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Ad Majorem Dei Gloriam

"Lift your eyes and look.

Who made these stars

if not he who drills them like an army,
calling each one by name?

So mighty is his power,

so great is his strength,

that not one fails to answer."

- Isaiah 40:26
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ABSTRACT

A numerical code has been constructed for the study
of the evolution of interacting binary galaxies. This
"multiple three-body" algorithm (MTBA) essentially involves
N concurrent three-body integrations; it is the sum of the
interactions of the perturber with each of the N particles
comprising the primary "galaxy" that determines the binary
orbital evolution. MTBA incorporates a violent relaxation
phase that allows the particles to redistribute themselves
in the gravitational field of the perturber prior to the
full binary orbital evolution calculation. This
redistribution is important for systems with an initially
strong tidal potential; their predicted merger times are
50-100% larger than previously estimated. Tabulated mergér
times for both circular and elliptical orbits demonstrate
that typical close binary galaxies will merge in about twice
their initial binary orbital periods, roughly 109 years.
This timescale depends strongly on the binary separation,
weakly on its mass ratio, and less on initial galaxy
rotation than has heretofore been suggested.

A specific interacting binary simulation is
described in detail in the first paper. Surface brightness
maps, structural parameters, and rotation properties are
described at various times during the evolution, followed by
a discussion of the properties of the merger remnant. Many
of the results reported here are consistent with those

obtained from the larger, more expensive N-body simulations.
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For the second paper, MTBA is altered so that each
"galaxy" is represented by a configuration of test
particles. Simulated tidal interactions between these
"galaxies" are matched to the measured properties of real
binaries in an effort to determine the physical state of
each observed pair. The catalog of isolated galaxy pairs
prepared by Karachentsev has been culled for its E-E
constituents. CCD pictures and long-slit spectroscopic
observations have been obtained at KPNO for the most
photometrically distorted of these systems. Such pairs very
likely represent strongly interacting, physically
associated, binary elliptical galaxies. Radial variations
of rotation velocity and velocity dispersion are extracted
from the spectroscopic data for each of the two galaxies in
a given pair. The combined spectroscopic and photometric
data for that binary can be reproduced by an appropriate
projection of a particular numerical simulation of the
system. Some constraints can be placed on the masses of the
galaxies, their internal dynamical configurations, and the
properties of their relative orbit, including the three-~
dimensional orientation of the pair. Detailed results are
presented for two pairs, K99 and K564. NGC 1587, the
brighter component of K99, has the highest rotation rate

known for an E2 galaxy, with a value v /o = 0.6.

rot
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PRELIMINARY REMARKS

This thesis is the result of investigations of
interacting binary elliptical galaxies. The work is
described in two chapters, each a self-contained article to

be submitted to The Astrophysical Journal. The first

chapter contains a complete description of the numerical
model and presents some of the theoretical results derived

from its use. The second chapter describes spectroscopic

and photometric observations for two select cases of
interacting ellipticals and provides an analysis of these
data in terms of specific numerical models. The

observational work described in the latter chapter was done

in collaboration with John G. Hoessel.



CHAPTER 1

A NUMERICAL MODEL AND PRELIMINARY RESULTS

Submitted to The Astrophysical Journal in March, 1982.

Author: Kirk D. Borne



I. INTRODUCTION

Gravitational interactions between galaxies have
played an important role in the evolution of the observed
universe. The presently observed distributions and
structures of cluster galaxies suggest that their histories
have been dominated by interactive gravitational dynamics.
White and Rees (1978), for example, have presented a
scenario for the formation and clustering of galaxies that
proceeds through both gravitational and gas-dynamical
processes. Oemler (1974) has stated that tHe galaxy
distribution and content of a given cluster may be a measure
of the dynamical age for that system. Though the results of
Melnick and Sargent (1977) and of Dressler (1978,1980) argue
against simple interpretations of cluster data, apparent
evidences for dynamical evolution are again noted. The
observations of Dressler (1978) and others (e.g., Rood and
Sastry 1972; Austin and Peach 1974) indicate that the
flattening of cD galaxies is commonly aligned with that of
their lqcal galaxy distribution, which fact probably has its
explanation in the dynamical friction hypothesis (Binney
1877). That hypothesis has been employed by Ostriker and
his co-workers (Ostriker and Tremaine 1975; Ostriker and
Hausman 1977; Hausman and Ostriker 1978) to describe the
brightest galaxy in some clusters as an aggregate of merged
stellar systems. Observations of brightest cluster galaxies
by Oemler (13976), Rood and Leir (1979), and Hoessel (1980)

are consistent with this hypothesis. Other observational



studies have supported the "structural evolution by means of
gravitational interaction" hypothesis: in clusters (e.g.,
Strom and Strom 1978), in groups (e.g., Hickson, Richstone,
and Turner 1977), and in pairs (e.g., Faber 1973; Kormendy
1977). The lack of diffuse background light in some groups
studied by Rose (1979) argues against the occurrence of much
dynamical evolution there.

