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ABSTRACT

In the unconstrained chamnel with additive Gaussian noise, where the
optimum detector is based on correlation or matched filters, the quality
of a code can be expressed as a function of the correlation values between
code words. For a cyclic-sequence code, optimality reduces to a criterion
to be met by the autocorrelation function of the sequence. Methods are
presented here for determining cyclic sequences with given correlation
properties.

When the amognt of equipment in the receiver is limited, matched
filtering is no longer the optimal detection scheme. A better system, as
is shown here, is one which, by the use of a Boolean function, combines
several "component" sequences to generate the transmitted signal; the
receiver consists of filters matched to each component. The logic, theb
number of components, the requirements of the component sequences to opti—
mize fhe system, and a general method for treating Boolean logics are given

in this work,
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INTRODUCTION

Over the past fewlyears, cyclic sequences have played an increasingly
important role as information codes in digital communications. They have
found a welcome place in secret and secure communications schemes, missile
command and telemetry systems, and interplanetary and satellite ranging
experiments. Each such scheme exerts its own particular need on the type
of code it uses; but, due to the fact that the optimal detectors for the
Gaussian channel are correlating devices, part of each need can be described
as a requirement on the correlation of a code.

. The performance of such systems relies heavily upon the types of
sequence-correlation properties available to the designer. He desires a
code which will tend to minimize the errors caused by noisé. By this, we
mean that each of the possible situations presented to the receiver must be
as mutually distinguishable as possible. When the information of a code is
contained in the phase-shift of a transmitted sequence, maximal distinguish-
ability means that the autocorrelation function of the sequence must be much
higher in-phase than out-of-phase,
| On the other hand, suppose that the combined phase-shifts of several
sequences'are the information carriers and suppose that we combine, at the
transmitter, these several SequenCes together into a single code. This com~
bined code now carries information concerning the phase of each "component"
sequence; but it is necessary to find an optimal set of sequences to
correlate with the received signal to decode the information. At some phase-
shift the correlation between the combined code and an element of the
decoding set must be as large, and at all other shifts as small, as poseible.,

With the knowlédge of such shifts and the decoding procedure, one must be
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:able to interpret the phase information of components uniquely. In this way,

a very long code can be made whose phase may be determined, component by com-
pénent, in a comparativeiy short time and with a limited amount of receiver
equipment.,

It is the purpose of this thesis to investigate autocorrelations of
single and multi-component sequences, cross-correlations between a sequence
and its components, and to develop methods by which sequences having given
correlation properties can be synthesized.

Binary sequences with two-level autocorrelation functions have been

(1,2,3,4)

characterized elsewhere , and methods have been devised to synthesize
them when they exist (for example, linear shift-registers, quadratic residues).
When the two-level property does not exist, there has been, up to now, no
method, except exhaustive search, to find nearest-to-ideal sequences. There
are, however, iterative methods which yield near-optimum sequences of any
cyclic length. There are other methods, which apply to certain periods,
which produce the most distinguishable sequences for those periods. These
methods are developed here, as well as general methods for the analysis of
modulation and sequences génerated by Boolean functions of component sequences.
Insofar as it was feasible, the author tried to make this thesis a self-

contained entity, starting with motivating arguments based on modulation by
sequences, continuing with the subsequent detection and extending to synthésis
of sequences with given properties. It was, of course, impossible to make it
entirely self-contained, and there are numerous references to texts and articles
throughout the thesis,

- The requisites necessary to read the sequel afe limited to elementary

calculus, number theory and modern algebra. The latter two may be somewhat

unfamiliar to most engineers, but no more than the first few chapters of
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' Nagell's Introduction to Number Theory (John Wiley, 1951) and Birkhoff's and

MacLane's A Survey of Modern Algebra (MacMillan, 1950) should be needed to

follow the argument,



Chapter 1

MODULATION OF SIGNALS BY SEQUENCES

The notion of having a signal or set of signals modulated by a digital
sequence is not new in communications; in fact, multiplex; frequency-shift
keying (FSK), CW telegraphy, etc., have been using this concept for years.

In these systems, it is usually assumed that the modulation is binary,
not coherent with the carrier, and not periodic. However, it has become
necessary in many more modern schemes to modulate by codes which are cyclic,
coherent, and/or n6n~binary.

A coded interplanetary- and space-radar recently developed at the Jet

Propulsion Laboratory(5’6)

is coherent throughout and uses periodic mod-
ulation, Many improvements in jam-proof, secure, or missile commands systems
are also being based on such principles. Certain cyclic non-binary codes
have much to recommend their use and can be used to advantage in telemetry
systems(7).

In the case of non-coherent, non-periodic modulation, calculations
could be made regarding spectral distribution by assuming that the carrier
and modulation were statistically independent. Such an assumption no longer
remains valid for coherent systems, In fact, such an assumption may often
lead to basically erroneous results,

For example, let a sinusoidal carrier be phase modulated 1900, changing

randomly at integral multiples of some basic time interval t This may be

O.
treated as amplitude modulation where the modulation is #1., When the carrier
and modulation are independent, the spectrum rolls off at 6 db/octave, and

the spectrum is merely the convolution of modulation with carrier. But when



the carrier shifts 180° only as it passes through zero, the spectrum falls
off at 12 db/octave.. For more complicated carriers or modulation, the change
due to coherence can be even more drastic.

A general method for computing the power spectrum of signals produced

(899')

by such sequence-modulation schemes was given in 1959 by the author in
collaboration with Dr. L. R. Welch., Part of this method is repeated here
to give an efficient method for spectral calculation, to demonstrate that
it is possible to express the spectrum as a linear function of the sequence
correlation values, to indicate the type of sequence correlation desirable

from a spectral simplicity point-of-view, and to illustrate the form of the

spectrum in some practical cases.

A, The Spectral Egquation

Let
h(t): i=1,2, ..., b b () = 0 for ¢ nof in [o, t)
be a set of distinct, Fourier-~transformable functions, and let
a = an: N = eeey =25, =1, 0, 1, 2, ...
be a doubly-infinite sequence of elements belonging to a finite set
e, 1=1, 2, eeay b

1

of objects, or states; that is, a is a mapping of the integers onto the set



{ei}. Let 6111 be a type of Kronecker delta’defined by

1l ifa = e,
n i

£t - = ey 2y (1.1)

n
0 if an;éei
The sequences
Jl = 8:1: n = esoy _2, “l, o, l, 2, s y (i = 1, 2, .oo;b)

are projections of the separate states onto binary (0, 1) sequences.
We allow the functions {hi(t)} to be chosen by the sequence states

to form a signal (see Figure l.l)

[

x(t) = Z Z (Sfl b (t - nt), (1.2)

i=l n=—oa

whose spectrum we wish to determine. We describe x(t) as the result of
modulating hi(t)} by the sequence a.
We can visualize x(t) as the output of a b-port linear filter (see

Figure 1.2) whose inputs are & ~function trains

+ oo
$ti) = Z éi é(t—nto), (1.3)

N=— O

and whose unit impulse responses are hi(t). This is true because the filter

output is (10)



SEQUENCE
GENERATOR [—————= MODULATOR [—#>QUTPUT, x(t)

{°I'°2'"'°b}

WAVEFORM
CL:) CK GENERATOR
0  [{my by}

FIGURE 1.l SEQUENCE MODULATION TECHNIQUE

8' t |
SEQUENCE | 34{t) , LINEAR
GENERATOR NETWORK [—* OUTPUT, x(t)

{p',..sbm}| by b {mn}

CLOCK
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Z. f B (6) Y 8% 8(teme -t av

b to
= Z 8; »hi(t-ntO) = x(t) . (1.4)

i=l n=-

With this input time series, the output spectrum of a linear filter is

given by(ll)

b b
) = ) ) E(6) B(6) 5, (0) , (1.5)

i=1 k=1

Where (*) indicates complex conjugstion, Hi(f) is the transform of the
impulse response,

t |
B(£) = f b, (t) e 2T 4y (1.6)

0
and Sik(f)- is the transform of the (time) cross-—correlation cik('r) between
the ith and kth inputs,

+T

ey (v) = o ; Si(t)sk(t”) at (1.7)

. T o0 Eii
. . 81 81: ir S .
By substituting for (t) and (t+'t:), their O-function representatives,

the last equation expands to

+T +o +oo '
(™ = gl f 2 3,3, 8(t-nty)
-_T =-Q0 M=~ (1.8)

S(tw—mto)\ dt .



The gifting action of the integral means that we can set T = Nto;

consequently, the limits in the sum over n must be replaced by

Completing the integration and simplifying the result yield

+o»

¢ (v) = ;10- Z [Nl_if,m 5 Z S;Sifm] 8(v-mty). (1.10)

We can then take the tramsform of c, ('v) to get

ikt -j2rfut
1 iak 0
Si(f) = t }: [N o3 E: 8n8n+m] . (1.11)
: n=-go _ n=-N

The term in brackets is of particular interest because it represents corre-
lation be.tween the ith and kth states of the sequence,

If a is stochastic, we average c ik('r) over the ensemble of stochastic
variables, and if a is periodic, we may let N take on only integral multiples
of the period. Whenever we can assure ourselves that the limit will exist,

we define the normalized state-correlation of the sequence by

+N

y _ lim 1 i ok .
rik('m) = Ne—eo 2N 8n8n+m . (1.12)

m=-N

The final resulting spectral equation for a sequence modulated process is
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) b b + 00 --'27-(fm1:
5.0 == Y Y e@a® (Y rme 0.

0 = = —
} i=k k=1 N OO (1013)

Note in this equation that Sxx(f) is very simply related to the signals

hi(t) and to the correlation values rik(m); S

XX(f) is a function of carrier

properties and sequence properties in which the sequence correlation prop-
erties enter_linearly into the calculations and in which the carrier and

sequence properties influence each other in a simple, multiplicétive way.

By defining
a6 = [me), ..., m @) |
F) = [rik(m)] o )
+oo 52T Temt,
5(6) = ¥ zl@e '

the spectral equation can be put in matrix form:

s_(£) = pr(x) g(0) ) - (1.15)

To find the autocorrelation function of x(t), we merely take the inverse

Fourier transform of Sxx(f)
+00 .
J s. (f) eJZTTfT af
XX

-0

(v)

XX

it

+02) b +C. - 27Tfn +

j‘% J Z Z ( Z vy (n) e °) (1.16)

~oe i=l k=1 n=-0<

j27?%1 af

B¥, (£) Hk(f) e
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Express T = mto + Ty where O & To ¢ tO’ and substitﬁte the corresponding

Fourier integral forms for H*i(f) and Hk(f). This yields

b +o0

b
Rxx(mto-i-'t'o) = _t;(-)- Z Z Z rik(n)

i=l k=1 n=-0o

hi(s) hj(t) e af ds dt.

/+oo +oo j+w j2ﬂf(s—t+¢o—(na_-::—m)to

) - OO - OO

(1.17)

In the integration over f, we use the expression relating the 5 ~function to

its Fourier integral,

oo
St) = j ECUE (1.18)

-

to give the equation

b b +0o0
1
Rxx(T) B t Z Z Z rik(n)
' i=l k=1 n=-o°

+00

| #o) norg@atig) os. (1.19)

-0

A1l of the terms in the sum over n vanish except those with n = m and
n = mtl. Now define

+ O

\{fik("’) = ;cl— J hi(s) .hk(s-vc) ds. (1.20)

0
-oo

The final expression for the autocorrelation of x(t) is
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Rxx(mt + 7, Z z rlk(m) Wik(q’-

i=l k=1

+ 7, (wl) l//ik(fro - to)] . (1.21)

When Ty = 0, there is no overlapping of intervals and the second terms

above vanish.

R_(ut,) = Z Z NORTHOS (1.22)

i=l k=1

Here,. yjik(o) takes on the special form

t

0
%k(o) = -tl— j n, () b (t) at . (1.23)

0
0

The average power S in x(t) is then

' b ty
s = R _(0) = ;15 Z r,, (0) j hia(t) dt (1.24)
i=1

0
b
3w
Tt

where Eiis the energy in hi(t).

The correlation matrix r(m) defined sbove can be further decomposed
to reveal a few properties of a. First, };(O) is a diagonal matrix; rii(O)
is the relative frequency (probability) p; with which state e, occurs in a.
(We will assume that all rii(O) £ 0, so that all states are non-null.)

Second, rik(m) is the relative frequency (probability) which states e;
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and ek

to get conditional relative frequencies (probabili‘cies),

occur separated by m steps. And third, we can apply a Bayes' rule

pik(m) that e,

is followed m steps later by e , given that e has occurred in a:

k

75 (m)

Py(m) = r..(0) ° | (1.25)

ii
In matrix notation, we write r(0) = r

0

zm) = r, B . (1.26)

B, Markov Modulation

In this section we let a be a stationary, irreducible, aperiédic Markov

chain(lz). The outstanding property of such a chain is that

Ty [ 3(1)]“‘ i m> 1
}'J(m) = o (1.27)
[FPO)] ™z nea

For convenience, we then set 3(1) = P, 80

=

Zo E ; mz
~

BN " s m -l

The expression for g(f) is then a geometric series

r (1.29)

g +j27TftO n
) [z -

EH" (e

n=1

= ,, ~3eTTet n
s(£) = 30[;+ Z e j2 fto) } +[

o]
=

(13,14)

The form ofﬁB is that of a stochastic matrix whose eigenvalues must

then lie on or within the unit circle. There is always at least one
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eigenvalue equal to unity, and by restricting the chain to being irreducible

and aperiodic we insure that there is only one unity magnitude eigenvalue(15) .

But then E(f) converges(l6) for every f except possibly those for which

-3l
e = 1
(1.30)

+52TT% £

0
e = 1,

Consequently, §(f) has removable discontinuities possibly at

f = m= ..., =2, =1, 0, 1, 2, ... (1.31)

R
’
tO

We investigate these points by looking at the asymptotic behavior of ’g(m).

. lim ‘s
Asymptotically, n rik(n) = PP because after many transitions the
states become independent.,

toe -jortofm roe -,j27Ttofm
Sik(f) = Z (rik(m) - pipk) e + D, z e . (1.32)
-0

=00

The latter sum is a well known one, being the Fourier-series expansion of

a 5 ~function train
+o0
e = Tt]';' Z S(f -"_E;Il') . (1-33)
0 0
N=w00

At a1l f ;é'tl , this sum is zero:
. 0

+oo -.-j27Ttofm

5,.(f) = Z r (@) e E f;é-%-, (1.34)

= OO
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S0 Sxx(f) converges here to a spectral density. At f = ;ry we may, for the
0

present, omit the contfibution due to the spectral density:

+CO
P; pk

5, (8) = 1), (1.3)

n=-00

Substituting these into the spectral equation, we get

1E2
s, (£) = 5 Z Z p, H(£)| é(f-—t‘l-)
n=—-GOLi=] o 0
1 b b [ = =32 et gm
- *
s Do) Ee (o) B () L O :
i=l k=1 M= O (1.36)
There will be an absence of spectral lines if, and only if,
b
n
:E: D, Hi( to ) 0 for all n, (1.37)
Ci=

But if we periodically extend the hi(t) outgide [O, ED]’ the function

+oe
K(t) = Z Z b, h, (t-mty) , (1.38)

M=woo 1=l

aside from a constant factor, has its Fourier coefficients equal to

2: p, H ) , which are all zero, and therefore K(t) =
i=1

We reach the conclusion that there are no spectral lines if, and only if,

b
Z D, hi(t) = 0 | for t in [o, to] . (1.39)

i=l



¢. Examples of Markov Modulation

Let us assume that a Markov chain modulates a set of sinusoids

hi(t) = sin(m&t + ¢i) (1.40)
w, = (J‘;—Tg)ni

with ni an integer (the number of half-cycles in [O, to] X We will choose
simple chains so that Sxx(f) takes a simplified form. In each case we will

judiciously pick pi, n, and ¢i to eliminate spectral spikes.

i

‘1. Symmetric processes. Suppose that for every hk(t) in { hi(t)}

]

there exists an r such that hr(t) = -hk(t) is in {hi(t)} and p_ = p,.

This eliminates spikes in the spectrum. Further, assume that pjk = prs
whenever hj(t) = ihr(t) and hk(t) = ihs(t); that is, we assume

rjk(m) = rrs(m). The spectral equation reduces to
. b
1 2 ‘
s (f) = i z pi'Hi(f)l . (1.41)
i=l

From this equation we note that the over-all power spectrum is merely
the weighted sum of the energy spectra of each individual component hi(t)
in the modulated set,

As a special case, we allow unrestricted transitions

1
Py T P T % (1.42)
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Routine calculation yields

to b sin( a;?i )td]g cos ¢ + ( 1 )2 51n2 ¢
Sxx(f) Y Z AT ,
=1 | ( —El )%y (1 + _1' ? (1.43)

vhere w = 2Wf, According to this equation, the phase angles ¢i are of

importance in the region<n>>a&. Each term is a sine-square enveloped by

2 2 2 .2
W, cos ¢i + @ sin ¢i

40y
Senv(®) = T @ - 02) y (1.44)
1

If ¢i is not a multiple of ¥ , the spectrum ultimately decays at 6 db/octave;
but if §; is a multiple of 7 , there is a 12 db/octave roll-off. The rate of
approach to the 6 db asymptote is determined by ¢i’ since for ¢i near zero,
the spectrum seems to approach a 12 db limit; but as » grows sufficiently
large, the roll~off ultimately changes to 6 db/bctave.

When each independent ¢i is considered to be a random variable unifeormly
distributed over [O, 21T] » the resulting spectrum is the average over this

range; each term is of the form

® - o, 2 2
ty [sin —5= ¢, 1+(1)

) = 2|k —— (1.45)
to (1 + z;- )

e

This is exactly the same equation of spectral density obtained by
assuming independence between carrier and modulation or obtained by setting
each ¢i é-%%— . PMgure 1.3 shows examples of the spectral distribution of
modﬁlated sinusoids with different phases, compared to the spectrum when the
sinusoids are replaced by unit square waves of the same period (mexima are

set equal so that roll-off can be compared)., Note the 90 deg-shifted
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ginusoid rolls off at about the same rate as the square wave but that the

0 deg-shifted sinusoid decays much faster.

2. Equi-phase modulation. Suppose all ®; are the same, but ¢i = 2}51 .

The common value of w; we designate Wge One may verify that there are again

no spectral lines, and the spectrum is given by

5 (f) } to(mz + (,302) sin( > 0 )to (1.46)
XX 2(m + mb)Z ( arab )t
2 0

This is the same equation for random-phase modulation given earlier.

3. Slope-preserving modulation, We now restrict a to be a Markov

chain which excludes transitions except between waveforms which preserve
the sign of the slope at the changeover times t = nto. Again, for every
hi(t) there is a corresponding hr(t) = —hi(t), and again p, = p_. However,

if we partition {Iﬁxt)} into the subsets

()
[

i

0, (+) at t

{ hi(t): slope (+) at t

il

{ hj(t): slope (+) at t = 0, (-) at ty

{h__} { ) ++} (1.47)
() - (o)

The transition matrix is then similarly partitioned

T
——
i

f

]

B B } )
< 9 | a2, AL
P = |m—m———————T— .  (1.48)
2 8 : B, B
E A S




- 20 -

Using equation 1.29, we calculate the spectrum

b
2

s (£) = ?;25' > piIHi(f)|2+-,§(=)-Re {E*(f) S(e) E(f)} , (1.49)
i=1

which involves only the "positive" waveforms h++ and h+_, with
g (f)
B, (£)

o~

() = .

H‘b/z(f)

Lo = dieg [pl, Pps eees 'pb/z]

n
p P
e T ~h -j2T i n
86 =& Y | e . (1.50)
n=
AN o

We now work a particular example of a slope-preserving sinusoidal

process described by

b = 4
nl = I].3 18 even
n2 = n4 is odd
1 1 0 0]
, 0 0 1 1 .
P = % : (1.51)
0O 0 1 1
1 1 0 o
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Substitution of these parameters into the spectrum yields, upon simplifi-

catioﬁ,
-2
. 2
1 1 @ . 2 :
5.0 - & [( 550 - (5% >] sin? aty . (1.52)
B! 2
- Por large f = E%%', Sxx(f) decreases at approximately 12 db/octave. This

is again because of the chosen phase relations. Examples of such spectra
are illustrated in‘Figure l.4. If ny and n, are ad jacent integers, Sxx(f)

falls off very rapidly near the fundamental peaks.

D. Random-like Periodic Modulation .

It is well known that periodic signals possess periodic correlation
functions and that their spectra are composed entirely of impulse functions
at multiples of the fundamental frequency determined by the correlation

period, Furthermore, it is known that the Fourier transform of a periodic

process x(t) is of the form(l7)
MO = S ) se-d (1.53)

mzz-— 00

where T is the period of x(t) and Xo(f) is the Fourier transform of one
cycle of x(t). If x(t) were a correlation function, R(t), the corresponding

transform is a power spectrum

s (f) +on
s(£) = % Z 8 -

m=-00

f) = fT/z R{x) eszwf dt .

-T/2

(1.54)

So(
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A periodic signal thus has a spectrum of "spikes", weighted by an
"anvelope"; this envelope is the power spectrum of an aperiodic process
having identical correlation in (-T/Z, +T/2) and zero elsewhere. If this
autocorrelation were some non-zero constant outside this range there would
be a change in the dc¢ value and if only approximately constant, the envelope
and dc¢ would be in some slight error, depending on the seriousness of the
fluctuations outside the specified range. Whenever a periodic sequence has
sufficient random-like correlation properties, we can approximate the
envelope of its spectral behavior by that of a random process. For. example,
a binary Markov sequence with independent states has a two-level correlation
function and can‘be approximated by periodic binary sequences which also
possess two-level correlation functions. The accuracy of this approximation

is surprisingly good, as we shall see.

Linear recurring sequences. Given a sequence g = g whose states

e, = €, are elements of a finite field A, and a set {YO, Y., ..., ym}

of elements also in_#’, then a is said to be linearly recurring if for all n

m .
Y oy ¥, =o0. (1.55)
i=0

Such a sequence is easily mechanized by shift-registers as shown in Figure 1.5.

(18,19,20)

Much work has been done on such sequences, and an abundance of

information about them is available., The major portion of the theory is not

of concern here, but a few significant properties are given.

Because each a, belongs to a finite field, the number of states b = qk

where q is prime. For a given m, the maximum period p is p = bm-l;

these maximum - length 1linear recurring sequencés are usually
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b-LEVEL SHIFT-REGISTERS

| 2 | 31| 4 m2|{ml| m
| 1—1 _’l “:_’l _1 _1
o MULTIPLIERS
VI |72 (73 |74 m2| m-| "m OVER X
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FIGURE 1.5.
LINEAR SHIFT-REGISTER SEQUENCE GENERATOR
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referred to merely as linear sequences or m—sequences (this latter term—

inology is due to Zierler). All states except one occur bm—l times per
period. The excepted state is the zero of & which only occurS'bm—l—l times.

The frequencies of occurrence (designating € p 88 the zero element of

# ) are

1 .
pi = %; (1=1, 2, sesey b"l)
(1.56)
_ . pHl-b
P T Top ¢
The correlation properties of a are almost like those of a Markov chain
with unrestricted transitions.
1 1 L
'b ’b L] L] - b
= L i 1
£(t) - b b .« o . b (1.57)
1 1 1-p8*2
__b—b—m+2 bp T2 b—b_m+%_
for all t # O mod p/(b-1). When t = O mod p/(b-1) ,
' Mp _ M
for some primitive element p of the field and §( , ) is the Kronecker
delta. The primitive p is the element
-1
TR A (1.59)

for all non~zero &, of a,'with s = p/(b-1) .

t

If the correlation function is inserted into the fundamental equation,

1.13, the spectral distribution is finally found to be
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b b +
5 (f)="‘1—2‘ %[(?;—?21-) DI ) Hk(f)—ll-lb(f)l ‘ S(f—t—r;)
O i=]l k=1 n=—c0
b b )
b’l>[| m(0) f -5 2, ) B (0) Hkm] Y s -2t
i=l k=1 n=-w 0
. j21rfrpt0
b-1 b=l Db-l _——'t;:l_—_
[Z Z Z B, (£) B (£) e 8(ek, ur€i)]
i=l k=1 r=l1
+o
Z’ d(r '-—P-fcic;) X (1.60)

B. Examples of Linear Sequence Modulation

By choosing processes similar to those treated in our previous Markov
model, we can show a great similarity between the spectra of signals mod-
ulated by linear sequences and by Markov chains. There are, of course,

certain differences and these, too, we wish to illustrate.

1. Binary modulation. When we limit b = 2 and hl(t) = —hz(t), many

terms vanish from sxx(f)’ The result has exactly the same form as the

corresponding Markov spectrum except at frequencies f =-€L . At these
: 0
points, Sxx(f) drops to about %-of the value predicted by the Markov

modulation, The linear sequence spectrum is

2, 2
Pt

5 + .+
sxx(f) - :(€9] [(p+l) z 8(1‘—;1;—0-) -p Z S(¢ —?n(;)] . (1.61)

n=-w n=-oo
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If the period is long, this appears essentially to be the spectrum of a

Markov process with two equally-likely states.

2. Equi-phase modulation of sinusoids. Here we choose the hi(t)

to be the same as those in Markov equi-phase modulation; i.e.

. 2mi
hi(t)' = 31n(abt + )
(1.62)
o, = T
0 to

After completing the calculations, we arrive at

<P—t->w Z 8 - )
( ) 1 Sin( go)to i (_ml.) 2 iw 8( 2n+1) }( )
S _(f) = = < w £ owm = 1,63
= (aﬁab)z (hé&JtO . p2 =00 pto
2 +co
—‘23 Y 8- )
\. n=-m J

Comparing this formula with that of the corresponding Markov process,
one sees that, except at frequencies which are multiples of ét', the
average of adjacent spikés in the linear-sequence spectrum gives the same
general shape as that of the Markov. To a frequency analyzer whose band-
width of resolution is insufficient to distinguish individual lines, the

linear spectrum appears to have a Markovian character.

At frequencies which are multiples of q%- y S ClL) is smaller than
0 XX to

the spikes surrounding it by a factor of %u This is the same behavior ex-

hibited by binary modulation at these frequencies.
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One thing important to note at this point is that the correlation of
a is not Markovian for b » 2, because certain states become highly correlated.
at delays less than the period of a (see Figure 1.6). However, by proper

choice of modulating waveform, this apparent difficulty does not give

anomalous results.

