolved for the next iteration. Se-
lection schemes are the central component to provide the evolution competition between
individuals based on their fitness values and thus mimic Darwinian natural selection pro-
cess. Every selection scheme tends to bias towards the better performing individuals which
are believed to have better chance to carry good-featured genes for evolving children with
even better performance. Selection pressure is used to refer to the degree of such bias or
equivalently the level of fitness competition. Typically, low selection pressure is indicated

at the start of an evolution process in favor of a wide exploration of the search space, while
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high selection pressure is recommended towards the end in order to exploit the most promis-
ing search region. The selection controls the overall convergence of an evolutionary search.
Many selection methods have been proposed. Some of them are presented here with the
focus on illustrating how the selection pressure is provided. For a more complete coverage,
refer to Gen and Cheng’s summary [28]. Most of the selection schemes can be divided into
two categories: stochastic and deterministic selections. The discussion on each of them are

separated into two subsections.

3.8.2 Stochastic Selection

Under stochastic selection, all the selection schemes use a random sampling approach to
determine the selection of individuals. Usually, each sampling approach consists of two
stages starting with assigning a sampling rate or selection probability to each individual and
ending with selecting individuals according to their sampling rates. The selection pressure
is mainly determined at the stage where the sampling rates are assigned.

There are majorly two mechanisms proposed to determine the sampling rates. One
is the proportionate assignment and the other is the rank assignment. The proportionate

assignment determines the sampling rate for each individual to be proportional to its fitness

as follows:

pi= _Nfi
" Tigien 5

where

i = 4" individual in current generation
N = current generation size
p; = sampling rate of individual ¢
fi = fitness of individual 3.

It turns out that such assignment often requires the prescaling of the fitness values [30].

Without fitness scaling, the selection pressure reflected through the sampling rates will
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mostly not be properly controlled. In most cases, at the early stage of an evolution, in-
dividual features and their performance levels vary a lot, so there is a tendency for a few
individuals to have relatively rather high fitnesses. Since the sampling rates are determined
by the relative fitnesses, these few individuals may dominate the selection process which
will lead to premature convergence. On the other hand, during the late evolution stage,
individual fitnesses are fairly close to each other. The sampling rates are almost the same
for every individual and thus the needed selection pressure to ensure a proper exploitation
can not be provided. With fitness scaling, however, all the raw fitnesses will be converted
to scaled values so that the relative ratios can be adjusted to obtain the desired sampling
rates. Several scaling techniques are summarized by Gen and Cheng [28]. As an example,
linear scaling assigns the best individual with a fixed sampling rate and thus prevents it

from reproducing too many at the early evolution stage. The method is shown as below:

fi=a - fi+b
where
i = 4 individual in current generation
fi = scaled fitness of individual 3
fi = raw fitness of individual 4
a,b = real parameters.

The parameters a and b are normally selected so that average individuals receive one sample
on average and the best individual receives the specified number of samples (usually two).
This method, however, may produce negative scaled fitnesses because of largely different
raw fitnesses especially during the early stage. Mostly, these negative values have to be

assigned as zeros which appears too artificial. Another example is Boltzmann scaling [53]:

fl=efi/T (3.3)
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where

i = i individual in current generation
fl = scaled fitness of individual 3
fi = raw fitness of individual ¢
T = control parameter serving as temperature.

Under this approach, the scaled fitnesses can be continuously tuned according to the change
of a single temperature value 7". The adjustment of 7" can be nicely explained by the analogy
of the temperature control in a thermal process. Consider each individual as an atom and its
fitness as the energy level of the atom. The evolutionary converging process is taken as the
process of reducing the atom energy levels by decreasing the temperature. So 7' is initially
set high and then is gradually decreased. Coincidently, in form (3.3), the initial high-valued
T leads to small selection pressure at the initial stage and as 7" decreasing later, the selection
pressure increases at the later stage, which is exactly needed. Also such scaling eliminates
the occurrence of negative values. In general, the proportionate sampling assignment can
be rather sensitive to the relative fitness distribution and thus the convergence behavior can
be easily affected by sampling error. Even though prescaling methods can reduce or even
eliminate such effect, they usually require the proper setting of parameters which are mostly
determined through trial-and-errors. Rank assignment is introduced by Baker to avoid the
direct dependency on fitness values [8]. It has been shown to help in the avoidance of
premature convergence and to speed up the search when the population approaches the final
stage [78]. A rank assignment starts by sorting the population from the best to the worst
and assign the sampling rate of each individual according to the ranking. Two methods are
commonly used: linear ranking and exponential ranking. The following formula gives the

linear ranking:

pi:q-—(i——l)xﬁ
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where

i = i" individual in current generation
N = current generation size
p; = sampling rate of individual ¢

g = probability of the best individual

go = probability of the worst individual.

In this case, the sampling rates are linearly proportional to their ranks. The selection pres-
sure can be adjusted through both ¢ and gp. An example of exponential ranking is proposed

by Michalewicz as the follows [53]:

pi=q(l—q)"
where
i = i individual in current generation
p; = sampling rate of individual ¢

q = probability of the best individual.

A larger value of ¢ implies stronger selective pressure. In general, there is no clear judg-
ment on which ranking scheme is better. However, linear ranking appears to receive more
attention because of its simplicity and easy control [78].

Once the sampling rates are assigned to individuals, the selection stage is followed
which is implemented through a sampling algorithm. As an example, a famous one is
called roulette wheel selection. The “roulette wheel” is composed of all the individual sam-
pling rates. The “spinner” has one pointer. Each “spin” of the “wheel” will select one

individual according to the pointer position. N independent “spins” are needed to select
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N individuals. The “wheel” remains unchanged between “spins.” Another popular sam-
pling algorithm is called stochastic universal sampling introduced by Baker [7]. Figure 3.5
shows the pseudocode of the procedure. The same “roulette wheel” is used, however, with
different “spinner.” There are N equally spaced pointers on the “spinner.” The pointers are
exactly 1.0 apart. During the sampling, only one single “spin” is needed with all the se-
lected individuals according to the positions of N pointers. Baker presented three measures
of the performance of selection algorithms: bias, spread and efficiency [8]. Bias defines
the absolute difference between actual and expected selection probabilities of individuals.
Spread is the range in the possible number of trials that an individual may achieve. Effi-
ciency is related to the overall time complexity of the algorithms. Roulette wheel selection
tends to give zero bias, but potentially inclines to spread unlimitedly. It can generally be
implemented with time complexity of the order of N log N where N is the population
size. Stochastic universal sampling (SUS) is another single-phase sampling algorithm with

minimum spread, zero bias and the time complexity of SUS is in the order of N.

3.8.3 Deterministic Selection

Under deterministic selection, the selection schemes select individuals according to their
fitnesses in a deterministic way. The generational replacement which replaces the entire set
of parents by their offspring is an example. However, under such approach, the evolved
good gene features can be easily lost due to any of the sub-performing iterations and thus
the evolution process may either suffer long waiting time or easily converge to a suboptimal
point because of the loss of best searched features. To amend such problem, a steady-state
selection is proposed by Syswerda [74], where only n (n < generation size) children are
produced during each iteration and n worst parents will be replaced by the children to
form the next generation. By doing so, the best evolved gene features will always be pre-
served. However, the produced children may not always be better than the worst n parents
which disobeys the replacing purpose. In addition, such approach will not best utilize all
the information available at each generation to evolve the offspring which may lead to low
productivity. Elitist selection was introduced by Eshelman to bring the cross-generational

competition [24]. During each iteration, N (generation size) children are produced. The
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Variables:
sum = Accumulated Sampling rates
ptr = Positions of Pointers
N = Number of Individuals to Be Selected

rand() = Returns A Random Value Uniformly Distributed Within [0, 1)

StochasticUniversalSample

1

© 00 N o Gt W N

sum «— O;
ptr — rand();
fork — 1toN {
sum < sum + sampling rate of individual k;
while (sum > ptr) {
select individual k;

ptr — ptr + 1;

Figure 3.5: Pseudocode for Stochastic Universal Sampling.
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children will compete with parents so that the best N individuals among both parents and
children will be selected as the next generation. In this way, a child only replaces a mem-
ber of parent population if it is better. Such approach is rather conservative in terms of
preserving good gene features. Eshelman further showed that by combining such selection
scheme with highly disruptive crossovers, an overall well balance between the exploration
and exploitation can be obtained [24]. Later, Biick and Hoffmeister introduced (x + A) and
(u, A) selections [6] [5]. Under (u + A) selection, p parents and A offspring compete for
survival and the u best ones are selected as next generation. Under (i, A) selection, the
best u individuals are selected out of A offspring (1 < A). (¢ + ) selection is essentially
a modification of elitist selection. (i, A) selection is essentially a generational replacement

approach with reduced risk of losing good genes by generating more children than needed

and selecting the best ones.

3.9 Genetic Operation

The task of genetic operation is to determine how the selected individuals participate the
offspring breeding through genetic operators which mainly include crossover and mutation.
So far, most developed evolution algorithms do not have special control on this step. That
is, during crossover, the pairing of parents are randomly picked from all the survived indi-
viduals and if applicable, a fixed crossover probability is used to determine whether each
paired genes are under crossover or not, and during mutation, individuals are randomly
picked and if applicable, a fixed mutation probability is used to determine whether each
gene is mutated or not. Nevertheless, some special control has been provided which is
mainly focused on two aspects. One is to adaptively adjust the operator probabilities as the
evolution process goes on and the other is to pair individuals based on their features, both
of which will be discussed in the following.

One try on adapting operator probabilities has been made by Davis [19]. The basic idea
is to adapt the probability that a genetic operator will be applied in reproduction based on
the performance of the operator’s offspring. During an evolution process, there are several

operators available to be used during each reproduction. Only one operator can be picked
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at a time. The probability of being picked for each operator is adaptively updated. Two
intuitions are used to underlie the adaptation principle. One is that the probability of ap-
plying an operator is in proportion to the observed performance of the individuals created
by that operator in the course of a run. The second is that each time not only the operator
that produces a good child will be rewarded but also the operator that set the stage for this
production will be credited. Through the actual tests, Davis concluded that such adaptation
mechanism allows rapid parameterization of operator probabilities across the range of po-
tential genetic algorithms. As another example, Ng ef al., used adaptive mutation scheme in
a genetic algorithm [43]. Such scheme varies the mutation rate proportional to the similar-
ities between the paired parents. So that when individuals become converged, the mutation
rate increases in order to effectively provide background diversity as needed. From the two
examples, it can be seen that the advantage of using an adaptive operator probability is to
avoid the prior experience in setting the otherwise fixed operator probability.

Eshelman introduced a special mechanism to avoid incest during the individual pair-
ing [24]. During the genetic operation, two members of the parent population is randomly
chosen without replacement and paired for mating. Before mating, however, the Hamming
distance between the two is calculated and if half that distance does not exceed a differ-
ence threshold, they are not mated and are deleted from the child population. In addition,
the difference threshold is dynamically decreased whenever the deletion occurrence is too
much. It is shown that such mechanism not only avoids the random chances that the same
parent are paired which wastes the entire crossover effort, but also effectively maintains the
diversity of population so as to prevent premature convergence.

The above few examples show some effort towards developing a more robust genetic
operation so that the applied genetic operator can function as needed. At this point, the
roles of genetic operators should be viewed at a higher level. Mutation serves to create
random diversity in the population, while crossover serves as an accelerator that promotes
emergent behavior from individuals. What is critical here is the relative importance of di-
versity and construction which equivalently means the search balance between exploration
and exploitation. It is true that such balance ought to be mainly controlled by the selection

scheme through the selection pressure from the fitness competition. However, such control
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power provided by simple duplication of better performing individuals may not be strong
enough. Random paring gives weakest incentive to battle with sampling error. On the other
hand, any proper extra strategy on genetic operation can provide the additional power to

control the amount of exploration and exploitation and thus help selection scheme to direct

the evolution process effectively.
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Chapter 4

Bulk Wet-etching and SEGS Simulator

4.1 Bulk Wet-etching

There are mainly two types of techniques which have been developed to produce MEMS de-
vices: surface micro-machining and bulk micro-machining, both of which have been briefly
mentioned in Chapter {. This Chapter will focus on the introduction of a particular type
of bulk micro-machining technique: bulk wet-etching process and a simulator developed
previously at Caltech called SEGS [38].

The bulk wet-etching process is a popular technique to produce high-aspect ratio 3D
mechanical structures. The detail steps have been described by Hubbard [37]. A typi-
cal process starts with a wafer cut along some crystal orientation such as (100). Then the
preparation of the wafer includes a cleaning process followed by a deposition of a thin mask
layer and then a drying in a high temperature furnace. The commonly deposited mask layer
is silicon dioxide or silicon nitride due to their high selectivity. Next a uniform layer of
photoresist is spun onto the mask layer. Such photoresist layer is used to define the geo-
metric pattern of the mask layer through the light exposure, developing and mask removing
steps. Finally, the wafer with patterned mask-layout is placed in a container of etchant to
experience the etching process. The popular etchants are KOH (potassium hydroxide), EDP
(ethylene diamine pyrocatecol) and TMAH (tetramethyl ammonium hydroxide). Since the
etching rates of most etchants are sensitive to environment temperature, the temperature
control mechanism are needed to stabilize the entire process. After a set period of etching

time, the wafer is then removed. The remaining masking layer can be stripped, leaving a
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three-dimensional shape in the silicon wafer.

It is known that the physical properties of silicon, especially the atom densities, de-
pend on its crystal planes. These crystal planes are characterized by their Miller indices
(h,k,1) which are the inverses of the (x,y,z) intercepts for the planes. For example, the (100)
plane intersects the x axis but not the y or z axes. Because of such crystalline anisotropic
properties, when silicon is etched, different planes are etched at different rates. The more
dense planes are etched at a slower rate; The etching rates are also affected by the etchant
with particular concentration and temperature. In general, the (111) planes are the most
dense planes and thus etched the slowest. It is also observed that etching rates under most
etchants preserve the same symmetry as the crystal planes. For example, (100) wafers tend

to produce shapes with four-fold symmetry.

4.2 SEGS Simulator

Various simulation methods have been briefly mentioned in Chapter 1. The SEGS method
developed by Hubbard and Antonsson [38] uses edge segmentation approach to compro-
mise the overall performance from the geometric analysis and cellular automata. In SEGS,
the etched profile at each time step is determined through two types of interactions: local
and global. Local interactions deal with the local intersections as planes appear and disap-
pear at etched corners; while global interactions take care of the global intersections arising
when two originally separated parts of a mask shape grow during etching and their etched
shapes are later merged. The geometric analysis approach is used to efficiently solve the
local interactions while the idea of cellular automata scheme is adopted to accurately detect
any global object interactions. During the local interaction, the calculations involve the two
nearest neighbors and check the relative validity of adjacent line segments. A segment is
valid if it lies in the still unetched half planes of its two neighbors in terms of the local

tangents and normal:

(s - ti—1)(ni - 8;5-1) > 0,
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Initial Masks Time: 7

Time: 14

Figure 4.1: Etching Results Under Various Time Steps Simulated by SEGS for Two (Orig-
inally Square) Holes Merging.

where

i = it segment

n = segment normal

t = segment tangent

0 = segment position delta vector.

The invalid segments are eliminated and the test is repeated for all the segments in each
shape. The global cellular calculations involve an overlayed grid. Each line segment lo-
cation is written to the grid. Global interactions are easily detected when a grid cell that
has been previously written into is overwritten. It is shown that the two hybridized meth-
ods decouple local and global interaction calculations and permits each to be optimized
individually.

Figure 4.1 shows a typical simulated result. Initially, the mask-layout consists of two
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identical square masks with four sides aligned in <100> directions. The area inside the
mask is to be etched. Each snapshot corresponds to an etched shape at a different time step.
The output etched shapes are presented through a series of polygon layers.

Later in a mask-layout synthesis application, the SEGS simulator will be used with the
later developed evolutionary algorithm to provide the simulated shape for each candidate

mask-layout.
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Chapter 5

Shape Matching

5.1 Overview

In this thesis, the goal is to search for a mask-layout that produces globally optimum etched
shape. So each mask-layout produces a solution point. The shape mismatch between any
two solutions can be treated as the feature difference or the distance between any two so-
lution points. A 2D polygon shape matching algorithm is needed to obtain such shape
mismatch. In addition, the later synthesis test through a bulk-etching simulator requires a
measurement on the shape mismatch between each 3D etched shape and the user specified
3D target shape. Thus, a 3D shape matching algorithm is also needed.

There are many matching algorithms developed especially in the computer vision com-
munity to recognize a shape that is translational, rotational and size invariant to some
known shapes. Such techniques are often referred as model-based matchings [42]. Most of
these methods are 2D matching algorithms applied to image recognition. Among those
techniques, one popular category is the polygonal approximation scheme suggested by
Pavlidis [76]. Under such scheme, an arbitrary 2D shape is approximated by a polygon
and then the shape closeness is measured through the matching between polygons. In this
chapter, some of the polygon matching algorithms developed under this category will be
examined. One particularly useful algorithm, called L2 distance polygon matching algo-
rithm, will be introduced in more detail. In terms of 3D matching, the literature is not
plentiful. Most methods searched are limited to some specific object features such as the

work done by Boyse [41]. One general approach is proposed by Bribiesca [1{], which
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however requires a large amount of computation. Inspired by the layer representation of
3D etched shapes used in the SEGS simulator, 3D shape matching is decomposed into 2D

shape matching.

5.2 2D Polygon Shape Matching

In general, the mismatch between any two polygons can be measured through a distance
function which has the properties of a metric [57]. That is, let A and B denote any two
polygons and d(A, B) represent the distance function of A and B, then d(A, B) satisfies

the following conditions:
1. d(A,B) > Oforall A and B.
2. d(A, B) = 0if and only if A = B. A shape resembles itself.

3. d(A,B) = d(B, A) for all A and B (Symmetry). The order of comparison does not

matter.

4. d(A,B)+d(B,C) > d(A, C)forall A, B, and C (Triangle Inequality). The triangle
inequality fits the intuition. It implies that if A is very similar to B and B is very
similar to C, then A and C should not be too dissimilar.

Several distance functions have been proposed. Atallah [54] introduced Hausdorff distance
for any two convex polygons. Let p be any point and d(p, A) denote the distance from p to
polygon A. That is, d(p, A) is zero if p is in the interior of A, otherwise it is the shortest
distance from p to the boundary of A or equivalently the distance from p to the point of
A that is nearest to p. Then the Hausdorff distance between polygon A and polygon B is
defined as:

di(A, B) = dy(B, A) = maz {max d(p, A), max d(g, B)} ,
pEB geA

i.e., the maximum distance from any point of any polygon to the other polygon. The obvious

the drawback of this distance is the limitation of convex polygons. Later, Cox et al. [61],
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Figure 5.1: Failure Case for Hausdorff Distance Function.

revised the Hausdorff distance as follows:

deumr(A, B) =dommr(B,A) = Y & A+ Y. d*(p,B)
peV(B) g€V (A)

where

V(A) = vertex set of polygon A

V(B) = vertex set of polygon B,

i.e., the sum of the distance squares from each vertex of each polygon to the other
polygon. Such distance function is still initially applied to convex polygons, however later,
Atallah et al. [55], extended it to any polygons including concave ones. Nevertheless, Alt
and Godau [34] argued that since the Hausdorff distance only takes into account the sets
of points on the boundaries and does not reflect the course of the boundaries, it is not
an appropriate measurement when the course of the boundaries are important. Figure 5.1
shows a failure case where the Hausdorff distance is small but the two boundaries do not
resemble each other at all. So Alt and Godau further introduced a new distance function
called FRECHET distance. The exact formulation of the distance function is given in refer-

ence [34]. A popular illustration is the following: suppose a man is walking his dog and he



58

Polygon 1 Polygon 2 Polygon 3

Figure 5.2: Failure case for Fréchet Distance Function.

is walking on the boundary of polygon A and his dog on the boundary of polygon B. Each
time both man and dog can choose different starting points and speeds and then start walk-
ing until both of them finish one cycle and determine the required length of a leash. The
task is to seek the optimal speeds and starting points for each of them so that the required
length of a leash is minimum. Such minimum length is the FRECHET distance between
polygon A and polygon B. In other words, this measurement treats each boundary mis-
match as a single worst distance between any two boundary points on the two compared
polygons. The special effort made is that it tries all possible matches so that the best of all
the worst distances is picked as the final distance. It seems that such distance calculation
requires a large amount of computation, in fact, Alt and Godau were able to show that the
entire runtime for polygon matching can be O(pqlog(pq)), where p and q are the number of
the edges of each compared polygons. The major drawback of such an approach, however,
is that it still uses a single two-point distance to determine the mismatch of two entire poly-
gon boundaries. Sometimes such a determination may not align with an intuitive notion of
shape-resemblance. Figure 5.2 shows that two fairly different polygons are matched against
the same third polygon and yield the same Fréchet distances. In the figure, both “Polygon
1" and ‘“Polygon 2" are matched against “Polygon 3”. Two copies of “Polygon 3” with dot-
ted contours are aligned with the other two to show the measured Fréchet distances which
are exactly the same under both matchings.

