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ABSTRACT

The first half of this thesis is a study on the growth of perturbations in the
early universe which might lead to galaxies, clusters of galaxies, or regions void of
galaxies.

The growth of self-similar perturbations in an Einstein-deSitter universe with
cold, collisionless particles is investigated. Three classes of solutions are obtained;
one each with planar, cylindrical, and spherical symmetry. The solutions follow the
‘development of structure in both the linear and nonlinear regimes.

Self-similar spherical voids which develop from initially underdense regions
are also investigated. The character of each solution depends upon the initial density
deficit. Steep perturbations result in voids bounded by overdense shells with sharp
edges.

The second half of this thesis details solutions of steady-state axisymmetric
models of elliptical and disk galaxies, and considers which observable properties can
be used as diagnostics of the kinematic configuration of the spheroidal component
of these systems.

Two component mass models are fitted to surface brightness measurements
and used to fit kinematic models to the velocity data. The models with constant
mass-to-light ratios and isotropic velocity dispersions adequately fit the inner
regions of spiral galaxies with three caveats:

(i) Several galaxies show significant differences between the two sides of the
major axis in both their rotation rate and velocity dispersion. While the differences
might be caused by non-axisymmetric potentials, variations in the line-of-sight
extinction are a more likely cause.

(ii) The inner segment (R < 1 kpc) of the emission line (gas) rotation curve
falls below the predicted circular velocity derived from the stellar velocities. We
rule out a variation in the mass-to-light ratio as a cause for this discrepancy because
M/L would have to significantly decrease at small radii; this trend is opposite to
typical expectations of M/L. Significant emission from gas produced by stellar

mass loss, particularly planetary nebulae, which is not yet settled into the disk
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might explain this observation.

(ili) Some of the bulges are flatter than one would expect from their rotation
rate assuming isotropic random motions, but this additional flattening could be
caused by the disk potential.

Self-consistent solutions of the stellar hydrodynamic equations for systems
with isodensity surfaces which are concentric oblate spheroids and have constant
mass-to-light ratios are presented. Various kinematic configurations are constructed
to develop observational diagnostics which can distinguish these configurations.
Because the inclination and true flattening of each elliptical is indeterminable,
several kinematically distinct configurations are indistinguishable. Observations can

uniquely characterize only those galaxies which lie at certain kinematic extremes.
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INTRODUCTORY NOTE

The compilation of two projects is contained within this thesis. The first part
is a study on the growth of scale-free perturbations in an Einstein-deSitter Universe.
Chapter One considers the gravitational collapse of overdense perturbations, and
Chapter Two follows the development of spherical voids. This work was performed .
in collaboration with Peter Goldreich.

Chapter Three presents detailed fits of two component axisymmetric models
to long-slit observations of early-type spirals. Todd Boroson and Alan Dressler
supplied the observational data and some questions to be answered.

Chapter Four entails my efforts to find self-consistent models to oblate
spheroids, apply them to a sample of bulges and ellipticals, and consider which

observations can yield information about the kinematic structure of these systems.
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ABSTRACT

We derive similarity solutions which describe the collapse of cold, collisionless matter in a perturbed
Einstein—de Sitter universe. We obtain three classes of solutions, one each with planar, cylindrical, and spher-
ical symmetry. Our solutions can be computed to arbitrary accuracy, and they follow the development of

structure in both the linear and nonlinear regimes.
Subject headings: cosmology — relativity

I. INTRODUCTION

Understanding the formation of structure in an expanding
universe is one of the outstanding problems of modern cosmol-
ogy. Zel'dovich (1970) was the first to emphasize that aniso-
tropic collapse characterizes the evolution of structure in a
universe filled with pressureless matter. High-density regions
exhibiting approximate planar, cylindrical, and spherical sym-
metry commonly form in three-dimensional N-body simula-
tions (Klypin and Shandarin 1983: Frenk, White, and Davis
1983 Centrella and Melott 1983).

We investigate self-similar collapse solutions with planar,
cylindrical, and spherical symmetry. Study of these solutions
provides considerable insight into the more complicated
results obtained from numerical simulations. Of course, the
restriction to specialized initial conditions is the price we must
pay to obtain similarity solutions. It is convenient to treat the
three symmetries in parallel. We use the parameter n to dis-
tinguish among them; n equals 1, 2, and 3 for planar, cylind-
rical, and spherical symmetry, respectively.

The plan of the paper is as follows. In § I we derive the
equations which govern the evolution of the similarity solu-
tions. In § 111 we obtain analytic expressions for the asymptotic
properties of the solutions. The results of numerical integra-
tions of the similarity equations are presented in § IV. The
relation of our solutions to previous work is discussed in § V.
The scale factors used for the three different symmetries are
calculated in the Appendix.

II. DERIVATION OF SIMILARITY EQUATIONS
As the scale of the perturbations which we are investigating
is always small compared with that of the horizon, Newtonian
cosmology is an adequate approximation (Peebles 1980). The
equation of motion of a test particle reads

d*rt)
dr?
The first term on the right-hand side of the equation is the

deceleration due to the unperturbed Einstein—de Sitter back-
ground density

4
= =3 Gpylor + 3g(r. 1) - M

1
pult) = pren (2)

! Contribution No. 3992 of the Division of Geological and Planetary Sci-
ences, California Institute of Technology.

The second term is the peculiar acceleration caused by the
perturbation density

Sp(r, 1) = plr, t) — py(t) . 3

The position of a particle is denoted by its distance from the
center of symmetry x. For planar, cylindrical, and spherical
symmetry, x denotes the distance from the symmetry plane z,
the distance from the symmetry axis @, the distance from the
symmetry point r.

We define the mass M(x, t) and excess mass M(x, t) within x
by

M(x, 1) = J;xdx’x"" To(x', 1) . (4)
For planar symmetry,
Mz, t) = J:dz’p(z’, 1), (3)
the mass per unit area. For cylindrical symmetry,
M(w, t) = J:dw’m'p(w', n, (6)

the mass per unit length per unit angle. For spherical sym-
metry,

M(r, 1) = j drrp(r, 1), )]
o
the mass per unit solid angle.
The peculiar acceleration is related to M by
4zGoM
dg(x. t) = — —— . (8)
X
Inserting this expression into the equation of motion yields

d?x 2x 4nGoM _2(3-m x _ 4nGM

2~ 942 x"! 9 n 2 X!

e

We choose initial conditions such that at time ¢; the unper-
turbed Hubble law

(10)

2
3

Y

~ %

is exactly satisfied. We can imagine that t; corresponds to the
time of decoupling of radiation and matter. The initial position
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of a test particle is denoted either by its initial distance from the
center of symmetry, x;, or by the initial mass, M,, between it
and the center of symmetry; M, = M(x,, t,).

The initial perturbation is characterized by the profile of
oM. We express oM, as a function of M,. The search for simi-
larity solutions dictates that the initial perturbation be scale
free; thus oM (M) must be a power law. We write

M, (M~
V’(m) ’ (o

where M, is a reference mass; the corresponding reference
position is x,. The parameter e is restricted to values between
zero and unity by the requirements that the initial mass pertur-
bation increase and the initial density perturbation decrease
away from the center of symmetry.

Our choice of initial conditions is clearly incompatible with
exact self-similarity; at ¢; there is no collapsed material
although the overdensity in the inner regions diverges. It is a
plausible assumption that the trajectories of the material with
small & will approach a self-similar solution. This would be
satisfactory since for ¢t > t; almost all of the collapsed material
has small 4.

Because the initial density exceeds the critical value p,(¢), the
trajectory of each particle will ultimately oscillate through the
center of symmetry. We refer to the events corresponding to
the local maxima of x(t, M,} as apapsis passages. The first
apapsis passage is of special significance, and we reserve the
name of turnaround for it. The turnaround distance and time
are denoted by x,(M; and t,(M,). Prior to reaching turn-
around, a particle does not cross the orbits of other particles.

Thus, fort < t,,
M(x, 1) (n 2(3-n)3
M, <[> . (12)
where the (¢;/t)*® "3 factor is a consequence of the unper-
turbed Hubble expansion along 3 — n of the coordinate axes.
Using this simple expression for M(x, t), we solve the equation
of motion in the interval ¢; < t <t (cf. Appendix), to obtain

]

1]

<.
=3 (13)

3/2
(%) : (14)

Equations (13) and (14) are valid to lowest order in 6 < 1. The
appropriate values of C, and C, for the three symmetries are

C,=75 074, 1;

2/3
C,=§, 1.39, (%") .

Inserting equation (11) into equations (13) and (14) yields

R AR

M, \: |
sl w
3¢/2
o C,’”(%) : (16)
i 0

With the aid of equation (4), we find

nM 1/n M. \¢ +1/n
=C 2 —i . 17
=<5 i) i

4=
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We denote the current turnaround distance by X(¢) and the
corresponding initial mass by M,. From equations (16) and (17)
it follows that

Cx nMO Lin t 2/3+2/(3ne)
X""C.‘*“"‘[p,,(z.-)} () 0
M X, t 1 I 230 - 23 —ny3
o L
t i

We define dimensionless coordinate and time variables

A

l

X t
Z, t=;. (20)

We now prove that, expressed in terms of these scaled vari-
ables, the equation of motion is independent of M.

Sometime after turnaround a particle crosses the trajectory
of other particles, so the simple relation (eq. [12]) for M(x, t) is
no longer valid. The major step in the derivation of the simi-
larity equation is to express M(x, t) as a functional of i(7). We
appeal to self-similarity and write

M(x, t) = M(X, 1) #(x/X) , (21)
where .# is the dimensionless mass profile function given by
x MdM; ,
Jl(}): i VIH[X(tvMi)—x(tvMi)]x (22)

for x/X < 1. Here H[u] is the Heaviside function; H[u] = 0 for
u < 0, and H[u] = 1 for u > 0. Changing the variable of inte-
gration from M, to t with the help of equation (16) yields

A\_2 [ _de i x
J”(A) - 3e A él+2/(30 H[A A(é):| * (23)
where A is defined by
Alr) = 23 +213m0 (24)

Finally, we use equations (17), (18), and (20) to rewrite the
equation of motion (9) in terms of the scaled variables:

dz;~ 2(3 _ n) i 2 Cl n 1',2/(31)—2(3‘")/3 /‘.
d?~  9n F 3n\C, -t #\A) 25

Equation (25) governs the evolution of the similarity solutions
for all values of 7. It requires the boundary conditions

di(l) _

e 0. (26)

M =1,

which reflect that turnaround occursatt = 1, A = 1.

Proper application of Newtonian cosmology requires that
the linear dimensions of the structures be small compared with
the distance to the horizon. This restricts the interval of time
over which the similarity solutions are valid in two respects.
First, it implies that the planar and cylindrical solutions must
be thought of as possessing edges along 3 — n symmetry direc-
tions. Our analysis neglects edge effects, but they must become
important when the turnaround distance approaches the
system’s dimensions along the symmetry directions. This is
inevitable since, for all cases, the turnaround distance grows
more rapidly than t?%, the rate of expansion along the sym-
metry directions. Second, for spherical solutions with € < %, the
turnaround distance grows faster than ¢ and must eventually
approach the horizon scale.
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. ASYMPTOTIC BEHAVIOR OF SIMILARITY SOLUTIONS

The similarity solutions describe a basic type of motion.
There is an initial period of expansion which ends at turn-
around. After turnaround, the trajectory oscillates through the
center of symmetry. With the passage of time, the ratio of the
apapsis distance to the current turnaround distance decreases
as does the ratio of the oscillation period to the time scale for
halo evolution. Thus the trajectory is asymptotically buried
ever more deeply in the halo of collapsed material.

The above picture implies that there is an adiabatic invari-
ant associated with buried trajectories. Furthermore, the scale-
free nature of the similarity solutions suggests that the mass
profile in the halo might be approximated by a power law in
the distance from the center of symmetry. These features enable
us to deduce the asymptotic properties of the similarity solu-
tions.

We parameterize the halo mass profile by

Mix, ) = wlt)x” . (27)

and the variation of the apapsis distance x, by

N _ (i)" ‘ (28)
v, \,

Our goal is to relate yand g to e.
The equation of motion of a halo particle may be written as

X Gty (29)
de-

Orbits for which x, < X have periods which are much shorter
than 1. Thus it is a good approximation to treat x as constant
over one orbit period. For constant . equation (29) has the
energy integral

dx\* 8GRl | . es pea
(d!) _(7—n+2)"\" - - 130)

The gradual variation of the apapsis distance due to the time
dependence of « is obtained from the action

Xa dx
J=4 L dx(E)

b) . 1.2 1
= SI:——_HG,\“) :I X 2 J du(l —w """ 3)t2 0 (31)
o

v—n+2

which is an adiabatic invariant. We define the auxiliary par-
ameter s by k() = ¢t *. Thus g = s5/(; — n + 4). We use equa-
tions (18), (19), and (27) to express s in terms of 7 and € as

3 [ —
§ = ;|:(——’ " +(;—n+ 3)€:| . (32)
3e n
Hence

S S |l I (33)
4= Je(; —n + 4) n ! '
We define P(x'x,) to be the fraction of time a particle with
apapsis x, spends inside x:
1)

P(l'l=m (r<1).

P(r) =1 (x> 1y, (34)

-5~
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where

o= | 35

o= b (1 —u "2 35)
Self-consistency demands that

X\ Mixy Mo dM X
=] = = — P} —. 3
<X> M(X. 1) _L M, P Xyt M) 36)

Transforming the integration variable from M, tou = x x,
using equations (17).{18). and (28). we obtain

N7 L[ du
- == - 37
<X) P.[\-x utte P G

2n
T2 42 = 3ge’

where

P (38)

Now we have arrived at the crucial point. For u < 1.
P(u) ~ u:1(1). Thus the integral in equation (37) converges or
diverges as x X approaches 0 according to whether p is less
than or greater than 1. In the former case,

p<t. y=p.

whereas. in the latter,
pzl. y=1.

The physical distinction between the two cases is clear. For
p < 1. the mass in the inner halo is dominated by particles with
small’ apapsides. x,/X < 1, which passed their turnaround
events a long time ago. On the other hand, for p > [, the mass
in the inner halo comes from particles whose apapsides are
spread throughout the halo.

Completing the allowable solutions with the aid of equations
(33) and (38), we find

n=1:
U
ITPETYS T 17
n=2
3 de — 1
p=1. p=3oo21. 4= (39
n=73
w=1 ——6—>l -2 fore<z'
T p—4+3e" 4= 9¢ =37
}
‘,'=p=-lﬁsl. q=0, forezé.

IV. NUMERICAL INTEGRATION OF SIMILARITY EQUATIONS

The similarity solutions are determined by numerical inte-
gration of the second-order differential equation (25) subject to
the boundary conditions given by equations (26). Backward
integration is straightforward because .# =t 2" for r < 1.
For t > 1../ is a functional of 4. so an iterative method must
be employed. Following an initial guess for . /. we alternately
integrate equation (25) over the selected domain of r > 1 and
then compute . # over the same domain of r from equation (23).
This procedure is continued until the desired level of con-
vergence is achieved. The solutions are quite robust, and
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T T T

dw/dt
[

: " ‘
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o
o
o
N

/N

FiG. 6—Cylindrical symmetry: instantaneous location of all particles in
phase space for e = 0.8.

almost any monotonic function of A/A which satisfies .#(0) = 0
and .#(1) = | provides an adequate input guess.

The integral giving .# is calculated at a discrete grid of
points; typically 500 are used. It is evaluated between these
points by linear interpolation. A higher order spline inter-
polation is unsuitable because .# is not a smooth function. The
ratio of the particle’s apapsis distance to the current turn-
around distance, 4,/A, decreases with increasing t. The simi-
larity solution is generally determined out to the value of t at
which 4,/A falls below the lowest grid point.

At small values of i the acceleration is proportional to
AY7"* D Thus, near the origin it vanishes in the planar case,
equals unity in the cylindrical case, and diverges in the spher-
ical case. In the last two cases the trajectory is integrated ana-
lytically through the origin.

The principal features of each solution are illustrated in a
sequence of four figures. There are three such sequences (Figs.
1-12), one for each symmetry. The first figure of each sequence
depicts the oscillatory behavior of A(r). The second figure of
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F1G. 9.—Spherical symmetry: particle trajectory for (a) € = 0.2, and (b) € = 1.0
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0.8

dr/dt

08 1

FiG. 10.—Spherical symmetry: instantancous location of all particles in
phase space fore = 0.8. -

each sequence shows the simultaneous location of all particles
on the dx/dt — x plane and demonstrates the existence of a
denumerably infinite set of points along the phase plane curve
at which dx(t, M;)/0M; = 0. These points are associated with
the density spikes seen in the third figure of each sequence. The
spikes are contributed by particles which are approaching
apapsis, with the exception that the first apapsis passage, turn-
around, is not associated with a spike. The infinite-density
spikes are truncated in the figures because the density is aver-
aged over bins. The fourth and final figure in each sequence
displays log (.#) versus log (x/X) and illustrates the power-law
nature of the mass profiles. ¥

By and large, the detailed numerical solutions confirm the
predictions of the asymptotic analytic theory which are sum-
marized in equations (39). The largest discrepancy is that the
value of y obtained from the analytic theory does not accu-
rately estimate the rate at which .# increases with x. This may
be seen by comparing the slopes of the log (.#) versus log
(x/X) plots with the theoretically predicted power laws given
by the dashed lines.