In binary galaxy systems tidal processes affect the
evolution through the infusion of orbital energy into the
internal degrees of freedom. In the close encounter of two
galaxies a redistribution of mattef, energy, and angular
momentum will affect the observables for each galaxy. For.
example, the peculiarities in the colors of some spiral
pairs (Sharp and Jones 1980, and references therein) can
probably be explained in terms of the internal response of
the gas to external gravitational perturbations (Larson and
Tinsley 1978). Various kinematic properties of binaries are
similarly describable in terms of a simple gravitational
interaction hypothesis (e.g., that of Toomre and Toomre
1972, hereafter TT). Comparisons between specific examples
of gravitationally interacting galaxies and such models are
reported by Lynds and Toomre (1976), Combes (1978), Rots
(1978), Byrd (1978), van der Hulst (1979), and Stockton and
Bertola (1980). Past galactic encounters can also explain
the observed curvature in some extragalactic radio jets

(e.g., Blandford and Icke 1978; Vallee, Bridle, and Wilson
1979).



If the encounter of two galaxies is close enough (a
few radii), then the highly inelastic nature of the tidal
interaction will render a high probability for merger in a
remarkably short time. Significant merger rates have been
found in a variety of imaginative simulations of interacting
galaxies (e.g., Holmberg 1941; Alladin 1965; Toomre 1974,
1977; van Albada and van Gorkom 1977; Yabushita 1977; White
1978; Alladin and Parthasarathy 1978). Binary orbital
evolution and subsequent merger are particular results
predicted by the dynamical friction hypothesis, another
possible result of which is the observed correlation of
luminosity with separation in a sample of galaxy pairs
(Turner and Ostriker 1977; Ostriker and Turner 1979; see,
however, White and Valdes 1980). TT suggested further that
most ellipticals may be the remnants of past merger events
among disk galaxies (see also Toomre 1977; Tinsley and
Larson 1979; compare with Marchant and Shapiro 1977).
Because massive galactic halos should have significant
cross-sections, their existence would imply an even higher
predicted frequency of mergers among interacting galaxies
(White and Sharp 1977). It is therefore possible that a
large number of pairs existed in the past that have since
coalesced, with the presently observed binaries soon to
follow suit (Toomre 1977; White and Sharp 1977). To this
diminishing population of binaries are added new binaries

formed through random, inelastic two-galaxy encounters.



It appears that one or more of the following
conclusions is unavoidable: either (i) dynamical friction
has been a dominant factor in the evolution of binary
galaxies, so that many more binaries existed in the past
than exist today, with the result that a non-negligible
fraction of all observed galaxies are actually remnants of
past merger events (Toomre 1977); or (ii) massive galactic
halos are uncommon, thereby strongly diminishing the
predicted frequency of mergers; or (iii) the merger process
itself is not nearly so efficient as is now believed.
Because statements such as these strongly influence current
extragalactic and cosmological research, it is essential
that we further our understanding of the dynamical friction
mechanism. Reported here are new attempts (a) to calculate
the efficiency (i.e., the timescale) of this process within
the context of binary galaxy systems and (b) to find
physical parameters that describe both the evolutionary
state and the ultimate remnant of these interacting pairs.

Detailed evolution calculations for individual
galaxies in clusters are difficult since each galaxy
probably encounters several different galaxies in a Hubble
time; idealized theoretical studies of this problem include
those of Gallagher and Ostriker (1972), Richstone (1975,
1976), Hausman and Ostriker (1978), Knobloch (1978), and Da
Costa and Knobloch (1979). The problem of the evolution of
an isolated pair of galaxies is more tractable, and the

results found here will be applicable in some measure to the



problem of the evolution of galaxies in clusters.
Theoretical studies of this type are numerous (e.g., Wright
1972} Biermann and Silk 1976; White 1979b; Roos and Norman
1979; Miller and Smith 1980 and references therein).

Why, then, should yet another study be pursued? The
two major reasons are:

1. Currently accepted dynamical friction timescales
are disquieting. In times as short as 108 or 109 years
significant changes in the orbit and observed structure of
some binaries are predicted. It is important that these
startling numbers be recalculated and corrected if
necéssary. That is accomplished here. Merger times are
presented for a wide range of initial binary orbital
parameters. The results in this paper deﬁ;nstrate that the
numbers in current use are probably not too far wrong,
although an upward correction of 50-100% seems to be in
order for the more strongly interacting systems.

2. Techniques now in use for the study of
interacting galaxies fall roughly into two categories: (i)
expensive, yet physically realistic simulations; and (ii)
inexpensive, yet physically unrealistic calculations. A
method is needed which will bridge the gap between these two
sets. The algorithm described here provides such a tool.

It is labeled the "multiple three-body algorithm" (hereafter
MTBA) by Borne (1979). 1Its high efficiency permits many
simulations to be run at low cost. These provide a solid

base on which to build conclusions about the fate of



interacting binaries. Through the approximation of some
hitherto ignored physical effects the model presented here
also provides a closer approximation to physical reality
than did many of the earlier studies. For example, only the
dynamically self-consistent calculations have included the
instantaneous back-reaction of the perturbations in the test
"galaxy" onto the trajectory of the perturbing "galaxy":
MTBA handles this easily. Another overlooked physical
necessity that is met here is the requirement that the
initial "star" distribution be in equilibrium with the
nearby perturber. The use of spherically (or otherwise)
symmetric initial models in strongly-interacting binary
simulations is physically unsatisfactory.

Efforts to study interacting galaxies are of three
types. There are analytic calculations (e.g., Toomre 1977),
semi-analytic calculations (e.g., Sastry and Alladin 1977;
Da Costa and Knobloch 1979), and numerical simulations
(e.g., TT and Miller and Smith 1980, hereafter MS); the
latter provide a more faithful physical representation of
the dynamics than do studies of the other two types. It is
possible to further categorize each technique according to
its major physical approximation: impulsive, restricted
three-body, or self-gravitating. The present simulations
are more realistic than were those that were based on the
"impact approximation" (e.g., Bierménn and Silk 1976), yet
MTBA is just a simple physical modification of the otherwise

physically unreasonable restricted three-body code employed



by TT and others (e.g., Gutowski and Larson 1976).