The final choice of the distance function used in this thesis is the slight modification
based on the one developed by Arkin ef al. [22], which is called L2 distance function and

is applicable to any polygons. Arkin ef al., used turning function © 4(s) to represent the
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Figure 5.3: The Turning Angles and Turning Functions of A Simple Polygon.

boundary of each polygon A. As illustrated in Figure 5.3, the function © 4(s) measures
the angle of the counterclockwise tangent as a function of the arc length s, measured from
some reference point O on A’s boundary. Thus © 4(0) is the tangent angle v at point O with
respect to some reference orientation which is usually set as z-axis. © 4(s) keeps track of
the angle turnings that take place at all the vertex corners, increasing with left-hand turns
and decreasing with right-hand turns. Each polygon size is scaled to a unit size. The turning
function for a polygon is a piecewise-constant function defined between 0 to 1 which makes
further computations particularly easy and fast.

With the definition of turning angles, the distance function of the shape mismatch be-

tween polygon A and polygon B is:

1 P
= 1 —_ p
d,(4, B) (eeglgg[o’l] /0 ©4(s + 1) — Op(s) + 6 ds) , 5.1)



60

where

dy(A,B) = p-norm distance value
©4(s) = turning function of polygon A = turning function A
©p(s) = turning function of polygon B = turning function B

t = shifting of reference O

6 = rotating of polygon A.

To interpret the above form, first ignore £ and 6 and the min operator, then the above formula
essentially calculates the difference between the turning function A and turning function B
with the only extra feature that the difference is expressed in a p-norm. Then add ¢ into the
formula, which means the reference O is moved along the A’s boundary by amount ¢ to get
a different starting point. © 4(s + t) represents a horizontally shifted turning function A.
Then add @ in the form, which means A is rotated by angle 6 to orient A in different angles.
The turning function A is vertically shifted by 6. So far the updated distance calculates
the difference between the shifted turning function A and the original turning function
B according to a different starting point on A and a different orientation of A. Lastly,
add the min operator to the form which means both starting point on A and orientation
of A are varied continuously and at each step obtain the difference between the shifted
turning function A and the original turning function B. The final distance is the minimum
among all the obtained differences. As can be seen, the overall procedure is similar to the
calculation of a Fréchet distance, both of which are trying to find a best boundary alignment
and from there assign the difference of the boundary features as the mismatch between
the two compared polygons. However, when calculating the difference of the boundary
features, the L2 distance reflects all the boundary differences while Fréchet distance only
reflect the worst boundary difference. Therefore, in some sense, L2 distance function is able
to capture more feature differences than Fréchet distance function. Figure 5.4 shows the
same polygon matchings illustrated in Figure 5.2. The shaded area represents the difference
between the turning functions. The smaller shaded area for the matching between “Polygon

1” and “Polygon 3” indicates that “Polygon 1” is closer to “Polygon 3” than “Polygon 2”
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Figure 5.4: Polygon Matching Using 1.2 Distance Function.

is. It seems again that to vary all different values of ¢ and # requires a huge amount of
computation. Arkin et al. [22], shows that assume A has m vertices and B has n vertices,
the distance function always achieves its local minimum when ¢ is at one of mn discrete
vertices on [0, 1]. These are called critical events. In other words, during the horizontal
shifting of turning function A, the distance values only need to be updated for the cases
where any of the vertices of A meet any of the vertices of B. Also it is shown that the
best 8 value for a given ¢ can be found in constant time. At this point, the runtime can be
O(mn(m + n)). It is further shown that through some bookkeeping, except for the initial
state, the distance value can be incrementally updated instead of entirely recalculated for
every horizontal shifting of turning function A. Thus, the final runtime can be achieved as
O(mnlog(mn)).

Finally consider the shape matching between any two mask-layouts. Since the absolute
orientation of each mask edge affects the etching outcome, the edge orientations become
part of the polygon features. Thus, the distance function does not need to be rotationally
invariant. Furthermore, through some initial tests, it is observed that there is not much
difference between the distance functions with different norms in our applications. So 1-

norm distance function is used because of its simple calculation. With that, Equation (5.1)
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can be simplified as follows:

1
d(AB)= mi / Oa(s+ 1) — Op(s)|ds, 2
1(4, B) ocBim |©4(s +1t) — ©p(s)|ds (5.2)
where
d1(A,B) = 1-norm distance value.

This shape matching function will later be used to measure the shape difference between

any two mask-layouts, and also be used to measure the polygon layer matching between two

3D layer-represented shapes
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Chapter 6

Mask-layout Synthesis and Implementation

6.1 Introduction

The goal of mask-layout synthesis is to generate the optimal mask layouts for a given
MEMS fabrication process to produce a desired functional target shape. The approach
taken here is to incorporate a forward fabrication simulator into a general evolutionary al-
gorithm loop as shown in Figure 6.1 because reversing fabrication process simulators (so
that a mask-layout might be produced) appears not to be possible, except in limited cases.
An initial random population of mask-layouts is generated. The fabrication of each layout
is simulated through a digital process simulator to produce a 3D fabricated shape, which is
compared to a user-specified desired shape. Each evolutionary loop governs the stochastic
searching behavior such that the mask-layouts whose simulated shapes are closer to the de-
sired shape are more likely to survive. More importantly, the “better”” masks are more likely
to be evolved among those survived mask-layouts for the next iteration. Through such evo-
lutionary iterations, a near global “optimum” mask-layout is likely to be found [35]. In
general, such an approach involves relatively high computational cost due to the random
learning process. It does, however, give a high level of modularity because the techniques
of evolving mask-layouts can be separated from the details of any process simulation, in
other words, evolutionary techniques can be combined with any existing simulation of fab-
rication processes to achieve mask-layout synthesis where reversing a fabrication process
simulator (so that a mask-layout might be produced) appears not to be possible.

Even though other global searching algorithms can also fit into the above framework,
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Figure 6.1: A General Approach to Realize Mask-layout Synthesis Using Evolutionary
Algorithm.

as introduced in Chapter 3, evolutionary algorithms are particular good candidates to serve
as the desired optimization technique here for two reasons. First, they are global stochastic
optimization techniques with a high level of robustness. Based on the adaptive mechan-
ics of natural genetics, an evolutionary algorithm searches global optimal region through
the genetic evolution of a generation of individuals. According to “Implicit Parallelism”
illustrated in section 3.6, such a pool of individuals brings a huge flow of solution informa-
tion effectively processed along with the genetic operations on the individuals. It is such
huge information flow that provides the algorithm with strong robust learning ability to
overcome the deceptive traps and thus increase the chance to search the global optimum
in various complex domains. Secondly, they are non-problem specific which means they
can be virtually applied to any problem as long as its objective function measurements are
available. So with the use of an evolutionary algorithm, the above-mentioned modularity

can be practically achieved.
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In our problem, mask-layouts are geometrically treated as 2D simple polygons (later
referred as polygons), which form the underlying solution space. Therefore, in the view of
an evolutionary algorithm, such solution space is the phenotype space. Each phenotype is a
2D polygon. The ultimate goal of finding an optimal mask-layout is thus directly translated
into the seeking of an optimal 2D polygon in the entire 2D polygon space. It is assumed
that the micro-fabrication outcome does not depend on where the input mask-layout is
located on a substrate, e.g., a silicon wafer. This is mostly ensured by the homogeneity
of the substrate properties and the mask-layout deposition environment. So the polygons
to be explored here are translational invariant with no interest in the absolute locations of
the polygon vertices. The interesting geometric features of each polygon can be separated
into its size and shape information. The size is simply the value of the polygon length.
The shape here is translational and size invariant but is critically dependent on rotational
variant because each edge orientation affects the etching outcome. Each shape is reflected
through a scaled polygon with each edge scaled by the original polygon size. Each scaled
edge length is called edge distance ratio which directly indicates the distance percentage
of the edge over the entire polygon size. Therefore, each polygon shape defines the edge
boundaries of a polygon through the edge distance ratios and edge directional angles. The
separation of the size and shape for any polygon further enables the entire searching for
the optimal mask polygon to be split into two stages: first find the optimal polygon shape
defined through a scaled polygon, and then find the optimal polygon size. The second stage
can be simply carried through a greedy-based searching [1] in most applications, where
the size of a fabricated shape is proportional to the size of the mask-layout. However,
the search for an optimal polygon shape is rather challenging due to the richness of edge
boundaries. Therefore, an evolutionary algorithm has been developed with the particular
goal of effectively finding a global optimal polygon shape.

To complete an evolutionary algorithm, several components have to be provided. First,
genetic operators including initializations, crossovers and mutations are needed to geneti-
cally evolve individuals. Second, a set of evolution strategies are used to control the entire
evolution process. Third, the performance evaluation is necessary to give the performance

for each individual. An algorithmic implementation (called OOGA) has been completed
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with an object-oriented concept applied to all the above components. Each component is
treated as an object and fully functions as an independent module. This chapter will cover
the developed techniques in the first two modules, all of which are independent to specific

applications and therefore can be reused.

6.2 Overall Architecture

An object-oriented software architecture has been created to implement such an evolution-
ary algorithm based framework. The framework mainly consists of three independent mod-
ules, namely: mask genetics module, evolutionary strategy module and MEMS simulation
module. The mask genetics module provides heuristic genetic operators for mask-layouts,
which include random mask generation, random crossovers and mutations. The evolution-
ary strategy module contains strategy routines to control the convergence of searching pro-
cess such as stochastic selection schemes and genetic operations to balance the searching
effort between exploration versus exploitation. The MEMS simulation module is the user
input module which contains user specified MEMS fabrication simulations and the desired
fabricated shape.

With the use of object abstraction, the development of the three modules becomes sep-
arated and thus achieves a high level of software modularity. Figure 6.2 shows the design
of three layers of object inheritance. The base layer consists of two abstract object types
called GENOTYPE and PHENOTYPE which mnemonically represent genotype and phe-
notype individuals respectively. GENOTYPE provides the interfaces of coding and genetic
operators. PHENOTYPE provides the interface of performance evaluation. All these in-
terfaces are independent to the underlying implementations and therefore, different sets of
genetic operators associated with different coding schemes can be conveniently chosen.
Different performance criteria can also be easily changed to be used for different appli-
cations with the same simulator. The second layer has the derived object types MASK
GENOTYPE and MASK PHENOTYPE devoted to mask synthesis application. The ge-
ometry of mask-layouts is stored in this layer. The third layer has the final derived types
such as REAL MASK GENOTYPE and SHAPE MATCH MASK PHENOTYPE. REAL
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Figure 6.2: An Object-oriented Architecture On Evolutionary Algorithm.

MASK GENOTYPE refers to the MASK GENOTYPE with a real coding scheme of mask-
layouts. It provides the implementations of the interfaces defined by GENOTYPE. SHAPE
MATCH MASK PHENOTYPE fulfills the major task of evaluating the performance of
the mask-layout through a specified process simulation and shape closeness measurements.
Figure 6.2 also shows the relationship between the three modules and the three layers. The
mask genetics module is built upon the base type MASK GENOTYPE and its derived types
such as REAL MASK GENOTYPE; while the simulation module is developed based on
MASK PHENOTYPE and its derived types such as SHAPE MATCH MASK PHENO-
TYPE. In this way, mask genetics module and simulation module are completely separated
by the different inheritance chains. The evolutionary strategy module is entirely constructed
from the base level objects GENOTYPE and PHENOTYPE and thus is insulated from the

other two modules by the entire second inheritance layer.

6.3 Mask Genetics Module

6.3.1 Overview

The goal of this module is to design genetic operators that will provide the genetic manipu-

lations on polygon shapes. The developed operators include initializations, crossovers and
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mutations, all of which are the necessary components to implement a complete evolution.
Particular knowledge from polygon shapes is used to provide important heuristics, which
guide the constructions of these operators so that they can more efficiently and properly
process individual features. As an example, one challenging constraint is from polygon
simplicity which involves global feature detections. With the help of heuristics, such a con-
straint can effectively be overcome. Here, the individual features are the edge boundary
features of each polygon shape. The design of each operator focuses on different ways to
process such boundary features. The main purpose of the initializations is to create enough
boundary features to serve as the major gene pool for future evolution. The challenge is how
to generate uniformly distributed polygon shapes so as to minimize the initial bias towards
any particular boundary features. Such fairness provides a “healthy” basis for crossovers
to function properly. Crossovers provide the vital force to drive an evolution process to-
wards the global optimal polygon shape. The entire search effort from crossovers is used to
exploit existing popular boundary features and meanwhile explore new boundary features.
The main challenge here is how to balance such exploitation and exploration so as to ensure
a productive searching. Therefore, crossovers are responsible for properly growing bound-
ary features. Mutations are designed to help crossover overcome deceptive traps that will
induce improper exploitation towards a local optimal region. So the main goal of mutations
is how to disrupt existent boundary features among the currently maintained individuals.
Before the design of any operators, a proper way to represent polygon shapes in geno-
type space is needed. Three popular coding schemes will be introduced. The comparison

is made with the focus on which one gives the closest intuitive match with the solution

features.

6.3.2 Mask Coding

The polygon shapes of mask-layouts are the solution points which serve as the phenotypes.
To form the corresponding genotypes, we need an appropriate coding scheme which in-
cludes the structures of genetic strings and the associated semantics. In general, for each
two dimensional polygon, two independent genetic strings are needed to specify two de-

grees of freedom. The two genetic strings will have the same size both being equal to the
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Figure 6.3: A Schematic Hlustration Of XY Coding Scheme.

number of polygon sides or polygon vertices. A real coding scheme appears to be superior
to a binary coding scheme because it provides adequate precision with a much shorter string
length. The semantics of the coding scheme however, can be various due to the different
ways to represent a polygon, some of which are described.

A polygon can be represented simply by specifying all its vertex locations in xy co-
ordinates. The two genetic strings are used to store the = and y coordinate values of each
vertex respectively. The string associated with the = coordinates is called “X String” and
the other one is called “Y String.”” Two elements from each string with the same element
position describe a polygon vertex. Such a coding scheme is called an xy-coding scheme,
and is illustrated in Figure 6.3. Under such coding, searching for an optimal polygon shape
is converted into searching of the optimal sequences of z and y coordinate values which
indicate the locations of all the polygon vertices.

Another polygon representation can be constructed by specifying all vertex locations
in polar coordinates. Each vertex has a corresponding polar ray from the origin to the
vertex. The two genetic strings are used to store the length and directional angle of each
polar ray respectively. The directional angles are measured from the positive z axis in
counterclockwise direction and are always between 0 to 2m. The string associated with the
ray length is called “RL String” and the one associated with the ray angle is called “RA

String.”” Again, two elements from each string with the same element position describe a
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Figure 6.4: A Schematic Illustration Of Polar Coding Scheme.

polygon vertex. Such a coding scheme is called a polar-coding scheme, and is illustrated in
Figure 6.4. Under such coding, searching for an optimal polygon shape is converted into
searching of the optimal sequences of polar rays which also indicate the locations of all the
polygon vertices.

A third way to represent a polygon is to capture the orientation and size information
of each edge. The location of the first polygon vertex can be arbitrarily chosen since the
vertex locations are not critical here. All the polygons must have a consistent winding
direction, either clockwise or counterclockwise, so that the orientation of each edge can be
determined. The two genetic strings are used to store the directional angles and the distance
ratios of all the edges respectively. The directional angies are measured from the positive
x axis in counterclockwise direction and are always between 0 to 27. The corresponding
storage string is called “Angle String.” The distance ratios are obtained by scaling each edge
length with a common factor, which is usually the polygon size. The associated storage
string is called “Distance String.” In this case, the two elements from each string with
the same element position describe a polygon edge. Such a coding scheme is called an
edge-coding scheme and is illustrated in Figure 6.5. The polygon shown is wound in a
counterclockwise direction. Under such coding, searching for an optimal polygon shape
is converted into searching of the optimal sequence of orientations and relative sizes of

polygon edges.
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Figure 6.5: A Schematic Illustration Of Edge Coding Scheme.

The coding semantics illustrated above are common. The implementation of OOGA
provides a convenient way for users to construct other semantics and attach them to the
string structures. In general, as discussed in section 3.2, it is important to choose an appro-
priate coding scheme for the particular problem in two aspects: one is that the important
solution features can be reflected through the coded strings in a rather simple and direct
way, and the other is that the genetic operators can be conveniently designed to effectively
propagate the solution features. The above three coding schemes can all serve as feasi-
ble ones. With the help of heuristics, to ensure the simplicity of the evolved polygons,
the associated genetic operators such as crossover and mutation can be constructed easily.
However, when considering how close each coding scheme is representationally related to
the targeted solution, differences between the techniques become apparent. The solutions
here are the shapes of polygons, which are captured through the distance ratios and the turn-
ing angles of polygon edges. Under an edge-coding scheme, the edge distance ratios are
directly encoded in “Distance String”; the edge turning angles can also be directly obtained

through the encoded directional angles in “Angle String” as shown in the following linear
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relationship:

ADA;, = DA,—DA;, 4

~ADA; + 2w 27 < ADA, < -7 6.1
TA, = ADA; 1 < ADA; < o« '
ADAZ‘—27T T < ADAZ < 27
where
DA; = directional angle of edge i

ADA; = directional angle difference of edge i and edge i-1

TA; = turning angle of edge i.

Therefore, under such coding scheme, there is a simple direct linkage between the evo-
lution of the genetic strings in genotype space and the polygon shapes in phenotype space.
Such a close correlation provides a convenient basis for the design of effective genetic op-
erations as shown in the later sections. Under both an zy-coding scheme and a polar-coding
scheme, however, the polygon shape is indirectly captured through polygon vertices, there
is no simple relationship between the polygon vertices and the defined polygon shapes,
Thus, how the searching in the space of polygon shapes is effectively carried out by the
evolution of the polygon vertices is rather unclear. In fact, the later tests on the mask ini-
tialization shows the random distribution of polygon shape under an zy-coding scheme is
relatively poor compared to those under an edge-coding scheme. Upon such considera-

tions, all the currently developed implementations in OOGA are based on the edge-coding

scheme.

6.3.3 Mask Initialization

The goal of the initialization process here is to randomly generate the first generation of
polygon shapes in 2D polygon space. The uniform distribution of the polygon shapes is
strongly desirable because it will bring the varieties of sample points that are needed for the

future effective evolution. Based on the above-described coding structure, the whole ini-
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tialization process starts from the random generation of all the individuals in the genotype
space each of which consists of two genetic strings, and then, through the chosen coding
semantics, each genotype is decoded into a phenotype which is a 2D polygon shape. Under
the real coding scheme, all the string elements in the two genetic strings are real values
within certain boundaries. Many random generators of real numbers are available to uni-
formly distribute each string element over its boundary. Therefore, the uniformity of the
individual distribution in the genotype space can be practically obtained. Now the question
is whether such uniformity can be ensured once each genotype is decoded into the corre-
sponding phenotype which is a polygon shape. The answer will be affected by the coding
semantics chosen as well as how to satisfy the polygon simplicity constraint. Especially due
to the geometric constraint from polygon simplicity, the entire initialization process will be
carried out in a heuristic manner. The outcomes of different initialization techniques will
be further assessed through actual tests.