V. COMPARISON WITH PREVIOUS CALCULATIONS

a) Planar Simulations

Other planar similarity solutions may be compared with
numerical calculations done by Melott (1983), who used a one-
dimensional cloud-in-cell method to simulate the large-scale -
clustering of 10,000 collisionless particles. Melott began his
calculation at redshift z = 10,000 and terminated it at z = 0.
His initial density perturbation was produced by a sinusoidal
variation of amplitude 1073 in the spacing of the particles. The
entire system extended over one wavelength. Our similarity
solutions demand different initial conditions. Nevertheless,
they display the same qualitative features found in Melott’s
simulations. For example, compare the dx/dt versus x plot
shown in our Figure 2 with Melott’s Figure 8a.

b) Spherical Simulations

Interest in galaxy formation stimulated many investigations
of spherically symmetric gravitational collapse. Early studies
attempted to account for the approximate p oc r ™2 distribution
of the luminous material in elliptical galaxies. It was found that

= T T T T T

10g( p / oy )

—

5 n "
-3 -25 -2 -15 -1 -05 o

o

log( r/R )

F1G. 11.—Spherical symmetry: ratio of actual to background density for
€=08.

the collapse of an initially static, uniform-density sphere
resulted in a final configuration with p oc r™3 (Henon 1964;
Gott 1973). The secondary infall of bound but initially expand-
ing material onto a collapsed core was discussed by Gunn and
Gott (1972). Gott (1975) made the first attempt to determine a
final density profile due to secondary infall. He considered a
central overdense core embedded in an Einstein—de Sitter uni-
verse, essentially our € = 1 case. Gott predicted that the
asymptotic density profile would have p oc r %%, However, his
numerical simulations produced p oc r~2-3. The extended flat
rotation curves of spiral galaxies (Rubin, Ford, and Thonnard
1980; Krumm and Salpeter 1980) imply the presence of halos
with p oc r™2. This led Gunn (1977) to extend Gott’s study to
more general initial-mass profiles in an attempt to discover
conditions compatible with a final halo with p oc r~ 2. Gunn’s
analytic treatment is in some respects similar to the asymptotic
theory presented in § III of our paper. However, he explicitly
assumed that each particle’s apapsis reaches a final value which
is a fixed fraction of the turnaround radius. We find this
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FiG. 12—Spherical symmetry: profile of mass per unit solid angle for
several e-values. Dashed lines show predicted power-law slopes for € < % and
fore = 1.0.
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assumption to be invalid for € < 4, precisely the range for € for
which the asymptotic theory predicts y = 1.

The evolution of an initially uniform-density region of finite
radius surrounding a collapsed core was investigated by Dekel,
Kowitt, and Shaham (1981} using a three-dimensional N-body
code and by Pryor (1982) using a spherically symmetric code.
Neither group produced models displaying extended flat rota-
tion curves, although the Dekel et al. results provided some
support for Guan’s (1977) predictions. However, these investi-
gations were based on initial perturbations whose fractional
excess masses ¢ decrease rather rapidly with increasing M;; a
relatively large fraction of the excess mass is contained in the

SELF-SIMILAR GRAVITATIONAL COLLAPSE 7

collapsed cores as a consequence of the small radii at which the
surrounding regions of uniform density are truncated. We find
similarity solutions compatible with extended flat rotation
curves for small €; these correspond to initial configurations
for which & decreases slowly as M, increases. Of course, our
similarity solutions include continuous infall. It remains to be
seen how extended the flat rotation curves are in truncated
versions of low-e models.

Support for this research was provided by the National
Science Foundation through a graduate fellowship awarded to
J. A. F. and through grant 80-20005.

APPENDIX

We determine the turnaround time ¢, and turnaround distance x, in terms of ¢;, x;, and &. The calculations are straightforward
since a particle does not cross the orbits of other particles before it reaches turnaround.

a) Planar Symmetry
The equation of motion reads

&’z 4 :
Zt—f—at—z—“ﬂGM(Z, t). (Al)
Inserting equations (5) and (12) into equation (9) yields
dz 4 2z; AN
a2~ 97 31— 6)1,?(1) ’ (A2)
for t < t,. Solving the linear equation (A2) subject to the initial condition of unperturbed Hubble expansion, we obtain
z 1 £\ 23 F} \ 3 "3
sl ST T "
From equation (A3), we find that to lowest orderin d < 1,
32
e _ 3 Ly (3
PR T A <66 : (A4
b) Cylindrical Symmetry
The equation of motion is written
Fo o 26
i = F — ; M(wm, t) (A5)
Inserting equations (6) and (12) into equation (9) yields
dm o 1 af [1;\*?
4 T 9 T 31— 9) r3m<t> ’ (A6)

fort < t,. Equation (A6) is nonlinear, and we have not been able to solve it analytically. However, numerical integrations imply that

o 0.74 t 1.39\3/2
Bo0R L () *7
¢) Spherical Symmetry
The equation of motion simplifies to
d*r 4rn G G
TE= 3 Opltr = 5 0M(r ) = — 5 M(r. 1) (A8)
Since M(r, t)is constant for ¢ < t,,
2 3
dr 1 (A9)

a2 Tl — it
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Although equation (A9) is nonlinear, it has an energy integral. We evaluate the energy constant by requiring that the velocity satisfy
the unperturbed Hubble relation at ¢ = ¢,. This procedure yields

ay &y,
i) “si—a\i)\F7?) (A10)

The turnaround parameters, to lowest order in § < 1, are

r 1 t 3n
=* _ _ % _
r o 1, an (ATD
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ABSTRACT

We derive similarity solutions which describe the evolution of spherically symmetric voids in a perturbed
Einstein—de Sitter universe filled with cold, collisionless matter. The character of a solution depends upon the
profile of the initial density deficit. Gradual perturbations give rise to holes within which the density rises
smoothly to the background value. Steep perturbations result in voids bounded by overdense shells with sharp

edges, i.e., collisionless gravitational shocks.
Subject headings: cosmology — relativity

[. INTRODUCTION

The existence of large voids in the density of galaxies is a
major new discovery of observational cosmology (Davis et al.
1982; Kirshner et al. 1981). Spherically symmetric numerical
simulations (Peebles 1982; Hoffman, Salpeter, and Wasserman
1983; Hausman, Olson, and Roth 1983) and analytic fluid
dynamical calculations (Sato 1982; Maeda, Sasaki, and Sato
1983; Sato and Maeda 1983) have been applied to demonstrate
that empty holes may evolve from initial perturbations of
slightly subcritical density. Similar voids commonly appear in
three-dimensional N-body simulations (Klypin and Shandarin
1983; Frenk, White, and Davis 1983; Centrella and Melott
1983). Some of these simulations produced voids surrounded
by dense shells. This suggests that pianar superclusters may
have formed from the fragmentation of shells which developed
about initial perturbations of subcritical density, as well as
from the collapse of initial perturbations of supercritical
density. Our contribution is the derivation of similarity solu-
tions for voids which display many of the features seen in the
numerical simulations. This work is a sequel to Fillmore and
Goldreich (1984, hereafter Paper I), which treated similarity
solutions describing gravitational collapse.

The plan of the paper is as follows. In § II we study the early
development of subcritical density perturbations. The simi-
larity equation is derived in § III. Results obtained from the
integration of this equation are presented in § IV.

. EARLY DEVELOPMENT

As the scale of the perturbations which we are investigating
is small compared with that of the horizon, Newtonian cosmol-
ogy is an adequate approximation (Peebles 1980). For spher-
ical symmetry, the equation of motion of a test particle reads

d’r _ 4nGM(r, 1)

dr? r?
where M(r, t) is the mass per unit solid angle within radius r at
time r. The nonstandard definition of M follows Paper 1.

We choose initial conditions such that at time t; the unper-
turbed Hubble law

. (n

()

&%
"
Wit
~ 1™

' Contribution No. 4004 of the Division of Geological and Planetary Sci-
ences, California Institute of Technology.

is exactly satisfied. The initial position of a test particle is
denoted either by its initial distance from the center r; or by the
initial mass between it and the origin, M; = M(r;, t,).

Similarity solutions arise from scale-free initial pertur-
bations. We take the initial perturbation mass dM{M) to have
the form . .

s Mi_ (MY
M, \M,)

where M, is a reference mass; the corresponding reference
radius is ry. The parameter €, which determines the steepness of
the initial mass deficit, must lie between zero and unity in order
that the initial mass perturbation increase and the initial
density perturbation decrease away from the origin.

The initial conditions require some comment; clearly, they
are not physically reasonable for r, < r,, where they imply
negative initial mass. We imagine that they pertain only in the
region of small | §]. It is then a pilausible but unproven conjec-
ture that they give rise to self-similar solutions at large times,
t> 1

So long as a particle does not cross the trajectories of other
particles, which we refer to as orbit crossing, its interior mass
remains constant, and equation (1) may be integrated to deter-
mine t(r). To first orderin | §| < 1, we find

3t ritridl 124y,
= U o 4
! 2|5|’/2L T+u” @

The form of equation (4) suggests that we adopt scaled time
and radius variables t and 4 defined by

6<0, 3)

L _ A e
r_t,—3nt,-'6| , (5)

riol ©)

'

I"l‘

A =
Although the powers of & which appear in the scalings are
uniquely determined, the multiplicative constants are arbi-
trarily chosen to be those taken in Paper 1. However, they do
not have the special significance that they did in Paper |, where
=/ =1 corresponded to the unique event of turnaround.
The trajectories of particles involved in the evolution of a void
are not marked by an event of comparable significance; all
choices of multiplicative constants are equally good.

Our choice of scaling defines a fiducial radius R(z) and a
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corresponding initial mass M, which are associated with parti-
cles whose t, = t. From equations (3) and (5), it follows that

i 4t 2/3 +2/(9¢)
R(t) =r, A(I)<ﬁ> , ()]
4 24360
Mr = MO(E) . (8)
The factor
A1) = 2.3236 9

is obtained by evaluating the integral in equation (4) for t = 1.

The study of equation (4) reveals that orbit crossing occurs
only for € > 4. Thus, equation (4) is valid for all t if € < . The
distinction between € < £ and € > Z may be understood by
noticing that the particle terminal velocity, computed neglect-
ing orbit crossing, is an increasing function of M for € < £ and
a decreasing function of M for € > 4. A similar argument was
given by Sato (1982).

Proper application of Newtonian cosmology requires that
the linear dimensions of the structures be small compared with
the distance to the horizon. This restricts the interval of time
over which the similarity solutions with € < £ are valid because
their fiducial radii grow faster than ¢.

HI. DERIVATION OF SIMILARITY EQUATION

As the derivation of the similarity equation parallels that
given in Paper I, we omit many details. The major step is to
express M(r, t) as a functional of 4. We appeal to self-similarity
and write

M(r, 1) = M, #(r/R), (10)
where .# is the dimensionless mass profile function given by
r ® dM; ) g
Jt(R> = L A AU M) — i M. D
Here H([u] is the Heaviside function; H[u] = 1 for u > 0, and

H[u] = 0 for u < 0. Changing the variable of integration from
M, to 7 with the help of equation (8) yields

Ay_2([7_4d8 i A
Jl{(/\) - 3¢ J; Cl +2/(3¢) H':A A(é)J 4 (12)
where
A = ).(1)12134'2/(9() (13)
has been defined such that
r A
m = m . (14)

The integrals in equations (11) and (12) each differ in one
boundary value from their counterparts in Paper I. The upper
limit on the former and the lower limit on the latter are oo and
0; the corresponding values were M, and 1 in Paper 1. These
changes are necessary because orbit crossing occurs before
t = lfore > 0.92.

We use equations (5), (6), and (14) to rewrite the equation of
motion (1) in terms of the scaled variables:

dzl: nz tZl(S() i
r,z=-§,1—z”‘(x)- 19

Equation (15) governs the evolution of the similarity solutions

Vol. 281

for all values of 7. It is identical to the equation we used to
compute spherically symmetric collapse solutions in Paper I.
However, new boundary conditions are needed to obtain void
solutions. These are obtained from equation (4) using the defi-
nitions given by equations (5) and (6). In principle, any pair
(t, 4) which satisfies equation (4) and precedes the first orbit
crossing event is suitable. In practice, we use

di

el 1.8786 (16)
for all of the examples shown in this paper. There is, however, a
minor technical complication. For € > 0,92, orbit crossing
takes place before t = 1; for € = 1, it occurs at 7 =~ 0.6. In
treating these cases, the boundary conditions must be set at
smaller values of 7.

i=23236,

t=1,

IV. RESULTS
ae<i
Since orbit crossing does not occur for this range of €, the

solution is given for all time by equation (4). The density profile
is found from

pir/R Yy 3m? R P[1+3e 3ac(t+ A7}
pu(t)  16er¥B9| A1y 3e 4 37 ’

amn

with the help of equations (4), (5), (6), (13), and (14), which
implicitly determine t and 4 as functions of /R. Here the back-
ground density p,(t) = (62Gt?) .

Density profiles for two values of € are displayed in Figure 1.
The density increases monotonically with radius and gradually
approaches the background value. Since R(t) grows faster than
t, each particle asymptotically approaches the center of the
hole.

b)e>4%
i) Numerical Integrations
The similarity solutions are obtained by numerical integra-
tion of the second-order differential equation (15) subject to the
boundary conditions given by equation (16). Because the inte-

- T T T T T

p/py

o 0.5 1 15 2 25
r/R
FiG. 1.—Ratio of actual to background density for € = 0.3 and 0.6
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FiG. 3.—Difference in position of two nearby particles relative to the fiducial radius for € = 0.7,0.8,and 0.9

gration must be carried out to very large values of r, the inde-
pendent variable is transformed from t to v =In (7), and 4 is
computed on a linear grid in v. Following an initial guess for
.#, we alternately integrate equation (15) and then update .#
by using equation (12). This procedure is continued until the
desired level of convergence is obtained.

Plots of 4 versus 7 are uninteresting, so we do not present
any here; particle radii just increase monotonically with time.
The variations of A/A drawn in Figure 2 show oscillations of
the particle radii scaled to the fiducial radii. Still more
revealing are the plots in Figure 3, which illustrate the multiple
crossings of neighboring orbits. From a comparison of Figures
2 and 3, it is seen that these crossings coincide with the maxima
and minima of A/A.

The orbit crossings have dramatic consequences. The

density profiles displayed in Figure 4 all show completely
empty holes surrounded by overdense shells. The density is
infinite at the inner and outer shell boundaries, but these
regions contribute negligibly to the surface density, as can be
seen from the mass profiles plotted in Figure 5. The infinite-
density spikes are truncated in the figures because the density is
averaged over bins.

How does orbit crossing give rise to these structures, espe-
cially the sharp edges? Orbit crossing proceeds from the inside
out; each particle is passed by all particles of smaller initial
radii before passing its immediate outer neighbor. A particle
begins orbit crossing when it is overtaken by the outer bound-
ary of the shell. At this time it crosses the orbits of particles
with significantly smaller initial radii. The first crossing of
orbits of its original neighbors occurs when it reaches the inner

0.7

|
0.85
r/R

0.75 08 08 0.95 1

Fi1G. 4—Ratio of actual to background density
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o
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F1G. 5.—Profile of mass per unit solid angle
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boundary of the shell. The inner and outer shell edges and

other weaker density spikes within the shells are composed of

particles which are in the act of crossing their neighbors’ orbits.
ii} Infall Velocity

Peebles (1982) noted that particles in the shell surrounding a
void do not have large streaming velocities. Thus, fragmenta-
tion of dense shells surrounding voids might produce planar
structures having smaller peculiar velocities than those
resulting from planar collapse of regions with supercritical
density. This may be quantified by calculating the ratio of the
infall velocity to the unperturbed Hubble velocity for both
types of planar structures.

The peculiar velocity of a particle crossing the shell around a

void for the first time is
_ Q B d_R _ m rl/’3—2/(9£) d_A _ 2f(1 + 36) “8)
ET de dt ¢t Al dr 9 ’

where f is the ratio of the void’s radius to R(t). The Hubble
velocity across the void's radius is

v,

2f R
w=HR =L, 19)

where H is the Hubble constant. The ratio of these velocities is

v; 31.1/3—2/(90 di 1
ow UMD dr (] * 35) : 20

For 0.7 < € < 1.0, we find
005 <2+ <0.15 .
Un

For planar collapse (see Paper I), the infall velocity can be
computed approximately by assuming the column density
remains constant while a sheet falls toward the symmetry
plane. Actually, the column density decreases because a sheet
passes through previously collapsed material; however, this
effect decreases the infail velocity by less than 15%. The desired
velocity ratio is

HLI‘Z - 21 —lje N (2‘)

where Z is the turnaround distance. The ratio in equation (21)
varies from 0 to 1 as € varies from 0 to 1, but it is greater than
0.15 for € above 0.26.

iii) Particle Motion in the Shell

The damped oscillations in 4/A pictured in Figure 2 are
easily modeled analytically. We transform the dependent vari-
able in equation (15) from 4 to { = i/A. The equilibrium posi-
tion, {,, is given by

8i(1)? .
L by = ). @)

po (2. 2)1_2
A3 T 9e¢ N3 9/

The mean density interior to the equilibrium point is
o, 1)) _9b _4
—_———t =g, 23
o) 259 @)
Linearizing the equation of motion in terms of the variable
y ={ — {,, we arrive at

2 3
dy__2(2+2)dy [n p"@ﬁ‘:‘b:lriz' (24)

where

2T TI\37 9% /dt T | 241 p,
Equation (24) is homogeneous in T and has the solution
y=yot *cos [fIn (7], (25)
where

1 2 o) 2]
1_<6+9e)’ ﬂ_[Z).(I)3p,,_3b—a . (26)
The oscillation period is proportional to t as a consequence of

the t ~? variation of the density. As € increases from 0.7 to 1.0, «
decreases from 0.48 to 0.39, and f increases from.0.55 to 0.91.
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I. INTRODUCTION

While much effort in recent years has been devoted to understanding rotation
curves, studies have concentrated primarily on their behavior at large radii. The
velocities of material at small radii are important, however, for determining the
distribution of mass within galaxies, as well as the dynamical effects of the different
galaxian components upon each other. For example, the questions which one might
hope to address with high resolution data on the inner regions of disk galaxies
include: 1) are bulges flattened by rotation or anisotropic residual velocities? 2) how
- do the bulge and disk interact? and 3) how does the mass-to-light ratio (M/L)
change with radius? This last question involves such aspects as how centrally
concentrated a massive halo is, and whether black holes are commonly found in
the centers of galaxies.