P, Discussion of Modulation Spectra

We have shown that random and random-like sequences may modulate carriers
in such a way that the concentrations of power at specific frequencies are
not apparent. This is important when the receiver employs a phase-locked

(21)

loop , for then fhe loop could possibly lock onto an undesired frequency.
We have also seen that by choosing the correlation function of the
periodic sequence to be similar to that of the random one, the two spectra
resemble each other, sometimes with amazing accuracy. Random sequences are
generally easier to work with mathematically because statistical averaging
is usually easier than time averaging. Hence, by proper periodic modulation,
we can use statistical means to compute spectra with little ioss in accuracy.
Although no exact formulae have been calculated for slope-preserving
linear sequence processes, experiments have shown that the measured linear
sequence spectra are extremely well approximated by a Markov envelope
(FigUre 1.7). Although the spectra here ultimately decay at the same rate as
the unrestricted transition processes, larger, more pronounced peaks located
hear fundamental frequencies of hi(t) occur. These processes are then doubly
important: first, such processes may be easier to mechanize by reason of
smoother transition between states, and, second, it is possible to create a

broad-band spectrum which falls off rapidly outside the band, To a trans-

mitter, this means that power is not wasted outside the desired band.
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FIGURE 1.6.
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- 33 -

"SIAVM JUYNDS 3¥v SL3S TWNIIS I =% Y04 (GIZITVWYON)

SJILISNIA TvHL03dS d31VINAON-3ININDIS HVIANIT GIUNSY3IN ANV
G3LVINGON -AOXYVIN TWOILIHOIHL INIAYISIHd 3dOTIS 40 NOSIHVAWNOD '0L1 38N9id

sdd ‘4 AON3NDIYS
8 L 9 ¢ v ¢ 2 |

09-

®

. m

, | $
—

VN 2
+ ob- ©

\ |/ \ ] :
If v 2

] »

/-\ N / / ..||A¢
_u\e / ONIVMD
2zl / \ o
o dX3-——- N =
¥O3HL S

— , 0



- 34 -

'SIAVM J¥VNDS WV SLIS TYNIIS '1=% HOH ‘(AIZINVWHON)
| SJILISNIA Tv¥133dS G3LVINAON 3ON3IND3IS YVINIT d3WNSYIN GNV
G3LVINAON AOXYYW T¥IILIYOIHL ONIAYISIHd 3dOTS 40 NOSINVIWOD 91 3uNn9ld

sdo ‘3 AON3IND3YS
8 L 9 6 v ¢ 2 1

09- ¢,

: | 3

m

O

I—

0

\,_ | _ Ob- =

_ I _.ﬂ_
‘ 2

\ iy
WERY 3
\\J >
2=l N\ _J o
dX3-——~ —

9 NO3HL a




- 35 -

Chapter 2

DETECTION OF SEQUENCE-MODULATED SIGNALS

A. Description of the Detection Process

Suppose that a signal x(t), generated by modulating a carrier set
{hi(t)}-by a sequence a having period p, is sent through a simple con-
tinuous channellwith additive white Gaussian noise of zero mean, as shown

in Figure 2.1. The time series y(t) presented to the receiver is
y(t) = x(t—r) +n(t) . (2.1)

Here we have assumed no attenuation in the channel; we may do this without
loss in generality by assuming that fhe recelver is capable of amplifying
y(t) to recover any channel loss., The noise is, of course, also amplified,
and this must be taken into account.

The receiver knows the statistics of the noise, bounds on the time
delay ~ (v assumed constant), the sequence g, except for its phase, the
carrier set { hi(t) } y and the modulating scheme (ggth the correspondence
ei-—-——hi(t) ). The receiver is to estimate either the unknown phase of a,
or the channel time-delay, or both.

If # is known, the channel is telemetry using a cyclic code a; if the
receiver knows the transmitted phase of a, the transmitter-receiver is a
coded, continuous radar-device measuring the "length" v of the channel.

If both = and.the phase of a are unkndwn, with

T = kty+1,, (0 75¢ %), (2.2)



- 3 -

y(t)

TIME DELAY,

x(t)

NOISE, n(t)

FIGURE 2.I. THE CONTINUOUS CHANNEL
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then the phase of a at the receiver is its initial phase plus k additional

units delay., By transmitting a carrier modulated by the clock ratve to,

(22)

7, can be measured by a phase-locked receiver . Once T is found, the

0
receiver "locks" this quantity out of the measurement on ©. We then only
need consider cases with 7 = kto.

We will assume for the remainder of the present discussion then that

such an initial synchronization or modulation lock is in effect. The

receiver we investigate is one which estimétes the phase of g as if it
were for a radar system. Then we can make suitable interpretation to
include the telemetry éhannel or the telemetry + radar device (but the
latter requires additional information, or time-sharing of the device, or
some such scheme to éeparate the phase of a from the channel delay).

Both the receiver and the modulating periodic sequence a are to be
chosén to minimize the a posteriori probability of error in estimating the
unknown phase of a. It is a well-known fact that the receiver in such cases
is a correlating device (Figure 2.2); but for the sake of completeness, we
will show the form the correlations must take and the properties which a must
haw_re. The argument is not a rigorous one but indicates the form of the
solution mﬁch more easily than more mathematical treatments(23’24).

We assume T = kt, so y(t) = x(t - kto) + n(t), and that y(t) may be

observed for one period pt. of x(t). To minimize the probability of error,

0

we must choose our estimate m so as to maximize the conditional probability

Pr { k=mnm Iy(t); 0 tg pto} « Then the probability of error, given by

P =Z Pr{k=r|y(t);05t5pto} (2.3)

e
m

" is surely a minimum,
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FIGURE 2.2. THE OPTIMUM RECEIVER
FOR THE WHITE-NOISE GAUSSIAN CHANNEL.
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(25)

By Bayes' rule , We can reverse the conditional relatibnship.

»Pr [c=apm}e{sw} = & {s@x-n}er{e-n}

(2.4)
The likelihood ratio between possibilities k = m and k = n is
Pr{k=m|y(t)} Pr{k=m}Pr{y(t)|k=m} (2.5)
. = p . 205
Pr{k--rly(t)} Pr{k:r}Pr{y(t)Ikzr}

Considering all admissible candidates for the phase of a equally likely,
we reduce the problem to that of choosing m so as to minimize the probability
that n(t) was the corrupting influence in the channel giving rise to y(t)

when x(t-kto) was sent. On the condition that X = m,
n(t) = y(t) - x(t—mto) . - (2.6)

It can be shown(26) that the density of & particular sample function,

n(t), of white Gaussian noise lasting from time O to pto may be expressed as

pt

Pr density { n(t)} = J exp [- N_lo f ° nz(t) dt] (2.7)
0

. N
where 79 is the (double-sided) spectral density of the noise, and J is

a constant not dependent on n(t), (The space on which this probability
density exists must be carefully defined, but need not concern us here. )

Hence, if Pr { k = mly(t)} > Pr { k = rly(t)}' for all r # m,

Pr'{ k
o {x

]

rIY(t)} <1 | (2.8)

VO] S

i




- 40 -
and, as a result

o ‘
exp [ﬁl— f ( y(¢) - x(t-mto) )'2 dt
(2.9)

0]
—f ( y(t) - z(t-rty) )2 dt] <1l .
0

Simplifying the exponent and taking logarithms of both sides leads to a

sufficient statistical criterion: estimate k = m whenever, for all r ;4 m,
pt,

f y(t) x(t—mto)dt > f y(t) x(t—rto) at . (2.10)
0 0

pt,

B. Error Probability and Optimal Signals

For convenience we may consider that ©v = O. By making the substi-
tution y(t) = x(t) + n(t), and by using the periodicity of x(t) in the
equation above, the decision criterion becomes: choose the estimate m

such that for all r ;é m,

Rxx(mto) + 0 >Rxx(rt0) +o, , (2.11)
where the noise . is a gzero-mean, Gaussian random variable
pt,

v o= f n(t) x(t—rto) at . (2.12)

The noise covariances |- =£ (orom) are, of course, given by
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¥
Mo = 5 Ry (mer) £ ) . (2.13)

If the decision was correct, then m = O, and the vector

T
g = (uo, Vgs eees op—l) (2.14)
must have been in the region cut out by
S-R_(rt)) >v . ~v, , § = R (0) (2.15)

for each non-zero admissible candidate rto for the phase. When all of

the p values of r are admissible, the error probability is given by

Pe:l’fcf

-0 -0 ) -0

S - Rxx(to) + v, fs - RXX( (p-l)to) + v,

(2.16)

3

p(oo, g eees Up—l) doy dog ... dup_l
It is not clear from equation 2.16 what the optimal correlation

function for x(t) would be, since Rxx(w) appears in both p(p) and the inte-

gralrlimits. In fact, a complete solution to this problem is not known.

It is conjectured that x(t) should be chosen to have its maximum out-of-

phase correlation minimized, and there are several arguments which tend to

bear this out. |
From the form of detection criterion, we might at first think that

for optimal distinguishability we should clearly want large separations
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between the in-phase and out-of-phase correlations. Then S - R (rto),
’ : XX

we would reason, would be more likely to be bigger than O, = Vge This
reasoning is not necessarily valid, because the noise term Ur - v, has

'3 {(?r - 00)}-2 = NO(S - Rxx(rto) ) (2.17)

which increases with separation. It is this tréde-off between separation
and noise variance that causes the difficulty in finding the optimal
correlation function; and it is strongly reflected in the integral-"v
expreésion for Pe.

It is also conceivable that the optimal correlation function might
change as a function of the signal-to~noise ratio in the channel.
Perhaps the strongest result at present is due to Balakrishnan(27)
which states that if there exists a region of signal-to-noise over which
a unique optimal code of M signals exists, and if the dimensionality
of the signal space is at least M-1, then the signals, envisaged as points
in signal space, should be placed at the vertices of an (M%l)—dimension
simplex; that is, a polyhedron, each vertex of which is equally (and
maximally) distant from every other vertex. The common value of cross-

correlation is = (normalized). The problem of a signal space of

A
M-1
smaller dimensionality than M-l has not been solved in general., Whenever

an (Mél)mdegree simplex is cyclic, the signal corresponding to it has the

optimum correlation,

For all values of ﬁi-, it is further known(28’29)
0

correlations provide a local optimum, That is, Pe’ as a function of the

that the simplex
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correlation values (assumed to be independent variables), takes on a
relative minimum when each correlation is equal to the simplex value.
By differentiation it can be shown that a Pe is a monotonic non-

decreasing function of each correlation as well as the signal-to-noise.

0P
We >0 (2,18)

where Y is either a (normalized) correlation or the signal-to-noise ratio.
This, too, hints that one should choose x(t) to minimize the out-of-phase
correlations, for tﬁen Pe would surely be minimum also., Of COurse? all

the correlations are not independent, so this reasoning is not really valid
either but indicates what would be desirable if a sufficient degree of
freedom were available. We can show that if all correlations are taken to
be equal, then the best value to pick for this correlation is the simplex
value. This is done easily with a result of Kbt'elnikov(Bo): let Pe(X,P )
be the probability of error for a code, all of whose cross-correlations are

equal to P < 1, at a signal-to-noise ratio \; then
P(15,P) = (%, 0). | (2.19)

Immediately we see that the larger 1- P becomes, the smaller the
effective Signal-to-noise becomes and by the monotoneness of Pe, we reason
that 1~ P should be as large as possible. Hence, P should be the simplex
value for such codes.

The foregoing discussion was presented to justify, to some extent, the

assumption which we shall make about the type of correlation which we
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desgire x(t) to have, and this is that it is desirable for x(t) to have
the 1oﬁest possible out-of-phase correlation.

As we shall see, it is not always possible to achieve a simplex
correlation, especially when a is a binary sequence with fixed period.
Then, we not only desire that the x(t) have its maximum out-of-phase
correlation minimized but that the number of times this maximum is attained
also be minimized. This is a heuristic optimizing necessity, borne out by

(31)

considering bounds on Pe' Applying the mean-value theorem, one can show
PO, B (m) ) < POG R ). (2520)

This indicates that the error probability, at a given signal-to-noise ratio,
is improved if the correlation is not equal to the maximum everywhere. By
the monotoneness of Pe with each correlation, we reason that the fewer times

Rmax is attained, the better signal we will have.

C. Perturbed Additive Gaussian Channels

Suppose we restrict ourselves, for the moment, to binary sequence-
modulation of an antipodal sinusoidal set. We can implement this mathe-
matically by either amplitude modulation

x(t) = a(t) gin w.t . (2.21)

0

or by phase modulation i90o

x(t) = sin(agt +-72La(t) ) . -~ (2.22)



- 45 -

The series a(t) is a binary (il) sequence

at) = ) (8.1 -8,0) ult-nt) (2.23)

n=--0o

where u(t) is the unit pulse from O to to-
In the channel, white Gaussian noise is added, as in Iﬁreceding sections
of this chapter, and, in addition, the phase of x(t) is perturbed by an

additive noise, \I’ (t).
y(t) = sin(ogt + T a(t) + ¢ (1) ) +n(t) . (2.24)

Such a received signal would result if the sine wave generator had a
phase instability or if the medium were randomly varying.

If \If (t) were known, the ideal receiver would correlate y(t) against

sin(o.)ot + —Z— a(t-—mto) + ‘4/ (t) ), comparing the shifts of a(t) to find a
maximum., Not knowing \Il (t), the receiver estimates the noise, say, as

\‘/O(t). Now define

R - 5 [ 50 stnlagt + Lalemte) + ¥ () as
o .
. pt,
= ¥ -I-)%—(-)- f »cos[-zz a(t) - a(t—mto) + Y (t) - W’O(t)]dt '
pt, -
- % p—ig f cos [Zmot + 5 (a(t) + a(t-mto) )+ () +¢O(t)] at
0
Pty
+ -p—i—(—)— f n(t)_ sin(mot + "g' a(t—mto) + ‘I’O(to) ) dt . (2'25)
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The second of these integrals can be omitted with little loss in error
probability since it represents the integral of a high frequency sinusoid.
We thus re-define jxjm) to exclude this term, and we drop the factor of %

by normalizing.
pt, ,
1 .

A@) = =+ f a(t) a(t-mt,) cos[q/(t) - \[/O(t)]dt so_ .
| 0 (2.26)

We can estimate \# (t) by inserting a phase-locked loop in the receiver to

get a fairly good approximation, \# O(t). Consequently, our test statistic

will be something like
Am) = R (mty) +v_, | (2.27)

where © is a random variable indicating the degree of lock, presumably slowly
.varying and positi%e if pto is long.

The additive noise channel with phase noise is thus really differenf
from the additive noise channel without phase noise only by a change in
the signal-to-noise ratio. The detection schemes are the same, and coding

for both requires sequences with minimal out-of—phase correlations.

D. Correlation Time as a Function of Distinguishability

We now wish to compare the integration time T required to give a constant
probability of error as a function of correlation separation, Supposé a unit-
power signal x(t) is transmitted, y(t) = x(t-m) + n(t) is received, and the
receiver correlates y(t) against a unit-power waveform z(t) for a time T.

The output Jﬂjm, T) of the integrator is then
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T
Awm = [ 56 (o) a
| OT T |
= f x(t-m) z(t) dt +f n(t) z(t) dt (2.28)
0 0

i

T sz(m) + N(T1) .

The noise term at the termination of integration has variance

T
N
ol = £W) = f f = 8(t=s) z(t) z(s) dtds
. 00 (2.29)

N

0 2 oy

- fz(t)dt = NI .
0

]

Let ACxz represent the distinguishability of the normalized cross-correlation

values sz(m):

- 1) 1t
A, = lcxz(m) sz(m ) (2.30)
where rcxz(m')l > Isz(m)l for all m, and m'' is chosen to minimize the
difference above. The distinguishability-to-noise ratio, as we have seen,
fixes the error probability; that is, two correlation detectors will have
approximately the same probability of error if they have the same distinguish-

ability-to~noise ratio, A A / oy

—_— TAC
é&f—\— < 4/%@ ac, (2,31)
N, /-}NOT 0
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As a result, the integration time for a given probability of error
(more preoisely; for a given A_ﬁL/'o'N) increases as the inverse-square

of distinguishability of cross-corielation values.
0 AN
T o= o ) [ACXZ] . | (2.32)
The ratio of the times T' and T for two such systems is hence

ac, 2

v %

T"(Ac,,) . (2.33)
X'z

B. Minimum Acquisition-Time Receivers

The optimal receivers we have considered up to this point minimize
the probability of error for a given detection time, or analogously, the
detection time for a given probability of error. It consists of filters
(or correlators) matched to each possible transmitted signal, and this
generally requireé a large amount of equipment, Sometimes, however, we
are limited to a certain amount of equipment or receiver complexity, and
we must operate on the incoming signal accordingly.

For example, suppose that a sequence a is transmitted in a continuous
radar situation, and we wish to "acquire", or detect, fhe delayed received
replica of a. By using p correlators, we are able to estimate the received
shift of a with a certain probability of error after integrating for, say,
T seconds. From the foregoing discussion, this is the least T giving this
probability of error., However, if we were limited to using one correlator
in the receiver, we must correlate the incoming signal serially against

every phase-shift of a, which requires pT seconds to achieve the same prob-
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ability of error. There is thus a trade-off between receiver complexity

and acquisition time which we can relate by

time for a one-correlator receiver to acquire a

'Tacq = number of correlators in receiver (2.34)

Now as an alternative, let us build a receiver which cross correlates
8 against several locally-generated sequences; say L1 Loy eees C 0 When

a and ¢, are cross-corredated for T' seconds, R (m) will have maximum values
a & ac,
at multiples of the highest common factor v of a and g5 denoting the period

of ¢. as u,, these are
=i i )

v, o= (e yy) .

Knowing the vector m = (ml, m,

at which Rac (n) are maximum, we want to be able to decide the most probable

s asey mn) containing the delays m,

shift of g uniquely. The number of these vectors m must thus be greater
than the number of phases of a. Each m, can be reduced modulo \f without
loss in distinguishability, and we may assume then that each m, is the least
positive integer giving the maximum Rac. (m). But the number of distinct
pairs (mi, m.) of maximal indications_;: the least common cycle length

[vi; vj] of the two cross-correlations R_@_Q.i(m)’ R_a£j (m). Also, if v, were
to divide [vi, Vj] , no information would be carried in mk. We can exclude

such cases and extend, by induction, to

P< [vl. Vor eees vn]. -~ (2.36)



- 50 -

With one integrator observing T' seconds per step, the time required
serially to perform all correlations of g with the Lo phase~by-phase and
sequence-by-sequence, is (vl U, b ek vn)T'. We choose T' sufficiently
long that the confidence limits in this scheme are the same ag the previous

ones using integration time T. The acquisition ratio, defined as

! .
T acq (v1 Y, ot vn)T'
= o7 , (2.37)

T
acq

represents the relative saving (if any) between the two schemes, each with
the same specified number of integrators.

If it were possible to pick gi? n and T' in such a way that the ratio
is less than unity, the alternate scheme would prove a more desirable

receiver in that for a given receiver complexity and error probability, the

total time to acquire is less in the second method. We will not only show

that this is possible, but we will also give a way by which a great saving
can be achieved.

First, T' depends on the distinguishability among the Rac (m) at various
=

m. If, for each n, the and g are chosen in some systematic manner, T is

5]
a function of n and T, exclusively.
~Second, the period Uy of <, cannot be relatively prime to p, for if it
were, R (m) would be the same for all m because v, = (ui, p). By Buclid's
=4

algorithm, there exist positive integers s and t (0 < t < p) with the prop-

erty that

sp+t = [vl, Vor eeey vn] . (2.38)
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It is possible for each v to divide p only if t = O and s = 1.

P = [Vl, V2, ooy Vn] o (2039)

To minimize the acquisition ratio for a fixed n, we minimize
(vl + oee. + vn) keeping p = [vl, cees vn] constant, Recall that for each i
and J, \f and v5 must have been chosen to have some non-unity relative prime
factors.

There will always exist Vi, i=1, ..., n, relatively prime in pairs

(assumlng P # vl cee Vh) with

\
— t ] 1]
P o= VIV ... V! (2.40)

1 ] 1
such that (vl + v2 + vee + vn) < (vl + v

this is pessible, we proceed as follows: stepwise, consider all pairs Vi

5 + e + vn). To demonstrate that

i

final set'{vi]-is relative prime and vi vé ees vﬁ = p, with either

1 - ' ' 1
vi< v, orv!=v,. Hence, (vl +V,t e vn) > (v1 VL vn).

Since we wish to pick vy to minimize the acquisition ratio, we must

let the \f be relatively prime, for otherwise we could follow the procedure

Vj’ and arbitrarily set vi = v! and v3 = vj/(vi, vj) at each step. The

abové to pick a relatively prime set of vi giving a smaller acquisition ratio.
It is a well-known result(32) that (vl + ... + v ) is minimized,

relative to the constraint that p = LL .;. Ve by choosing each v

equal to :)/5 . Of course, the distinctness of each v makes this impossible.

We must, in consolation, group the v, as close to ://5 as possible, keeping

them relatively prime. We now have a strong reason for finding optimum

cross—~correlating sequences of all lengths.
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For a minimum acquisition-time receiver, we seek n well-chosen sequences
g 1 - 1, 2, ..., n, Whose cross-correlations R (m) with a have periods
v vhich are relatively prime and close to f/f)—_land which have a maximum
distinguishability between phases. Over all such schemes, we then choose n

to further minimize the acquisition ratio

1
Tacg o~ n p n T'(n (2.41)
acq
We have indicated that T' is dependent only on n (and T) when there is
a systematic way of chc_iosing L9 _QQ,..., L and a for each n. We investi-
gate, in the final chapter, acquisition of a by taking a to be the optimal

Boolean function of the "component" sequences ¢ s C eeey C o
q
=} _2’ “n
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Chapter 3

- EQUIVALENCE CLASSES OF SEQUENCES

Fine(33), in 1957, and Gilbert and Riordan‘>*), in 1961, treated the
following problem: if two sequences a and a' can be made alike by either
a shift in origin or a permutation of the states ey or both, how many
distinct (inequiyalent) seéuences or symmetry types of sequences are there?
The solution to this problem, the so-called "necklace" problem(35), is
important because it reveals the mumber of different sequence generators
which can be implemented to a given period, We are not interested in
sequence generators as such, but the method used to count the equivalence

(%6,37)

classes, namely PBlya's formula , can be applied to a problem of
specific importance to us.

In the next chapter, it will be shown that certain transformations
of sequences do not change the values which the correlation function
assumes, but only the order in which these values appear. It is of interest,
then, to determine the number of sequences which are distinct under such
transformations, for then we need be able to synthesize only one sequence
in each equivalence class.

Let g = {an}'be a cyclic. sequence of length L (L may be a multiple of

the period), each of whose elements a may assume one of b values., There

are bL such sequences. Define the operafor glg on {an}by

o} - Lo} ' oo
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Obviously, k, t and kn+t may be treated as integers modulo L because

the sequences involved are cyclic. Define the set

g = { g;‘; : (k, L) = 1; t, k mod L} . (3.2)

It is easily shown that £ is a group of order L Qf(L) (¢ ig Euler's totient

(38)).

function 'This set ¢ of permutations forming a group of operators on
the domain of cyclic sequences 1s called an Affine Group(39). By applying

Pélya's formula, the number of equivalence classes of sequences under this

group can thus be obtained,

A. Properties of the Affine Group vgz

Two sequences a and a' are equivalent under g2- if there exists a g:.
in g such that gf_g = a', The number of sequences a with the property that,

given g;, g;zg = a, is denoted

.Y (g;i) = number of sequences invariant under gli .

It is obvious that

t . .
gk{an} = {an} if and only if a =a, .}

the constraints made upon a sequence by invariance under g; are that a =a,
vhenever n and m are in the same cycle of the decomposition of the integers

modulo L by the permutation

N e k4L (3.3)
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The first such cycle of g; is (0, t, t(cH), vuuy 3T+ i+ 1))
where q is chosén so that it is the least positive integer such that
t(kq + kq—l + ... +1) =0, If v is the least integer modulo L not in
this cycle, then we form the second cycle (v, vk+t, vi° + t(k+1), ...,
W t(kxm2 4+ ... +1) ), and so on until every integer from O to
L-1 is placed in a cycle, We call such a disjoint decomposition of L

the cycles of the permutation g;, or the equivalence classes, or orbits

of integers under the relation g;, etc., as we choose. Denote the

number of such classes by Va4 (k, t).

& (k, t) = number of cycles in decomposition of integers
mod L by g; . (344)

For each k relatively prime to L, there is some least positive
integer q such that kq = l(mod L). This integer Ek(L) is the exponent,
or index, of k modulo L,

LEMMA: q = Ek(L) if and only if q is the least integer such that

_ q-1 L
T+k+...+k " =0modulo 77y -
moaulo L, k-1
Proof: Assume q = Ek(L), and let d = (L, k~1). Then q is the least

integer such that, for some m,

%1 = (k1) 1+ 41) = mLo= o(L) . (3.5)
But (2, Kgl = 1; hence if it is true that ( 5%;-) Gt e +1) =

0(L/d), then it must also be true that Wy . +1s= o(L/d). This

proves the first half of the lemma.
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Assume now that q is the least integer such that kqn1 + ... + 1

O(L/d). Since -l%l is relatively prime to L/d, q is also 'the least integer

such that kii (kq'"1 + ...+ 1) =2 0(1/d) = mL/d, for some m. Therefore
k%1 = ml, and q is the exponent of k.

| We now define a concept similar to the exponent of k. 'Defineﬁ(k, L)
to be the least 'integer x such that

-1

l1+k+ ...+ 2 Omod T . (3.6)

A relatively simple lemma follows:

L
LEMMA: 77 (k, m) = Ek(L).
Proof': W (x, m) = ¢ means that q is the least integer
such that 1 +k + ... + kq—l = 0 mod L/(L, k—-l); hence that q is the ex-

ponent of k.

The main result involving 27 (k, L) is the following:

EIHOREM: L ; ifk=1

»7(k, L) = E, (L) . .