At this point, a method to measure the distribution of polygon shapes has to be con-
structed to assess the quality of any initialization technique. Since any polygon shape is
defined through a combination of two independent variable sets which are edge distance
ratios and edge directional angles, the distribution of polygon shapes can be fully reflected
through the two separate distributions of those two variable sets. In each initialization pro-
cess, the two variable distributions will be determined to assess the distribution of each
polygon edge based on all the generated polygons. Several statistics variables are used to
measure each distribution which includes average value, standard deviation and normal-
ized x%-value through a y2-test. The x>-test essentially follows the steps described by
Kreyszig [45]. Both valid ranges of edge directional angles and edge distance ratios are
divided into intervals. For each polygon edge, among all the generated polygons, the ob-
served frequency of each interval is recorded for directional angles which is called angle
frequency and for distance ratios which is called distance frequency. The key formula used
to calculate the normalized x2-value is the following:

=X (Uf\,_ )" 6.2)
1<k<I * €k
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where

%> = normalized value of x2
I = total interval number
N = total polygon number
e = %, expected frequency of interval k
v = observed frequency of interval k.

Since the regular x2-value is sensitive to the sample size, the sample size needs to be
fixed throughout the tests for consistent comparisons. To further simplify the results, the
normalized x2-value is used which is the regular x?-value divided by the sample size as
shown in (6.2). The difference between standard deviation and x2-value should be appreci-
ated. Standard deviation measures the spread of values themselves while x2-value measures
the spread of value occurrences. A large standard deviation may well indicate a wide spread
of values, which is a good thing here. However only combined with a small x2-value, can
the spread be expected to have good uniformity. With both large standard deviation and
x2-value, the distribution is widely spread but skewed towards either the small value region
or the large value region. So both quantities are needed to describe the whole picture of a
distribution.

Consider the edge directional angles, the valid range is from O to 27. The whole range
is divided into 36 intervals. Since the directional angles of different edges are expected
to be independent upon each other, the expected average value of directional angles is the
average of valid value range which is 7, and the expected angle frequency of each interval
is the total generated polygon number (generation size) divided by 36. The distribution of
the edge distance ratios is more complicated because the distance ratios of different edges
are dependent upon each other. To simplify the measurement, all the generated polygons
are scaled to have the same size equal to 100. Thus, each edge length directly indicates
the percentage value of the edge distance ratio. The valid range is from 0 to 100. The

upper bound can be further narrowed down to 50 because any edge length represents the
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shortest distance between its two vertices and as part of a closed polygon, its length can
never exceed the half of the polygon length. The whole valid range of edge distance ratios
is divided into 20 intervals from O to 50. Since the sum of all the edge distance ratios is
fixed at 100 and there is no bias on any particular edge, the expected average value of edge
distance ratio shall be 100 divided by the number of edges. For each edge, however, the
expected distribution is no longer uniform. Every occurrence of large distance ratio for one
edge will lead to the small distance ratios for all other edges. So in general, the observed
frequency will be higher in the intervals corresponding to smaller values or in other words,
the distributions will bias towards relatively small value regions. In fact, to achieve wide
spread of edge distance ratios is difficult and plays a crucial factor to ensure a rich set of
the sampled polygon shapes.

It is rather challenging to satisfy the polygon simplicity constraint. In general, there
are two strategies to deal with it. One is to ignore such constraint during the generation
process and check the simplicity of all the decoded polygons and punish the non-simple
(e.g., self intersecting) ones as invalid solutions. However, this strategy usually causes too
many invalid solutions among the initial generation. Under the initial condition with only
few valid individuals, the further evolution is almost impossible to be effectively carried
on. Therefore, the second strategy becomes the feasible one here, which is to ensure the
simplicity of each polygon during the process of random generation. This is essentially the
problem of how to generate random uniform simple polygons. From a theoretical point of
view, no polynomial-time solution is known to solve such a problem [15]. Several heuristic
methods have been proposed, which can be categorized into two general schemes. One
is to generate a polygon among a set of fixed vertices; the other is to generate a polygon
with its vertices moving around. One available method under the first scheme and two new
methods belonging to the second scheme are presented below and the performances of the
initializations using those methods are compared through statistic tests.

Most currently available methods fall into the first scheme which are summarized by
T. Auver and M. Held [3]. All the methods start by randomly generating a specified num-
ber of vertices with a uniform distribution in a specified region. Then a simple polygon is

constructed through these vertices in a heuristic random manner. Ideally, pure uniformity
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Figure 6.6: A Schematic Illustration Of A 2-opt Move.

can be achieved by generating all the possible simple polygons through these uniformly
distributed vertices and randomly picking one. It is, however, still an open question to ask
how many simple polygons there are with a given set of vertices. Nevertheless, the above
approaches provide feasible ways to randomly generate simple polygons in an effective
heuristic manner. As an example, one method constructed by Zhu et al. [15] is called “2-
opt Moves”. To generate an n-sided polygon, this method first generates n points uniformly
distributed within a specified boundary region. The n points are then randomly permuted
in an initial sequence to form the initial polygon P. Any self-intersections of P are re-
moved by applying so-called 2-opt moves as illustrated in Figure 6.6. Each 2-opt move
replaces a pair of intersecting edges (v;, vi11), (vj, vj4+1) with the edges (vj41, v;+1) and
(vj,v;). Through the actual testing, the “2-opt Moves” method is shown to be able to gen-
erate a rich set of simple polygons [3]. If the initialization process incorporates any of the
above heuristic methods such as “2-opt Moves” method to overcome the self-intersection
constraint, the xy-coding scheme will be the best fit because the uniform distributions of
the string elements in “X String” and “Y" String” can directly ensure the same uniformity
of the correspondent vertex distributions. However, the only concern left is again that the
connection between the vertex distribution and the polygon shape distribution is not quite
clear.

Two new methods are constructed here to directly control the distribution of polygon
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shapes during random generation. Both methods focus on the random generation of poly-
gon edges instead of vertices. In the first method, a heuristic self-checking is used to incre-
mentally obtain each valid edge, whose edge directional angle and edge length are repeat-
edly generated until no intersection exists between the edge and any previously generated
ones. The random values of both edge directional angles and edge lengths are uniformly
generated within their valid ranges. However, because of the polygon simplicity constraint,
only the first edge is expected to have uniform distributions of both directional angles and
lengths. As more each new edge is generated, the distribution of the current edge will be
more affected by the restriction of avoiding edge intersections. Naturally, control over the
last edge is completely lost due to closing the polygon. Thus, the distributions of different
edges are expected to have uneven uniformities with bias towards the starting edges. To
correct this bias, the first edge of each polygon is randomly selected among all the gener-
ated edges. The distance ratio of each edge will be the edge length divided by the size of
the generated polygon. However, it is difficult for the edge distance ratios obtained in this
way to have large values. In order for an edge to have a large distance ratio, its edge length
must be large, and the remaining edge lengths must be small. This is almost impossible to
occur since the generation of edge lengths are independent random processes.

To increase the chance of obtaining large edge distance ratios, a second method is con-
structed. The distance ratios of all the edges are directly generated first. Then, each edge is
incrementally obtained by repeatedly generating the edge directional angle until no inter-
section exists between the edge and any previous ones. Figure 6.7 shows the pseudocode
for the direct generation of edge distance ratios. At each recursive step, both a distance
ratio range F'R and a portion of the edges with edge number from SE to EFE available.
FR is randomly subdivided into two subranges NR and F'R — N R; the whole portion of
the edges is also randomly split into two subportions from SE to M E and from ME to
EE. Then, NR is mapped to the portion of the edges from SE to ME, and FR — NR is
assigned to the remaining portion of the edges. Both of these portions will continue to be
subdivided through subsequent recursive steps until one distance ratio range is mapped to
each edge. The initial distance ratio is 100 and the edge number is from 1 to the number

of polygon sides. The key here is the random mapping between any value of distance ratio
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Distance Ratios: —» 0 hi,: i 100
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Polygon Edge Number: —> 1 SE ME EE Polygon Sides
N~
Recursive Segments( R.S. ): —™ IstNext R.S. 2nd Next R.S.

H/_/

Current R.S.

Variables:
SE = Starting Edge Number of Current Recursive Segment
EE = EndEdge Number of Current Recursive Segment
ME = Middle Edge Number of Current Recursive Segment
FR = Distance Ratio Range of Current RecursiveSegment
NR = Distance Ratio Range of 1st Next Recursive Segment

RandomDistanceRatios( int SE, int EE, float FR, float*& DistanceRatios )
if(EFEE—-SE==1)
Distance Ratio of Edge SE «+ FR;

1
2
3 return;

4 int ME;float NR;

5 MEFE « A Random Integer Value Within (SE, EF);

6 NR «— A Random Float Value Within (0.0, F'R);

7  RandomDistanceRatios(SE, ME, NR, DistanceRatios);

8 RandomDistanceRatios(M E, EE, FR — NR, DistanceRatios).

Figure 6.7: Pseudocode for Random Generation of Edge Distance Ratios under “Direct-

ratio Edge Increment” Method.
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range and any portion of the edges. So it is possible for one edge to have large distance
ratio once a large distance ratio range is mapped to a small portion of the edges. The main
difference between the above two methods is the way edge distance ratios are generated.
The first method is called “Indirect-ratio Edge Increment” and the second one is called
“Direct-ratio Edge Increment.” Both of the two methods directly determine the directional
angles and distance ratios of polygon edges through random generation.

If an initialization process uses either “Indirect-ratio Edge Increment” or “Direct-ratio
Edge Increment” to generate polygon shapes, the edge-coding scheme will be the best fit
because its “Angle String” and “Distance String” directly capture the directional angle and
distance ratio of each edge.

Tests have been carried out to evaluate the performance of three different initialization
techniques. The first one named as “XY-2opt” is based on the zy-coding scheme using “2-
opt Moves” to generate simple polygons; the second one named as “Edge Indirect” is based
on the edge-coding scheme with “Indirect-ratio Edge Increment” as the polygon generation
method; the third one named as “Edge Direct” is also based on the edge-coding scheme but
polygons are generated under “Direct-ratio Edge Increment” method. The package “rpg”
is used to implement the “2-opt Moves” method [4]. All the test outcomes presented are
based on the random generation of 10, 000 polygons with the side number of 5, 18 and 30.
For each side number, five edges are chosen and for each edge, the general statistic mea-
surements on the distributions of its directional angles and its distance ratios are presented.
In addition, due to the particular challenge of obtaining a good distribution of edge dis-
tance ratios, the distributions of edge distance ratios are plotted for the three initialization
techniques, which give schematic comparisons on the distribution uniformities. All the dis-
tribution plots are obtained through four steps: 1) divide the entire distance ratio range of
50 into 100 intervals; 2) measure the distance frequency of each interval for all the edges; 3)
obtain the average distance frequency for each interval by averaging the corresponding dis-
tance frequencies of all the edges; 4) plot all the average distance frequencies against each
interval. Therefore, each distribution curve exactly shows how the total 10,000 generations
of a typical edge distance ratio are distributed into the 100 intervals.

The test results are presented according to the different polygon side number. Table 6.1
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and Figure 6.8 are corresponding to 5-side polygons; Table 6.2 and Figure 6.9 are associ-
ated with 18-side polygons; Table 6.3 and Figure 6.10 belong to 30-side polygons. Among
the results, some common observations can be drawn. First, all the observed average direc-
tional angles and distance ratios listed in the tables are fairly close to the expected values.
Most average directional angles vary from 3.11 to 3.16 which are around the expected
value of m. The observed average distance ratios for 5-side, 18-side, 30-side polygons
are between the narrow variations from 19.7 to 20.2, from 3.3 to 3.4 and from 5.4 to 5.6
respectively, all of which are quite close to the expected values of 20, 5.5 and 3.3 corre-
spondingly. Second, under each initialization technique, for each statistic measurement,
the observed values in the tables are fairly close among the different chosen edges. For
example, in Table 6.1, consider the values of standard deviations measured for “XY-2opt,”
the variation for the directional angles among the five edges is from 1.803 to 1.827 and that
for the distance ratios is from 9.496 to 9.699, both of which are small range of differences.
Such small statistic variations among different edges indicate that there is no intrinsic bias
towards any particular edges during the polygon generation. Third, the directional angle
distributions are much better than the distance ratio distributions. The observed ¥ 2-values
of directional angle distributions in the tables are all much smaller compared to those of the
distance ratio distributions, which indicates that the directional angle distributions have a
much better uniformity. In addition, as the number of the polygon sides increases, neither
standard deviations nor x2-values of directional angle distributions varies much except the
X>2-values under “XY-2opt” which will be explained later. For example, all the standard
deviations of directional angles are almost fixed around 1.8 even as the polygon side num-
ber changes among 5, 18 and 30. Such small variations mean that equally good directional
angle distributions can be practically obtained even for the polygons with large number of
sides. On the other hand, both standard deviations and x2-values of distance ratio distribu-
tions degrade as the number of polygon sides goes up. For an example, under “XY-2opt”,
as the number of polygon sides increases from 5 to 30, the standard deviations decreases
from around 9.5 to about 2.1 while the ¥2-values increases from around 0.4 to about 5.8,
which means the distribution spread becomes narrower and has lower level of uniformity.

Therefore, overall, the major concern is not directional angle distributions but rather the
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distance ratio distributions. Fourth, the distance ratio distribution under “Edge Indirect”
is consistently better than the one under “XY-2opt.” Throughout the tables, as compared
to “XY-2opt,” “Edge Indirect” has higher values for all the standard deviations and lower
values for all the §2-values, which means its distribution spread is wider and more uniform.
The comparisons on the quality of the spread between the two are also illustrated in the
three plots. The curve of “Edge Indirect” is flatter and wider than that of “XY-2opt” which
is more obvious as the polygon side number increases to 18 and 30 shown in Figure 6.9
and Figure 6.10. Also, the “Edge Indirect” curve is consistently higher than the “XY-2opt”
curve in both the small value and large value regions of distance ratios. The outperforming
“Edge Indirect” indicates that by directly generating the edges instead of vertex locations,
the overall shape distributions improve in terms of the better distributed edge distance ra-
tios. Fifth, from all the three plots, the “Edge Direct” curve consistently outperforms the
other two techniques in both the small value and large value regions of distance ratios,
which means that using “Direct-ratio Edge Increment” method does increase the chance to
generate extreme distance ratios especially the large value ones.

Among the different tables and figures, there are also some different comparison results.
From Table 6.1, there is not much difference between the directional angle distributions
among the three initialization techniques. The distance ratio distributions however does
have clear difference. The distributions under “Edge Direct” is the best which has lowest
x2-values and the highest standard deviations. Especially, the 52-values of “Edge Direct” is
around 0.16 much lower than the other two whose values are around 0.4. Figure 6.8 further
demonstrates the wide spread of the “Edge Direct” curve. Especially in the small value and
large value regions of distance ratios, “Edge Direct” curve gives a big improvement. From
both Table 6.2 and Table 6.3, as indicated previously, the directional angle distributions
under “XY-2opt” degrade as the polygon side number increases from 5 to 18 and 30. The
x2-values increases roughly from 0.006 to 0.027. This again shows the worse performance
of “XY-2opt” which uses random vertex locations to control the distributions of polygon
shapes. Additionally, it becomes hard to judge the overall quality of the distance ratio
distribution for “Edge Direct” technique when the polygon side number increases to 18 and

30. In both tables, the standard deviations are still the highest which indicates a wide spread
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of the distribution. But the %2-values are also the highest which means a poor uniformity.
The distribution spreads are illustrated in both Figure 6.9 and Figure 6.10. Even though
there are occurrences of large distance ratios for “Edge Direct” curve, a large number of
occurrences have very small distance ratios and thus, in the average value region, the “Edge
Direct” curve is worse than both “Edge Indirect” and “XY-2opt.” Such uneven distribution
demonstrates the poor uniformity. Again, this is because as the number of polygon sides
increases, every single occurrence of large distance ratio for one edge directly causes more
of the rest of edges to fall into the small value regions. Such self-squeezing effect simply
can not be avoided.

The computation cost (execution time) for all the three initialization techniques to im-
plement the initializations for 5-side, 18-side and 30-side polygons are listed in Table 6.4.
“Edge Direct” is the most efficient among the three. This can be explained by the fact that
most generated edge lengths are small values and it is relatively easy for the edges with
small length to avoid self-intersections over a range of different directional angles. There-
fore, with fewer occurrences of self-intersections, the construction of each random polygon
is much faster. “Edge Indirect,” however, is overall the worst even though it is faster than
“XY-2o0pt” for the polygons with small number of sides. The bad efficiency for “Edge
Indirect” is because each time when generating an edge, once self-intersection occurs,
the current edge is randomly regenerated without learning, so the probability of causing
self-intersection is always the same for each regeneration. To make it worse, such prob-
ability will increase as the number of edges generated increases. So the self-intersection
occurs frequently during each construction for polygons with large number of sides. “XY-
2o0pt” is better because once a permutation of vertices is chosen the internal number of
self-intersections is fixed. The further construction can only decrease the self-intersections.
This scheme is stable for large numbers of sides.

In summary, based on the above comparisons, it can be seen that, even though it seems
easy for an initialization process to incorporate several available methods (such as “2-opt
Moves”) to randomly generate simple polygons based on randomly distributed vertices,
the test results on the performance of “XY-2opt” shows that such an initialization technique

does not give as good polygon shape distributions as “Edge Indirect,” which directly obtains
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Initialization Fdge Directional Angle Distance Ratio
Techniques No. Average | Standard %2-value Average | Standard 72-value
Value | Deviation Value | Deviation
1 3.134 1.818 0.007 19.995 9.547 0.421
XY-coding 2 3.160 1.818 0.006 | 19.964 9.551 0.418
& 3 3.124 1.821 0.006 19.964 9.496 0.431
2-opt Moves 4 3.174 1.803 0.005 | 20.047 9.699 0.399
5 3.126 1.827 0.006 20.069 9.588 0.418
1 3.090 1.806 0.004 20.051 10.191 0.361
Edge-coding
& 2 3.118 1.810 0.005 20.057 10.067 0.368
3 3.157 1.811 0.004 19.990 10.124 0.357
Indirect-ratio
Edge Increment 4 3.147 1.827 0.004 20.048 10.178 0.370
5 3.155 1.821 0.005 19.852 10.039 0.372
1 3.143 1.827 0.004 20.250 12.431 0.160
Edge-coding
& 2 3.144 1.798 0.003 19.934 12.326 0.164
3 3.157 1.818 0.002 19.829 12.485 0.157
Direct-ratio
Edge Increment 4 3.159 1.811 0.004 19.792 12.398 0.164
5 3.164 1.823 0.003 20.192 12.425 0.157

Table 6.1: General Statistic Measurement on the Edge Distance Ratios and Edge Directional

Angles of 10,000 5-Side Simple Polygons Generated under “XY-2opt”, “Edge Indirect” and

“Edge Direct.”
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Directional Angle

Distance Ratio

Initialization Edge
Techniques No. | Average | Standard %2-value Average | Standard 2-value
Value | Deviation Value | Deviation
1 3.160 1.819 0.020 5.517 3.256 3.159
XY-coding 6 3.148 1.821 0.025 5.576 3.304 3.135
& 10 3.122 1.833 0.018 5.613 3.301 3.113
2-opt Moves 14 3.154 1.826 0.019 5.548 3.290 3.129
18 3.100 1.831 0.016 5.510 3.253 3.172
1 3.130 1.811 0.003 5.550 3.441 3.069
Edge-coding
& 6 3.152 1.828 0.002 5.554 3.441 3.063
10 3.148 1.805 0.003 5.558 3.478 3.061
Indirect-ratio
Edge Increment 14 3.130 1.817 0.002 5.556 3.483 3.060
18 3.105 1.807 0.003 5.609 3.454 3.051
1 3.137 1.816 0.003 5.570 9.231 4.309
Edge-coding
& 6 3.157 1.815 0.003 5.607 9.157 4.242
10 3.139 1.824 0.003 5.607 9.122 4,229
Direct-ratio
Edge Increment 14 3.146 1.812 0.002 5.451 9.086 4.380
18 3.124 1.817 0.002 5.428 8.966 4.343

Table 6.2: General Statistic Measurement on the Edge Distance Ratios and Edge Directional

Angles of 10,000 18-Side Simple Polygons Generated under “XY-2opt,” “Edge Indirect”

and “Edge Direct.”
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Directional Angle