Recent progress in both observational capabilities and theoretical models
suggest that the time is now right to study inner rotation curves in some detail.
The same advances in detector technology which allow the measurement of optical
rotation curves at very large radii, and hence, very low surface brightnesses, enable
the measurement of the inner parts of galaxy rotation curves at unprecedentedly
high spatial and spectral resolution. Also, the advances made in modelling elliptical
galaxies provide a good framework for studying the velocity and surface brightness
distributions of spheroids within disk systems.

In this paper we present observations and analysis of velocity data from six
spiral galaxies. These data consist of radial velocities and velocity dispersions of
both the gaseous and the stellar components. The measurements extend out to
several kiloparsecs and the spatial resolution is limited by the seeing. The analysis
utilizes all the velocity data as well as light distributions for the galaxies to model
the mass distributions and the motions of the material in a nearly self-consistent
way. Section II contains the details of the observations and the data reduction.
Section III is an explanation of the modelling procedure. In §IV, this procedure
is applied to each of the six galaxies observed. In §V, we discuss the trends and

individual peculiarities and their implications for galaxy formation and evolution.

II. OBSERVATIONS AND REDUCTIONS

All the observations were made with the Double Spectrograph at the
Cassegrain focus of the Hale 5m telescope. A 320x 512 RCA CCD was the detector
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on the blue side of the spectrograph and an 800 x 800 TI CCD was the detector
on the red side. All of the emission line measurements were made in the 16500
- A6800 region, which includes He, the [N II] AA6548, 6583 lines, and the [S II|
AA6716, 6731 lines. The absorption line measurements were made either in the
A4400 - A5400 region which contains H8 and the Mg I b feature, or in the A8400 -
A8700 region which contains the Ca II infrared triplet. The calcium triplet and Ha
regions were often observed simultaneously by replacing the normal dichroic, which
splits the light between the two optical paths at A5200, with one which splits the
-light at A6900.

Details of the observations are listed in Table 1. A two arcsecond wide slit
was used for most of the exposures. One pixel corresponds to 0.78” on the blue
side and 0.58” on the red side. The slit was about 120” long, and for most of the
emission line (the Ha region) observations, the nucleus of the galaxy was placed
near one end. For the Mg I b exposures, the nucleus wasrcentered along the slit.
Comparison lamp exposures were taken after every object integration, and late G or
early K giants were observed for templates with the same setup on each night that
we obtained absorption line data. All observations were made with gratings having
1200 grooves mm™~! used in first order. These gratings give a reciprocal dispersion
of about 14 per pixel, and the resolution was about 2.64 for both the blue and red

cameras with a 27 slit.

The frames were all bias subtracted and flat-field corrected. The two-
dimensional spectra were then separated into groups of one-dimensional spectra,
composed of individual rows in regions where the signal was strong, and averages
of several rows in other regions. For each object spectrum, the same rows of the
accompanying comparison frame were averaged and the resulting comparison line
positions were used to determine a wavelength polynomial. This procedure removes
the effects of distortion in the spectrograph and any slight tilt of the slit with respect
to the CCD pixel columns. The wavelength functions were cubic polynomials fitted
to between 8 and 15 arc lines. The residuals in the fits were typically 0.05A or less.
This corresponds to about 4 km s~} uncertainty due to the wavelength calibration.
Moreover, the residuals of a given comparison line were similar from fit to fit,
suggesting that the relative velocities along the slit are measurable to even higher

accuracy than this.
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The emission line spectra were measured by fitting a Gaussian to each of the
five emission lines in the wavelength region observed. The center of the Gaussian
was converted to a velocity and a heliocentric correction was applied. The velocities
were then averaged with approximate weighting by the strengths of the individual

lines.

The resulting rotation curves are presented in Table 2. The position angles
listed for each observation give the direction of the positive axis. Note that in
some cases, the velocities are determined from the sum of a number of rows. These
velocities are listed only for the central row in such a sum. In practice, the shorter
exposures were of insufficient quality to yield precise information. Thus, we were
unable to use any of the minor axis emission line frames or the major axis emission
line frame for NGC 2841. By summing the pixel counts between the major emission
lines, a rough continuum intensity (hereafter CI) measurement can be made; these
are also listed in Table 2. Because the galaxies in this sample have large angular
extent, the slit did not reach sufficiently far for a reliable measurement of the sky
brightness. Thus, accurate sky subtraction was not possible, so the CI values may

have systematic errors.

In addition to the velocities, the reduction procedure yielded line widths for
the emission lines in each spectrum. These values are not presented here but we
describe the general trends seen. In all objects, the lines were unresolved (o < 40
km s~1) at radii greater than about 5”. Within this radius, they broadened,
reaching widths (Gaussian standard deviations) of 100 - 150 km s~! at the centers.
Some fraction of these widths come from the rotation of the material and are

dependent upon slit width and seeing.

The absorption line frames were reduced using the Fourier quotient method
developed by Schechter (Sargent et al. 1977). The sky was determined either from
the edges of each object frame or from separate sky frames and was subtracted
from the object frames. Tilts in the slit relative to the detector were removed for
galaxy and template star frames. The rows of each frame were co-added such that
the signal-to-noise ratio in a one-dimensional spectrum was at least 30. Then each
one-dimensional spectrum was wavelength calibrated and run through the Fourier
quotient program, which outputs a velocity, a velocity dispersion, and an average

line-strength factor.
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The center of each galaxy was determined by finding the point around which
the rotation curve is most symmetric, and the radial velocity at this point was
considered the systemic velocity. This value was then subtracted from each other
point, so all the rotation curves are centered on zero. Table 3 gives the absorption
line data, the rotation curves and dispersion profiles used for each object in the

sample.

III. MODELS
Our galaxy models contain two components, a bulge and a disk, each
described below. Here we describe the coordinate systems used in the models. The
models are axisymmetric, so we use a cylindrical-polar system (R, z, ¢) of spatial
coordinates in the galaxy. In the bulge, where an oblate spheroid is assumed, £ is

a spheroidal coordinate which is constant along equidensity surfaces:
62 = R2 +f232, (1)

where f is the flattening parameter, related to the ellipticity ¢ by f = (1—¢)~!. In
the plane of the sky, a Cartesian system (p, ¢) aligned with the projected principle
axes is used. The variable s is distance along the line-of-sight, where s = 0 is the
plane passing through the galaxy center. The inclination of the galaxy is i; for

edge-on ¢ = 0. The two sets of coordinates are related by:

R? = p? + [scosi —gsini]?, (2)
z=8sini+gcosi, (3)
€ =& + 961 + 76, (4)

where,
€ =p* +¢* [sin® i + f2 cos? ],

€ = 2gsinicosi [f% —1], (5)
& = f2sin?i + cos?i.

For an observation point (p, q), minimum £ occurs at
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a) Disk
We use the disk model from van der Kruit and Searle (1981a, 1982), which
is an exponential disk with constant scale height. The density is specified by

oD (R, 2) = poe™*/ BPsech? (1 /2), (7)

where po is the central density, Rp is the disk scale length, and z; is twice the scale
height. These authors have shown this model to be a reasonable representation of
‘the disk surface brightness out to a few scale lengths, after which it rapidly drops
off (see also Seiden, Schulman, and Elmegreen 1984). We do not impose an outer
edge in our models because the range of our observations is interior to the typically
observed cut-off radius. This exclusion might cause a slight systemic over-estimate
in our disk masses. The surface density is calculated by integrating equation (7)

over 2.
up(R) = poe=RIR?, (®)

where the central surface density uo = 2p020. The total mass Mp is 2rpuoR%. Note
that the disk surface density can be determined by Rp and Mp without specifying
the scale height. The light and the acceleration from the disk is calculated assuming
the disk is very thin and has a constant mass-to-light ratio Mp /L p. The scale height
is used only to compute the velocity dispersion, which we assume to be isotropic
(see Bahcall 1984),

0% (R) = 7Gup(R)z. (9)

Since the disk is thin, and the galaxies in this sample are not edge-on, line-of-sight
projection effects will be ignored for the disk component.
b) Bulge

The bulge component is modelled as an oblate spheroid whose flattening is
specified by its true ellipticity ¢ = 1 — b/a, where b/a is the axial ratio. The bulge
ellipticity is assumed to be constant even though observations of other galaxies
show an outward increase in the flattening (van der Kruit and Searle 1981a, 1981b,
1982). This effect is probably caused by the presence of the disk, but to include it
is beyond the scope of this paper.

Observations of many disk systems (Kormendy 1977, Burstein 1979, Boroson
1981) have shown that the bulge surface brightness is acceptably represented by a
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deVaucouleurs’ law (1948), which in magnitudes is
u™(p) = u* + 8.325((p/R.)"/* - 1], (10)

where R, is the effective radius and u7* is the surface brightness at R,, measured
along the major axis. The bulge density profiles are fits to a deprojected r!/* law
taken from approximate formulae derived by Young (1976) and Tonry (19845). The

density on a spheroidal surface is

pe(€) = fMBR;’p*(¢/R.), (11)

where fp* is a dimensionless function whose total volume integral is unity; Mg is
the total bulge mass.

Along with the mass model we must know the 3-D velocity structure of the
bulge. This information can not be entirely obtained from observations, so we must
make some assumptions. We use the mean rotation velocity in the equatorial plane
as an independent function to be determined by fitting the observations, but assume

the mean rotation out of the plane follows the scaling

uo(R)
u(R, z) ~ 2
(52 1+ (z/R)?]

(12)
where ug is the mean rotation in the equatorial plane. This scaling was derived by
using p* « £~2 and computing the circular velocity for an oblate spheroid at low
z and to first order in e; this result is sufficently accurate for ¢ < 0.4. We then
assume that the mean rotation rate scales in the same way as the circular velocity.
Note that adopting this relation is equivalent to assuming that the angular velocity
is constant on spheroidal shells, in which case u, is a function of £, not R. If the
equatorial rotation curve is flat these two forms give the same result.

The relation (12) has been tested on measurements of edge-on disk galaxies;
projection effects have been ignored. Kormendy and Illingworth (1982, hereafter
KI), measured v and & along slits both parallel and perpendicular to the major axis.
Two of their four galaxies fit the above relation quite well, as shown in Figure 1;
these are bulge-dominated systems with dynamically significant rotation. The other
two galaxies do not fit the relation; for these there is a large difference in the bulge

and disk rotation rates so a fit can not be found.
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We must also assume the form of the velocity dispersion structure. We shall
use the radial velocity dispersion in the equatorial plane as an independent function
ogr(R). We allow for anisotropy in our models, but as will be shown, it is not
necessary to invoke it. Since the projected velocity dispersion in KI's galaxies did
not change significantly with z, we shall assume that o5 and o, are not a function of
z. This assumption is imposed only to simplify the model. If #g decreases outward,
this predicts that the line-of-sight velocity dispersion, #,, observed along the minor
axis falls off more slowly than along the major axis, since over-the-pole line-of-sight

pulls the mean value up. This is in agreement with our minor axis data.

A pressure-supported, isotropic spheroid whose density distribution follows
a deprojected deVaucouleurs’ law has central depression in the velocity dispersion
(Binney 1980). The projected velocity dispersion peaks near ~ 0.1R,. Two plausible
modifications can remove this depression. First, the addition of a central point
mass, which causes the surrounding stars to move faster. Only 15% additional mass
inside ~ 0.1R, is sufficient to keep o, rising inward. Alternatively, a core radius
may be introduced into the density profile, which decreases the number of slow
moving stars near the center, so the (mass-weighted) velocity dispersion increases.
This deviation from deVaucouleurs’ law should be visible in high-resolution surface
brightness measurements unless the mass-to-light ratio decreases in the center.
Previous surface brightness studies of ellipticals reveal that some show a central
core radius while others follow a r}/* law to the seeing limit (Schweizer 1979).
However, most bulges are smaller than those ellipticals, so seeing effects severely

limit the detectability of cores.

¢) Projection and Measurement Effects

External galaxies are, of course, seen only in the plane of the sky, so we
must calculate how these models would appear in projection in order to compare
them with observations. Here we discuss the projection of the bulge component,
subsequently we will detail the procedure for including the disk. The bulge model
is specified by ¢, R,, Mg, Mg/Lp, and the 3-D kinematic assumptions. First we
will calculate line-of-sight quantities; a subscript s will be used on some variables

to denote integration along s.
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The surface brightness is

wilp) = [ oule)ds, (13)

-00

where p; is the luminosity density p(é)Lg/Mp. For the special case of an oblate

spheroid,
26m [ pr(bmz)z d2
peip,q) = —177/ et 1) (14)
2

Because py, is a function only of & (p, ¢) the isophotes are elliptical (see equation

[6]). The projected mean rotation is

o0 .
olpg) =uzt [ prulR, )22 do (15)
-0

The observed velocity dispersion has several components; first the true

velocity dispersion must be projected:

o0 p?cos?i

R2

pLo% [1 -8 — B, sin® ;] ds, (16)

o2(p,q) = u;t f

—00

where § and 3, are anisotropy parameters, § = 1 — 03 /0%, and 8, = 1 - 02 [0},

Second, the contribution from the projection of the rotation curve is
Uzr(P,‘I) =< u2 >los — Uf(P,Q), (17)

where the mean squared line-of-sight velocity is

PR 2 cos? i
<ul >, = uLI/ oL u?? 77 ds. (18)

haul * @]

These integrals can be performed analytically if idealizations such as a power law
luminosity density and flat rotation curves are assumed. In typical cases one finds
vs/u ~ 60 — 80% and a,,/u ~ 20 — 30%. (See also Tonry 1984a and Young et al.
1978.)



-25-

The observed quantities are modified by atmospheric seeing and instrumental
resolution. ~We denote the broadening function as S; its integral is unity.
Convolution will be denoted by an asterisk. The model “observed” surface
brightness is

Bobs = S * pr. (19)

Rotation curve and velocity dispersion profiles are modified by a luminosity-

weighted convolution, defined as

_Sx*{(uf)
P * f = _S_*—LT. (20)
Thus,
vobs(pa Q) = P *v,. (21)

The observed line-width is increased because the mean velocity (line-center) is
simultaneously observed at many different projected spots on the galaxy by a finite-
sized aperture (plus atmospheric agitation). The additional contribution to the

observed velocity dispersion from an aperture is
2 _ 2 2
aap =P« Vs = Ygpes (22)

which is significant only near the center, if at all. The predicted total velocity
dispersion is

02 = P x [024+ < u® > — V2, (23)

Since we have a two component model, the true first and second momen ts
of the line-of-sight velocity should be the sum of the two components weighted by
their relative surface brightness. However, the measured moments do not directly
represent the true moments because the observations were reduced using a Fourier
quotient method (abbreviated FQ hereafter, see §II). This technique fits a Gaussian
to the line-broadening profile, but the superposition of two components can be
a distinctly non-Gaussian profile; this fitting error biases the measured values
(INingworth and Schechter 1982; Whitmore 1980; McElroy 1983; Whitmore, Rubin,
and Ford 1984, hereafter WRF). In our situation the biases are competing; the
method emphasizes the narrower component (disk) but is more sensitive to the

stronger line component (bulge).
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First we must consider the bias effect on the measured mean velocity. If the
fraction of bulge light contributed at a particular projected location is b = p; [teot,
and the velocity difference between the two components is Av, then the expected
measured velocity v,y = Av (1 —b). However, the measured value vy, is frequently

different from v,;,, so we define an effective fraction from v,, = Av (1 =besy), 50

1 = by, =™ (1-b) (24)

'Thus, bess indicates what fraction of light the bulge would have to contribute to
achieve the same measured value if the FQ method properly returned the mean
velocity. Figure 2 shows the difference between mixing two components of equal
line-strength and mixing one component with half the line-strength of the other.
The result is that the absorption line data mostly reflects the bulge rotation even
in regions where the disk light contributes a significant fraction of the light (WRF).

The velocity dispersion expected from the combination of two components
is not a simple linear interpolation between the two values. Fitting a Gaussian to
two components with a non-zero seperation in the mean values can result in a much
larger width than either component. The expected value is

02, = bok + (1-b)od +b(1 - b)(Av)?, (25)
where Av is the mean separation between the components. The measured values
from the FQ method will not follow this relation because it is biased towards the
narrower component; in Worst cases a5 Will be 30% below o 4,.

Different authors have used different schemes to compute the goodness of
fit of a Gaussian to the Fourier quotient (e.g., Sargent ef al. 1977, and Dressler
1979). The goal is to choose the best fit despite noise in the data, particularly at
high wave-numbers. Our tests show that biases introduced by typical goodness-of-
fit tests are smaller than those inherent in the method when two components are

present.

d) Fitting Procedure
In this section we detail the procedure used to fit a kinematic model to

velocity data while satisfying physicial constraints.
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Two of the constraints used are Poisson’s equation
V2® = 42G(pB + pp), (26)

and a velocity moment of the collisionless Boltzmann equation

2
u? —o% [%%—?Ri + ﬂ] = R%, (27)
which is solved for the bulge and disk separately. These two relations are necessary
but not sufficient restrictions on the kinematic model. Note that we still have
no criteria as to the value or variation of the anisotropy parameters 8 and §,.
Higher moment equations could supply additional constraints, but these introduce
more unknown functions, so we are unable to close the moment equations. Recall
that when only two integrals of motion are present Jean’s Theorem requires that
f. = 0. However, numerical studies show that a third integral is frequently present.
Nonetheless, we fit § = 3, = 0 models to our sample of galaxies.