Yabushita (1977), who also worked with the latter code,
nearly discovered the MTBA "trick” in his study of the
capture hypothesis for the formation of binary galaxy
systems. Because MTBA does not include the self-gravity of
the test particles (see details in SII), it cannot compete
on the same grounds with codes that do (e.g., MS and
Villumsen 1982). For example, no consideration is given to
the effects of the coherent contraction of the mass
distribution that occurs during close passage (see MS). Nor
can the present investigator respond favorably to the
additional warnings of MS that the test "galaxy" and the
perturber are not always physically distinct systems., It is
not clear however that these are disadvantages, since N-body
codes do not always adequately suppress two-body relaxation.
MTBA specifically avoids the two-body effects, while to some
degree the global violent relaxation is provided for. The
advantages that MTBA has over the self-gravitating models of
MS and others (e.g., White 1978, hereafter W78) are: (i)
these latter investigators use spherically-symmetric initial
"galaxy" models that are not in eguilibrium with the nearby
companion, whereas MTBA introduces a "relaxation phase" to
provide for this (see SIIh); (ii) the self-consistent model
calculations are of necessity large-scale and expensive
endeavors, whereas MTBA is inexpensive and of moderate size;
(iii) N-body codes either permit very few particles (e.g.,

Lauberts 1974, Roos and Norman 1979) or have limited phase-
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space éoverage (e.g., MS), whereas MTBA has no such
limitations; and (iv) MTBA easily reproduces many of the
results obtained ffom those simulations, such as merger
times, rotation-flattening correlations, and the remnant
mass distribution.

Its efficiency not only makes MTBA an attractive
tool, but the efficiency also renders the model amenable to
comprehensive comparisons with observational data. This is
possible since dozens of test cases can be run at low cost
on a reasonably-sized computer and because there is no major
constraint on the number of test particles that can bebused;
the statistical significance of the numerical results
clearly increases with N, the number of test particles.
Chapter 2 will present comprehensive surface photometric and
spectroscopic observations for two real pairs of elliptical
galaxies (from the catalog of Karachentsev 1972) and will
compare those data with the numerical simulations. Later
papers in this series will present (i) a detailed discussion
of a large number of the physical properties that describe
the simulated binaries and their remnants, (ii) complete
analyses for about six other Karachentsev pairs, and (iii) a
compilation of photometric and spectroscopic parameters for
nearly all of the pairs of ellipticals listed by
Karachentsev.

In SII of this paper the details of the calculation
are presented. 1Included are the MTBA equations of motion, a

description of the model used for the test "galaxy", a
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discussion of energy conservation, units, coordinate
conventions, a look at how the initial conditions were
prepared for an encounter, and a few remarks on the
numerical computations. Preliminary mocdel results are given
in SIII. 1Included are a listing of merger times for a wide
variety of initial orbital configurations, a description of
the effects of both the random initial conditions and
initial galactic rotation, and an in-depth look at a
specific example of an interacting binary system. A summary
of the main results and a discussion of how these relate to
the results of other investigators are presented in SIV.
Appendices provide a derivation of the energy integral from

the MTBA egquations of motion and some specific remarks about

the numerical procedures.
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II. DETAILS OF THE CALCULATION

In this section the basic features of the numerical
calculation are to be found. The equations of motion are
presented and discﬁssed~in §IIa. The meaning of the
corresponding energy integral is investigated in SIIb.
Units are defined in S§SIIc. Coordinates and symmetries are
specified in SIId. Facts about the numerical integration
are listed in SIIe. Details on the derivation and use of
the model for the primary "galaxy" are given in SIIf. The
Monte Carlo particle initialization procedure and its
limitations are described in §IIg. Finally, mixing and
relaxation phases are introduced in SIIh; there they are
discussed as means by which the transient effects of the

initial conditions are curbed.

a). Equations of Motion
The numerical technique is essentially a
simultaneous integration of N three-body equations of
motion. In a few test cases N = 2000; otherwise, N = 1000.
An initially spherical primary "galaxy" of mass M, comprises
N test particles i, each with mass m; = M1/N; the secondary
"galaxy" (or perturber) has mass M,. The equations of
motion that define the three~dimensional "multiple three-
body" problem are:
a%t,

i
m.
1 dtz

=My My T by T omy My Uy, (1a)
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dz?z N (
My —==-m: M, I 9V, ¢,; =m;: My Z V. ¢., , 1b)
2 dtz i 72 i=1 2 Y21 i 72 ;1 i2
a%r, &%z,
and M1 —2—' = = Mz -—7— ’ ‘ (1e)
dt dt

where ?i, ?1, and ?2 are the position vectors of the test
particle i, of the center-of-force in the primary "galaxy",
and of the secondary center-df-mass, respectively. The
physical meaning of equations (1) is as follows. Changes in
the trajectories of test particles are determined by the
‘smooth unperturbed fields of the primary and secondary
"galaxies", as derived from the potentials ;1 and ¢ior
respectively (equation 1a). The force exerted on the
secondary is the sum of the individual forces exerted on it
by the N test particles (equation 1b). It is in the
calculation of this force that the present model contrasts
sharply with previous models that were based on either the
impulsive or the restricted three-body approximation.
Finally, the motion of the center-of-force of the primary is
such that the vector quantity M1?1 + szz remains fixed