Distance Ratio

Initialization Edge
Techniques No. Average | Standard %2-value Average | Standard 2-value
Value | Deviation Value | Deviation
1 3.131 1.822 0.025 3.311 2.091 5.863
XY-coding 8 3.157 1.822 0.029 3333 2.101 5.819
& 15 3.138 1.823 0.027 3.317 2.080 5.827
2-opt Moves 22 3.154 1.817 0.027 3.309 2.099 5.880
30 3.142 1.818 0.021 3.314 2.083 5.820
1 3.167 1.811 0.002 3.304 2.171 5.220
Edge-coding -
& 8 3.142 1.822 0.003 3.361 2.171 5.151
15 3.145 1.801 0.003 3.331 2.188 5.183
Indirect-ratio
Edge Increment 22 3.154 1.819 0.002 3.341 2.171 5.217
30 3.139 1.813 0.003 3.300 2.173 5.227
1 3.164 1.808 0.004 3.325 7.127 5.959
Edge-coding
& 8 3.117 1.806 0.003 3.304 7.040 5.924
15 3.113 1.816 0.003 3.431 7.254 5.836
Direct-ratio
Edge Increment | 22 3.166 1.8111 0.004 3.352 7.204 5.963
30 3.146 1.820 0.002 3.279 7.098 5.997

Table 6.3: General Statistic Measurement on the Edge Distance Ratios and Edge Directional

Angles of 10,000 30-side Simple Polygons Generated under “XY-2opt,” “Edge Indirect”

and “Edge Direct.”
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Figure 6.8: Edge Distance Distributions of 10,000 5-Side Simple Polygons Generated under
“XY-2o0pt,” “Edge Indirect” and “Edge Direct.”
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Figure 6.9: Edge Distance Distributions of 10,000 18-Side Simple Polygons Generated
under “XY-2opt,” “Edge Indirect” and “Edge Direct.”
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Figure 6.10: Edge Distance Distributions of 10,000 30-Side Simple Polygons Generated
under “XY-2opt,” “Edge Indirect” and “Edge Direct.”

each polygon through the random generation of polygon edges. By using the “Direct-ratio
Edge Increment” method, large edge distance ratios can be obtained with a greater chance.
Especially for polygons with a small number of sides, “Edge Direct” initialization is the
best choice both in terms of the expected quality of the distributions and the efficiency.
However, poor uniformity of the distance ratio distributions for polygons with a large num-
ber of sides suggests that it should only be used when the optimal shapes are expected to
have some dominant edges with very large edge lengths. “Edge Indirect” is the best choice
among the three in most applications where the optimal shapes are expected to have non-
dominant edge lengths. It provides the best overall spread of the distance ratio distributions
around the average-valued region. Although the high computation cost is a concern, when
considered over the entire evolution process, good initialized samples are much more im-
portant. In situations where the optimal shapes are completely unknown, the combinations
of “Edge Indirect” and “Edge Direct” should be used to achieve a good distribution of

polygon shapes.
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Initialization Techniques > Sides 18 Sides 50 Sides
(sec) (sec) (sec)
XY-2opt 9.27 116.46 361.02
Edge Indirect 5.05 224.7 663.6
Edge Direct 4.71 75.9 213.6

Table 6.4: CPU Time for Sun Ultra-1 to Randomly Generate 5-Sided, 18-Sided and 30-
Sided 10,000 Simple Polygons under “XY-2opt,” “Edge Indirect” and “Edge Direct.”

6.3.4 Mask Crossover

As described in section 3.4, a crossover serves as the vital force for an evolutionary algo-
rithm to search for an optimal solution. A crossover is directly applied to genotypes. With
a proper coding scheme, genotypes are usually convenient for the design of the crossover.
Even though a crossover is implemented in the genotype space, the ultimate goal is to give
a balanced searching effort between exploration versus exploitation in the underlying phe-
notype or solution space. Exploitation refers to the effort towards narrowing the existent
small differences, while the exploration refers to the effort towards aggressively trying al-
ternative features. In our problem, the solution space consists of all 2D polygon shapes
all of which are encoded into two genetic strings in the genotype space. Every crossover
between the real-coded strings corresponds to an underlying crossover between polygon
shapes. The particular goal of the crossover here is to effectively exploit and explore such
solution space from a given generation of polygon shapes. The particular meaning of the
balance between such exploitation and exploration is further illustrated through Figure 6.11.
Comparing the edge boundaries of the two polygons, the first four edges marked with dark
outlines are rather close to each other while edge E'5 and edge F6 are quite different.
Through the crossover, the generated children polygons should inherit the common edge
boundary features of these two parent polygons. So the first four edges of all the children
polygons should be very close to their parents as a family feature, while the individual dis-

tinct feature is carried through the variations in the last two edges. In general, between any
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Figure 6.11: Boundary Comparison Between Two Polygons.

two polygons, some portions of their boundaries may have a closer match than others. The
crossover should be able to differentiate them and treat them differently. To do that, the
closely matched portions should be exploited while the largely mismatched portions need
to be explored. The exploitation refers to the effort towards narrowing the existent small
differences, while the exploration refers to the effort towards aggressively trying alternative
features.

A coding scheme has to be chosen in order to start the design of the crossover. The
edge-coding scheme illustrated in section 6.3.2 gives a convenient way for the design of
a crossover to directly process the edge boundaries of polygons. Under the edge-coding
scheme, each genotype consists of two real strings. As shown in Figure 6.5, the “Angle
String” is used to represent the directional angles of edges and the “Distance String” is
used to store the distance ratios of edges. Since each of the two strings physically covers
one degree of freedom for the representation of a 2D polygon, they are independent of each
other and need to be processed separately during each crossover. Each time, a crossover
is applied to two parent genotypes, during which a pair of “Angle String”s and a pair of
“Distance String”s are formed separately. Crossover is implemented onto the two string
pairs independently. Within each string pair, the crossover operator is applied to paired
real-valued elements which corresponds to the edge directional angles for “Angle String”

pair and the edge distance ratios for “Distance String” pair. In this way, the entire crossover
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on genotypes directly controls the crossover on the edge boundaries of polygons, which is
further realized through two separate crossovers of the edge directional angles and the edge
distance ratios.

Several available crossover operators for real-coded strings were introduced in sec-
tion 3.4. The blend crossover BLX-«, with o value set as 0.5, is used here. As shown in
Figure 3.3, this operator uniformly picks values between two points that contain the two
parents pl and p2, but may extend equally on either side, determined by a user specified
parameter «. With the « value set as 0.5, the extended interval on either side is 50 percent
of the interval between the two parent values. The key feature here is that the crossover
search range is linearly proportional to the difference in value between the parents. Under
the edge-coding scheme, BLX-0.5 is applied to all the paired elements in both the “An-
gle String” pair and the “Distance String” pair. And in addition, the crossovers on different
paired elements are independent to each other. Since the parent element values directly rep-
resent the edge boundaries, the difference in the parent values indicates the gap between the
edge boundaries. By using BLX-0.5, the crossover search range becomes narrower wher-
ever the matched edge boundaries are closer, and becomes wider whenever the matched
edge boundaries are apart. The narrow search range leads to the children values being close
to the parent values, which coincides the exploitation, while the wide search range will
accordingly lead to exploration. Therefore, an effective way to balance the exploitation
and exploration from the crossover can be achieved through the use of BLX-0.5 under the
edge-coding scheme.

Similar to initialization, the constraint of polygon simplicity has to be satisfied for all
new polygons generated through crossover. Again, an effective way to meet such a con-
straint is to ensure the simplicity of each new polygon during each crossover. Similar to the
“Indirect-ratio Edge Increment” method, each new edge is incrementally generated through
crossover, and the intersections are checked against all the previous edges. The process is
repeated for each edge until no self-intersection exists. With the choice of coding scheme
and the crossover operator plus constraint satisfaction, the entire crossover process can be
fully carried out. However, with the use of the following heuristic techniques, the overall

crossover can be more properly and effectively implemented.
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The first heuristic technique is to adjust the match sequence of the edge boundaries
stored in the genetic strings according to the geometric alignment of the two corresponding
polygon shapes. Such adjustment needs to be made before a crossover is applied. Fig-
ure 6.12 gives an illustration. Without such preadjustment, the crossover would take the
initial storage sequence in both the “Angle String” pair and ‘“Distance String” pair as the
match sequence between the edge boundaries, i.e., edge el would cross with edge E'1 and
so on. Apparently it would not give proper exploitation on those closely aligned edge
boundaries indicated with dark outlines. After the preadjustment, the correct match be-
tween the edge boundaries is found where edge el should be paired with edge E3 and so
on. During such an adjustment, both “Angle String” and “Distance String” of one paired
polygon need to be shifted according to the correct match. In Figure 6.12, the two strings of
the left polygon are shifted until the edge boundaries are aligned. The edge boundaries are
considered as aligned whenever the mismatch value of the boundary shapes corresponding
to each shifting is the minimum. Such shape alignment procedure is exactly the same as
the matching of two polygons using L2 distance function illustrated in Chapter 5, which is
implemented using Equation (5.2).

Figure 6.13 schematically shows how the alignment is detected through the match be-
tween the turning angle functions of the two polygons in Figure 6.12. The thinner function
curve corresponds to the left polygon which is shifted during the alignment search. The top
plot shows the initial state and the bottom plot shows the aligned state. The total shaded
area between two matched function curves indicates the mismatch value. The improvement
on the edge boundary alignment from the initial state to the aligned state can be observed
from the less shaded area of the bottom plot as compared to the top plot. Through such
alignment, the further crossover always becomes favorable to exploit the maximum level of
common geometric features shared by the two parent polygons.

The second heuristic is used to deal with the “last-edge problem,” which refers to the
fact that there always exists a last edge boundary unable to participate in the crossover
operation due to closing of a polygon shape, and thus receives an unfair amount of search
effort. One way to dilute the effect of such a problem can be to randomly pick the last

edge before each crossover starts. Under the randomness of the evolution processes, the
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Figure 6.14: Edge Boundary Match Between Two Simple Polygons.

overall edge boundaries may have a better chance to be get a fairly balanced search effort.
However, it still does not solve the problem. An algorithm is developed below to solve the
problem in the sense that the search effort from the crossover can still be made according to
the expected exploitation or exploration level of all edge boundaries. Since the last edge is
formed without direct control from the crossover operator, its formation can be effectively
regarded as a random exploration. Therefore, if the last edge happens to be part of the
boundaries expected to be aggressively explored through the crossover, there is no problem.

The problem comes when the last edge boundary belongs to the common features be-
tween the parent polygons, which needs exploitation instead of exploration. The loss of the
control on such an edge could easily break those closely matched edge boundaries. So an
effective approach to attack this problem is to avoid choosing the last edge as part of the
closely matched edge boundaries, and in fact the last edge should always correspond to the
worst matched edge boundaries of the two parent polygons. As a start, the worst matched
edge boundaries between the two parent polygons have to be determined. The difficulty

here is that the “Angle String” pair and the “Distance String” pair are processed separately.
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The worst match between the edge directional angles and between the edge distance ra-
tios can be found by comparing all the elements in each string pair respectively. However,
the two worst matches may not correspond to the same edge boundary. Figure 6.14 gives
a schematic illustration. The match between the edge boundaries of the two polygons is
shown through the “Angle String” pair and “Distance String” pair. The largest gap between
the paired element values is highlighted with italics in each string pair. The worst match of
edge directional angles occurs between Edge e6 and Edge /6, while the worst match of
edge distance ratios occurs between Edge e3 and Edge E3. One way to overcome such
a dilemma is illustrated in Figure 6.15. Both parent polygons are first decomposed into
four segments. The second segment and the forth segment of each polygon are assigned
to the edge boundaries with the worst distance ratio match and the worst directional angle
match respectively. Consider the left polygon in the figure: Segment2 is Edge e3 and
Segment4 is Edge e6. Then the first segment is the edge boundary portion from the forth
segment to the second segment, and the third segment is from the second segment to the
fourth segment. In the case of the left polygon, Segmentl includes Edge el and Edge
e2 and Segment3 has Edge e4 and Edge e5. After the segment decompositions,
the correspondent segments of the two polygons are paired respectively, i.e., Segmentl

and Segmentl’ form the first segment pair and so on. The first segment pair and the
third segments then both have the BLX-0.5 crossover operation applied to generate two
evolved segments for a child polygon. As shown in the figure, the segment between ver-
tex (Xs,,Ys, ) and vertex (X.,,Y,) is the outcome of the crossover between Segmentl

and Segmentl’ ; the evolved segment between vertex (Xs,, Ys,) and vertex (Xe,, Ye,) is
evolved by the crossover between Segment3 and Segment3’ . The BLX-0.5 crossover
between the second segment pair is only applied to its directional angles. Because the dis-
tance ratios of the second segment pair is the worst match in the “Distance String” pair,
the child distance ratio will not be directly evolved from its parents, and instead it will be
determined during the next reconstruction stage from the geometric constraints. Accord-
ingly, the BLX-0.5 crossover between the forth segment pair is only applied to its distance
ratios because of the worst directional angle match in this case. Therefore, in the figure,

only the crossover between the directional angles of Segment2 and Segment2’ is applied
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and yields the zero-valued directional angle of the third child edge. Correspondently, only
the crossover between the distance ratios of Segment4 and Segment4’ is implemented,
and the resulting distance ratio of the sixth child edge is 14.4. Lastly, the reconstruction is
needed to construct the whole child polygon based on the evolved first and third segments
plus the directional angle of the second segment and the distance ratio of the forth segment.

All the quantities are shown in the reconstruction section of Figure 6.15, which are:

(Xs,,Ys;) = the starting vertex of the evolved first child segment
(Xe,,Ye,) = the endvertex of the evolved first child segment
(Xs3,Yss) = the starting vertex of the evolved third child segment
(Xeg,Ye;) = the end vertex of the evolved third child segment
(X! 53 33) = the starting vertex of the shifted third child segment
(Xiy Ye,) = the end vertex of the shifted third child segment

r = the distance ratio of the forth child segment,

o = the directional angle of the second child segment,

V = thewvector from (Xs;,Ys;) t0 (Xeg,y Yes)-

During the reconstruction process, the first evolved segment is fixed while shifting the third
evolved segment so that two geometric constraints are satisfied: 1) the distance between
(Xs,,Ys,) and (X, Y], ) is equal to r; 2) the directional angle of the edge from (X, , Ye,)
to (X},,Y/,) is a. Note that the vertex coordinates of (X, Ys;), (Xe;, Yeq)s (Xss, Ysg)s
(Xes, Ye,) and the values of r and « are known. The goal is to calculate the coordinates of
the starting vertex (X{,,Yy,) of the shifted third segment. The following geometric rela-

tionship is shown in the calculation:
Constraint (1) gives:

(XL, — Xo)2+ (Y, = Y, )2 =12 6.3)
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Constraint (2) gives:

Y'.S,g _1/51

=tan o
X§3 - X(31

Definition of V gives:

V = (Xega}/ea)_(XS:i)}/SB)
= (X, Ye,) — (X,,,Y3)

e3) ~e3
Vo = Xep— Xog = Xclzg - X{?g
Vy = }/;3 - YSB = 1/613 - }/813

which implies:

Xy = X+ Ve = X+ Xy — X,

Y;la = Y33+V3!:1/;3+}/;3_}<93

Therefore, from (6.4):
Ys'3 = X;z tano — X, tana + Ye,
Replacing X/, and Y, in (6.3) with only X based on (6.5) and (6.6):
X2(1+tana®) +2X) (t1 +t2tana) + 12 +122 —r2 =0
where

tl = V,— X,

2 = Yo +V,— X tana - Y;,.

6.4)

(6.5)

(6.6)

6.7)

X, can be calculated by solving the quadratic Equation (6.7) and Y/, can be obtained
through (6.6) based on X{,. The end vertex (X/,,Y,,) of the shifted third segment can be

further determined from (6.5). Thus, the entire reconstruction is finished.
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When the first and third segments are merged, there could be self-intersection between
the segments, in which case the crossover is repeated until a valid child polygon is evolved.
In addition, the solution of Equation (6.7) may have the cases of double roots, single root
and no real root. In case of no real root, the crossover is simply repeated. Otherwise, the
actual directional angle of the second segment based on the solution will be checked against
the value of a. If the two match, the solution is accepted. If no match occurs, the crossover
is also repeated. With double roots, both solutions may be acceptable under which case one
solution is randomly chosen with 50 percent chance. The approach illustrated above can
be applied to any two matched parent polygons. Two degenerate cases may occur. One is
that the second segment and fourth segment may collapse into one edge boundary, which
means one edge has both worst matches of directional angles and distance ratios. Such
an edge will be the chosen last, and either the first or the third segment will vanish and
the appearing segment will participate in the regular crossover. The other degenerate case
is when the second segment and the fourth segment are adjacent to each other. This will
shrink either the first segment or the third segment to a single vertex which will be vertex
(X4q)Ys,)- In this case, all the calculations are the same, except the values of V;, and V,
are zeros.

As can be seen that, with the second heuristic technique, the maximum level of com-
mon features between any paired parent polygons can be properly exploited without being
randomly disrupted. Figure 6.16 shows the outcome comparison of the crossover with and
without this technique. The two initial polygons are the same as those in Figure 6.15. Each
crossover generates two children polygons. The polygons shown are arranged so that the
left children are more like the left parent polygon. The boundary match between Edge e6
and Edge E6 is the worst directional angle match and the boundary match between Edge
e3 and Edge E3 is the worst distance ratio match. The two child polygons in the middle
row of the figure result from the crossover with the last edge randomly picked among the
six edges. The left polygon is evolved with the last edge picked on Edge el’ . Its new
directional angle ends up to be different from the values that both parents share.

The right polygon is evolved with Edge E5’ as the last edge. In this case, the new

distance ratio for this edge is quite different from the region between its parents. In both
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cases, the evolved child polygons break the common features of their parents. The two
polygons shown in the last row are the results of the crossover updated with the heuristic
techniques. The improvement is that the common directional angles of the first, third, and
forth edge boundaries of the parents are all inherited through their children, and in addition,
the initial closely matched distance ratios of the first, forth, fifth and sixth edge boundaries
are also properly exploited. Therefore, it gives an overall appropriate level of exploitation
and exploration to individual boundaries according to their geometric features.

At this point, there is an additional note should be clarified. Based on the above
crossover, it can be seen that the actual control over the evolution of edge distance ra-
tios is not “direct”. During initialization, the size of all the generated polygons are scaled
to 100. However, after the crossover, the actual size of each evolved polygon may vary
depending on all the evolved distance ratios. A scaling is needed to bring each evolved
polygon size back to 100. So there is a discrepancy between the crossovered value and the
actual distance ratio after the scaling. The discrepancy may be largely due to some unpre-
dicted values caused by aggressive exploration on certain edge boundaries. This may raise
questions on the effectiveness of evolving distance ratios under such a crossover operation.
Actually, this discrepancy does not influence the performance of this crossover operation.
The key concern here is to preserve the closely matched edge boundaries between any two
parents, which include edge directional angles and relative edge distance ratios. Note that
what matters is the relative distance ratios rather than the absolute distance ratios. As shown
in Figure 6.15, during the reconstruction stage, the distance ratio of the second segment is
generated without control which could vary a lot under the expected aggressive exploration.
However, the edge lengths of the remaining edges are unchanged during the reconstruction
process and thus the relative distance ratios remain at their crossovered values. So, if there
are any closely matched features among those edges, they will be preserved.

The third heuristic involved here is the particular crossover operation on the directional
angles. The operation of a normal BLX-0.5 will cut off the crossovered value to the closest
boundary value whenever it exceeds the valid range. The valid boundary for edge direc-
tional angles is from 0 to 2. Because the actual value interval for BLX-0.5 to randomly

pick during the crossover is double the initial interval between the parent values, the angle
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value picked could be either negative or larger than 2. Under normal operation, any neg-
ative angle value will be assigned as zero and an angle that exceeds 27 will be set to 2.
This treatment, however, is inappropriate because the edge directional angles are wrapped
around. Any angle value has a one-to-one corresponding value between 0 to 27 with the
same geometric orientation. So every time an evolved directional angle is outside the valid
range, it will be converted back within 0 to 27 (mod(2m)) instead of being cut off.