By specifying the form of the off-equatorial plane kinematics (in §IIIb), we
have reduced the unknown dynamical structure of the bulge to two functions; u(R),
the mean stellar equatorial rotation rate, and og(R), the radial dispersion profile.
These reductions allow predicted projected profiles to be compared with observed
ones. Note that an ambiguity exists because we have constructed a two-component
model to be constrained by measurements which combine information from the real
both bulge and disk components.

The fitting procedure is as follows. The luminosity density is fitted to the
observed photometry; this determines the scale lengths R, and Rp, and the relative
surface brightness contributions of the bulge and disk. The bulge R, measured along
the major axis is independent of ¢+ and ¢. Since i is determined by the apparent
axial ratio of the disk, ¢ can in principle be determined by the apparent axial ratio
of the bulge. The two scale lengths must be determined by an iterative process; the
solution for R, is particularly sensitive to the disk solution since small changes in
the disk fit at the exterior can extrapolate inward to large changes in the residuals
attributed to the bulge. Accurate sky subtraction is necessary for a proper disk
solution. Errors up to 26% in R, exist for those galaxies for which we have only

continuum intensity (CI) data. The initial guess for the disk mass is set by fitting



-28-

the emission line rotation curve at the outermost measured points; then a rough fit
to the bulge mass is approximated by fitting the interior absorption line data. The
potential is computed from pg and pp.

There are two approaches to solving equation (27): (i) An intrinsic mean
stellar rotation curve is estimated, initially by scaling up a fit to the observed
rotation rate, and op is computed from it by an iterative procedure; (ii) a fit is
made to the intrinsic velocity dispersion, and the rotation curve computed from
it. Either approach will arrive at the same result; the choice is simply a matter
" of which intrinsic profile is easier to model. Once u and o are derived, they are
projected, seeing corrected, and compared to the observed profiles. The seeing
profile is chosen to be a single Gaussian, since no better information is available,
and these corrections are not critical (except for the photometry). A few iterations
are required to fine-tune the fits. Note that one of the two profiles, v, OF 0415, can
be made to fit the observations arbitrarily well, perhaps at a sacrifice to the other;
the goodness-of-fit must be made by comparing both profiles.

If a satisfactory fit is still not achieved, there are other options to exercise
depending on how the fit needs to be improved; these will be discussed below. We
note here that asymmetry observed in the velocity data hints that axisymmetry is

an idealization which might improperly restrict the results.

IV. RESULTS

Graphs of the observations and kinematic fits are presented in Figures 3-8.
The parameters used in the models are contained in Table 4. Our notation is as
follows. The stellar motions are described by their equatorial mean rotation u,
and velocity dispersion o¢z. The model circular velocity is U,, the bulge line-of-
sight mean rotation is v, and the velocity dispersion is ;. The predicted observed
values, including disk light and seeing effects are v,5s and o,45. We refer to the model
projected peak rotation velocity as vyeqk, 0o is the central velocity dispersion, and
v and & are the mass-weighted rms values from our models. To compute the means
we have assumed that each spheroidal shell rotates at constant angular velocity,

and that op is constant along z.
a) NGC 2841
Using the bulge and disk decomposition from Boroson (1981), fits for this
galaxy were straightforward since ¢, ¢, Rp and Rp were already available. The
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emission line data were not usable in the observed region; there appears to be an
HI hole inside 6 kpc (Bosma 1978). The disk mass was initially set by from a gas
rotation measurement of 260 km s™! at 3.9 kpc by Rubin and Thonnard (1984).

The absorption line data mostly reflect the bulge; however, a contribution
from the disk is expected at the outer observed points. The major axis data are
shown in Figure 3a, the minor in Figure 3b; vy.qx /00 is 0.64. The inner peak in the
stellar rotation curve is also seen by WRF; although their two sides of the major
axis are not symmetric in the location of the peak, this region is affected by beam-
bending. Our measured values of the velocity dispersion do not decrease with radius
as fast as the WREF values.

The dip in v, around 0.7 kpc is consistent with equation (27) and the
large velocity dispersion. Two different effects could cause the upturn in the
rotation curve. If we assume that the observed profiles completely reflect the bulge
component, then only a slight decrease in or is necessary to raise the rotation
curve; in this case #/@ is 0.70. On the other hand, if the observed rise is due to
disk light, then the bulge rotation curve must remain flat to 1 kpc, in which case
5/a is 0.40. This latter interpretation was used for the final model construction,
because a contribution from the disk is expected, even including the bias of the

Fourier quotient method. The model profiles are displayed in Figure 3c.
b) NGC 3898

The photometry from Boroson (1981) is again used. The observed emission
line rotation data are shown as points in Figure 4a; the solid line is the model
circular velocity. The major axis absorption line data are presented in Figure 4b.
Since the distance where the surface brightness of the bulge equals the disk, which
we call the crossover point, is measured to be 3.5 kpc, while the absorption line data
extend only to 0.6 kpc, we will assume the absorption line data purely represent
the bulge component.

The asymmetry in both the stellar velocity disperion and rotation rate, which
is also seen to a similar degree by WRF. The southeast side of the major axis has a
rotation rate 30 km s~! lower than the NW wide inside of 8”. The NW side shows
a large decrease in velocity dispersion, whereas the SE side displays only a slight
decrease in our data and a slow rise in the data of WRF.

The model was fit to the observations by specifying an intrinsic dispersion
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profile which produced an acceptable ¢,4,, and the bulge mass was adjusted until
Yobs Was in the proper range. Note that o4, and vy, fit well on one side of the
galaxy, but fit poorly on the other side. The steep decline in 0,55 on the poorly
fitting side cannot be reproduced without adding a large central mass concentration.
However, this addition is tightly constrained by the restriction that the mass of the
bulge must not be lowered to compensate for the central mass to the point where
Mp/Lp < Mp/Lp.

The model profiles are illustrated in Figure 4c. The observed vp.qx /0 is 0.50;
“however, ©#/# is higher (0.60) since or decreases outward. The model's premature
drop to zero rotation velocity inside 0.1 kpc can be corrected by adding 1.6 x 102M

to the central region, a 14% increase to the mass within 0.1 kpc.

¢) NGC 4450

Photometry from Whitmore and Kirshner (1982) was applied in conjunction
with our CI data. We compared the apparent scale lengths of the major and minor
axis to determine a bulge flattening of ¢ = 0.2 £ 0.2. The inclination was measured
by visual esimates from the Hubble Atlas (Sandage 1961). The bulge scale length
is uncertain (R, ~ 1.7 — 2.4) due to irregularities in the disk surface brightness,
but the best fit to the early turnover in the absorption line rotation data occurs for
a small value of R,.

The emission line data are quite irregular, as shown in Figure 5a, and the
model rotation curve is much higher than the observed one. The high circular
velocity of the model is required to fit the absorption line data, discussed below.
This galaxy is unusual in its strong inner peak and the decline of the gas rotation
curve inside 5 kpc to below 50 km s~*.

In NGC 4450 the absorption line data extend to 1 kpc (see Figure 5b).
The rotation measurements from the two sides agree quite well until 0.5 kpc, then
sharply diverge. The two outermost measurements on one side are 50 km s~1 higher
than the other side, but still well below the circular velocity, which is over 200 km
s~1. By removing the FQ measurement bias, v,5; would be high enough to fit
the outer observed points, but would now be too far above the inner points. This
remarkable asymmetry, if real, can not be attributed to a FQ bias or a model with
a smoothly varying stellar rotation rate. Thus, line-of-sight variations, perhaps due

to obscuration by dust, are a likely cause; the surface brightness crossover point is
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at 1.5 kpc, so the disk contribution is becoming significant. Except for this caveat,
a simple model provides a satisfactory fit to the observations. The observed velocity
dispersion has a near constant value of 140 km s~! within 1 kpc. The bulge mass
was adjusted until the projected bulge rotation profile fit the lower rotation curve
(dashed line). The disk contribution and seeing effects are included to calculate
Vobs (solid line).

The bulge model profiles are illustrated in Figure 5¢c. Even though
Ypeak /00 ~ 0.45, ©/7 is only 0.30 because u significantly decreases outside 0.4 kpec.

d) NGC 4569

The inclination and bulge ellipticity of NGC 4569 were measured from a CCD
picture supplied by G. Bothun. Scale lengths were obtained from fitting major axis
CI data. Figure 6a shows the circular velocity fit to the emission line data. The
gas rotation data lie below the model rotation curve out to 2 kpec.

The absorption line data and fits are presented in Figure 6b and 6c. The
model bulge rotation curve was fit to the observations, and og derived from it.
Projected velocities for the bulge component are shown by dashed lines. The solid
lines are computed by combining the line-of-sight bulge and disk velocities weighted
by luminosity and corrected for the line strength bias of the FQ method.

Unlike the observed profile, the predicted vy, does not contain a strong inner
peak; because the model bulge rotation curve fits the observed profile, any inclusion
of disk light raises the predicted rotation profile above the observed one. To reduce
the model bulge rotation rate below the observed profile seems even less likely.
Evidence for strong absorption is given by asymmetry in the rotation curve and the
CI, which differs by 25% from 0.2 to 0.5 kpc. Visual inspection of the galaxy shows
abundant dust lanes throughout the inner disk. The observed velocity dispersion
profiles are slightly asymmetric, but the predicted profile is roughly consistent with
the measured values. The central rise in velocity dispersion is due to the high
concentration of the bulge; the contribution from rotational broadening is small.

Model profiles for the bulge kinematics are displayed in Figure 6d.
e) NGC 5055

The scale length fits are from the continuum intensity. The surface brightness
crossover point is at 0.29 kpc, however the absorption line data extend to 0.8 kpc,

so we can expect disk light to have a significant effect. First note in Figure 7a
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that the circular velocity fits the emission line data on one side of the galaxy quite
well. The other side indicates that the gas partakes in non-circular motions since
it extends above the model circular rotation curve. Another possibility is that the
model should be much higher and something is anomalous with the low velocity

side.

The major axis absorption line data are shown in Figures 7b and 7c. The
dashed lines show the projected rotation curve and velocity dispersion for just the
bulge component; the solid lines include both bulge and disk contribution. The
fact that the bulge rotation curve fits one side of the observations so well, and the
bulge-disk combination fits the other, suggests significant absorption on the former
side (the CI shows an asymmetry of 25% to 50% from 0.5 to 1 kpc). The irregularity
in the emission line data supports this hypothesis. Fish (1961) has commented that
the “observed isophotes are far from elliptical.” If absorption is prevalent, the flat
side of the observed rotation curve could be an underestimate of the bulge rotation
rate. The ratio vp..x /00 (0.53) underestimates /& (0.67) because o decreases
from 110 km s~* to under 70 km s~! by 1 kpc (0.66Mp). Using a single component
model, Burbidge, Burbidge, and Prendergast (1960) arrived at a mass 20% below

our determination of 51 x 10° M.

The rise in the velocity dispersion on one side of the galaxy is difficult to
model. Since the bulge is very concentrated, it is difficult to create a model with
an outward rising velocity dispersion. The average line-strengths are lower on the
low rotation side, yet they are expected to be higher if we see more of the bulge on

this side. This feature is unexplained at this point.

j) NGC 5879

The continuum intensity for NGC 5879 is too irregular to decompose it into
the two components, so the kinematic modelling performed on the other galaxies
could not be done for it. Visual inspection indicates a very small bulge; this galaxy
is classified as an Sb or Sbc type. The emission line data are presented in Table
2 and Figure 8a; the absorption line data, in Table 3 and Figure 85. The stellar
mean rotation velocity is everywhere the same as the gas. Because the stellar
velocity dispersion is small, the observations probably represent solely disk stars.
We estimate the disk mass to be 20 £ 10 x 10°M .
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V. DISCUSSION

a) Asymmetries

Several general results of the fitting of the models to the data are interesting.
First, we note that the discrepancies between the models and data are often
dominated by differences between the two sides of the galaxies. NGC 5055 is a good
example of this. Figure 7a clearly indicates the ambiguity in deriving the circular
velocity from the emission line rotation curve. Which side (if either) represents the
true circular velocity? A similar problem is encountered in the absorption line data.
‘The same side of the galaxy with higher emission line velocities has an absorption
line rotation curve which continues to rise to abont 120 km s~! outside of 0.1
kpc, while the rotation curve on other side levels off at 50 km s~! at this radius.
Furthermore, the higher rotational velocity seems to be allied with a lower stellar
dispersion.

Several effects might produce such an apparent difference in the kinematic
behavior between the two sides of a galaxy. A real difference in the gravitational
potential between the two sides seems unlikely because that would require a
mass distribution which is not even bilaterally symmetric. Moreover, one might
argue that a local disturbance in the potential is not likely to manifest itself as
a simultaneous change in opposite directions of the rotation and dispersion. A
more plausible explanation involves variable extinction, which could result in our
observing different blends of the kinematic components on the two sides. For
example, if dust were distributed throughout a disk whose thickness is small
compared to the bulge height, it would principally occult the disk light. If such
dust were then asymmetrically distributed in azimuth or existed only on ome side
of the nucleus, it could account for the apparent asymmetric kinematics we see.
Absorbing material is thought to play a role in the observed stellar kinematics
near the center of M31 (McElroy 1983; Teuben, Turner, and Schwarzschild 1984).
If dust accounts for the observed asymmetry, there is an inherent limitation to
our approach, until we can measure stellar velocities far enough in the infrared to

eliminate extinction uncertainties.

b) What supports the gas?

A second interesting feature of virtually all the galaxies is the extent to

which the inner part of the emission line rotation curve falls below the predicted
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circular velocity. This trend has also been noted by Schechter, Whitmore, and
Rubin (private communication). Some of this discrepancy is undoubtedly due to
seeing effects; where the velocity gradient is largest, the seeing and the finite slit
width will convert some of the change in velocity into an apparent increase in the
width of the lines. This effect is confirmed by the emission line widths, which
increase dramatically to widths of 100 - 150 km s~! at the centers of the galaxies.
Outside of 2 — 3 arcseconds, however, the difference between observed gas velocity
and predicted circular velocity persists although seeing effects are negligible. This
is particularly apparent in NGC 3898 and NGC 4569.

The most straightforward interpretation of this discrepancy is that we are
seeing a change in the M /L at small radii. The variations require that M /L drop
by a factor of 2-10 inside of 1 kpc. This is in the opposite sense to what would be
expected from stellar population changes; an older or more metal-rich population,
as might be found closer to the center, would have a higher M/L. One is then
left with the possibility that this drop represents a change in the contribution of
unseen material. A dark halo, with a larger core radius than the spheroidal stellar
population, might indeed produce a drop near the center, but this would imply that
outside of 1 kpc, most of the mass is in this dark halo. Such as model is quite unlike
the two models presented by Bahcall and Schmidt (1982), for instance, in which the

halo does not dominate until a radius of 12 or 13 kpc is reached.

Alternatively, WRF point out that if the velocity ellipsoid in the bulges is
radially elongated, rather than isotropic, then the bulge masses are overestimated.
If this were the case, observed velocity dispersion profiles would be much more
centrally peaked. Only the very interior of NGC 3898 displays a sufficient gradient
to warrant consideration of largely radial orbits (and it does have the largest
discrepancy in the rotation rates). The inner dispersion profile of NGC 4569 would
be steeper than is observed if it contained more radial orbits, but seeing effects have

reduced the observed gradient so this possibility cannot be ruled out.

We believe that mass overestimates are not the source of the discrepancy, and
we consider below several reasons why the gas rotation curve might not represent
the true circular velocity. Note that in NGC 4569 the gas mean velocities are below
the stellar inside 0.5 kpc.

One possible explanation is that these galaxies have bars oriented in the
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plane of the sky. As the gas streams along such a bar, its apparent rotational
velocity will be less than the circular velocity predicted for an axisymmetric mass
distribution. An argument against this is the apparent lack of objects with bars
oriented along the line of sight. With the possible exception of NGC 4450, none of

the galaxies shows a similar peak rotation velocity at small radii.

A second possibility is that the gas is supported by dispersion rather than
by rotation near the center. Again, the line widths support this, although uncertain
seeing corrections make a quantitative calculation of the true emission line widths
impossible. If dispersions of 100 - 150 km s~! do exist in the gas out to one kpe,

such widths must represent bulk motion rather than thermal velocities.

The similarity between the stellar and gas dispersions suggests a scenario in
which the two are related. The idea that the ionized gas in the nuclei of early type
galaxies could result from stellar mass loss, particularly in the form of planetary
nebulae, and could be heated by the hot star contribution to the ambient radiation
field was first explored by Minkowski and Osterbrock (1959). A modernization of
their argnments suggests that such an explanation might indeed be correct. For
the amount of gas being returned to the interstellar medium (ISM) by stars we
adopt Tinsley’s (1980) estimate of 0.02M per solar blue luminosity per 10° years
at the present epoch. The relevant time to consider is 107 years since that is the
time required for a star to travel one kpe at 100 km s~!. That is, we assume that
the gas around a star is absorbed by the disk each time that star passes through
the disk plane. Thus, there are 2 x 10‘4M®of gas for each solar blue luminosity
of stars. This quantity of gas, if ionized, will produce Ha emission amounting to

(4.75 x 10~'2) /N, ergs s~! cm™Z%, where N, is the electron density in cm™3.

For the electron density we adopt 0.1 cm~3. This is somewhat higher than
what might be expected if this amount of gas were uniformly spread throughout
the bulge, but is probably more realistic as we assumed that the large velocity
dispersion indicates that the material is still clumpy. Also, this is somewhat lower
than the density that a planetary nebula will reach in a few times 10* years, the
lifetime of its central star in its hot, luminous phase. The Ha luminosity produced
is then 4.75 x 10~!! ergs s~! cm™2. Each solar blue luminosity, emitted by K0 III
stars, is accompanied by 6.3 x 10~11 ergs s~! cm~2 A~! at A6500, so the equivalent

width produced in Ha is a little less than one angstrom. The observed equivalent
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widths range from one to three angstroms, so we conclude that there is sufficient

gas to produce the observed emission.

