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ABSTRACT

I. SOLITON ON A SLOPING BEACH AND RELATED PROBLEMS

The problem of the behaviour of a soliton on a
slowly varying beach is considered. It is shown that for
a correct description, the full Boussinesq equations
rather than a Korteweg-de Vries type approximation must be
used. Using both energy conservation and two-timing expan-
sions, the behaviour of the soliton is analysed. The
slowly varying soliton is found not to conserve mass and
momentum and it has been suggested that to conserve these
quantities, both forward and reflected waves must be added
behind the soliton, these waves being solutions of the
linear shallow water equations. It is shown that to the
order of approximation of the Boussinesq equations, only
a forward wave (or tail) behind the soliton is necessary
to fulfill mass and momentum conservation.

A perturbed Korteweg-de Vries equation for which
the perturbation adds energy to the soliton is considered.
It is found that a tail is formed behind the soliton. The

development of this tail into new solitons is analysed.

I1. MODULATED CAPILLARY WAVES

An exact hodograph solution for symmetric and anti-
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symmetric capillary waves on a fluid sheet (of possibly
infinite thickness) has been previously found. Using this
sclution, an exact averaged Lagrangian for slowly varying
capillary waves is calculated. Modulation equations can
be found from this averaged Lagrangian, but due to the
algebraic complexity of the equations, the limit of waves
on a thin fluid sheet is considered. From the modulation
equations, the stability of symmetric and antisymmetric
capillary waves on a thin fluid sheet is found. The modu-
lation equations for antisymmetric waves form a hyperbolic
system and the simple wave solutions for this system are
calculated, These simple wave solutions are interpreted

physically.
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PART I

SOLITON ON A SLOPING BEACH AND RELATED PROBLEMS

The problem of the behaviour of a soliton under
perturbations due to damping or variation in the medium has
received much attention in recent literature. One of the
most interesting examples of such motion concerns the prob-
lem of a soliton moving up or down a sloping beach and the
resulting variations in such quantities as the amplitude.
In this and other problems, the main result is that the
amplitude of the soliton is determined by energy conserva-
tion. For a soliton on a beach of varying depth h(x), for
example, this energy principle gives almost immediately
that the amplitude a of the soliton has the variation

a « h-1

It is found, however, that this energy law cannot
simultaneously conserve mass. To compensate for this, it
is argued that a tail is formed following the soliton and
a second order theory is needed to complete the discussion.
This is the central part of the present work.

Most of the existing work focuses on a Korteweg-de
Vries type of equation in either the form

u, + \)(t)uuX + A(t)uXXX = 0,



or the equivalent form

u, + 6uux + u = =T(t)u

t XXX

Here T(t) is small and T, v and ) are slowly varying func-
tions of t. These equations can be used as an approxima-
tion to the beach problem if the roles of t and X are
reversed in that t is now interpreted as distance up the
beach and x is a retarded time.

The questions concerning the tail and the related
mass balance can be studied in the context of these equa-
tions. While for some physical problems they may be valid,
it is claimed here that they are inadequate for a descrip-
tion of the tail region formed when a‘soliton moves on a
beach. The derivation of the Korteweg-de Vries approxima-
tion makes the equation valid only to first order in the
region occupied by the soliton. A Boussinesq type equation
or some equivalent system is required for the discussion.

The Boussinesq system

3 —
+ (hou + nu)x + (1/3 gh0 uX) =90

nt XX

u, + uu, + gn, = 0

will be used in the present work, where h0 is the undis-
turbed depth, n is the surface elevation and u is the
fluid velocity.

These equations and the results obtained from them
will be used to investigate a suggestion put forward by

Miles (1979) that for mass to be conserved, a reflected
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wave as well as a tail are required. This isan intriguing
suggestion since for the usual problem of a linear wave
moving on a slowly varying beach, any reflection is expo-
nentially small and is not importantyin the conservation
of mass. It is an interesting general question of whether
this is true for nonlinear waves. It is found in the
present work that when the Boussinesqg equations are used,
the mass conservation is accommodated in the forward prop-
agating tail and no reflected wave is necessary to the
main orders of approximation.

The perturbation problems for the Korteweg-de Vries
equation serve as useful background and a detailed consider-
ation of these problems is presented in Chapter One. How-
ever, the main contribution of Part I is on the Boussinesq

equations and these are dealt with in Chapter Two.



CHAPTER ONE

PERTURBED KORTEWEG-DE VRIES EQUATIONS

1.1 INTRODUCTION

Many physical problems are described by Korteweg-de
Vries type equations in which the usual Korteweg-de Vries
equation has extra terms representing such effects as change
in the medium added. 1In this chapter, we shall consider
three types of such equations, two of which are approxima-
tions to solitons moving up and down a beach and the third
describing a soliton upon which viscosity acts. The tech-
niques used to solve these equations are instructive for
our central problem of the behaviour of a soliton on a
beach, this being the topic of Chapter Two.

The perturbed Korteweg-de Vries equation describing
motion on a slowly varying bottom has been derived by
Ostrovsky and Pelinovsky (1970), Kakutani (1971) and Johnson
(1973a) using the usual assumptions needed to derive the
Korteweg-de Vries equation. Two distinct methods have been
employed to solve this equation for a soliton initial condi-
tion; two-timing and inverse scattering. In the present
work, the method of two-timing will be used.

The first attempts at the analysis of the problem

of a soliton on a beach (0tt and Sudan (1970), Johnson

(1973a) and Ostrovsky (1976)) assumed, to first order, a
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slowly varying soliton and used essentially energy conserva-
tion to find how the amplitude of the soliton varied.
Ablowitz (1971), Johnson (1973b) and Ko and Kuehl (1978) then
extended the perturbation analysis to second order and found
that the second order term approaches a "constant" value
immediately behing the soliton, which indicates that the
slowly varying soliton expansion is non-uniform. The pres-
ence of this secular term was also found by perturbations
on the inverse scattering solution of the Korteweg-de Vries
equation done by Kaup and Newell (1978) and Karpman (1979).

Numerical work by Leibovich and Randall (1973) and
Ko and Kuehl (1978) indicated the presence of a tail, called
a "shelf" by these authors, behind the soliton. Karpman
(1979) called the secular term in the soliton expansion a
"plateau."” The term shelf or plateau for this region is
misleading as it, in fact, cannot be flat and obeys a linear,
non-dispersive form of the perturbed Korteweg-de Vries equa-
tion. In the present work, it will be referred to as the
near tail.

It was noted by Johnson (1973b) that while the slowly
varying soliton satisfies energy conservation, it does not
satisfy mass conservation. Johnson tried to introduce a
region behind the soliton to account for the mass deficit,
but the presence of distinct near and far tail regions
behind the soliton was not indicated in his work.

Using the earlier inverse scattering work of Kaup

and Newell (1978), Knickerbocker and Newell (1980) deduced
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that the near tail, which they called a "shelf," must sat-
isfy a linear, non-dispersive form of the perturbed
Korteweg-de Vries equation. They then demonstrated that the
slowly varying soliton plus near tail then satisfied mass
conservation within the Korteweg-de Vries framework. Con-
firmation of their analytical results was obtained using a
numerical solution. Miles (1979) showed that while the
Korteweg-de Vries mass is conserved, the actual mass is not.
This question of conserving the true mass forms the central
part of Chapter Two.

In the present work, we shall use two-timing and
matched asymptotic expansions to find the behaviour of the
slowly varying soliton and its tails. Knickerbocker and
Newell (1980) implied in their paper that inverse scattering
was necessary for the solution of the problem. It will be
found that this is not the case and, indeed, using asymptot-
ic expansions simplifies the details and clarifies the
physical processes involved. The main part of the solution
will be found to consist of a slowly varying soliton, which
is first determined by energy conservation and then con-
firmed in a detailed perturbation analysis. This slowly
varying soliton does not satisfy mass conservation and acts
as a mass source which creates a tail behind it and the
combined soliton and tail then satisfy energy and mass con-
servation within the Korteweg-de Vries framework. Grimshaw
(1979) used the approach of asymptotic expansions and two-

timing, but while agreeing with his slowly varying soliton,
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the present work differs with his formulation of the tail.
Also, Grimshaw's approach to the problem seems to be more
complicated than is necessary and obscures the basic ideas
involved.

The asymptotic expansion for the near tail is found
to become invalid at a finite time as all the terms in the
expansion become of the same order. After this time, the
near tail is found to steepen and move towards breaking.
The near tail is prevented from breaking by the dispersion
becoming important, which causes the near tail to break up
into new solitons plus oscillations.

The behaviour of a Korteweg-de Vries soliton upon
which a small viscosity acts will also be considered. It
is again found that the solution consists of a slowly vary-
ing soliton, a near tail and a far tail. Karpman (1979)
found the behaviour of the slowly varying soliton using
inverse scattering and found the far tail, but did not dis-

cuss the behaviour of the near tail.

1.2 ENERGY AND MASS ARGUMENTS

A simple basic perturbation problem is

ut + 6qu + uXXX = cu (1.1)

where 0<g<<l.
This equation has the energy conservation equation
u?dx ' (1.2)

a/dt!” nmu?dx = ¢

[oe)

on assuming that u+0 as x+t»., The most obvious attempt at
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an asymptotic solution would be to propose the slowly vary-

ing soliton solution

u = 2n°sech?nd (1.3)
where
5 = X_E(T)
€
T = et (1.4)
£'(T) = 4n?
n = n(T)

Using this form of solution, we find from the energy equa-

tion (1.2) that

2/3n (1.5)

=3
—
i

so that

n = n6e2/3T, (1.6)

where n, is the initial value of n.
The perturbed Korteweg-de Vries equation (1.1) also

has a mass conservation equation
d/dt’Ze udx = e/%w udx (1.7)

on again assuming that u+o as x+»t». The slowly varying

soliton solution given by (1.3) and (1.6) gives

d/dt!Zw udx = 8/3en
and (1.8)

IOO
gl=0o udx

den
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We thus see that the slowly varying soliton con-
serves energy, but does not conserve mass. It is supposed,
therefore, that there is some further tail behind the soli-
ton to make the mass adjustments. We shall take up a
detailed asymptotic analysis in the next section, but we
can obtain an overall picture by the following more quali-
tative argument. Let us suppose that the soliton merges
into this new region around some point X behind it. Since
mass balance is violated to terms of 0(e), we expect that
the region behind the soliton is of 0(e). The perturbed
Korteweg~de Vries equation (1.1) gives the exact mass con-
servation expression

d/dtf:0 udx + U x + u]xo dx,/dt = EI;b udx (1.9)

We shall now assume that Uy is negligible around
X which can be verified later, and that X ~moves with the
soliton speed 4n?. Using the soliton expression (1.3) as an

approximation for u in the integrals as in (1.8) then gives

4n, + u] dxo/dt = 4den

t X

0

Therefore

c ee—2/3T
ulx0 ~ 37 = ——§ﬁ:—— (1.10)

The soliton is acting as a mass source and this mass
flux creates a region of 0(eg) behind the soliton. The
expression for u in (1.10) acts as a boundary condition to

generate a tail. The main purpose of this chapter is to
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analyse the development of this region.
The tail is called a "shelf" by Leibovich and
Randall (1973), Ko and Kuehl (1978) and Kaup and Newell

(1978) and a "plateau" by Karpman (1979).

1.3 FORMAL ASYMPTOTIC ANALYSIS

The results obtained in the previous section from
energy and mass conservation arguments will now be verified
by using a formal two-timing expansion for the solution to
the perturbed Korteweg-de Vries equation (1.1). 1It is
useful to show that both the conservation arguments and
formal asymptotics yield the same results; while botﬁ
methods are easily carried out for the Korteweg-de Vries
equation, the conservation arguments require much less work
for the Boussinesq equationsof Chapter Two.

In the main region of the soliton we shall seek an

asymptotic solution of the form

u=u (8,T) + eu (6,T) +€2u2(6,T) +»... (1.11)
where
T = ¢t
8 = x - E(T) /¢
Ep = wé(T) + Ezwz(T)+... (1.12)

We can now proceed to substitute the expansion (1.11)
into the perturbed Korteweg-de Vries equation (1.1) and by

equating coefficients of powers of & equal to zero, find
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differential equations for the u -
The solution for u, is just the slowly varying soli-

ton

2n2sech?n6

o
il

w = 4n? (1.13)

which can be easily verified from the zeroth order equation
obtained by substituting the expansion (1.11) for u into the
equation (1.1).

The equation for u, is

- 2 = - ’
4n ule + 6u0ule + 6uoeu1 + u1666 u0 uOT (1.14)

The complete details of the solution for u will not be

1
needed and all the required properties of ul can be obtained
from the equation for u, and its adjoint. The adjoint to

the homogeneous equation for u is

-4n?w_ + 6u0w + W =0 (1.15)

S| 5] 800

Multiplying equation (1.14) for ul by w and adding

this to the adjoint equation (1.15) multiplied by u gives
1

— 2 + -— + e =I°° — -
f-4n ulw uleew ulewe ulwee]_oo _w(u0 uoT)wde(l 16)

We require u -0 as 9+~ as the soliton will have no
1
effect on the region far ahead of it and we require u to
1
be bounded as g+~«~ . The bounded solutionsof the adjoint

equation are u, and 1. Let us first consider the case when

w =u .
0
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When w = uo, the left hand side of equation (1.16)

is zero, sO we reguire

IOO

(u0 - uoT)uode =0, (1.17)
which gives

= 2/3n (1.18)

This is the same result as we obtained previously from
energy conservation.
Let us now consider the case when w = 1. If u1+0

as 0+-=, then we would obtain the requirement

™ - uoT)de =0, (1.19)

-— 00 0

which results in a different expression for n(T) than (1.18).
We therefore see that u1 does not tend to zero as 6+-», but

approaches the constant value given by

2 = I® -
4n u1 __co(u0 uOT)de

I

in - 4nT

4/3n (1.20)

We have now obtained a more precise derivation of the mass
balance condition (1.10) found in Section 2. The fact that
u, is non-zero as 8»>-«» while u0+0 as 9-+-» shows that the
asymptotic series (1.11) for u is not uniformly valid as
x+-» and needs to be matched to an outer layer.

The mass balance result can also be obtained
directly from the equation (1.14) for ul. Integrating this

equation once and choosing the "constant" of integration
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such that ul vanishes as 06+» leads to the equation
-4n*u  + 6uu + u = -2/3n(1l- tanh n6)-4/36n2sech?nd
: o' 108 (1.21)

As Q+—o, ulee+0 and uo+0, so that we again obtain

u as g>=—co (1.22)

LoL
1 3n
To the next order, the equation for u is
2
An2 = - -
an‘u 4 + 6(uou2)e+ U,ggg = ~U,p -6u,u g + u, +w.u g (1.23)
We can easily see from this equation that

] §§ﬁ@ as B+-o (1.24)

It is clear that in general, the solution for u
will have a secular term of the form en-l as f»—-xo. We
therefore see that the perturbation expansion (1.11) for
u is not uniformly valid as 9+-». We shall interpret the
expansion (1.11) for u as an inner expansion and we shall
match it to a suitable outer expansion. This outer expan-
sion will be derived in the Sections below.

Johnson (1973b) in an extension of an earlier paper
(Johnson (1973a)) used a two-timing expansion for u of the
form (1.11), but due to algebraic errors, found that u was
exponentially non-uniform as 0-«,

The expansion for u is also not uniformly valid as
f+» as ]Eul[<}<[u0] as 9+, even though u_ decays exponen-
tially as 6»w. A uniformly valid outer expansioﬁ for g

has been derived by Grimshaw (1979) and the derivation of



15
this expansion will not be repeated here. The region
g+» is not of much importance and it suffices to say that
the uniform outer expansion for 0-+» decays exponentially

to zero.

1.4 THE NEAR-TAIL REGION

We shall now determine what form the outer solution
must take. As the bounded term in u as f+-» is 0(e) and a
function of T, we expect that the region behind the soliton
will be of 0(e¢) in height and a slowly varying function of
X and T, where X = ¢X. S0 we propose an expansion of the

form
u=ev (XT) + ezvz(X,T) +... (1.24)

for the near-tail region behind the soliton.
From the perturbed Korteweg-de Vries equation (1.1),
we obtain the following equation for v upon using the above

expansion:
v =v , (1.25)

so that

A(X)éT (1.26)

\'4
1

The function A(X) is determined by matching with the inner
solution. This matching will differ from the usual matching
in that it will be done with a moving inner solution.

Physically what is happening is the soliton is
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casting off waves. As these waves have amplitude 0 (€) and
vary on the slow space and time scales, they have phase
speed zero, so that the corresponding characteristics are
parallel to the t axis. For fixed X, the expression (1.26)
for v, gives the variation of v, along a characteristic.
The function A(X) is determined by the value of u, at the
point at which the characteristic starts. In figure 1,
the characteristics for the near-tail have been sketched.

As the soliton speed is 4n?, we see from the equation
(1.10) giving n as a function of T that the soliton position

is given by

3T
ex_ = 3n 23T _ ), (1.27)
so that the soliton is at xS when
Xs
T = 3/4 log (1 + 3ﬂ02) (1.28)

Then for matching with the inner solution, we see from the
behaviour of u1 as f+»-» given by (1.20) and the outer solu-

tion (1.26) for v that we require
1

A(x)el = %ﬂ when T = 3/4 log (1 + X/3n2)  (1.29)
We thus find that
A(X) = 1 eI (1.30)
3n0(l + é—n——z)

0
The slowly varying soliton and its near- and far-

tails have been sketched in figure 2.