18 (L)/(1, B5); ik #1

N-1

Proof: 1 +kK+ ... +k 0(L) implies W1z 0(L), hence that

iy

Ek(L) divides N; that is, N = rEk(L) for some r, where if N =77 (k, L),
r is the least such integer. But thenmod L, 1 + ... + K0 = r(1 + ... +

Ek(L) -1 : Ek(L) - 1)

k ) =nL, for some n. Let v=(L, 1+ ... +k

Ek(L)—l

k=1, v=1L; andifk#l,v:(L,-l-c—]-{T——

If

) ° Then
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Ek(L) -1
1 4+K+ eeo + Xk
r( -

) = n%. (3.7)

Ek(L) -1

Since L/v and (l + .00 + k )/v are relatively prime, r is the

least non~zero integer such that

L
0 mod e (3.8)

H
il

|

MmmﬂN:%%@).

Therefore, r

THEOREM: The number of elements in the cycle of gﬁ containing the

element u is

77 (k, (T, d%k—l) 1 ) . (3.9)

Proof: Let the cycle containing u have x elements. Then x is the

least integer such that
e + 16T 4 L+ 1) = u() . (3.10)
That is, [u(k-l) + t] (kx‘l 4+ +.. +1) =0 (L) = nL, for some n. Let

v = (L, u(k—l) + t). Then x is the least integer such that

14 ...+1 = 0 modulo L/v . (3.11)

Therefore, x =77 (k, L/v).
-As a special consequence of this theorem, we see that the number of

elements in each cycle divides L.
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For convenience, let us denote the number of elements in the cycle

of glz to which u belongs by

)

H(u; k, t) =77 (k

L
* (L, u(k-1) + t)
= [number of elements in the cycle (3.12)

of glz to which u belongs] .

We readlly compute the number of cycles C (k, t) in the decomposition of g;.
L-1

COROLLARY: % (k, t) Z _(u_k—t7
s
u=0

Proof: Let 2/ =={ul, Uy eoey ud} be a set of representatives of the

cycles of gt each u, from a different cycle. Then
k i

L-1

Z m - Z H(“’k t)[—(;'.—k,—y] =C (x, t) .

u=0 i=1

B. Counting the Equivalence Classes

We now apply the P\olya formula: Let )y be a finite group of operators
on a finite set.-J . The number of equivalence classes &’ established in

J by ?/ is given by

@ = '?I - ;J (e) ' (3.14)
F

where is the order of 3/ .

7
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THEOREM: The number &7 (L) of equivalence classes of sequences under ?/ is

L-1 L-1 W
ek, t
PW =gy Yy Y v
t=0 k=1
(x,L)=1
where
L = cyeclic length of sequences
¢ = Buler's totient function
b = number of sequence states
L~1 -1 %
e (k, t) = z H “(u; k, t), the number of cycles of g, > (3.15)
k=0
L
d ; ifk=1
77 (k, ) = B (a)
k -1 .
d B (d)/(d, S5 5 ifk#1
Ek(d) = least integer such that k - 1 = O mod d.
o

Proof: PBlya's formula, in this case, reads,

W = tH ) S . (3.16)
g

To computeJ (glt): any sequence such that &, =a, whenever n and m are
in the same cycle of glz is left invariant by g;. Hence < (glz) = bc »(k’ t).

Therefore,

2() = L_?Z%ny z bg(k’ t) . _ (3.1’7)'

k,t

COROLLARY: If (L, k-1) divides t, thensZ (k, t) = z "Ekﬁig '

d L
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Proof: If (L, k-1) divides t, there exists a u. such that uo(k-l) +t =

0
0(L)s The mapping v-—-.rv+uo of the integers modulo L onto itself is 1 to 1,

and (v+uo)(k-1) +t = v(k—l). Then deqote d = (L, v), s0

(e, —-@@—) 5 . (.8)

d’

L
Hiv+uys &, t) = Nk, m) =

As v ranges over all the residues modulo L, 4 passes through every divisor

of L, as does L/d. Hence

C (x, L)v=_ z ELV%} = z Eii’g . (3.19)

d|L

Where M(q) is the number of residue classes v modulo L such that L/(L, v) = g;
v must be such that (L, v) = L/q =d. Thus v = rd, where (r, L) = 1 and
d = rL/q <L, orr € g. Hence M(q) is the number of integers less than q,
relatively prime to q; that is, M(q) = @d(q).

This last theorem establishes the fact that anytime (L, k-1) divides

t, the number of cycles of gﬁ is the same as the number of cycles of gg.

LEMMA: As a function of x, x(k-1) + t takes on L/(L, k-1) values as

x=0,1, ..., L-1, each (L, k-1) times.

. Proof': X(k—l) +t= y(k—l) + t means that x = y mod L/(L, k—l)
Hence, 1, 2, ..., L/(L, k—l) ) are the distinct values, each assumed
(L, k-1) times.

By this lemma, the task of computing (k, t) is somewhat lessened:

L

(1, 1)
Ak, t) = (L, k1) Z Bl (u; kt) . (3.20)

u=l
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In the special case that L is prime, k-1 is relatively prime to L for

all k, (k, L) = 1, except k = 1. For k = 1,77 (1, TL_%) = 1, t) =
' ?

L, t) °

Sy p) vy pdl T

@ (L) = A=)

(3.21)

k=2
(x,L)=1

The values of (¥ (L) for the first few values of L are given in Table 3-1.
Although the above formula presents an explicit way of expressing Q (L)

in terms of elementary functions, it involves upwards of L2¢(L) calculations

which, if done without an electronic computer, can become a long and tedious

process. It seems that a simpler way to determine@(L) is by

I-1 L-1 '
@(L) = -L—é'l(f)_ Z Z bC(k' t) (3.22)
t=0 k=1 .
(x,L)=1

where & (k, t) is computed by looking directly at the decompositions of L

by the permutation n eesnk+t for each desired k, t,

The number @ (L) of sequences with period exactly L can be found by

&) - 1) ; for prime L
D) = (3.23)
26 (L) - z &(a) ; for all L
d L

where the sum is extended over all divisors d of L, This number is also

(40),

given by applying the Mobius inversion formula
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T Q) = Z p(1/d) @ (a) (3.24)

dL

where u(d) is the Mobius function: u(l) =1, u(d) = (—l)r if d is the
product of r distinct primes, u(d) = O otherwise.

Both @ (L) and & (L) are given in Table 3-1 and plotted in Figure 3-1,
From the figure; one may note thét @ (L) is roughly exponential in L. For

large L, the number of equivalence classes is approximated by
@ (1) & oY) (5.25)

for some appropriate constant h, which, according to the figure, is about 0.6
for b = 2,

The analysis above indicates that the problem of finding a particular
sequence or a representative of an equivalence class is reduced to about
2_('4L + .6) of an exhaustive search. However, the number of equivalence
classes still grows exponentially.

It should be pointed out that it is possible for two sequences to have
the same autocorrelation function and be in different equivalence classes.
This is the case, for example, for the binary linear and Legendre sequences
of périod %1. Hence, even though equivalence was defined to leave the

correlation properties of sequences invariant, these classes are insufficient

to characterize the correlation types uniquely.
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© TABLE 3-1
Number of Inequivalent Sequences of Length L, @ (L), and of Period L, Q":) (L)

L @ (L) @ (L)
1 2 2
2 3 1
3 4 2
4 6 3
5 6 4
6 13 8
7 10 8
8 24 18
9 22 18

10 45 38

11 30 28

12 158 142

13 74 T2

14 245 234

15 %68 361

16 693 669

17 522 520

18 2,637 2,576

19 1,610 1,608

20 7,341 7,293

30 4,499,852 4,499,436

31 2,311,468 2,311,466
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Chapter 4

THE CYCLIC SEQUENCE CORRELATION FUNCTION

A. General Correlation Properties

A cyclic sequence (or merely a sequence ) as= {an } is a mapping of

the integers onto b objects or states, ey © , for WhiQh there

2, es 0y eb

exists a positive integer L, called a g¢ycle length, such that for all n,

. (4.1)

The least positive such L is the period, p.

We have defined a correlation of a sequence-modulated signal, and we
have defined the correlation between states of a sequence. (4.2)
.There are several ways to define what we might call a "correlation"

function on a sequen;:e. We choose to define the correlation of {an}
relative to a function: Let f be a real or complex-valued function on the

states.

(@ - ofa) - {ee) | )

The (unnormalized) autocorrelation of a = {an}relative o f is

‘ L
Rf(é)(m) = Z f(an)f*(,an+m) . (4.4)

n=1

The (unnormalized) cross—correlation of a = { a, }and e = { cn} relative

to f and g is similarly defined.

&
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v
= %
Re(a), g(e)® = 2, fla) ex(c,) (4.5)
n=1
where V = [L(_a_), L(_(_z_)] , the least common multiple of the cyclic lengths
of a and ¢, Whenever we deal with only one sequence, we shall quite
frequently omit this fact from the notation and merely write Rf(m), ng(m).

We shall also have occasion to use normalized correlations.

Rf(m)
Cf(m) = ﬂg—j_
(4.6)
) - e, e0)™
Ce(a), gle)® = — 7

As an example, let _81 i=1, ..., b) be projective functions; that is,
1 if a =e,
n i

31a,) = = 8l 8, @

0 otherwise

The set of images of a under these projections completely specifies a,

and vice-versa. That state correlations, or correlations of projections

defined earlier, are then merely
r,. = Cq. . . .8
13(m) Si, 83(m) (4.8)

These are put into a matrix in the obvious way
g = [ry@]sm=t s, (4.9)

to form the correlation matrix of the sequence.
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In Chapter 1 we showed that the spectral density of a sequence whose
stateslare waveforms of the same basic time durations is directly related
to this matrix function and the Fourier transforms of the sequence states.
Also, the correlation of a relative to any function f can be expressed as
a linear combination of the elements of £(m).

Let O i and Sk be two projections of a and define corfesponding PXxXp

circulants Al and Ak:

i _ [Ai‘]
rs

i i
Ars - 8:r'-s :

>

(4.10)

Similarly, for the element rik(m) in ':g(m), define the circulant

[rik(r—s] . (4.11)

T,
~ik

Now Ai, Ak and r.. are related by
~ ~ ~ik
T
i k
@) 4 = 1 (4.12)

as may be verified by routine matrix multiplication. Hence, if Lix is
given, and if Al is non~singular, we can find Ak immediately,

T

- oz, | (4.13)

r.
~ik

Circulants are a form of a group-ring algebra we shall have occasion to

use in the next chapter.
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Bquation 4.13 states that if the correlation matrix r(m), m = 1, ..., L,
and gﬁg of the projections, whose circulant is non-singular, are given,
then all projections can be found, and from these a sequence having £(m)
as its correlation matrix can be made.

Therefore, in order to find a sequence having a given correlation
matrix, it is sufficient to be able to find ; single binary projection
(assuming that one exists whose circulant is non-singular), given its

autocorrelation function.

Since the spectral density of a sequential process is directly related
to'g(m), since the qorrelation of a relative to any function is a linear
combination of the terms in r(m), and since a sequence having'g(m) as its
correlation matrix involves finding only a single projection, we see that
a study of binary sequences is not restrictive. Therefore, for the re-
mainder of this thesis, we will assume that the functions on sequence
states are binary.

There is an obvious transformation between binary (O, 1) sequences
and bihary (tl) sequences, and likewise, there is one between their
correlation functions. Hence, there is no loss in generality in speaking
of binary sequences either, as (O, 1) or (il) sequences, As a matter of
convention, we will denote functions on a binary sequence, for the most

part; by lower~case Greek letters. For example, we will write a for

a(a), with
o = a(an)
(4.14)
a = +1,
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When we have occasion to use binary (o, 1) sequences, we modify the

notation: & = @(a) with

& = o)
A (4.15)
@ = (-1) e

The second part of this last equation can also be written explicitly for

A
o as
n

= ] (4.16)

B. Correlation of Binary Sequences

In the remainder of this chapter we will deal with the correlation
function of a binary (1) sequence without regard to the states which pro-
duced the (tl) terms. We treat a more general case in Chapter 7 in which
the sequence states are binary vectors.

Let a = {an}denote a binary (#1) sequence of period p. Its auto-

correlation functions are, per period,

R (m)

]
™
bg
:

(4.17)

fl
w3 |
™M
5“
o)
&

c (m)

4/

Obviously, Ra(m)

]

=v}
2]

T
B
~
Hy
[}
H
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Y
Ra(P-Fl) = z % Tn4p-m
n=1
1Y
= z o o (4.18)
n=1
p-m

o, = R (n),

]
g
gﬁ
=}

n=1-m

and trivially, Ra(O) = pe The difference between the number of ones and

the number of minus ones, per period, will be called the imbalance Da of a ,

p

D = z o - (4.19)
n=1
Whenever Dal <1, a is said to be balanced.
b
LEMMA : :E: R (m) = D°.
I o a
m=1

Proof: We merely apply definitions of Ra(m) and Da:

P P D P b
z Ra(m) = z Z % %am T Z o Z %hem
m=1 m=1 n=1 n=1 m=1
2
= D . (4.20)

The next theorem limits the values which Ra(m) assumes to numbers congruent

to p modulo 4.

THEOREM: p - Ra(m) is divisible by 4 for all m,
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Proof: Let {tl, By vees tk} be the set of all indices within one

period of a such that a, = -1l. Define a(t) as that sequence derived from

i
(63, t5s vevs t)
a by changing a, to ~Qy . For example, « is the all-ones

sequence of length p. By the structure of the autocorrelation function,

R (m) - R (m) = 2q (a +qa )
(10 ceey £) (b eeen t,4) b, mt | met
¢ ¢ (4.21)
a change of 0, +4 or -4. Hence, 4 divides each term in
R (m) - R (m)
GRS (b0 wer £ )
a a
+[r (m) - R (4.22)
[® (0 e 1) (0 oo 1))
a a
+ . + [R (tl)(m) - R (m)] = P - Ra(m) .
a

We postulated, in Chapter 2, that sequences with minimal out-of-phase
correlations were the best signals in the Gaussian channel. The next
theorems give bounds on the optimal types of correlation function.

-1 if p is odd

THEOREM: min Ave Ra(m) =

a m%p -(l+l/p) if p is even

Proof: Teking the average as indicated yields

p-1
e
i;z: Ra(m) = o1 zl Ra(m)
m=
2 (4.23)
- P

p-1
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To minimize the average by choice of a, we must make Di as small as possible:
Di =1 if p is odd and Da = Q0 if p is even. Substitution of these values
gives the theorem.

This bound on the minimum average correlation, along with the con-

gruence of p and Ra(m) modulo 4, produces the following result:

THEOREM: Let & be a binary (#1) sequence with period p. Then

(-1, if p = 3(4)))
0, if p = 0(4)
max Ra(m) > < .
m#0(p) 1, if p=1(4)
2, if p= 2(4))

Proof: The maximum value of R{m) is certainly larger than the average,

and a forteriori larger than the minimum average.

max Ra(m) > Ave Ra(m) > min  Ave Ra(m) . (4.24)
m#0(p) 7 m@o(p) ¢ mZo(p)
If max Ra(m) is less than any one of the bounds stated in the theorem, then

because p = R(m) mod 4, we must have

-2 >max  R(m)> -(1+1/p), (4.25)
m#0(p)
a contradiction,
Next, we will prove the theorem referred to in Chapter 2; namely, the

following:

THEOREM: Let a and B be (#1) sequences whose autocorrelations are

Ra(m) and R 8 (m), respectively. Assume that there exists an operator glt
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in 2’ such thatB = g]z a. Then RB(m) = Ra(km) = g](z Ra(m) o

Proof: The correlation of ﬁ is

i
™M
52 '
=
&

RB (m)
(4.26)

f

p

Z Yn+t Tk(ntm)+t

n=1

But since (k, p) = 1, knt+t, as a function of n, passes through all residue
classes modulo p; in this case,

p

RB(m) = z ¢ a = Ra(km) , (4.27)

n n+km
n=1

. . 0
which is 8y Ra(m) .
As stated in Chapter 2, operators of the affine group do not alter the
set of values which Ra(m) takes on, but merely the order in which they appear.

In the transformation Q@ g » We say that a has undergone a t-phase~

O+

shift and a k-decimation.

C. Term-By-Term Products of Sequences
In the sequel we shall need to know relationships between the prop-
erties of (#1) sequences and those of their term-by-term product. The
emphasis will be on the period and correlation function of such a product.
Let o = {an} and B = {B n} be binary (#1) sequences having periods

p and g, respectively. The term-by-term product sequence . Y= o¥ B of a

and B is defined term-wise by
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Y, = B, . (4.28)

We shall often refer to this as merely the *-product. Denote the period of
Yby t, and let v = (p, q), V= [p, q].
If v =1, Yclearly has maximal period t = V = pg. But if v £ 1,

it is not necessarily true that t = V. TFor example,

@: +++++ - - — = tttt b= - - F ottt dom—m— -
[ R e e i I T (4.29)
I T T I e S

Here p =10, g =6, v=2 and V = 30, but t = 15,
The fact that a maximum period i1s not attained indicates that the

sequences are not really "independent" but have some common structure.

LEMMA: If o, = an+p and @, = an+p‘ hold for all n, then

o = an+(p, ') is also true for all n.
Proof: Since uh = an+p = an+p' , it follows that for all u and y,

But there exist certain values(4l) of

% Ccn+up = u'n+yp' = an+(up+yp')'
u and y, say U and Yo such that u,P + yop' = (p, p'), and therefore
% = %ne(p, p') °

For any positive integer x, we can decimate a sequence a to form a

u
set of sequences a )x as follows:

a‘;)x = a5 w=0,1, ., x-1. (4.30)
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The periods of these decimations are denoted P, /x' Whenever a particular
x is uwnderstood, or when no confusion arises from its omission, we merely

write o and Pye
LEMMA: p, divides p/(z, p).

Proof: The period of o must divide p/(xz, p) because for a given u,

i.e., because p/(x, p) is an integer such

utkx = wt(k+p/(p, x)x modulo p;
u u
th t = y .
&Y % = %eap/(x, p)
We leave considerations concerning the period of Y= a*B y for a

moment, and turn to the correlation function. By definition,

t-1 t-1
Ry(m) - z Yn Yn-i-m“ = z CIn an+m Bn Bn+m
n=0 n=0
pg-1
- Pq Z % %nem BnB n+m ° (4.31)
n=0

Expand a andﬂ to their decimated forms au)v and ﬁy)v .

V-1l V-l
_ u u+y u+y
R7(m) - Z z Bk k+r ’ (4-32)
u=0 k=0

where y is chosen, for a particular u, so that 0 € uty < v and u+kvim =

(uty) + (k+r)v . Set k=1 + j;/v; O <i<g p/v. This gives

v-1 (p/v)-1
L)
W,

P u
z % +ip/v i+r+,]p/vB 1+,jp/vB 1"'1"".JP/V . (4.33)
J=0
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But each au has period dividing p/v; therefore, if we sum over i first and

recognize that 1 + jp/v runs through all residues mod q/v, then

(X )—1
v-1 (p/v)-1
Ry(n) = -P—tl- z Z o a1 z B5 B - (4.34)
w=0  i=0 §=0

Since V = -%L, we see that Y_g =q = v(q/v) . Define

(e
u _ u  uty
Ra(m) - Z % %ar
i=0
(4.35)
(a/v)-1
u - u Uty
Rglm) ). B B
=0
where m = y+rv with y chosen such that O € uty < v. The correlation of
the *-product thus becomes
v-1
X u u
Ry = 7 ) Ry Bgw) . (4.36)
u=0

THEOREM: If Y= a*B , where g and B have period p and q, respectively,

and if v = (p, q), define

p/v -1
-3 _ u u+y
Ra(m) - Z o %ar
i=0

o1 (4.37)

> BBy

30

o

where m = y+rv with y chosen such that O ¢ uty < v. Then if t denotes the

period of Y,
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v—-1

Ry = 5 ) R Ega) . (4.38)
: u=0

When p and q are relativ'ely prime, this reduces to a well-known form,

i

Ry(m) Ra(m) RB(m) . _ (4.39)

We can use the formula above to infer the nature of the period of Y.

However, it is more instructive to evaluate t more directly,
LEMMA: If P = lcm {pu /x} , then P divides p and p divides Px.

Proof: For eaéh fixed u

u u _
% = ak+pu - au+kx+xpu . (4.40)

Since P is a multiple of every Py then

a (4.41)

urkx © TurkxaPx

holds for all u. Thus % = ccn+1>x, so that p divides Px., Also, the pre-
ceding lemma states that P, divides p, and hence P must also.

LEMMA: If x divides p, then p = x lem {pu/x} .

Proof: By hypothesis, p = mx for some m. Therefore,

aku = Q.- . | (4.42)
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Hence every P, divides m, from which it follows that lcm {pu} divides m.

Clearly, then, x lcm{pu} divides p. Conversely,

n utkx au+kx+xpu = Cakx+Px © TnaPx (4.43)

This means p divides xP

1

x lem {pu /x} , and the lemma is proved.
THEOREM: p = (x, p) lem {pu/x} .

Proof: Let w = (x, p) and x = mw. By the lemma above, p=w lcm{pu/w} .
u u . .
Note f.hat "k)x = O er = ey = a’km)w . Since (m, p) =1, & e 15 8
co~prime decimation of & e which, by virtue of the last theorem in

Section A, means that pu/x = pu/w o Therefore, p = (x, p) lem {pu/x} .

Let us now apply this to ¥ = a*f.

THECREM: Let Y = a*ﬁ have period t, when a and B have periods p

and q, respectively. Then t = V(v,t)/v, where v = (p,q), V= [p, q] .

Proof: By the preceding theorem,

t = (v, t) lem {tu/v}
(v, p) lem {pu/v}

(v, q) lcm {qu/v}

But P, divides p/v and qy divides q/v; hence (pu, qy) = 1, Then

(4.44)

o]
!

v den {éu/v}

v lem {qu/v} . (4.45

f

fte]
i

u U, AU .
Yy =2¢a *B has period tu = P,q, and, as a result,
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ot
i

= ‘(v, t) lcm{pu/v} lcm{qu/v}

(v, t) -1-)% = Vv, t)/v .

(4.46)

1]

According to this theorem, the minimal period of Y is V/v, and the
maximal period is, of course, V. The maximal period is attained if and
only if v divides t. Given two sequences, t is generally unknown before
the actual combination and o and ﬁ , and so it is not known whether v

divides t or not. We therefore seek conditions relating the structure of

o and ﬁ to the period of ¥y .
CORQLLARY: If V2 divides V, t = V.

Proof: V/v divides t. Hence, if v divides V/v (i.e., v2 divides V),
it also divides t, and the theorem above applies.
If we substitute V/v for x and Y = a*,B in the previous theorems,

we get

t = V/v lem {tu/(V/v)}‘ (4.47)
The condition for minimal péeriod then becomes

tu/(V/v) = 1 foru=0, 1, ..., (V/v)-1 . (4.48)
Under this condition

= +BY u=0,1, .. (V/¥)-1 . (4.49)
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) % .. . . ..U _
CQROLLARY. y = a*3 has minimum period if and only if o )V fv =
u .
B )V/ﬁ for all u.
To see what happens if a minimal period is encountered, consider
Y= a*ﬁ whose de¢imations )’u)v /v all have period 1 (the necessary
. . .o . 0 0
and sufficient condltlon). Multiply B by +1 or ~1 so that ¢ = B

(this clearly does not affect the period behavior of ¥). Let u.,k. be

0’0
such that uy + kg V/v = 0(p). Designate p' = (V/v, p). There are
exactly p/p' such values of u, mod p: Uy =1 pt (m=0, 1, ..., p/p'-1).

u u

0 (O . 0 0 .
For any u., 0’ we note that uk = ako+k » That is, ¢« and a¢ = are identi-
cal except for phase-shift.

This may be repeated to find u,,k; such that u, +k; V/v = 1(p),

X u,
and we see that generally ai = akl Wk This process may be repeated
i

: V.
using B and g, in which case Bi = Bml+k .
. i
We recognize that (p', q') = 1. Hence, the values of Uy =1 p'
taken modulo q' exhaust all equivalence classes mod q'. Hence, ao differ

from the ,31 at most by a phase shift, and hence the a and Bj differ

from each other by at most a phase shift,

THEOREM: If Y = o¥ B has minimum period, then all decimations
u ¥y . eind . . .
a )V /v and ,3 )V /v differ only by phase-shift and possible inversion.

The V/v-decimations can also be analyzed for maximal period con-
ditions. Note that 7 takes on maximal period only when lem {tu/(V/v)} =V,
There are several ways to make this occur,. two of which are given in the

corrollaries below:

COROLLARY: If v is prime, and if there exists a u such that au)v /v #

u . .
t B )V ya then ¥ = o* 3 has maximm period.
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COROLLARY: If there exist u and y such that pu(V /v) and qy(V /v)
are reiatively prime, and pu(V /v) qy(V /v) = v, then Y= a¥ B has
maximum period.

The latter of these corollaries is true because some phase-shift of
every o is paired with some phase-shift of every By in the products
au'*B u'. There must then exist a value of u' which pair.s au with ﬁ y’

giving tu' =V,

D. The Kronecker Product of Sequences
In this section, a second kind of sequence product is investigated

to find the period and correlation function of the resulting sequence.

The Kronecker product ¥ = a &3 of two sequences a and [3 having

periods p and q, respectively, is defined for all n = uq + y by

Yogry = % By (4.50)

where 0 < ¥ < q. We shall refer to this product merely as the B-product.
If t denotes the period of 7Y, then t is the least positive integer

such that
(4.51)

This periodicity can also be expressed in terms of the component

sequences

% By = %ax ﬁy+z (4.52)
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where t = xq + z, 0 < z+y < g (x and z thus depend on y). Clearly, t
divides pq, because ﬁ;y = G ;3y .

And pg is also the least multiple of g which t will divide. However,
the period need not be pg and, in fact, may even be less than q. For

exgmple,

B: +-+-+ (4.53)

cBB: +-t -t bt

In this case, p=2, q=5 and t = 2,
We note also that this product is not a commutative one; that is,

a B ﬁ? is not generally the same as [3 & a. ﬁor the example above,
BRa: +=-t+-=t+- (4.54)

has period t = 10,

THEOREM: If p >2, t = pq.

Proof. Let t = xq+z, O € z+y < q for any given fixed y such that

O0< y<q. Then for all u,

C('uﬁly = ﬁ3z+y * (4.55)
Now either ao_ = ¢ for all u, in which case p divides x, or else a_ =

S utx u
- for all u, in which case p divides 2x., In either case, p divides 2x;

utx
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mp
let us set mp = 2x. Then t = ( > ) g+z divides pq. For some k > O,

it
[

m
kt k( -22 ) q+kz q

(4.56)
(

H

-kz .

km

This can be true only when km = 2 and z = O, or else m = O and kz = pq.
In the first case, 2 = O implies t = xq from which it follows that t = pq,
since p is the least multiple of q such that t divides xp.