Another heuristic treatment on a directional angles is involved here. Although it is
fine to simply determine the initial parent interval as the nominal angle value gap, a more
effective way is to use the geometric orientation gap, which is always smaller than or equal
to m. Figure 6.17 shows the difference between the two. The geometric orientation gap
measures the actual orientation difference between two directional angles and therefore is

the appropriate interval value to use here.
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In summary, the developed crossover focuses on a balance of searching effort between
exploitation and exploration according to the edge boundary match of any two parent poly-
gons. By using the BLX-0.5 operator, the searching range of the crossover is directly related
to the initial parent value gaps, which allows the different search efforts to be continuously
mapped to the levels of match between the parent edge boundaries. With the help of the
first and the second heuristic techniques, the closely matched edge boundaries can be found
and properly exploited, which further encourages the growth of common features among
searched polygons. The rationality of this comes from analogy with the role of “schemata”
for the searching of an optimal binary string illustrated in section 3.6. The edge boundary
of a polygon can be pictured as a binary string with each edge corresponding to a binary bit.
Any closely matched edge boundaries among a generation of polygon shapes can be used
to define the “schema.” The goal of the entire evolutionary searching process is to search
and evolve the optimal “schema” with more and more concrete “bits.”” In particular, among
any “well-performed” individuals, it is overall more likely that the carried “schemata” will
serve as promising basis for the evolution of children with even better performance and
more concrete “schemata.” Here, by recognizing the close features of polygon boundaries
among the parents and preserving them through the generation of children, it is more likely
to evolve better performed polygon shapes with more and more edge boundaries becoming
closely matched. However, just like any “schemata” building processes, under such an edge
boundary building process, it also possible for the search process to be trapped into local
optimal shapes if the trusted common features among individuals actually represents the
non-global optimal ones. The overall judgment of such risk also depends on other factors
such as selection scheme and genetic operations. Especially with the use of the mutation

operation designed in the next section, such risk can be effectively reduced.

6.3.5 Mask Mutation

As described in section 3.5, the purpose of mutation is to alter the current features of pheno-
types through random disruptions of the genetic structures of the corresponding genotypes,
and with that the sampling variety can be maintained for a current generation. The mu-

tation developed is not the main force to drive the entire searching process. Thus, the
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design of mutation is subordinated to the design of the crossover. Under an appropriate
evolutionary strategy, the supplementary role of mutation is rather important, which could
well amend the weakness of crossovers. The crossover developed in the previous section
is rather conservative in preserving the common features among polygon shapes. If such
common features turn out to be a dominant portion of a local optimal polygon shape, the
entire search is likely to be trapped. Therefore, the goal of the mutation here is to break
such common features among the currently sampled polygon shapes. There are two kinds
of mutations constructed to fulfill such purpose.

However, before the design of mutation, two issues need to be addressed. One is the
satisfaction on the polygon simplicity constraint. Similar to the crossover, self-intersection
is incrementally checked for all the mutated edges to ensure this constraint is not violated.
The other is the choice of coding scheme. Again, the edge-coding scheme is used because
of its effective genetic representation of polygon edge boundaries. Mutation is applied on a
single parent genotype each time. Under the edge-coding scheme, the “Angle String” and
“Distance String” are mutated independently. During the mutation on each string, one or
more string elements are replaced with the new values randomly regenerated within a value
boundary. All the elements of “Angle String” correspond to edge directional angles and
thus the value boundary is always from 0 to 27. The elements in “Distance String” repre-
sent the edge distance ratios with the value range from 0 to 50 as mentioned in section 6.3.3.
Actually, the upper bound for the distance ratios needs to be further adjusted for two rea-
sons. First, just like crossover, there is a discrepancy between the mutated value and the
actual distance ratios due to the polygon size scaling. Second, to actually mutate a parent
distance ratio up to around 50 will lead to a rather odd shape which is hard to construct and
useless for most applications unless the parent distance ratio is already close to 50. So the

upper bound used is set so that it varies for each parent distance ratio « with the following

formula:

_ (5000 4 100 * z)
- (150 -=z)

(6.8)
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where

z = the parent distance ratio to be mutated

u = the mutation upper bound.

The above formula is based on the assumption that all the parent polygons have the common
size of 100. The upper bound of the actual distance ratio is set as the middle value between
the parent value = and 50.

The first kind of mutation is designed to directly disrupt some existing common edge
boundaries of a parent polygon. During the mutation, a polygon shape is picked to be
mutated, and is called the mutation polygon. Then one or several other polygon shapes
are chosen from a current generation and are called companion polygons. The companion
polygons are usually the best or several top performing individuals. Then the mutation
polygon is compared against each of the companion polygons. Each comparison gives
the differences in their edge directional angles and edge distance ratios. Note that the
prealignment of the edge boundaries is needed before each two polygons are compared.
Then one final comparison result is taken as the average of all the individual comparisons.
From the final comparison result, the edge corresponding to the smallest difference in edge
directional angles is selected as the “Angle Mutation Edge,” whose directional angle will
be modified with the mutation operation. The edge with the smallest difference in distance
ratios is selected as the “Distance Mutation Edge,” and its distance ratio will be mutated
directly. After both mutations are implemented, a reconstruction is needed to form the
whole mutated polygon shape. The reconstruction is exactly the same as the crossover with
the “Angle Mutation Edge” as the second segment, and the “Distance Mutation Edge” as
the fourth segment. Figure 6.18 shows an example of the mutation process. In the mutation
polygon, the “Angle Mutation Edge” corresponds to Edge e4 and the ‘Distance Mutation
Edge” is Edge el . The mutation operation will mutate the directional angle of Edge e4
to be o, and the distance ratio of Edge el to be r. During the reconstruction, both o and
7 will be the constraints for the formation of the final mutated polygon.

The effect of such a mutation is shown in both Figures 6.19 and 6.20. Figure 6.19
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shows the mutation results on two polygons whose edge boundary match is shown in Fig-
ure 6.14. The darker edges indicate the “Angle Mutation Edge”s, which have the same
vertical directional angles. The dotted edges mark the “Distance Mutation Edge”’s, which
have the closest match of distance ratios. During the test, the two polygons are aligned
so as to automatically detect the “Angle Mutation Edge” and ‘“Distance Mutation Edge”
for each. In the mutation results presented, since all the polygon sizes are scaled to the
same value, the edge lengths can indicate the relative distance ratios. The results show that
both the directional angles and the distance ratios of the mutated edges have been altered
aggressively.

Figure 6.20 illustrates the disruptive power of this operation through a comparison of
two evolutions with and without the participation of the mutation. Both evolutions are based

on two randomly generated 8-side polygons and last 150 iterations. The first evolution is
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purely carried by the previously developed crossover. During each iteration, the current
two parent polygons are applied with the crossover, and the generated two children poly-
gons will serve as the parent polygons in the next iteration. The second evolution follows
the similar procedures except that during every iteration, the two child polygons generated
are mutated and then serve as the parent polygons for the next iteration. The initial two
parent polygons of both evolutions are the two shown at the top of the figure. The middle
plot shows the result from the first evolution. It can be seen that the difference between the
two polygon shapes varies a lot during the initial stage of evolution, which covers about
the first 50 iterations. This indicates the dominant effect from the exploration on those
largely mismatched edge boundaries, which can be expected because the edge boundaries
of the two initial polygons are quite different. After the initial stage, the evolution starts
converging in terms of the shape difference between the two parent polygons until satura-
tion occurs when the difference almost vanishes. This converging stage indicates that the
dominant searching effort has been switched from exploration to exploitation once enough
common boundary features of the two parent polygons have been evolved. This evolution
process shows the typical behavior of the crossover applied to any two polygon shapes. The
bottom plot shows the result from the second evolution with the mutation. This time, the
entire evolution process is dominated by the exploration on the edge boundaries of any two
parent polygons. It is the mutation that effectively breaks any common boundary features
evolved and preserved by the crossover.

So far, the first kind of mutation is developed to actively disrupt some existing common
boundary features in the current generation. The real purpose of doing this is to break any
“bad” edge boundary “schemata” which are evolved and preserved by the crossover so as
to prevent the entire evolution from being trapped into local optimal polygon shape. During
the early or even middle stages of evolution, with the effective power of disruption, such
mutation will be helpful to prevent premature convergence. However, if such mutation is
constantly used throughout the evolution, the ultimate goal of proper convergence will be
slowed or even never be achieved. Furthermore, it should be noted that, only “bad™ edge
boundaries need to be destroyed. With such mutation, however, any edge boundaries could

be disrupted as long as it represents common features among individuals, which could
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include the “good” ones. Therefore, such mutation should be used with caution. With this,
the second kind of mutation is designed here to particularly break the edge boundaries that
could be “bad” ones with high likelihood.

The entire mutation process consists of a detection stage and a disruption stage. The
detection stage is to detect two situations that will lead to the local stagnancy of the evo-
lution process, which have been most frequently encountered during the actual testing.
Figure 6.21 gives a schematic illustration. The figure shows a global optimal polygon on
the left and two local optimal polygons on the right. Note tha;t the overall edge boundaries
of both local optimal polygons are fairly close to the globally optimal one. However, in the
first local optimal polygon, the directional angles of Edge e4 and Edge e5 are closely
aligned. In the second local optimal polygon, the distance ratio of Edge e4 is very small
and stuck in the corner between Edge e3 and Edge e5 . In both cases, Edge e4 and
Edge e5 effectively match Edge E5 . The boundary of Edge E3, on the other hand, is
not matched by any of the local optimal ones due to its relatively small distance ratio. The
problem here is that some boundary features in the local optimal polygons are represented
through two or more edges, but should be obtained with just a single edge. With such an
edge misalignment, due to the limited number of edges provided, there is not enough room
for the rest of the edges to capture all the local boundary features of the global optimal
polygon. So the detection here is to check if there is sufficient directional angle alignment
or very small distance ratio difference between any consecutive edges. If any is detected,
the mutation is used to shortcut the two edges by a single edge with a consistent winding
direction. As shown in the two mutated polygons, the original Edge e4 and Edge e5
are replaced by Edge e5' . Such treatment requires an additional new edge to be added to
maintain the constant number of edge boundaries. A split operation is used to cut another
single edge into half size and mutate the directional angle of the first half within a specified
small range to form a new edge and another new edge is formed to close the entire polygon.
Usually the edge to be cut is the furthest edge away from the detection site of the edge
boundaries. As shown through the mutated polygons in the figure, the original Edge e2 is
chosen to be cut, after which Edge €2’ is mutated away from the original orientation, and

Edge €3’ is formed to close the polygon.
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Figure 6.21: The Second Kind of Mutation.

In summary, the two developed mutations focus on the disruption of partial features
of a single polygon shape. The first kind of mutation directly breaks the most commonly
shared edge boundaries in the current generation and thus exhibits strong disruptive effect
on evolution processes. So it can be used in the early stage of evolution to maintain the
variety of the sampled solutions and prevent premature convergence. The second kind of
mutation detects any aligned consecutive edge boundaries as the “bad” ones and modifies
it without varying the rest of the boundary features too much. So it should particularly be
used when the entire generation starts consistently converging and more and more of the
polygon shapes are closer to each other, in which case, the detected edge alignment will
have a strong indication of being a local trap and thus with the use of such mutation, the

evolution power can be regained for the further searching.
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6.3.6 Symmetry

In some applications, the evolved mask-layout may be known to have certain symmetry. As
an example, an evolutionary algorithm will be constructed below to evolve mask-layouts
whose etched shapes under a simulated silicon etching process are close to a desired shape.
As mentioned in Chapter 4, most anisotropic etching rates have a high level of symmetry
such as four-fold symmetry. If a desired shape has symmetry consistent with the symmetry
of the etching rates, the searching of any optimal mask-layouts can be limited to those
which have the same symmetry as both the desired shape and the etching rates. By doing
so, the searching effort can be greatly reduced, simply because the necessary number of
edges to be evolved becomes much smaller. In this section, only symmetry with respect to
four coordinate axes are discussed, along with the modified genetic operators. There are
two types of symmetries associated with coordinate axes. One is called quadrisymmetry in
which case a mask-layout is symmetric to both x and y axis, or in other words, the edge
boundaries in each quadrant are exactly the same. The other is called semisymmetry in

which case a mask-layout is symmetric to either z-axis or y-axis but not both.

Quadrisymmetry

There are four types of quadrisymmetries as shown through the four instances of polygons
in Figure 6.22. The solid line in each polygon indicates the portion of the edge boundaries
in the first quadrant. This portion further consists of two kinds of edges as marked with
different line thickness. The thinner line indicates the constraint edges whose directional
angles are aligned with one of the two axes and the thicker line marks the rest of the edges
which are named free edges. The two types of quadrisymmetries shown in the first row
are for the polygons with the number of edges divisible by 4 and the other two types are
for the polygons with even number of edges but not divisible by 4. So during an evolution
with a fixed number of edges, only two types of quadrisymmetries could be involved. Un-
fortunately, each one of the two types has incompatible features and has to be considered
separately. The incompatible features come from the existence of those distinct constraint
edges in each type.

Due to such symmetry, only the edges in the first quadrant need to be evolved. However,
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Figure 6.22: Four Types of Quadrisymmetries.

the genetic operations need to be modified slightly in order to take advantage of that. In
the coding scheme, the edge-coding scheme is still used but with only the edges in the
first quadrant need to be maintained. Every time an underlying mask polygon needs to
be decoded, all the stored edges can be reflected about the axes to reconstruct the whole
polygon. During the initialization, the first thing to be done is to randomly choose one of the
two possible symmetry types and then, according to the chosen types, normal initialization
techniques can be used to generate those free edges. Only the edge distance ratios need to be
randomly generated for those constraint edges. During crossover, the first thing is to detect
whether the two paired parent polygons belong to the same type. The crossover can only
be applied to the two polygons with the same symmetry types. Then, the same developed
crossover as shown in Figure 6.15 can be applied here. However, in this case, the polygon
to be used is formed by all the first quadrant edges plus the two enclosed portions of the
positive z-axis and positive y-axis. Such a polygon is named a virtual polygon, as shown
in Figure 6.22 for each symmetry type. For a crossover between any two virtual polygons,
only the free edges can be possibly chosen as the worst directional angle match. However,
the constraint edges and the two axis edges can be chosen as the worst edge distance ratio

match. Normal mutations can be applied here without changing the directional angles of
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Figure 6.23: Three Types of Semisymmetries.

Virtual Polygon

those constraint edges.

Semisymmetry

There are two major kinds of semisymmetries: the symmetry about the z-axis and the
symmetry about the y-axis. All the used techniques are exactly the same for the two. So
the discussion is only focused on one kind. Consider the semisymmetry about the z-axis.
There are three types of semisymmetries as shown through the three instances of polygons
in Figure 6.23. The solid line in each polygon indicates the portion of the edge boundaries
in the positive z-axis side. Again, this portion further consists of two kinds of edges as
marked with different line thickness. The thinner line indicates the constraint edges whose
directional angles are aligned with x-axis and the thicker line marks the rest of the edges
which are named free edges. The two types shown in the first row are for polygons with an
odd number of edges, while the third type is for polygons with an even number of edges.
So in this case, during an evolution with an even number of edges, there is no separation
of different types involved. However, in case of with an odd number of edges, there are

still two types of semisymmetries involved, and again they have to be considered separately

during an evolution.
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Due to such symmetry, only the edges in the positive z-axis side need to be evolved.
All the modifications of genetic operators on quadrisymmetry can be applied here except
that the virtual polygons only include the enclosed portion of y-axis, which are shown in

Figure 6.23 for each type.

6.4 Evolutionary Strategy Module

6.4.1 Overview

The goal of the evolutionary strategy is to control the convergence of the searching pro-
cess so as to maximize the overall likelihood of finding the global solution region within
a limited searching effort. As mentioned in Chapter 3, there are many factors that affect
the convergence of an evolutionary process which mainly include generation size, genetic
operations with crossovers and mutations, selection schemes and stopping criteria. So the
task of each evolutionary strategy becomes to determine all these factors so as to realize a
proper convergence. However, there does not exist a single evolutionary strategy which is
suitable for all applications. Therefore, the major effort made in this section is to provide a
few effective and easily used designs of particular strategies.

A deeper analysis of the dynamics of mask-layout evolution is particularly important,
because it explores issues applicable to any application that uses mask-layout evolution.
Furthermore, the understanding from such analysis will shed light on answering some of
the fundamental questions like why and how an evolutionary algorithm can be used to
solve mask-layout synthesis, and what challenges will such a technique will face, and more
importantly how to attack those challenges.

Three convergence control methods are provided here, based on the two most influen-
tial factors that affect the entire evolution performance: the selection scheme and genetic
operations. Actual tests are used to demonstrate the effectiveness of these methods through
various comparisons. In the end, evolution strategies are developed with the focus on how
to overcome one kind of deception that is most likely to be encountered in most mask-
layout evolutions. Even though effort has been made to design the strategies without being

limited to specific applications so as to maximize their reuse level, they are not appropriate
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for all applications. The main purpose of presenting them is to show in a real case how
effective strategies can be constructed through the use of the three methods. Of course,
both the strategies and the real tests reflect the actual dynamics of mask-layout evolution,

and thus can serve as guidelines for future applications.

6.4.2 Evolution Analysis

The schemata theorem introduced in section 3.6 can be extended here to analyze the dy-
namics of an evolutionary process on mask-layouts. The underlying searching space of
each evolution consists of all the 2D polygon shapes with the same specified number of
edges. Every polygon shape is composed of a series of edge boundaries each of which is
described with a distance ratio and directional angle pair. A “schema” can be interpreted
as a set of polygon shapes with similarities at certain edge boundaries. Those similar edge
boundaries are considered as defined edge boundaries and the remaining portion is taken to
be undefined edge boundaries. Such a “schema” is called an edge boundary schema. Thus,
the order of an edge boundary schema is the number of the defined edge boundaries. The
defining length refers to the largest number of undefined edge boundaries between any two
defined ones. Building blocks are specifically the short low-order edge boundary schemata
with above-average fitness values and are named edge boundary building blocks. So the en-
tire evolution of an optimal mask-layouts can be regarded as the process of searching edge
boundary building blocks with increasing order. The true power of such an iterative evo-
lution can be appreciated from the concept of “Implicit Parallelism”. Each polygon shape
with  sides is an instance of 2/~ ! edge boundary schemata. Therefore, for an evolution
with a generation size N, even though only NV polygon shapes directly participates in the
evolution during each iteration, there are somewhere from 2!~1 to N2/~! edge boundary
schemata which are implicitly involved in the parallel schema processing. It is such a large
amount of available schemata flow that provides the opportunities for an evolutionary pro-
cess to effectively explore the polygon shape space. Any successful evolution also requires
the search effort between exploration and exploitation to be balanced in the sense that every
new exploration direction taken is based on proper exploitation of currently preserved edge

boundary schemata. This turns out to be rather challenging due to the polygonal geometry
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which is likely to cause a high level of epistasis (defined below) as well as deceptions in
most applications. Any epistasis will increase the performance variances of edge boundary
schemata, which aggravates the sampling errors. Any deception will mislead the explo-
ration direction, which traps the evolution to a local optimum. So it is worthwhile to give
further analysis of each of them.

The phenomena of epistasis here refers to the situations where one portion of the edge
boundary affects the performance contribution of another portion. Further illustrations of
epistasis must be based on specific applications where the performance evaluations are
given. As an example, Figure 6.24 illustrates a 2D wet etching process. The target corner
is the desired comer to be etched, which is bounded by two (111) planes and a (100) plane
in between. The performance evaluation is given by the shape match between the actu-
ally etched corner and the target corner. “Boundary 1” and “Boundary 2" shows the edge
boundaries of two tried masks. The normal vector of each edge boundary indicates the as-
sociated etch rate and etch direction. The only difference between the two edge boundaries
comes from Edge ¢« — 1 whose normal vector is aligned with the <111> direction in
“Boundary 1” and is aligned between <111> and <100> in “Boundary 2”. The potential
performance contribution of Edge ¢ is to form the (100) plane of the target corner. How-
ever, Edge ¢ fails to give such a contribution in “Boundary 17, and succeeds in “Boundary
2” simply because the different formations of Edge ¢ — 1 . So in this case, the performance
of Edge i is affected by Edge ¢ — 1 and thus there is epistasis between the two edge
boundaries. Not all the edges always have the same level of epistasis. In this example, both
Edge ¢ + 1 and Edge ¢ 4+ 2 are aligned with (111) plane, which are quite stable during
the etching process regardless how the rest of edges are formed. Therefore, those two edge
boundaries are almost free from epistasis. In general, the epistasis tend to decrease for
the edge boundaries including more number of edges. The epistasis of an edge boundary
schema is referred to the epistasis of its similar edge boundaries. Therefore, high-ordered
edge boundary schemata tends to contain lower level of epistasis.