We notice that the region behind the soliton depends



17

near - tail

soliton

/

Figure 1:

>
X

Boundary value problem for the near-tail
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solifon

near -tail
far - tail

,V\]V\/l

Figure 2: Sketch of the soliton and tails
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on X and so is not a flat shelf as implied by Leibovich and
Randall (1973), Ko and Kuehl (1978), Kaup and Newell (1978)
and Karpman (1979). 1In the work of Grimshaw (1979) and
Knickerbocker and Newell (1980), it was found that the near-
tail must have a spatial dependence. Knickerbocker and
Newell found that to first order, the'behaViour of the near-
tail is given by the linearised, non-dispersive form of the
modified Korteweg-de Vries equation (1.25). Grimshaw tried
to use a form of expansion which was valid for both the
regions ahead of and behind the soliton, which tended to
obscure the simplicity of the equations governing the
behaviour of the near-tail. Grimshaw's method kept exponen-
tially small terms for the near-tail, even though these
terms are not the important ones describing the behaviour

of the near-tail.

Kaup and Newell (1978), Karpman (1979) and
Knickerbocker and Newell (1980) used perturbations on the
inverse scattering solution of the Korteweg-de Vries equa-
tion to analyse the present problem. This method yields the
slowly varying soliton of the previous section plus the
secular behaviour of the inner solution, which is a non-
decaying component of the continuous spectrum due to the
interaction of the soliton with the perturbation. Xarpman
and Kaup and Newell proposed that the secular behaviour of
ul formed a flat near-tail, while as mentioned above,
Knickerbocker and Newell found that the near-tail must

depend on X. The straight asymptotic approach used here
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yields all the results of the inverse scattering method,
while having the advantage of being much simpler, especially
if higher order terms are required.

Knickerbocker and Newell also obtained a numerical

solution for T(t) = ¢ and T (t) and found good agree-

-

et-1
ment with the analytical results for the slowly varying
soliton and the near tail.

As the soliton moves, it forces up the near-tail,
which then develops according to equation (1.25). The
matching determines the initial height from which each
point of the near-tail starts. We also note that the near-
tail is growing exponentially in time, so the perturbation
scheme outlined so far cannot remain valid as t-w.

Using the outer expansion (1.24) for u, the 0(e?)

equation which determines v 1is
2

v2T - V2 = —6vlv1X, (1.31)
which has solution
,T
v = Se 7 + D(X)erT (1.32)
2 187]04(1 + _5?]___2_)7 2

0

where D(X) is determined from matching with the 0(ec?) terms
in the inner soliton solution.

We shall be interested in later sections in the
term with the fastest growth in T in the solution for v,
The form of this term will be found by induction. For the

induction hypothesis, let us assume that the'vj,j=1,...,n—l
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grow like eJT. The 0(en) equation is, from the outer

expansion (1.24) for u and the perturbed Korteweg-de Vries

equation (1.1),

=1
L7 Vi Vpomlx 9, (X T) (1.33)
where g, grows like e(n_3)T.
By the induction hypothesis,
nzl
mél Vm(vn—m)x

T

has T dependence of the form e"" and so we see that the

fastest growing term in v has T dependence of the form

enT. Therefore as v1 grows like eT, by induction, we

have that v, grows like enT.

Furthermore, we can also see from the solution for
v given by (1.26) and (1.30), the solution (1.32) for v2
and the general differential equation (1.33) for v, that

the X dependence of the fastest growing term in v, is of

the form
AenT
X P
(1 + 5337)
where A is a constant and p>l. The fastest growing term in

vy is thus a monotonic decreasing function of X.
Since the soliton started at x = 0, we expect that

the near-tail will extend from x = 0 to x = X the soliton
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position. It can be easily verified that the mass conser-
vation equation (1.7) is satisfied to first order by the
combination of the soliton plus the near-tail extending
from x = 0 to x = Xg- This is to be expected from the
straight mass conservation argument of Section 1.3. We
have assumed that the region x<0 makes no significant con-
tribution to the total mass. That this is so will be shown
in the next section.

We have now considered the ideas necessary for the
study of the Boussinesq equations in Chapter 2. 1In the
remainder of this chapter, the further deﬁelopment of the
near-tail into new solitons and other perturbed Korteweg-de

Vries equations to which our present methods can be applied

will be dealt with.

1.5 THE FAR-TAIL REGION

We shall now deal with the region x<0. In this
region, we expect u to be essentially the solution of the
linearised perturbed Korteweg-de Vries equation with depen-
dence on x, t and T. Dependence on the slow space variable
X is not expected as the.near—tail plus soliton and the
far-tail are separate entities. 1Including any slow space
variation in the far-tail results in secular terms. So for

x<0, we assume the expansion

u = eUl(x,t,T) + EZUZ(x,t,T) ... (1.34)
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The perturbed Korteweg-de Vries equation (1.1) then

yields the 0(g) equation

U U =
Lt + p— 0, (1.35)

which has the similarity solution

X
j(3t)1/3

- 00

U1 = B(T) Ai(s)ds (1.36)

where B(T) is a constant of integration to be determined by
matching with the near-tail.

From the solution for v1 given by (1.26) and (1.30),
we see that matching gives

eT
B(T) = -
3n0

Our assumption in the previous section that the far-
tail makes a negligible contribution to the mass balance
equation is seen to be valid due to the oscillations in the
far-tail.

The solution for the far-tail given by (1.36) and
(1.37) has also been obtained using inverse scattering by
Knickerbocker and Newell (1980).

Karpman (1979) obtained an expression for the far-
tail which differs from that above in the slow time depen-
dence. This difference is due to the far-tail being calcu-
lated on the assumption that thenear-tail is flat and is
just the secular term in the soliton expansion. This leads

-2/3T

to his slow time dependence being of the form e rather

than eT as the secular term in u has time dependence of
1
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2/3T

the form e rather than eT. In effect, he matched the

far-tail directly onto the soliton rather than the near-
tail.

Johnson (1973b) noted that the slowly varying soli-
ton expansion is non-uniform and deduced that there must be
a region 0(¢) in height behind the soliton to account for
the associated mass flux from the soliton. He then intro-
duced an expansion which was assumed to hold in the entire
region behind the soliton. Johnson found that his expansion
gave the same asymptotic behaviour as x+-« as the Airy func-
tion solution (1.36) for the far-tail, but didn't note that
his equations did in fact give this Airy function solution.

Grimshaw (1979) also tried to describe both the near-
and far-tails by the same perturbation expansion. These two
regions have different roles as the near-tail is due to a
mass flux from the soliton and the far-tail is due to the
initial conditions. It would then appear that the near-
and far-tails should be described by separate expansions.
Furthermore, using the same straightforward expansion for
both regions gives rise to secular terms at second order, as
while the Airy function Ai(x) decays as x»>—-o,its derivative
grows algebraically as x»-». It 1is not clear how these
secular terms can be eliminated. These secular terms were
not noted by Grimshaw as he did not calculate quantities to

second order.
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1.6 LONG TERM BEHAVIOUR

It has been noted that the near-tail grows with T
and the perturbation scheme for the near-tail will cease to
be valid after a certain time. We shall now deal with the
long term behaviour of the near-tail.

In Section 1.4, it was shown that the near-tail
is given by the expansion (1.24) for u where the fastest

growing term in Va has the form

nT
Ae = (1.38)
(1 + 33—3)p
0

where A is a constant and p>l1. We therefore see that when

t = 0(- lgﬂ_i)

2 ' (1.39)

all of the terms in the perturbation expansion (1.24) for the

near—tail become of the same order and the perturbation scheme

breaks down. When t is of this order,
0(€v1) = O(Evz) =... =1
This implies that we should try a new expansion
u = wo(X,T) + ewl(X,T) +... (1.40)

for the near-tail after the time is of order given by (1.39).
The perturbed Korteweg-de Vries equation (1.1) gives the
0(1) equation

W o + GWOWOX = 0, (1.41)



26

which has the solution
w = f(&) on X = 6£(&) (T - To) + £ (1.42)
o

where

T = - log ¢ (1.43)
0

If we use the values for v and v given by (1.26),
1 2

(1.30) and (1.32) at T = T0 as the initial condition, we

have -

1 + 5 I (1.44)

_ £ \5/4 g & \1/2
3n (1 + 37— 18n *(1 + 57—)

0

£(z)

Uhal
il

X - 6£() (T - T )

as the (implicit) solution for w
0

The solution for w will in general break and the
0

time for breaking is given by

_ . 1
TC = To + mlén WT (1.45)

if £'(£)<0 for some g. Now in Section 1.4, it was shown

that the fastest growing term in v, is monotonic decreasing

in X. We therefore have that f£'(£)<0 and

5 35

min[£'(g) | = |[£'(0)| = 36 3 + 1087 7 +... (1.46)
€ 0 0
The time for breaking is then given by
6n03
T, = T0 + - 35 (1.47)

— ...
3n *
0
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Of course, the near-tail cannot break as as the near-
tail steepens, the dispersion term U vx in the perturbed
Korteweg-de Vries equation will eventually become as impor-
tant as the other terms in the description of the near-tail.
When the near-tail expansion breaks down, we see
from the expression (1.27) for the soliton position that

—7/3), as at this stage, the near-

the near-tail has area 0 (¢
tail is of 0(1) in height. The near-tail takes a time of
O(e_l) to break and in that time, the soliton produces a mass

—2/3). So we see that while the near-tail 1is

deficit of 0 (e
breaking, we can ignore the mass being added to the near-
tail by the soliton.

The solution of the Korteweg-de Vries equation with
a small dispersion term and a general initial profile has
been dealt with by Gurevich and Pitaevshii (1974) using the

modulation theory deVeloped by Whitham (Whitham, Chapter 16)

for the Korteweg-de Vries equation. They matched a similiar-
ity solution of the form El/zl(—gga) for the modulation
~ t

equations in the region of the breaking front to the profile

away from the breaking front obtained from the equation

u, + 6uuX = 0, (1.48)

where € is a normalized time measured from the time of
breaking and X is a normalized coordinate measured from the
breaking front.

Applying their results to our case, we find that as

the near-tail begins to break, the front of the near-tail
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begins to break up into oscillations which grow in amplitude

1/2 3/%

like (T - TC) and spread like (T - TC) The modulus of
the cnoidal wavetrain formed in this way varies from one at
the front to zero at the trailing edge of the anetrain.

So at the front of the breaking near-tail, new solitons are
formed with oscillations forming behind them. Unfortunately,
the details of this break-up have to be found numerically.

Gurevich and Pitaevskii's results apply only when
the region of oscillation is small compared with the near-
tail. We expect that a new near-tail will form behind the
new solitons. Of course, the leading (and original) soliton
is continually increasing in height and decreasing in width,
so that physically, it must topple at some time, which leads
to the formation of a turbulent bore.

The perturbation scheme for the leading soliton
remains valid even while the near-tail is breaking up into
new solitons, so we expect it not to undergo any change due
to the breaking near-tail. When the near-tail is breaking,

u, = 0(82/3) as g»-«, so the soliton has in fact nearly

detached itself from the near-tail.

1.7 OTHER EQUATIONS

We shall now consider two other perturbed Korteweg-
de Vries equations which can be analysed with the methods

of the previous sections.
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1.71 - KORTEWEG-DE VRIES EQUATION WITH DAMPING

First, we shall consider the equation

uy + 6uuX + U,y = ~EU (1.49)

The solution to this equation can be basically obtained by
changing the sign of ¢ in the previous sections. The solu-
tion again consists of three regions; a slowly varying
soliton, a near-tail and a far-tail.

For the slowly Varying soliton, we use the expansion
u=u (6,T) + eu (6,T) + ezuz(e,T) +.o.. (1.50)

where

5 = x - Eégl (1.51)

' (T) u%(T) + eszT) +ou.

As before, we can find by using either the energy and mass

conservation equations

d/ar!? 1/2u?dx = =17 _u?dx (1.52)
d/dt xoudx + u]Xo % = "¢ Xoudx

or by substituting the expansion (1.50) for u into the per-

turbed Korteweg-de Vries equation (1.49) that
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o
I

2n%sech?n6

_ noe-2/3T

3ﬁ02(1 - e T/3T,y (1.53)

™
X
0]
=
Il

u :l as 6=
17 3n
-56

a ~

.~ 3en3 as e

In this case, the amplitude of the soliton is decreasing.

We again find a mass deficit for the slowly varying
soliton (which is determined by conservation of energy, as
before), which we correct by adding a near-tail behind the
soliton. In this case, the near-tail is a dip behind the
soliton, which deepens with increasing time.

The near-tail expansion is
u = evl(X,T) + eZVZ(X,T) +eu., (1.54)

which is valid for 0<x<xs(t).

We find by substituting the expansion (1.54) into
the perturbed Korteweg-de Vries equation (1.49) and matching
with the soliton expansion that

=T

-e
v = (1.55)
1 _ X 5/4 7
3n0(l ————Bnoz)

Behind the near-tail, we again have a far-tail in
the region x<0, given by

u = sUl(x‘,t,T) +€2U2(x,t,T) +iun, (1.56)
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where we find that

v A,
— 1
g =28 108 01 s)ds (1.57)
1 3ﬂ0 -

This expression again differs in the slow time variation from
that of Karpman (1979}, as he assumed that the near-tail was
flat.

The slowly varying soliton forces down a dip behind
the soliton, which then decreases in depth. As the soliton
forces down the diplfaster than it decays, the expansions
will break down when the near-tail is of the same order as
the height of the soliton. This occurs when t = 0(- %%3—2).
When t is of this order, the width of the soliton is 0(8—1/3)
and the height of the soliton is 0(82/3), so we then have the
new expansion

w= ey & o+l (1.58)
for the soliton and near-tail, where
% = 1/3 (1.59)
The equation for w, is then
W + 6w1w1§ + wliii = -wl (1.60)
This equation cannot be solved, so we cannot determine the
long term behaviour of the soliton and near-tail. We expect
that the soliton and near-tail will "rapidly" (on the time
scale T) decay to zero as, in a sense, the damping in equation

(1.60) for w is of order one. This expectation is borne out
1

by the numerical results of Knickerbocker and Newell (1980).
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1.72 KORTEWEG-DE VRIES EQUATION WITH DIFFUSION

Finally, we shall consider the perturbed Korteweg-

de Vries equation

uy + 6uux + uxxx = Euxx (1.61)

This equation describes a soliton upon which a small damping
or heat conduction g, 0<e<<l, acts (see, for example,
Karpman (1975)). Karpman (1979) discussed this equation
using inverse scattering. We again find that we need a
slowly varying soliton, a near-tail and a far-tail for a
complete description of the problem.

For the slowly varying soliton, we propose that

u = uo(e,T) + sul(e,T) +... (1.62)
where
6 =x - ééll (1.63)
g'(T) = wO(T) +-ezw2(T) ...

The energy and mass conservation equations for the

present equation are
d/dT!” 1/2u?dx = -17 u? dx (1.64)

a/dat!” udx = 0 (1.65)

respectively. The slowly varying soliton satisfies energy
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conservation, but again does not satisfy mass conservation
Using either the energy and mass conversation arguments or
by substituting the expansion (1.62) into the equation

(1.61) and eliminating secular terms, we find that

u = 2n2%sech?no
0
w = 4n?
0
n=n (1+ 16/15n§T)‘1/2 (1.66)
exg = 15/4 log(l + 16/15n°T)
u -~ 8n/1l5 as f+-w

As expected, the amplitude of the soliton decreases with

time.
The near-tail region cannot be flat as stated by

Karpman (1979) and we find that we must use the expansion
u = evl(X) + €2V2(X) +.o.. (1.67)

for the near-tail. The near-tail occurs in the region
O<x<xs(t). It is interesting to note that the near-tail is
independent of time in this case. This is due to the mass
conservation equation having no dissipation term. As before,

we find that

-2X/15

v = 8/15n e (1.68)
1 0

The far-tail, which occurs in the region x<0, is

given by

u = eUl(x,t) + erz(x,t) ... (1.69)
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and we find that

X

n D —

8 » 1/3
v o= 00 Ai(s)as (1.70)

The slow time dependence of this solution for the far-tail
differs from that of Karpman (1979). This is again due to
his taking the near-tail as being flat.

The near-tail is a positive elevation behind the
soliton which decreases in height as X increases. As the
soliton is decreasing in height, the expansion above will

break down when the soliton amplitude is of the same order

3) and for

as the near-tail. This occurs when t = 0(cg
times greater than this, we find that we must introduce the

new expansion
u = ezwl('f‘,x) Fou (1.71)
for the soliton and the near-tail, where

T = et (1.72)
The equation for W is then

Wli + 6w1wlX + W1XXX = leX (1.73)

We again expect that the solution of this equation
for w_will "rapidly" (on the time scale T) decay to zero
as the damping for w1 is now of order one.

It is interesting to note that the long term
behaviour of the soliton for the perturbed Kortéweg—de

Vries equations where the soliton amplitude decays is
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similar and very different from that where the soliton
amplitude grows. This is because for the soliton going up
a beach, new solitons are being formed, whereas in the other

two cases, the soliton is decaying to zero.
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CHAPTER TWO
SOLITON ON A BEACH

2.1 INTRODUCTION

The behaviour of a soliton on a beach (or in a chan-
nel) cannot be fully described by the perturbed Korteweg-de
Vries equation of the previous chapter. The perturbed
Korteweg-de Vries equation applies for motion in one direc-
tion only and so cannot answer the important question of
whether or not the shoaling of the beach produces a reflected
wave. This question is also crucially affected by higher
order terms in the Boussinesq equations which are incorrectly
neglected in the Korteweg-de Vries approximation, this approx-
imation being similar to a wavefront expansion, so that it
is only valid in the region of the soliton. The Boussinesg
equations also have the advantage of being in a fixed coordi-
nate system with the (x,t) coordinates of the equations being
the physical space and time coordinates. This makes physical
interpretation of the results easier. The main problem of
this chapter is the motion of a soliton up a beach, but
variations in the breadth can also be included with no extra
complication, so that the behaviour of a soliton in a channel
will be considered as well.