In the second case, m = O implies t =2 < q. This produces two con-

ditions on the sequences
%y By = % :By+t i O<y<at
% By Y] By+t-q Poatgy<a (4.57)

We cancel @, from the first and note B has period q in the second to give

By = By-i-t P 0gy<at

auBy = o By s ety <a (4.58)

Since the second of these equations holds for all u, and since g >t > O,

1se
Bs; .y O €

there is some Yo such that g-t < Yo <4 and either Byo = = o’ét

'Byo = Y +t For this Yo the second equation above becomes
% T "%

or for all u. (4.59)
a = a

u u+l
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But this would require p < 2, contrary to hypothesis. Thus, for p > 2,
the only valid case is t = pg, proving the theorem.
In the proof above, it is seen that for p = 2 the structure of B

determines t; t is the least integer such that t divides 2q and

B, = By 0Sy<at

(4.60)
By = By tgy<a
Naturally, if q is prime and p = 2, either t = 2 or else t = 2q.
The correlation function of Y= a Eﬁ is, by definition
pg-1 ‘
Ry(n) = Z Y, Yo - (4.61)
Ifm=1rq9+s, and O < s <q,
-1 [q-s-1 q-1
2
Ry(rq+s) T pq Z z % %atr By By+r * z % Tusr+l By By+s—-q
u=0 y=0 y=Q-s
q-r-1 g-1
2
= 2R () Z B, B +B 1) > B By+s (4.62)
y=q-8

Define the aperiodic correlation of B as

g-s-1

15(s) = Z BB, (4.63)
y=0 .

Then the second summand above becomes
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q-1
Z _'BY'By+s = Rg () - TB(S) . (4.64)

y=q-8

Subsgtitution of this in the equation for R7qu+s) gives the final resulf:

THECREM: If Y= a !XIB , Where a,B and Y have periods p, q and t,

respectively, then
R),(rq+s) = 5% {Ra(r+l) RB(s) + TB (s) [Ra(r) - Ra(r-i-l)]} (4.65)

We will almost always be interested in the case p > 2; we can therefore

drop the t/pq factor- in Ry(m).

R.y(rq+s) = Ra(r+l) Rﬁ;(s) + Tlg(S) [Ra(r) - Ra(r+l)] (4.66)
In a later chapter, we will work specific examples using this formula
to show existence of certain classes of sequences having desirable correlation

functions.

E. Self-Noise of Incomplete Integration

It is often advantageous, in the interest of saving detection time and
equipment, to estimate the autocorrelation function of a sequence by
summing the received terms, multiplied by a delayed replica, for only a
fraction of the total period, We show in this section that this éstimate
is unbiased and that the variance decreases monotonically to zero as more
and more terms are admitted to the sum.

Suppose we observe a binary (*1) sequence a for only t terms, whereas

the period of a is p > t. Let Ca(mlt, s) denote the normalized estimate:
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1
Ca(m't-’ s) = t Z %s “nrsem (4.67)

n=1

We will suppose that the origin of a is unknown; i.e., that s is a uniformly

distributed random variable. For any m and %,

it

Ca(mlt) aveﬁage Ca(mlt, s)

M=

= —11; ¢ (nt, ) (4.68)
s=1
. p t
- L
T opt :E: Yn+s “ntstm
s=1 n=1

By summing first over s, and then on t, we see that Ca(mlt, s) is unbiased,
¢ (m|t) = ¢ (m), (4.69)

since the expected value of the estimate equals the true, or full-period,
value.

The self-noise, fluctuation about this mean, or the variance of the
estimate will be a function of m. Many times, however, the delay variable
is either unknown beforehand or unimportant. Hence we treat m as a random
variable, with all values of m (within a périod) equally likely. The

variance in the estimate is
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i
=
Ml

o 2(t)

Y
[%}- Z Ci(mlt, s) - Ci(m]

p

p p t %
g DIDPIDESERNEREI IS 5L
t2 2 nts Tntstn “rts Cristm P z; a

m=1 s=1 n=1 r=1 m=1

t
Y lr) -2 ) ) (4.70)

Designate the largest out-of-phase value of C (m) by I()‘Imax , and, similarly,

the smallest value by |C Then we can bound the variance by

Imin ¢

o2 g F - () felZ, - (=F) [l (4.71)

max min

This inequality degenerates to equality when a has two-level autocorrelation,

2
1% ax = 1Clin -
max min

2 1 2
oo(t) < t(l - IC'max) - l - ICI ) + (IC max |C|min (4.72)
The upper bound is clearly positive and monotone decreasing in t.
As a special case, suppose that |C|i |C m1n = 02. Equality holds,

so that the standard deviation of the estimate is precisely
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o(t) = J%l 1-¢). (4.73)

When 02 is much less than one it may be omitted; such will be the case for

(42)

the so~called pseudo-noise sequences , ags well as many other sequences

given in later chapters. For these sequences,

_ -t 1 1-(t/p)
o(t) —ﬂ = v / (t/p‘; . (4.74)

The significance of this result is that correlation can be estimated

to a desired degree by proper choice of t., With a given ratio t/p, the
accufacy is improved by increasing p. When p>>t, the variance is the

(43)

same as that of a Markov chain with independent states

o(t) ~ == . (4.75)

e

In the more general case, if Icliax and lcliin are much less than one,

we estimate the upper bound relation

o?(t) £ T (]2, - lel2y,) - (4.76)

' There are many sequences, which we will study later, with three-level

autocorrelation for which |C|maX = 3/p, |c|min = l/p:
2 2 8 | |
ICImax B lclmin = ';E . : (4.77)

For these, the upper bound on deviation is slightly larger than the pre-

vious value:
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ot) s [EL+E (4.78)

At t = p/2, and large p,

o(p/2)< ﬂ . _ (4.79)

When we afe dealing with maximum-length linear shift-register sequences,
it is ihteresting to note that we can determine the variance in partial-time
- correlation without resorting to an average over correlation delay. That is,
we can determine the variance of C(m|t, s) for any fixed m.
If o is a maximal-length linear sequence, it possesses the following

property: for every m # O(p), there exists a u = u(m) such that

% %em T %eu t ' (4.80)

This is due to the so-called "cycle-and-add" property of these sequences.

The variance is then easily'computed as before.

P
2wt = 1 Y Pl ) -1
=1 P
p ot % |
L 1
- 2 z z z Ontstu Terstn ~ 2 ° (4.81)
pt o |

For those values of n # k, there exist v = v(n, k) such that

(4.82)

Untstu Tkstu Csqutv °
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Consequently, by summing first on s and then over u and k,

t t P

2 1 1
o (m|t) 2 Z Z z Oopusy T PP = p2

pt n=1 k=1 s=1
n;ék

it

i

> . | (4.83)

The standard deviation for each m is independent of m

om|t) = '('p::c‘)‘éfk‘l)' . (4.84)
P

When 0'2(m t) is averaged over all m, as was done for the other less -

specialized sequences, the same answer is obtained

2
ol(t) = 't3 =) (4.85)
| A

F. Cross-Correlation of Binary Sequences

- Let ¢ and ﬁ be binary (#1) sequences, each having period p, auto-
correlations Ra(m), RB (m), and cross correlation RG'B (m). We then prove
the following theorem:

THEOREM: Ra(O) - Ra(m) > RGB (0) - RaB(m).
Proof: Let '3‘ = {i: ai 74 181} . Then we WriteB in terms of @ as
follows:

o 5 i £ 9,
B; = (4.86)

-a;; 1€ 9,
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Now, it is clear that

b
Ry(n) - RaB(n) = 2 %n(% = By)
i=1
= 2 z @ % ' (4.87)

ie}

Hence, by the triangle inequality,

R (n) - R B(n) < -:f-zlyl = B,(0) = Ryg (0) (4.88)
and the theorem follows immediately.
Without loss in generality, we can pick the origin of ﬁ (or a) such
that R B (0) is the maximum cross-correlation value. The theorem above
then states that, for any sequence a, its autocorrelation is more distin-
guishable than its cross-correlation with any other sequence B of the

same period.
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Chapter 5

SYNTHESIS OF BINARY SEQUENCES

We have discussed so far the need for sequences with desirable
correlation properties and have shown the sufficiency of considering only
binary sequences. We have given no method, as yet, by which such sequences
can be found, and indeed, there is no efficient general method known. Many
methods are presented in the next chapters which give extremely.good results
for a wide class of sequences.

There are two problems we wish to consider in sequence synthesis,
First, since the sufficiency of binary synthesis was based on findingva
binary sequence when the correlation function is specified exactly, we need
a method for doing this. And second, since in communications we want to
use sequences with low out-of-phase correlations, we need a method to find
them,

One method which always works is an exhaustive search to find the de-
sired sequence. Even if we examine only one representative from each of
the different equivalence classes, this is a greal deal of work due to the
fact that the number of equivalence classes increases roughly proportionate
to 2°6p. Hence we seek shorter methods to find solutions.

~The problem of finding a sequence whose correlation function is specified

is a comparatively old one(46’47’48’49’50’51)

, and it is still unresolved in
the general case. One class of notable solutions contains the synthesis
procedures for certain classes of pseudo-noise sequences, and another
partial solution, , developed in the next section, covers synthesis of binary

sequences having specified symmetries. As we shall see, an infinite class

of optimum and near-optimum sequences belong to this class.
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Synthesis of sequences with the best correlation function is sometimes
even m’ore difficult , because the exact form of the correlation is not usually
known., Many extremely good sequences can be found by combining sequences of
smaller periods, and this is done in the next chapters.

An iterative method yielding very good approximate solutions to both

problems appears in the final sections of this chapter.

A. An Algebra of Periodic Sequences

Let % be an arbitrary field and let % [ x] denote the ring of poly-
nomials with coefficients in % . We will denote by % % the ring of poly-

nomials modulo xL—lz
T, = F[aj/at . (5.1)

This ring is a hypercomplex system(sg) (or vector space) over F with basis

2

(l, Xy X 9 oaey xL-l) and structure constraints

ixd = =79 (i+j taken modulo L) . (5.2)

Every element A of % 4 has the form

L-1
A = ao+cclx+...+aL_lx ° (5.3)

The basis elements{xi} may be construed as the elements of a cyclic group

of order L; elements of # ¢ 2re formal sums of field elements paired with

group elements. Such a ring is called the group ring(53) of the group (x)

over % .
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By straightforward calculation we can show

: L-1
l. A+B = Z (ai+Bi)xi
’ i=0
I-1 L-1
2 48 = ) () @ B )" | (5.4)

n=0 i=0

%% A = B if and only if ai=Bi,i=O, 1, vee, L1,

We define the reverse A* of an eblement A to be the polynomial with the

coefficients in reverse order

L-1
i
o= ) oA (5.5)
i=0

Then, by using (2) above,

I-1 L-1
ABY = zo ( ZO % Bn+i)xn
- . (5.6)
L-1
= Z;O R_ 8 ()2 .

‘The fact that correlation is a type of product in % % allows us to
state the first sequence synthesis problem as one involving factorizations

in rings: If an autocorrelation R is given, we seek an A such that

AM* = R, (5.7)

under the constraint that the a; be binary valued.
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The problem thus reduces to one in the theory of a cyclic group-ring,
and all the powerful tools of algebra and the structure of rings are avail-
able to aid in the solution. However, even these have not given a satisfactory
general solution as yet, and this is chiefly due to the fact that solutions
are not unique and, moreover, generally not even equivalent under trans-
formations of the affine group of Chapter 3. The constraint of a; to binary
values is an unpatural one, insofar as algebraic methods are concerned. If
we sufficiently restrict the form of either R or A, or both, solutions are
available. Being interested in low--out-of-phase correlations, we may in-
vestigate methods of synthesizing the pseudo-noise sequences, for example.
Before making any such restrictions, however, there are a few statements
concerning the structure of % A fundamental theorem of group rings(54)
applied to F % allows us to decompose % x into a direct sum of orthogonal
fields & 5 whenever the characteristic of % does not divide L. This con-
dition (semi-simplicity) is always satisfied if % is the field of rational
numbers or any other field of characteristic zero. If % is a finite field,

say, the integers modulo a prime q, then the condition is met if (q, L) = 1.

We will always assume the condition is fulfilled. Then
F=F,0F 0...0% . (5.8)

Each % 5 is isomorphic to a simple algebraic extension of % by a root of an
irreducible factor of XL—l. Every element A in.S?'x can be uniquely de-—

composed into a sum of elements from fields:

.
it

Al+A2+...+Am
0 ifi#fj. ‘ (5.9)

i

A.A
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Denote unit element of 55 ; &8 Ii' By the orthogonality of units,

A, = AT . (5.10)

The decomposition of?r/x is thus completely specified by the field units
{1.} : |
i
An element -6 with the property

° = © (5.11)

is called an idempotent. In each field % ;

@ = o
i i
Oi = Ii or O . (5.12)

All idempotents are thus the sum of field units, and

l = Il+12+¢uo +Im. (5'13)

Another way of describing the units is to say that{Ii} is the maximal set
of mutually orthogonal idempotents.

The following theorem characterizes the rational group ring.

THEOREM: Let ?x be the group ring of a cyclic group (x) of order L
over the rational numbers#” . There is a unique field %’ d corresponding to
each different divisor 4 of L, and the period of every element in#é’ d is d.

The unit I, of ?d is of the following form:
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(1) If d =1, then

: -1
1 i
Il—LZx.
i=0

(2) 1f 4= qm for some prime q, then

e fa_ 2/ (o-1)e/
I = L (q—l)-xdq—xqu—...-xq—ldqxido
2| ]

i 2 T
(3) Ifd=gq -1 q ees 0, 5 a composition of k distinct primes
1 2 k

m,
1

Ays eoes G each having multiplicity m, > 0, and di =q; then the

coefficients of Id are given by

k
coeff. of X in I, = o (coeff. of ¥ in I4 ) .

i=l i
The proof of this theorem consists of a straightforward verification
that the set {Ii} is a set of T(L) (where 't(L) = number of divisors of L)
mutually orthogonal idempotents, This, coupled with the fact that xL—l
has precisely t(L) irreducible factors, implies ’chat{Ii} is a maximal set

of mutually orthogonal idempotents and must, therefore, be the field units.

B. The Correlation Egquation

If 9 is a binary (O, l) sequence and A is its representation in 9:X,

then A can be written as
A = B+C (5.15) -

where B represents the "even" part and C represents the "odd" part of 4,

as follows:
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B = Z{I\.Qxl
i -1

Z Qi(l-é_i)xi . (5.16)

<
1!

Let us define other sequences

b
i

Y a-8) -8

U= ) o, (5.17)
B has ones where (’1\ has zeros symmetric about (’1\0, and U is the all-ones

sequence. By construction,

B* = B

c* v- B8+% -c. (5.18)

This reduces the correlation equation to

AB+U-B-F-0¢)

%
il

2o}
i

AU-B-4+B). (5.19)

By moving all terms to one side of the equation,

- (B-PA-xU+R = O, (5.20)

k being the number of ones in A.
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P -o@-Da+@-xU) = 0. (5.21)

Hence, if the symmetric structure of A is known, A can be found by solving

quadratic equations in the fields 37;j3

C. Synthesis of Symmetric Sequences

Suppose A is symmetric about Q ; that is, A = A¥*, Then, to solve
A® = R, (5.22)

we need to find a binary (O,'l) square root in SF:X. If L is odd, we can
let 9= be the integers modulo 2; then all cross-terms in the square, being

even, vanish:
2° = z ’&ixzi =Z R{I\(2i)x21. (5.23)

Upon equating coefficients, we have a general solution to the first syn-

thesis problem for odd period symmetric sequences.

THEOREM: Let Q‘be a binary (0, 1) sequence having odd period and
A A _ .
@y Then @ = Ré\(Zl) mod 2.

Coefficients in a product AB are convolutions of the sequence a and

symmetry about

[3. So, in general,

A = K ' (5.24)

where we use K to denote the generator of A's convolution function.
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L-1

Km) = z @ o .o (5.25)
' i=0

When we postulate symmetry of A in the correlation problem, we are really
saying that R(m) is a valid convolution function for a. The general
problem we have solved is that of finding a sequence with a given arbitrary
convolution function.

A - .

@, = Ke(Zl) mod 2 . (5.26)

The quadratic residues for primes of the form 4t+1 are sequences of

this {:ype and, as we shall see later, are very important because their
correlation is the best among all binary sequences of the same period.

THEOREM: Let &\ be a non-trivial binary (0, 1) cyclic sequence with

‘lx\
O.

sequence have k terms equal to ﬁl per period. Then L must be even and

two-level autocorrelation, period L, and symmetry about Let the

k 1
= 2
L-—

1+

if L has s distinct prime divisors.
-Proof: Let A be the generator of {z\ in the rational group ring # <

We must solve
A = R. (5.27)

Case 1 (odd L): Let L be odd and assume that a non-trivial Q exists., By

the previous theoren,
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A =
a = R{I\(Zn) . (5.28)
But R has only two distinguishable coefficients, R(0) and R(1) = R(2) ... =
R(L-1). The reduction modulo 2 reveals that @ can only be one of the

trivial sequences (a11~zeros, all-ones, allezeros with a one or all-ones

with a zero), contrary to hypothesis. Therefore, if Risa non-trivial,

symmetric sequence with two-level autocorrelation, L may not be odd.

Case II (L even): Let L be even and assume @ is a non-trivial symmetric
sequence with two-level autocorrelation. The complement of a binary
sequence which has two-level autocorrelation also has two-level auto-

correlation. We choose Q‘to be the one with Ql\ = 1, Then we can write

A = R = (k-2\)+2T. (5.29)
From Section A, U is a multiple of Il:

U = LI,. (5.30)

Upon decomposing R into its field components

R = [k + (L-1)x] I, + (k - )\)12 + oo + (k - x)IL . (5.31)
Subscripts d on Id refer to the divisors of L. Since A12 = kZIl ’

kzll = [k + (L-1)x] L | (5.32)
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which gives the Bruck-Ryser condition(55) on a difference set (another

name for two-level autocorrelation sequences)

k¥ = k+ (I-1\ . (5.35)

Other components must satisfy

8, = (k - )1y (5.34)

for gll divisors d of L. These are equations in fields, and therefore

J/k -\ must be inA if there is to be any solution e.

A = kI
4, = 2 J(k-x)xd, d£1. (5.35)

According to the theorem in Section A, only those idempotents in fields

indexed by a d'such that
1 2
d — q_l q2 s q'S ’ (5036)

0 or 1, have non-zero coefficients of xl. Let s be the

f

with each mi
number of primes/which divide L; there are then QS such non-zero coefficients

of xl, each equal to 1/L. Therefore,

L= st vER Y ] (5.57)
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The 2S-l numbers a

4 above are either plus or minus one. Use of the triangke

inequality yields
k+/k-x(2°-1)>1. (5.38)

By subiracting k from each side, squaring, dividing by k - X\, and sub-

stituting \ = (k2 - k)/(1-1), we obtain

(251)2 > (L - kl{(L -1) _ 1 Zk}i{L) (1-1) ,

(5.39)

which can easily be solved for k/L, giving the value stated in the theorem.

/L > L 5 (5.40)

2 -1
1+ T-1

This inequality is least stringent for L:=1rs, the product of the first

s primes. Hence, for any given s, a bound Ty on the ratio k/L is given by

ro(s) = . S . (5.41)
1+ T -1
s
For any ratio k/L < Ty

about integer values of s as in Table 5-1; however, for visual facility,

, N0 sequences may exist. We may properly speak only

Figure 5.1 shows ro(s) with the points connected by a smooth. curve. At

g =17, k/L lies within 2% of unity, and at s = 8, within 0.7%.
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TABLE 5.1

TABULATION OF LOWER BOUND r ON k/L

s s o
0 1 1.000
1 2 .500
2 6 357
3 30 371
4 210 .481-
-5 2,310 706
6 30,030 .881
7 510,510 .981
8 9,699,690 <993

0
fl

number of primes dividing cycle length L
T = product of first s primes

number of ones (or zeros) per cycle.

N
]
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LOWER BOUND rq (S)

S,THE NUMBER OF PRIMES DIVIDING L

FIGURE 5.. LOWER BOUND ON THE RATIO k/L AS A FUNCTION
OF S, THE NUMBER OF PRIMES DIVIDING L. -
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D. Synthesis of Anti-Symmetric Binary Sequences

Suppose that a is anti-symmetric about a.; that is,

N\ A .

al = l-Ct_i ’ (lzl, 2, seay L‘l)

A N

ao - ao i (5042)
Clearly, L is restricted to being odd. In the correlation equation,
B=% anda T =1 Th

= 0, an =1-qa, en

2 -a+(®R-%XU) = 0. (5.43)
If we choose to solve this in ?x’ we must solve a quadratic equation

A2 -4 +R, = 0 (5.44)

d d d *

in every field Rd with d > 1; for d = 1, of course,

A = kI . | (5.45)

The ‘number of cnes k in A must, because of the anti-symmetry hypothesis, be
k = b . (5 O46)

Rather than trying to solve the quadratic equations in?x, as stated

formally by
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A, = %(Id + ,,/(Id - 4Rd) )

=41 i’\/l +4(U-R) ) I, (5.47)

which is often difficult because of the square root involved, we may revert
back to equation 5.43 directly. Since L is odd, we may reduce 5.43 modulo 2

and equate coefficients, giving

o +a, = R(2n) + k (mod 2) . (5.48)

Since R(m) and k are given, we have only a few choices to make to determine a.

3 3\
% = %
o, = @ + R(2) + k $
mod 2
@ = a + R(2) + R(4)
etCo /

There is only one choice to make in each of the sets corfesponding to the
cycles of gg: ) (3, 2, 4, v.e) vu. (v, 2v, 4v, ...), a total of @ (2, 0)
choices (see equation 3.19).

-Then, too, if we seek sequences with two-level autocorrelation functions

R= (k - A) + A U, direct substitution into the correlation equation yields
Zonr (BH)@-0) = 0. (5.49)

-—l', and reduce the equation modulo g. Then

Let g be a prime dividing LZ

.A. = A. . (5050)
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The sequence we seek is one of the binary idempotents in GF(q)x. Moreover,

since A% = A, and we are working modulo g,

& . (5.51)

A
Q. =
i gi

The sequence we seek is not only an idempotent, but it is also left fixed
by the operator‘gg of Chapter 3; there are 2(3(q, O) such sequences where,

as in Chapter 3,

Clo =y 24, | (5.52)
arn ¢

Of these 2(?(Q» O), many sre not eligible because they have an improper
number of ones; these can be discarded immediately.

Among the sequences of this anti-symmetric type are found the linear
binary sequences mentioned in Chapter 1 and the quadratic residue sequences of

period 4t+3 to be discussed in the next chapter.

E. Sequences with Specified Symmetries

Given the correlation R, we can solve the quadratic equation for A
formally whenever (B -'ﬁ) is specified. As in the preceding section, this

solution has the form

A= %[<B-§>+JWB-§>2+4<kU-R>] (5.53)

in the group-ring over a field with characteristic not equal to 2, J2u='1_being
chosen to make A binary. Conceptually, then, the symmetric part of A along

with its correlation is sufficient to specify A,
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The difficulty arises when one seeks the square rcot. One need find
only a' "positivé" square root, the rest being taken into account by J.
Taking a square root in an arbitrary field is not always an easy thing to
do, unless the radicand takes on a form recognized as a square. Otherwise
it may require less work to perform an exhaustive search for the sequence
with the given correlation.

We can often reduce the amount of search in some special cases by
looking for multipliers. A multiplier of a sequence &\ is an integer m such
that, for some t, there is an operator g:l in ?/which leaves ﬁ\ fixed, That

tA

is, gma = &\. According to. the theorem in 4-B, m must also be a multiplier

for the correlation function
R(n) = R(mn) .
Since ?, is a group, the multipliers also form a group., Let q be a prime not

dividing L, and designate s = qr. If we raise equation 5.21 to the s-th

power, reduce modulo g, and apply Fermat's theorem,
225 B -+ B -xU) = 0.

Suppose that R® = R, B° = B and B = B; that is, that s is a multiplier of

R, B and %’. Then

225 - B-B)Ff+ ®R-xU)

]
o

- (B-B)a+ R-%kU)

It
o
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Subtracting these two last expressions, it is seen that

(A° +4) (A%-4) = (B-B) W°-14).

But this means that in each of the fields of GF(q)X, either Ai = 4, or
else A:’:f +4 =B - ‘B’i., If the former holds in every field, s is a
multiplier of A; let us assume, then, there there is some j such that

A? % Aj° If we had used s2 instead of s, we would have reasoned that in

2 2
every field, either A =4, orelse A’ +4, =B, -B.. But then we
i i i i i i
2
cannot have A? + Aj = Bj -‘gj because this would imply
SZ
A5 = A8
J J
or
AS.’ = A ’
J J

2
contrary to hypothesis, Hence if A? % Aj for some j, then Aj = Aj. But then

and m = s2 is a multiplier.

THEOREM: If s = qr(L) for some integer r and prime q relatively prime

s s ~Ng ™~ . 2

to L, and R =R, B" = B and B™ = B modulo q, then either m = s orm = s
is a multiplier of A.