The deception analysis described in section 3.7 can be applied here. Deceptions are
mainly caused by some low-order deceptive edge boundary building blocks which exist

‘from the early stages of an evolution and “consistently” having new individual instances
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Figure 6.24: An Example for Epistasis in Edge Boundaries of a Mask-layout.

with competitive performance. Such performance-rewarding further attracts stronger ex-
ploitation and eventually misleads the entire evolution towards sub-optimal high-order build-
ing blocks. The individuals here are polygon shapes. The distance between two individuals
is the mismatch between the two polygon shapes. There are mainly two types of local
optima. One can be imagined as a local hill and the other as a local cliff.

For a hill-like local optimum, its neighborhood contains some polygon shapes that are
closer to the global optimum. In other words, from the top of the local hill, it is possible
to immediately “walk” closer to the global optimum. For a cliff-like local optimum, all
its neighborhood polygon shapes are further away from the global optimum, which means
that there is no immediate step from the local optimum towards the global optimum. This
leads to a hill-like local optimum, and is referred to as a deceptive hill. The deception

associated with a cliff-like local optimum is called as a deceptive cliff. Figure 6.25 gives
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a schematic illustration of the both types of deceptions. G is the global optimum. LH
is the local optimum trapped by a deceptive hill and LC is the local optimum misled by a
deceptive cliff. Two dotted trajectories illustrate the misled searching paths by the two local
traps. As shown through the first searching path, deceptive hills can mislead the exploration
region away from the global optimum. In other words, as the search “climbs” over the local
hill, the best found individual becomes more and more away from the global optimum and
thus, the search direction is completely wrong. In this case, the defined edge boundaries
of the deceptive building blocks usually carry little or no similarity to any portion of the
global polygon shape. The persistence of such premature edge boundaries will restrain the
future evolution of individual polygon shapes towards the global optimum. The attraction
of performance-rewards is likely to be rather strong to propagate the such “alien” schemata.
Therefore, if the evolution process is trapped by a deceptive hill, premature convergence is
likely to occur.

Deceptive cliffs, on the other hand, will consistently lead the search process towards
the global optimum, as illustrated by the second search path in the Figure 6.25. However,
due to edge boundary misalignment, the evolutionary process is trapped to a local polygon
shape unable to move closer to the global optimum.

The two cases illustrated in Figure 6.21 are the examples of deceptive cliffs. In this
case, the deceptive building blocks usually define the boundary features that match a major
part of the global polygon shape however, with a different number of edges. The deceptive
attraction of rewarding better is mainly due to this type of major feature matching, which
is likely to grow new polygon shapes closer to the global optimum. Since the number of
edge boundaries is fixed throughout the evolution process, the initial edge boundary mis-
alignment will eventually constrain any further growth of the global optimal features. In
general, the best evolved polygon shape is likely to be fairly close to the global optimum,
and deceptive cliffs are likely to locate on the global optimum hill as shown in Figure 6.25.
If such deception occurs, it is likely that the evolution process has detected the global op-
timum hill and started “climbing”. Therefore, the deceptive cliffs usually occur during the
middle stages of an evolution.

It can be seen that the harmful effects of deceptive hills are more likely to occur in indi-
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Figure 6.25: An Illustration on Two Types of Deceptions.

vidual applications where a performance evaluation is provided. A performance evaluation
could strongly reward the performance of any kind of edge boundary building blocks. On
the other hand, deceptive cliffs tend to commonly appear close to a global optimum, which
exist in most applications as long as a relatively well formed global optimum hill can be
identified during the searching (as compared to the situations like “needle-in-a-haystack”,
where the solution space contains many locally isolated optimums). So it is worthwhile to
construct a virtual application which only contains deceptive cliffs. By using such an appli-
cation as a testbed, evolutionary strategies to battle with deceptive cliffs can be developed
and demonstrated, which can be used in real applications. One such instance is constructed
as follows. A target polygon shape is specified as the unique global optimum. The perfor-
mance of each individual (polygon shape) is determined by its distance to the target shape.
The closer an individual is to the target shape, the higher performance value it will receive.
Because the performance is directly tied to the distance to the global optimum, no building
blocks will mislead the searching away from the global optimum and thus no deceptive hills
exists in this application. Such application is called a hill-free test.

In order to demonstrate the hill-free test results, the convergence has to be measured
to show the evolutionary process. Generational crossover disruptiveness R4 is introduced
to provide such measurement. The connection between the convergence and R, can be

appreciated starting with the following definitions:

Definition 6 Paired Crossover
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Let I be an individual space and p1, pa, c1, ¢o be four different individuals in I. A Paired
Crossover is defined as the operation of generating c1 and co through twice independent

single crossover operations between p1 and py. p1 and ps are called Parents. ¢1 and cy are

called Children.
Definition 7 Paired Crossover Disruptiveness

Let function D : I x I — R be a metric distance function. The Crossover Disruptiveness

of a paired-crossover is defined through the following formula:

_ min(D(c1,p1), D{e1, p2)) + min(D(cy, p1), D(ca, p2))

5 .
where
r = the paired crossover disruptiveness
p1, p2 = parents of the paired crossover
c1, cg = children of the paired crossover.

The r defined above essentially measures the disruptive effect from a paired crossover
through the average distance between the parents and their children. Such distance also
serves as an indication of average feature disruption and thus reflects the level of exploration

provided through the crossover.
Definition 8 Generational Crossover

Let G be a set of continuously iterative generations within an evolutionary process and G;
be the ith generation. Assume all the generations in G have the same size N, which is an
even number. The Generational Crossover of G; is defined as the operation with N /2

independent paired crossovers whose parents are drawn from G; without replacement and

whose children altogether form G 1.

Definition 9 Generational Crossover Disruptiveness
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Let C denote a generational crossover of a generation with N individuals. Also let c; be
all the paired crossovers of C, and r; be the crossover disruptiveness of c; , where i =

1,2 ... N/2. The Generational Crossover Disruption of C' is defined as:

R, = ZlgigN/Q T
N/2

R is simply the average value of all 7;, which can be interpreted as the average distance
between an individual in the parent generation and its corresponding children in the next
generation. This distance reflects the average amount of feature disruption between two
generations and thus indicates the level of exploration effort undertaken by the generational
crossover. The connection between the crossover disruptiveness and the evolution conver-
gence can be inferred from the following chain effect: a disruptive crossover provides a
strong level of exploration which leads to a large feature difference between the two con-
secutive generations which further indicates a weak convergence. Such reverse relationship
indicates that the convergence of an evolution process can be demonstrated through a func-

tion plot of R4 vs. iterations, and as the process converges, R  decreases towards zero.

6.4.3 Selection Scheme

The main task of a selection scheme is to determine the population pool for the next iter-
ation. Consider that each individual represents instances of many implicit schemata, and
such individual selection process also determines the presence of schemata in the future
evolution. So the main goal of each selection scheme is to differentiate “good” schemata
from “bad” ones based on the previous iterations and make sure that those “good” ones will
be carried by the selected individuals into the next iteration. One important criterion used to
differentiate schemata is the performance of individuals. It is believed that well-performing
individuals are likely to contain “better” schemata than those poor-performing ones. By se-
lecting and duplicating well-performing individuals, those expected “good” schemata will
have more opportunities to be exploited and grow during future iterations. Accordingly, by

eliminating some bad-performing individuals, the expected “bad” schemata will have little
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chance to be exploited or survive. In this way, the individual selection bias, also referred as
selection pressure, effectively induces bias on the level of schemata exploitation and further
leads to the control of evolutionary convergence. So the key here is to develop a selection
scheme with a conveniently adjustable selection pressure.

The entire selection scheme is divided into two stages starting with a selection stage
which is followed by a sampling stage. During a selection stage, a sampling rate is as-
signed to each individual in the current generation based on the performance values. In a
sampling stage, each individual is sampled according to a sampling rate to form the new
population pool as the next generation. Since the two stages are completely separated, vari-
ous selection schemes can be constructed with different combinations of them. In addition,
the selection pressure is directly reflected through individual’s sampling rates and thus it
is solely controlled in the selection stage. A parametric rank-based selection algorithm is
constructed during the selection stage to assign the sampling rates based on individual’s
performance rank. At the beginning, all the individuals are ranked from 1 to IV according
to their performances, where N is the generation size. Then, the sampling rate for each one

is determined by the following formula:

;_ 2.5, (6.9)

S(i) = 1.0+

e

where

i = it"individuali=1,2.. N
S(i) = sampling rate of individual ¢

S, = selection bias.

The physical meaning of the selection bias S is the excess amount of sampling rate
awarded to the top-ranked individual as compared to the middle-ranked one. From Equa-
tion (6.9), the sampling rate of the middle-ranked individual is always 1.0. Figure 6.26
illustrates three plots of function (6.9) under three different settings of .S to show how the

selection pressure can be controlled. The left plot shows the case when no selection bias
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Figure 6.26: Selection Pressure Controlled by Selection Bias S,

is applied and therefore every individual’s sampling rate is 1.0, which means no selectior.
pressure exists. The middle plot shows the case where the selection bias is between 1.0 and
2.0. In this case, every individual still receives a positive sampling rate, but with slight bias
towards the better ranked individuals, which indicates a moderate amount of selection pres-
sure. The right plot shows the case when the selection bias is greater than or equal to 1.0,
which means the top-ranked individual is almost surely to be duplicated in the next gen-
eration. Any duplications starting from the top-ranked individual will cause eliminations
beginning with the worst-ranked individual. In this case, as shown in the plot, selection
pressure is high enough to cut off some poor-performing individuals. In this way, selection
bias S}, can be used as a method to effectively adjust the selection pressure during the course
of evolution so as to control the convergence. The stochastic universal sampling algorithm
introduced in section 3.8 is used here in the sampling stage to eliminate sampling bias and
reduce sampling spread [8].

The effectiveness of the selection bias can be appreciated through a hill-free test. The
results are illustrated in Figure 6.27. The top four function plots of R, vs. iterations show

the evolution processes under four different settings of .S;. The bottom four pairs of polygon



125

Selection Bias Sb = 0.0

M WA~ AR

-

o
)

o
o

o
IS

o

crossover disruptiveness Rd
[V

o]
1 10 20 30 40 50 60 70 80 90 100
iterations

Selection Bias Sb = 0.1 x iterations

o
®

§b Tendency Curve, < -
-

o©
)

o
IS

o

crossover disruptiveness Rd
N

[o]
1 10 20 30 40 50 60 70 80 90 100
iterations

Selection Bias Sb = 0.05 x iterations

o
©

o
o

o
'S

Sb Tendency Curve_ .

o
o

crossover disruptiveness Rd

-
-
-
-

1 10 20 30 40 50 60 70 80 90 100
iterations

o

Selection Bias Sb is piecewisely valued

-

o
©

Qo
o

o
'Y

[=]

crossover disruptiveness Rd
i)

o]

1 10 20 30 40 50 80 70 80 90 100
itorations

Selection Bias §, = 0.0

Best Evolved Shape Target Shape

Selection Bias Sy, = 0.05 * iterations

Best Evolved Shape Target Shape

Selection Bias S, = 0.1 * iterations

Best Evolved Shape Target Shape

Selection Bias Sy, is piecewisely valued

Best Evolved Shape Target Shape

Figure 6.27: Effect on Convergence From Selection Bias Sj.




126

shapes show the corresponding evolution results for each Sp. All evolution processes have
the same target shape and use random pairing as their genetic operation. The generation
size 1s fixed at 50. When S, = 0, no selection pressure is applied and thus no convergence is
expected. The best evolved shape is almost like a random generated one and bears no obvi-
ous similarity to the target shape. The remaining three cases have nonzero S;, all of which
lead to the convergence. The dotted line in each function plot indicates the relative change
of S values during each evolution process. Consider both the top right and lower left cases,
their selection biases are gradually increased as the evolution goes on. However, the slope
of the top right Sp, curve is smaller than the lower left one. Therefore the selection pres-
sure is increased more gently in the top right case whose evolution process converges more
slowly, just as expected. In the lower right case, the strategy to set Sy, is such that the evo-
lution process will initially have an aggressive exploration, and then quickly converge the
search region towards the best explored outcome and finally exploit the converged region.
Therefore, Sy is increased piecewisely. During the first 30 iterations, Sy is zero and then
is quickly increased between 30 and 60 iterations and afterwards, it stays unchanged. The
resulting convergence curve is almost ideal. However, by comparing the evolved results,
the top right case gives the best result, which is closest to the target shape. Such outcomes
provide some useful clues for a proper control on the evolution convergence, which will be

recapped in a later section.

6.4.4 Genetic Operation

The stage of genetic operations is the process of using genetic operators mainly including
genetic crossover and mutation to produce a new generation from an existing one. During
an evolution, genetic operations are used right after a selection scheme for every iteration.
From the point of view of schemata, it is the genetic operations that explore and exploit
all the available schemata provided by any selection scheme. Some schemata are likely to
have more chances to be exploited than others because they have more instances among the
selected individuals. Such distribution bias on the available schemata is mainly provided
by the selection pressure. The exploitations among these schemata are the key to ensure

evolution convergence. So the selection pressure has an important influence on the over-
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all performance of the evolution process. However, using the selection pressure alone to
control the convergence may not be effective for two reasons. First, the selection pressure
only increases the likelihood for the expected amount of exploitations to occur, while what
really counts is the actual pairing of individuals. If without any strategy on the genetic oper-
ations, and only random pairing is used, the amount of exploitation versus exploration can
not always be achieved as expected. Second, due to sampling errors, the selection pressure
can not always reflect the schemata performances correctly, which will induce local traps
to mislead the evolution to converge to a local optimum. Under such cases, an extra way to
control the convergence is needed to make a self-correction. With the above two reasons,
the design goal of the genetic operations is to provide useful methods which can be finely
tuned to control the rate of convergence during the generation of new individuals.

With the above-illustrated connection between an evolution convergence and the disrup-
tiveness of a generational crossover R, the control over the convergence can be converted
to the control over R4. Note that R, is mainly affected by two factors. One is the crossover
operator and the other is the actual pairing of the parent individuals. In most cases, the
same crossover operator will be implemented throughout an evolution process, therefore
once the design of a crossover operator is fixed, the crossover disruptiveness R, is only
affected by how the individuals are paired among the parent generation. The pairing al-
gorithm presented here is based on the assumption that the disruptiveness of the crossover
operator used is inversely related to the distance between the parents. In other words, as
the distance between parents gets smaller, the crossover will tend to exploit more and thus
exhibit weaker disruptiveness. Such an assumption can be satisfied in most applications
with the proper design of the distance function.

The algorithm starts with a given selected generation with some of the individuals du-
plicated. During each pairing, two individuals are determined to participate in a paired
crossover and withdrawn from the given generation without replacement. The pairing pro-
cess stops once the generation is empty. Figure 6.28 illustrates the step to determine each
paired parents. All the individuals in the selected generation are stored in the individual
slots. Due to the duplications and eliminations in the selection stage, some individual slots

may have more than one individual and some may be empty, such as the one marked with
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a “x” in the figure.

The procedure starts by picking an individual in the smallest nonempty individual slot.
Such an individual is named as “Groom”, which will directly be one of the paired parents.
Then, N, individuals are randomly picked from the remaining nonempty slots. Note that
the individuals can be duplicated. Such N, individuals together are named as “Bride Pool”
and each one is called a “Bride.” In the figure, the “Groom” is individual G and the ‘“Brides”
are individual B1, individual B2, etc. Then the distance between the “Groom” and each
“Bride” is calculated and sorted in a nondecreasing order which is marked “Sorted Bride
Pool” in the figure. Finally, a distance bias ratio R} is used to select the final “Bride”
from “Sorted Bride Pool” as the other parent. As shown in the figure, the finally selected
“Bride” is individual B2 and the corresponding array index in the “Sorted Bride Pool” is
the smallest integer of Ry % Np. There are two possible exceptional cases. One is that at
some point of the crossover operation, the individuals left in all individual slots may be less
than Ny, under which cases, “Bride Pool” will just have to take what is available; the other
is that there may be a single nonempty individual slot left at the end of the pairing, in which
case, all its individuals will participate in mutation alone.

The above pairing algorithm automatically avoids the random chance that the same indi-
viduals are paired together. In addition, the algorithm also provides two methods to control
the distance between each paired parent. One is the size of “Bride Pool” N, and the other
is the distance bias ratio R,. The distance bias ratio controls the bias between exploitation
and exploration. If R = 0, the “Bride” with the closest distance in “Bride Pool” is always
selected and thus has strong bias towards exploitation. If R, = 1, the “Bride” with the
largest distance in “Bride Pool” is always selected and thus has strong bias towards explo-
ration. The “Bride Pool” size N}, gives the rate of bias defined by R,. Larger N, brings
more competition among the “Brides” and thus increases the bias towards either exploita-
tion or exploration. In particular, with N, = 1, the bias effect completely vanishes, which
is just like random pairing. Therefore, the distance bias ratio combined with the “Bride
Pool” size essentially controls the direction and level of convergence through its effect on
the balance between exploitation and exploration. However, the control power from R and

Ny, relies on feature competitions among the individuals in “Bride Pool”, which means the
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Figure 6.28: The Step to Determine Each Paired Parents in Pairing Algorithm.

varieties of individuals need to be maintained in a generation. Therefore, the convergence
control through these two handlers is more effective during the early and middle stages of
an evolution process where individuals are expected to have different features.

Two hill-free tests are carried to demonstrate the effectiveness of the convergence con-
trol through a combination of the distance bias ratio Ry and the “Bride Pool” size N;. Both
tests are the same as the previous one for the selection bias .S, except that now Sy, is fixed at
zero to turn off the selection bias effect and the comparisons are made for different settings
of Ry and Np. Figure 6.29 and Figure 6.30 show the results when Ry, = 0 and R = 1 re-
spectively. The structure of each figure is exactly the same as Figure 6.27. In both figures,
Ny is increasingly set to 1, 10, 25 and 50. Note that N}, = 1 is equivalent to random pairing

whose evolution plot and result are directly repeated from Figure 6.27 to serve as the com-
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parison basis. In Figure 6.29, with R} equal to 0, the remaining three evolution processes
start converging because of the complete bias towards exploitation during each genetic op-
eration. In particular, as N}, increases, the evolution converges faster because of stronger
exploitation bias. In Figure 6.30, with R, equal to 1, the remaining three plots indicate
the strong disruptiveness throughout the evolution processes. In addition, larger values of
N, also increase the overall level of disruptiveness. In both figures, none of the presented
evolution results is close to the target shape, which is also expected because there is no se-

lection pressure here and all the genetic operations are carried blindly for both exploitation

and exploration.

6.4.5 Evolution Strategy

Even though each of the three handlers provided by the above selection scheme and genetic
operation can be used alone to control the convergence of an evolution process, none of
them is able to create enough effort to the obtain proper convergence. With selection bias
alone, the evolution is purely driven by rewarding performance, which makes the evolution
outcome rather sensitive to deceptions where individuals have misleading performances.
With either distance bias ratio or “Bride Pool” size alone, none of them is capable of bring-
ing performance convergence as seen in both Figure 6.29 and Figure 6.30. With the use of
all three together, however, the chance to achieve a desirable evolution convergence can be
much increased. Selection bias controls the selection pressure based upon an individual’s
performance, which can serve as the vital force to ensure performance convergence, while
distance bias ratio and “Bride Pool” size controls the local balance between exploitation
and exploration, which can provide effective effort to fight deceptions. Therefore, selection
bias can be considered as the evolution strategy maker to create a desirable convergence
profile. Both distance bias ratio and “Bride Pool” size serve as the coordinators to ensure
the effective control from the selection bias.