The second part of the calculation involves the ionizing flux. For this, we
use the IUE measurements of Oke et al. (1981) and Bertola et al. (1982) of several
bright elliptical galaxies. All of these galaxies show spectral upturns below A2000,
which are presumed to be due to either young OB stars or blue horizontal branch
stars. Typically, the flux seen in the JUE aperture, which corresponds to a region
quite similar to the one which we are considering, is equivalent to about 3000 OB
stars having a temperature of 30,000 K. For an emission volume V, this ionizing
flux corresponds to N2V = 3.52 x 107 pc® em™®, which for our assumed density of

0.1 cm~3 is more than sufficient to produce the observed Ha emission.

Although we have shown that what is known about mass loss and the UV
contribution to the ambient radiation field is consistent with our explanation for
both the origin of the gas and its kinematics, there are two side issues which
complicate the argument. First, the time scale for the gas to fall into the disk
is 107 years. Thus, one might expect there to be ~ 103 times as much mass in the
gas disk as there is currently falling into it. We assume that this gas cools quickly
to a high enough density that the surrounding UV flux can no longer excite it.
The gas may be involved in star formation after it has cooled. This process moves

material to the center of the galaxy and transports angular momentum outwards.

The other issue to consider is why such emission is not seen in elliptical
galaxies. After all, they have all the prerequisite properties we have assumed to
produce the Ha emission: gas from stellar mass loss and ionizing radiation from
the few hot stars. A search of the literature reveals the fact that very few ellipticals
have been observed to the accuracy required to detect such emission. A recent
survey is described by Caldwell (1984) who has searched for [O II] A3727 emission
in the nuclei of elliptical galaxies. This line is expected to be about a factor of
two weaker than Ha in H II regions (Hawley 1978), and the stellar continuum is
somewhat weaker than at A6500, so the equivalent width of [O II] A3727 should be
about the same as Ha. Caldwell finds that at the few angstrom level, almost half
of the ellipticals he has observed show emission. Thus, it might be expected that
observations such as ours of the centers of most ellipticals would discover emission

line gas.
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¢) v/o and Bulge Flattening

There has been some discussion (see WRF and references therein) of which
observed v/o values best reflect the virial 7/¢. We have calculated both the model
/¢ and the projected vpear [00. Although vp.q /oo indicates the rough value of
/@, we find that it varies less than ©/# does. The peak values do not sufficiently
account for the large variations in either u or ¢r. Thus, if the rotation curve has
an inner peak, or the velocity dispersion shows a large gradient, modelling the

observations to compute ¥ and # is necessary.

We compare the 7/# value for each galaxy against the virial value assuming
isotropic random velocities (Binney 1978, 1980), as presented in Figure 9. We find
four of five bulges below the theoretical curve, in general agreement with WRF
who also studied disk galaxies. These results, if significant, suggest that bulges
either (i) do not have isotropic velocity dispersions, a result already established for
large ellipticals (Davies, et al. 1983, and references therein), or (ii) are additionally

flattened by the disk potential. Both effects may be present.

To examine the effect of a disk on each bulge in our sample, we compare our
results with some simple theories of bulge flattening by a disk. Monet, Richstone,
and Schechter (1981, hereafter MRS) computed the flattening of an isotropic, non-
rotating spheroid by a thin disk. Both of their components had scale-free density
distributions, so the ratio of bulge-to-disk mass within any isophote is constant,
which is unlike our models. The isophotal flattening as a function of Mp /My, is
plotted in Figure 10 as a dashed line. Model fits for our sample are shown as filled

circles; three of the galaxies fall near the MRS curve.

An evolutionary approach for estimating disk flattening of bulges has been
taken by Barnes and White (1984). They started with nearly isotropic bulges
and calculated the effect of the slow accumulation of an exponential disk in the
equatorial plane. Since the disk mass growth rate was slow compared to the bulge
dynamical time, the stellar orbits changed adiabatically. Their Fig. 5 demonstrates
that as the disk mass is increased, #/# increases only slightly whereas the ellipticity
increases significantly. Their result for an initially slowly rotating bulge (¢ = 0.25)
is shown as a dotted line in Figure 10. The flattening of the same three bulges
which are flatter than expected based on ©/# are consistent with flattening caused

by the disk. The remaining bulges are very concentrated, so flattening by a disk is
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expected to be small. To what extent a bulge would remain isotropic while a disk
forms within it needs further study.

Thus, we do not refute the conclusion that bulges are isotropic oblate rotators
(Kormendy and Illingworth 1982; Dressler and Sandage 1983), but in some cases the
disk potential has increased the flattening of the bulge, a conclusion also reached by
Jarvis and Freeman (1985). The study by WRF noted that most bulges are below
the isotropic ©/& versus ¢ curve but ignored the effect of the disk potential on the
bulge shape.

' Because our models are not completely self-consistent, we can not rule out
the presence of velocity anisotropies in the bulge. In particular, since the model
profiles show significant variation among themselves, it seems unlikely that they all
can be isotropic (since the mass-models are quite similar). For example, NGC 3898
and 4569 show a large observed velocity dispersion gradient, while NGC 4450 shows
no gradient. The addition of our data to the WRF sample weakens their correlation

of the dispersion gradient with type (see their Fig. 7).
d) General Implications of the Models

The main conclusion to be drawn from the model fitting is that it is possible
to simultaneously fit the surface photometry, rotation curve, and dispersion profile
of the inner regions of spiral galaxies without recourse to unseen material, central
mass concentrations, or even necessarily anisotropic velocity dispersions. We believe
that we have identified limitations in both the observational and theoretical aspects
of this kind of study. The observations must be more accurate and extend to
fainter regions in order to better constrain the models. The presence of unknown
amounts of patchy absorption may produce an inherent limitation in studying the
kinematics of galaxies, since we may be looking to different line-of-sight depths in
different regions.

Another problem is the measurement of the radial velocity and dispersion
from a spectrum which consists of a mixture of two populations with different
properties. Simulations indicate that the single Gaussian Fourier quotient method
is not adequate for this task. Because the region in which the disk and bulge
contribute equally to the light is a crucial one for the models, a better technique
must be developed for analyzing such data. More general and self-consistent models

should be developed; but then more ‘unknowns’ are required, putting additional
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burdens on the observations.

To overcome these difficulties, ‘3-D’ measurements will have to be made: full
coverage of a galaxy on the plane of the sky to recognize local obscuration, plus more
complete line profile analysis correlated with intensity variations. This approach
will both increase the reliability of the data, and supply additional constraints on
the models. Only a large observational effort of this sort is ever likely to solve the
problem of how galaxies are put together.

Paul Schechter kindly supplied a version of his FQ program for our tests.
We thank Alain Porter and Greg Bothun for providing data, Don Schneider for
assistance in fitting isophotes, and an anonymous referee for a careful reading of
the manuscript and many constructive comments. We appreciate useful discussions
with Peter Goldreich, Douglas Richstone, Don Schneider, and John Tonry. This
work was supported in part by NSF grant AST 83-13725.
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TABLE 1

The Observational Material

Galaxy

NGC 2841

NGC 3898

NGC 4450

NGC 4569

NGC 5055

NGC 5879

Axis

Major
Minor
Major

Minor
Major
Major

Major
Major
Major

Minor
Major
Major
Minor
Major
Minor
Major
Major
Minor

Minor
Major
Minor
Major

Major
Minor
Major
Minor

Date

3/09/81
3/09/81
3/10/81

3/09/81
3/09/81
3/10/81

4/27/81
4/27/81
4/27/81

3/09/81
3/09/81
3/10/81
4/28/82
4/28/82
4/28/82
4/28/82
4/05/83
4/05/83

4/29/82
4/29/82
4/29/82
4/29/82

4/28/82
4/28/82
4/28/82
4/28/82

Slit Wavelength

(arcsecs)

1
1
2

N

== RN NN P = NN

NNNN

NN

Region

Mg I b
Mg Ib
H~alpha

Mg Ib
Mg I b
H-alpha

H-alpha
H-alpha
Mg Ib

Mg Ib

Mg Ib
H-alpha
H-alpha
H-alpha

Ca Triplet
Ca Triplet
H-alpha
H-alpha

B-alpha
H-alpha
Ca Triplet
Ca Triplet

H-alpha
H~alpha
Ca Triplet
Ca Triplet

Camera

Blue
Blue
Blue

Blue
Blue
Blue

Blue
Blue
Blue

Blue
Blue
Blue
Blue
Blue
Red
Red
Red
Red

Blue
Blue
Red
Red

Blue
Blue
Red
Red

Exposure
(secs)

1800
1800
5400

1800
1800
9000

4000
7200
3300

1800
1800
10000
2500
9000
2500
9000
1500
1500

2500
9000
2500
9000

8000
2400
8000
2400

Notes to Table 1:

Observations of H~alpha region are emission line measurements.

Observations of Mg I b or Ca triplet region are absorption line
measurements. Blue camera has 0.78 arcseconds per pixel.
Red camera has 0,58 arcseconds per pixel,
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TABLE 2

The Emission Line Rotation Curves

Galactocentric Continuum  Radial Galactocentric Continuum Radial
Distance Intensity Velocity Distance Intensity Velocity
(arcsecs) (km/sec) (arcsecs) (km/sec)

NGC 3898 Major Axis - PA = 287

~75.66 ~-15 -30.42 74
-74.88 -6 =-29.64 74
~74.10 1 -28.86 98
-73.32 2 -28.08 91
-72.54 6 =27.30 89
-71.76 4 1380 =26.52 91
-70.98 7 =25.74 91
-70.20 10 ~-24.96 95
-69.42 18 ~24.18 104
-68.64 14 =23.40 116
-67.86 14 =22.62 125
-67.08 13 -21.84 125
-66,30 15 -21,06 132
-65.52 16 -20.28 146
-64.74 -3 -19.50 154
-63.96 41 ~18.72 161 1372
-63.18 19 =-17.94 176
-62.40 14 ~-17.16 197
-61.62 16 -16.38 207
-60.84 21 , -15.60 223
-60.06 17 -14.82 249 1430
-59.28 15 -14,04 274
-58.50 16 -13.26 300
=-57.72 17 -12.48 328
-56.94 20 -11.70 356
-56.16 22 -10.92 388 1401
-55.38 28 -10.14 423
-54.60 33 -9.36 458
-53.82 32 ~8.58 509
-53.04 23 1342 ~-7.80 563
-52.26 53 -7.02 634 1357
-51.48 38 ~6.24 748
-50.70 37 ~5.46 901
-49.92 37 -4.68 1069 1325
-49.14 42 -3.90 1355 1308
-48.36 40 -3.12 1810 1287
-47 .58 39 =-2.34 2579 1238
-46.80 44 -1.56 3885 1215
-46.02 40 -0.78 5588 1193
-45.24 45 0.00 6582 1185
=44 .46 41 0.78 5781 1174
-43.68 39 1.56 4267 1169
-42.90 41 2,34 2925 1157
-42.12 47 3.12 2078 1135

-41.34 40 3.90 1571 1108



-40,56
~39.78
-39.00
-38.22
=37 .44
~-36.66
-35.88
-35.10
-34.32
-33.54
-32.76
-31.98
-31.20

60
51
46
47
45
54
55
54
57
56
60
66
66

—42-

4.68
5.46
6.24
7.02
7.80
8.58
9.36
10.14
10.92
11.70
12.48
13.26
14,04

1240
1025
870
154
671
610
558
499
453
424
382
347
327

1082
1042
1039
1028
1034
1042
1014
1022
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Galactocentric Continuum  Radial Galactocentric Continuum Radial
Distance Intensity Velocity Distance Intensity Velocity
(arcsecs) (km/sec) (arcsecs) (km/sec)

NGC 4450 Major Axis - PA = 183

-78.78 42 -27.30 114 2043
-78.00 24 =-26.52 113
=77.22 35 =25.74 115
-76.44 39 -24,96 117 2049
=75.66 16 -24,18 121
-74.88 18 ~-23.,.40 122
=-74.10 16 ~22.62 123 2047
=-73.32 16 ~21.84 133
-72.54 19 -21.06 141
-71.76 13 -20.28 153
-70.98 7 -19.50 156
~70.20 13 -18.72 159
~69.42 17 -17.94 170 2048
-68.64 19 ~17.16 177
-67.86 18 -16.38 174
-67.08 18 -15.60 183
-66.30 18 -14.82 202 2054
-65.52 20 ~-14.04 220
-64.74 16 -13.26 234
-63.96 12 -12.48 251 2064
-63.18 25 -11.70 272
-62.40 17 -10.92 287
-61.62 22 -10.14 314 2082
-60.84 20 ~9.36 336
-60.06 20 -8.58 367 2101
-59.28 23 ~-7.80 398 2109
-58.50 23 2068 -7.02 452 2102
=57.72 21 -6.24 510 2108
~-56.94 18 -5.46 576 2112
-56.16 23 -4.68 668 2100
-55.38 25 -3.90 800 2086
-54.60 26 -3.12 995 2076
-53.82 30 2024 -2.34 1282 2028
-53.04 32 -1.56 1768 2005
-52.26 43 -0.78 2593 2024
-51,48 48 0.00 3449 1972
-50.70 44 0.78 3423 1975
-49.92 50 1.56 2621 1980
-49.14 50 2.34 1884 1974
-48 .36 53 2024 3.12 1436 1970
-47 .58 55 3.90 1141 1935
-46 .80 62 4,68 928 1928
-46.02 63 5.46 765 1937
=45.24 68 6.24 635 1936
~44 .46 72 7.02 543 1935
-43.68 76 7.80 480 1932
-42.90 77 2028 8.58 427 1924
-42,12 81 9.36 388 1922

-41.34 80 10.14 357 1940



—40 056
-39.78
-39 000
-38.22
=-37.44
-36.66
-35.10
-34.32
-33.54
-32.76
"3 1 098
-31.20
-30.42
~29.64
~-28.86
-28.08

92
93
91
93
100
103
99
99
105
109
111
110
109
109
110
115
117

2041

2040
2047

2042

A

10.92
11.70
12.48
13.26
14.04
14,82
15.60
16.38
17.16
17 .94
18.72
19.50
20.28
21.06
21.84
22.62
23.40

333
310
279
254
241
217
188
165
141
123
108
105

98
101

98
103
102

1939

1940

1963
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Galactocentric Continuum  Radial Galactocentric Continuum Radial
Distance Intensity Velocity Distance Intensity Velocity
(arcsecs) (km/sec) (arcsecs) (km/sec)

NGC 4569 Major Axis 3/10/81 - PA = 203

-79.56 54 -28.08 226
-78.78 54 ~27.30 232
-78.00 68 -26.52 237
~77.22 55 =~25.74 243 -102
-76.44 44 -24,96 245
-75.66 40 -24.18 260
-74.88 40 -23.40 261
~-74.10 37 -22.62 273
-73.32 57 -21.84 271 -125
-72,54 53 -21.06 280
-71.76 57 -20.28 297
-70.98 54 ~19.50 308
-70.20 48 -18.72 315
-69.42 47 ~-17.94 325 -117
-68.64 66 =58 -17.16 334
-67.86 69 =59 -16.38 354
-67.08 78 -63 -15.60 374
-66.30 82 ~69 -14,82 381
-65.52 88 -70 -14.04 399 -148
-64.74 92 =71 -13.26 411
-63.96 95 ~71 -12.48 428
-63.18 101 -69 -11.70 445
-62.40 111 =71 -10.92 462
-61.62 118 =70 -10,.14 499 -156
-60.84 125 =67 -9.36 540
-60.06 129 -8.58 577
-59.28 117 ~-7.80 606
-58.50 110 =74 -7.02 667 -165
=57.72 124 -65 -6.24 787 -170
-56 .94 137 -61 -5.46 993 -174
-56.16 134 =54 -4.68 1350 -193
-55.38 138 =54 -3.90 1904 -208
-54.60 141 ~53 -3.12 2820 =225
-53.82 142 =42 -2.34 4386 -250
-53.04 149 =35 -1.56 7260 -249
-52.26 155 -78 -0.78 1493 =247
-51.48 149 -78 0.00 5586 ~247
=-50.70 155 =79 0.78 3199 ~-245
-49.92 142 -71 1.56 7039 ~-232
~-49.14 141 -74 2.34 3760 -238
-48.36 138 =74 3.12 2249 -246
-47.58 146 -80 3.90 1420 -249
-46.80 142 -82 4.68 972 =249
-46.02 143 -80 5.46 747 -253
-45.24 144 -81 6.24 643 =252
-44.46 148 -86 7.02 574
-43.68 166 -81 7.80 526
-42,90 190 -76 8.58 495

-42.12 223 =71 9.36 468



=-41.34
-40.56
-39.78
-39.00
-38.22
-37.44
-36.66
~-35.88
-35.10
-34.32
=-33.54
-32.76
-31.98
-31.20
-30 042
-29.64
-28.86

254
250
244
227
209
193
192
204
212
211
209
217
215
215
212
215
217

-69
-67
-67
=74
-79
-82
-81
=75
-64
=59
=50
=75
-88
-83

—46—

10.14
10.92
11,70
12,48
13.26
14.04
14.82
15.60
16.38
17.16
17.94
18.72
19.50
20.28
21.06
21.84
22.62

454
437
417
408
395
389
402
433
400
347
312
298
288
282
274
276
283
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Galactocentric Continuum Radial Galactocentric Continuum Radial
Distance Intensity Velocity Distance Intensity Velocity
(arcsecs) (km/sec) (arcsecs) (km/sec)