For example, suppose we wish to find a #1 sequence a having

R(n): 13, l’ "39 19 ly —3’ ""31 "'3’ "3, 11 l) "‘39 1.
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The multipliers of R are {l, 3, 4, 9, 10, 12 }, as easily can be verified,
and ea,ch of these is of the form 4r(27) or lOt(27). Hence, if we were to
assume that either 4 or 10 were multipliers, 12 = —1(13) would be also; then
A¥ = A, vand we can use the methods of section C f{o find an Q. We must

check the correlation of a to verify that the a we find actually satisfies

AA¥ = R, A solution does exist:
O = = = = bk F - - -,

As a special case, we go back to the two-level autocorrelation case:

- (B-BA+&-2) Q-1 = 0. (5.54)

Let q be a prime divisor of k - \ relatively prime to L. If we reduce

mod q, then A, B and B are elements of (}F‘(q)X related by

2% = (B-Fa. (5.55)

In each field, either
(5.56)

Hence, knowing the symmetry of A limits the forms which A can take rather
severly, and it cuts down on the number of trial solutions from 2L to 2 _l,

where @ =C (g, 0), the number of fields. Generally, for any m (1< m < n),

A o= (BB AR (5.57)
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so that for n = qr+l,

I'+l ~ r r ~ r
A% = B-B)%a = (8% -B )a. (5.58)

Let us now assume that the only effect of raising B and g'to the qrfgg

power is a shift in phase: for some 1,

Bq = xt B
r ~
ﬁéq = Xt B . (5-59)

Referring back to Chapter 4, we would say that B and'E are invariant under

gt for some t. As a result,
qr

t,2

r
TH _ PP = x5, (5.60)

4
and therefére A is invariant under the same operator.
At = x'a. (5.61)

- THEOREM: If a is a binary (o, 1) sequence with two-level autocorrelation,
if the symmetric part of A is undisturbed by some operator gtr in the affine
q
group EP , and if q is a prime which divides k - A\, then A is also invariant

under this operator.
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Stated in terms of multipliers, this reads: if (q, L) =1, g is a
prime which divides k - \, and if q? is a multiplier of the symmetric part
of A, then‘qr is a multiplier of A also.

(56)

This theorem is similar to Hall's multiplier theorem which states:
1f (q, L) = 1, q divides k - X, and q° > \, then q" is a multiplier of A.

The theorem above can be used to show that all known pseudo;noise sequences
have symmeﬁries‘such that the resfriction ¢r>-%.of Hall's theorem is never

needed. There is an unproved conjecture that this restriction is never

needed,

F. Iterative Methods and Approximations

Often, when we seek a solution to the first correlation problem, we
must assume some form for R(m), not knowing whether a solution exists or
not. Almost equally as often, for engineering purposes, we do not need to
find a sequence which has the given correlation exactly but one whose
correlation approximates the given one to a desired degree. This is related
to the second correlation problem, that of finding a sequence with low
out-of-phase correlation, in that we wish to approximate the ideal (or
two-level) autocorrelation to as close a degree as possible.

Let r(m) be a given function. We desire to find a binary (+1) sequenee
a, whose autocorrelation R(m) in some sense approximates r(m). Now define
a "loss" criteriona®(a) on a relating to the quality of this approxi-

mation. For example, éﬁ,(a) might be the total square-error,

2 (a) = Ep: [r(m) -R<m)]2. | (5.62)

m=1
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Implicit in any definition oféf’(a), we assume o is a "better" sequence
than B if &L (a) <L (B).
Suppose that a is a given sequence; then for any fixed k, denote by

a(k) that sequence whose terms satisfy

@ ;1 £k
0 - . (5.63)
—ak; i=k
Considering the set{a(k); k=1, 2, ..., p}to be a neighborhood of
a, the loss assumes minima relative to these neighborhoods and, of course,
at least one absolute minimum, This absolute minimum corresponds to the
best approximation possible. By proper choice of loss functions, it is hoped
thét relative minimal loss sequences also can give good approximations.
To find a relative minimum loss, we may start with an arbitrary or
randomly chosen periodic sequence l; and find a sequence of indices il’
i2, veey ik such that
2@>2B ) e g 1) 5 s gt
(5.64)

(il’iz""lik)
When this finally leads to a = 3 such that for all i,

2@ L6, (5.65)

then a is a minimal loss sequence. There is no guarantee, of course, that

this iteration will ever give the true mirnimum loss.
If we were to start our iterative procedure at a maximal loss sequence

v and finish with a relatively minimal loss a,
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(1,98, 5000y, )
@ = v T ° k) (5.66)

the total change in loss would be

k-1

Z [f(u(il,iz,...,ij)) i (U(il,.iz,....,ijﬂ))]

J=0

i

L (v) -FL(a)

il

k(A‘?f)average * | (5.67)

.When we want to havegxo (a) as small as possible, we want to choose the
indices il’ 12, ceny ik to maximizecza (o) -éf? (a); i.e., to make both k and
(A;f’)ave as large as possible. In practical cases, k and Aéf? are not
entirely independent. However, k is usually related to the number of minus
(or plus) ones in ¢ and is, consequently, somewhat fixed, Heuristically,

then, we desire to maximize the change in loss at each state of the

approximation.

L) = L) -xdL), . - (5.68)

When we begin the iteration, with a sequence chosen at random, we may
still use this maximal-change policy to advantage.

Whether iteration from a randomly chosen sequence leads to a true
minimum or merely a minimal loss depends on the relative abundance of
optimal sequences in the set of minimal loss sequences. In the cases
where only a few optimal sequences of a given period exist, the iterative
procedure has shown reluctance to find them. On the other hand, the

sequences found in almost every case are surprisingly good ones.
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1. Quadratic loss and minimal variance sequences. Because we seek
sequen;:es with low out-of-phase correlations, we will assume that r(m) = -7
for all m # 0 and r(O) = p; that is, we seek, by the iterative method above,
to find an approximation to the ideal two-level autocorrelation function.

For any binary (il) sequence o, define the loss function to be the total

square-error
P p-1
;f(a) = 2 [r(m) - R(m)]2 = Z [R(m) + r]2 . (5.69)
m=1 m=1

Now by chenging o, to -a,, the value of R(m) changes by 2::ti(cxi wt ai-m)’

because

Rm) = oo +o J+) oo, . (5.70)
' n=1
n;éi,n;éi—m
The change in loss is therefore given by
p-1
£ (@ -K D) = Y (@) + ) - &)+ r - 20ey,, + o) )]
m=1
p-1
2
8 Z = 4y R ¢ D)oy + o) o - (o, + 0 )%
n=l (5.72)
Averaging these Aiae over i,
p-1
8
aze(Aiy\a) =7 Z Rz(m) - p2 - (r-1)p + 2° - 8. (5.72)
=1 ‘

Here we have inserted
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n=1
-1 p p-1 p

d= Z z O n G = z 2 Cos m % ® (5.73)
m=1 i=1 m=1 i=l

When p is odd, note that the latter reduces to

8 D2 - D CLO Py (5074)

i

and when p is even, to
2 2 2 |
8= 2(0°+D ) -D,q = 20" -4D D -D, . (5.75)

Do and De represent the sum -Zan over odd and even n, respectively.
At the termination of iteration, Ai f <0 for all i. Clearly, then,

the average is also less than zero, whence

p-1
z B)g 2+ (8 -7 + (x-1)p . (5.76)
m=1

For a minimal loss a based on (a), the loss Z£'(a) about r'(m) = -1

is bounded by

p-1

X "(a) = z [R(m) + 1]2.<_ p2 + (z=2)p + 8 = (r-2)0° - 1, (5.77)

=1

which, for large p, nearly balanced sequences, and r = 2, gives an approxi-

mate upper bound on the RMS of [R(m) + 1]:
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RMS[R(Ié)r+ 1] ='\é;8 ‘[R(m) + 1]2 < /P

X'(a) < TR | | (5.78)

In practice, sequences found by iteration on a guadratic loss are
much better than the bound above indicates. The reason for this is that
Ai;\” < 0 is too weak a statement for most i. 4An indication of the sensi=-
tivity of this bound can be obtained by estimating the average A&P per

iteration step. Starting with a maximal loss sequence v, the all-ones,

KL (o) = (p-1) (p41)? . | (5.79)
The maximum Aa‘ﬁ occurs when v is changed to u(i), any 1i.
261 = (1) @37 . | (5.80)
Hence, the maximum change per step is
L) . = 8(p-1)° . (5.81)

On the other hand, the minimum change in loss can be nearly zero, or a
very small fraction of the maximum, for large p.

For a fixed decision rule, let h be defined by

) 2 '
W&, = B nax sl (5.82)

h h '
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We expect k to be close to the number of minus ones in a (it will be
precis’ely the number of minus ones if no minus is changed back to plus
in the iteration), and this number should be something like p/2 so that
the average correlation is near -1,

We then estimate

L@ = (1) @) - R p). (5.83)

Now certainlysf (a) 2 O, and if a is minimal 1oss,<;€ (a) < p(p~1) + ¥+ §-1.
Dropping D2 + 8 - 1 from the latter term as being negligible for large p,

we get tight upper and lower bounds on h.

el -%‘%g S b <40 -2 (5.84)
pt p +pt

For large p, h is less than, but very close to, 4. The lower bound on h
produces the lower bound ong" (cc) and likewise, the upper bound yields
the upper bound on i (a).

By using a maximum-decision rule in the iteration procedure, we attempt
to increase the average, thereby lowering h.‘ As shown by the analysis above,
we do not have to increase the average very much to get a sizeable decrease
in ;C (a) over the loss produced by the worst decision rule.

When, at a given stage, negation of the ith element in the sequence
produces a maximum change in loss, we may expect that many such i will also
produce this cha.rige. As a matter of convenience, we always decide to

negate the least i which gives the proper change.
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2. Even-moment loss sequence. In using a quadratic criterion to

generéte a minimal loss sequence, it is conceivable that the final result
has a large number of places where correlation is close to -1 and a few
places where the correlation is large but in which the decrease in loss
gained by negating some element, causing a decrease in the maximum corre-
lation (which is what we want), is counteracted by a large.number of small
increases of R(m) away from -1. Experimentally, it is found that this does
occur and becomes more serious as the period increases.

One way to counteract this is by using a criterion in which a large
deviation from ~1 costs much more than the total cost of the small increases.
To do this, we can use an sth even-moment loss function

p-1 .
& (o) = Z [R(m) + 1]25 . (5.85)
m=1
For any giveh s, there exists a period p at which the criterion will begin
failing to minimize the maximum out-of-phase correlation. Up te this periocd,
R(m) + 1

the iteration reduces the maximal to a relative minimal point

and the reduces the number of these maxima to a relative minimum. For this

reason, minimal loss sequences for any s = are also minimal loss for

o
S < 8q.

‘Reducing the maximal distance of the correlation from -1 is not exactly
the same as reducing the maximal correlation, since the even-moment of a
large negative correlation will also cause the negative correlation to be
increased. On the whole, then, even-moment cost criteria tend to make the
final sequence nearly constant in out-of-phase correlation.

Experimentally, s = 1 in the criterion gives good sequences up to about

p =28, and s = 2 increases this up to p = 46, For s = 4, good results were
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obtained up to the largest period considered, p = 63. We shall have more

to say’ about these experiments later. It is of interesf to note (see

Tables 5.2 - 5.4) that the maximum correlation remained about the same for
s=1, 2 and 4 at a given value of p; however, the number of maxima decreased

as s was increased. Note also the effect of different values of r.

3, Maximum-correlation logs criterion. We can take, as a valid loss

function, the double criterion

L@ = @y, K)  (s.en)

where ROM = max {Ra(m)} , and Na is the number of times Ra(m) = RaM .

We order f (cc) lexiographically as follows:

F ()< L(B), if Ry <Ry

L@ = pRy+N . (5.89)
Then, naturally, 3\9 (a) Scf (B) if and only if the lexiographic ordering
above holds, because Na < D.

The advantage of this criterion lies in the fact that only maximal
correlations; affectaf (a), a property not exactly frue of the even-moment
losses, The disadvantage of this lqss is that negative correlation ex~

cursions are ignored, and the final sequence may possibly be far from two-
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level and not have as few maxima as the even-moment cost sequences (see

Table 5.2).

G, Results of Iterative Techniques

Tables 5.2 =~ 5.4 compare the quality of sequences found by each of four
methods: even-moment losses for s = 1, 2, 4, and the maximum-correlation
loss. The best'sequence of a given period found by these techniques are
compiled in the Appendix along with some of the sequences found by methods
given in the next chapter. A small, relatively slow digital computer was
used to make the iterations.

To compute a correlation function, computer time increases as p2;
the loss computation requires summing roughly p of these correlation terms;
and the effect of negating any one of the p sequence elements means that
p losses must be computed. The number of iterétions is near the number of
minus ones, or about p/2. The total computer time thus increases as a poly-
nomial in proportion to p3. (A search through equivalence classes would
increase in proportion to p2:§k6p.) If, on the other hand; we start with
randomly chosen sequences, there is less iteration necessary, and the time
increases less rapidly than a p3 polynomial, |

To introduce an initial starting sequence for iteration in the.(p+l)
case, the p-period sequence previously found was augmented by inserting an
extra one per period. After finding the sequence of length p, the computer

performed the auvgmentation and began iteration for pt+l.
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TABLE 5.2

MINIMUM LOSS SEQUENCES, r = 2

sth Even~Moment Loss

s=1 s=2 s=4
0 0 0
1{opt) 1(opt) 1(opt)
2(opt) 2(opt) 2(opt)
-1(opt) -1{opt) -1{opt)
0 0 0
1(opt) 1(opt) 1(opt)
2(opt) 2(opt) 2(opt)
-1(opt) -1(opt) ~-1(opt)
O(opt) O(opt) O(opt)
1(opt) 1(opt) 1(opt)
2(opt) 2(opt) 2(opt)
~1(opt) -1(opt) -1(opt)
0(opt) O(opt) O(opt)
1(opt) 1(opt) 1(opt)
2(opt) 2(opt) 2(opt)
3 3 3
O(opt) O(opt) O(opt)
1(opt)  1(opt) 1(opt)
2(opt) 2(opt) 2(opt)
3 3 3

4 4 4
1(opt) 1(opt) 1(opt)

Max. Correlation

Loss

0(opt)
1(opt)
2(opt)
-1(opt)
0(opt)
1(opt)
2(opt)
~1(opt)
0(opt)
1(opt)
2
-1(opt)
0(opt)
1(opt)
2

3

0

1(opt)
-l(opt)

1(opt)

First Positive
Charge, 8 = 1

0(opt)
1(opt)
2(opt)
-1(opt)
0
1(opt)
2(opt)
3
0(opt)
1{opt)

2(opt)
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TABLE 5.2 (continued)

sth Even-Moment Loss

s=1 s§8=2 s=4
2(opt) 2(opt) 2(opt)
3 3 3
4 4 4
1 1 1
2 2 2
3 3 3
0(opt?) O(opt?) 0O(opt?)
1 1(opt?) 1(opt?)
6 2 2
3 3 3
4 4 4
5 5 5
2 2 2
7 3 3
4 4 4
1 5 5
6 2 2
1 3 3
4 4 4
1 5 5
2 2 2
3 3 3
4 4 4
5 5 5

Max. Correlation

Loss

C I

R AN ]

First Pogitive
Charge, s = 1

6

3

[ A Y,



- 125 -

TABLE 5.2 (continued)

sth Even-Moment Loss Max, Correlation First Positive
D 8 =1 s =2 s =4 Loss Charge, s = 1
50 2 6 6 6 6
51 3 3 3 3 3
52 8 4 4 4 8
53 5 5 5 5
54 6 6 6 6 6
55 3 3 7 7 7
56 4 4. 4 4 4
57 5 5 5 5 5
58 6 6 6 6 6
59 7 3 3 3 7
60 4 4 4 4 4
61 5 5 5 5 5
62 6 6 2 6 6
63 3 3 3 7 1

NOTE: Figures are maximum out-—of-<phase correlation values.
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TABLE 5,3

MINIMUM LOSS SEQUENCES, r = 3

sth Even-Moment Loss

g =1

g =2

s =4

0(opt)
1(opt)
2(opt)
~1(opt)
0(opt)
1(opt) -
2(opt)
-1(opt)
0(opt)
1(opt)
2(opt)
~1(opt)
0(opt)
1(opt)
2(opt)
3
0(opt)
1(opt)
2(opt)
3

0]

1(opt)

0(opt)
1(opt)
2(opt)
-1(opt)
0(opt)
1(opt)
2(opt)
-1{opt)
0(opt)
1(opt)
2(opt)
-1(opt)
0(opt)
1(opt)
2(opt)
3
0(opt)
1(opt)

2(opt)

0(opt)
1(opt)
2(opt)
-1(opt)
0(opt)
1(opt)
2(opt)
-1(opt)
0(opt)
1(opt)
2(opt)
-1(opt)
0(opt)
1(opt)
2(opt)
3
0(opt)
1(opt)

2(opt)

First Positive Decision
s=1

0(opt)
1(opt)
2(opt)
-1(opt)
0(opt)
1(opt)
2(opt)
-1(opt)
0(opt)
1(opt)
2(opt)
3
0(opt)
1{opt)
2(opt)
3

4

1



26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

- 127 -

TABLE 5.3 (continued)

sth Even-Moment: Loss

s=1 s =2 s =4
2 2 2
3 3 3
4 4 4
1 1(opt)  1(opt)
6 2 2
3 3 3
4 4 4
5 1 1
2 2 2
3 3 3
4 4 4
1(opt) 5 1
2 2 2
3 3 3
4 4 4
5 5 5
2 2 2
3 3 3
4 4 4
5 5 5
6 2 2
3 3 3
4 4 4

First Positive Decision
s =1

B AN

o W\ B~ W [ep}

(S B S ]
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TABLE 5.3 (continued)
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sth Even-Moment Loss

s =1 s =2
5 5
2 6
7 3
4 4
5
6 6
7 3
12 4
9 5
6 6
3 3
4 4
5
6 6
7 3

s =4

First Positive Decision
s = 1

o A ~3

AW
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TABLE 5.4

MINIMUM LOSS SEQUENCES, r = 1

sth Even-Moment Loss First Positive Change

s =1 g =2 s =4 ) s =1

0 0 0 0

1(opt)  1(opt)  1(opt) 1

2(opt) : Z(Opt) 2(opt) 2(opt)

-l(opt) —l(opt) —l(opt) —l(opt)

0 0 0 0

1 | 1 1 1

2(opt)  2(opt)  2(opt) 2(opt)

-1(opt) -1(opt) -1(opt) 3

0 0 0 0

1(opt)  1(opt)  1(opt) 1

2(opt) 2(opt) 2(opt) 2(opt)
3 3 3 3

0 o} 0 0

1(opt)  1(opt)  1(opt) 1

2(opt) 2(opt)  2(opt) 2(opt)

3 3 | 3 3

0 O(opt)  0(opt) 4

1 1 1 1

2(opt) 2 2 -

3 3 3 3

ofopt) 4 4 4

5 5 5 5
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TABLE 5.4 (continued)

gth Even-Moment Loss

e

First Positive Change

26
27
28
29
30
il
32
33
34
35
36
37
38
39
40
41
42

43

44
45
46
47
48
49

s =1 g =2 s =4 s =1
2(opt) 2 2 6
3(opt) 3 3 3
4 4 4 4
5 5 5 5
6 2 2 6
3 3 3 3
4 4 4 8
5 5 5 5
2 2 2 6
3 3 3 3
4 4 4 4
5 5 5 5
2 2 2 6
3 3 3 7
4 4 4 8
5 5 1(opt) 5
2 2 2 6
3 3 3 3
4 4 4 4
9 5 9
6 6 6 6
7 3 7 7
4 4 4 4
9 5 5 9
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TABLE 5.4 (continued)

First Positive Change

50
51
52
53
54
55
56
57
58
59
60
61
62

63

sth Even-Moment Loss

s =1 5 =2 s =4 s =1
10 2 6 6
7 7 7 7
4 4 4 8
5 5 5 5
2 2 6 2
11 3 7 3
4 4 4 4
9 5 5
2 6 6 6
7  3 7 7
4 4 4 4
9 5 5 9
6 6 6 6
3 7 7 1
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Chapter 6

OPTIMUM AND MINIMAX SEQUENCES

A, Optimally Distinguishable Sequences

For any sequence a having period p, let R , denote the largest value

al
of out-of-phase correlation
R. = maximum { R Gn)} . (6.1)
o do(p) o

The minimum of such maximum correlations taken over all sequences a

with the specified period will be denoted RM:

Ry = minimum{RuM} . | (6.2)

As shown in Chapter 4, there are certain lower bounds on the maximum
out-of~phase correlation values of a sequence, according to its period.

Those sequences which achieve these lower bounds, when they exist, will be
called minimgx sequences.

Those sequences whose maximum out-of-phase correlation is RM are the
best that can be hoped for, as far as seeking sequences having low out-of-
phase correlation. In some sense, however, it is advantagecus and desirable;
if a is a sequence having RM as its maximum out-of-phase correlation, that
Ra(m) assume the value RM a minimum number of times form=1, 2, ..., p-1,
because this would tend to increase the probability of correct detection.

For this reason, we define an optimal sequence, for a specified period p, as
one whose maximum out-of-phase correlation is RM and whose correlation function

R(m) takes on the value RM the least number of times per period.
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When p is of the form 4t+3 there often exist sequences with RM»=

(57,58)

these are the so-called pseudo-noise sequences They are ideal

from the point of view that they are minimax, optimal, and RM is the
least of all lower bounds for any period. In fact, it does not necessarily
follow that optimal sequences are minimax, or conversely.

The known cases for which such ideal or pseudo-noise sequences exist
re(59)

1. p=2"

-1 (linear sequences)
2. p = 4t-1 is prime (Legendre sequences)
3 = 4x2 + 27 is prime (Hall sequences)
4., p= t(t+2), both t and t+2 are prime (twin—prime sequences).
When there are no sequences having ideal two-level autocorrelation,
there are often those whose correlation takes on only three values: an
in-phase value (p) and two out-of-phase values. A particularly important
case arises when the two out-of-phase correlation values are separated by
4 (the minimum separation). In fact, we may treat two-level correlation as
ia special case of three-level correlations in which one of the levels occurs
O times. In our treatment of three~level correlations here, we do not
exclude the possibility that one of the three levels does not occur.
In case p = 3(4), but no pseudo-noise sequence of this period exists,

we relax the minimax condition somewhat to include an upper bound of +3.

A minimax sequence is thus one whose maximum out-of-phase correlation RM

is given by
0; ifp= og4;
_ ; if p=E14
B = (2 ifp=2(e) (6.3)
-1; if p = 3(4) and a p-n sequence exists
; if p = 3(4) and no p-n sequence exists.
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We connect optimal and minimax sequences by the following theorem:

THEOREM: If a is a balanced sequence with three-level autocorrelation,
in which the two out-of-phase correlation values differ by 4, than o is both

optimal and minimax.

Proof: The three correlation values are p, the in-phase value, R, the
maximum and R-4. Suppose R occurs Na( 2 0) times in the correlation function.

Then
p
z Ra(n)_ = p+NR+ (p—Na—l) (R-4) = D (6.4)
n=1

where Da is the imbalance of a. Solving for Na produces the relation

(R-4) (p-1) + (p-Di)

N, = - 7 . (6.5)

By hypothesis, & is balanced: Di = 0 or 1. The fact that Ncc 20

implies that

(r-4) (p-1) (p2%) < O
p-D° Di -1

a
R—4S-(p—1)s—l+p~l

. (6.6)

But since R is an integer, we may omit the fraction (Di-—l)/ (p-1). This

produces the result that

RS 3. , (6.7)
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In the cases p = 0, 1 or 2 mod 4, a is clearly a minimax sequence,

If p= 3(4), we may either have R = -1 or R = 3. Let us assume R =3

in this case and show that this includes the other also. Substitution

of R = 3 into the equation for Na gives

~1(p-1) + (p-1)
Noo= - P 4+ p

0. | (6.8)

This states that if p = 3(4) and R = 3, then this value of 3 is taken on
O times, and hence g is pseudo-noise.

We should interrupt the proof at this point to note from the above
that if no pseudo-néise sequence of length p = 3(4) exists, then neither
does a balanced three-level sequence.

In all the cases above, the fact that a is a balanced three-level
sequence implies that it is also minimax, To prove that it is optimal,
we need to show that Na is the least integer preserving the minimax prop-
erty. From the foregoing discussion, we need consider only p £ O, 1, 2(4),
since balanced three~level sequences of length 3 mod 4 are pseudo-noise and
thus optimal,

Let ﬁ; be an optimal sequence having the same period as a; [3 is then
a minimax sequence whose maximum correlation value océurs, say, No times

1

in the correlation function and Nb < Na' Let R, denote its average non-

maximum out-of-phase correlation and Dﬁ; its imbalance:

p
2 2 :
DB = Z 'Bi (and clearly DB ZDa) . (6.9)

i=1

The sum of correlation values over a period is
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P
z RB (n) = DE = p+NR + (p—NO-l) R - (6.10)

n=1 -

Solving this for NO produces the relation

2
o oL (p-1) R, + (p-DB) ‘ (6.11)

0 Ry = By

Clearly, Rl's RM—4. If Rl = RM—4, ;3 is a three-level sequence; the

condition Ny < Na implies
ng <0? . (6.12)

Due to the balance of a, the inequality cannot hold, consequently,

2 2 . . .
D™ = Da and Nb = Na‘ Therefore, if Rl = RM74’ a is optimal.

Suppose, on the other hand, that R1.< RM74' The'condition Nb <N

is equivalent to

R+ ) @) () + (o)

. 6.1
By simple manipulation, we can rearrange this to read
2 2 ’
Do~ D
2 1 1 1 1 B o4
-5 2[me0en] G-gEo - NCRTS
«* TR 2 ReRy " ReRy
2 Di
This inequality is not affected if‘;%%%;; is dropped (it is non-

negative), nor if we divide both sides of the resulting inequality by

the positive term (%-- L ). When this is done, we obtain

By
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Di > RM(p-l) +D . (6,15)

The balance of o assures us that Di <1. Consequently,

12 Ry(p-1) +p

RyS -1 . (6.16)

This can certainly not hold for p £ 0, 1, 2 (4) if p > 2. The case
P = 3(4) has already been disposed of. Hence a contradiction is reached,
indicating that R1 is not strictly less than RM74' We thus revert back

to the case Rl =RM—4, and o is optimum, completing the proof of the theorem.

(60)

The Legendre symbol ( %') is defined by
O if x = O mod p (p is a prime)
( % ) = 1 if x is a square, mod p

-1 if x is a non-sguare, mod p .

Those x with ('% ) = 1 are called quadratic residues.

An equivalent way of defining the Legendre symbol is as follows:
since the integers modulo p form a finite field, the multiplicative group
is cyclic. Let ¢ be primitive in this group; then for every n % O there

exists a unique r in the range 1 < r < p-1 such that
‘,Lr = N . (6017)

Then define

0 (1) nZo (p)
(=) = ; (6.18)
P =0 (p)

(o]
[a]
i
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That these two definitions define the same quantity can be shown

as follows: if n is a square, there exists an r such that ur = x2 = n.

Suppose r is odd. If this is the case, u2m+l = x2 would imply p = (xu-m)z.