A typical evolution profile can be divided into three stages with different convergence
behaviors as shown in Figure 6.31. During the early stage, little convergence is obtained
due to the dominant exploration effort. In the middle stage, exploitation effort increases and

exceeds exploration so that the search region becomes narrower and the evolution is grad-
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Figure 6.31: Different Convergence Stages of An Evolution Process.

ually converged. The final stage is where exploitation dominates and the narrowed search
region is further converged to a single best found individual. However, such a profile does
not always indicate a successful evolution. In Figure 6.27, all three cases with nonzero
selection biases have the convergence profiles more or less close to what is shown in Fig-
ure 6.31. However, only the top right case gives a good evolution outcome, while the other
two fail. In particular, the case with piecewise linear S, leads towards a local optimum with
misaligned edge boundaries indicated by dotted circles. Therefore, without some proper
strategy to control the profile, an evolution process can easily fail. In the following, sev-
eral strategies corresponding to different evolution stages are presented to serve as general
guidelines for real applications.

One particular major concern during the initial stage is how to preserve emerging edge
boundary building blocks. Due to the richness of geometry, the polygon shapes in the initial
generation are rather different from each other, which leads to highly disruptive exploration.
So any low-order schemata are likely to be destroyed. Without conservative protection on

the good ones, the initial evolution will become inefficient. However, the selection pressure
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from selection bias S is not appropriate here, because duplication will cause too much
bias on particular schemata, which is likely to induce premature convergence. Instead, the
elitist selection described in section 3.8 is a better choice. In such a selection method, the
individuals with good performance will always be preserved. Since it is at the initial stages,
the varieties of the preserved individuals are expected to be maintained, which means each
individual is likely to represent a different promising search region rather than all individual
together represent a preconverged one. Under such a conservative selection scheme, in
order to cover more area, aggressive exploration becomes even more desirable. To ensure
that, the distance bias ratio is set as 1 and the “Bride Pool” size is assigned to be the
generation size.

During the middle stage, fewer and fewer winners start competing with each other in
all the preserved search regions. This is the place where the evolution process is likely
to be misled by deceptions, especially deceptive cliffs. Several protective strategies are
taken to reduce the chance of being trapped. First, the selection bias Sy is turned on to
replace the elitist scheme so that the selection pressure can be effectively controlled. The
Sy, value is increased slowly within the range from 1 to 4 in most cases so that the evolution
can converge gently. As shown in the example in Figure 6.31, the major reason that the
top right case out-performs the lower left and lower right cases can be seen by comparing
their convergence profiles, the top right one has gently decreased slope during the middle
stage from iteration 30 to iteration 60, while the other two have rather steep downward
slopes. Slowly increased selection pressure can maintain a certain level of exploration
throughout the middle stage and therefore increases the chance for the evolution to make
a self-correction in case of being trapped. Second, the distance bias ratio Ry is gradually
decreased from 1 to 0 and the “Bride Pool” size N is also reduced from the generation
size to a small value such as 5. The value of R} directly controls the balance between the
exploitation and the exploration. As Ry, decreases, the search effort gradually switches from
exploration towards exploitation so as to keep pace with the change of selection pressure.
Only small Ny, is needed in the end since most individuals are expected to be fairly close to
each other. Third, the top-ranked individual is copied and altered with the second kind of

mutation described in section 6.3.5. If the individual is modified, it will replace the worst
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performing individual in a current generation. This process will effectively increase the
chance of breaking possible paths towards potential deceptive cliffs from the beginning.

During the final stage, most surviving individuals are expected to fall in a converging
region and therefore are fairly close to each other. A stronger convergence is needed to
effectively shrink the region. So, the selection bias is increased towards 8 in most cases so
that most exploitation will be carried out among top performing individuals. The control
effect from the distance bias ratio and the “Bride Pool” size are not expected because the
remaining individuals are expected to be fairly close to each other. The entire evolution can
be stopped when the crossover disruptiveness R is smaller than a specified threshold value
for several consecutive iterations. A typical threshold value is 0.05.

The above strategies have been implemented in the hill-free tests to examine their ef-
fectiveness. Two particular cases are presented in Figure 6.32, both of which experience
overcoming of deceptive cliffs during the middle stages of the evolution processes. Each
case has different target shape. The left one is a cross shape and the right one is a star shape.
Both cases have the same generation size equal to 50 and the same elitist selection up to the
first 20 iterations, which is followed by the control of selection bias S; with its tendency
curve shown in the top plot. The S; curve consists of two line segments with different
slopes: ki1 and ks, to control the increasing convergence rate during the middle and final
stages respectively. In this case, the first segment covers from iteration 20 to iteration 70
with k1 equal to 0.05 and the second segment covers after iteration 70 with ko set to 0.1.

The exact values of Sy, are given by the following relationships:

0.0 I < I,
Sy = k(I — 1) I
kl(Im - Ie) + k2(-[ - Im) I > Im

IA
-
A
b~
3

(6.10)

where

S, = selection bias

I = iteration number
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I, = 20
= last iteration of the initial stage
I, = 170

= last iteration of the middle stage

ky = 0.05

= slope of selection bias segment in the middle stage

ke = 01

= slope of selection bias segment in the final stage.
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The exact values of R, and NV, are given as:

1.0 I < 1.
— -1,
Rb = 1.0 - m Ie S I < Im —10
\ 0.0 I > I,-10
. 6.11)
N I < I,
N, = N — 55 (N - 5) I, <1 < I,-10
5 I,—-10 < I < I,
\ 1 I > I,
where
R, = Distance bias ratio
Ny = “Bride Pool” size
N = generation size.

The convergence curves of both evolutions are shown in the top plots. The vertical dotted
lines separate the three stages. Both curves exhibit strong exploration in the initial stage,
gentle convergence during the middle stage and quick finish-up at the final stage, all of
which are expected. In particular, the bottom part of the figure shows the best searched
outcomes at each critical iterations. Iteration 20 is right after the elitist selections. In
each case, the approximate resemblance between the presented shape and the target shape
indicates the best promising search region defined at that stage. Deceptive cliffs appears in
both cases. In the left case, the deceptive shape is the best evolved shape at iteration 47.
The edge boundary misalignment is highlighted in the dotted circle, which is caused by the
direction angle alignment between two consecutive edges. In the right case, the deception
occurs at iteration 39 in which case the edge boundary misalignment is caused by very small
edge stuck at the tip of the circled corner. Fortunately, both cases successfully overcame the

deceptions in the end, which can be seen from the best evolved shapes compared to their
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Chapter 7

Mask-layout Wet-etching Synthesis Test

7.1 Overview

An evolutionary algorithm has been constructed by incorporating a bulk wet etching simula-
tor along with a performance evaluation scheme into the application module. The algorithm
is used to synthesize mask-layouts for the simulated bulk wet etching process so that the
etched shape closely matches a specified target shape. A forward etching simulator called
SEGS and introduced in Chapter 4, is used to produce an etched shape for each candidate
mask-layout. The purpose of the test is to demonstrate the effectiveness of the evolutionary

techniques developed here.

7.2 Performance Evaluation

The evaluation of performance in an evolutionary algorithm is to provide a fitness value for
each individual through an objective function. The performance of each candidate mask-
layout is measured by the shape closeness between its etched shape and the target shape.
So the crucial task here is to obtain an algorithm to do the 3D shape matching between
two shapes. As mentioned in Chapter 5, no existing algorithm has been found to efficiently
implement general 3D shape matching. Inspired by the output format of the etching sim-
ulator SEGS [38], the desired matching of 3D shape is decomposed into a series of 2D
shape matches on successive contours. Figure 7.1 shows the output representation of SEGS

simulator for a hypothetic etched shape. Each etched shape is represented as a series of
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Figure 7.1: Ilustration on Layer Representation of 3D Etched Shapes.

horizontal sectional layers. The shape at each layer is represented by a 2D simple polygon.
All the polygon layers are vertically stacked. The distance D between the top layer and the
bottom layer defines the depth of the etched shape, which is also the etching depth. The
vertical distance between any two layers can be different, and is controlled by specifying
the corresponding display time step. This layer representation provides enough freedom
to describe all 3D etched shapes. Any number of section layers can be used to approxi-
mate an underlying 3D object depending on the desired resolution. The vertical location
of each section can be chosen to capture critical boundary features, which will focus the
evolutionary algorithm on those important features.

With the shapes represented by layers, a 3D shape matching algorithm can be realized
by a series of section matchings. This shape matching scheme is applied here with layer
representations for both target shapes and etched shapes. Since the layers of a target shape
are user specified and those of an etched shape are generated through etching process, it is
important to ensure the vertical correspondence between the two sets of layers. To do so,
the vertical layer distances in the target shape are used to control the display time steps used

in the etch simulator so that the generated etched layers will be located at the same vertical

locations.
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With that, the 3D shape matching between a target shape and an etched shape is defined
as a weighted sum of the polygon matchings between their polygon layers, which can be

expressed as:

D(T,E)= > wid;(T,E), (7.1)
1<i<M
where

= target shape

E = etched shape
= total number of polygon layers in each shape

w; = weight

d;(T,E) = polygon mismatch between i" polygon layers in both shapes.

The weights are introduced to give an extra freedom to specify the particular importance of
the feature matching of certain layers.

The shape matching algorithm between any two polygons are introduced in Chapter 5.
The L2 distance function developed by Arkin ef al., is used here [22]. Since the abso-
Iute orientation of each edge defines the features of the target shape, a slight modification
is needed to make the L2 distance function rotational variant. The modified form Equa-
tion (5.2) can be directly used here. Lastly, since Equation (7.1) measures the mismatch
value for each etched shape compared against a target shape, each candidate mask-layout
should receive a higher fitness value when its etched shape has smaller mismatch value. An
upper-limit value is used to convert every mismatch value into a fitness value. The final

fitness function is summarized below:

1
e = Faz — Z w; {eelr%ntiél /0 |OF,(s+t) — @Ti(s)|ds} , (1.2)
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where
fr = the fitness of individual k&

T = target shape

E = etched shape

M = total number of polygon layers in each shape
Frez = upper bound for all mismatch values
w; = weight
Or,(s) = turning function of i** polygon layer in target shape
Op,(s) = turning function of i** polygon layer in etched shape.

7.3 Test Results

7.3.1 Overview

It is known that because of anisotropic crystal etching, sometimes extra boundary features
are needed in the mask-layout to form some critical local geometries of MEMS structures,
such as sharp convex corners on a rectangular mesa or peg and a bent V-groove. As an
example, Figure 7.2 illustrates two real instances of mask-layouts with compensation struc-
tures. The left one was used by Puers and Sansen to compensate the convex corner formed
by two {111} planes [63] and the right one was used by Zhang et al., [80] to compen-
sate the convex corner in a restricted area surrounded with <110> edges. Even though in
both cases, the same type of convex comers are compensated, the particular advantage of
the right case is to provide larger etch depth with a similar amount of compensation area.
In general, the overall feature size of a compensation structure is proportional to the etch
depth and the exact relationship can be analytically developed based on the geometry of
the structure as well as the etching rates. For the <100> bar shown in the right case of the
figure, Zhang et al., were able to show the relationship between the bar length L. and the
etch depth. However, if the compensation structure changes, the entire relationship has to

be redeveloped, which may also be more complicated due to different geometries. On the
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Figure 7.2: Two Examples of Compensation Structures in Real Applications.

other hand, in some applications such as groove-etching, the design area is constrained in
a narrow region where a compensation structure with efficient area usage is badly needed.
Therefore, an effective way to search for different compensation structures and see the
etched outcomes becomes rather desirable. With that, the goal of this section is to show
that how the developed evolutionary algorithm can be applied to meet this objective.

In the following tests, all the results are obtained for etching on (100) wafer with KOH
etching solutions. The etch rate data are provided by Shikida et al [70], and are listed in
Table 7.1. The main results of each test are the best evolved mask-layout and its etched
shape, both of which are presented together with the mask-layout located on the top layer
and highlighted with a darker outline. During each test, the entire etching duration time
is equal to the depth of each specified target shape divided by the etching rate in <100>
direction. The implementation parameters along with the CPU time is included for each
test. Table 7.2 lists the symbols for all the parameters. Among all the parameters, three of
them are fixed for all the tests. Both N}, and R, are defined in (6.11). Sy is fixed as 0.03.
All the tests are run on 333MHz Solaris Ultra 10.

Two target shapes are used. One is the solid mesa (peg) shape and the other is the void
cross (hole) shape, both of which are shown in Figure 7.3. For the solid mesa shape, be-
cause all the sidewalls are (111) planes whose etching rates are the slowest, without any

compensation structures, all the four convex comers will be exposed to other faster planes
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Orientation Fiching Rate Orientation Fiching Rate
(um/min) (pm/min)
100 0.629 311 1.065
110 1.292 320 1.285
210 1.237 331 0.845
211 0.983 530 1.273
221 0.586 540 1.283
310 1.079 111 0.009

Table 7.1: Used Etching Rates for 34.0wt.%, 70.9 °C KOH Solution.

Symbol Description
N Generation Size
I; Total Iterations
I, Last Iteration of the Initial Stage
I, Last Iteration of the Middle Stage
S Selection Bias; See Equation (6.10)
Ny Bride Pool Size; See Equation (6.11)
Ry Distance Bias Ratio; See Equation (6.11)
Sq Stopping Threshold Value of Crossover Disruptiveness
CPU Total CPU time for each evolution process

Table 7.2: Symbols for Implementation Parameters of Each evolution Test.

and will be immediately attacked especially by the (210),(320) and (530) planes. The same
is true for all the four inner convex corners in the void cross shape whose sidewalls are also
oriented in the <111> direction. Note that, since all the top-layer edges of the two target
shapes are aligned with <110> directions, the dominant etched sidewalls are expected to
be aligned with (111) planes because of their slowest etching rates. So by intentionally set-

ting all the (111) sidewalls for the target shapes, the evolution tests are expected to capture
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Figure 7.3: Two Target Shapes Used to Test Evolutions of Compensation Structures.

the sidewall feature easily and thus be fully devoted to evolving compensation structures. In
addition, both of the target shapes and the etching rates are quadrisymmetric, therefore for
each evolved mask-layout, only the edge boundaries within the first quadrant participate in
the evolution processes with z and y axes as the constraint boundaries (Appendix D demon-
strates an evolutionary process of 8-side mask-layout for an asymmetric target shape). As
shown in the figure, the size of each target shape is defined by its feature length and its
etching depth. The aspect ratio of each target shape is defined as the ratio of etching depth
vs. feature length. The solid mesa shape is used to match the left instance in Figure 7.2.
And the void cross shape is used to match the right instance in that figure with the particu-
lar feature of the area constraint. Note that the void area within the cross boundary limits
the size of any future evolved mask-layout. Since the void area is quadrisymmetric, the
constraint area for the mask evolution can be effectively taken as the area formed by the
positive = and y axes which are aligned in the <110> directions, and the edge boundary
of the cross shape in the first quadrant. This constraint area exactly reflects the constraint
defined in the right instance of Figure 7.2.

The test results are divided into two sections according to the two target shapes. In each
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section, it will be first demonstrated that the evolutionary algorithm is capable of evolving
the desired compensation structures. Furthermore, various evolved compensation features
for each target shape are presented to show the advantage of using the algorithm to explore
alternative mask design solutions. Finally, the algorithm is used to evolve the mask-layouts

as the aspect ratio of each target shape is gradually increased.

7.3.2 Solid Square Mesa (Peg)

For all the tests below, the target shape is a solid square mesa, consisting of five polygon
layers with all the vertical intervals equal to 5 gm. Thus the etching depth D is fixed
to 20 um. With some preliminary runs, the implementation parameters are chosen as the
following: the generation size is 80; I. and I,,, are 3 and 80 respectively; k; is set to 0.01
and ks is 0.02. The chosen generation size is found to be large enough for most runs. The
initial elitist selection is used only during the first three iterations so that enough individuals
with good performance are collected without suffering too much loss of convergence. The
middle stage is set rather long with both small k; and k to provide good chance to obtain
gentle convergence. These parameters are fixed for all the testing runs in this section so that
comparisons can be made on the convergence of different runs. In fact, they are chosen such
that the most challenging runs can also obtain fairly good results. Therefore, this parameter
setting may not be optimal for all the runs, especially considering the computation cost.
As an initial start, the first test is run to show how the evolved mask-layout is improved
during an entire evolution. The results are shown in Figure 7.4. The feature length of the
target shape is set as 75 um. As shown from the convergence curve, the initial dip occurs
right after I, because of the strong convergence from the elitist selection and the effective
control by the small selection bias afterwards. In the remaining stages, the evolution con-
verges quite gently, as was hoped. The results presented contain five snapshots of the best
evolved mask-layouts and the etched shapes at critical evolution stages. More snapshots of
the evolution process are presented in Appendix B. The key is to observe how each etched
shape becomes increasingly close to the target shape. Iteration 1 gives the best one out of
all the randomly generated mask-layouts. Iteration 3 gives the best preserved mask-layout

from the elitist selection, which does contain well-distributed corner boundaries to grow the



147

Parameter Table
a(um) | D(um) | N | L |I. | I, Sy CPU (min)
75 20 80| 104 | 3 | 80 | k1=0.01; k5=0.02 96.7
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Figure 7.4: Evolution of 24-Side Mask-layout with Compensation Structure for Solid
Square (Peg) Target Shape under KOH Etching.



148

compensation features in future iterations. Iteration 80 illustrates the outcome at the end
of the middle stage. The etched shape is fairly close to the target shape, which indicates
a success in finding the global region. Iteration 102 gives the final shape evolution result
and the performance improvement comes from the final stage of exploitation. At last, the
size of the mask-layout found in Iteration 102 is scaled so that the size of its etched shape
becomes closer to the target shape. Iteration 104 shows the final best evolved result.

The second test is to evolve mask-layouts with different number of sides so as to obtain
various compensation structures for the same target shape. The feature length of the target
shape is fixed as 75 pm in all the runs. The side numbers of the evolved mask-layouts are
varied from 8 to 24, which are increased by 4 each time due to the quadrisymmetry. The
evolved results are shown in Figure 7.5. The evolution parameters and convergence curves
for each run are listed in Figure 7.6. The results presented show the best evolved mask-
layout and its etched shape for each number of sides. The top left cell shows the target
shape, for reference. The focus here is to observe the compensation features and the con-
vex corners formed. As can be seen, all the etched shapes catch the convex corners fairly
closely. From the convergence curve of each run, it can be observed that as the number of
sides increases, the corresponding evolution starts with a higher crossover disruptiveness
and converges more gently. This is because as the number of sides increases, the size of the
underlying searching space also increases and thus it is more likely to generate sampling
points further away from each other, which leads to the higher initial crossover disruptive-
ness. In addition, with larger searching space, many more shape features carried through the
edge boundary schemata are exposed to the algorithm which requires more searching effort
to properly process them. Since the outcomes of all the runs are successful, it indicates
that the multiple global optimum exist in different areas of the searching space defined by
the different number of sides in the mask-layouts. Note that it is not always better to only
search the space with a lower side numbers to save computation time because the resulting
global optimum may not be the best in terms of the amount of space used by the evolved
compensation features. Among the results presented, the compensation structures evolved
from the runs with 8-side or 12-side mask-layouts require more area outside the solid mesa

than those from 16-side and 24-side runs. Figure 7.7 illustrates the evolved compensation
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Figure 7.5: Best Evolved Mask-layouts with Various Compensation Structures for Solid
Square (Peg) Target Shape under KOH Etching.
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Parameter Table

Side Number | a (um) | D(um) | N | I; | I. | I, Sy CPU (min)
8 75 20 80 | 49 | 3 | 80 | k1=0.01; k2=0.02 24.0
12 75 20 80| 78 | 3 | 80 | k1=0.01; ko=0.02 43.0
16 75 20 80 | 8 | 3 | 80 | k1=0.01; k2=0.02 63.2
20 75 20 80 | 98 | 3 | 80 | k1=0.01; k2=0.02 79.0
24 75 20 80 | 104 | 3 | 80 | k1=0.01; k9=0.02 96.7
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Etching Profile

Target Shape Top Layer

<110

8-Side Mask & Etched Top Layer E 12-Side Mask & Etched Top Layer

Crystal Orientations of Lateral “Edges”

Side a de
Number Directional Crystal Directional Crystal
Angle (degree) Orientation Angle (degree) Orientation
8 27 <310> 64 <310>
12 23 <310> 61 <310>
16 43 <100> 35 <100> to <310>
20 30 <310> 54 <100> to <310>
24 56 <100> to <310> 54 <100> to <310>

Figure 7.7: Etched Contours at Different Time Steps for Top Layer of Solid Square (Peg)
Target Shape under KOH Etching.
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features in more detail. The top portion of the figure shows the etching process of the top
layer of each etched shape presented in Figure 7.5. In the top left cell, the top layer of the
target shape along with the coordinate system and some of the crystal orientations are pre-
sented for reference. Each etching process starts with the optimally evolved mask-layout.
The dotted lines are the etched profile corresponding to each time step. The duration of
each time step is determined by the vertical interval between each two polygon layers of
the target shape divided by the etching rate along < 100> direction. In this case, the vertical
interval is 5 um and the etching rate is 0.629 pm/min which yields 7.95 minutes for each
time step. There are totally 4 time steps. The illustrated etched contours shows how the
compensation structures form convex corners through the etching process.