In the present chapter, we shall find an asymptotic
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solution of the Boussinesq equations for a soliton going up
a slowly varying beach (or channel). It would be expected
that this solution would bear similarities to the asymptotic
solution of the perturbed Korteweg-de Vries equation and
indeed it is found that the solution consists of two regions;
a slowly varying soliton and a tail created by a mass flux
from the soliton.

Grimshaw (1970, 1971) derived the Boussinesq equa-
tions for varying depth from the Euler equations and found a
two-timing expansion for the slowly varying soliton. As for
the perturbed Korteweg-de Vries equation, it was found that
the slowly varying soliton is determined by energy conserva-
tion with the expansion being non-uniform behind the soliton.
This non-uniformity is associated with the fact that the
soliton does not conserve mass. Miles (1979) suggested that
this mass problem could be solved by adding a forward and
reflected wave behind the soliton. These waves were then
calculated on the assumption that they are given by Green's
law for linear shallow water waves. This is an interesting
general point. Miles suggested that in all such situations,
a reflected wave is necessary to account for the mass deficit.
He also added that this is so in linear theory, in which case
there are strong arguments to show that any reflected wave is
exponentially small in the slowly varying parameter and could
not carry any appreciable mass. It is an interesting general
question of whether this is still true for nonlinear waves.

One of the main aims of the present investigation was to
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resolve this question. It was found that the mass deficit
is accounted for in forward moving waves in the tail and no
reflected wave is generated (this refers to approximations
taken as far as second order, but Miles referred to this
same level of approximation).

It will be found by a suitable rescaling of the
Boussinesqg equations that the tail is governed by the linear
shallow water equations. The tail is then the solution to
these equations with the moving boundary conditions deter-
mined by the mass flux from the soliton. As the solution to
this boundary value problem could not be found for arbitrary
soliton amplitude, an asymptotic solution to second order

in amplitude for small soliton amplitude was found.

2.2 BOUSSINESQ EQUATIONS

We shall consider a soliton moving in a channel whose
depth h0 and breadth b are slowly varying functions of the
distance x along the channel. We shall denote by ¢ the
length scale of the variation, so that 0O<g<<l. The surface

displacement will be denoted by n, so that

is the equation of the free surface.
Whitham (1967) has shown that the appropriate
Lagrangian for obtaining Boussinesq type equations for

shallow water waves for constant breadth is

— 2 2 _ 3 2
L1 = h(Ft + 1/2Fx) + 1/2gn 1/6h Fxx ’ (2.2)
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where F is the velocity potential. It is clear that the

Lagrangian for motion when breadth variations are included is
- 2 2 . 3 2
L = bh(Ft + 1/2Fx) + 1/2gbn 1/6bh F X (2.3)
The variational equations from the Lagrangian are:

§F: (bh)t + (bhFX)X + (l/3bh3Fxx)xx =0 (2.4)

§n: F, + 1/2F§ + gn - 1/2bh2FX2X =0 (2.5)
To obtain equations correct to second order in amplitude, it
is sufficient to linearise the dispersive terms in the above
equations as both the amplitude and dispersion are assumed

to be small and of the same order in the derivation of the
Boussinesq equations. It is also sufficient to neglect the
dispersive term in the second equation (2.5) as the amplitude
is assumed to be small. The equations correct to second

order in amplitude are then
(bh)t + (bhFx)X + (bVF__) =0 (2.6)

XX XX

2 =
Ft + 1/2Fx + gn =0 (2.7)

where we have set

Vo= 1/3h§ (2.8)

The corresponding Lagrangian for these equations is

= . 2 2 2
L bh(Ft + 1/2FX) + 1/2gbn l/vaFXX (2.9)
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If we denote the fluid velocity by u, an alternative

form for the equations is
(bh)t + (bhu)x + (b\)ux)XX =0 (2.10)

ut + uu, + gn, = 0 (2.11)

We shall refer to these equations as the Boussinesg equations
In the course of the analysis, it will be seen how the
Korteweg-de Vries approximation of Chapter One arises and
what its limitations are. These equations for constant
breadth are the same equations as obtained by Grimshaw (1970)
directly from the Euler equations when the breadth is con-
stant. 1In a subsequent paper (Grimshaw (1971)), Grimshaw
systematically continued the approximation for constant
breadthto higher orders in amplitude and considered three
dimensional motion. He then calculated quantities such as
the soliton speed to third order in amplitude. Peregrine
(1967) also obtained an equivalent set of equations for vary-

ing depth only from the Euler equations.

2.3 THE SOLITON SOLUTION

We shall now find the soliton solution of the
Boussinesq equations (2.10) and (2.11) for constant breadth

and depth. We thus look for a travelling wave solution

n = n(s) (2.12)

u(d),

o}
!
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where

- t, (2.13)

V being the soliton's speed. Using these forms for the
solution, the Boussinesq equations give, upon integrating

once,

%

(2.14)

afg.
N
(e}

u =0, (2.15)

=N

1,
-n + v—(hu) + 56

as for a soliton, both u and n approach zero as x+tw. We
can now obtain an equation for u upon eliminating n, inte-

grating once and noting that u+0 as x+tw. This equation is

Truz=(01 - -5 * ToT (2.16)

where, for convenience, we have denoted by c the linear wave

speed
c = Vgh (2.17)
We can non-dimensionalize this equation by setting
u = 2Vw, (2.18)
so that we obtain the simple form

wil=wi(w -~ w)(w2 - W) (2.19)
w =1 -

(2.20)

< [~
Il
<ia <la -

= 1 +
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This equation has the soliton solution

1 - S
w = ’ (2.21)
(1 - d)cosh?pp + d ' .
so that
— A _ A sech?’p®
YT 1T - dcosh?ps +d ~ T - d tanhZpe (2.22)
Where

_ VvV -=c
d = VT o (2.23)
p = 1/2(v2 - ¢)Y/2 (guT1?v

The velocity V will be used as the main parameter
describing the soliton.

The amplitude of the soliton is A and for small
amplitude, the profile differs from the usual sech?pg profile
by a term of 0(A2?). This difference is due to the u* term in
the differential equation (2.16), this term not appearing in
the standard differential equation for the Boussinesqg soliton.
If we had expressed u in terms of the velocity potential F,
so that u = Fx,eliminated between the Boussinesq equations
(2.10) and (2.11) to obtain a single equation for F and
ignored terms of 0(F?®), then the resulting equation has the
standard Boussinesq soliton solution. It is the ignored
0(F?) terms which give rise to the different profile at

0(A%) as we are retaining them by using our Boussinesq system.
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2.4 CONSERVATION EQUATIONS

We shall now turn to the case where both the depth
and the breadth are slowly varying functions of x. As for
the slowly varying Korteweg-de Vries soliton of the previous
chapter, we shall use conservation arguments to determine
the behaviour of a slowly varying Boussinesq soliton. for a

slowly varying soliton, the phase function is now

o = X0 _ ¢ (2.24)

Where

X = ¢€x (2.25)

<=

g' (X)

Noether's Theorem (Gelfand and Fomin, p. 177) gives
that the energy conservation equation is
L) 9
—(L - F ) + =—(-F, L + F_ (L ). - F_,L ) = 0 (2.26)
5t P, AN N L
From (2.9), we then have that the energy conservation equa-

tion for the Boussinesq equations is
%E(l/Zbgnz + 1/2bhu? - 1/2bva ) + %;((gn + 1/2u?)bhu
+ (gn + 1/2u2)(vbux)x - (gn + 1/2u2)xbvux) =0 (2.27)
In analogy with the slowly varying Korteweg-de Vries

soliton of the previous chapter, we expect that the slowly

varying Boussinesqg soliton will be determined by energy



44
conservation. The energy conservation equation then gives

that

= I 2 L 1 2y (Vb
E _eol(@n + 1/2u®)bhu + V(gn + 1/2u )(V ue)e

- G2(gn + 1/20?) bvu lde (2.28)

where E is a constant determined by the initial conditions.
We now use the Boussinesq soliton found above and allow its
parameters to be slowly varying functions of x. Using the

relations (2.14) and (2.15) between u and n, we obtain

c?v?Db o

E = gbVfomnde - Ludé - %fowugde (2.29)

The integrals in this energy conservation relation

are calculated using the first order slowly varying soliton

solution for n and u. This gives

1 =478/ _ ¢

_Ooﬂde 4/@,- 1 Tz (2.30)
I uds = 8V 1/gu log[—— (/T + A =0)] (2.31)

V2¢ :
o -1/2, c, -1 c.3/2 2¢c?
P?u2de = 473Vt (@) TP+ 97 - 82 a + 35
~8c2v2 (g 2 1og [ (N T + A =0)] (2.32)

V2¢c

The energy conservation integral (2.29) then gives

the extremely simple result

2
E = 8/3 Vb (1 - %—2 3/2

/g

(2.33)
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from which we can see that the soliton speed is

V2 = c? 4+ E’b-mghh—l (2.34)
For Convenience, we have set
E' = (él{?1§)2/3 (2.35)

The amplitude of the velocity profile can now be

found from (2.23) and it is

A=2("c? + E'b‘”@h;1 - <), (2.36)

which for small amplitude is

_ __ B
A /§b2/3h 3/ (2.37)
0

This corresponds to an amplitude a in n of

a=—E (2.38)
gb2/3h0

This is the classical result for the amplitude variation of
a soliton in a channel whose depth and breadth are slowly
varying. It has been found for varying depth only by
Boussinesqg (1872) and Grimshaw (1970, 1971). Boussinesqg used
the energy conservation argument outlined here and Grimshaw
used both energy conservation and a formal perturbation
expansion, from which he obtained the result above by a
Fredholm condition. This amplitude relation for both vary-

ing depth and breadth has been found by Saeki, Takagi and
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Ozaki (1971). It has also been found from the perturbed
Korteweg-de Vries equation by Ostrovsky (1976) and Miles
(1979) for both varying depth and breadth and for varying
depth only by Johnson (1973b).

We shall now consider the central topic of this
investigation, this being the nature of the region behind
the soliton. The tail is caused by a mass and momentum
flux from the soliton and the boundary conditions for the
tail region are most easily determined by considering the
mass and momentum conservation equations for the Boussinesqg
equations. Consideration of these equations also raises
the question of mass and momentum balance and shows how
these quantities are conserved by the soliton plus tail,
without any reflected wave being necessary.

Two-timing the Boussinesq equations (2.10) and
(2.11) gives the equations

3 E

o . 9 12
55 + Eax) {vbu

1 -
—bne + v(bhu)e + e(bhu)X + | + EVqu) =0

s
(2.39)

1 1 _

Uy + vilg + euuy + vIMg + Egny = 0 (2.40)
Two conservation equations, one corresponding to mass and
the other related to momentum, are now obtained by integrat-
ing these equations with respect to 6 from -« to « and
assuming that u and n approach zero as 8-+» and 0(¢)

"constants" (i.e., slowly varying functions of x) as 9->-c.

Doing this, we obtain
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5 ax _oobhude (2.41)

u -9n = _g_g_xffm(gn + 1/2u?)ds (2.42)

at § = —-o,

The first equation can be simplified upon using the
differential equation (2.15) relating n and u and the second

equation can be simplified upon using the relation (2.14)

between u and n. The final conservation relations are then
02 _ e d [®
n - '(ﬁu I~ a‘x‘[Vb _mndel (2.43)
u - gn = —&:g—[vfOo uds ] (2.44)
v dx —o0 :
at 6 = -». The values of u and n as 6+»-=» are obtained by

substituting the soliton solutions given by (2.14) and (2.22)
into the right hand side of these expressions. These values
are interpreted as values immediately behind the soliton and
must be matched to a tail soliton.

We again have that the soliton is acting as a mass
and momentum source and this mass and momentum flux will
create a tail behind the soliton. The structure of the tail
will be examined in detail after we first make a few comments
about a formal two-timing expansion for the slowly varying
soliton. The Korteweg-de Vries approximation will also be
examined and it will be shown that it cannot adequately

describe the behaviour of a soliton on a slowly varying

beach.
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2.5 FORMAL ASYMPTOTIC EXPANSION AND THE KORTEWEG-DE VRIES

APPROXIMATION

The details of the slowly varying soliton found in
the previous section by energy, mass and momentum conserva-
tion can also be found from a formal two-timing expansion.
The conservation relations are then Fredholm conditions.

The formal two-timing expansion is

u = uo(e,X) + eul(e,x) +... (2.45)
n = HO(G,X) + enl(e,X) +..o., (2.46)
where
6=M_t
€
E'(X) = = + ek + (2.47)
7 , T .
The zeroth order equations will have the soliton
solution for u and no given by (2.14) and (2.22). From

the first order equations for u and nl, the energy conser-
vation relation (2.29) (wifh nosubstituted for n and u,
substituted for u) is obtained as an orthogonality condition.
The mass and momentum relations (2.43) and (2.44) are
obtained from the behaviour of the differential equations
for u, and nl as 0»>-», To determine the tail, we do not
need to know the complete details of u, and N, s only their
behaviour as 8--x,

We shall now see how the Korteweg-de Vries approxi-
mation of Chapter 1 comes out of the two-timed form of the
Boussinesqg equations. To do this, it is most convenient to
express the Boussinesq equations in terms of the velocity

potential F, where u = Fx’ and n.
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The Boussinesq equation (2.11) can be integrated

once to give

- _ 1l _1lgo
n= gFt Zng

(2.48)
We can now eliminate n from the Boussinesqg equation (2.10)

to obtain the single equation

_b - b iy Ll g -
EFtt gFXFxt + [b(h0 gFt ngX)Fx]x+(vaxx)Xx =0 (2.49)

for F. The two timed form of the equation for F is obtained

by letting
F = F(8,X) (2.50)

This gives the equation

gbh 2egbh € (bh )
0 _ T o’ X 3b bv
[( 7 P)Fgg + ——Fgy * — Ty + $7FgFgs * TiFgpap!
- _3_b__F 2p + ¢ [_4_bF F + _2__12F F. o+ E&F 2_ _b_X__F 3 3_b2F F_F
2VHET 06 T 66 V ~ 6 86X V "866 X vV 6 2V3T 9 V3Te 88 X
2 (bv)
3b 4bv X -0 (2.51)

- =2 2 4
2vitg Fox ¥ 73 Fgoox T T3 Legel

If the soliton is described relative to a frame
moving with the linear wave speed, so that V = ¢, then the
terms in the first brackets give the perturbed Korteweg-de

Vries equation

e(bcz)X

3 % =
ZEFGX + gbc Fe + C3F6F69 + -C—SFeeee = 0 (2.52)
for F,. It is this equation which was used as an approxi-

S

mate description of a soliton on a slowly varying beach in
Chapter One. We now see that it incorrectly ignores higher
order terms which are significant in the description of the

behaviour of the soliton. The terms neglected are either
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terms of 0(a’) or terms which are significant away from the
soliton and may be neglected near the soliton. The Korteweg-
de Vries approximation then is a type of wavefront expansion.
The neglected terms affect the behaviour of F at 8= -« and
so are important in determining the tail and the question of

whether there is a reflected wave.

2.6 TAIL REGION

We have now found all the properties of the slowly
varying soliton needed for the determination of the tail. In
this section, we shall turn to our central problem of the
structure of the tail and the question of the presence of any
reflected wave.

From the behaviour of u1 and nl at 9 = -», we expect
that the tail region will be of 0(¢) and depend on the slow

space and time scales X and T( = ct). We hence propose that

the appropriate expansion for the tail is

u = U (X,T) + ¢?U (X,T) +... (2.53)
1 2
n=¢eN (X,T) + ¢?N (X,T) +... (2.54)
1 2
where
X = gx
T = ¢t (2.55)

The Boussinesq equations (2.10) and (2.11) then
give that to first order, the tail is determined by the

equations
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by -+ ). =0 (2.56)
1T g 1' X )
U+ 9N, =0 (2.57)

These equations are just the linear shallow water equations.
It is expected that we should obtain these equations as the
scales used in the tail expansion (2.53) and (2.54) eliminate
the nonlinear terms since u and n are 0(c) and the dispersive
term is eliminated due to the slow space variation. We
notice that in the present scaling, the'Variations of breadth
and depth are not slow relative to the variations of the tail.
This point will be further discussed later.

The displacement of the surface and the fluid velo-
city will be continuous in the transition region between the
soliton and the tail. The mass and momentum conservation
relations (2.43) and (2.44) give the values of these quanti-
ties behind the soliton, so that the tail is determined as
the solution of the moving boundary value problem consisting
of the linear shallow water equations (2.56) and (2.57)
together with the boundary conditions,

2

.Sy = - 1d e
N - Su, = - g xvpITon de) (2.58)
U -9 =-L wI®y ae) (2.59)
1 Vi1 dx -y °

at the soliton position xs(t), where X is given by

= 1%s dX (2.60)
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The solution of the shallow water equations consists
of both a forward and a reflected wave, unless the boundary
conditions are so related that a single wave can satisfy
both boundary conditions simultaneously. We shall show that
only a forward wave is necessary to second order in amplitude

for the present problem.

For convenience, let us define
I =1 pndog (2.61)

I° 4 ds (2.62)

c? - _.1d
Nl Ele = b dX(VbI) (2.63)
-9y = - 4
Ul VNl dX(VJ) (2.64)
at x = xs(t).
Let us set
- - 14
P = 5 dX(VbI) (2.65)
and
0= - L (v (2.66)
- dx .