(global conservation of linear momentum; equation 1c).

b). Energy Conservation
A simple manipulation of equations (1) results in
1

d - -
Mgl T TR E V) eomg M BT 4y (2)
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where ¥ denotes a velocity. If a self-consistent model for
the force field within the perturbed primary were used, then
the right-hand side of equation (2) would be egual to zero

(Newton's third law) and

_ _ 1
V1 = <(7'i> = 'ﬁ ? Vi ° (3)

As detailed in Appendix A, equation (3) implies the

constancy of the energy integral defined by

_ 1 - 2 .1 2 .1 2
Ezsx mi}_l:(ir‘i V)T 5 Myl o+ 5 Myvo 4 miIiI(M1¢i1+ Msg:o) . (4)

Because the present model is not fully self-consistent, it

follows that

E = constant if and only if ¥

n

1
-26'0 (5)
N A

Deviations from a constant value for E are not to be
confused with inaccuracies in the numerical integration
scheme; the latter are discussed in Appendix B. Nor can
these variations in E be identified with physical deviations
from total energy conservation since equations (1) do not
describe a fully self-consistent system. Test cases show
that deviations from a constant value for E are nearly
always small (<2%). Larger deviations occur at times prior
to merger during which the secondary is most strongly
interacting with the primary. Following the merger event,
the system of test particles relaxes to a nearly-symmetric

state that satisfies the right-hand side of equation (5).
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It is at times of intensive tidal interaction prior to
merger that the forces exerted by M, act most to break the
approximate symmetry that would guarantee the near-equality
in equation (5). It is usually then that several test
particles become unbound relative to M1, which renders an
inequality in equation (5) simply because the right-hand
side of that equation is no longer meaningful.
Consequently, energy is not conserved as it is expressed in
equation (4); the value of the parameter E is no longer
physically equivalent to the total system energy. These
difficulties are ignored here since MTBA cannot adequately
represent the dynamics at the moment of the actual merger
event so long as the model ignores both the soft, distended
stellar distribution within the secondary and the growing
perturbations in the force fields of the two "galaxies".
Although the MTBA equations of motion resemble those
for N independent unrestricted three-body problems,
equations (1) differ from such a representation in the
following ways: (i) MTBA represents N sets of intermingled
three-body equations; (ii) the secondary M2 does not
interact directly with the center-of-force in the primary
M,, as would be the case in the unrestricted three-body
integration; and (iii) M, does not interact direct;y with
the N test particles. If the last two restrictions were
removed by altering equations (1b) and (1c) such that M,
interacts explicitly with both M, and the test particles,

then (i) a new energy integral would exist that would be
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conserved exactly at all times, and (ii) there would be a
two-body relaxation effect among the N test particles. The
former is easy to derive from the equations of motion. The
latter would exist simply because each particle would then
affect the motions of all other particles through their
mutual interaction with the center-of-force in M, . Since N
is so much smaller than the number of stars in a real
galaxy, any form of two-body relaxation in the model should
be and has been avoided, even at the expense of precise

model energy conservation.

c). Units
A dimensionless system of units is used in which
G = M1 = R1 = 1, where R1 is the cutoff radius of the
primary "galaxy" (i.e., the radius within which the Monte
Carlo algorithm initially places all test particles). The
following equations demonstrate the translation from

dimensionless to physical units for the case R, = 20 kpc and

_ 11 .
M, = 10 L%
_ 3
1 time unit = (G%_)1/2 = 1.3 x 108 years ; (6a)
1
1 velocity unit = (—§1)1/2 = 150 km sec  '. (6b)

1

d). Coordinates and Symmetry
The program is built around a non-rotating,

stationary Cartesian coordinate system whose origin is fixed
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by: M1?1 + szz = 0. The centers of the "galaxies" are
initially located on the x-axis and are thereafter
constrained to lie in the xy-plane (i.e.,rz1 =z, = 0 at all
times). This constraint presupposes reflection symmetry
through the xy-plane. The solution z, =2, = 0 is rigorous
only when the mass density around the position (x;, y;, zi)

equals that around (x;, y,

i -zi), something which is not

true in a small-N calculation. But suppose that for every
particle with a given position and velocity there was
another particle whose position and velocity were just those
of the first particle reflected through the xy-plane. Upon
integrating the equations of motion for fhis configuration,
one would find a solution identical to the one found
originally by just ignoring the z-components of equations

(1b) and (1c) as suggested.

e). Numerical Integration

A fifth-order predictor-corrector algorithm based on
Numerov's formula is used to integrate equations (1) (see
Lapidus and Seinfeld 1971). As Appendix B describes, the
value chosen for the step size is h = 1/32 (time units). An
average binary simulation is integrated for about 20 time
units. It is executed in about 50 seconds on the Lawrence
Berkeley Laboratory CDC 7600 computer. An equal amount of
computing time is expended in the generation of detailed
listings of the binary diagnostic parameters, most of which
will be discussed in a later peper. Some of the more

immediately useful results are discussed in SIII of this
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paper. The rest of this section is devoted to a description
of the initial galaxy model, how it is generated by a Monte

Carlo algorithm, and how it is fed into equations (1).

f). The Galaxy Model
A realistic potential ¢(r) = ¢;y is desired. The
choice of an analytic form for ¢(r) was made in the manner
described in this subsection. Assume, first of all, that
the phase space density of particles in the primary "galaxy"

is given by a spherical, isotropic distribution function of

the form
£(E) = A exp (-E/oz) for E < E__. (7a)
and f(E) = 0 for E 2 Egge * (7b)
1 2
where E=5v"+ o(r) (7¢)
and E._ =292 (r) + &(r) =0 (7d)
esc 2 “esc = ¢

This is the distribution function used by Wooley and Dickens
(1961) in their study of model stellar systems. Although
King (1966) does not recommend the use of this truncated
isothermal distribution function in studies of real stellar
systems, the deviations from reality so imposed are
definitely no more significant than those, for example, that
arise from the assumptions made implicitly through the use
of equations (1).