It can be further noticed that even though the compensation features are different as
shown in different cells, they all can be roughly decomposed into three portions, namely
ab, be and cd. be is the free end and ab and cd are the two lateral “edges.” All the three
portions are marked on each mask-layout. In some cases, the free end is collapsed to one
point where b and c are overlapped. Also in some cases, one lateral “edge” corresponds to
more than one physical mask edges. The free end is the portion exposed to all the fast etch-
ing planes while the lateral “edges” are the key features to slow down the etching process.
The goal here is to measure the crystal orientations of the two lateral “‘edges.” To do so, the
two “edges” are approximated by the vector ab and vector dc respectively. As an example,
in the case of 12-sides, even though the lateral “edge” cd corresponds to two physical mask
edges, it is approximated by the vector dc. In this case, since the angle between the two
physical edges are small, such approximation can be used to reflect the orientation of the
overall lateral edges. Fortunately, this is true for all other cases where the approximation is
needed. Both of the vectors are defined in the coordinate system shown in the figure. The
directional angle of each vector is defined as the angle between the vector and the positive
axis and is calculated from the coordinate values of each end point. Note that this coordinate
system is 45 degrees apart from the coordinate system that defines the crystal orientation.
Thus, all the calculated directional angles need to have 45 degrees added (or subtracted due
to the symmeitry) to match the crystal orientation. The directional angles obtained and the

" approximated known crystal orientations are listed in the bottom table of Figure 7.7. As
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an example, in the case of 12-sides, the directional angle of de is calculated to be 61 de-
grees. Then subtract 45 degrees from 61 degrees to get 16 degrees. The crystal direction of
<310> is 18 degrees and therefore can be used to approximate the orientation of de. All the
approximations are made within 3 degree to a known crystal direction as listed in Table 7.1.
In case of exceeding 3 degree range, the closest boundary defined by the two known crystal
directions are presented. The results in the table shows that all the crystal orientations of the
lateral “edges” in the various evolved compensation structures essentially fall into the range
from <310> to <100>. From Table 7.1, both <310> and <100> have relatively small
etching rates, under the linear interpolation used by SEGS simulator, any orientations in
between also have small etching rates. Therefore, the range defined by <310> and <100>
represents a stable etching region which means that according to the etch rate model, all the
evolved lateral “edges” are oriented in slow etching directions, which are needed to effec-
tively slow down the undercut etching during corner compensation. The searching power
of the evolutionary algorithm can be appreciated in the sense that during each evolution
process, the information about the stable etching region can be evolved and then by trying
different edges oriented within that region the likelihood of achieving the globally optimal
compensation features can be maximized. In this case, such stable etching regions can be
regarded as the building blocks which define the promising region that includes the global
optimum. Each evolutionary process essentially explores and exploits such a region.

In the third test, seven target shapes with different aspect ratios have been tried. The
aspect ratios are gradually increased by decreasing the feature lengths from 75 pm to 30 pum
while fixing the etching depth as 20 ym. For each feature length, several runs on different
mask-layout side numbers have been tried, and the best evolved outcome is selected. The
seven best results are presented in Figure 7.8. In each column, the target shape with differ-
ent feature length is shown in the top cell and the best evolved mask-layout and its etched
shape are shown in the bottom cell. Each etched shape is fairly close to the corresponding
target shape. For the target shapes with 75 pm and 45 pm feature lengths, the evolved com-
pensation features with relatively higher side numbers appear to have more efficient area
usage. Overall, since there is no area constraint to limit the growth of compensation struc-

tures, this test is not expected to be particularly challenging. However, the various evolved
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compensation features further justify the benefits of using the evolutionary algorithm. The
implementation parameters and the convergence curves are included in Figure 7.9. Observ-
ing the convergence curves, again, it appears that the number of sides mainly determines
the searching effort involved. Some runs on small side numbers converge fairly quickly,
such as the one with a 65 um feature length which corresponds to an 8-side mask-layout.
Some runs on large side numbers involve more searching effort and converge slowly, such
as the one with a 75 um feature length which corresponds to a 24-side mask-layout. This

further indicates that increasing the aspect ratios does not bring much extra burden to the

algorithm.

7.3.3 Void Cross Shape

For all the tests below, the target shape is a void cross, and consists of four polygon layers
with all the vertical intervals equal to 10 ym. Thus the etching depth D is fixed as 30
pm. Again, with some preliminary runs, the implementation parameters are chosen as the
following: the generation size is 150; I, and I,,, are 3 and 100 respectively; ki is set as
0.01 and kg is 0.03. Compared to those in the previous section, the generation size is
larger because the runs on mask-layouts with larger number of sides are involved in this
section, which requires more sampling points in a bigger search space. Because of the
larger generation size, more iterations are expected and thus the middle stage is increased.
The value of k; is also slightly increased to bring final stage convergence for some of the
longer runs. Again, these parameters are used for all the testing runs in this section.

The first test is to show feature improvement of the evolved mask-layout as an evolution
process is converged. The results are shown in Figure 7.10. The feature length of the target
shape is set as 80 um. Observing the convergence curve, the middle stage setting appears
a little too wide for this run. The process starts with a fairly large amount of explorative
searching effort up to around Iteration 60 and then converges quickly. Before reaching
the end of the middle stage, the process has been nearly converged. The results presented
contain five snapshots of the best evolved mask-layouts and the etched shapes at critical
evolution stages. More snapshots of the evolution process are presented in Appendix C.

Iteration 3 gives the best preserved mask-layout from the elitist selection, which contains
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Feature Length a = 75 um

Best Result With 24-Side Mask

Feature Length a = 65 um

Best Result With 8-Side Mask

Feature Length a = 55 um

Best Result With 12-Side Mask

Feature Length a = 45 um

Best Result With 20-Side Mask

/

Feature Length a = 40 pm

Best Result With 16-Side Mask

P4

Feature Length a = 35 pm

Best Result With 16-Side Mask

Feature Length a = 30 pm

Best Result With 12-Side Mask

Figure 7.8: Best Evolved Mask-layouts for Solid Square Target Shapes with Decreasing
Feature Length and Fixed Etching Depth (20:m) under KOH Etching.
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Parameter Table

a(um) | D(um) | N | I | L | I, S CPU (min)
75 20 |80 | 104 80 | k1=0.01; ko=0.02 |  96.7
65 20 | 80| 62 | 3|80 | k1=0.01; k9=0.02 |  37.2
55 20 |80 8 | 3|80 | k1=0.01; k&»=0.02 |  80.1
45 20 |80 |113| 3 | 80 | k1=0.01; ks=0.02 |  97.6
40 20 |80 89 | 3|80 | ki=0.01; kp=0.02 | 88.3
35 20 |80 | 94 | 3|80 | k=0.01; k=002 | 92.4
30 20 | 80| 92 | 3|80 |k =001; k=002 | 89.1
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good corner features to grow the compensation structures later. Iteration 100 illustrates
the outcome at the end of the middle stage. The etched shape is quite close to the target
shape. Iteration 111 gives the evolved optimal shape. It can be seen that the inner convex
corners of the etched shape become sharper as compared to the one at iteration 100 which
resulted from the exploitation during the final stage. Finally, through further three iterations
of size scaling, iteration 114 shows the final result. The success in the outcome shows that
the convergence behavior examined earlier actually means the algorithm picks the “right”
information fairly efficiently or in other words, this is an easy run for the algorithm.

In the second test, the number of sides in the evolved mask-layouts is varied from 16
to 32 to obtain various compensation structures. The feature length of the target shape is
fixed at 80 pm for all the runs. The side numbers are increased by 4 each time due to the
quadrisymmetry. The test results are presented in Figure 7.11. The evolution parameters
and convergence curves for each run are listed in Figure 7.12. The results presented show
the best evolved optimal mask-layouts with their etched shape for different side numbers.
The top left cell shows the target shape for reference. Again, the focus here is to observe the
compensation structures to form the four sharp inner convex corners of each etched shape.
By comparing the convergence curves of different runs, the same observation can be made
as in the case of solid mesa. With the number of sides being increased, the corresponding
evolution starts with a higher crossover disruptiveness and converges more gently. This
means that larger searching effort is involved to evolve the compensation structures with
higher side numbers. A further examination of the evolved compensation features can be
seen from Figure 7.13. As illustrated in the case of the solid mesa, the same procedures are
used to obtain the crystal orientation of the lateral “edges” in each evolved compensation
structure. In this case, the lateral “edges” are approximated by vectors ba and cd, as shown
in the figure. The results are listed in the bottom table in the figure. Again, in this case, all
the evolved lateral “edges” are oriented within the stable etching region between <310>
and <100>, which further demonstrates the effectiveness of the evolutionary algorithm to
process complex geometric information in two dimensional space.

The third test is to evolve compensation structures for different target shapes with in-

creasing aspect ratios. The feature length of each target shape is gradually decreased from
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Parameter Table

Evolution Results

a(um) | D(um) | N L | I.| I, Sy CPU (min)
80 30 150 | 114 | 3 | 100 | k1=0.01; k9=0.03 110.5
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Figure 7.10: Evolution of 24-Side Mask-layout with Compensation Structure for Void

Cross Target Shape under KOH Etching.
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Figure 7.11: Best Evolved Mask-layouts with Various Compensation Structures for Void
Cross Target Shape under KOH Etching.
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Parameter Table

Side Number | a (um) | D (um) | N L | I, | I, S CPU (min)
16 80 30 150 | 94 | 3 | 100 | k1=0.01; k2=0.03 81.1
20 80 30 150 | 103 | 3 | 100 | k1=0.01; k2=0.03 94.3
24 80 30 150 | 114 | 3 | 100 | k1=0.01; k9=0.03 110.5
28 80 30 150 | 121 } 3 | 100 | k1=0.01; k2=0.03 120.2
32 80 30 150 | 124 | 3 | 100 | k;=0.01; k2=0.03 1314
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Etching Profile
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Side ba cd
Number Directional Crystal Directional Crystal
Angle (degree) Orientation Angle (degree) Orientation
16 29 <310> 62 <310>
20 36 <100> to <310> 63 <310>
24 55 <100> to <310> 60 <310>
28 52 <100> to <310> 56 <100> to <310>
32 26 <310> 40 <100>

Figure 7.13: Etched Contours in Different Time Steps for Top Layer of Void Cross Target
Shape under KOH Etching.
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80 pm to 40 pum while the etching depth is fixed at 30um. In this case, the particular
challenge comes from the constraint area defined within the void cross boundary. Such
constraint is expected to be limited to growing compensation features which are particu-
larly needed as the aspect ratio increases. The results are presented in Figure 7.14. Overall,
the etched shapes from the evolved mask-layouts match the corresponding target shapes,
even though some of them experience overetching, especially those with high aspect ratios.
The searching power of the algorithm can also be appreciated from the adjustments of the
compensation features in response to the increase of the aspect ratios. The evolved features
tend to grow towards the center point to give the best effort to form sharper convex corners.
Furthermore, almost all of the best evolved mask-layouts have high side numbers, which
indicates that with more sides, the algorithm is able to evolve more shorter edges so that
more features can be formed in the constrained area. All the implementation parameters
and the convergence curves are shown in Figure 7.15. In this case, the convergence curves
indicate that as the aspect ratio increases, more total iterations are involved with more gen-
tle convergence. This means that the increasing of aspect ratios challenges the algorithm to

apply more searching effort.
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Feature Length a = 80 um

Feature Length a = 70 um

Best Result With 24-Side Mask

Feature Length a = 60 pm
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Figure 7.14: Best Evolved Mask-layouts for Void Cross Target Shapes with Decreasing
Feature Length and Fixed Etching Depth (30m) under KOH Etching.
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Parameter Table

a(um) | Dum) | N | I, | L | I, S CPU (min)
80 30 | 150 | 114 100 | k1=0.01; k»=0.03 |  110.5
70 30 | 150 | 116 | 3 | 100 | k1=0.01; k»=0.03 | 1113
60 30 | 150 | 136 | 3 | 100 | k;=0.01; k»=0.03 | 142.4
55 30 | 150 | 140 | 3 | 100 | k1=0.01; k»=0.03 | 147.1
50 30 | 150 | 148 | 3 | 100 | k1=0.01; k»=0.03 | 1523
45 30 | 150 | 154 | 3 | 100 | k;=0.01; k»=0.03 | 176.6
40 30 | 150|159 | 3 | 100 | k1=0.01; k»=0.03 | 1843
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Chapter 8

Conclusion

8.1 Summary

In this thesis, evolutionary techniques have been developed for mask-layout synthesis. An
object-oriented architecture has been implemented to ensure a high level of modularity
during development and testing. All mask-layouts are represented as 2D polygons. Since
curves can be approximated with a (large) number of polygon sides, utilizing a polygo-
nal representation should not introduce any practical limitations. Genetic operators were
constructed, including coding schemes, initializations, crossovers and mutations. With the
use of edge boundary schema, the “schemata theory” is used to explain the dynamics of a
mask-layout evolution. Two types of deceptions have been examined: “hill deception” and
“cliff deception.” Finally, the selection scheme and genetic operation have been developed
and provide three control methods: selection bias, distance bias ratio and bride pool size.
These provide a convenient and effective way to control evolution convergence. Evolu-
tion strategies based on the use of these three control methods to overcome the deceptions
encountered illustrate the rate of convergence can be controlled.

An evolutionary algorithm has been constructed based on the evolution techniques de-
veloped to synthesize mask-layouts for a simulated wet etching process. The goal is that
the etched 3D shapes closely match the specified target shape. Tests of this algorithm have
been focused on the evolution of mask-layouts with various compensation structures. Even
though analytic methods can be used to design certain compensation structures, they may

not work in all situations where compensation features are desirable. Such situations may
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arise from the need to obtain the most material-efficient compensation structure within a
restricted area, or the absence of a known compensation solution for certain target shape.
The need to identify optimal compensation structures provides a particular advantage to use
an evolutionary algorithm, because it automatically provides an explorative search. The ef-
fectiveness of this approach has been demonstrated by the test results including additional
examples in Appendices 13, C, D, which further give confidence that these evolutionary
techniques can be used to evolve complex features of mask-layouts for a wide range of

applications.

8.2 Future Work

The evolutionary techniques developed here contain several limitations which need future
improvement. First, each mask-layout evolution is currently restricted to a fixed number
of sides, which adds the burden for users to guess the appropriate number of sides for the
evolved mask-layout in advance. Ultimately, the evolutionary algorithm should be able to
automatically evolve the global optimal mask-layout without the user knowing the number
of sides in advance. This capability will require the development of new crossover opera-
tors, as well as a genetic operation strategy, so that within each generation, mask-layouts
with Varioﬁs side numbers can be properly evolved.

Second, the evolution convergence can be affected by the size of each generation. Even
though a large generation size always leads to better convergence with an increasing chance
of hitting the global optimum, it may also significantly reduce the evolution efficiency, par-
ticularly when an expensive simulator is utilized to evaluate the performance of each indi-
vidual. Future effort is needed to develop a proper strategy on the choice of generation size
and incorporate it into the existing evolutionary strategies so that the evolution convergence
can be controlled in a more complete and effective way, including the computational costs
of the performance evaluation. An example of such a strategy can be varying the generation
size as each evolutionary process is carried on. Initially, a large generation size is suggested
to ensure sufficient amount of information flow being processed. As the evolution con-

verges, especially during the middle towards late stages, most individuals are expected to
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be quite similar and thus, the generation size can be reduced to minimize redundancy. Of
course, further effort is needed to determine the proper generation sizes at each stage of the
evolutionary process, and the effectiveness such an approach needs to be tested.

Third, each evolution process currently starts evolving an optimal shape based on mask-
layouts scaled to a common size. This is then followed by a greedy search for the optimal
size. This approach, however, may not always be appropriate. As an example, consider
the mask-layout synthesis for the the wet etching process implemented in Chapter 7. Most
iterations are devoted to evolving the shapes of mask-layouts under the same specified size
and then at the end, the size of the mask-layout with the evolved optimal shape is either
enlarged or reduced so that the overall size of the etched shape also matches the target
shape. It is hoped that for each etched shape formed by a size variation, the shapes of all
its polygon layers stay the same. Howeyver, in most cases, this will not be true since the
size variation of a mask-layout only changes the lateral size of its etched shape not the
etching depth. With fixed etching depth, the etching time is also fixed and therefore, all
the etching vectors which represent the direction and magnitude of the lateral motion for
each mask edge remain unchanged. Under these fixed etching vectors, the change of the
mask size will directly cause a change of the relative motion among the edges which further
changes the shapes of the polygon layers. The current approach to deal with it is to make a
good initial guess on the final size of the mask-layout and set it as the common scaled size
during the shape evolution. In this way, during the final size searching stage, only small
size variations are involved and this leads to only small changes in the shapes of etched
polygon layers. Clearly, this approach directly relies on the initial guess of the mask size
which is not an effective way to solve the problem.

As an illustration, Figure &.1 shows two cases where the common scaled sizes are ini-
tially set improperly. In each case, two target shapes are presented; one is a solid square
(peg) and the other is a void cross (hole). The feature size and etching depth of each target
shape are indicated in the figure. Each evolution yields the optimal shape of mask-layouts
whose etched shape closely matches the target shape, as shown in the middle columns.
However, due to the final stage variation in size, the corresponding adjustments of etched

shapes experience either overetching or underetching. The top portion of the figure shows
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the case of overetching where all the convex corners of each etched shape are formed and
then overetched due to the excess etching. The bottom portion of the figure shows the case
of underetching where the etching process stops before all the convex corners are formed.
Both cases show bad outcomes because the initially guessed sizes were either too large or
too small. Therefore, future effort is needed to eliminate this problem. One possible way
may be to evolve the shape and the size separately but simultaneously. Usually, the size
quickly converges. However, such convergence may restrict the further evolution of the
edge distance ratio of the mask-layouts. So the challenge comes from how to balance the
two evolution efforts.

Finally and most importantly, future efforts are needed to extend the current appli-
cation. Mask-layout synthesis on wet etching processes with two or more etching steps
appears likely to be an important and power application of such evolutionary techniques
because the connection between mask-layouts and their etch shapes can be rather difficult
to conceive and thus the exploration of good mask candidates becomes more useful. In
addition, future mask-layout synthesis may not be limited to the shape matching between
the etched shape and target shape. The performance evaluations may be directly provided
in terms of desired design functions. In other words, such an evolutionary algorithm based
approach can ultimately be used to achieve both the process synthesis and shape synthesis

mentioned in Chapter 1.
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Appendix A

Conversion Between Binary Coding And Gray

Coding

The conversion formula from binary coding to Gray coding is:

by ko= 1
bk+1®bk E > 1

where

gr = kth Gray code bit
b, = kth binary code bit

@ = addition mod 2.

The conversion from Gray coding to binary coding is:

b= Y g

1<i<k

The above summation is done modulo 2. As an example, the binary code 1101011

corresponds to the Gray code of 1011110.
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Appendix B

An Evolutionary Process of 24-Side Mask-layout for
Solid Square Peg Target Shape under KOH Etching
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Appendix C

An Evolutionary Process of 24-Side Mask-layout for
Void Cross Target Shape under KOH Etching

Void Cross Target Shape ': Best Evolved Mask & Etched Shape ': Best Evolved Mask & Etched Shape
\

Best Evolved Mask & Etched Shape 3 Best Evolved Mask & Etched Shape s

Teration 100 Tteration 111 : Tteration 114




173

Appendix D

An Evolutionary Process of 8-Side Mask-layout for

Void Asymmetric Target Shape under KOH Etching
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