The boundary conditions (2.63) and (2.64) then give that
2
vip + SV,

N = —3 (2.67)
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_ gVP + V2Q
U1 R A (2.68)
at x = xs(t). Let us assume that the soliton amplitude is

small. It can be seen from the expression (2.34) for V and

the expression (2.36) for A that the denominator of these

expressions for N and U is 0(A). PFurthermore, it can be
1 1

seen from the values (2.30) and (2.31) for I and J that the

numerators of these expressions are O(Al/z). Hence we have

—1/2) —1/2) .

that N and U are 0(A or, equivalently 0(a
1

1
General moving boundary value problems are difficult

to solve analytically. To obtain an analytical solution of
the moving boundary value problem posed by the linear shal-
low water equations (2.56) and (2.57) together with the
boundary conditions (2.58) and (2.59), the case of small
soliton amplitude was considered. This is consistent with
the Boussinesq equations as the Boussinesq equations are an
approximation to the Euler equations which are wvalid to
second order in amplitude. The small amplitude approximation
means that the slope of the characteristics for the shallow
water equations and the soliton speed differ by a small
amount (of 0(a)). We therefore see that the tail region
behind the soliton will be small. 1In figure 3, the charac-
teristics for the tail in the small amplitude limit have
been sketched.

For small soliton amplitude, we shall seek a geo-
metric optics type expansion for the solution to our boundary

value problem
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tail

soliton

Figure 3: Tail characteristics for small soliton amplitude
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v = 2@ - o) o x)f (T - 5(x)) + 0(ad/2) (2.69)
' g /BT S
U = £'(T - 6(X)) + w (X)g (T - g(X)) + 0(-a3/2) 7 (2.70)
1 /B C3/2 1 1
where
5(X) = fgzg (2.71)

The expansionsconsist of a forward wave only as it will be
shown that this is all that is necessary to satisfy the
boundary conditions to second order in amplitude. Successive
terms in these expansions are small in T - g as the linear
characteristic speed and the soliton speed differ by 0(a).
The phase T - ¢ is 0{(a). The expansionsfor N and U1 are

1
1/2 with the lowest order terms being

then expansions in a
O(a—l/z) and each term increasing in order by a.

The first term in these series is the classical
Green's law (see Lamb, §185). Miles (1979) proposed that the
tail is described by just this term. Green's law is derived
on the assumption that the variations of the depth and
breadth are much slower than the variations of the wave,
which is not true for the tail as the tail and the depth and

breadth vary on the same scale.

L.et us define
p(X) = TS(X) - o(X) , (2.72)

this being the value of the phase function at the soliton,

where TS(X) is the time the soliton is at the position X.
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TS(X) is defined by the integral (2.60).
If we substitute the expansions (2.69) and (2.70)
for N1 and U1 into the shallow water equations (2.56) and

(2.57), we find that at second order, we determine that

1 1
and
VT b c
gz — cw = - § - X (2.74)
1 1 2b3/ 2/5‘6

At this order, we find only one relation between Cland w1
and to determine these functions separately, we must go to
the next order. We shall find that to show there is no
reflected wave, this is all the information we need to know
about Cland wl.

If we use the expansions (2.69) and (2.70) for N1
and Ul and the first boundary condition (2.63), we obtain

that

' 2
-9 g - St = - € v (2.75)

(1 - S
V' Be

o

We can now use the relationship (2.74) between cl and W,
derived above to replace the term involving ¢z and w ,
1 1

which gives

/B -~ S)E (p) - S (/BE)E(p) = -g (bBVI) (2.76)
v dx X

Ve

To reduce this to a differential equation in X for

f, we use the definition (2.72) for p, from whence we have
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that

—__df . d o
/bC Tx + Fx(/HBEVE = g(bVI), (2.77)

which has the solution

£ =9/ VI (2.78)

We have now evaluated the tail to first order in
amplitude and in doing so, we have made the expansions (2.69)
and (2.70) for N1 and Ul to second order in amplitude satisfy
the first boundary condition (2.63). The expression we have
found for the tail agrees to first order in amplitude with
the forward wave calculated by Miles (1979).

To show that there is no reflected wave to second
order in amplitude, we must now verify that the second bound-
ary condition (2.64) is satisfied to second order in ampli-
tude by our expansionsfor N1 and Ul.

If we substitute the expansions (2.69) and (2.70) for

N and U into the second boundary condition (2.64), we
1 1

obtain
_ < _f'(p) _ 9 - -
(1 -3) 3/2 Folw - gr ) E = -V (2.79)

We can again eliminate ¢ and w from this equation by using
1 1

the relationship (2.74) between them. This gives
. d
-— ' —— B = —
vbec £'(p) + dX(/BE)f va). , . (2.80)

From the differential equation (2.76) which we
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obtained from the first boundary condition, we can eliminate

£'(p). Doing this, we have
d _ —
252(/56)f = g(bVI)X bc(VJ)X (2.81)

The previously obtained expression (2.78) for f can be sub-
stituted into this equation to give the differential
equation
g—(VbI) - g(Eg— + SE-—)(VbI) = (VJ) (2.82)
bc X 2 'b2c be? ' X7 :
which can be integrated to give

J (2.83)

This is the condition that to second order in ampli-
tude, there is no reflected wave. We note that this condi-
tion need only be satisfied to first order in amplitude for
there to be no reflected wave at second order. It can be
seen from the relation (2.14) between no and u, that this
condition does indeed hold to first order in amplitude as
V = ¢ to first order. Therefore, to second order in ampli-
tude there is no reflected wave.

Miles (1979) used the perturbed Korteweg-de Vries
equation to describe the slowly varying soliton and found
that while conserving energy, it does not conserve both mass
for the perturbed Korteweg-de Vries equation and the actual
mass. To conserve mass, he proposed adding both forward
and reflected waves behind the soliton, these waves being

solutions of the linear shallow water equations. He further
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proposed that these waves are given by Green's law. The
forward wave was constructed so that the combination of it
and the soliton satisfied mass conservation for the per-
turbed Korteweg-de Vries equation. The reflected wave was
constructed so that by its addition, the actual mass would
also be conserved. Miles found that the forward wave has

1

amplitude 0(a /2y and the reflected wave has amplitude

1/2). His expression for the forward wave agrees with

0(a
the first term of our expansion (the Green's law term). We
have seen that when the expansions for U1 and N1 are con-

1/2), these terms exactly account for the mass

tinued to 0 (a
Miles included in a reflected ane, so that no reflected
wave 1s in fact necessary.

Peregrine (1967) derived an equivalent set of
Boussinesq equations to those used here and obtained a
numerical solution for the case of a soliton propagating up
a beach which is linear for x>0 and flat for x<0. A number
of beach slopes around 0.03 were used, so it would be
expected that the solution could be described by a slowly
varying approximation. He claimed that his results
indicated the presence of a very small reflected wave behind
the soliton. As he started the soliton with its maximum
at the start of the beach's slope, it is not clear that the
reflected wave is in fact due to the change in the slope,
rather than being due to the beach as a whole. Furthermore,
Peregrine gave no indication of the size of the numerical

error,. so that as his reflected wave was of the order of
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2.52 of the height of the soliton, it could be due to

numerical error rather than any true reflection.

2.7 "SPHERICAL" WAVE

The linear shallow water equations can be solved
exactly for particular depth profiles when the breadth is
constant. In these cases, the linear shallow water equations
can be transformed to the spherically symmetric wave equa-
tion in n dimensions, for which there is a known exact solu-
tion. We shall determine the tail for the n = 3 case and
verify independently that there is no reflected wave to

second order in amplitude.

From the linear shallow water equations (2.56) and
(2.67) for constant breadth, we can obtain the single equa-

tion
N -'N - o N =0, (2.84)

where, as in the previous section,

o = fgéé (2.85)

If this equation is compared with the spherically

symmetric wave equation in n dimensions

dpp = 055 = —5 1¢O = 0, (2.86)

we see that equation (2.84) for N1 will be of this form if

2n-1
c = /G(BX + B) °D (2.87)
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or
2n-1
h = (aX + B) (2.88)

where A and B are constants. For n odd, we have that

n-3
2 £'(T - o)
o

(2.89)

alr

N = (

3
1 30)

for some function f if we have a forward wave only.
The simplest case we can consider 1is the spherical
case n = 3, which we shall now consider. Without loss of

generality, for a soliton going up a beach, we can take

A = -1 and B = 1. We then have
h o= (1-X) 4/3 (2.90)
and
N = lf-—ﬂ'—'—lc% , (2.91)
(1 - X)

if there is a forward wave only.
The spherical case also has a depth profile closest
to a linear profile. The velocity U1 can be found from the

shallow water equation (2.57) and it is

/g £'(T - o) _ gf(T - o) (2.92)

U =
1 (1 - X) 31 —‘Xﬁ/3

Unfortunately, the differential equation for £
obtained by using the boundary conditions (2.65) and (2.66)
cannot be integrated for arbitrary soliton amplitude and we

must again use an amplitude expansion for small soliton
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amplitude.
The boundary conditions (2.67) and (2.68) for Nl and
U, when expanded out to second order in amplitude for con-

stant breadth are

N = _—é E—-l/3gl/2h2h - ._1_% El/Bg—'l/2h (2.93)
u =8 g Mgy 32, o Al 173y 12y < (2.94)
1 3 0 0 2/3 0 0

at X = X _(T).

S

Two differential equations for f may now be obtained
by using these boundary conditions and the expressions for
N1 and Ul above. These differential equations are simul-

taneously satisfied by

56 3 10/7 13/21 -9/14 -3/7
£(T - o) = ———(TZ) E g (T - o + ¢) (2.95)
3
98 3 2/7 11/21 1/14 5/7
+ (—1—4—) E g (T - o + ¢) (2.95)
15/3
where
5 = 3/14 E2/3g -3/2 _ 3/40 E 4/3 g—5/2 (2.96)

The constant ¢ results from choosing X, = 0 at t = 0. The

forward wave occurs in the region

1 - (1 - @2)3 <X<X_ (T) (2.97)

This result is a direct confirmation for the
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"spherical" case that no reflected wave to second order in
amplitude occurs in the region behind the soliton. We could
similarily obtain expressions for f for higher "dimensions"

n, but the algebra becomes more tedious as the dimension n

increases.

2.8 EXPERIMENTAL RESULTS

The behaviour of a soliton travelling up a beach has
also been the subject of experimental work. We shall now
compare some of the experimental work with the results we
have obtained.

Ippen and Kulin (1954) measured the behaviour of a
soliton travelling up a channel with linearly varying depth
and constant breadth. They fitted their experimental
results for the amplitude variation of the soliton to curves
of the form Ahgqlwhere A is a constant. For slopes of
0.023, 0.050 and 0.065, n was found to be 0.49, 0.26 and
0.19 respectively.

Camfield and Street (1969) also did experiments on a
soliton travelling up a linearly varying channel of constant
breadth with slopes of 0.01, 0.02, 0.03 and 0.045. Grimshaw
(1971) extended the Boussinesqg approximation to obtain equa-
tions valid to third order in amplitude and used these equa-
tions to obtain the amplitude variation of a soliton travel-
ling up a beach whose depth is slowly varying. Camfield and
Street's experimental results for the amplitude variation for

a channel of slope 0.01 were plotted together with the
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theoretical amplitude variation and fairly good agreement
was found.

Recent unpublished experiments at the California
Institute of Technology* have studied a soliton travelling
up ‘a linear channel of constant breadth. Channels of
various slopes around 0.0075 were used. Their results on
the amplitude variation of the soliton indicate that the
amplitude behaviour varies continuously from an initial
Green's law h;1/4 dependence to our theoretical ho_ldepen—
dence, which the soliton follows until breaking. Their
results also show the presence of a tail behind the soliton
and do not indicate the presence of any reflected wave.

It would seem that our theoretical ho—l amplitude
dependence and slowly varying assumption are valid for
sufficiently small beach slopes in a region away from where
the soliton starts. Initially, there is a region where the
soliton adjusts to the changing conditions. This view is
supported by numerical work of Peregrine (1967) and Madsen
and Mei (1969) in which the development of a soliton moving
onto a linear beach was studied. Peregrine started his
calculations with the soliton maximum at the start of the
beach, whereas Madsen and Mei started the soliton far away
from the start of the beach. Madsen and Mei fitted the
computed amplitude behaviour with curves of the form Aho—n,

A being a constant, and found n to be 0.30, 0.18 -and 0.15

*Private communication, Mr. James Skjelbreia



65
for beach slopes of 0.023, 0.05 and 0.065 respectively.
These results may be compared with the experimental results
of Ippen and Kulin given above, but quantative comparison
may not be valid as Madsen and Mei used initial amplitude
to depth ratios of 0.1 and Ippen and Kulin used ratios
between 0.25 and 0.68. Peregrine's results differ from
those of Madsen and Mei due to the different initial condi-

tion used, but the results are essentially the same.
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PART II

MODULATED CAPILLARY WAVES
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PART TWO
MODULATED CAPILLARY WAVES

The motion of slowly varying wavetrains has been
studied using the modulation theory developed by Whitham
(Whitham, 1974, Chapter 14), but for most of the examples
dealt with, there is no known exact solution for the unmodu-
lated periodic wave. Consequently, the discussion of the
modulated waves relied on amplitude expansions for small
amplitude.

Crapper (1957) found that for pure capillary waves,
an exact hodograph solution can be found for arbitrary ampli-
tude. This solution is in terms of elliptic functions in
general and Crapper considered the special case in which the
elliptic functions reduced to trigonometric and hyperbolic
functions, this case corresponding to waves on fluid of
infinite depth. Kinnersley (1976) found the solutions for
general modulus and showed that these solutions corresponded
to symmetric and antisymmetric waves on a fluid sheet.

The symmetric waves have the surface elevation symmetric
about a straight centreline (or bottom) and the antisymmetric
waves are symmetric about a centreline which is a curve. In
Chapter 3, an account will be given of the derivation of the

hodograph solution and the limiting cases of waves on fluid
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of infinite depth and waves on a thin sheet will be con-
sidered.

The major contribution of Part II is the calculation
of the averaged Lagrangian for the symmetric and antisym-
metric waves and the derivation of the associated modulation
equations for the special case of a thin fluid sheet. While
the averaged Lagrangians could be calculated for waves on
fluid of general depth, the algebraic complexity of the modu-
lation equations required that when dealing with these equa-
tions, the limiting case of waves on a thin fluid sheet be
considered. It is found that the modulation equations for
symmetric waves on a thin fluid sheet form an elliptic system
and those for antisymmetric waves on a thin fluid sheet a
hyperbolic system.b The symmetric waves are then unstable and
the antisymmetric waves are stable.

The modulation equations for antisymmetric waves on a
thin fluid sheet, while forming a hyperbolic system, have a
double characteristic. In particular, this has the conse-
quence that the simple wave solution formed by letting the
double characteristic form a fan is non-unique. It is
speculated that by going to next order in the modulations,
the double characteristic will split, although due to the
algebraic complexity, this could not be directly verified.
The simple wave solutions for the two single characteristics
are found to correspond to the smoothing out of an initial
discontinuity in the thickness of the fluid sheef. In one

case, the wavelength increases and in the other, the wave-
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length decreases across the simple wave.

For antisymmetric waves on a thin fluid sheet, the
fluid sheet is of constant thickness to first order, so we
expect the waves to bear some similarity to nonlinear waves
on a string. Therefore a direct approach was tried and in
view of the free surfaces, it was convenient to use
Lagrangian coordinates. The first order equations in
Lagrangian coordinates were found to be the same as the non-
linear string equations for a string of constant tension.

It was surprising to find that in the equations for the
lowest order approximation, a wave travelling with permanent
form could have any shape. Only at third order did a restric-

tion that gave Kinnersley's solution appear.
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CHAPTER THREE

EXACT SOLUTION FOR CAPILLARY WAVES

3.1 HODOGRAPH SOLUTION

We shall now review the solution of the inviscid
water wave equations for capillary waves by using Crapper's
(1957) hodograph method as extended by Kinnersley (1976).
The method involves transforming the water wave equations
to the hodograph plane in which it is found by separation
of variables that the equations possess certain exact solu-
tions in terms of elliptic functions. These solutions
correspond to symmetric and antisymmetric waves on a sheet
of fluid (of possibly infinite thickness).

Consider a capillary wavetrain travelling to the
right on the surface of an inviscid, irrotational fluid of
density p and surface tension T. We shall use a cartesian
coordinate system (xX,y) with y measured vertically upwards.
The dimensional velocity potential and streamfunction will
be denoted by ¢* and Y* respectively, the dimensional curva-
ture of the surface will be denoted by K* and the surface
will be defined by U* = 0.

The water wave equations for motion with surface

tension alone as a restoring force are (Whitham, 1974,

Chapter 13),
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Vip* = 0 (3.1)

with the boundary conditions

ook + l/2p(¢§2 + ¢§2) + TK* = 0 (3.2)

* = *
¢Y ne + nx¢x

on the free surface y = n{x).

We shall seek a solution of these equations in the

form

Cb* = Bx - Yt + @*(G,Y), (3.4)

which is the most general form for a periodic wavetrain.
The mean horizontal velocity of the fluid is 8 and vy is a
constant related to the Bernouilli constant. The phase func-

tion © is
B = kx - wt (3.5)

and ¢* is assumed to be 27T periodic in © with zero mean,
where the mean is defined by

2

Px = fo o*(6,y)do (3.6)

1
2T
If we substitute the general velocity potential

(3.4) into the Bernouilli boundary condition (3.2), we

obtain

p(1/28% - v) + p(Bk - w) OF + 1/2p(k2®§2 + @;2) + TK* = (
(3.7)

on ¥* = 0.
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The hodograph solution is most easily found by
defining a new velocity potential which has the constant
velocity ﬁk_i_ﬂ taken out, so that the linear term in ®§ in
the above equation is eliminated. We shall also non-dimen-
sionalize the y coordinate by k and the velocity and stream-
function by ﬁﬁ_i?ﬂ. The non-dimensional streamfunction

will be defined such that the surface is y =B. We therefore

set

Y = ky (3.8)
gr = B0 & Bk — 0 (3.9)
pro= B0 b 2B (3.10)
q® = ¢g * 4y (3.11)

We have also scaled the non-dimensional velocity potential
and streamfunction by the constant A. This constant
will be chosen so that ¢* is 27 periodic in 6.