NGC 4569 Major Axis 4/05/83 - PA = 203

=57 .42 65 -67 0.00 1763 -252
-56.84 69 ~58 0.58 1437 =265
-56,26 66 =58 1.16 920 =256
-55.68 44 =65 1.74 575 =245
-55,.10 32 -66 2,32 375 -261
~-54.52 26 -63 2,90 257 =259
-53.94 22 -63 3.48 177 -267
-53.36 13 4.06 122 =274
-52,78 16 =70 4,64 92 ~-281
-52,20 3 5.22 -9 ~-287
-51.62 18 5.80 81
-51,04 12 =74 6.38 62 -282
-50.46 10 6.96 65
-49.88 14 7.54 56
-49.30 8 -78 8.12 54 -285
-48.72 7 8,70 53
-48.14 2 9.28 53
=47 .56 4 -81 9.86 48 =302
-46,98 3 10.44 49
-46 .40 1 11.02 45
-45.82 2 -94 11.60 40 =297
=45.24 5 12,18 44
-44,66 6 12.76 48
-44,08 11 -91 13.34 44 -299
-43.50 9 13.92 41
-42.92 10 14.50 49
-42,34 6 -94 15,08 53
-41.76 13 15.66 51
-41.18 12 16.24 41
-40.60 16 =96 16.82 36
-40.,02 16 17.40 38
-39.44 19 17.98 32
-38.86 18 =97 18.56 36
-38.28 16 19.14 29
-37.70 18 19.72 31
-37.12 19 =93 20,30 32
-36.54 22 20.88 32
-35.96 17 21.46 26
-35.38 14 -95 22.04 30
-34.80 17 22,62 29
=-34.22 24 23.20 29
-33.64 18 -98 23.78 25
-33.06 22 24,36 22
-32.48 12 24,94 29
-31.90 18 25,52 26
-31.32 20 26.10 23
-30.74 22 -102 26.68 26
-30.16 26 27.26 24
-29.58 22 27.84 25



-29.00
-28.42
~27 .84
-27.26
~-26.68
_26 '10
-25.52
-24.94
-24.36
-23.20
-22.,62
-22.04
-21.46
-20.88
-20 030
-19.72
-19.14
-18.56
-17.98
-17.40
-16.82
-16.24
-15.66
-15.08
-14.50
-13.92
"'13 034
-12,76
-12,18
-11,.60
_11 002
-10044
-9.86
-9.28
"8 070
—8012
-7.54
"6 .96
-6.38
-5.80
-5.22
~-4.64
-4.06
-3.48
-2.90
-2.32
~-1.74
-1.16
-0.58

24

32
31
29
27
29
32
25
28
29
29
24
35
36
30
36
32
31
38
32
40
39
43
42
45
42
43
42
47
43
47
53
52
60
56
62
68
75
85
100
123
159
209
267
342
92
626
1055
1548

-102

-113

-107

-195

-246
~248
-248
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28.42
29.00
29.58
30.16
30.74
31.32
31.90
32.48
33.06
33.64
34.22
34.80
35.38
35.96
36.54
37.12
37.70
38.28
38.86
39.44
40.02
40.60
41.18
41.76
42.34
42.92
43.50
44.08
44,66
45.24
45.82
46 .40
46,98
47.56
48.14
48.72
49.30
49 .88
50.46
51.04
51.62
52.20
52.78
53.36
53.94
54.52
55.10
55.68
56.26



~49-

Galactocentric Continuum  Radial Galactocentric Continuum  Radial
Distance Intensity Velocity Distance Intensity Velocity
(arcsecs) (km/sec) (arcsecs) (km/sec)

NGC 5055 Major Axis - PA = 105

=-30.42 -49 24,18 119 646
-29.64 176 347 24.96 117
-28.86 118 340 25.74 113
-28.08 118 345 26,52 106 652
-27.30 126 343 27.30 106
-26.52 135 356 28.08 101
~25.74 143 28.86 106 658
-24,96 146 336 29.64 107
-24.18 156 30.42 107
-23,40 158 31.20 92 657
-22,62 161 338 31.98 95
-21.84 161 341 32.76 101
-21.06 155 345 33.54 108 662
-20.28 158 343 34.32 112
-19.50 171 346 35.10 116
-18.72 173 355 35.88 118 656
-17.94 180 351 36.66 118
-17.16 173 354 37.44 106
-16.38 182 360 38.22 96 640
-15.60 190 371 39.00 9%
-14.82 191 371 39.78 87
-14.04 197 40.56 84 656
-13.26 208 41,34 86
-12.48 220 389 42.12 87
-11.70 231 42.90 87 654
~10.92 238 43.68 82
-10.14 251 393 44 .46 87
-9.36 - 255 45.24 83 650
-8.58 264 46.02 86
-7.80 259 403 46 .80 76
-7.02 287 47 .58 77 666
-6.24 327 48.36 84
~5.46 387 403 49.14 84
-4.68 457 49.92 82 658
-3.90 567 419 50.70 73
-3.12 782 414 51.48 66
-2.34 1219 455 52.26 63 651
-1.56 1929 478 53.04 62
-0.78 2449 499 53.82 56
0.00 2589 519 54.60 53 663
0.78 2307 546 55.38 54
1.56 1461 576 56.16 53
2.34 930 584 56.94 52 664
3.12 695 597 57.72 51
3.90 542 609 58.50 51
4.68 459 604 59.28 53 667
5.46 397 623 60.06 52
6.24 351 630 60.84 53

7.02 325 630 61.62 51 684



7.80
8.58

9.36
10.14
10.92
11.70
12.48
13.26
14.04
14,82
15.60
16.38
17.16
17 .94
18.72
19.50
20.28
21.06
21.84
22.62
23.40

289
273
247
225
210
197
143
146
142
124
126
113
114
120
123
125
128
130
126
129
123

636
627
654

647

624

653

630

640

~50=-

62.40
63.18
63.96
64.74
65.52
66.30
67.08
67.86
68.64
69.42
70.20
70.98
71.76
72.54
73.32
74.10
74.88
75.66
76 .44
77.22

51
51
47
48
47
47
50
50
48
47
49
49
49
57
72
83
106
125
138
147

671

665

663

660

666
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Galactocentric Continuum  Radial Galactocentric Continuum Radial
Distance Intensity Velocity Distance Intensity Velocity
(arcsecs) (km/sec) (arcsecs) (km/sec)

NGC 5879 Major Axis = PA 174

~-26.52 3 24.96 35 638
=-25.74 4 932 25.74 31 620
-24.96 1 26,52 32 636
-24.18 4 27.30 31 656
=-23.40 5 933 28.08 30 659
-22,62 14 28.86 31 668
-21.84 20 905 29.64 27
-21.06 25 893 30.42 25 672
-20.28 33 892 31.20 22
-19.50 37 892 31.98 22
-18.72 43 886 32,76 21 669
-17.94 48 892 33,54 21
-17.16 49 893 34.32 20
-16.38 53 895 35.10 16 673
-15.60 54 885 35.88 16
-14.82 58 881 36.66 16
-14.04 58 883 37 .44 17 678
-13.26 59 887 38.22 17
-12.,48 67 884 39.00 19
-11.70 70 881 39.78 17 660
-10,92 77 885 40,56 16
-10.14 85 873 41,34 19
-9.36 88 869 42.12 15 662
-8.58 89 874 42,90 14
-7.80 9% 865 43,68 14
-7.02 97 858 44,46 12 659
-6.24 100 837 45.24 15
-5.46 108 831 46.02 13
-4.68 111 828 46,80 13 650
-3.90 121 829 47 .58 14
-3.12 136 827 48,36 13
-2,34 171 806 49.14 16
-1.56 212 791 49,92 13
-0,78 251 772 50.70 13
0.00 274 764 51.48 10
0.78 248 758 52.26 11
1.56 225 729 53.04 10
2.34 195 739 53.82 8
3.12 172 726 54.60 11
3.90 146 717 55.38 9
4.68 122 706 56.16 9
5.46 108 698 56.94 7
6.24 96 698 57.72 8
7.02 88 704 58.50 7
7.80 80 708 59.28 7
8.58 80 699 60.06 7
9.36 75 693 60.84 8
10.14 73 691 61.62 10
10.92 69 680 62,40 10



11.70
12.48
13.26
14.04
14.82
15.60
16.38
17.16
17.94
18.72
19.50
20.28
21.06
21.84
22.62
23.40
24,18

65
53
35
29
29
32
32
32
34
37
36
39
36
37
36
34
33

672
665
656
658
654
660
657
656
651
638
658
652
652
658
649
646
655
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63.18
63.96
64.74
65.52
66.30
67.08
67.86
68.64
69.42
70.20
70.98
71.76
72.54
73.32
74.10
74.88
75.66

13
11
11
12
12
10
10
11
10
11
12
12
12
13
15
17
22
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TABLE 3

The Absorption Line Velocity Data

Galactocentric Mean Velocity  Galactocentric Mean Velocity
Distance Velocity Dispersion Distance Velocity Dispersion
(arcsecs) (km/sec) (km/sec) (arcsecs) (km/sec) (km/sec)

NGC 2841 Major Axis

12,15 101 194 -0.72 -28 244
7.86 81 218 -1.50 -59 223
5.96 103 221 -2,.28 ~74 236
4.74 103 204 -3.06 -91 211
3.96 115 237 -3.84 -99 224
3.18 89 229 -4.62 -116 221
2.40 84 221 =-5.40 -89 232
1.62 69 245 -6.57 -97 235
0.84 32 248 -8.52 -92 197
0.06 2 240 -12,03 =127 213
Galactocentric Mean Velocity Galactocentric Mean Velocity
Distance Velocity Dispersion Distance Velocity Dispersion
(arcsecs) (km/sec) (km/sec) (arcsecs) (km/sec) (km/sec)

NGC 2841 Minor Axis

7.41 -18 226 -0.78 43 247
5.07 15 300 -1.56 45 252
3.90 16 270 -2.34 37 246
3.12 25 272 -3.12 -12 209
2,34 3 220 -3.90 97 230
1.56 12 230 -4.68 10 264
0.78 16 257 -5.85 15 230
0.00 29 241 -7.80 33 249
Galactocentric Mean Velocity Galactocentric Mean Velocity
Distance Velocity Dispersion Distance Velocity Dispersion
(arcsecs) (km/sec) (km/sec) (arcsecs) (km/sec) (km/sec)

NGC 3898 Major Axis

6.68 64 104 -1.12 =36 202
3.95 49 146 -1.90 =53 211
2.78 56 163 -2.68 -48 186
2.00 66 192 -3.46 -58 162
1,22 34 207 =4,24 -95 228
0.44 14 220 =5.41 -87 182

-0.34 -7 215 -7.75 -86 155
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Galactocentric Mean Velocity Galactocentric Mean Velocity
Distance Velocity Dispersion Distance Velocity Dispersion
(arcsecs) (km/sec) (km/sec) (arcsecs) (km/sec) (km/sec)

NGC 3898 Minor Axis

3.51 -106 185 -1.56 -48 217

2.34 -70 208 -2.34 ~50 217

1.56 -61 243 -3,12 -65 226

0.78 -64 239 -3.90 -15 319

0.00 -62 248 =-5.07 ~-64 173
-0.78 ~55 247

Galactocentric Mean Velocity Galactocentric Mean Velocity

Distance Velocity Dispersion Distance Velocity Dispersion
(arcsecs) (km/sec) (km/sec) (arcsecs) (km/sec) (km/sec)

NGC 4450 Major Axis

11.47 11 14/ -0.62 =12 142
7.96 24 123 -1.40 -17 147
6.01 31 152 -2.18 =42 148
4.84 45 138 -2.96 =54 147
4,06 43 136 -3.74 =51 157
3.28 53 125 -4.52 =49 150
2,50 45 132 ~5.69 -36 142
1,72 33 140 -7.64 -71 74
0.94 16 139 -10.76 =79 177
0.16 ~3 139
Galactocentric Mean Velocity Galactocentric Mean Velocity
Distance Velocity Dispersion Distance Velocity Dispersion
(arcsecs) (km/sec)  (km/sec) (arcsecs) (km/sec)  (km/sec)

NGC 4569 Major Axis 3/09/81

3.12 70 110 -0.78 -38 155
2.34 56 148 ~1.56 =59 138
1.56 59 145 -2,34 -88 108
0.78 35 154 -3.12 -86 102
0.00 0 157 -4.29 -107 109

NGC 4569 Major Axis 4/28/82

-10.15 =31 93 0.58 26 135
-8.12 =42 114 1.16 46 135
-6.67 -48 125 1.74 68 121
-5.51 =54 125 2.32 84 110
-4.64 -84 116 2.90 92 100
-4.06 -88 114 3.48 99 98

-3.48 -101 109 4,06 99 95
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-2.90 -105 100 4,64 86 103
-2.32 =92 111 5.22 84 103
-1.74 -78 115 6.09 76 97
-1.16 =51 126 7.25 72 99
-0.58 -23 136 8.70 54 87
0.00 0 136 10,73 52 82
Galactocentric Mean Velocity Galactocentric Mean Velocity
Distance Velocity Dispersion Distance Velocity Dispersion
(arcsecs) (km/sec) (km/sec) (arcsecs) (km/sec) (km/sec)

NGC 5055 Major Axis

20.59 49 134 -0,58 -6 116
18.27 59 102 -1.16 -16 113
15.95 26 122 -1.74 =27 114
12.47 : 41 115 -2,32 -43 106
11.31 50 112 -2.90 -68 104
10.15 53 111 -3.48 =57 100

8.99 50 116 ~4.,06 =64 103

8.12 56 97 ~4.64 -65 102

7.54 50 108 -5.22 -64 99

6.96 50 100 -5.80 -67 9%

6.38 45 109 -6.38 -69 88

5,80 50 98 ~6.96 -77 98

5.22 53 98 -7.83 -72 90

4,64 49 102 -8.99 -88 94

4,06 50 101 ~10.15 -85 87

3.48 45 104 -11,31 -96 97

2,90 43 95 -12,47 -98 90

2,32 36 106 -13.63 -103 92

1.74 23 110 -14.79 -99 82

1.16 17 116 -15.95 -104 66

0.58 7 111 -17.11 -104 65

0.00 0 118 -18.56 -119 87

Galactocentric Mean Velocity Galactocentric Mean Velocity

Distance Velocity Dispersion Distance Velocity Dispersion
(arcsecs) (km/sec) (km/sec) (arcsecs) (km/sec) (km/sec)

NGC 5055 Minor Axis

5.51 -7 119 -0.58 -4 120
3.19 3 117 -1.16 6 113
2.32 4 117 -1.74 -8 110
1.74 3 114 -2.61 3 119
1.16 2 120 -4.06 2 120
0.58 4 117 -6.38 =11 114
0.00 3 120 -10.73 -3 111
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Galactocentric Mean Velocity  Galactocentric Mean Velocity
Distance Velocity Dispersion Distance Velocity Dispersion
(arcsecs) (km/sec)  (km/sec) (arcsecs) (km/sec) (km/sec)

NGC 5879 Major Axis

-15.66 ~111 38 0.58 11 72
-12.47 ~106 40 1.16 20 73
-10.44 -98 51 1,74 9 83
-8.70 ~84 48 2.32 26 78
-6.96 =75 54 2.90 37 72
-5.51 =56 57 3.77 38 74
-4.35 =42 61 4,93 49 62
-3.19 -36 65 6.09 74 33
-2.32 =29 68 7.25 68 63
-1.74 -20 78 8.70 83 53
-1.16 -19 79 10.44 95 60
-0.58 -9 73 12,18 99 63

0.00 0 71 14,21 105 59
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TABLE 4
MODEL PARAMETERS
NGC type D i € R, Mg Mp Rp pB=upp vfo0 v/6
(Mpc) (°)  (kpe) (10°M,,) (10°M,) (kpc) (kpe)
2841 Sb 15.7 25 .37 0.94 63.0 146 5.4 1.5 0.64 0.40
3898 Sab 15.8 23 .33 1.06 44.0 58 4.8 3.5 0.50 0.60
4450 Sab 17.2 30 .20 1.70 35.0 13 45 14 0.45 0.30
~ 4569 Sb 17.2 25 .17 0.35 6.8 81 3.6 0.4 0.71 0.70

5055 Sbc 8.2 35 .28 0.40 5.5 45 2.7 0.3 0.47 0.67
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FIGURE CAPTIONS

FIG. 1.— (a) Comparison of KI data for NGC 4565 to spheroidal
rotation. Symbols are the rotation rate measured with the slit
perpendicular to major axis at a distance R from the center.
Dashed lines are model values from equation (11). (b) same as
(@) for NGC 7814. Error bars are not included for R = 40” points

to avoid confusion.

FIG. 2.— Effect of line strength and velocity dispersion on measure-
ments via Fourier quotient method. The effective fraction of
bulge light indicates what fraction of light the bulge would have
to contribute to achieve the same measured velocity if the FQ
method introduced no bias. The line strength v of the bulge is
1, and the disk either 0.5 or 1, as labeled. The solid lines are for
op/op = 4./0.7, and the dashed line for o5/ep = 0.7/2.5.

FIG. 3ab.— Results for NGC 2841, (2) Symbols represent the absorption
line mean rotation and velocity dispersion along the major axis.
Plus signs and open circles for one side, asterisks and filled circles
for the other side. Dashed lines are model projected values for
just the bulge, solid lines include disk light and seeing. (b) same

as (a) for the minor axis.

FIG. 3¢c.— Model equatorial velocity profiles for NGC 2841. The total
(bulge+disk) circular velocity is U,, the bulge mean rotation is

u, and its velocity dispersion is 0.

FIG. 4ab.— Results for NGC 3898. (a) Different symbols distinguish
the two sides of the major axis emission line rotation curve; solid
line is the inclined circular rotation rate. (4) Symbols show major
axis absorption line data; both lines represent model values for

bulge light only.