An integration of equation (7a) over all velocities

determines the space density as
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_ Vesc(r) - 2
p(r) = 41 A exp( @ér)] f v? exp(—zﬁ) dv . (8)
o 0 20

The normalization constant A is determined by

2

M, = 4n j; p(r) r“ dr = 1 . (9)

For v 2

esc > 02, the integral in equation (8) is practically

independent of v In that case the density Po = 02/21rr2

esc*®
and the potential ¢ = 2ozloge(r) are approximate solutions

to the combination of equation (8) and the Poisson equation,

V2¢ = 4mp. A more general integration of equation (8)

yields
k 2 2X 2
p(r) = 5= exp (x) [ erf (x) - exp (~x°) 1 , (10)
2Tm n172
where x2 = —Q(r)/o2 and erf is the standard error function.

With an accuracy of a few percent over the whole range of x,

an approximation for the error function is

t2 2 2

erf (x) 5—%77IZ et ar = o o™ 4 (1 -T2 (1)
m L

Roughly, then, the space density is

2 2
plr) = o% e* (1 - &7X)2 | (12)

For %% = -Qo/o2 = -2 loge(r), equation (12) becomes

p(r) = X = (1 -«

2)2
27r

for r <1, (13)
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with which the corresponding potential can be derived from

the Poisson equation. This is

2
o(r) = 2 k [ log(r) - 3 + 55 + z5 |

L : (14)

where ¢(1) = 0 and k = ¢%(r=0). The choice of zero point
for ¢(r) guarantees that all particles will be contained
within the sphere of radius R, = 1 (i.e., Vage = 0 at
r = R, = 1; see equation 7d).

In order to avoid a singularity at r = 0 and to
maintain reasonable numerical accuracy, a softening

parameter a, is introduced into the expression for the

potential given above. This change yields:

2 r4

¢;1 = ¢(r) = k1[loge(r2+a12)- %r * 55 ]+ ky, for r=<1; (15a)

= =1 -4

If M(r) denotes the mass contained within the sphere of
radius r, then d¢/dr = M(r)/r. Hence, k, and k2 are
determined from the boundary conditions, ¢(1) = 0 and M(1) =

M1 = 1, A value a, = 0.05 is used, so that

1 1 o7 -1
k1 = ? ( T—:———E T§ ) = 0.9419 (168)
24
and kK, = k, [ ~L - log. (1 + a.2) ] = 0.5314 (16b)
2 1 L 30 9e 1 = L. .

Equations (15) give the potential $;4 as it is used by MTBA,
where r = |?.-F.|. The density that corresponds to this

force field is
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) = ol S 2 (17a)
p(r) = > > 5= 2 +r for r < 1 ; 17a
(r© + a,”)
1
p(r) =0 for r > 1 . (17b)

A softened point-mass potential is used for ¢;,,
given by

bip = - L(E, - £)% + 8,2 1712 (18)

The force that arises from this potential has a maximum

3/2 -1/2

magnitude F,(max) = 2M, /(3 a22) at ry, = 2 a,. The

maximum magnitude of F, = -M,V.¢., occurs at r;, = a,, with
a value F1(max) = l<1a1"1 = 18.84. It is physically

reasonable to assume that, for M1 = M2 =1, Fz(max) =~ 20 at
r;, = a;. Equality of F,(max) and F,(max) for M, = M,
requires a, = 0.02. So that a, would be smaller for less
massive "galaxies" it was arbitrarily decided to choose

a22 = 0.02M2. This value of a, has the property that

Fz(max) is independent of M, and has a value about equal to

19.25.

g). Initial Conditions
Initial positions and velocities for each of the N
test particles are obtained by a Monte Carlo selection
procedure. From a rectangular distribution of pseudorandom
numbers, the radial coordinate r, cos¢ (where ¢ is the polar
angle), and ¢ (the azimuthal angle) are tentatively chosen
for a given particle. The coordinate r is so chosen because

the density law (equation 17a) varies approximately as x:-2
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multiplied by an energy cutoff term, as shown in equations
(8) and (13). 1In order to accommodate the energy cutoff,
the first step is to choose particle velocity components Vyr
vY, and v, from a Gaussian distribution with variance

02 = k, (from equation 16a). From equations (7c) and (15a),
the corresponding energy E is calculated. If E < 0, then
these coordinates (position and velocity) are assigned to
the particle; otherwise, they are rejected and new
coordinates are selected, subject to the same negative-
energy condition.

Figure 1 presents a comparison between the particle
density distribution generated by the above procedure and
the theoretical density curve given in equation (17a).
Systematic deviations are to be expected since that equation
is only a rough approximation to equations (8) and (10).