In terms of complex variables, the non-dimensional

complex potential is

W= 6 + iy (3.12)
dw _ . .o -iX
4z = 4 - iv = gqe (3.13)

We shall work in the hodograph plane, in which g and X are

functions of ¢ and Y. The Cauchy-Riemann equations are then
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X¢ = Ow

Xy = -9, , (3.14)
where

o = log g (3.15)

To determine the curvature of the surface in terms
of hodograph coordinates, we note that the Cauchy-Riemann
equations give

K* = kK

- .9x
- kds

d¢

= kX43s

= kqw (3.16)

Substituting the above non-dimensional forms (3.8)
to (3.11) for the velocity potential and streamfunction and
the curvature expression (3.16) into the Bernouilli boundary
condition (3.7), we have that this boundary condition in

hodograph coordinates is

Tk 3A%qg
o =Bk 2" 1/2p(L*A? - g?) on y= B, (3.17)
where o
L2 = 1 - k(is_ ékfz) (3.18)

The constant L is related to the Bernouilli constant.

Kinnesley (1976) considered the wave motion relative to
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cartesian coordinates moving with the wave and then set the
Bernouilli constant in the boundary condition corresponding
to (3.2) equal to zero, which cannot be done in a moving
frame. The choice of this frame resulted in Kinnersley
effectively taking L=1, which implies that y = 1/28%. This
is not true in general and holds only for linear waves and
waves on fluid of infinite depth.

Following Crapper (1957) and Kinnersley (1976), we

now propose that

qQ, = 1/2(L%A%- g?) £ (y) (3.19)

holds throughout the fluid for some function f(y). Then

from the boundary condition (3.17),

_ 2
£(B) = QéﬁsAygk) (3.20)

Physically, (3.19) means that any streamline in the fluid
has potentially all the properties for a free surface,
except that for the boundary condition analogous to (3.20)
to be satisfied, we would require a new value of the sur-
face tension at this new boundary.

For convenience, let us define R(y) by

_ eLAff(w)dw’

R(Y) (3.21)

so that equation (3.19) can be integrated to

La RV - S(4)

T MRy TS0 (3-22)
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where S{¢) is an arbitrary function of ¢. From the boundary

condition (3.20), we obtain the dispersion relation

(o - Bk)? _  TAR'(B)
—T SLR(B) (3.23)

We now need to find differential equations for R and
S. These we obtain from the Cauchy-Riemann equations (3.14).

In terms of g alone, these equations give
A9 T dyy ~ 1/q(q$ + qi) =0, (3.24)
which, upon using the separated form (3.22) for g gives

P Sll— Rll

(R? - 8 b - g ) ¥ 2s'? + 2R'?’= 0 (3.25)

Crapper (1957) now shows by separation of variables

that

2 aR* + bR? + ¢ (3.26)

by
1l

s'? = -as® - ps? - ¢

is a possible solution of these equations, where a, b and c
are constants. As noted in the introduction, the general
solution of these equations is in terms of elliptic functions.
The properties and formulae for elliptic functions to be

used here are taken from Byrd and Friedman (1971).

Equations (3.26) have two general types of solution,
depending on the roots of the quadratic form on the right
hand side of the equations (3.26). As shown by Kinnersley
(1976), these correspond to symmetric and antisymmetric

waves on a fluid sheet. The special case of waves on fluid
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of infinite depth solved by Crapper is obtained by setting
¢ = 0. This case can also by obtained as the limit as the
depth becomes infinite of both the symmetric and antisym-

metric waves.

The solution for capillary waves on fluid of infi-

nite depth is
R = cosh ¥

S = cos ¢

_ 2 sin ¢
9 =1¢+ cosh y - cos ¢ (3.27)
_ _ 2 sinh
¥ =V - Z5sh Y - cos ¢
(w - Bk)> _ T
7 =3 tanh B

Kinnersley found the solution for waves on fluid of finite
depth.

The solutions for R and S for the symmetric and
antisymmetric waves on fluid of finite depth are listed in
table 1.

We have thus determined g, but we still need to

determine the phase X. KXinnersley now proposes that

X = 2 arc tan 3$$; (3.28)

for some functions U(¢) and V(¥). These functions are found
from the Cauchy-Riemann equations (3.14). Separation of

variables gives that

_R'V' _ S'U’
RV - su ~ % v (3.29)




80

The functions 9 and Y can now be found from the

Cauchy-Riemann equations

o = Yy = 2
6¢>=Y1p=%7 (3.30)
This results in
B = gl + 13 ag) (3.31)
Y = g2 - R (3.32)

The values of the various functions and integrals
are tabulated in tables 1 and 2. As in Abramowitz and Stegun
(1965), we shall use the notation m for the square of the
modulus of the elliptic functions and ml for the square of
the complementary modulus. Furthermore, as in Kinnersley,
to make the notation concise, we shall not write out the
dependence of R and S on the modulus. In what follows, it
is understood that functions of ¢ have parameter m (modulus
k) and functions of ¥ parameter m1 (modulus k').

That the solutions obtained here are symmetric and
antisymmetric waves can easily be seen from the expression

(3.32) for Y and the results in the tables. The solutions

called symmetric waves have the property that the surface

streamlines ¥ = B and ¥ = -B are symmetric about the straight
centre streamline ¥ = 0 (which can also be interpreted as a
bottom surface). The antisymmetric waves have the surface

streamlines ¥ = B and ¥ = -B symmetric about the centre
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streamline ¥ = 0, which in this case is a curve.

We see that if we wish g to be 27 periodic, we must

set

A = 2K (3.33)

since the functions of ¢ have period 4K.
To determine the constant L in terms of elliptic
*
functions, we use the fact that we require & +to have zero

mean. This gives

L= (3-34)

for symmetric waves and

_2E - K
=2 K (3.35)

for antisymmetric waves.

We can now determine the dispersion relations for
the symmetric and antisymmetric capillary waves. From the
Bernouilli boundary condition (3.23), we have for symmetric

waves, on noting that R = dny and using the value of A from

(3.33),

217 2
(0 - k)2 _ 2Tm1 K“snBcdB

T = T2E - m B (3.36)
1

Also from the definition (3.18) for L and the value of L

given by (3.34), we have for symmetric waves the connection

relation
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R(V) | S(9) U(9) vV (y)
symmetric 5 % -
WAveS dnvy m* cd¢ m° sn¢ csy m
antisymmetric X L _
waves dsy m< cnéd m* sdo¢ cny 1
TABLE 1l: wvalues of R, S, U, V and «a
] jRY 1St
R dy S de¢
(1 + m)y = 2E(Y) m ¢ - 2E(9)
symmetric waves 1
+ 2m sndcdd
v - 2E(y) ¢ - 2E(9)
antisymmetric
waves _ 2dnycsy
S

n
TABLE 2: values of the integrals f%wdw,

S d¢




(w - Bk) (w - Bk)?

2k? = Thm 2g? 5k 2 (3.37)

Y - 1/28% +

Similarily, for antisymmetric waves, we find the

dispersion relation

(w - Bk)? 2TK%csBndB

K3 = PT(2E - K) (3.38)
and the connection relation
_1/2p2 4 Lw Bk)® _ (2E - K) % (w - Bk)® (3.39)
Y 2k 2 K2 7K 2 y

The dispersion relations (3.36) and (3.38) differ
from those found by Kinnersley (1976). Kinnersley's dis-
persion relations hold in a frame of reference in which
w =0 and B is the mean fluid velocity. To obtain the cor-
rect dispersion relations, his dispersion relations must be
corrected for this. The correct dispersion relations (3.36)
(3.38) can be obtained from Kinnersley's dispersion rela-
tions by dividing by L2, which can be seen from equation
(3.18) for L and the boundary condition (3.23).

The parameter B is a measure of the flux of fluid
due to the wave and so may be regarded as a measure of the
thickness of the fluid sheet. The parameter m may be
regarded as a measure of the amplitude of the wave. From
euation (3.32) for Y and the results in tables 1 and 2, we
note that ¢ = 0, ¥ = B corresponds to a crest of the wave
and ¢ = 2K, ¥ = B corresponds to a trough of the wave. So
if we denote the amplitude of the wave by a, we have that

for symmetric waves,
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ka =

and for antisymmetric waves,

ka =

L
2mm ‘scB
2E - le

%
2mm ‘ncB
2E - K

(3.40)

(3.41)

We shall now summarize the hodograph solution for

the symmetric and antisymmetric capillary waves.

symmetric capillary waves, we have

i3

5 = TOE - le)[2E(¢) - m1¢ - 2msn¢cde +
Y = Z(ZEme)[(l + m)y - 2E(y) +
1
_ 27 %
ka = 7E — m g ™ ScB
1
A
X = 2 arc tan(m?sné¢scy)
- L
_ 2(2E le) dny - micdo
4= m T b
1 dny + m3cd¢
(o ~ gK)> 2Tm, *K?snBcdB
k3 = pom(2E - le) !

where -B<y<B.

For antisymmetric capillary waves, we have

5
2m1m sdondo

dny - m%cd¢

2msn¢cniy
dny - m%cd¢

L
2m*sn¢dn¢ 1

= il -
PT I s m PR e

Y = 57?%_:—E7[w - 2E(y) - 2dnycsy +

dsy - m%cn¢

2csynsy
dsy - m

For the

(3.42)



85
5
ka = ==———= m“ncB

2E - K

i
2 arc tan (m‘’sd¢ncy)

>
i

Ny

2(2E - K) dsy - m“cno

m dsy + m

te}
Il
Ny

cno

(w - Bk)? _ 2TK’csBndB
k3 om(2E - K) '’

where - B<y<B.
The limiting case of linear waves is obtai
letting m>0. From the results (3.42) and (3.43),

that linear, symmetric capillary waves are given b

8 = ¢
Y = ¢
L .
ka =-4m*sinh B

e
2m*sin ¢ sinh y

>
!

= kka cosech B sin ¢ sinh

.
g =1 - "2m*%os ¢ cosh VY

= 1 - %ka cosech B cos ¢
(w - Bk)? _ T
———F————ptanhB

Linear, antisymmetric capillary waves are given by

0 = ¢

(3.43)

ned by

we find

y

Y (3.44)

cosh V¥
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L
ka = 4m* cosh B
5 .
X = 2m*sin ¢ cosh ¢
= Lka sech B sin ¢ cosh y (3.45)
% :
qg=1- 2m*® cos ¢ sinh y
= 1 - %ka sech B cos ¢ sinh y

(w -~ Bk)Z _ T
— %3 5 coth B

These expressions for the linear symmetric and anti-
symmetric capillary waves agree with those found by Taylor
(1959) from the linearized water wave equations.

Crapper (1957) and Kinnersley (1976) found that, in
general, the transformation from the hodograph plane back to
the physical plane has a singularity corresponding to the
surface touching itself. As the amplitude of the wave
increases, a critical amplitude is reached at which the sur-
face becomes vertical at certain points. Further increase
in the amplitude results in these points moving together
until they touch. After this amplitude, the solution gives
that the surface intersects itself, so that the solution
ceases to be physically valid. From the expression (3.31)

for g, we see that the maximum amplitude occurs when

25'(9)
R(B) - S(¢)

+ I%_d¢ = 0 (3.46)
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first has a solution ¢ # 0. This is the condition for a
point (¢,y) with ¢ # 0 to map to a point with x coordinate
zero. It is clear that the origins of the hodograph and
physical planes map into each other. The minimum value of
m for the equation to have a non-zero solution ¢ defines
the maximum amplitude through the appropriate amplitude

expression (3.40) or (3.41).

3.2 UNIQUENESS OF THE HODOGRAPH SOLUTION

The solution of the nonlinear water wave equations
for pure capillary waves outlined in the previous section
was based on assuming a particular form for the solution.
It will become important in Chapter 5 to show that this is
the only periodic solution in a certain sense of the water
wave equations with surface tension alone as a restoring

force. The following theorem will now be proved.

THEOREM

For given values of the wavespeed c, the wavenumber
k, the amplitude a and the flux constant B, the hodograph
solution of Section 3.1 is the unique solution to the water

wave equations.

Proof

The Bernouilli boundary condition (3.17) can be

written in the equivalent form
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Tk ’aA%0
To = Bk)2 - ~—FLa sinh (0 - log LA) on ¢ = B (3.47)

Let us define the region V to be the region
(=©,o)x[-B,B] of the (¢,V¥) plane. For conciseness, we shall

set
] 3
(—3—(1)" ‘é‘@‘)

The capillary waves are then the solution of the boundary

Vv =

value problem

V20 = 0 in V (3.49)
Tk °A%0
—(’mk—)2= -pLA sinh (o0 - log LA) on § = B (3.50)
TkaAsz
1o = gk)2~ PLA sinh (o - log LA) on ¢ = -B (3.51)

Let 01 and 02 be two solutions of the boundary value

problem (3.50) plus (3.51) and (3.52). Let us further set
c=0 =0 (3.52)

This function is then the solution of the boundary value

problem
Tk ’a? 2 0, = -2pLA sinhX%0cosh %(6 + 0 -2 log LA) on ¥ = B
(w - gRy 2 %y : AR 7
(3.54)
__TkPA® 0,= 2pLA sinh*0cosh %(0_ + 0 -2 log LA) on § = -B
(w - Bk)? "y * ! 2 ?
(3.55)
We shall now show that 0 = 0. Gauss' Theorem and

the fact that ¢ is harmonic give that
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i) 2
V(Vo) av
- 0034 - 90
v = B%%yd% T Ty = -5y
= —2OL(U) - Bk)z I . 1 _
= Tk 3A [ y = g 0 sinh %o cosh%«;l + o, 2 log LA)dg
+ I¢= _go sinh %0 cosh %(0l + o - 2 log LA)ds] (3.56)

As o0 sinh %0 >0, we have

Vo 0 in V

and

o} 0 on 3V (3.57)
We therefore see that o = 0 and the solution is unique.

As L and A are determined by the amplitude, we have

proved that for given values of Eﬁiﬁﬁ, k, a and B, the solu-
tion to the boundary value problem is unique. Specifying B
is equivalent to specifying the fluid flux. The solution

to the water wave equations cannot be unique in the usual
sense as there exists both symmetric and antisymmetric waves.
Specifying B as well as the wavespeed, wavenumber and ampli-

tude determines whether the waves are symmetric or antisym-

metric.

3.3 LIMITING CASE OF THE MODULUS EQUALS ONE

The hodograph solution found in Section One has four
limiting cases of interest. These limiting cases are linear

waves, waves on fluid of infinite depth and the limiting
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cases given by m»1 and B»0. The first two limiting cases
were discussed in Section One. The limit m-»1 corresponds
to the "essentially nonlinear” waves of Kinnersley (1976)
and the limit B-+0 gives waves on a thin fluid sheet. We
shall now consider the m>1 limit. The B»0 limit forms the
major subject of Part II and the details of the form of
the waves in this limit will be discussed in the next
section.

The limit m»+1 is possible only for symmetric waves,
as for antisymmetric waves, the surface touches itself for
all amplitudes before m = 1 is reached.

From Byrd and Friedman (1971), we have that as m-1,
nd¢ ~ cosh ¢ - l/4ml(sinh2¢cosh¢ + ¢ sinh ¢)
cdp ~ 1 - l/2ml sinh?¢

E(¢) ~ tanh ¢

sn B -~ sin B
cn B ~ cos B (3.58)
dn B ~ 1

E(B) ~ B

2B - le ~ 2

Thus we have from the expression (3.42) for & and Y that

as m>1,

_ m sinh ¢ cosh ¢
" cosh?¢ ~ sin?B (3.59)
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and

m sin B cos B
cosh?¢ - sin?B (3.60)

ky =

for symmetric waves. Eliminating ¢ between these expres-

sions, we find that the surface is given by
82 + 7mkn cot2B + k?n? = n? , (3.61)

which is an arc of a circle,centre (0,- wcot2B), radius
mcosecl2B, between the points (-7,0) and (m,0).

Neighbouring arcs of the wave surface intersect when
B>%. We see from the expression (3.40) for the amplitude and
the asymptotic expressions (3.58) that the amplitude of the

waves is given by
ka = m tan B , (3.62)

so that the solution is physically wvalid for ka<m.

Byrd and Friedman (1971) give that

as m=1l (3.63)

K ~log "
1

It can then be seen from the expression (3.22) for g that
the speed of the fluid relative to the background flow B is
zero in the limit m»1l. We expect this to be so as as m»1,
the fluid flux g% relative to the background flow approaches

zero. Also the dispersion relation (3.36) becomes, in the

limit m~>1,

(w isﬁk)z -0 (3.64)
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The limit m+1 gives a wavetrain which consists of
a series of circular arcs stationing relative to the back-
ground flow B. Kinnersley (1976) incorrectly stated that
the m»1 limit gives a series of elliptical arcs. While his
formulae for the surface profile for the m»>1 limit are cor-
rect, he failed to notice that his equation for the surface,
corresponding to (3.61), described the special case of a
circle. For the flow to be quiescent relative to the back-
ground flow, the surface has to be circular for the surface

tension to be constant.

3.4 THIN FILM LIMIT

As we shall be dealing with the thin film case in
more detail later, we shall only briefly note here the form
the solution takes in the thin film limit. The limit B-0
corresponds to a thin film as B»0 means that the total flux
approaches zero.

From Byrd and Friedman (1971), we have that as, B-0,

E(B) ~ B

sn B + B

cn B ~ 1

dn B ~ 1 (3.65)

Using these relations, we obtain from the expressions (3.42)

for 6 and Y that in the limit B+0, the surface is given by
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%
6 = 2 (2F 1T m K) [2E(¢) - m1¢ + 2m°sng] (3.66)
1

il

- 5 2
= 5 oE = le)B[dnqb + m*cnd¢] (3.67)

kn

for symmetric waves. That the limit B0 corresponds to a
thin film can also be seen from the expression for n.