But y is primitive and hence must have order p-1, whereas a square can

have at most order P.:zi . This contradiction indicates that r is even and
(

g i3

) = 1 for square n. Similarly, ( % ) = =1 for non-square n.

It follows trivially from the latter definition that
m nm
2y - (=2 6.1
) ( v ) ( " ) (6.19)

for all n and m modulo p (that is, the Legendre symbol is a group

character) (61 ) .

THEOREM: The Legendre sequences for every prime p produce a balanced,
optimal, minimax sequence of period p whose autocorrelation has three-or-

fewer levels.

Proof: Define a as follows

. = (6.20)
( % )i n Z o(p)

First, a is balanced because

p-1 -1
n n
Dy =14y (B) =143 ()
n=l n=1
= 140 = 1. - (6.21)

The group property of the Legendre symbol allows us to compute Ra(m) easily:
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P p-1
Ra(m) = Z Ctn an+m = aO(am + a—-m) + z 0:n an-l-m
: n=1 n=1
n%p—m
-1
n ntm
= gty (2)(ER). (6.22)

n=1

Since n # 0 in the summation terms, there exists some integer, call it nml,

such that n(n-l) = 1(p). Then

-1
n+m n l+mn n X
- = = _— = = =) . 6.2
(BB = (2) (2R - (2) () (6.23)
As n goes through the values 1, 2, ..., p-1, X goes through 2, 3, ..., Py

in some order. As a result,

P

(Z)+ (Z)+) (2

p

R (m)
x=2

p-1

(B[ (] + ¥ B -

x=1

I

]

(§>[1+<:§->]_1. (6.24)

' We now need to know when -1 is a guadratic residue; if u is primitive
modulo p,

2l
u?’ = -1, . (6.25)

=1

> 1(4). Other-

i

Therefore, -1 is a residue whenever is even; i.e., when p

3(4),

wise, when p = 3(4), -1 is a non-residue. Consequently, if p
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Ra(m) = =13 m # 0(p) , (6.26)

and a is pseudo-noise, as stated earlier. If p = 1(4), on the other hand,

¢ has three-level autocorrelation:

R (m) = 2 (%) -1, | (6.27)

and Ra(m) takes on the values p, 1 and -3,
In either case, we apply the preceding theorem and optimality of a
is assured., If a had been set equal to -1 instead of +1 the result would

be unchanged for p = 3(4), but for p = 1(4)

Ra(m) = =2 (1‘5 y-1, (6.28)

also an optimal correlation function.

B. Minimax Sequences

From the preceding section, optimal minimax sequences are known to exist
whenever the period is prime, or of the form p = 2°=1, or p = t(t+2), with
both t and t+2 prime. In this section we shall show the existence of
several other classes of minimax sequences. We extend the quadratic residue
concept and derive conditions under which sequences made by term-by-term
and‘Kronecker products may be made minimax, Some near-optimal sequences
result and, in a few special cases (gﬁg., P = 9) a three-level optimal
sequence exists,

1. Jacobi sequences. We begin by extending the guadratic residue

sequences. If p and q are different primes, the Jacobi(62) symbol ( EE; )

is defined



n n n
ey = 4 2y, 6,2
(pq) (P)(q) (6.29)
Brauer(63) showed that if proper values of *l1 are inserted in the

sequence = ( Jl') where ('EL ) = 0, a pseudo-noise sequence could
n Pq pq

be made if ¢ = p £ 2, We can prove an analogous theorem,

THEOREM: If p and q are prime and |p—q| is 4 or 6, then a minimax
sequence of period pq exists. Furthermore, when p = q+4, there exists a
sequence with three-level autocorrelation and imbalance 3.

To prove the theorem, define the sequence o termwise as follows:

(= ); n#olp), n#o(q)

pq
< a ; n=0(pg) (6.30)
44 = o
n b ; n=0(p), n# 0(q)

¢ ; n#o0(p), n=0(q)

We wish to choose a, b and ¢ either +l1 or -1 so that the correlation function
of a is most desirable. Let A be the generating function of a:

pg-1
A = Z o, =, (6.31)

n=0

Likewise, define the component generating functions

pg-1
n n
@ = ) ()«
n=1
-1
B =D Z Xpn . (6.32)
n=0

p-1
C = ¢ :E: an

n=0
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We may then express A as a sum of these components in the following

way:
A = Q+B+C+ (a=b-c) . (6.33)

According to the analysis in Chapter 5, the generator R of Ra(m) is

merely
AA¥ =R modulo xP%-1 . (6.34)

From the structure of the components, B¥ = B and C*¥ = C, By routine

calculations, we can verify that

\
B° = qbB
¢® = peC > (mod %-1) (6.35)
pg-1
BC = bc z xn
n=0 J

For convenience, set h = a-b-c, The correlation of a is

A* = Q¥ + (Q+ Q%) (B+C)+h(Q+Qx)

+ (2h + gb)B + (2h + pc)C + 2BC + ne . (6.36)

The terms in QQ* are the correlations of quadratic residues which, because

p and q are coprime, are of the form
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( (p-1)(g-1); m = 0(pq)
pg-1 ' ~(p-1) 3 m=0(p), m # 0(q)
. ( n ) ( nHn ) - (6037)
gég g g < -(g-1) 3 m #0(p), m = 0(q)
=" ; m Z 0(p), m # 0(q)

Coefficients in Q+Q¥* are ( -I-J% ) + ( -;-3- ); we thus have Q+Q*¥ = 2Q or O,
according as -1 .is a square or non-square modulo pq. Recall that -1 is a
square modulo k whenever k is a prime of the type 4r+l, and a non-square

when k is a prime of the type 4r+3. Hence, if p and q are prime of the same

type,
Q+Q* = 0. (6.38)

Finally, congider the product

pg-1 q-1
_ oy _n+op
QB = b Z Z (pq ) x
n=0 m=0
pa-1 g-1
=bz Z(l‘—;‘—zﬁ)xk. : (6.39)
k=0 m=0

Sincé ( E;%P- ) = ( %)( k—+§2 ), the sum on m causes k+mp to go through all

residues modulo g exactly once and gives a vanishing sum

@B = 0. (6.40)

By symmetry, likewise
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€« = 0. | (6.41)
éubstitution of these values in the expression

R = Q¥ +h(Q+q*) + (2h + gb)B + (2n + pe)C + 1 (6.42)

yields the following correlation values:

0(pa)

1 + 2be + 2(a-b-c) ( pl; )eg; m#0(p), m# 0(q)

(" pg ; m

R(n) = (6.43)

-l +2ac -q+7p ; m# 0(p), m = 0(q)

o(p), m # 0(q)

-1 + 2ab - p +
L ab - p +q

B
i}

where g = 0 if p and q are different type primes, and g = 1 if p and g
are primes of the same type.

Note that if p=q + 2, a = b = ~¢c = 1, then R(n) takes on the value
-1 for all out-of-phase m. This verifies the previous assertion concerning
the existence of pseudo-noise sequences whose periods are products of twin
primes.,

By equation 6.43 above,

il
1
(e
it
e

L ]

If p and q differ by 6, set a = b

i

(pa; m = 0(pq)

-1; wZ 0(p), m # 0(q)
R(m) = (6.44)
+3; m Z 0(p), m = 0(q)

0(p), m # 0(q)

i

!
U
2]
il

.

This is a minimax sequence if no pseudo-noise sequence of length
p(p+6) exists (of which none are known at present). A sequence of period
55 made this way appears in the Appendix. |

In the case p = q+4, set a=b = ~c =1, As a consequence,
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(" pq ; m = 0(pq)
: 1+2 (=) uw#o(p), m#0(a)
R(m) = ¢ P d : (6.45)
1 ; m# 0(p), m =0(q)
-3 ; m=0(p), m# 0(q)
We compute the square of imbalance by
pq—:l pg-1
Di = z R(m) = pq + (p-1) -3(g=1) - (pg-p-q+l) + 2 z ( 5% )
n=0 m=0
= 9 (6.46)

giving an imbalance of 3. If no three-level balanced sequence of such
periods exist, these are optimal. The fifst possible example would have
period 77 (the Appendix gives a p = 21 sequence which 1§_balanced).

This completes the proof of the theorem. We note in passing that
if p and q differ by more than 6, the maximum out-of-phase value of R(m)
is always greater than the minimax value.

Going back to the definition of the quadratic residue, one sees that
there are rather obvious symmetries involved. The guadratic residue
sequences for p = 1(4) are symmetric about ¢y and for p = 3(4) are anti~
symnetric about Tye These symmetries are carried over into the Jacobi
sequénces as well, The point is this: all these sequences could have
been synthesized by the methods of Chapter 5, given the correlation
function (had it been known). |

2, Term-by-term product sequences. Suppose p and q are relatively

prime and let a amilgkmve periods p and g, respectively. The correlation

of Y= a*ﬁ is, of course,
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R),(m) = Ra(m) RB(m) . (6.47)

THEOREM: If Y = a*ﬁ is minimax, a has period p, B period q,
(p, q) =1, and p is divisible by 4, then Ra(m) =0 form # O(p),ﬁ is

pseudo-noise and Y has three-level autocorrelation.

Proof : Under the hypothesis that ‘)’ is minimax, for all m # O(pq),

R),(m) = Ra(m) R,B(m) <0. (6.48)

For m = nq, R-y(nq) = qRa(nq) < 0. This yields

R (m) < 0 , | (6.49)

for all m # O(p). Hence a is minimax. Similarly, when m = np, R (np) =
P RB(np) < 0, and R'B(m) must be less than or equal to zero for all m # O(q).
But this can only occur if :8 is a pseudo~noise sequence, because q must

be odd. If :3 is taken to be pseudo-noise, for each m # O(p) we get
RByln) = -R (m)<0, | (6.50)
or Ra(m) > 0, This is compatable with Ra(m) < 0 only if

Ra(m) = 0 ; m Z 0(p) . (6.51)

There are, then, only three levels in Ry(m): pg, O and -p.
The only known sequence having the property of equation 6.51 has

period 4, equivalent to

a: o+ + - (6.52)
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It is conjectured that there are no others; in fact, it has been shown(64)
that if others do exist, p > 144.
To compute the imbalance of Y when p = 4,
2 2 2
Dy = DI D,B = 4, | (6.53)

giving |D7|= 2. The out-of-phase values are, then, O and -4. This three-
level autocorrelation and near-balance indicate the near-optimality of
term-by-term product sequences of period 4q when a pseudo~noilse sequence
exists hairing period gq. Examples of such sequences are given in the
Appendix with periods 28, 44 and 60,

We may now assume that neither p nor g is divisible by 4 and as8ign

p>q. If m=np#0(pqg),

P Rﬂ(np) <R,

Ry(np)
RB (m) B . (6.54)

p

IA

If p> 3, RB(m) < 1, which implies B is pseudo-noise, Likewise,

Byng) = g R (na) < Ry

< :
R(m) < = (6.55)
and if q > 3, a must also be pseudo-noise. Since we have chosen p > q,

we have the result that if Y = a*ﬁ y 4> 3, and yis minimax, then both

a andB are pseudo-noise. It is clear that if o and B are pseudo-noise

then V4 is minimax.
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If g =2, Ry =2 and Ra(m)s 1; so p =1 or 3(4).

= ()R
Ryln) = (-1)" 2R (m) < 2. (6.56)
Since (2, p) =1, Ra(m) must satisfy both

Ra(m) -1

v

R (m) £ 1 | (6.57)

Consequently, & must have two-level autocorrelation with the out-of-phase
value equal to +1 or -1,

The remaining case is q = 33 B is then pseudo-noise, because the
only sequences of period 3 are pseudo-noise. When p = 1(4), and when no
pseudé-noise has period 3p, RM = 3; o is minimax by equation 6.55. The
values Ry(m) assumes are then 3p, —Ra(m) and 3Ra(m). Hence, if a has minimax
three(or less)-level autocorrelation (p, 1, -3), Y is minimax.

When q =3 and p = 3(4), equation 6.55 requires that Ra(m) < 0, and

a must be pseudo-noise., This proves the following theorem:

THEOREM: If Yy = a*B is minimax, the periods p and q of a and B,
respectively, are relatiirely prime, and p > q, then

(1) q = 2, and o has minimax two-level autocorrelation, or

(2) q=3, p=1(4), and @ has three(or less)-level minimax auto-
correlation (p, 1, -3), or

(3) q 2 3 and both o and B are pseudo-noise.

3. Kronecker-product sequences. Kronecker products sometimes yield

minimax sequences if the factors are properly chosen. By considering the

cases which arise, we prove the following:
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THEQOREM: Let Y =a® B be a minimax sequence for which the period
p of a' is greatler than 2. Denote the period of B by g and assume that
no pseudo-noise sequence has period pg. Then

(1) 1If p=0(4), then Ra(m) = 0 for m # 0(p), and B is a Barker

sequence with q = 2, 3, 7 or 11.

(2) If p = 1(4), a must be minimax, and either
(&) q=2 and Ra(m) + Ra(m-l-l) > -2 for all m, or else
(b) g = 3, a has three-level (or less) autocorrelation (p, 1, -3)

and B is either + + - or - + + , or their complements.
(3) p=2(4) nay not occur.
(4) 1f p = 3(4), a is pseudo-noise, and either
(a) p217, 8 1is a Barker sequence with q = 2, 3, 7 or 11, or else
(v) p=3, B has three-level (or less) autocorrelation, and an

aperiodic correlation function TB(n) satisfying

0; RB(n) <0

1; RB(n) >0

for all n ¢ o(q) .

TB(n) <

Proof: Recall that when mg+n ';’ O(pq), 0< n<q, the condition that

Y is minimax is

Ry(mq+n )

R,(@41) Rgla) + Tgln) [Ra(m) B} Ra(m+l)]_<_ R,

RB(n) '};‘B(n) + TB(q—n) . (6.58)

If we alternately set m and n to zero, we derive two conditions on a and

B : for out-of-phase values of m,
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By

R (m) < "

b}
< L
= q ’

2

RB(m)S TR (6.59)

(p+Ra(1) cannot vanish for p > 2). The minimax value RM is congruent to

pq modulo 4. F?r every q, a must be a minimax sequence, and in fact,

R (m) < 2. (6.60)
This rules out p = 2(4) immediately. For every q > 3,

Ra(m) < 0. (6.61)

Before considering specific cases for p, we show q # 0(4): let us
assume q is divisible by 4 and show this leads to a contradiction. Both

o and B are such that

Ra(m) <0

RB(n) < 0. (6.62)

Let 77 = {n: RB(n) = O} H 77 is not empty because O is the minimax value

of RB(m). For every n, in 77

TB(nO) = -TB(q—no) . .‘ : (6.63)

But then, by equation 6,58,
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n

15tag) [2 - 2] 5 0

TB(g—nO) [p - Ra(l)]s 0 (6.64)

R)'(no)
Ry(q-no)

it

~T3(n) [p - Ra(l)]s 0

This occurs only if 33(n0) = 0 for every n, in 77, indicafing every such
n, must be even. In Chapter 5, we showed that the minimax value must be

attained at least a certain number of times, namely
g2 - 1. (6.65)

But there are only -% - 1 even integers in the range 1, 2, ..., 9~1l.
There must, therefore, be some odd integer n, with Ra(nl) = 03 ny then
belongs to'7? , contrary to the fact that only even integers may belong
to 77 .

We need only consider Kronecker products with g # 0(4) and p ¢ 2(4).

Case 1: p = 0(4): By equation 6,59

Ra(m) <0
R,B(m) < o0. (6.66)

First, Ra(m) must be zero for all m # O(p), for suppose there exists a value
of m, say Do such that Ra<m0) were less than zero, but R(mo +1) = 0.

For each n ¢ O(q),

i

Ry(moq+n)

TB(n) > 0. (6.67)

Tg(a) By(ag) < 0,
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But then, by equations 6.58, 6,59 and 6,67,

0 Zfﬁm

RB(H )

TB(n) + TB(q—n) > 0, or
0, (6.68)

and this contradicts the hypothesis that g ;74 0(4). Consequently, there

can be no such mO and as a result,

Ra(m) = 0, all m Z 0(p) . (6.69)

The only sequences known to have this property are those equivalent
to +++ -,
The second equation of 6,66 limits the values q may take to either

2 or the period of a pseudo-noise sequence. For q = 2, equation 6.58

reduces to

Ry(an)
37(2m+1)

I

2Ra(m)

1

—Ra(m) - Ra(m+l) , ‘(6.'70)

giving a three-level autocorrelation (2p, 0O, -p) .

Evaluation of equation 6.58 for m = O gives
TB(n) [p - Ra(l)] <0
TB(n) S O . (6071)
This, coupled with the fact that when n is even, g-n is odd, and vice=
versa, and

RB(n) = TB(n) +TB(q—n) = -l (6.72)
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restricts the aperiodic correlation TB(n) to either O or -l.

Sequences | B such that

|TB(n)| <1,1<n<gq, (6.73)
are called Barker sequences(65). There are only three pseudo-noise Barker
(66)

sequences, and these are

+ + -

q = 3 B:
q = 7, B: +++--+- (6.74)
q = 11, B: +++-- -+t

all of which have TB(n) < 0. Inserting these values in equation 6.58,

qRa(m) when n = O

il

R,y(mq+n) = -Ra(m+1) when '];‘B(n) 0 (6.75)

—Ra(m) when TB(n) = -],

The resulting Kronecker product has three-level autocorrelation (pq, 0, -p).
There are, therefore, minimax sequences with RM = 0 of perieds Z2p,
3p, A7p and 1llp which can be made by Kronecker products whenever a sequence

o has Ra(m) =0, allm ¢ O(p).

Case 2: p = 1(4). By equation 6.59, q must be 3 or less, and a is

minimax. Consider q = 2. The correlation of ¥ is restricted by

Ry(2m)
R)’< 2m+l )

2Ra(m) <2

it

—[Ra(m+1) " Ra(m)] <2. (6.76)
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The second of these is the condition stated in the theorem.
Next, let q = 3, All period 3 sequences are equivalent to + + -,

-+ +, or + -+, The first two of these have

TB(n)z 3, 0, -1, (6.77)
and the third has

‘I‘B(n); 3, 0, +1 . (6.78)

When ﬁ; is one of the first two types, Ra(m) must satisfy

R7(3m)

R7(3m+1)
R7(3m+2)

il

' BRa(m) <3

il

—Ra(m-i-l) < 3

il

R (@) £ 3. (6.79)

Whenever ¢ has three-level autocorrelation (p, 1, -3), these equations are
satisfied, resulting in four-level autocorrelation of a (3p, 3, -1, —p).
When a has two-level autocorrelation (p, l), Y also has four-level auto-
correlation (3p, 3, =1, -p). If a has any correlation less fhan -3, Y is
no longer minimax.

Next, when ﬁ; is the third type,
'Ry( 3m)

Ry( Bm+l )
Ry( 3m+2 )

3R (m) < 3

fl

—Ra(m-i-l) <3

Ra(m) - 2Ra(m+l) < 3. (6.80)

In particular, the third of these, evaluated at m = 0, gives
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Ry(z) = p-2R (1) £ 3, (6.81)

which can be resrranged to read

5 <R(1) <1, | - (6.82)

This can hold only for p = 5; but there exists a pseudo-noise sequence
with period 15, contrary to the theorem hypothesis., There are, then, no

sequences of this third type.

Case 3: p = 3(4), The restriction in the first half of 6.59 limits @

to pseudo-noise; the remainder of 6.59, together with equation 6,58, evaluated

m=1 limit [3 as follows:

RB(n) 2 —RM fo? all n
Ry

) for all n # O(q) . (6.8%)

R,B(n) <

Consequently, B must be minimax three-level or less; equation 6.83, together
with equation 6,58, evaluated forum = O, provide the necessary and suffi-

cient conditions which B must satisfy.

. (6.é4)

Rlvl;ll*B(n) < &

p+l

T'B(n) <

For all p > 7, the periodic correlation of ﬁ would have an upper bound of
zero, and thus an out-of-phase correlation bounded above by zero, As a
result, either q = 2 or else B , as well as a, is pseudo-noise. Further, the

upper bound TB(n)SO plus the restriction of B to pseudo-noise requires that
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ﬁ; bg one of the pseudo-noise Barker sequences. For each of these, q = 2,
%, 7T or 11, bofh equation 6.83 and equation 6.84 are satisfied, giving the
result stated in the theorem.

On the other hand, if p = %, the necessary and sufficient conditions

reduce to

Ry £ R'B(n) < Ry
TB(n) < M < 1

7 <1. (6.85)

When g = 3(4), RM =1, sd ﬁ? must be a pseudo-noise Barker sequence, q = 3,
7 or 11;-also, q = 2 satisfies 6.85.

In the final two cases, q = 1(4) and q = 2(4), q > 2, ﬁ; must have
three-level (or less) minimax (periodic) correlation and an aperiodic auto-

correlation which satisfies

TB(n) . 0; if Rﬁ(n) <0 (6.56)
1; if RB(n) >0

That sequences of this type exist may be verified by example: suppose
q=6,8 =+-+- -+ Then
RB(n): 6y, =2, =2, 2, =2, =2 ,

TB(n): 6, -3, 0, +1, -2, +L .  (6.87)
Next, for q = 9, ﬁ; =t o=kt -— =+,

RB(n): 9, 1, “3’ "3) 19 l, "3’ "'39 1 )
TB(n): 9’ O, "3’ O’ l; O’ "3’ O.’ 1. (6‘88)

There are also Barker sequences with ¢ = 5 and 13, which naturally satisfy

6,85 and 6.86.
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This completes the proof of the theorem.

Coll(67) hés shown that Kronecker squares of pseudo-noise Barker
sequences satisfy equation 6.86. Equations 6.87 and 6.88 were made,
respectively, from Kronecker products we can designate as 3 & 2, and

3 @ 3, the latter being one of Coll's squares. However, Coll's squares,

except for the 3 ® 3, violate the first part of 6.85.

C., Compiling the Minimax Sequences

By using the three methods indicated in Section B, we can compute
optimum and minimax sequences for all periods commensurate with theory.
The first theorem of Section A can be applied as a guide to optimality.
Even when this theorem is not applicable, namely, when we have found a
non-balanced or non-three-level minimax sequence, the desirable qualities
of minimax sequences are evident: near-balance and as few autocorrelation
levels as possible.

Table 6.1 shows the existence of minimax sequences synthesized by
the methods of this chapter. When more than one method produces minimax
sequences of a given period, only the one whose autocorrelation has the
least number of out-of-phase maxima is listed.

If we were to compare minimax sequences made from products to those
fouﬁd by iterative computer search, we would see, for periods less than
63, at least, that the computer-found sequences usualiy have fewer out-of-
phase maxima, Of course, when a sequence synthesized by methods of this
chapter are optimal, or extremely near optimal, the computer results prove
inférior. For this reason, only a few product-sequences appear in the

Appendix of Minimax Sequences.
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10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
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TABLE 6.1

THEORETIC MINIMAX SEQUENCES

generation

. method

282

quad. res.
3&2

lin. shift-reg.
482

383

582

quad. res,

3 * 4

quad. res,
TE2

lin, shift-reg.

quad. res.
9% 2

quad, res,

783
1 r2

quad. res.

13® 2
38383

4 * 7

quad. res.
1582

lin. shift-reg.

3811

status

optimum
optimum
optimum
optimum
optimum
optimum

(10, 2, -2, -6)
optimum

near optimum
optimum

(14, 2, =2, ~6)

optimum

optimum
(18, 2, -2, -6)

optimum

(21, 1, -3, =7)
(22, 2, -2, -10)

optimum

(26, 2, =2, =14)
(27, 3, -1, =5)
optimum (?)
optimum

(%0, 2, -2, -14)

optimum

(33, 1, -3, -11)



period

34
35
36
37
33
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
5T
58
59
60
61
62

SYMBOLS
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TABLE 6.1 (continued)

generation
method

Jacobi symbol

guad. res.
19 * 2
138 3

quad. res.
21 8 2
quad. res,
11 * 4
15% 3
23 ® 2

quad. res,

Ta7
25 @ 2
1783

quad. res.
Jacobi symbol
1983

quad, res.

15 * 4

quad. res.
2112

status

optimum

optimum
(38, 2,
(39, 3,

optimum
(42, 2,
optimum
optimum
(45, 1,
(46, 2,

optimum
(49, 1,
(50, 2,
(51, 3,
optimum
(55, 2,
(57, 1,
optimum
optimum

optimum
(62, 2,

-2,

-2,
-1,

-1,

(?)

-2,

-18)
~13)

-6, =22)

-15)
-22)

-6, -26)
-9, -17)

~19)

-30)

p&q (=) Kronecker product of sequences with periods p and q.

P ¥q (=) termwise product of sequences with periods p and q.

The numbers in parenthesis indicate the correlation levels.
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CHAPTER 7

TRANSFORM THEORY OF BOCLEAN SEQUENCES

In this chapter a Fourier-type theory is developed for Boolean functions.

Through this theory we will be able to develop optimal sequences to be used

in the minimum acquisition-time receiver,

A, Analysis of Discrete Real Functions

Suppose f is any real function of binary (O, 1) variables X5 x2, cany
Xn' The domain 3( of f is then a set of 2n binary vectors x = (xl, X2’ ceey

xn)

7 ={_}£ = (xl, X2’ ee ey Xn); Xi—':OOI‘ l,izl, 2, esey n}.
(7.1)
Since f is completely specified by its value at each of these o points

. . n .. .
in we may consider f as a member of a 2 ~dimensional vector space YV .
?

2

"]/: {f = (fl, f2’ eeey T n); fi real}. (732)

For any two elements s and x of X, define the function

Ko x) = 22 7 ()T, (7.3)

i=1

When s is fixed, g is a function of X lying in “Y'. These are the

(e8)

Rademacher-Walsh functions and will form the bésis of our Fourier theory,

LEMMA: The set{Qf(g, x); 8 in‘)’} is an orthonormal basis of 'V
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Proof: We merely need to show that any two elements in the set are

orthonormal. Let 8 and w be members of 9( . Then

n (s, 4w, )x,
Y He x) B, x) = Ny w o (a) PR
1
n (s. w.)x.v
R z (-1) 1+? T (7.4)
i=l x.=0

This inner product vanishes if any s; ;é w3 when all W= 8, each sum
is 2, or

> #s, ) Blu, 8) = R (7.5)

0; s

I=

.
I=

The set {Qf}is a set of 2" orthogonal unit vectors in ’]/a,nd must therefore

be a basis.