The latter equations form the basis for the Monte Carlo
selection algorithm described in the previous paragraph.
Plotted in Fiqure 1 are: (i) N(R) = 1000 [M(r+sr) - M(r)]
(the theoretical curve), specifying the number of particles
in a shell of thickness §r = 0.04 with mean radius R =

r + §r/2; (ii) open circles, indicating the number of
particles placed in each shell by the Monte Carlo algorithm,
averaged over five different sets of initial conditions,
with error bars indicating the standard deviation of a given
value about the mean; and (iii) solid circles, indicating
the number in each shell as determined by an average over 85

time steps during the mixing phase of one particular initial
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configuration (see the next subsection for a description of
the mixing and relaxation phases.) The Monte Carlo "galaxy"
simulates the theoretical density distribution very well,
except for a couple of discrepancies. For one, the number
of particles in the innermost shell greatly exceeds the
theoretical value. Second, the points at mean radii R > 0.4
are systematically below the curve. That the selection
algorithm preferentially places particles in shells at small
radii at the expense of those shells at greater radii is a
result of the following approximation used in the selection
procedure. The Monte Carlo technigue defined above actually

simulates a "galaxy" whose density law is

k 2x 2
p(r) = [ erf(x) - 73 exp(-x<) 1, (19)
Zwrz n‘ 2
where x2 = -¢(r)/k, and ¢(r) is given in equation (15a). A

check of the distribution function N(R) that corresponds to
equation (19) indeed finds that it agrees with the placement
of the points in Figure 1, including the discrepancies. The
difference between equations (19) and (17a) is in the way
the core of the "galaxy" is treated. The core appears
explicitly in equation (17a), whereas it appears only
implicitly in eqguation (19) (in the energy cutoff term). It
is therefore not surprising that the simulated galaxy has a
higher density of particles at small radii than is expected
from equation (17a). Because of the added complexity that
would attend the inclusion of the core in the Monte Carlo

algorithm, it was decided to ignore the problems with the
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simulated "galaxy" and to proceed with the integration as
is. Since the particles respond in time to a potential that
explicitly contains the core (eguation 15a), their
distribution tends to approach the density that is the
source of that potential. The filled circles in Figure 1
demonstrate this.

Two useful numbers that can be derived from the data
plotted in Figure 1 and from the density law in equation
(19) are the "galaxy" half-mass radius R, and the projected
half-mass radius Ry (i.e., the "effective radius"). Their

values are

Ry = 0.26 and R, = 0.20 . (20)

h). Mixing and Relaxation Phases

In order to minimize any systematic effects of the
initiaiization procedure the initial model of the "galaxy"
is run through a mixing phase where the secondary "galaxy"
is totally ignored, the motion of the primary center-of-
force is nil, and the origin of the coordinate system is set
at the center of M,. For a pre-specified time, typically
2-5 time units, the N test particles are therefore allowed
to move exclusively in the gravitational field of the
primary. The filled circles in Figure 1 represent the
average particle density distribution during such a mixing
phase. A kinematic description of the mixed, isolated

"galaxy" is reserved for a later paper.
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The full binary simulation is performed with the
origin of the coordinate system at the binary center-of-mass
(see SIId). Because the initial values of the position and
velocity coordinates for the particles refer to an origin at
the center of M,, the values of fhe position and velocity
coordinates of M, are added to those of each particle at the
end of the mixing phase. The system of N particles that
comprises the primary "galaxy" is thereby set in motion,
thus marking the beginning of the interaction phase. Aside
from statistical fluctuations, this system is in a non-
rotating configuration. A couple of binaries were run with
a spinning primary "galaxy". The latter rotated
synchronously with the binary revolution; to the peculiar
post-mixing velocity of each particle was added a velocity
component egual to that of a rigid rotation of the primary
around the binary center-of-mass at the binary angular
velocity. Some results from these runs with rotating
particle configurations are discussed in SIIIc.

One of the difficulties attending earlier numerical
binary interaction studies is the problem of transients:
such problems were mentioned in SI. It is not physically
realistic to place a massive perturber on a trajectory that
brings it very close to another "galaxy" whose mass and
velocity distributions correspond to an equilibrium
configuration at infinite separation. Unphysical transient
effects arise here as soon as the force field of the

secondary is turned on; how much these have affected the
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merger rates calculated by W78 and others is not yet known.
The present study attempts to answer this last question.
For a fixed period of time the MTBA equations of motion are
replaced by the equations of the restricted three-body
problem. The duration of this relaxation phase is called

the relaxation time T ; its value is chosen after the

relax
initial binary orbital parameters are selected. Trelax is
the elapsed time during which M, and M, respond only to the
total mass of the other as though all of the mass in each
were confined to a point at its center. The test particles
respond to M, and M, as shown in equation (1a). A
discussion of the procedure by which the best value for

T can be estimated is given in SIIIa.

relax

During the relaxation phase the binary follows a
simple Keplerian trajectory. Before the relaxation phase is
actually begun, however, the solution of the two-body
problem is used to take the secondary from its initially
chosen position to the point on its trajectory that precedes
that initial location by an elapsed time equal to the
relaxation time. This guarantees that following the
relaxation phase the full binary interaction phase will
begin with the orbital parameters of the secondary precisely
equal to those initially prescribed. The relaxation phase
begins as soon as the perturber is placed back on its

Keplerian trajectory by a time Trelax: It is at this point

that the restricted three-body calculation is initiated.

During that calculation the test particle mass, energy, and
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angular momentum distributions change in such a way as to
‘make accommodation for the nearness of the pertufber.
Thereby the primary "galaxy" enters into a reasonable
equilibrium with the secondary, and thereafter the full
interaction phase is ready to begin. The latter phase
corresponds to the integration of equations (1) and
continues until either a merger event has occurred or a
prescribed time has elapsed. For every test run there is a

run in which T = 0 and one in which T

>
relax relax 0.