The expression (3.40) for the amplitude of the sym-
metric waves gives that

2T 3

— 2 ’
ka = E AR B (3.68)

in the thin film limit and the dispersion relation (3.36)

gives that
(0 - gk)2 2Tm., ’K’B
k3 T Dom(2E - m_K)

(3.69)

On physical grounds, we expect that as the thickness
of the sheet approaches zero, the amplitude of the symmetric
waves must approach zero. This expectation is born out by
the amplitude expression (3.68).

If we denote by d the distance from the centreline
to a trough of the surface, then from the expression (3.67)

for n, we have that for thin film, symmetric waves

kd =

B . 0
ey olC n?) (3.70)

a
d

metric waves, so this limit corresponds to shallow water

The ratio = then remains constant in the limit B*0 for sym-

theory.

If we let

£($) = 2E(9) - m_ 6 + 2m’sné (3.71)
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so that £ is the function of ¢ occurring in the expression

for 6, then
3 2
£'(¢) = (dno + m?cnd) (3.72)

As £(0) = 0, we thus see from the expression (3.66) for 9§
that the surface never intersects itself and the solution
is valid for all amplitudes.

Similarily, we can find that in the thin film limit

for antisymmetric waves, we have that

8 = 5og =gy (2E(8) - ¢) (3.73)

ky = —ZE—ir——ﬁm%cnd) (3.74)

kn = ﬁ_g_Km%cncp (3.75)

ka = 5§£§—Em% (3.76)

- ]zaek)z N oﬂBz(ggz— K) (3.77)

It can again be noted that the limit B0 indeed gives a thin
sheet.
The surface intersects itself for m>0.73 and the

maximum amplitude is given by

ka = 16.5 (3.78)

As noted in Kinnersley (1976), we see from the

expression (3.43) that g = LA in the thin film limit, so
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that the streamlines must be parallel. So for antisymmetric
waves, the sheet is of constant thickness in the thin film
limit. This constant thickness H can be calculated from the

expression (3.43) for 6 and Y and is found to be

= B

Eliminating B for H in the dispersion relation (3.77) gives

2 2
(w = Bk)® _ TC (3.80)

k2 pH ’

where we have defined

K -1
C:———-——-——ZE —K=L (3-81)

Kinnersley (1976) obtained the dispersion relation

2
(w -~ Bk)® _ T (3.82)

for antisymmetric, thin film waves, as he had in effect set
L = 1. He therefore found that the waves were non-disper-
sive, whereas they are actually dispersive with ¢ depending
on a and k through the amplitude relation (3.76). The
linear limit is given by m>0, in which case C;l and the
waves are non-dispersive. The antisymmetric, thin film
waves then have the interesting property of being non-
dispersive in the linear limit and dispersive for finite
amplitude.

The dispersion relations for the symmetric and anti-
symmetric waves in the linear limit m*0 agree with those

given by Taylor (1959). Taylor found these dispersion
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relations directly from the linearized water wave equations
as part of his theoretical and experimental investigation
of capillary wave patterns on thin sheets of fluid.

From formulae in Byrd and Friedman (1971), we find

that

dz _ 1 _ 2
T = mml(ZE - K)2[(E le)2 + mm_K ] (3.83)

so that as ¢ is a monotonic function of m, it is a suitable
amplitude parameter for antisymmetric waves, with increasing
L corresponding to increasing amplitude. Also as ¢ = 1,

whenm =0, ¢z >1, ¢z =1 being the limit of linear waves.

At the maximum amplitude, 7 = 6.53.
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CHAPTER FOUR

STABILITY OF CAPILLARY WAVES

4.1 AVERAGED LAGRANGIANS

In this chapter we shall calculate the averaged
Lagrangians for the symmetric and antisymmetric capillary
waves found in the previous chapter. Due to the complex
nature of these Lagrangians, we will specialize to the case
of a thin film and find the modulation equations for this
case. The modulation equations for the symmetric waves will
be found to be elliptic and those for the antisymmetric
waves hyperbolic. Hence the symmetric waves are unstable
and the antisymmetric waves are stable.

We shall now derive in detail the averaged Lagrangian
for symmetric waves. The averaged Lagrangian for antisym-
metric waves will just be quoted as the details for its deter-
mination are analogous to those for symmetric waves.

Luke (1967) has shown that the Lagrangian for water
waves 1is

L= -pfl [o% + 5(Y9*)%lay - vV, (4.1)
0

where V is the potential energy, n is the surface displace-
ment and h0 is the depth of the bottom. Let us define [,

the averaged Lagrangian, by
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2 M

L = %;fo Ld6 = L (4.2)

On using the most general form (3.4) for the velocity

potential, we have

*
L = ply = %8%)h + plw - gk) /] ojay
0

_~1n 11 2 *5 1 *2 - X7
p _ho( Zk @e + 2@ y)dy V 7 (4.3)
where
- 1 .27
h=n-= 5510 nds (4.4)

is the mean depth in the y direction.

Firstly, let us consider

=In *
Il —hoéedy (4.5)

From the definition (3.9) for the velocity potential ¢ in

terms of ¢*, we have that

Bk - wgn Bk - w

1 T k7E -h P T Txz R (4-6)
0

on using the definition (4.4) for h.
In Section 3.1, it was noted that the surface of
the fluid is given by ¢y = B and the centreline is given by

Y = 0. Therefore, upon using the Cauchy-Riemann equation

dg = ¥y (4.7)
we have that
I =28k -wB _ Bk - w (4.8)
1 kZ & k?
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We shall now turn our attention to calculating the
averaged potential energy as some of the integrals involved
in its calculation also occur in the averaged kinetic
energy. We have that

2 T
fo TVl + n'2d49 - T (4.9)

vV =

NIH
=)

From the definition (3.9) for ¢ in terms of ¢*, we have, on

Yy = B,

Bk - w

Bk - w d¢ - - a8

dox = F

I Bk - w
akz dly =n

1 + n'2d6- 7

dse (4.10)
Therefore, on using the separated from (3.22) for g

in terms of R and S,

= _ T juK do

vV =
21T() q!IP:B

- T

T (4K R(B) + S(9)
27L o R(B) - S(9)

d¢ _
A T (4.11)

For convenience, let us now define

rl = R(B) = dnB (4.12)

Then

- 7T, (4.13)
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where the loop integral refers to integrals over one period
from ¢ = 0 to ¢ = 4K.

We shall now consider the loop integral

I =6 de

2 r - S(¢)
1

(4.14)

Since 8 + iY is an analytic function of ¢ + iy, we have by the
Cauchy~Riemann equations that

2L qsap = 1122a4a 4.15

50 ody = 70 ¢dy , (4.15)

where the integrals are evaluated over one wavelength. So

we see that
ngKnd¢ = 218 (4.16)

as as noted in Section 3.1, B is the nett change in ¥ between
the surface and the centreline. Then using the hodograph

solution (3.32) for ¥, we have that

I K
2TB = —/— 2R' (B) IR
AL o r - do - ALOL[ -—-d\l)]w B
_ =R'(B)T _ 27K
T 2E - leI2 2E - leWI(B) (4.17)

on using the value (3.33}) for A, the value (3.34) for L and

the definition (4.14) for Iz. We have here defined

2E(B}) - (1 + m)B

w_(B)

fR"dwl (4.18)

We therefore see that



101

12 = §_zl (4.19)
1
where
B(2E - le)
Z =W (B) + (4.20)
1 1 K
and
P = /(r? - m)(l - r?) = -R'(B) , (4.21)
1 1 1
which completes the determination of V.
Lastly, we shall determine h. By definition
1,27
kh = I, knds
- R'(B) IzTF ds _ 1 J'_R_'_'.
T TALa , r - S(8)  BLal R Jy = B (4.22)
1

on using the hodograph solution (3.32) for Y and the defini-
tion (4.12) for r . Again using the velocity potential
1 _

result (4.10), we see that

2T do K T, -1
T F st - ' ;:—:—g[qlw =g/l + n'?1 Tdy

Ko g

= = %2’w¥ gdé (4.23)
1

If we differentiate the solution (3.31) for g with

respect to ¢, we obtain

qZIw =B ALa[aa(r —) S (4.24)



102
Using this expression in (4.23) and integrating by parts
L
twice results in, on noting that S = m?cd¢,

2T r uK

1 db _ 1y S"d¢
o ¥ - S LAae ¢ S{(r - S8)2
1 1
r 2
_ 1p_ do S°d¢
= LAOL[ (1 + m)iﬁm+ 2méb (T — S)z] (4.

25)

The integrals in this expression can be expressed in

terms of the known integral I2, which was defined in (4.14).

This yields

2T @ T,

o Y- = S LA«
1 1

2

We have now obtained all the integrals needed for
determination of h. Using the solution (3.32) for Y, the

values of A and L given by (3.33) and (3.34) respectively

the value of 12 already obtained in (4.19), expression (4.

for h and the integral (4.26) give

Wmi K riZ r . qr
—_ i _ __1 -
kh = 5055 - qelp 2 ) tTpE s a Y, t 1 (4.

1 1 1 1 1
where

_ - 2
q, 1 +m 2rl (4.
As it is well known that
IM (L 252 Lak2 = L - n *

ol Dy k082 + Kox?)dy = (v - gk) ,0%ay (4.

we see that we have evaluated all the necessary integrals

[(1 + m)I + 2m(4K - 2r I - r?1 ) 1 (4.
2 T 2 1

26)

the

and

22)

27)

28)

29)
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for the averaged Lagrangian. The averaged Lagrangian is now
obtained by substituting the expression (4.27) for h and the
expression for V obtained from (4.13) and (4.19) into the
general expression (4.3) for the averaged Lagrangian, upon

noting the result (4.29) above. Doing this, we obtain

Tm K
- - 2 (w - Bk)? _ p(w - Bk)Z*mB 1
L= 0o(y= 58" + ——515 ) h IK3K t 3E m K
™Tm Kr %
11 Lo (4.30)

(2E - m K)P
1 1

For convenience, we list the following definitions

and results

rl = dnB (4.12)
W1 = 2E(B) - (1 + m)B (4.18)
B(2E - m K)
Z =W (B) + = e (4.20)
1 1
g =1+ m - 2r2 ‘ (4.28)
1 1
2 2y _ d
P = /(r* - m)(l - r?) = - =—dnB (4.21)
1 1 1 dB
mm?K rzz1 r o q.r
— 1 1 I -
kh = 535 —m K)z[Pi Pl] Y 20E - le)[ wor P 1 (4.27)
1

The averaged Lagrangian will give the dispersion rela-
tion upon taking variations with respect to r and m. To do
this, we need the following derivatives, which can be found

from the definitions of the various quantities listed above.
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1 r

1r

9, r

1m

1Im

1m

1m
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(4.31)

(4.32)

(4.33)

(4.34)

(4.35)

(4.36)

(4.37)

(4.38)

(4.39)

(4.40)

(4.41)

Using these derivatives, we find that the variations

61‘:1: Lr

1
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give the dispersion relation

2
(UJ - Bk)z = 2Tle Pl (4 42)
k3 pwrl(ZE - le) -
and
_ 2
ez, (w =gk PE - m KT gy
Y = 58T o = 72 k2 (4.43)

1

These formulae agree with the dispersion relation
(3.36) and the connection relation (3.37) found directly

from the hodograph solution in Section 3.1.

Similarly, we can show that the averaged Lagrangian

for antisymmetric waves is

2 2
- - 1g?2 (w = Bk) _ plw - Bk)“7B TK
L oy 5% + —3FZ )h VT + R
Tr KZ
" GE-xmD T T (4.44)
2
where
r %2 r qr
= K 2 2 _ _2 m _ 5 o
kh 2(2E - K)z [ P 2 P 1+ 2(2E - K)[ W2 + P, ] (4.45)
2 2
2, =W, * 28 - KB (4.46)
2r (r 2 - m)
W2 = 2E(B) - B + 2 ; (4.47)

r = dsB (4.48)
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m -m+ 2r 2 (4.

d
dB

Y(r 2 - m)(m + r %) = - =dsB (4.
2 1 2

It can again be found that

49)

50)

q2
= 5> (4.51)
2
g
__A_ZE_K
T P, KP (4.52)
2
r g
- 2 2
=3 (4.53)
2
_ -1
= 5= (4.54)
2
= 4r2 (4.55)
-1 2r2(r22 - m + ml)
4mm1[W2 + 2m1B - P2 ] (4.56)
m -m
1 B
4mml W2 + 2ml (4.57)
-(E - le) (mK - E)B (2E K)rz(rz2 -m+ m )
2mm K Zz + 2mm K + 2mm KP
1 1 12 (4.58)
2P {(4.59)
2
E - mK
[ S
2mm (4.40)
1
E - K
2m (4.41)
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q;m = 2 (4.60)

The variations

can now be evaluated and the dispersion relation

2
(w-ex)2_ _ °TXP, (4.61)
k3 pﬂrZ(ZE - K) :
and the connection relation
- Bk)? 2E - K)? - Bk)?
,Y — %62 + (kaZB ) = ( K2 ) (w2k26 ) (4.62)

are obtained. These formulae agree with the relations (3.38)
and (3.39) found directly from the equations of motion in
Section 3.1.

It is interesting to note that neither the averaged
Lagrangian for symmetric nor antisymmetric waves exhibits
any type of singularity at the amplitude at which the sur-
face touches itself. This surprising result indicates that
the averaging process smoothly follows the full surface
given by the hodograph solution even when overlap occurs.
We then need to add the side condition that the averaged
Lagrangian and its associated modulation equations are
valid only for values of B, m and k for which no overlap
occurs, this condition being found independent of the
averaged Lagrangian.

The averaged Lagrangian for the infinite depth
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limit can be obtained by letting m=»0 in the averaged
Lagrangian for either the symmetric or antisymmetric waves.
Letting m>0 in the connection relation (4.43) for symmetric

waves gives
L

y = %g2 | (4.63)
For the infinite depth case, we may set Y = 0 and

B = 0 without loss of generality. If we do this and take

the infinite depth limit in the averaged Lagrangian (4.30),

we obtain
(1)2

L = ;5 cosech’B - %E(coth B - 1) (4.64)
This expression for the averaged Lagrangian is equivalent to
those obtained directly from Crapper's (1957) solution by
Lighthill (1965) and Crapper (1970, 1979). The expressions
for the averaged kinetic and potential energies in this
averaged Lagrangian were alsc obtained from Crapper's solu-
tion by Hogan (1979). Lighthill noted that the modulation
equations found from this averaged Lagrangian are elliptic,

so that capillary waves on fluid of infinite depth are

unstable.

4.2 MODULATION EQUATIONS FOR THIN FILM, SYMMETRIC WAVES

We shall now find the modulation equations for thin
film, symmetric waves. We need to specialize to the thin
film case as the modulation equations in general are too
involved to be dealt with effectively.

The averaged Lagrangian for thin film, symmetric
waves can be obtained by taking the limit B+0 in the aver-

aged Lagrangian (4.30) for symmetric waves. This results in
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- D - 2 (w = Bk)A _ 3plw - gk)2H
I=qly = %58% + —5p7)H § KK 3T

2 _ 38?2
+ T[le - (2 - ml)(2E le)]4W2FZ(2E — le)z (4.65)

being the averaged Lagrangian for thin film, symmetric

capillary waves. 1In this expression,
H=kh= 2rs (4.66)
where
—mlzK 2 - m1
b= 4 (2E - le)2+ 2E - m K (4.67)

H is the non-dimensional mean thickness in the y direction.

The dispersion relation (3.69) is, in terms of H,

e
il

1
Bk + QHZ2k3/? (4.68)

where

3TmiK2 L
2
(omeT (78 = le)) (4.69)

As shown by Whitham (1974, Chapter 14), the modu-
lation equations are now found from the consistency rela-

tions

B, + vy, =0 (4.71)

and the variational equations
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3L 3L
Y B _
3E - 3% 0 (4.72)
3Lw 8Lk _
T - 5w < 0 (4.73)

The averaged Lagrangian (4.65), the dispersion
relation (4.68) and the connection relation (3.37) then
give the modulation equations for thin film, symmetric

waves as

E - L
1 21, 2 21, 2 -
kt + (R + 20h k)kX + kBX + %0h “k hX + th k m 0

B, + BB, + XQthkx + %xﬂzkzhx + %(sz)mhkzmx = 0

3/2 3 5 3/2 _
h, + hB  + Qrh k. + (B + 3 qfh k)h  + (QZ)mh kmX 0

(4.74)

L
h3/%92)mmt + > h?Qrh_ + ZQhVZBX + (5xQ%h%+ = 2°h2D)k
+ (28I0h% + hky0? + 30%hTk)h +. (8h3/2(10)
+ 5 (x0%) _h'k + 3 (QZZ)mhzk)mX =0 ,

where we have for conciseness set

D=1 - s (4.75)
(2E - m K)?2
X=—m—2?2'i—— 1 (4-76)
1

To determine the characteristic directions for the
modulation equations (4.74), we need to find the zeroes of
a quartic polynomial. These zeroes could not be found

analytically for arbitrary amplitude, so special cases had
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to be considered. Firstly we shall consider the case of
near-linear waves, which correspond to the limit m-0.

From Abramowitz and Stegun (1965), we have that as m>0,

T m 9m?
K——2-(l +Z+64 +...) (4.77)
T _m _ 3m? _
E = 5(1 7 ea o) (4.78)

Using these Taylor series, we find that the characteristic
directions for the modulation equations are, in the near-

linear limit,

1 L L L L L
dx = B t imz/Ehszk, B+ (2 ¢ 1m2/§)h2T2k, (4.79)
dt 2 2
where

(4.80)

We therefore have that the modulation equations
form an elliptic system and that symmetric thin film
capillary waves are unstable in the near-linear limit.