Now, given any function f in ‘]/ y we can expand f in terms of this basis
2(x) = ) ) fls, x) (7.6)
=1

There are 2" coefficients F(_s_), and hence F is a member of ’l/; these two

corresponding members of Vare a transform-pair.

LEMMA: f and its transform F are related by

H
N
|4
j—
i
s
~—

Y. ) #es x

t=
~~
1)
—”
3]

z f(x) #(x, 8) .
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Proof: The first equation defines the coefficients F(_s_); the second

is obtained by finding the inner products of f with the new basis:

]

Y @) Bl 8) = ) ) Fw) #w o) s 2

= F(s) . ‘ (7.7)

(69)

From this a dual of Parseval's theorem follows:

THEOREM (Parseval ) :

Y £ = Y Pl .

Proof: An orthonormal linear transformation in a vector space

preserves distances.

Now if x and y are in“*X, denote by x & y = z the modulo 2 vector

sum in X :

2, = X4V, mod 2 . (7.8)

For any fixed y, f(zx ® y) is the y-translate of f(_}_c_).
IEMMA: If g(x) = £(x ® y), then G(s) = /2 #(s, y) Fls) .

Proof':

6(s) = ) &) #x ) = ) @ # w0

But

n s, (u,+y.)
W g T, w6 1)

B(s, v @ y) 2

it
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and the theorem follows,

THEOREM (convolution): f(x) = g(x) h(x) if and only if

o) = 22 Y seewrw = 2V Y o EEeow .

W w

Proof: By the lemma above, it follows that f(x) = g(x) h(x) if and
only if

f(x)

i

Z Z ¢(s) H(w) 8(s, ) B(x, x)

= z (Z o~n/2 ¢(w) B & 8) ) 8(s, x) (7.9)

s

from which the theorem is clear.

COROLLARY: F(s) = G(s) H(s) if and only if

f(x). = o /2 Z glx o y) n(y) .

M

Next, there is the dual to the "initial" value theorem.

THEOREM (initial value): Let f and F be a transform pair in.q/: Then

Y @ = /2 ¥(0)

and

S re - 2210 .
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Proof': f(ﬁ) = Z F(_s_) ¢(_§, 5). Note, however, that 2n/2 ¢(Q, _}_c_) =
. 5

for all x. Hence, summing on X,

X

Z f(x) = Z F(s) ¢(s, z)2n/2 g(o, x) = FQO) . (7.10)

The same analysis applies with slight modification to give the “final" value.

COROLIARY (final value): Let f and F be a transform pair in '}/o Then

+X .+, ..

Z £(x) (1) L2

2’1/2 P(1, 1, eee, 1),

it

and

s.+8 +...+S

F(g) (-1) * 2 o P2 £(1, 1, veey 1) W

Iw[\/]

Using the initial value theorem, we get an important bound on the

transform coefficients.

THEOREM: Suppose that f is bounded: |f(x)| < M, all x. Then

n/2 < --n/2 n/2
27 MLF, (s) <27V £(Q) S (s)S2¥7H

—

~Proof: By the initial value theorem, z F(g) = 2n/ 2 £ (_Q_). Obviously,

then,

el oo/ f0) <2 r . (7.11)
max

min

By hypothesis, f is bounded by M; by the triangle inequality,
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76| = |3 @ # o) < 22V |£@)] < 2w, (.12)

from which the theorem follows.

Let 7 be an operator on“X which, when applied to x, permutes the indices:

X = (Xl’ X2’ es ey xn)

W}_ = (X y X 9 seey X ) ° ] (7013)
myL w2 Tn

THEOREM: If g(x) = £( 7x @ v), then G(s) = 2’1/2 g(v, ms) PF(Ts).

Proof: By direct evaluation,

6(s) Z f(rxey) fx, 8) = Z fzer w7tz )

X X

i

z ) g(rtze 7y, 8)
. /2 (7t v, s) Z £(x) #(r "z 8)

2 gv, w) M), (7.14)

and the theorem is proved,
Let./k be the set of distinct permutations O which map _gk = (1, 1, eeuy

1, O, eusy 0) of k ones onto all vectors of k ones.

of ={o-:0'1_1_k;éo"gkif o-';éo'}. (7.15)
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Then f can be expressed in terms of ;/k and gk as follows:

£f(x) = z z 7o v5) #(o u5, x) » (7.16)
k=0 creJk

By the previous theorem, if g(x) = f( Tx® y_), then

oo ) = 2n/2 glv, T O Ek) 7 7o o) . (7.17)

(70)

The importance of this expression lies in the fact that, as Golomb noted

for Boolean functions, for each k =0, 1, ..., n, the sets

{272 g, o) w7 )

are invariant under permutations W and complementations ¥ of variables.
Golomb calls these sets invariants of the logical family { (T x @ _‘L)} .
Ninomiya(7l) recognized this in an earlier paper, in which he defined the

Boolean functions {f( T 3:_)} as congruence classes, and the Boolean functions

{f( T e y_)} as generic classes. A function f which is left unchanged by
such operations must be invariant in each of the n classes; stated more

precisely, we have the following result.

THEOREM: f(x) = £( 7 x ®y) for all x if and only if

F(s) = Nk fv, m g) F(ms) .

COROLLARY: If f(x) = f(x & ¥) for all x, then for each s, either

F(g) = 0 or else the inmer product (1, §_) 0 mod 2.

2n/2 ¢(L _q) F(g) Hence, for

each s, F(_s_) must be zero or else 2n/2 Qf(y_, _s_) = 1. The latter result is

Proof: f(x) = f(z ® v) implies F(g)

i
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n A Zsiv:.L
possible only when W (-1) = (1) = 1, indicating that
. . i=1
(s, v) = 0 mod 2,

B, Boolean Functions

Any member f of '\/Whose values on X are #1 we will call a Boolean

function., The set of Boolean functions we denotee’B.
A ={f: fin’l/;|f(§_)| = lforall;c_in’)(}. (7.18)

In the more usual nqtation, a Boolean function takes on the values O or
1. If we have recourse to such notation, we will denote the function as

 and relate it to £ by
£f(zx) = (-1) &) | (7.19)

THEOREM: F(g) is the transform of a Boolean function f(&) if and

only if

Z F(s) (s @ w) = 2% 8(w, O) ;

S

that is, if and only if it has norm 2% and is orthogonal to all of its

w—translates.

Proof: First, £ is Boolean if and only if

Px) = £flx) £fx) = 1 = oP/2 g0, x) . (7.20)



- 168 -

By the convolution theorem, the result is immediate:
/% 80, w) = 72 Y Re) Feow) - (7.21)

THEOREM: If f is a Boolean function

D2 cp . <o ™2i0) <P < o0/2
min max

Proof: f is bounded by M = 1.

THEOREM: If f is a Boolean function, then 2n/2 F(g) is an even integer

for all s.

A
Proof: Let f be the (O,l) Boolean function corresponding to f. We
—_— A
can always express f as a modulo 2 sum of products (for example, see

(72))

Calingaert which can be reduced, by factoring x from the terms in

which it appears, to

A A A .
f(x) = x fl(x2’ Egs wees xn) ® fz(xz, cens Xn) . (7.22)

A
Now, F(§) is the transform of (—l)f, or

A A
x. f +f. +8. X +...+S_ X

F(g)zz"n/2 Z (_1)11211 nn

1 1. 1 ‘
S Xoteoots X +T (s +f )x
_ /2 Z Z (1) 22 n'n 2 Z () + 172
x2=0 X, = X =
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A
For those g with 8y # fl, the sum in brackets is zero; and for those with

s the tefm is 2, both even. Hence, 2n/2 F(s) is a sum of even

£,
17
terms,
In this proof, note that all terms in the sum vanish except those for

S A A .
which sl = fl(x2, ceey xn). Suppose that fl has kl ones 1q its truth-

table; then

A
f +8. X +e..4+8 X

p(s) = oL/2 S (-1) 2 22 nn (7024)

X yX

2’... n

2 (x x_)=s
iVvtert ity 1

is a sum of either kl or 2n—kl terms, depending on whether Sy is 1 or O.

This proves the theorem,
A
COROLLARY: If fl(x2,...,xn) has an odd number of ones in its truth-
table, then F(s) # O for all s,

We may combine this with a previous result to obtain the following:

A
THEOREM: If fl(xz, veey xn) has an odd number of ones in its truth~-
table, and if there exists complementation vector v such that f(x) =

f(x ® ¥) for all x, then v = Q.

A
- Proof: 4n fl having an odd number of ones implies that F(g) 74 0,
all s. Hence, (s, _‘L) =0 (mod 2) must apply for all s, a requirement which

can be met only when v = 0.

A A
THEOREM: If for some k, f(x) = cx, @ fk(xl’""ﬁ«:—l’xkﬂ’“”xn)’

then F(_s_) = O whenever 8 = 18c.
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Proof':

f +s. X, +...+8 +eee+8 X

pa) = 22 ( Z (c1) KT R N R O s N

1

Xageeny (CS )X

LR (Y @ Y (7,9)
=0

LR 3 X
Xee1? “n
This is zero whenever ¢ + s, = 1,

k

¢. Boolean Sequences and the Minimum Acquisition-Time Recelver

In Chapter 2, we introduced the possibility of increasing the desira-
bility of a fixed-complexity receiver by cross-correlating the incoming

sequence, call it a, against several component sequences, call them

61’ fé, ceny §n; and decoding the vector of maximal correlations
(ml, m2, esey mn) into the phase estiﬁate m of a.

To optimize the set of fi, we pick them to have cross-correlation
periods v, which are felatively prime in pairs and each approximately 3/@,
where p = ViVy eee Y is the period of a. The correlations, themselves,

Raif (m), are to have maximum distinguishability.
i

We have seen in Chapter 4 that the separation of autocorrelation values
is always greater than the separation of cross—correlation values. To make
cross-correlations as mutually distinguishable as possible, then, we would
like for them to appear to be as near to autocorrelations as possible. One
may attempt this by defining ¢ as a combination of the §i, hopefully obtaining
a highly distinguishable set of éross—correlation functions by proper choice
of the combining function. That is, we would like to be able to combine

the E ’ f y esey fn in some way to produce a, choosing this function to
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maximize the distinguishability. We are dealing with binary sequences,
and it is thus natural to use Boolean functions to combine the Eio We

will assume that, for an arbitrary Boolean function f,
A A
A A , g
a = f( §l' ‘52’ ooy n) y . (7.26)

where the function is applied termwise, as though a were the output of a

switching network when the inputs are ’ y eney (see Figure 7.1).
1’ =2 n

{I\i = f( §li’ §2i’ seey fni) . (7_027)

We assume ¢ and the Ei are binary (%1) sequences so that f is a (#1)
A
A
Boolean function, and the éﬁ §i, and f are defined on (O, 1) accordingly:

A

o3
@ = (~l)§
&, = (1
A
f = (-1)f . (7.28)

By using the Kronecker delta we can separate the sequence from the Boolean
function much in the same way as we separated the sequence from the

modulation in Chapter 1,

A
¢ = z £(x) O (x, €) . (7.29)

X

The cross—-correlation of o with a sequence [3 , defined by



- 172 -

/

€| —>

62 —

& BOOLEAN
INPUT SEQUENCES% . FUNCTION _’OUTPUT SEQUENCE
§=(E, . - &) £(x) a=f(_é_\)

£, ™

q

FIGURE 7.1. SEQUENCE GENERATION BY LOGICAL COMBINATION
OF COMPONENT SEQUENCES.
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N
. Z gx) 8, &), (7.30)

can be easily computed by standard means, Since we assume the v, are

relatively prime in pairs,

1

i=1

Raﬁ(m) = z Zf(x) g(y_) TI’ i S(Xk’ Ekl) 8(yk’ Ek 1+m
X X

XZ ; £(x) g(y_) . Xkyk( m) (7.31)

where the (un-normalized) cross—correlations of projections are defined

as in equation 1.12

Yk A A
Ty ™) = S B &r) Blner &y s) - (7.32)

i=]

At this point, we make use of the Boolean transform.

)

Z F(ﬁ) ¢(.§: X

S

Y o) #e x

S

—

£(x)

e
S

g(x)

n

(7.33)

o]
~—

Direct substitution into R (m) results in the equation

B
B ") ; 12 2 ‘%“ @ o0 fle 2) S ) 1 2 O

s w _zl‘ﬂ”

it
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N -
Raﬁ(m) . ;; F(s) Gjr(:vz) [2 r ( ’;‘O y;o ry . @ (1) RN J):l .

(7.34)

Let us turn our attentlon, for the moment, to the term in brackets above.
The r(m) are correlations of projections & (XJ’ E )}, and these projections

are related as follows:

A A
3(o, fj) = 1- 8, Ej) . (7.35)
We can thus reduce all r(m) to terms involving 1 (m)
3

r0.0.(m) = Py - ij + rl.l.(m)

Jd J JJ
T.p, @) = kj‘rl.l.(m) = 7 5 @ (7.36)

Jd J Jd Jd J d

A

where kj is the number of ones in fj per cycle.

On the other hand, R E (m) also is related to these r(m) in a simple way

i

R e.(m) = rO.O.(m) - rojlj(m) + rljlj(m)

pj - 4 kj + 4 rl.l.(m) R (7037)

When sj = wj = 1, the term in brackets in 7.34 is thus precisely equal to

€ (m); when S # W this term is (v - 2k ) = the imbalance in '3 5

j’
and for sJ = wJ = 0, the bracket term becomes VJo

At this point, let us normalize Ra (m) to Cc¢§m) and denote the
normalized bracket term to be C(m;k§, E); if we assume XQ =1 as a con-

vention, we can write
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i

8(sj,1) S(Wj,l)' . S(Sj,o) S(Wj,O)

C(m; S, .T'_]) 3

2._ n |Sj—Wj|
T D, [k, @]
Py &

n D, Isj—wj s.W,
- T [_1] [c§j<m>] i (7.38)

v,
J

The final expression for the normalized cross-correlation between ¢ and

'B is then

Cofm) = 27 ) ) Pe) 6(w) Clas 5 W) (7.39)

g ¥

This formula is of fundamental importance in finding the minimum acquisition-
time receiver, Note that, by using it, one may express the cross-correlation
between any two Boolean functions of the 5 5 as a sum of transform co-

efficients of the two functions weighted by autocorrelation properties of the

fi. One thing worthwhile to note about the equation for C(m; s, w) is

29

that when s w
J # J

D.
le(m; 5, w)| < ;;;l (7.40)

and when both S,j # Wj and s ;é W

i ’
D.Di ‘
|C(m; s, _w_)l < ;—rj—;— , etc. (7.41)
ji
‘ %
Trom these considerations, when the 5. are sufficiently small, we may
J

often omit the terms with s # w from the correlation equation.
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D. Design of the Minimal Acquisition~Time Recelver

Our original reason for studying Boolean functions was so that we

could determine the best function f(x) to define a.
« = £(£). (7.42)

We desire to pick f and the fi, i=1, 2, ¢eoy, 0, in such a way that the

crogss—correlations of a with each g i have maximum distinguishability. By

choosing g(x) = (—-l)xi, we can write Ei as
£ = (&) . (7.43)

The transform of g is easily computed, for we note that g(x) = 2n/2 B(x, _ql),

defining __e__'.L to be the ith unit vector

e = (0,0, «.0y 0, 1, 0, 4.., O)

S3(i, 3) . (7.44)

(0]
I

The transform of g is then
ag) = 2 §(s, &) . (7045)
Consequently, the cross-correlation equation reduces to

Cafj_(m) .= —n/2 Z #(s) 7r D/V )l 5 ll [ij(m)]sae.]

J=1
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_ -n/2 S,
C, 'fi(m) - 2 L;i:l Fls) (Dj/vj) "’] c €i(m)

JFi

S. D,
+ [SZ Fe) 7 (/7)) 3] (=) (. (7.46)

. v,
'Si=0 JFL i

For any two values m' and m" of m, the difference in correlation

values ca E () (and specifically, the distinguishability) is dependent
i
separately on the autocorrelation of fi and the Boolean function

mn') - o) = "'n/2 s P.'l SJ]
Cy g, (81) = Oy g (a") =2 [SZ " 7 (5

¢4 Si'-_—‘l j

[Cii(m') - Cfi(“‘")]

(7.47)

Our course to optimize the acquisition receiver is now clear; first,
each fi is to have minimum out-of-phase autocorrelation values so that

. C E (m) has maximum separation, and second, f is to be chosen such that
i

s,
[ z F(_sl) T (Dj/vj> '3] is maximized -~ also for each i. PFurther, we

§_,si=l JFL

can always choose the sum to be positive by proper choice of fi ; for

X,
suppose the sum were negative. By chocsing g'(;(_) = (—1) . , we correlate

¢ against E; , given by
g, = @) = - ¢, | (7.48)

and have Ca E'(m) = —Ca § (m), which has the sum: in question positive.
i i

By duality, we can thus always complement X in f(gc_), if need be, to make
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Y e m () >0, (7.49)

8,8,.=1 AL
2555 dJd

If the a received is delayed by m steps, our decoding scheme is also
clear: after having found the delays m giving maximum cross-correlations
of o with each of §i, we declare that m is that integer such that, for

each i,

m = m, modulo v, (7.50)
which has a unique-solution by the "Chinese" remainder theorem(73) of
number theory.

S,
Now, consider the sum to be maximized, }; F(g) T (D./v.) J,
s, 8.=1 i J d
=9 i— J%l

One of the terms in the sum is F(g}), but the remainder have products of

(Dj/vj) as factors. Denote

e { 1241

FM = max {IE%S)'} .

8,8.=1
=i

ste’

D'/V'

il

(7.51)

Using the triangle inequality, we can bound the sum of remaining terms,

call it P, as follows:

L, 7 (Dj/vj)sj < 2 || 7 IDj/V,jISj

§Jsi=l JAi S,8,=1 j%l

i
§%g} : E%Q}
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flsg § 7 (01/v1) 3

JFL

n-1
<Py [Z (nl'{'l)(D'/v')k—l:I T (7.52)

k=0

The binomial theorem can be applied to the inequality to give

z Fg) " m < By [(1 + (/) P - 1] (7‘.53)

3

(Dj/vj>

8,8,=1
=71

ste*

Note that when D'/v' is small, this upper bound can be replaced by

FM n(D'/v').

IFI < a R (0'/v) . (7.54)

We recognize that by using nearly balanced sequences for the fi

(which we want to do to optimize distinguishability), it is highly
efficient to maximize F(g}) by proper choice of ng). In fact, any time

that n D'/v' < 1, this is the course we must follow to insure the largest

possible F(g?) + F.
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The best logical function f(g) is therefore one whose transform F(g_)

has F(_e__l) ag large as possible, for each i. In order not to present bias

to any component, we may restrici
F(e') = Fle?), all j=1, 2, ..., n, (7.55)
and maximize F(_(_a_i) by proper choice of f,

E. The Maximality of Majority Logic

We are now is a position to prove that the Boolean function which

minimizes acquisition time is the majority function.

THEOREM: Let ‘/f\(_ig) be the (O, l) Boolean function of n binary (O, 1)
variables associated with a (il) Boolean function f(x) chosen such that,
among the transform values F(§), F(_e;i) = F(_gl) for all.i, and F(g_l) is
maximum over all such Boolean functions. Then if n is odd, ?(_}g) =1 if
and only if x = (Xl’ Xpy eoey xn) has a majorityl of its variables equal to
1 and is unidue; if n is even, f is not unique, but necessarily ?tg_c_) =1
whenever X has a strict majority of ones; and ?(_}g) = O when x has a strict

majority of zeros.
R A
~ Proof: Deflnej(kl =4x = (xl, ceey xn) : f(x) = 1, x, =1}, and
A .
X X0 ={3c_ : f(x) =1, X, = Op. Then‘XklU ")(ko ="](1 is the sefc of all
A
x on which f takes the value 1. Let I?(ll denote the number of elements

A c
in°)<l. Similarly, let’\g Kl ={_;_;_ : £(x) =0, x, = 1} , 0?‘0 =X L » and

Yo = %o Y%
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R - 2V Y s ()7

X

B I'xiol + l’}}iol - |"311|4]-(7.56)

,~0/2 [ l-x "

Let Skl(ﬁ) be the characteristic function of ’X kl:
1if x is in K -

8,,(x) = (7.57)

O otherwise ,

1
and similarly, Sko(gc_) for K . o2 8;{1(5) for ""a'kl and Sko(z) for qj’k:O'

Since all F(gl) are equal,

r(et)

il il
B B -
™Ms itV

5]
@
J“

Z[aﬂ(gn 5 (- 8, () - 3i1<x>]
(7.58)

“But % 8k1(§) is the number of different X Kl to which x belongs; when

X belongs to "X 1? this sum is the number of times X = 1, i.e., the number
of ones in x, which we denote by "3{_" . If x is not in ")( 10 this sum is,

of course, zero. Similar results also apply to the other summands.

sy Y @ Y |- (7.59)

X i=1 x in 1
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Similarly, for 'XlO'

Inserting these into the expression for F(gl),

TR W O E R R R L1
0]

z in%y zin (7.61)

In order to maximize F(gl), it is necessary to include in")(l every X

such that

=l > 3 , (7.62)

and exclude from ")(1 all elements x such that

"g" < % . ‘ | (7.63)

A
Hence f takes on the value O or 1 depending on whether the strict
A
majority of its variables are O or 1. When n is odd, this makes f unique,
For even n, those x with " _:g" = n/2 may be either excluded or included in

X ; Wwithout changing F(gi).

To calculate F(gl), merely evaluate

7<k1|’ I'Xkol’ |q3k0| andl'\akll‘

Denote by [h] the‘integer part of h, Then
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%] 3]

Iq?kOI .= I'Xkll = ';L; ZO (n~m) (2) = ZO (n;l)
[-12-1-] [%] - n-1
IﬂJkll - I”Xkol = % Z n(’) = Z ) - (7.64)

m=0 - m=0

As a result, the meximum value of F(gl) is

F(el) = 20/2 f; . (7.65)
2

F. Calculation of the Majority-~Logic Transform

Let n be odd and let f be the unique majority logic of the previous

section, We need consider only odd n, because if n were even,

1y 21'n/ 2 (n;ll

F (e = 1
2 o= 2n =22 <1,
1
Fn+1(§- ) 2.'L—n/2—2 n
2
We could thus increase n by one to improve the correlation, thereby decreasing
V.
the correlation time, and also to decrease the ratio v, °
i

We wish to calculate the transform of f(x). Because f is a symmetric

r(s) = F(wu) = P, | (7.66)

function, if s has k ones (i.e., |Is k), then for some permutation

it

and by this symmetry of f, we need to calculate only these F(_qk) .
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R - 22 Y (0T T a)
0 /2 - )xl+. Cotx i (_1)X1+'
n |zf<3 = |<>2

Define the two sumé above as'

(—1 )Xl+. . .+Xk

n
x |lzf<z

Ak)

1l

(_1)Xl+"'+xk .

B(k) .
I
% |z|>7

Suppose that a vector X has i ones in it, j of which lie in

X

X, and thus

H%l. min(k,i) .
Ak = Yy Y EHE)
i=0 3=0 ‘
n-1
2 ©
ky -k j
= )Y HEHE.
. i=0 =0

By similar reasoning,

B(k) = S S OO .
J° 1=J

. _ nt J=0
=72

Let O (t) be the generating function

]

(7.77)

(7.78)

. . ky\ -k
10 e Xk’ and i-j in xk+l’ eesy Xn. There are (j)(i_j) such vectors

(7.79)

(7.80)
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aE = 2 p EEEe)
i j=0 I
- z ®)(-1)3 4 z (2E) ¢t
=0 Y i=o 7
- Y ®@w ) e
=0 9 m=0
o (1-t)F (1) (7.81)

n-1

Note that the sum of the coefficients of to, tl, seay T 2 is precisely

A(k); that is,
n-1 n-1

coeff. of t in (l—t)k (1+t)n"k (1+t+. . .+t 2 )
n-1 n+l

= coeff. of & in (1=tY% (146)™7% (1-t 2 )

A(k)

]

= coeff. of t in (1=t (146)77K

= coeff. of t in (l-tz)k-l (1+t2)n_k

21k-1 2 \n-k
= coeff., of t-l in (-t ) n(l+t ) . (7.82)
t

By this procedure, we reduce A(k) to the residue of a rational function,

to be calculated by the Cauchy residue theorem(74>:

2 )k—l (l+t2 )n—k

Ak) = E—l—g_ f (1=t dt, (7.83)

(5 = /D)

tn
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integrating along any simple closed path containing the origin,
1 1 k-1 (1 n-k dt
M0 - g f Goot e L e

Choose the integration path to be unit circle, t = eJ? .

2T
—2{ )k—l ‘
. n — il — —-—
Alkx) = 2 7 sin'™t 2z cos™¥ 2 dz . (7.85)

Because A(k) must be real, we may limit our attention to the real part

of the equation (i.e., to odd k). This integral is one which can be reduced

by a standard table of integrals (see Burrington(75), for example) to
oy 1)t (EE) nk
A(k) = Re (_j) n—l k 1 Il_-_k_ . (7086)
(=) (5= 2

By a similar procedure, or by invoking symmetry of the majority function,

we compute

B(k) = -a(k) . (7.87)

The final result for F(s) is, then

(1) ¢ (BE) ok (.8)
(B2 (5 2

21--n/ 2

F(u) Re 4 (-3)F7"

which, for k = 1, gives the result obtained previously for F(g}):

n-1
Flel) = 21"’“/2 n-1l] . (7.89) .
P)
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As a function of odd k, |F(p_k)| is decreasing for k < Il-'éi and
n-1
increasing for k > =y 88 shown by
P(uX) (k-1) 1 (5% nky ok (—n—'—l-):(-l-‘—‘-l— + 1)1 fok-2\
k+2y | T n=l k—l nk n-k ook
Flu ) GOEGH N2 ) @) -1) \2
n-k-1
= 0 - (7.90)
. . . k n-k+1
A certain symmetry is also present in the fact that |F(g )l = |FQ:L )I .

G. Optimizine the Value of n

Now, let us go back and compute the _coefficients of C Ei(m) in

c ¢ (n) more closely; this coefficient is F(e') + F where
i .