FIG. 4c.— Model equatorial velocity profiles for NGC 3898; notation is

the same as Fig. 3c.
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5ab.— Results for NGC 4450. (¢) Emission line data; notation
same as Fig. 4a. (b) Symbols show absorption line data for two
sides of the major axis. The dashed line represents the projected
rotation curve for only the bulge; the solid line includes both

bulge and disk plus seeing.
5¢.— Model velocity profile for NGC 4450, see Fig. 3c.

6a.— Symbols represent major axis emission line rotation curve
measured in two different years. Solid line is model circular

rotation curve.

6bc.— Major axis absorption line data, different symbols represent
the two sides of the galaxy; plus signs and open circles from one
side, asterisks and filled circles the other. Dashed lines show
bulge only; solid lines include disk and seeing. () mean rotation,

(¢) velocity dispersion.
6d.— Model velocity profiles for NGC 4569; see Fig. 3c.

7a.— Major axis emission line rotation curve for NGC 5055,

notation same as Fig. 6a.

Tbe.— Absorption line data, notation is the same as Fig. 6bc.

7d.— Model profiles, see Fig. 3c.

8a.— NGC 5879 emission line rotation curve, different symbols

distinguish the two sides of the galaxy.

8b.— NGC 5879 absorption line data; (+,*) show mean rotation
and (o,e) velocity dispersion for each side of the galaxy, respec-

tively.
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FIG. 9.— The ratio #/# is calculated from the models for each of
the galaxies, and measures the relative dynamical importance of
rotation. The ellipticity ¢ is based on observations. The dashed
line is from Binney (1980), and represents an oblate-spheroidal
rotator with isotropic velocity dispersion.

FIG. 10.— Spheroidal bulge flattening caused by a disk as a function
of the bulge-to-total mass ratio. The dashed line is taken from
Monet, Richstone, and Schechter (1981); the dotted line is the
result of adding a disk to an initially slowing rotation bulge
(Barnes and White 1984).
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Chapter Four
OBSERVABLE PROPERTIES OF OBLATE SPHEROIDS
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I. INTRODUCTION

Most recent papers on galaxy dynamics have concentrated on simple
parameter analyses such as §/2 versus ellipticity or luminosity versus o”. Although
these studies are important, no one claims that one or two parameters give a
definitive kinematic description of a galaxy or yield sufficient information about
‘its formation. Details which are not resolved are the form of anisotropies and
variations in mass-to-light ratios. A better understanding of these issues will place

“additional kinematic restrictions on formation theories.

For example, most formation scenerios predict that galaxian exteriors are
dominated by radial orbits. Numerical simulations by van Albada {1982) and
McGlynn (1984) yield roughly isotropic residual motions inside one (deVau-
couleurs’) effective radius, but outside this point the velocity ellipsoid becomes
radial and decreases in amplitude. Despite limited spatial coverage (< 1R,), existing
velocity data for ellipticals suggest that either tangential velocity dispersions or
M/ L ratios increase with radius (Illingworth 1981).

Naturally, extra work is required to gain more information. First, much more
observational data are required. Second, more complete models that distinguish
among various configurations or formation paths must be constructed. Third,
enlarged statistical techniques must be used to test whether the data are consistent
with one or another model. Extensive observations seem slow in coming; perhaps

they have not been properly urged on by theoretical work.

At this time, a definitive method of analysis of observational data has been
enumerated only for spherically symmetric systems. Assuming a constant but
unknown M/L, Binney and Mamon (1982) and Tonry (1983) have shown that
surface brightness and line-of-sight velocity dispersion measurements can formally
be inverted to yield a unique anisotropy parameter 3(r) = 1 — 07 /262 (although it
is not guaranteed to be physical). Newton and Binney (1984) developed an iterative
procedure to construct a distribution function consistent with these kinematic
functions. Richstone and Tremaine (1984, 1985) presented a method to incorporate
observational constraints in constructing models via linear programming techniques.

So far these techniques have been applied only to M87.
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Non-spherical axisymmetric systems have an additional free function which
is the orientation of the velocity ellipsoid in the R — 2 plane. Another complication
is that the velocities are functions of two variables rather than one. Since formal
inversion of the observations is not possible without assuming additional constraints,
the goal of this paper is to develop diagnostics which will yield at least a qualitative
understanding of the kinematic configurations of oblate systems. As a working
hypothesis, I assume that ellipticals and bulges are oblate spheroids; it is not known
| if or how many of these systems are triaxial.

The construction of self-consistent oblate models and their projection onto
the plane of the sky are described in §II. Various kinematic configurations are
explored in §III, and their observable properties are discussed in §IIl¢. Comparison
of the models with observational data is presented in §IV. The results are
summarized in §V. The asymptotic power law density profile for systems composed

purely of radial orbits is included in the Appendix.
II. MODELS

The models are single component oblate spheroids with constant eccentricity
and mass-to-light ratio M/L. Because the models are axisymmetric, I adopt
a cylindrical-polar system (R, z,¢) of spatial coordinates in the galaxy. The

spheroidal coordinate € is constant along equidensity surfaces, and specified by
62 =R2 +f222, (1)

where f is the flattening parameter, related to the ellipticity ¢ by f = (1 —¢)~L.
The Cartesian system aligned with the projected principle axes of the galaxy in the
plane of the sky is denoted (p, g). The variable s is distance along the line-of-sight,
where 8 = 0 is the plane passing through the galaxy center. The inclination of the

galaxy is #; for edge-on { = 0. These two sets of coordinates are related by:
R? = p? + [scosi — gsini]?, (2)
z = ssini+gcosi, (3)

and,
£ =& + 861 + 8% 6, (4)
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where,
go=p" + ¢ [sin® i + f2cos? ],
£1=2qsinicosi[f2—1], (5)
& = f2sin®i + cos?i.
For an observation point (p, ¢), minimum ¢ occurs at

§2=€0——€f—=172+ ¢
" 46, sin® i + f~2cos? i

(6)

Observations of ellipticals (Kormendy 1977) and bulges of disk systems
(Burstein 1979; Boroson 1981) have shown that their surface brightness profiles
are acceptably represented by a deVaucouleurs’ law (1948), which in magnitudes is

W™ (p) = Wl + 8.325](p/R)V* ~ 1], (1)

where R, is the effective radius and p!* is the surface brightness at R,, measured
along the major axis. The density distribution is specified by a deprojected
rl/4 law taken from approximate formulae derived by Young (1976) and Tonry
(1984b). Young presented a dimensionless density function p* which was calculated
for a spherically symmetric distribution; this function is adopted as the density
distribution applied to an oblate configuration. The density on a spheroidal surface
£is

p(§) = fMTR;?p*(¢/R.), (8)
where M7 is the total mass. The form of p* is illustrated in Figure 1.

External galaxies are, of course, only seen in the plane of the sky, so we must
calculate how these models appear in projection in order to compare them with
observations. A subscript s will be used on some variables to denote integration
along s.

The surface brightness is

udmﬂ=/mpd0ﬁ, 0)
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where py is the luminosity density p(€)Lr /Mr, and Lt is the total luminosity. For

the case of an oblate spheroid, equation (9) becomes

2 [% pu(§)§dE
1 q) = . 10
I‘L(P q) ;/2 ‘/em [52—631]1/2 ( )

Because pr is a function only of &,,(p,g), the isophotes are elliptical (see
equation [6}).
The projected mean rotation is computed from the intrinsic mean rotation

u by

-1 [ cos i
wlog) =it [ or (R 2F ds (11)

-00

I define an apparent angular velocity by the quantity

Qu(p,q) = "—’(—’:—Q). (12)

The expression on the right-hand side can be put into a more revealing form by the

following steps. From equation (4) and (6), we find that

g= S (-G (13)

T 26 ;/2

The value of s at £, is 8, = —&;/2€,. For a given (p, q), each £ > £, corresponds
to two points within the galaxy which I denote by r4 and r— for s > 8 and s < 8y,

respectively. Thus,

cosi [® §d€
Qs(p,q) = -21—/;;;/&'" pL[0(ry) + Q('—)]w» (14)

where (1 is the intrinsic mean angular velocity u/R. If 1 is constant along spheroidal

surfaces (a function of £ only), then Q, is constant along isophotes (a function only
of &,).
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The projected velocity dispersion is

o p?cos?i

7 — B, sin? i] ds, (15)

o%(p,q) = uZ‘/

-0

pLOE [1 -8

where 8 and §, are anisotropy parameters, 8§ =1 — 03/0%, and 8. =1 - 02 /0%

1. KINEMATIC CONFIGURATIONS
The gravitational potential ® of the system is computed from the density
distribution through Poisson’s equation. The kinematic structure is determined by

simultaneous solution of the hydrostatic equations:

dpo?  O(oVRVIR) _ _ 9%

P RoR - "oz (16)
2nd 9% R [3(5577)  dpo?
2, 2_pd%® 5  R[0(pWRYz) , dpod

u +a¢_RaR+a'R+p[ 32 + 3R]’ (17)

where u is the mean rotation rate. Because the models are axisymmetric, one of
the principal axes of the velocity dispersion temsor points in the ¢-direction. The
remaining two axes lie in the R — z plane; the orientation of the the larger moment
relative to the positive R-axis is termed the tilt of the velocity ellipsoid (a radial
vector in the positive R — z quadrant has positive tilt). Equations (17) and (16)
are coupled by the off-diagonal term in the dispersion tensor. Because of symmetry
requirements, Vg v, is zero along the coordinate axes.

The results of the calculations will be discussed in three stages. First,
solutions in which the velocity ellipsoid is restricted to be aligned with the
coordinate axes (termed azially aligned) are presented. Next, solutions with radially
aligned ellipsoids will be discussed. In §Illc, distinguishing observable properties of
the various configurations are illustrated.

a) Azially Aligned Velocity Ellipsoids

Assuming that the principal axes of the velocity dispersion tensor are aligned

with the coordinate axes, equations (16) and (17) decouple and may be solved
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independently. In particular, &, is uniquely constrained by the mass model, leaving
OR, 0y, and u as inter-related functions to satisfy equation (17). Besides their
computational convenience, systems with axially aligned ellipsoids are investigated
because there is evidence that some systems have may this form (Ratnatunga and
Freeman 1985; Richstone 1984). As a starting point for each mass model, isotropic
configurations (¢g = o, = ¢,) are calculated; the magnitude of the dispersion
is computed from equation (16), and the rotation curve via equation (17). The
_isotropic configurations are labeled model 1, and illustrated in Figures 2-4 for
(a) ¢ = 0.1 and (b) ¢ = 0.5. For isotropic distributions, contours of constant
velocity dispersion are prolate (see Figure 2) and the constant angular velocity

contours are oblate but rounder than the equidensity surfaces (see Figure 4).

Three configurations with no mean rotation are computed; this series is called
model 2. These configurations result from the following restrictions: (2A) leaving
ORrR = 0., and removing all rotational streaming from model 1 by increasing o4;
(2B) maintaining og = 0, and raising their value until u = 0; (2C) minimizing
oy and attaining as much support as possible from the radial dispersion. The

motivation for each of these choices will be discussed presently.

The model 2 series, which all have u = 0, are investigated because some
bulges and, in general, large ellipticals have dynamically insignificant rotation. Since
0, is determined by equation (16), only o and 64 may be varied in constructing
different configurations. One obvious choice is to remove all net rotation from
model 1 by reflecting half of the orbits. This change leaves og=0, but increases

04; the results for 54 are shown in Figure 5.

Another simple configuration maintains #5=¢g, but increases their value at
each point relative to model 1 until « = 0. Because of the pressure gradient term,
the effective coefficient for og? in equation (17) is typically 2-4, while the o42-
term has a coefficient of unity; thus the radial dispersion is much more “effective”
than the tangential dispersion in generating support. Complete removal of all net
rotation from model 1 increases og (and oy) by only 65% in model 2B compared
to an increase of 277% for o, in model 2A. Figure 6 displays contours of constant

or for model 2B.
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Finally, I consider the case where o is maximized. Because symmetry
requires 65=0x along the minor axis (except at z = 0), o, cannot be set to
zero. Instead, o4 is reduced smoothly and rapidly as R increases. Figures 7 and 8
illustrate og and o4 for model 2C. Anisotropy between o and o, is not greater

than 2:1 for ¢ = 0.5 and is less for smaller ¢.

b) Radially Aligned Velocity Ellipsosds

_ Before the recent evidence sighted above, the common expectation was that
velocity ellipsoids were radially aligned. In a spherically symmetric system this is
clearly the case. In general, the ellipsoid tilt is a free function, but the largest
contrast with the previous section should be obtained for radially aligned ellipsoids,

so some configurations of this type have been computed.

Models 4 and 5 have the major axis of the velocity ellipsoid pointed towards
the center of the system, and a maximum axial ratio of 2:1. In model 4 the axial
ratio is unity in the interior and smoothly approaches 2:1 at large radius, whereas
model 5 has a 2:1 ratio everywhere. Since the elongation and tilt of the ellipsoid
are specified, the amplitude is determined by iteratively solving equation (16) until
a self-consistent solution is found. The tangential second moment (u? + 042) is
determined from equation (17); there is no relation between u and 5. Models 4A
and S5A set o4 equal to the smaller of o and ¢, and contain some net rotation;
Models 4B and 5B set u = 0 and maximize o4. Results from model 5A are displayed
in Figures 9 and 10. More elongated ellipsoids have not been calculated for two
reasons. First, deVaucouleurs’ law can not be reproduced by a system of entirely
radial orbits (Richstone and Tremaine 1984; Appendix). Second, systems composed
of purely radial orbits are subject to both radial and transverse instabilities which
produce triaxial systems (Barnes, Goodman, and Hut 1985).

Since the vertical velocity dispersion is not uniquely determined, og and
o, compete to support the specified shape. In particular, increased support at
R > z can come from og rather than o,. However, I don’t expect the total velocity
dispersion to vary greatly because the virial theorem requires that the total kinetic
energy in the system depend only on the total gravitational potential energy. Thus,

in a case where the rotation is energetically insignificant, the total kinetic energy
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of random motions is the same no matter which component is maximized.

¢} Observable Properties

Although the profiles shown in the subsequent graphs do not include effects
from atmospheric seeing and instrument aperture, these effects must be kept in
mind when considering the observable differences between various configurations.
Observationally studied bulges typically have R, in the range 10-20 arcseconds,
‘whereas R, for ellipticals is 20-70 arcseconds; regions inside ~ 0.1R, are typically
blurred by seeing.

Figures 11-15 display one quadrant of each model projected edge-on (i = 0)
onto the plane of the sky for (a)e = 0.1 and (b)e = 0.5. Dotted lines represent
isophotes, and solid lines show contours of constant projected velocity dispersion. In
face-on projections these contours would be circular since the models are rotationally
symmetric.

The isotropic configuration is shown in Figure 11. Velocity dispersion
contours are slightly prolate; in the ¢ = 0.5 case the contours are elongated in
the z-direction by 17%.

In some cases the different anisotropic configurations have quite distinct
observable properties. Because o4 contributes much more strongly to the projected
dispersion along the major axis than o does, the models with &4 maximized will
show much larger dispersions than those with og maximized (when i ~ 0). Models
with maximum o4 tend to display constant o, contours that are more flattened than
the isophotes, whereas radially maximized models show rounder or even prolate o
contours.

Rather than requiring data from the entire plane of the sky around a galaxy, a
more observationally feasible program is to acquire data along the major and minor
axis. Figure 16 presents various projected velocity dispersion profiles along the
major axis for ¢ = 0.5 models of the same mass. Although the differences between
model 2A and 2C relative to the isotropic configuration are quite apparent, model 5
is not easily distinguished from model 2C if the mass of either model is adjusted to
move one profile on top of the other. At high inclinations the different configurations

appear very similar to each other, as illustrated in Figure 16b. Because o, is the
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same in models 1 and 2, their face-on views are the same. Model 5 is distinguished

only by its strong central rise in 0.

High spatial resolution velocity measurements may be able to determine the
presence of anisotropy in the central regions. An isotropic system which follows
a deVaucouleurs’ density law has a central depression in its velocity dispersion
which should be observable (Binney 1980). Systems with radially oriented velocity
ellipsoids (e.g., model 5) do not have a central depression in the dispersion.
'Figure 17 compares the projected velocity dispersion for the isotropic case and
models 4A and 5A. Even configurations with an isotropic core but radially biased
exteriors (e.g., model 4) may not have an observable central depression. An increase
in M/L at small radii also increases the velocity dispersion, so the cause of an

observed rise would be ambiguous.

Measurements along different lines-of-sight through a galaxy permit the
relative strengths of the velocity dispersion components to be measured. Comparing
the projected velocity dispersions measured at some fiducial distance along the
major and minor axes relative to the center (or peak) value relates the strengths
of the different components. In other words, comparing the large-scale gradient
along the minor axis relative to that along the major axis roughly compares og to
0, (minor axis) and og to ¢4 (major axis); The locations of the various ¢ = 0.5
configurations projected edge-on in this plane using fiducial radii of 1.2R, and 2.1R,
are marked in Figures 18a and 18b. The isotropic configuration is located in the

upper center of each diagram. For configurations in which more energy is put
| into the tangential component, higher ¢, values are observed along the major axis,
and the representative point moves to the right. For larger og (cylindrical R)
configurations (relative to model 1) the representative point moves leftward and

up. If more energy is put into (spherical) radial motions, the ratios decrease.

Since few galaxies are viewed edge-on, the appearance of the kinematic
profiles at different inclinations must be considered. In particular, only the apparent
axial ratio is known for ellipticals; it supplies a lower limit to the true flattening.
Figures 18¢ and 18d display the locations in the #,, — oas plane of many different

configurations and true axial ratios (¢ = 0.1, 0.3, and 0.5), each viewed at an
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inclination such that it appears as an E1. Galaxies observed at high inclination
display less differentiation among the various configurations. Thus I conclude that
many kinematically distinct configurations are observationally indistinguishable.
Observations can uniquely characterize only those galaxies which lie at certain

kinematic extremes.