We shall now consider the modulation equationsin
the m>1 limit, which was discussed in Section 3.3. From

Byrd and Friedman (1971), we have that as m~1,

1, 9 h - Dyn 2

K ~ A+ Z(A 1)m1 + 64(A 4)m1 +... (4.81)
1, 1 3 _ 13, o

E-1l+500-pm + 300 - 39m 2 +..., (4.82)

where
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Using these relations, we find that the modulation

equations have the characteristics

; L
g+ 3L _pi
dx _ 2w/ZR
Eo 3/Z .15 T < 9 Ly
B+ (2 + 2= v2 3 2 ik (4.84)
m m 16 mAV/2

in the limit m-»1, so that the waves are unstable in this
limit.

The waves are unstable in both the modulus
approaches zero and the modulus approaches one limits.
This leads us to speculate that symmetric, thin film

capillary waves are unstable for arbitrary amplitude.

4.3 MODULATION EQUATIONS FOR THIN FILM, ANTISYMMETRIC

WAVES

As in the case of symmetric waves, we can find the
averaged Lagrangian for thin film, antisymmetric waves by
taking the limit B-»0 in the averaged Lagrangian (4.44) for

antisymmetric waves on fluid of arbitrary depth. This gives

((k) - Bk)z)h* _ p(w - Bk) 2h*
2k 2 2K 2

I = ﬁ(y - %82 + + T - Tz (4.85)

as the averaged Lagrangian for these waves. The amplitude

parameter C has been defined before in (3.81) and

KB
he = IS (4.86)

is the non-dimensional average thickness in the y-direc-

tion.
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The modulation equations obtained from this

averaged Lagrangian are

L -k 3/ 2 L L _3/2 3/ 2
kt + (B + T°h “z )kX + ka 5T “h kt hx
3 4k
+ 7 1*nT kg%, = 0
2
- -1
- -3 L - 2 =
Bt + BBX th (z-¢ )hX + %th (1 3z )CX 0 (4.87)
L L -L L L L -
h, + hB_ + (B + %1°h” 2(g%®/2 = 7 %) )h, + %1?h? (3% +¢ /3¢ =0
t X ‘ X X
-1 3%+ 1 B.=% 3/
- L —_
kt sh kht 2(C3_—C)'kct+ (B + t°h z )kX
L
-1 3z + 1 L o ~%0°(3¢%- 1)
=1 - - =
skh ka ka (Bkm*‘ T “kh Cz ] )(:X 0
In characteristic form, the modulation equations
are
-2dak 1 dn  3c®+1 dr _,
k dt 2h dt 2z(z? - 1) dt
-2 dk 1 dh -3/2 L% -4 4
K a&c tha "¢ it " gg = 0
on
L -1 3/2
2 - 372 + 72+ (322 + 4+ *)/1-2"? dn
L -3/ - =z dt (4.88)
h(3z?% + ¢ ) (1 + V1-¢ %)
2 +20%F2/1 - 7% % -5 A8 . /20 dg
+ h°t dt+(3c + C )a‘E 0

on
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It was noted in Section 3.4 that ¢ > 1, so we see
that the modulation equations for antisymmetric capillary
waves on a thin fluid sheet form a hyperbolic system and
that these waves are stable. We also note that even though
the system is hyperbolic, it has a double characteristic
and the speed of this double characteristic is the phase
speed.

The dispersion and amplitude relations are, from

(3.80) and (3.76),

- 2 3
(w kaBk) — Té (3.80)
-
ka = g5 - % (3.76)

The importance of the interaction of the wave motion and
the mean flow is shown by the characteristic equations
(4.88). The antisymmetric thin film waves are "just"
dispersive in the sense that the phase speed depends on
ka through (3.76) and (3.80), not on both ka and k sepa-
rately. This shows up in the double characteristic with
characteristic speed the phase speed. The characteristics
corresponding to the mean flow split from their linear
double value. So we have a dual behaviour in the charac-
teristics, with behaviour of both fully dispersive and
fully non-dispersive waves showing up. Kinnersley (1976)
effectively ignored any interaction between the mean flow
and the waves by setting L = 1 and thus found that the

waves are non-dispersive. The interaction with the mean
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flow causes the waves to be dispersive.

4.4 SIMPLE WAVE SOLUTIONS FOR ANTISYMMETRIC WAVES

We shall now find simple wave solutions of the modu-
lation equations for antisymmetric waves on a thin film
found in the previous section. Physical interpretations for
these solutions will also be found. While the simple wave
solutions can be easily found for the Riemann invariants on
the single characteristics, the simple wave solution on the
double characteristic will be found to be non-unique to
within an arbitrary function k(%), where k is the wavenumber.
The simple wave solutions on the single characteristics will
be dealt with first. Let us consider the simple wéve solu-
tion generated by allowing the characteristic

2

dx 322 = 3 + 2/1 - ¢°
3z me/2

%

h (4.89)

I
]

+ C
to form a fan. We see from the modulation equations
(4.88) that the simple wave in the expansion fan is the

solution of the equations
-2dk , 1 dh 3¢ + 1 dc _ g

kK at " Zmndt T 2q(z? - 1) at

-2 dk dh _ C—s/z;%h% a _

—_— = + —_

1
k dt ' h dt dt

2 - 322 + 7% - (3¢ 4+ 4 4+ %)/ - g2

dh
h(3C% + 7)1+ /T - 77 de
2 + 2072 +2/1 - T2 4 -y aB
+ = h*T * =% (4.90)

1+ V1 - ¢
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L _
+ (37% + ¢ 3/2)%% =0

and the characteristic equation

2 - 32 + 272+ (3z2 + 4+ 7 2)/1 -¢?adh
R(3z7 + 73/ (1 - /T = ¢ 2) dt

-2 _ _ -2 - -
2120 241 - & pEer QR 3 /i
1 -v/1-1¢?
on
2 - - 2 L -y
Xoge 3 * 271 - f P (4.91)
3¢ + ¢ %2

The first of the equations (4.90) has the solution

1
2 _ ]
k2 = A= 7 1) (4.92)
2,
e

where C is a constant.

From the second and third of the equations (4.90),

we obtain

h = ae” Q(2)AC (4.93)
Y e Sl B R o LA E T 1)c3ﬂe%IQdC)dC e B (4.94)
2/A 2z(z% - 1) /A
where
0(0) (322 + 1)%(2 + (2 - .5Vl - 7% ___ (4.95)

(g2 - 1)(3 + 3C + 2272 - (3 + ¢ V1 - %)

and A and B are constants.
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The characteristic equation (4.91) finally gives

2 - -2
= g + 3% 3 +2/1 g ",

3(;;5 + §—3/2

% (4.96)

%

¢z = constant on

The simple wave solution is given by equations
(4.92) to (4.96). Equations (4.93), (4.94) and (4.96)
determine ¢ as a function of % and then equations (4.92)
to (4.94) give k, h and B as functions of %. To determine
what this solution corresponds to physically, let us con-

sider the small amplitude limit m+>0. For small m, we see

from the expansions (4.77) and (4.78) for K and E that

r = X - l +m + om

SE - K g t--- as m>0 (4.97)

Our simple wave solution (4.92) to (4.96) then becomes in

the small amplitude limit

n=52m - %

A 4/2A
=7 /s (4.98)

B =B - 2m¢%
k? = Eé—@(l - 2V/2m?)

The thickness H for the fluid sheet was shown in Section
3.4 to be given by h = ¢H. We then have that the thick-
ness of the sheet for the simple wave in the small amplitude

limit varies as

H = %7(1 - 4/2m7) (4.99)
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The expression (3.76) for the amplitude of the antisymmetric

waves in the thin film limit gives

a = -C _ (4n¥ + 4/3m) as m>0 (4.100)
J/aal/H

We can now see that our simple wave solution cor-
responds to a wavetrain moving from a region in which the
sheet is of a constant thickness to a region in which the
sheet is of a larger thickness. As the wavetrain travels
between these regions, its wavelength and amplitude are
decreasing.

Similarily, we can find the simple wave solution

when the characteristic

dx

It (4.101)

forms a fan. The simple wave solution is given by

322 - 3 - 2v/1 - ¢ 2% 4

-1
z = constant on % = B + < T T°%h ™
3C2 + C_3/2
1
K2 = (z?2 - 1)h™?
B 5
aEle)
-Ir(r)acz
h = Ae
il
L. _-3/2p 1 2 3/2.% RAg
g = 2l (Pl ReRAL B+ Metie” )5 43 (4.102)
2/A 2z(z? - 1)vAa
where
R () (3z%2 + 1)2(2 - (2 = H)/1 - 77

Z(z? - 1) (3 + 3¢ + 2272+ (3 + ¢ 2)/1 - ¢ 2)
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In the small amplitude limit, m~0, this simple wave

solution becomes

= %%é(B -3

3
|

1
B = 2501 + 4/2m%)

K? = (1 + 2v2m?) (4.103)

a = ——{g———(él,m;i - 4/§m)
/§A1/4

The simple wave solution again corresponds to a
wavetrain moving to a region in which the sheet is of
greater thickness, but the wavelength now increases and the
amplitude decreases.

The final simple wave solution is for the fan
generated by the double characteristic. This simple wave

is the solution of the equations

_ 2 -2 2 ~2y./1 - ~2
2 - 3z : z E §3c t4+C —L 1-¢ %% (4.104)
h(3z? + 2 3/ (1 F V1 - ¢ ?)
L2t 2072 % 2v1 - c’zh%r—% dB . (3c% 4 m3/2y40 _ g
—; ac 3t

1% V1 -¢
and

,1 dn 32 +1 dr_
2 t 2C (% - 1) dt

&%

-2
iR



on (4.105)

L L
%___ B + T°2h zcs/z

The equations (4.104) can be solved to give

D2 (%? - 1) sin g V22 + 1 - 25/%cos %
- B+ log
2 83/%sin 9 cos o V222 + 1 + 25/“Ccos g
2(%7 + 1) cos g 25/%g4n %
+ arc tan = A, (4.107)
83/% sin g cos 8§ V2z2 + 1
where A and D are constants and
. 7
8 = m - arc 51n‘/§ (4.108)
As h = ¢H where H is the thickness of the sheet, we see

that in this simple wave solution, the sheet is of constant
thickness. The logarithmic term in the expression for B
introduces no singularities as both of the quadratic expres-
sions in its argument are strictly positive.

The characteristic equations (4.105) now give

k constant

and (4.109)

constant

Y
i
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on
L -1
X_.g+h i3/ 2 (4.110)

The expressions (4.106), (4.107) and (4.110) deter-

mine { as a function of %, so that 7, h and B are determined

as functions of % but k is an arbitrary function of
’

The expression (3.76) for the amplitude of antisymmetric

X
b

waves on a thin film gives

2T 5

ka = sg—— g0

(4.111)

We see that ka is determined as a function of =, but k and

T’
a cannot be separately determined as functions of %. This
non-uniqueness is due to the double nature of the charac-
teristic.

The present simple wave solution corresponds to a
wavetrain on a sheet of constant thickness moving from a
region in which it has a given amplitude and wavenumber to
a region in which these quantities have new values.

A theorem for the Cauchy problem for hyperbolic
systems with multiple characteristics proved by Lax (1956)
gives that the modulation equations (4.87) for antisymmet-
ric waves on a thin fluid sheet have an unique solution
for C* initial data. Simple wave solutions are the limit
of solutions in which the region in which the initial data
arenon-constant approaches zero. For our non-unique simple

wave solution, there exists a continuum of solutions which

in the limit give this simple wave solution. These



122
solutions are such that in the limit, their wavenumber and
amplitude are related by (4.111)
In general, the modulation equations (4.74) for
symmetric waves on a thin sheet and (4.87) for antisymmetric
waves on a thin sheet can be solved numerically for general

initial and/or boundary conditions.

4.5 HIGHER ORDER DISPERSION FOR ANTISYMMETRIC WAVES ON A

THIN FILM

We shall now investigate further the nature of the
double characteristic for antisymmetric waves on a thin film
by considering the modulation equations in the next order of
approximation. We wish to ascertain whether higher order
dispersion will in some sense "split" the double charac-
teristic.

The averaged Lagrangian will now be calculated to
second ordef in the modulations. To second order, the exact

Lagrangian (4.1) gives the averaged Lagrangian

_ Mo - wor o LT (B o o) 2
L = =-p h, -y wby  + € 7 + %[(B + k g t € X)
*2 -
+ @y My - v, (4.112)
where T = ¢t and X = €x, ¢ being a measure of the slow vari-

ation of the wavetrain. The lower limit of integration ho
is the y coordinate of the centreline. So we need to eval-

uate the integrals in
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*
L =opo(y - 58%)h + p(w - Bk)IQ 0 dy
0

N oty
®Tdy

a2 * < L * < - I
p h (2k (I)e + 2(I)y )dy pEe ho

[1]
- N 6™ dy - pek!M o 0 dy - V (4.113)
QEBh Xy pehxey .
0

We shall first consider the integral

m g*
hOQTdy (4.114)

The Jacobean of the transformation from the (8,Y) coordi-

nates to the hodograph coordinates (¢,y) is

g = 20 3b _ 3¢ 3y
36 3Y ~ 3Y 3e

_ 2
= 4(2Eﬂ2 K) (4.115)

as g = LA to first order in B, as was noted in Section 3.4.
We then have

n *

hO®Tdy

1 [B4K.* 12
= 355 oo Or ZRenTdtdy | (4.116)

*
If we now use the definition (3.9) for & in terms of ¢,
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we find that

moL* - T (BrdK . Bk = w e _
h % = grprRz,, [z plzg — 0)
0
Bk - w ¢
+ —_—ET_(ZK)T]d¢dw
(w - Bk)WZBKT
(4.117)

2k®(2E - K)? !

Similarily, we can find

(0 - Bk)72BK

N X X
h ¥ = SR EE - w2 (4.118)
0
M o re* (w - Bk)*mBKy
0
= _ _ TK _ _ 2E - K 2 2
V=Tn-T-s5p-g(2m, - 1 - =%7)B% + 0(e?) (4.120)

Using these results and the first order averaged Lagrangian

(4.85), we have the second order averaged Lagrangian

*
- D(u _ 1g2 (w = Bk} 2\ * _ o(w - gk)2h

* *
_ pelw - Bk)ﬂKmh My, ) peBlw - 8k)rh K My

kK k3K

*
2pe(w = Bk)?*7m%h K m
k4K

X

* 2
4 (2E - K)?h
gm?

FT-Tr+ T(2m - 1-g) (4.121)
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for antisymmetric waves on a thin fluid sheet. The param-
*
eter B has been replaced by h via the relation (4.86)

between them.

The second order modulation equations are obtained

from the Euler equations

*
h : L _* =0

h
3L o

U X ~

Sm.: 5T T Tax " ip =0

0D, 31,
5 - =5 = 0 (4.122)
T S

3T X =

9B , 3y _

57 T X - 0

ok Jw _

ﬁ+§{—— 0 (4.123)

The modulation equations can be found upon using
the averaged Lagrangian (4.121), but as no detailed calcu-
lations were made using these equations due to their alge-
braic complexity, they will not be noted here.

To consider the influence of the higher order terms
on the double characteristic, we shall consider small per-

turbations of the form
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Y _ Yo + yleig(x - cT)
_ ig(X - cT)
R Bo + Ble
w=w +g ertl® - cT) (4.124)
0 1
ig(X - cT)

k=k + ke
0 1

Mo tE(X - cT)

* 1 -
h® =h +h et8X —¢cT
1

about the uniform wavetrain solution (y , B , w r kK, m,
0 0 0 0 0

* *
h ), where Yl, 81’ wl, kl, M and hl are all constants
0

and v <<y , B <<B etc.
1 0 1 0
The consistency relations (4.123) give

w = ck
1 1

cB (4.125)
1 1

2
I

The four variational equations (4.122) then give a set of
four homogeneous, linear equations for kl, Bl, M and hl*,
which form an eigenvalue problem for c. The eigenvalues
¢ will be determined as the roots of a quartic polynomial.
If we let c1 be the speed of the double characteristic,

then the eigenvalue equation is

0 = (¢ - cl)zPl(c) + ePz(c) + 0(e?) (4.126)
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where P1 is a (real) quartic polynomial, Pl(cl) # 0, and
P is a quartic polynomial whose coefficients are complex.
2

To second order, the double eigenvalue c, becomes

c=c + g% , (4.127)
1 2
where
2 —Pz(cl)
C2 = FlTé—:r— (4.128)

If Pz(cl) # 0, then the double characteristic "splits" at
second order in the modulations. There are, of course, no
characteristics for the second order modulation equations

as these equations are dispersive. It seems extremely
unlikely that Pz(cl) = 0, so it therefore appears that the
non-uniqueness at first order in the modulations is resolved

at second order.
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CHAPTER FIVE

DIRECT APPROACH TO ANTISYMMETRIC WAVE SOLUTIONS

FOR THIN FILMS

5.1 NONLINEAR STRING EQUATIONS

The antisymmetric capillary waves propagate on a
sheet of constant thickness in the thin film limit, so we
expect that the waves will bear some similarity with non-
linear waves on a string. 1In this section, we shall derive
the equations for nonlinear waves on a string with constant
tension.

Let us consider a perfectly elastic string with
constant tension 2T, thickness 2h and density p. The
string is assumed to have tension 2T as the fluid sheet has
two surfaces with surface tension T acting on each of themn.
The current displacement of the string will have coordinates
(x,v) and a will denote the Lagrangian x- coordinate of the
string. Let us consider an arbitrary portion a1 < ac< a2

of the string. Momentum balance in the x direction gives

2Txa(a2,t) ' _ 2Txa(a1, t)
e 2 1 < 2 2 2
1/xa + Ya ’a = a /ka + Ya la = a
2 1
a 2
- I 2 X%
a ZQhSETda (5.1)

1



129

and momentum balance in the y direction gives

ZTya(az’ t) _ 2Tya(a1’ t)
2 2 2 2
/Xa + ya la = a /xa + ya ,a = a
2 1
% 3_}§2
= a that da (5.2)

1

Therefore in the limit of a2+.al, we obtain the nonlinear

string equations

2 X Y2 - X Y.y
%X _ aa‘a a‘ta‘taa (5.3)

phng = T

2 2y 3/2
(xa + ya)

2
2 X Y - X_V._X
Dhgtg =T a aa a“‘a aa (5-4)

2 2y 3/ 2
X
(x% L v.")