Comparisons between the "relaxed" and the "unrelaxed" runs
are made in §SIIIa-d.

In summary, mixing and relaxation phases are
introduced into the binary evolution calculations in order
to avoid those non-physical transient phenomena that depend
on initial conditions. Before the full simulation of the
binary is undertaken, a restricted three-body integration is
carried out with a point primary M,, a point perturber M,,
and N temporarily massless test particles. This permits the
particle mass, énergy, and angular momentum distributions
within the primary to accommodate the presence of the

perturbing secondary in a manner more nearly physical than

heretofore attempted.
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III. SOME RESULTS OF THE CALCULATION

In this section are described preliminary results of
the integration of equations (la-c) for some 30 different
initial orbital configurations. Sections IIIa-d will
present a discussion of merger times and SIIIe will describe
the "observables" that have been derived from a specific
test run. Merger times are tabulated for both circular
(SII1a) and non-circular orbits (SII1d). The effects of the
random initial conditions and initial galactic rotation are
discussed in SIIIb and SIIIc, respectively. For the
specific model simulation of SIIIe, there are discussions of
surface mass distributions (S§SIIIe.i), radial ellipticity
variations (SIIIe.ii), rotation velocity and velocity
dispersion measurements (S§IIlIe.iii), and angular momentum

properties of the merger remnant (SIIle.iv).

a). Merger Times for Circular Orbits

A merger time is defined to be the time elapsed
between the end of the relaxation phase (i.e., the beginning
of the interaction phase) and the moment at which the
perturber becomes energetically bound to the core of the
primary, roughly at a binary separation equal to 0.25. This
time is usually well-determined since the merger event is
typified by a marked increase in the binding energy of the
secondary relative to the primary within a narrow interval
of time. Table 1 presents merger times for runs with

initially circular orbits. The times are presented as a
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function of both perturber mass M, and initial binary
separation a, in units as defined in §IIc. Each case that
is entered in Table 1 has a relaxation phase duration egqual
to one initial binary orbital period. Merger times are
nearly independent of M,, except in those cases of initially
weak tidal interaction. A "weak tide" limit, Mza-3 = 0.20,
is established empirically from the location of the points
that are plotted in Figure 2. That figure demonstrates the
effect of the relaxation phase on numerically-determined
merger times. Merger times T, are those given in Table 1

(that is, for interactions with T equal to one initial

relax
orbital period); merger times T, are for those same
configqurations (i.e., M, and a unchanged), but with no
relaxation. One sees therefore that the non-physical merger
times T, are usually underestimates of the more nearly
physical times T,. The relation T, = 1.5T, provides a fair
estimate of the magnitude of the effect for the strongly
interacting binaries (filled circles). For values of the
a-3

tidal force strength M2 < 0.20, T, approximates Ty} these

are the open circles in Figure 2. It is also found that T,
has a strong dependence on M,. For example: if a = 1.5,
then T, = 27.5, 19.5, 15.5, 10, and 7.5 for M, = 0.25, 0.5,
0.75, 1, and 2, respectively. A comparison of these numbers
with the third line in Table 1 shows that the strong
dependence of T, on M, is an artifact of the numerical

integration scheme that ignores the activity of transients

(see discussion in S§IIh).
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It is convenient to have a working approximation for
the times T, that are given in Table 1. For the range

0.20 < Mza'3 < 1.0,

T, = 7 (M, a~3)70.25 ;1.5 (21)

2

Returning to physical units and using equation (20), one

finds that this becomes

M,R M -1 -0.25 3 1/2
T,=20 %52 (L) ] (&) "7 . (22)
a RE GM1

The first factor in equation (22) measures the strength of
the tidal force in units of the internal force within the
primary "galaxy"; T, depends only weakly on this ratio,
contrary to the behavior found for T, The second factor in
equation (22) approximates the dynamical timescale for the
binary system as a whole. For M2 2 0.10, a better

approximation is

log,q T, = 0.09 P + 0.5 , (23)

where P is the initial circular orbital period of the binary
and both T, and P are measured in dimensionless units. Each
of these last three equations demonstrates the strong
dependence of T, on the initial binary separation a, which
fact is also obvious in Table 1. From those equations one
derives a merger timescale of order 109 years for a pair of
galaxies whose relative orbit is nearly circular, whose mass

ratio is near unity, whose separation equals a few effective



3

radii, and whose component galaxies are of typical galactic

dimensions.

A physically meaningful value for the "relaxation
time" was first determined empirically. A particular
orbital configuration was chosen for a detailed study of the

dependence of the merger time T on T

merge relax® It vas

found that T grew as T

w in i
merge as creased in value from

relax

0 to P/2 to P, but was nearly unchanged when T was

relax

increased from P to 3P/2. The value T = P was

relax
therefore adopted for use in all bound-orbit simulations;
various initially-unbound orbits were also run, some of
which were unrelaxed and some of which had values of Trelax
in the range from 4 to 10 time units. These empirically
chosen values for "relaxation time" were later justified
physically in a study of the time-dependence of the net
torque applied to My; this is the torgue applied by the N
test particles to M, relative to the systemic center of
mass.