F = F(s) (D /v ) %3 (7.91)
| §’SZ~=1 JT’:‘L
she’

Again, by the triangle inequality and symmetry

Pl < 7(s) (0t/pt) 3
7l s F e g e

8, slzl

ste’

n

<Y Ty | @Rt (7.92)
k=3

The first term in the bound is



- 188 -~

(M) rD)] @A - 2eeh| el @2

(7.93)

)k~l

The next terms involve quantities (D'/v' with k¥ > 5, which we can

safely omit. Hence, if

D'/v! << /% nl \/3(m) , (7.94)

we may assume that the coefficient of C .(m) in C (m) is merely
§i o

2-n/ 2 F(gl>.
Into the expréssion for T' /'I‘ in Chapter 2, we insertthe distinguish-—
ability for the cross-correlations Cu E (m) and the distinguishability of
i
Ca' if a' were an 6ptimal sequence. Whenever the v, are much larger than

unity, both ACa € and ACa, are approximately one. Hence,
i

-1 -2
- [zl-n (y__i ] : (7.95)

2

The acquisition ratio to be minimized is, then, approximately given by

T (n) i=n n-1 -2
- acqg Nonop n [Zl—n nel :l . (7.96)
dcq 2

For any given p, there is some n which minimizes this ratio. As an
indication of the behavior, we approximate the binomial coefficient using

(76)

Sterling's formula

1 1
k! m (2m)Z K7 K (7.97)
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When this is done,

n—l 1

({;—1) T (-g— (n-1) )72, (7.98)

reducing the approximate acquisition ratio to

T'
oo=2a _ (LY p(p-1) pl/n . ‘ (7.99)
Tacq 2p

To find the optimum value of n, take the derivative of T' /T :
acg’ “acq

a(er. /T ) 1/n
ag;}l acq’ _ (% ) (Pn_ ) [2n2 -n- (n-1) In p] (7.100)

This goes to zero only when the term in brackets is zero; this occurs at

those values of n, such that

1n p §2n—12n

n-1
ni\2n-1
n-1
p = e
L
n 2 n+l
v, 8 /D = e . (7.101)

Upon insertion of this value into the acquisition ratio, we find the

optimal ratio:

T L B(5) ((2/e) )"
( acq )opt" n~1 2

'%; n(n-1) e—2n§1 . (7.102)
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This ratio above is tabulated in Table 7.1. Note that the ratio is less
than ﬁnity, and hence the minimal acquisition-time receiver is better
than matched filters.

Hence, the minimal acquisition-time receiver would, ideally, given

an a-period p, combine n optimal binary sequences with

n(2n-1)
P z'e n-1 ’ (7.103)

using component sequences Ei of periods \ relatively prime in pairs and

near to V. R 9.

TABLE 7.1

Optimal Acquisition Ratio
and Periods for Given n

Single Correlator Case

ot

| , (Zea
B _ P acg
1 any ' 1.0 x lOO

3 1.8 x 10° 8.1 x 1077

5 7.6 x 107 4.4 x 1070

7 5.8 x 10° 2.4 x 107

9 2.0 x 10° 5.0 x 107

11 1.0 z 10%° 1.4 x 107

13 5.7 x 107 . 3.5 x107°

15 -~ 3,1x 107 8.7 x 107

17 1.6 x 10%° 2.1 x 1072

19 9.1 x 10%° 4.7 x 1074
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H. MNodified Component-Correlator Receivers

Suppose, és a third alternative, we are willing to make a receiver
which has one correlator for each of the components fi of a. What is
the best receiver? Just as in the constant-equipment case, we define an

acquisition ratio:

!
T acq time for n-component acquisition

Tacq = ‘time for l-component acquisition °

(7.104)

The time for a l-component code a to be acquired is merely its period
p times the integration time T per phase, or pT. On the other hand, with

n correlators working simultaneously, the time to acquire is the new inte-

\

gration time per step T' times the number of phases, or mix{vi} 7',

T’acq,‘ max {Vi} e
" = = (7.105)

acq [Vl’ Vor ey Vh]

To minimize this ratio, we may argue as before: the A must be
relatively prime for if they were not, we could pick a relatively prime
set with the same least common multiple but having a smaller maximum com-
ponent. Next, to further minimize the ratio, we want to make (vi)max as

close to the average v, as possible

Vo + aee + V
1 * n

V. ~
1 'max n

3

. (7.106)

The best acquisition ratio is thus given by
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1
Tacg v1+.,.. +vn

Tl
T = hv.v e (7.107)
acq 12 °°" 'n

This equation is exactly the same form as that for the minimum~equipment
receiver described previously, except for a factor of -}1- « The same tech-
nique for obiaining a from the components E i (which must be optimum binary

A
sequences) must be applied in both cases; that is, {x\ = maj(f ). Further,

n
. /P (7.108)
With a majority logic, optimum components, and viz nf p, the

acquigition ratio is approximately% times that found in Section E.

Tt nel -2
;cg N p--l+l / n [2-n+l n-1 ] (7 .109)
acq 2

Upon setting the derivative of this ratio to zero, we find

2
L
_ .n=l
N
n-1
Vi ] &~ e
1
T acq ., 22n
Tacq ~ o [o-1\ 2
de n
3]

=L (n1) &7 | (7.110)
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This is tabulated in Table 7.2. Although if each v, were about
3(ase) in length, the analysis above, based upon the assumptions that the
Di/vi are small and n is large, may not be strictly valid, because the

" far from e. But the

relatlve‘prlme.condltlon Onn{Vi} may carry (Vi)ma

analysis is indicative of the action to be taken in the design of such a

receiver: after an approximate choice of p, choose n such that
p = e\l (7.111)

Having this n, choose n relatively prime optimal components Ei whose
periods are as small (but not greater than one) as possible. Then modify

the choice of p to

(7.112)

p = Vl V2 e vno

The approximations certainly establish a lower bound on the acquisition

ratio, in any case, since optimal conditions were assumed at all times.
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13
15
17
19
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TABLE

Optimal Acquisition Ratio
and Periods for Given n

n-correlator case

any

9.0 x
562 X
345 X
2.5 x
1.8 x
1,3 x
9.5 x
7.0 x

5.1 x

T2

4.8 x
9.3 x
1.7 x
2.8 x
4.4 x
7.0 x
l.1x

1.6 x

10
10~
107

107

10“'6

10°

1077
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APPENDIX OF MINIMAX SEQUENCES

This appendix lists the known optimal and minimax sequernces up to
length 63 and their corresponding correlation functions. In the tables,
"+" stands for +1 and "-" stands for -l. The number at the top is the
period, and both the sequences a and its correlation funétion Ra(m) are

listed, starting with m = 1:

Y
sgn @y R (1)
sen o, R (2)
sgn ap Ra(P) .

Only the best sequence found for each specified period is given, and the
method used to find it is also given., There is a minimax sequence for
every period from 3 to 63 listed, except for p = 40, 48,‘52 and 56, all
of which are divisible by 4. Note that in some cases (g,g,, P = 13),

there exist more than one type of optimal sequence.

In the comments to the side, s refers to the 2sth loss function about
r(m) = -2 first used to find the sequence, D the absoclute value of the
imbalance and N the number of out-of-phase maxima. All sequernces are
minimal loss for each of the criteria s =1, 2 and 4, and maximum corre-

lation of Chapter 5,



10
11
12
13
14
15
16
17
18
19
20
21

22

min
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APPENDIX (continued)

Table A.l
SUMMARY OF

MINIMAX SEQUENCES

D N
1 0
0 2
1 2
0] 1
1 0

. 5
1 4
0 4
1 0
0 8
1 6
2 4
1 0]
0 11
1 8
0 4
1 0
0 14
1 10
0 5

Number

Levels

(LS 2N O~ B A R WA [AC A\ BN A [AC G B G A R G

W W W

Method

1,s.r (opt)
2®2 (opt)
gor (opt)

3 & 2 (opt)
l.s.r. (opt)

S

L]

1 (opt)
s =1 (opt)
s =1 (opt)
g.r. (opt)

1 (opt)
1 (opt)
1 (opt)

l.s.r (opt)

I

s

S

]

i

]

]

g =1 (opt)
1 (opt)

1 (opt)

S

i

s

1

g.r. (opt)
1 (opt)
1 (opt)

1 (opt)

]

i

il

S

0]
i



23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

min

-1

-2

-1
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APPENDIX (contirmued)

21

12

21

14

24
18

10

27
18

11

20

14

33

24

Number

Levels

[T R U R R " A R U B U U Ot B O A RS

&~ B W W

8

Nethod

QeTe (opt)
=1 (opt?)

s =1 (opt)

s =1 (opt)

s =1 (opt)

4 % 7 (opt?)

g.r. (opt)

s = 4 (opt?)

1.s.r. (opt)

]

1 (opt?)

s =2 (opt?)

i

s =4
Jacobi (opt)
backtrack (opt?)

s =1 (opt)

it

s =4

s =2

q.r. (opt)

s =4

qer. (opt)

11 * 4 (opt?)

s =4



46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

63

|
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APPENDIX (continued)

36
16

12

26
21

10

36

20

45
30

25

Nunmber

Levels

L= AN A Y

g.r. (opt)
s = 2

Jacobi (opt?)

19@3

s =4

q.r. (opt)

15 * 4 (opt?)
q.r. (opt)

s =4

l.s.r. (opt)



|

+ 1+

+

L+

-1
-1

-3
=3

-2
-2

-2
-2

-1

-1

-1
-1
-1
-1
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APPENDIX (continued)

Table A.2

TABULATED MINIMAX SEQUENCES

D=1, N =0, 2-level, minimax,

optimal
(linear shift register)

D=0, N=2, 3-level, minimax.

1

optimal
(2 @2)

D=1, N= 2, 3-level, minimax.

optimal
(quadratic residue)

D=0, N=1, 3-level, minimax.
optimal
(3 @ 2)
D=1, N =0, 2-level, minimax.
optimal

(linear shift register)



44+

+ 44+ 1+

+

S

+

o+

10

11

{
OO+~ OPLPOCO

-2
-2
=2
-2
-2
-2
-2

10

-1
-1
-1
-1
~1
-1
-1
-1
-1
~1
11
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APPENDIX (continued)

s=1, D=1, N =0, 3-level, minimax

optimal

s=1, D=1, N = 4, 3-level, minimax.

optimal

s=1, D=1, N = 4, 3-level, minimax

optimal

s=1, D=1, N= 0, 2-level, minimax.

optimal
(quadratic residue)



[

+

A+ F A+

+

FH A+ A+ 0+

b+ L+ + 41+ 4

+ +

12

13

14

: -LO-ILOOO

NDOOCOHO

[l

-2

-2

-2

-2
-2
-2

-2
-2

-2

14
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APPENDIX (continued)

s=1, D=0, N=8, 3-level, minimax.
optimal

s=1, D=1, N =6, 3-level, minimax,

optimal
(not quadratic residue sequence)

s=1, D=2, N=4, 3level, minimax.

optimal
(exhaustive search showed no balanced 3-level sequence)



-+

FAHF L F

4

L+ + 4+ 0+ 1+ +1

15

16

-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
15

i { { {
AP OPLPOOPLPOCOO

NO OO+ OO0

[
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APPENDIX (continued)

D=1, N =0, 2-level, minimax.

optimal
(linear sequence)

s =1, D=0, N=11, 3-level, minimax,

optimum



+

N R A R I 2

I+ + i

Vd+ 4+ 40+ 1 4+ + 1

17

18

-2
-2
-2
-2
-2

-2
-2
-2

-2
-2
-2
-2

-2

18
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APPENDIX (continued)

s=1, D=1, N =8, 3-level, minimax.

optimal
(not quadratic residue)

s=1, D=0, N =4, 3-level, minimax

optimal



!

L+ 4+ 4+ 0+ 1 41

+

F+ o+ 4

e I A

19

20

-1
-1
-1
-1
~1
-1
-1
-1
~1
-1
-1
-1
-1
-1
-1
=1
-1
-1

' 1
SO00O0POOPOPOROOPROOOO

N
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APPENDIX (continued)

s=1, D=1, N= 0, 2-level, minimax.

optimal
(quadratic residue)

s=1, D=0, N= 14, 3-level, minimax.

optimal



1 F A+ F L+ 4

b+ 1 4+ 4+t

FAHF LA FAF L+

21

22

-2

-2
-2
-2
-2
-2

-2

=2

-2
-2

=2
-2
A
~2
-2

-2
22
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APPENDIX (continued)

s=1, D=1, N = 10, 3-level, minimax.

optimal

s=1, D=0, N =5, 3-level, minimax.

optimal



EoA o+ 1

L+ 440+ 1+ 41

+ 1+

E]

+

b+ 44+ 0+ 44+ 1

+ 1+ 1+ 1

23

-1
-1
-1
-1
-1
-1
-1
-1
~1
-1
-1
-1
-1
-1
-1
-1
-]
-1
-1
-1
-1
-1

N
kNG

P OOCOPOOOOOOOOO0O

N e
~POCOOOCOOCO
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APPENDIX (continued)

s=2,D=1, N= 0O, 2-~level, minimax.

optimal
(quadratic residue)

g=1, D=4, N= 21, 3-level, minimax,

optimal (?)



P+ 1+ttt + 4+ 11

+

+ o4

L+ 1+ 41

L+ 4+ + 1 +4++1 41 + 1

+ +

25

26

~2
-2
-2

-2
-2

-2
-2
=2
-2
-2
=2
-2

-2

-2

-2
-2

-2
-2
-2
26

- 207 -

APPENDIX (continued)

s=1, D=1, N=12, 3~level, minimax,

optimal

+ -3
+ -3
- 1
+ 1
- 1
- -3
+ -3
+ 25

s=1, D=0, N = 6, 3-level, minimax

optimal



+

b+

I+

+ 1

[ S I A B |

I+ 4+ 41

1

I I

27

28

-1
-1

-1
-1

-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1

! i
OO+~ OO0

I | i
OO O+~ O

POOCOPLPOOCOPLPOOCO

N
[N eNoN®)

41+ + A+ +F+
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APPENDIX (continued)

s=1, D

optimal?

-1
~1
-1

-1
-1

-1
-1
27

=2, N

optimal?

(4 *7)

=1, N= 4, 4-level, minimax.

= 21, 3-level, minimax.



+

L+ 1+ 0+ ++ 10 ++ 440 ++ 1

L

29
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APPENDIX (continued)

s=4, D=1, N = 14, 3-level, minimax.

optimal
(not quadratic residue sequence)



L+ 1+ 4+ 0 ++ 1 ++ 1 +1 ++ 1

I+ + + 4

+

30

-2
-2
-2
-2
-2
-2

-2

-2
-2
-2
-2
-2
-2
-2

-2

-2
-2
-2
-2
-2
-2
30
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APPENDIX (continued)

s=4, D=2, N=8, 3-level, minimax,

optimal? -



F+ L+ + + + 4

+

U+ + 4+ 1

b+ A+

4+

31

-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
=1
31
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APPENDIX (continued)

D=1, N =0, 2-level, minimax.

optimal
(linear sequence)



L+ + 0+ 0+ 1+

L+ 1+ 41 +++ 4+ 1

1 4+ + 1

+

32

COO0ORROOOPRO0OH

oNoNoNoRoNeoR NN NG RO

OO~ OCOOHO

W |
O
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APPENDIX (continued)

s=1, D=0, N= 24, 4-level, minimax.

optimal?



b+ + 4+ 00+ 4+ ++ 0+ 1+

b+ + 0 4+ 4 1 + + 1

+

33
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APPENDIX (continued)

gs=2, D=3, N =18, 3-level, minimax.

optimal?
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APPENDIX (continued)

s=1, D=0, N=10, 4-level, minimax,

34

O ANNNNANANANNANNNMAUNNNNNANNANNYNNNANONNN N <
20 N Y A N N A IR Y B R SR R I RN A R R e

11+ 1 1 +++++ 1+t 0+ 01+ 4+0 01+ 0+ 0+ S+ 0+ 4



L4 o+ o+

b+ 4+ + 1+ 4+ 4+ 01

-+

b4+ 4+ 1 + 1 4+ 1 1

+

-+

35

-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1

-1

-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1

35
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APPENDIX (continued)

D=1, N= 0, 3-level, minimax.

optimal
(twin-prime sequence)



O B R

L+ + 1+ 41

T

36

{
leNeoNoNoNoNoRoNe

COO0OOPLPOCOPHOPHpb

oYeoNeoNeoNoNoNoNoNeoR I UNeF NON RN e

N
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APPENDIX (continued)

s =2, D=2, N=27, 3-level, minimax.

optimal?
found by backtrack



I+ 1 4+ 1

L+ 1 +++ 01+ 1 ++4+1 ++ 1+ 1

-+

+ 4+ + 1

37
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APPENDIX (continued)

s=2, D=1, N =18, 3-level, minimax.

optimum
(not quadratic residue sequence)
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APPENDIX (continued)

s=1, D=0, N =11, 4-level, minimax,

o0}
M

N
I

|

[eV]
i

o]
I

i

N
I

[qV

J
I

+

o
{

ANNAUNNNNNNNANNNNNNNQANNNNNANNANANWOYNN
(N I R D R I R R e e e

L+ +++ 1+ 1 ++ 1 1 ++4+ 1+ 1000 +++ 11401+ 1+

[e0)
My

+
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APPENDIX (continued)

4, D=3, N =6, 4-level, minimax.

S =

(e
XY

Hd O AN A O A AN Ard A A A A A A AN = AN AN A A A3
LH I R A R | ([N R R A N NS Y R NN R R D D A N B [ I O R I A AN

Pl L+ 0+ 1 0+ +4+ 1 +++1+1+++1++F01++ 1110 +++++1



P4+ + 1+ 4 4+

A

P+ 10+ 1+ 41 4+ 1 4+ 1 1

b+ + 4

4+

41
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APPENDIX (continued)

D=1, N =20, 3-level, minimax

optimal
(quadratic residue sequence)
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APPENDIX (continued)

4, D=0, N = 14, 4-level, minimax,

S =

[§Y
<

[SUNQURIQUR oV ISV QU AT QU QN 9_9_9h9_qcn¢f%,b NN ANANANNNANNYOANNNNNNNNNAANNANNNNA
U I I R | I S R T O T A R RO TR A R R A Py r

Ll i+ 1411+ 1 +4+14+++1+1+++1++1 1 ++1 00 +++++1 1001

Q]
<+



+ +

I+ 1 + 1

b+ 4+ ++ 4+ 1+ + + 1

1 + 4+ 4+ 1 + 1 1

| S N T I B

b+ 04+ + 1

43

-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1

-1

-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1

-1

-1
-1
-1
-1
-1
-1
-1
43
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APPENDIX (continued)

D=0, N=0, 2-level, minimax

optimum
(quadratic residue)



+ +

Fr 1+ 4+ 100+ +4+ 080+ + 0+ + 8+ A+

P+ 4+ 4+ + 4+ 11

+ +

44

] i P { I 1
! COOCPROOOPRPOOOPOOOPROOOPLPOOOR~OCOO

1
P OOCOPRPOOCOOPLPOOOPHPOOOR

~
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APPENDIX (continued)

D=3, N= 33, 3-level, minimax.

- optimal?

(11 * 4 sequence)
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APPENDIX (continued)

s =4, D=1, N=24, 4-level, minimax.

1
=3
1
-3
1
-3
1
1
-3

b+ 4+ 1

MYENIN N

+

N -

14+ 1+ + 1+ 1+

17_2_Jllllll7)

I

BN MY MY MY MY O A N D
I B 1 I o

I T T A B e A O >
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APPENDIX (continued)

1, D=2, N =18, 4-level, minimax.

s =

O
<t

L+ 1 + 1

NANANANNOANNANNNYONAUNNNNNNOYOON
[ | A A I R A A A R I I I I |

t++++ 1 111 +4+ 1 01 +1 0+ H++ 010+

aJ
1

N

[§Y
}

Al
!

+

o~
I

I

0
1

o
I

b4+ 1+ 4+ + 4+ +

O
<t

-+



L+ +4++ 1 4+ + 4+ 1

b+ + 0+ 1 +

+

[ S B A T 0 R B N N R B . G

47

-1
-1
~1
~1
-1
-1
-1
-1
-1
=1
-1
-1
-1

=1

-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
47
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APPENDIX (continued)

D=1, N =0, 2-level, minimax

optimal
(quadratic residue sequence)



L+ 4+ 1+ 11 4+ 4 +

L+ 4+ 4+ 1+ 1

+

P+ 0 4+ 4+

C o+ ++ 410+ 411

+

14+

49

=

' 1
R I I I e I R I e e AR =R

(PG B T T e

1 1
=3 2 =

&~
O
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APPENDIX (continued)

D=1, N= 36, 3-level, minimax.

(787)

Note that the two out-of-phase levels are not adjacent
(separation 8)
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APPENDIX (continued)

4, D=2, N = 16, 4-~level, minimax.

S =

Q
0

NN AN N NANNNANANMNANNOANNNANNANNANNMNMONNNNNNANANNNWOWONNNMNNNNNNNNNN
Pl [ T T L R I I D e D e R B I A A D A D I T R R | [ |

t1+ 1 +4+ 1+ 14+ 1 1 1 ++ 01+ 014+ 010 14+ 04+4+01 1011+ 0 0 4++4++++01+++1 1+

o]
0

+4
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APPENDIX (continued)

12, 4-level, minimax.

2, D=3, N =

S =

—
L9

DO 0O = e IO e I e e N R e O e BV MY IO o LN e DO e MY
[N AT I A R N R RN RN RS R RO R RREE I S A [ T I A B S

N T W BT S W avn B B e B B B e AR W B AR
[ R T T T S R R N B i

_++_.+,_______+__+__+++++____+++_++_+_+___++_—++++_

~
0

4



+ +

L+ ++ 0+ +++ 0+ 4+ 1+ 11

I+ + 1

I+ + 1

L+ + + 1

53
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APPENDIX (continued)

D=1, N = 26, 3~level, minimax.

optimum
(quadratic residue sequence)

L+ 0+ + 0+ ++ 1 +
1
AN

+ 1
Ul
W
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APPENDIX (continued)

s=2, D=0, N=23, 5-level, minimax.

54

4+ 10 10 v+ 0 1+ 4

Nl
11

-10

o
I

[@ eV iRt}
7

P+ 4+ 0+

o AN NANNNNNNNNN NS
i i1 I i1 mn

~10
-10

L+ 1 +4++ 1+ 1 ++++++++

NANNNYONANNNNNNYOANNNNNWN
1 1111 111 [N

P4+ 1+ 4+ 010100+ 4+ 440000
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APPENDIX (continued)

D=5, N=10, 4-level, minimax.

55

)

(Jacobi sequence

optimal?

A A AN A A AN S A AN A A AN A A AN A A A AN A HD AN A S A NN A A
| D R A A I O R U O N D D D R N A D SRR BN AN R | | DN R S R S A R I |

+ 4+ 0+

b+ ++ 0+ 0+ + 1+ + 41

-

I+ 1+ 1

b4+ +

i



4+ 4+ o+ 4+

4

L4+l +4+ 0 ++ 0 +++ 11

L+ + 4+ 1 00 +4++ 11

+

- 23% -

APPENDIX (continued)

D=1, N = %, 4-level, minimax.

(19 ® 3 sequence)
Note non-adjacent levels

I+ 1 4+ 1
1 i
W O

I e
i._i

+ 11

|
S
g -0
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APPENDIX (continued)

s =4, D=0, N =20, 4-level, minimax,

Q
19

W N ONNANWNNMANMNANNANNNNNO
[ I [ ] 1 [JTe}

R T I B R e B e A

ANANAUNNNANANNANANNNONONONNNAUNNANNANANNNNNNNNNNNNWON
[ A ] [ I O R S S I R D R R I e B e e |

+++ 4+ 01011+ + 01+ +1 0+ LA+ F LA+
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APPENDIX (continued)

D=1, N=0, 2-level, minimax.

59

)

3
ko]
o
[¢2]
[
3]
(4]
N
4
5 8
= e]
£3
2 o
O ~—

-1
-1
-1
~1
-1

+4

-1
-1
-1
-1
-1
-1
-1
-1
~1
-1
-1

L+ 4+ 1 ++ 1+ 14 1

-1
-1
-1
59

-+

A4 A A A A A A A A A A A A A A A~ A A A A A A A A A A A A A A A A
Py i "I I R S A R RN R S DN JU SN AN N RN AU N N AN DN NN N S D S DO RO NN D I AN TN B

!

b+ 14+ 4+ 41 4+ 1+ 11+ 1

L+ 4+ 1+ 4+ 41

L+ +++4 0101001 14+ 1
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APPENDIX (continued)

60

D=2, N= 45, 3-level, minimax.

Py

[¢)]

Q

S

5

o

3
o QOO OOOFTOOOSFOOOO
d <t 1 i 1 O
g %
o
B 5
o~ R 2 T I T I R R T N N S N B B

OOOA_.OOOA_TOOOA—*.OOOA_w.OOOA_TOOOA-TOOOA.*OOOA__.OOOA__.OOOA_TOOOA_T

L+ ++++ 0+ 0 100 +4+ 1 0+ ++ 110 1+4++ 1401+ 14++01+ 10 4+++1+
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APPENDIX (continued)

61

D=1, N = 30, 3level, minimax,

(quadratic residue sequence)

optimal

S N . N I B B A B B

I B T T T N TN 2 S ST SR T D S S [ N Y T N TN S Y N SN TN T N T S S B A N IR
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APPENDIX (continued)

ANANANNNNANNONAUNNNNNNNO NN
i LI R | i 1 P ro

4, D=0, N =25, 4~level, minimax,

8 =

P+ 4+ 4+ 100 b+ ++++ 0+ 0 4+ 11+ 4+

-2
-2
-6
~2
-2

2
-2

2

2
-2

2
-6
-2
-2

R A AR R R R R R L R R R RN AR

S T N T N I N N R A E I A 0 0 O O N T N N (R N T S S Y B T I A
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APPENDIX (continued)

0, 2-level, minimax,

D=1, N

63

rd el A A A A A A A A A = A AN
LI S D D R D D D A I A D D D B B gV

(linear sequence)

optimal

I+ ++ 4+ 1t t+ 14+ 10 1 1++1 011 1+

A A AT A A A A A A A A A A A A A A A A A A A A A A A A A A A A e~~~ A
L I I I I D D D e e N DN LS SRR N DR SR RN DR S R R A R R

Ll T+ +++++ 0+ 104+ 0 ++ 010 ++ 0 +++ 0 +4+ 104+ 0+ 10 0 +++ 011+
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