In the next section, it will be seen how these equa-
tions correspond to the equations for antisymmetric capillary

waves on a thin fluid sheet.

5.2 LAGRANGIAN COORDINATES

We shall now consider the motion of antisymmetric
capillary waves on a thin fluid sheet using Lagrangian coor-
dinates (a, b). Stoker (1957, Chapter 12) gives the water

wave equations in Lagrangian coordinates as

i _
Koy YeeY, + Epa =0 (5.5)

1 _
XpeXp t YeeYy + pr = 0 {5.6)



Xayb - xby =1, (5.7)

where X and y are the particle displacements and p is the
pressure. The first two equations are momentum conserva-
tion equations and the third equation is a mass conserva-
tion equation.

For antisymmetric waves on a thin fluid sheet, we
can expand the solution in a series in b as b is small. We

then seek a solution of the. form

X =x (a, t) + bx (a, t) +... (5.8)
0 1

y = yo(a, t) + byl(a, t) +... (5.9)
-TK b

p=—x +D0p (a, t) +..., (5.10)

where K1 is the first order curvature

= X
yoaa oaayoa
Z 2y 372
+
oa yoa)

X
— 0a
1 (x

(5.11)

-TK b
1

h
Substitution of these series into the water wave

as the sheet is thin.

The first order pressure is

equations (5.5) to (5.7) gives the 0(1) and 0 (b) eqguations

Xottxoa + yottyoa = 0 (5.12)

TK1
Xottx1 + Yo eeY, T H = 0 (5.13)

X Y, - XY¥,4 = 1 (5.14)
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The nonlinear string equations will now be obtained from
these equations.
Multiplying the curvature expression (5.11) by the
mass conservation relation (5.14) and then substituting the

result into the momentum equation (5.13) yields

ety T Y Y,
X 2 - X X - X X + X 2
T oaayoayl OaYanoaa 1 anoa Oaayl anoaayl
- 2 TN377
oh (xoa1 + yoa)

(5.15)

If we now multiply this equation by X, and subtract the

7

result from the momentum equation (5.12) multiplied by x0

a
we obtain
X _y?2 -x
% _ z__ paa* ga o&{gaz.yoaa (5.16)
z z -
ott oh (xOa + yoa)
Alternatively, multiplying equation (5.15) by y and sub-
1
tracting the result from the momentum equation (5.12)
multiplied by Y 4 results in
2 - X
- E___ oayoaa oayoayoaa (5.17)
Yott T oh T (XL ¥y )02 .

These first order equations for the antisymmetric
waves are the same as the nonlinear string equations (5.3)
and (5.4) of Section 5.1. When antisymmetric waves propa-
gatg on a thin fluid sheet, we see that the sheef behaves

as a string to first order. This is expected since, in
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the case of antisymmetric waves, the exact solution shows
that the sheet is of constant thickness to first order.
Let us now consider a travelling wave solution of

the water wave equations (5.5) to (5.7), so that

x(0,Db)

"
I

y(6,b) (5.18)

e
il

p =p(8,b) ,

where

ka - wt (5.19)

@
I

The water wave equation then become

Pg ,
XeeXe + yeeye + EET = 0 (5.20)
Pp
xeexb + yeeyb +,6$7 =0 (5.21)
X X =1 (5.22)
o¥p T Xp¥g T % .
The boundary conditions are
p=-TK at b =h (5.23)
p =TK at b = -h
where the curvature K is
Xy - XY
K = _a’aa aa‘a (5.24)

2 2y 3 /2
X +
( a vy)
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The first of the equations may be immediately inte-

grated to give
bxo? + wyt - £y = f£(p) , (5.25)

where £ is an arbitrary function of b. To determine this
function £, the condition is imposed that we require the
vorticity to be zero. The vorticity conservation equation

for zero initial vorticity is

X = 0 (5.26)

6b*0 T Yep¥s T Xgo¥p T Yga¥p

from Stoker (1957, Chapter 12). Using the momentum equa-
tion (5.21), this becomes

Xgp¥g + YopYs + %%7 = 0 (5.27)
We then see from equation (5.25) that
£'(b) =0
or (5.28)
f = 4B = constant

We therefore have

2 2 2 _
X2 +yh 4+ 6%7 =B (5.29)

The equations determining the travelling wave are (5.21),
(5.22) and (5.29).

We shall now turn to the special case of antisym-
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metric capillary waves on a thin fluid sheet. As the fluid
sheet is thin, the solution will be expanded as a series in
b. For a travelling wave solution, the expansions (5.8) to

(5.10) for x, y and p take the special form

X = xo(e) + bxl(e) + b2x (8) +... (5.30)
2
y = yo(e) + byl(e) + bzyz(e) +... (5.31)
-TK b
P=—¢— + Db’ (8) +..., (5.32)
2

where K 1is the first order curvature of the surface
1

—_ y X "
¥, = Sty 523
0 0

Substituting these expansions into the equation

(5.29) gives the 0(1) equation

1 2 |2= 2
. + yo A®, | (5.34)

2 . . . .
where we have set B = A“. This equation is an expression of

the constant first order fluid speed in the sheet. This
constant speed was noted from the hodograph solution in
Section 3.4. We see that to first order, x0 and yo are not
uniquely determined.

The equations (5.21), (5.22) and (5.29) give the

0 (b) equations

Yy - —— =0 (5.35)
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TK
n + " - 1 - .
x 'Y + YV - oomk =0 (5.36)
x' - 'x = 1 (5.37)
oY) Y, *1 k )

The solutions for xl and yl will now be obtained. We might
have expected that in finding these solutions, an extra
condition on x0 and y0 would have been obtained, so that
these functions are uniquely determined. We shall find that
this is not the case and we will have to go to 0(b?) to find
this extra condition.

Using the relation (5.34) between x and y0 , We see

0
that the first order curvature (5.33) becomes

K =+ = 0 (5.38)

-1 1 '
Y Sl tx v (5.39)

Substituting this expression for y into the momentum equa-
1

tion (5.36) results in

T p$zﬁ (5.40)

We see from the curvature expression (5.38) that this

results in the dispersion relation

w? = %%K (5.41)
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If we now substitute the equation (5.39) for Y, into
the momentum equation (5.36) and use the curvature expres-

sion (5.38), we obtain the differential equation

x " - " X ny
SRE RS Rl (5-42)
0 Q a

which has the solution

2x ! x! y! :
x1 = EK%_ arc cos XA - EK% + Cx; , (5.43)

where C is a constant. The equation (5.39) for y then
1

gives
2y! x' x !
= -0 0 ]
y1 KAZ arc cos 3 t ozt Cy0 (5.44)

The constant C is determined from the boundary conditions

{(5.23). To apply these boundary conditions, we need to

determine the solution for p , which is obtained in part
1

from the 0(b?) equations.

The expansions (5.30) to (5.32) give the 0(b?)

equations

x ')x' + 5x'2 +y 'y "+ hy'2 + 25 =0 (5.45)

2 0 1 2 0 1 pw
2p

2x "x_ 4+ x "x_ +2y "y +yy " +—7=0 (5.46)
0 2 1 1 0 2 171 pw

X'y +2x'y -xy'-2xy '=20 (5.47)
1 1 0 2 1 1 2 0

upon substitution into the equations (5.21), (5.22) and
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(5.29).
Eliminating X between the first two equations gives
2
py'’
(X'X "o yly Il)y = —%X'X x " - %Y'Y y noo_ 1 0
0 0 07 o 2 0 1 1 00 17 1 pw
+ %ylx x " - %y x x " (5_48)
1 1 0 11 0

As the coefficient of y 1is zero by equation (5.34), we have
2
that

p X Y'X " y X'X "
w7 = TEX X M-y y U e - ol (5.49)

At 0(b?), the boundary conditions (5.23) require that

—Ash ' Y ' 3X;2X;y )
= x "o 1] -x " v e, 1 _ Q
T pl Oyl yo Xl 0 yl yl xo AZ?
- 3 ] ] 1 ] 3 1 1 ] " 3 1 2 1 "
Az Yy 'x 'y + Az y 'y 'x 'x + Z7 Y'Y 'X (5.50)
07 1 0 1 1 0 0 0 0 1 0

This boundary condition then gives, on using the expression
(5.49) for p1 and the expressions (5.43) for x and (5.44)
1
for v ,
1

c =20 (5.51)

The solutions for x and y are thus
1 1

2x ! x' vy

Xl = EA—B—- arc cos KQ - ‘Eiz‘ (5.52)
Zy ] XI X [}

y = EK%‘ arc cos Xﬂ + Eiy (5.53)
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The first order solutions x and y are still not
[y} 0

uniquely determined at 0(b). It can be easily verified
that
kx = g = (28 (2R8) - 24 (5.54)
ky = et ien (259 (5.55)
A= E TR (5.56)

is a possible solution of the relation (5.34) between x and
0

yo. This is the same as the hodograph solution for antisym-
metric waves in the thin film limit, this solution being
given by (3.73) and (3.74). We then have that the previous
hodograph solution is a possible solution of the water wave
equations in Lagrangian coordinates, as it must be. 1In
Section‘3.2, it was proved that the hodograph solution is
the unique solution to the water wave equations, so we need
to find an extra condition on x0 and yo. We shall now con-
sider the 0(b?) and 0(b?) equations to see if this extra
condition can be found.

If we eliminate x between the 0(b?) momentum equa-

2
tions (5.45) and (5.46), we obtain the differential equation

(zxvzy T4 2y|3)y LR (2X'X "Y | 2X'2y n)y
0 0 0 2 0 0 0 0 0 2

I_Xylyllxl
1 1 0 0

=-X"YX'Y'+XY"X'Y'+X'_YY"X
1 1 0 0 11 00 i1 0 0
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|2y|2+X|yy|xu_xy|X"Y|
0 1 [¢] 1 1 1 0 0 1 1 0 0

12

+ X X "yo'2 ty vy "y , (5.57)

which can be expressed in the equivalent form

Yy x x'y'! X 'y x
24 Ty _ 4@ TiToT1 o _ 1 t1o ' '
ATE G as =y 7 7 txx ' H+yy’)
0 0 0
4x w2 4x "2 x !
- —AT}%'Z?TT - m"—;;—,—z-(arc cos —i——)z (5.58)
0 0

upon using the solutions (5.52) and (5.55) for x1 and yl

and the relation (5.34) between x0 and yo. Unfortunately,

this differential equation for y2 could not be integrated.
To obtain the boundary condition for the 0(b?) equa-

tions, we need to find pz, which is found from the 0(b?)

equations. The expansions (5.30) to (5.32) when substituted

into equations (5.21), (5.22) and (5.29) yield the 0(b?)

equations
p
X'X' + X 'x " +y 'y ' +y'y "+ =2 =0 (5.59)
0 3 1 2 0 3 172 pw
3p
3k "x +2x x "+ xx"+3y"y +2yy "4y 'y"+—=0
o 3 2 1 1 2 0 3 271 172 pw
(5.60)
' + 2x ! + ] - L [ 't = 0 .61
3Xo ya Xl yz Xz yl lez xzyl 3x3y0 (5.61)

If we eliminate X, between the last two equations, we obtain

3y0p2

] " + ] n +
3(Xo xo yo yo )ya sz
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"y!' - 2x

= -2x 'x "y - x'yx"+xx"y '+ 2x x
2 1 ¢ 1 0 2 2 0 1 1 2 0

1 0 2
_ ' " ._ 9 ' " - n 1 .
y Xlxz Y0 Yl Y2 YIY2 YO (5.62)

The relation (5.34) between x and y0 gives that the
0

coefficient of y is zero, so that p is given by
3 2

3y 'p
0 2 _ -2 [] " _ " v n ' 2 1 "
pw Xl Xo yz ylxo Xz xo xlyz xzyl Xo
_2 t "o ' "o _ 2 ] " - 1 " .
Xzyo xl yo Xlx2 yo yl yz y1yoy2 (5.63)
Now that p2 has been found, we can apply the boundary
conditions (5.23). To 0(b?), these boundary conditions give
_Asp 3 A2youxl 3 A2y0uyi2 ,
- =2 0 1 _ = o 1 _ 2 " 1 Tl ]
T =5 < 5 < 3A°y "x + 3A xD y2
0 0
9 2 " 9 ] 2
+ el 1 1 ¥ + 9 ] ] ] - = L 1 ]
2 yo X Xy Y, yo xy Y, 2 Xo Y, ¥,
_3xl2y IIXI - 3y 'X 'Y ly u + 3X ly Ye IX "o 3Y' 2X ny [}
0 0 0 1 1 0 0 1 1
+ Az (X |y " + x |y L] + x 'Y noo_ be uy | I X"y | I X ny |)
0 2 1 1 2 0 0 2 171 2 0
(5.64)

Since x , vy , x and y can be expressed in terms of x and
1 1 2 2 0

Y ,» the two expressions (5.63) and (5.64) for p should

0 . 2

give an extra condition on x and y , so that these func-—
0 0

tions are determined as (5.54) and (5.55), in agreement

with the hodograph solution of Chapter 3. The uniqueness

theorem of Section 3.2 gives that (5.54) and (5.55) must be
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the solution for X and Y, -

It seems that the 0(l) solution is fully determined
by conditions at 0(b’). 1If we consider a general packet of
antisymmetric waves on a thin fluid sheet, this packet will
break up into separate packets whose components satisfy the
first order relation (5.34). These packets have different
values of A and will take a very long time to disperse for
h very small as the dispersion is determined at O(bz). In
Taylor's (1959) experiments, the values of h used varied
from 2-5 - 50um. We see that, in general, antisymmetric
capillary waves on a thin fluid sheet are not adequately
described as fully dispersive waves. This observation is
linked to our earlier observation in Section 4.3 that anti-
symmetric waves on a thin sheet have properties of both

fully dispersive and non-dispersive waves.

5.3 ASYMPTOTIC SOLUTION FOR ANTISYMMETRIC WAVES ON A THIN

FLUID SHEET

As the first order solution in Lagrangian coordi-
nates for antisymmetric waves on a thin fluid sheet is not
determined uniquely until third order, we expect that the
solution in Eulerian coordinates will also have a similar
behaviour. 1In this section, we shall show that this is
the case.

The hodograph solution for antisymmetric waves on
a thin fluid sheet will now be derived using an ésymptotic

expansion. The fluid speed gq satisfies the differential
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equation (3.24)
1 2 2y _
D¢ + qu q(qcp + qw ) 0 (5.65)

together with the boundary condition (3.17)

3pa 2
A, = %0 (L%A% - q%) on ¥ =B (5.66)

As the sheet is thin, the fluid speed g will be expanded as

a series in Y as Y is small. So we propose the series
solution
a=q (¢) + g ()Y +aq (9> + g (9 +... (5.67)

Substituting this series into the differential equa-

tion (5.65) gives the 0(1l) and 0(y) equations

q. q, qo"
9, = 55t 3 - % (5.68)
0 0
; 29'q! 49 g, qlq;2 ql3
_ + - - - g " 5.69
q, q q q ° gz~ 9, ( )

Further equations are needed to determine the gd; - These
are obtained from the boundary condition (5.66). Let us
assume that the dispersion relation is given by the asymp-
totic expansion in B:

TA %k 3

_tARK" 2 3
(o - BK)Z palB + puzB + QuaB +... (5.70)

The boundary condition (5.66) then yields upon substitution
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of this dispersion relation and the expansion (5.67) for g

the 0(1) eguation
qg = LA (5.71)

This first order solution gives that the fluid velocity in
the sheet is constant to first order, as has been noted

previously. To 0(B), the boundary condition gives

oqul B —qoql

so that

ul = -LA (5.72)

If we similarly obtain the 0(B?) and 0(B®) boundary
conditions, we find further equations for q2 and q3 , from
which q  can be determined. At 0(B?) and 0(B%®), the bound-

ary condition (5.66) yields

= + 1 .
LAq = o + —3 (5.73)

= L L
LAq3 509, + 94 9, (5.74)

upon noting (5.71) and (5.72).

The two expressions (5.68) and (5.73) for qa, give
a =0 (5.75)

and the two expressions (5.69) and (5.74) for q3 give the

differential equation
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-q 3 3a g
[1 - 3 1

1 ZL%AZ - LA (5.76)

for ql. As for the Lagrangian coordinate solution of the
previous section, we see that we must go two orders higher
in the series expansion to determine the solution at first
order. In both cases, the equations obtained at the next
higher order determine constants only and do not give an
equation for the first order solution.

The equation (5.76) for q1 can be integrated once

to give

A

3a g2 q
q!?=C - i - i (5.77)

where C is a constant. This equation has the solution

L.
q = -2LAm*cn¢ (5.78)

in agreement with the solution (3.43) for g when this solu-
tion is expanded as a series in ¥. Requiring g to be 27

*
periodic and & to have zero mean gives
a=- 2K (5.79)

L =_2_]_3__:_.K (5.80)

The equations (5.68) for g and (5.69) and (5.74) for g
2 3

now give

q, = 2LAmcn *¢ (5.81)
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3/2

L
q3 = - %-LA(m1 - m)m‘cné - 2LAm cn ¢ (5.82)
1
o = SLA(m - m) {5.83)
3 3 1

We see»that the Lagrangian coordinate solution and
the hodograph solution for antisymmetric waves on a thin
fluid sheet bear similarities in their structure, which
reinforces our belief that the two expressions (5.63) and
(5.64) for P, in the Lagrangian coordinate solution give

the extra condition needed to determine x0 and y uniquely.
0
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