In Figures 3 and 4 the torgue applied to M, is
plotted against time for two different orbits. Each point
actually represents the negative value of a summed torque
that is the sum of the values of the tidal torgue calculated

at each of 16 consecutive time steps. Each point then

corresponds to an average over the elapsed time At = 16h

0.50. Figures 3 and 4 each present the summed torque

plotted against time for two different values of T  ,_.-

The left-hand side of each figure shows the variation in
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torque during the interaction phase of a run with zero
relaxation; the right-hand side shows the torgue variation
both during the relaxation phase (the shaded region) and
during the subseguent interaction phase for a run in which
Trelax = P- In Figure 3 the orbital parameters are M,=1 and
a=1.5; in Figure 4, M2=2 and a=1.5.

The "tidal interaction strength" at time t = 0 for
the configuration studied in Figure 3 is Mza-3 = 0.30; this
value is close to the "weak tide" limit (see Figure 2). A
slight rise in the torque is noted between t = 0 and t = 5
on both sides of Figure 3; these are transients. The sum of
the torgues applied to M, during that time is therefore
strongly negative, corresponding to a large angular momentum
loss by M,. This in turn leads to the rapid merger that is
noted in the case with zero relaxation (left-hand side). 1In
the case with non-zero relaxation (the right-hand side), the
effectiveness with which the torgue reduces the angular
momentum of M, is diminished since the transients have all
but disappeared by the time the interaction phase is begun.
The instantaneous torque oscillates between positive and
negative values for some time after the relaxation phase,
hence the decreased capture efficiency. In Figure 3 merger
times are 16.5 and 10 for runs with and without relaxaticn,
respectively.

A more striking demonstration of the transient
effects is shown in Figure 4. The "tidal strength" at t = 0
is Mja~3

2 = 0.59, twice that of the orbit presented in
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Figure 3. The peak value of the transient torgue in
Figure 4 is likewise two times that of Figure 3. There is
no doubt in this case that the rise in torque at early times
'is a non-physical transient effect; there is no other peak
of similar height until just prior to merger. Merger times
are 16.5 and 7.5 for the runs with and without relaxation,
respectively. Between the right-hand and left-hand sides of
Figure 4 there is a difference in the peak torque values
plotted at the moments of the actual merger events
(indicated by arrows). This difference is due mainly to the
nearly instantaneous capture of M, in the case with zero
relaxation, as compared to the slower capture of M2 in the
second case.

The shaded regions of Figures 3 and 4 have already
been identified with relaxation phases of duration
Trelax = P- Since the transient torgue peaks are completely
enclosed within the boundaries of those regions, perhaps a
shorter relaxation phase would be allowable. There appear
however to be small secondary rises in the torque during the
latter portion of each relaxation phase; these may or may
not be transient phenomena in the same sense as the primary
peaks are transients. In order to provide for some margin

or error in our estimate of the best value for T a

relax’
value equal to one orbital period is usually chosen. The

numerical algorithm can thereby suppress the major
transients that develop when the massive perturber is placed

near to the initially spherically symmetric particle
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confiquration that comprises the primary "galaxy". The

empirical choice of T = P is therefore physically

relax
justified from an investigation of the torque curves
(Figures 3 and 4), and values like one-half of the initial
orbital period are probably okay also. The conclusion
derived from this is that the merger times found by previous
investigators must be modified upwards if the initial tidal
forces in their simulations were very large. In most cases
the corrections to the merger times amount to about 50% (see

Figure 2).

b). Effects of Initial Conditions

It is important to determine what effect initial
conditions have on the merger times that have been
calculated by MTBA. For this purpose many tests were run
with one of the orbital configurations specified in Table 1.
The initial orbital parameters in all of the test cases
discussed in this subsection are identical: M, = 0.5 and a =
1.5, on an initially circular orbit. For these values,
Mza-3 = 0.15, which places this interaction in the "weak
tide" domain. Table 2 lists all of the various runs by
number. Each run is specified by its initial set of
particle positions and velocities. These initial conditions
are determined by (i) the initial "seed" value in the
sequence of random numbers employed by the Monte Carlo
algorithm, (ii) the mixing time of the isolated, spherical

particle configuration that was generated by that "seed",

(iii) the number of test particles, (iv) the inclusion or
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exclusion of synchronous, rigid rotation in the particle
configuration at the angular velocity of the binary systen,
and (v) the duration of the relaxation phase. 1In Table 2,
both Trelax and Tmerge are measured in units of the initial
binary orbital period P = 3m; Thix is measured in time units

as specified in SIIc. The contents of this table are

examined below.

A comparison of the values of Tmerge for runs 2, 3,
and 5 demonstrates their virtual independence of the "seed"
value, a conclusion also to be drawn from the results for
runs 11 and 12. An apparently statistical fluctuation in
the distribution of particles used for run 13 caused a
substantial deviation in its merger time from the values for
Tmerge found in nearly all other runs. Runs.8 and 11
together show that Tmerge is basically independent of the
mixing time Tpix+ RUnS 3, 4, 8, and 10 demonstrate that
Tmerge is independent of the number of particles N. This
last conclusion is important since it implies that the
effects of small N are to some extent under control. Here

is a distinct advantage over the N-body codes that can only

marginally suppress two-body relaxation, the source of most

dependence on N,

Statistical variations in numerically-determined
merger times are probably smallest for large N. Runs 4 and

10 (with N = 2000) therefore suggest that Tmerge is

independent of T as expected in the "weak tide"

relax’
domain. This independence is further supported by a
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comparison of the values of Tmerge in runs 6, 7, and 8. The
results from <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>