IV. COMPARISON WITH OBSERVATIONS

Projected profiles for various configurations can be compared with the
observed profiles from Chapter 3. Note that I am not presenting fits to the
observations; rather, the different model extremes are compared to a sub-sample of
the observations to aid qualitative understanding.

Because the spirals discussed here are nearly edge-on, the projected profiles
are computed from an edge-on point of view. The rotation velocities have been
corrected for the galaxies’ inclinations. In the discussion which follows, I denote the
square root of the ratio of the total rotational kinetic energy to the total random
kinetic energy by /s.

a) NGC 2841

An € = 0.4 model is displayed with observed profiles from NGC2841 (an Sb
with € = 0.37) in Figure 19. First note that for the isotropic model the rotation
curve lies well above the observed curve, and the projected velocity dispersion lies
below the observed points. This disparity is expected since v/# for NGC2841
is below that of an isotropic rotator of the observed ellipticity. As an extreme
comparison, the dispersion profiles for configurations with no rotation are also
presented. The profiles are labeled o4 and o¢ for maximized 64 and maximized og,
respectively. A radially biased model does not fit the observed points; ¢ decreases
too fast. Configurations with more tangential dispersion fit the slow decrease in the

observed dispersion better.

b) NGC 3898
An ¢ = 0.3 model compared with NGC3898 data (an Sb with ¢ = 0.33)
is shown in Figure 20. As shown in Chapter 3, the isotropic model rotates faster

than the galaxy does. The observed velocity dispersion cannot distinguish between
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the different anisotropic configurations because of its limited radial coverage and
the lack of symmetry in the outer few points. However, if the steep decline in the
observed dispersion profile is real, a radially biased configuration is needed; if not,

the tangentially optimized configuration fits the outer points better.

c) NGC 4569

NGC4569 is the only bulge from Chapter 3 for which the observed v/a
falls above the isotropic #/# versus ¢ curve. Although its observed ellipticity is
»only € ~ 0.17 £ 0.07, an ¢ = 0.3 model is displayed with the observed profiles
in Figure 21 because the observed rotation curve has a large inner peak which is
consistent with an ¢ = 0.3 isotropic configuration, but then drops off more steeply.
The projected rotation curve and velocity dispersion for the isotropic configuration
are illustrated by solid lines. Likewise, the observed velocity dispersion falls off
more slowly (outside of a strong inner peak), and is consistent with the maximized
tangential model at the outer points. Thus, even though the o/# value for this
bulge is appropriate for its flattening, detailed comparision shows that it is not an

ideal isotropic rotator.

d) Two Ellipticals

For illustration, two ellipticals with major axis data to ~ 1R, (Davies
and Illingworth 1983) have been compared with these models. NGC3379 has an
apparent ellipticity of 0.13 and half the rotation rate expected for its shape. If
we assume that NGC3379 is an edge-on El, then models with enhanced radial
dispersion fit the observed velocity dispersion slightly better than the isotropic
model, as demonstrated in Figure 22a. However, with only major axis data we
cannot distinguish between the edge-on ¢ = 0.1 model or an ¢ = 0.5 model
inclined 60°; see Figure 22b.

NGC6909’s velocity dispersion is essentially constant along the major axis
out to 1.1R,. In this case, constant mass-to-light models with radially oriented
velocity ellipsoids can be ruled out in favor of tangential orbits (see Figure 22¢).
However, the possibility of an increasing mass-to-light ratio must also be considered
(assuming that the luminosity density follows a deprojected deVaucouleurs’ law).

Systems with isotropic or radially biased orbits but an increasing M/L could also
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display a constant projected velocity dispersion.

e) Apparent Angular Velocity

If a spheroid rotates with constant angular velocity on spheroidal surfaces
which have the same axial ratio as the equidensity surfaces, then the apparent
angular velocity as defined by equation (12) will be constant along isophotes.
Figures 23a and 23b show that for isotropic configurations the contours of constant
apparent angular velocity (f2;) are rounder than the isophotes; the ellipticity of
the 2,-contours are typically half that of the isophotes. This is expected because
the constant-() surfaces are rounder than the equidensity surfaces (see Figure 4).
The apparent angular velocity of a body which has cylindrical rotation (u constant
with z) has an strikingly different appearance. A cylindrically rotating spheroid
with Keplerian rotation along the equator is shown in Figure 23¢c. The near-vertical
appearance of the {);-contours is not strongly dependent on the rotation law.

The contours of apparent angular velocity have been computed for NGC7814,
using data from Kormendy and Illingworth (1982, hereafter KI), and for M32, using
data supplied by J. Tonry. The results are displayed in Figure 24. The ellipticity
(defined as the axial ratio subtracted from one) of the {2,-contours for M32 varies
from 0.15 at 10” to 0.3 at 20”; the isophotal ellipticity is ~ 0.3 at 10” but decreases
further outward (Tonry 1984a). The ellipticity of the {},-contours inside 20" for
NGGC7814 is ~ 0.26, and the isophotes have ¢ ~ 0.47.

The rotation data for these two galaxies are consistent with spheroidal-like
rotation. Two other SA spirals, NGC 7814 and NGC 4595, have been studied
by Jarvis and Freeman (1985) who found the mean rotation to be consistent with
spheroidal type rotation. Little more information can be extracted from these
contour maps, but it would be useful to know how many galaxies show cylindrical-
like rotation such as NGC 128 (Bertola and Capaccioli 1977; Jarvis 1982) and
perhaps NGC4565 (KI) do.

f) Internal Views
Line-of-sight velocity dispersions from inside the model spheroids could be
compared to measurements in the spheroid of our galaxy (high-velocity stars), but

the model potentials used here include only a spheroidal component with no disk,
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so they are of limited applicability to the observable part of our galaxy. Also,
it is not known whether our bulge follows a deVaucouleurs’ law. Nonetheless, as
an example, Figure 25a graphs the line-of-sight velocity dispersions for different
configurations of the ¢ = 0.5 model at a low galactic latitude. At small distances
from the observation point (on the equator at a distance of 5R,), the separation
between tangentially and radially enhanced velocity dispersion models is quite large,
whereas at greater distances only the radial component is sampled, so the difference
becomes small. The view toward the model galactic pole is illustrated in Figure 25;
the separation between models 2 and 5 is small.

A qualitative difference between the models considered here and the obser-
vations of our galaxy convey important information. Because the models are self-
gravitating and decrease in density quite steeply at large r, the velocity dispersion
amplitude also decreases significantly at large r; this trend is not in agreement
with the observations of halo stars (Ratnatunga and Freeman 1985, and references
therein). The best-fitting models are those with a dark, massive halo which produces
a flat rotation curve (White 1985; Richstone 1985).

A few models that included a thin disk component to the potential were
computed, but were not explored further because these configurations were highly
contrived. The ellipticity was externally specified (either constant or varying with
radius) and did not respond to the disk potential. Growing a disk inside a pre-
existing spheroid using N-body techniques is a more fruitful approach for this
problem (cf. Barnes and White 1984).

V. SUMMARY

A series of model configurations of oblate spheroids with surface brightness
profiles which follow deVaucouleurs’ law have been constructed. Various forms of
velocity anisotropy were introduced to test their observability. By comparing the
velocity dispersion along the minor axis relative to that along the major axis the
relative strengths of the velocity dispersion components are determined. However,
because the true inclination and flattening of ellipticals are not known, different
kinematic configurations may be observationally indistinguishable.

Diagrams of the contours of constant apparent angular velocity can reveal
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the form of the rotation structure, but this method requires extensive data. Fitting
measurements made parallel to the minor axis but offset from the nucleus can
distinguish between spheroidal or cylindrical type rotation.

Application of these models to velocity measurements of bulges and ellipticals
is reasonably successful. The predicted range of velocity dispersion profiles
adequately, but not perfectly, covers the sample of observations selected here. Some
spheroids are better fit by more radially oriented velocity ellipsoids, whereas some
are closer fit by tangentially biased configurations.

Although the fluid approximation permits quick solutions to be obtained for
specific configurations, this approach is not suited for extensive modelling or for
studying formation processes because too many of the parameters are specified a
priorsrather than obtained as part of a solution. Another disadvantage is that model
configurations may not be constructible from a particle distribution function. A
major deficiency with the fluid approach is that it attempts to specifiy all the physics
locally when in fact the details at each point depend on the global distribution
because many particles have elongated or inclined orbits. This extra information is
lost since only the lowest moment equations of the collisionless Boltzmann equation
are solved.

I thank Peter Goldreich and Douglas Richstone for discussions which helped
guide this work. John Tonry kindly supplied his wealth of data on M32. This work
was supported in part by NSF grant AST 83-13725.

APPENDIX: RADIAL DISTRIBUTIONS

This appendix demonstrates that a spheroid which follows a deVaucouleurs’
surface brightness law cannot be composed of purely radial orbits, assuming
that the luminosity density represents mass density. For spherically symmetric

configurations with radial orbits, the distribution function depends omly on the

energy,

f(E,L?) = g(E)6(L?), (18)

where g(E) is non-negative. I denote the gravitational potential as U(r) and the
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density as p(r). Then, following Richstone and Tremaine (1985, hereafter RT),

2 y_ [~ g(E)dE
rolr) = /u(r) [E - U(r)]/? (19)

where E, is the particle energy cutoff for a finite distribution, with a cutoff radius
Ry defined by U{Rx) = Eo. The asymptotic behaviour of p(r) is the topic of this
- appendix.

Consider a distribution which has a core radius R, such that no particle has
an apapsides inside R.. Every particle’s energy is greater than E, = U(R,), so for
E<E,gE)=0.

At r < R, U(r) < E,, the right-hand side of equation (19}, which I shall

denote as ¢, becomes

E
_ [~ _glE)dE
Y= / . E-TE (20)
And for r < R,
dy (P~  g(E) dU _ _dU
dr — Jg, 20E-U(r)]3/? dr dE = dr Ps(r), (21)

where ¢, is the new integral over £ and is positive.

Finally, the slope of the density distribution is

dlnp dlny Y, dU
= = - = - —_—, 2
7(r) dlnr 2-'-dlnr 2+r¢ dr (22)

Since gravity is an attractive force, dU/dr > 0, so equation (22) requires v > -2.
RT showed that if the central force remains finite as r — 0, then v < —2. Thus, by
combining these limits, v must asymptotically approach —2.

If the system contains a dominant central point mass, then the central force
does not remain finite and the constraint that v < —2 is not applicable. Consider

a configuration with a central mass surrounded by a system of particles which all
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have the same apapsides, rp,q5, but make negligible contribution to the potential.

The mass contribution from the particle cloud is
m(s) = 2 [sin™(a1/2) = $1/2[1 - o]2] (23)

where 8 = r/rp.,. The density law is

1 732 04
) = g o .
The power-law slope v is
1 -3 s
o) =-2+——= (25)

2l—s) 2 '2(1-a)

Although dU/dr is infinite at r = 0, 4 is well behaved if one excludes the central
point mass. The flatter slope at 7(0) in this case is caused by the unbounded
velocity as a particle approaches the center. As it speeds up, its effective density
contribution is smaller, so the geometric concentration is reduced.

Inside the core of a system the density profile from purely radial orbits must
asymptotically approach either r—2 or r~3/2. Since at small r the deprojected
deVaucouleurs’ law asymptotes to pz & r=3/% such a system cannot be constructed

from radial orbits.
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FIGURE CAPTIONS .

1 — Density profile for deprojected deVaucouleurs’ law. Points

represent values computed by Young (1976), and the solid line
shows the fit by Tonry (1984b).
2 — Meridian slice through a spheroid: dotted lines show
equidensity surfaces and are spaced logarithmically in radius.
Solid lines are contours of constant o, for the isotropic config-
uration; contours are linearly spaced in velocity. (a)¢ = 0.1, and
(b)e =0.5.

. 3 — Solid lines are contours of constant rotation velocity for the
isotropic configuration and are linearly spaced. (a)e = 0.1, and
(b)e = 0.5.

4 — Dashed and solid lines show contours of constant angular
velocity, and are spaced uniformly on logarithmic intervals of
angular velocity. Dotted lines represent isodensity contours.
(a) e = 0.1, and (b)e = 0.5.

. 5 — Meridian slice for model 2A. Solid lines show contours of con-

stant 04, linearly spaced in velocity. (a)e = 0.1, and (b)e = 0.5.

Fig. 6 — Meridian slice for model 2B. Solid lines are contours of constant

Fig.

Fig.
Fig.

og. (a)e =0.1, and (b)e = 0.5.
7 — Meridian slice for model 2C. Solid lines are contours
of constant . Dotted lines represent isodensity contours.
() = 0.1, and (b) e = 0.5.
8 — Contours of constant o4 in model 2C. (a) ¢ = 0.1, and (b) ¢ = 0.5.
9 — Model 5A: dotted lines are equidensity surfaces, solid lines

show contours of constant ¢,. (a) e = 0.1, and (b) ¢ = 0.5.

Fig. 10 — Solid lines are contours of constant ¢ for model 5A.

(a) e = 0.1, and (b) ¢ = 0.5.

Fig. 11 — Isotropic configuration: Solid lines are contours of constant

projected velocity dispersion in the plane of the sky linearly

spaced in velocity. Dotted lines represent isophotes spaced
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logarithmically in radius. (a)e = 0.1, and (b)¢ = 0.5.

Fig. 12 — Model 2A: solid lines are contours of constant projected veloc-

Fig

Fig.

Fig.

Fig.

Fig

Fig.

ity dispersion in the plane of the sky. (a)e = 0.1, and (b) e = 0.5.

. 13 — Contours of ¢, for model 2B. (a) ¢ = 0.1, and (b) ¢ = 0.5.

14 — Contours of constant projected velocity dispersion for
model 2C. Dotted lines represent isophotes. (a)e = 0.1, and
(b)e = 0.5.

15 — Model 5A: dotted lines are isophotes, solid lines denote
contours of constant o;. (a)¢ = 0.1, and (b) ¢ = 0.5.

16 — (a) Line-of-sight velocity dispersion profiles for ¢ = 0.5
model at zero inclination: solid line—model 1, dashed—2A, dash-

dotted—2C, and dotted—5B. (b) same as (a) only with 60°

inclination.

. 17 — Projected velocity dispersion for an edge-on ¢ = 0.5 plotted

in log-log coordinates. Solid line represents the isotropic case,
dashed line—model 4A, and dotted line—model 5A.

18ab — Values of edge-on projected velocity dispersion ratios at

1.2R, from the center for ¢ = 0.5 model. Abscissa—o,(major
axis)/o,(peak), ordinate—o;(minor axis)/o,(peak). The po-
sitions of the different configurations are denoted by: filled
circle—isotropic, open circle—2A, asterisk—2B, plus sign—2C,
triangle—4A and 4B, square—5A and 5B. (b) Same as (a) with

ratios measured at a distance of 2.1R,.

Fig. 18cd — Values of projected velocity dispersion ratios for models

with different intrinsic flattenings but viewed at inclinations such
that they appear as E1 spheroids. Circles represent ¢ = 0.1
model points, triangles—e = 0.3, and squares—e = 0.5 model
points. Filled symbols mark the isotropic cases. Fiducial radii
are (c) 1.2R,, and (d) 2.1R,.
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Fig. 19 — Comparision of NGC 2841 data to ¢ = 0.4 model. (a)

Circles represent the observed velocity dispersion. Open and
filled symbols represent the two sides of the major axis. Lines
are model profiles: solid—isotropic, dotted—2A, dash-dotted—
2C. (b) Symbols represent the observed rotation curve, and the
solid line is the model projected ro.tation curve for the isotropic

configuration.

Fig. 20 — Observations of NGC 3898 compared with an ¢ = 0.3 model.

Symbols are the same as in Fig. 19.

Fig. 21 — Observations of NGC 4569 compared with an ¢ = 0.3 model.

Fig

Fig.

Fig.

Fig.

Fig.

Symbol descriptions are given in Fig. 19.

. 22a — Comparison of model profiles to major axis measurements

of ellipticals. Open circles and squares denote observed velocity
dispersion for NGC 3379, filled symbols show the rotation curve.
Dashed line is o, for ¢ = 0.1 isotropic configuration, solid line
is its associated rotation curve. Dash-dotted line displays o, for
model 2C.

22b — Open symbols mark observed dispersion data. Lines are

projected velocity dispersion for model 2C with the solid line
representing an ¢ = 0.1 model inclined edge-on, and the dash-
dotted line an € = 0.5 model with i = 60°.

22¢c — Open circles show the velocity dispersion profile of
NGC 6909, and asterisks denote its rotation curve. Dotted line is
o5 profile for ¢ = 0.5 model 2A, dash-dotted line is for model 2C.

23ab — Apparent angular velocity for (@) € = 0.1 and (b) € = 0.5.

Dotted lines represent isophotes on the plane of the sky. Dashed
and solid lines are contours of constant apparent angular velocity
spaced on logarithmic intervals of Q.

23¢c — Contours of constant apparent angular velocity for a
spheroid rotating on cylinders. A Keplerian rotation curve is

specified along the equator. Isophotes are shown by dotted lines.
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Fig. 24 — (a) Apparent angular velocity diagram for M32. Plus
signs mark locations of measured mean velocity on the plane
of the sky. Solid lines display contours of constant apparent
angular velocity, contours are spaced logarithmically in 1,. The
two circled points are hand-averaged points included to smooth
the contour interpolation. Smoothed isophotes reproduced from
ellipse fitting are shown by dotted lines. (b) Apparent angular
velocity contours for NGC 7814.

Fig. 25 — Line-of-sight velocity dispersions for internal views. Abscissa
is distance from the observation point. Symbols which illustrate
0105 for Models 2A, 2B, 2C, and 5B are open circles, asterisks,
plus signs, and triangles, respectively. (a) tangential view:
longitude=270°, latitude=10°; (b) pole view, latitude=00°.
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