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ABSTRACT 

I 

In part I of this thesis similarity solutions to the 

equations of three phase flow through porous media are 

examined. The three phases are water, steam, and a 

noncondensing phase, most likely oil. The main purpose of 

analyzing such flows is to gain understanding of the steam 

flooding of oil fields. 

Provided steam is being injected at a higher pressure 

than the initial field pressure, it is shown that there will 

always be at least two saturation shocks. As one increases 

the pressure of the injected steam several regimes are 

encountered; first the flow develops a region where all the 

steam is completely condensed, then the position of two of the 

shocks are interchanged, and finally one of the shocks grows 

weaker and is eventually replaced by an expansion fan. 

In sections 12 and 13 the stability of steadily moving 

condensation fronts in porous media is analyzed. For one 

special problem it is found that the sign of the jump in 

pressure gradient at the interface determines whether the 

interfaces are stable or unstable. This result is applied 

with some caution to the similarity solutions found in the 

earlier sections. 

II 

Recently McLean analyzed the shapes of fingers in a 

Hele-Shaw cell, including the effects of surface tension. His 
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work resolved the question of the uniqueness of the shapes 

first brought up by Saffman and Taylor in their analysis that 

did not include surface tension. It is however felt that 

there are still unresolved problems. 

In determining the pressure jump across an interface 

there are two principal radii of curvature. McLean only took 

into account the effect of the larger of these, assuming that 

the other was constant along the outline of the finger. 

Unless the smaller radius is very nearly constant, it should 

in fact give a larger contribution to the jump in pressure. 

In this thesis the effect of this smaller radius of curvature 

is modelled by assuming that it is a function of the normal 

velocity of the mean two dimensional surface of the finger. 

It is found that if one only takes into account the 

smaller radius of curvature, the problem is not uniquely 

determined, as in the case with no surface tension at all. 

When both radii of curvature are taken into account, the 

effect of the smaller radius of curvature is to modify the 

finger shapes in a way that is qualitatively in agreement with 

experimental data. Also, McLean's results are checked by an 

independent numerical scheme, and the results are found to be 

in excellent agreement. Using both methods of solution a 

second solution branch other than that described by McLean was 

also found. 
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Part I 

SIMILARITY SOLUTIONS OF THE EQUATIONS OF THREE 

PHASE FLOW THROUGH POROUS MEDIA 
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.!l INTRODUCTION 

The equations of motion of a fluid in a porous medium are 

almost always based on Darcy's law or one of its extensions. 

In its simplest form, Darcy's law states that for a 

homogeneous fluid the seepage velocity JL (which is the net 

rate of transport of fluid) is proportional to the pressure 

gradient and a term due to gravity (ref 1). 

Here k is the permeability, which is a property of the 

porous medium,;.t and f are the viscosity and density of the 

fluid, and~ is the gravity vector. In this work the effect 

of gravity will be ignored. 

If more than one fluid is present in the medium, one or 

more saturation functions must be introduced. In the case of 

a two fluid system the saturation function S(x,t) tells what 

.fraction of the volume of pore space is occupied by each of 

the two fluids. If the two fluids are labeled I and II, then 

S=l indicates only fluid I is present, and 8=0 indicates only 

fluid II is present. In these multicomponent systems Darcy's 

law is generalized to (ref 1) 

2) g :c :.. --A. O(:r. (s) V P 
J.Ar. 

~ ~ : --k c(:n: (~) .2-£ 
)Ax. 

Here U:r and ~:u: are the net rate of transport of each 
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component. This is an empirical formula. The functions ~~ 

and ~~are known as the relative permeabilities, and they are 

obtained experimentally. One can however expect that they are 

both monotone functions of s. As S varies from 0 to 1 

o<x rises from 0 to 1, and o<:n: decreases from 1 to 0. This is 

due to the fact that when S=0 the seepage velocity of fluid I 

is zero, si nee none of it is pr,esent, so D<x< 0) =0. Also, 

~:(0)=1 since at this extreme the result should agree with 

equation 1) for a single component system. The corresponding 

result at S=l is valid for the same reason. In figure 1 a 

typical pair of profiles for C<x and O(g:c is plotted. 

The case of the flow of two immiscible fluids in a porous 

medium was first analyzed by Buckley and Leverett (ref 2). In 

this case the continuity equations for each phase yield 

3a) 

b) 

Here E, known as the porosity, tells how much of the 

medium is available to be filled by fluid. For the one 

dimensional problem a first order P.D.E. can be derived. By 

combining 3ab) one gets 

K P" ( O(.~ {s) 
µx 

where f (t) is an arbitrary function of time. Plugging this 
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back into 3a) one gets 

This equation is an equation for a kinematic wave (ref 3). 

Buckley and Leverett used this equation to show that for 

certain initial conditions saturation shocks develop in the 

flow. 

In the above formulation it is assumed that the pressures 

of the two fluids are identical. This is not precisely true. 

Due to surface tension effects it is found that the pressures 

differ by a function of s. This function pc(S), known as the 

capillary pressure, is experimentally determined. If this 

function is included in equations 3ab) one has a term 

involving S~~' and this term acts to replace the shocks by 

regions of sharp gradients in S and P,c. 

In many problems of flow through porous media the 

capillary pressure is a dominant term in the equations, and 

cannot be ignored. It is important in problems such as the 

slow infiltration of groundwater, where no external pressure 

gradient is forced on the system. For problems such as the 

steam-flooding of oil fields, or the analysis of geothermal 

power systems, the capillary pressure may be ignored. This is 

because the pressure gradients due to capillarity are small 

compared to those forced on the system. It is this second 

class of problems that motivates the present work. 
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In recent papers (refs. 4,5) Romero and Nilson found 

similarity solutions to the problem of a fluid capable of 

undergoing phase change flowing through a porous medium. In 

this case the saturation, pressure, and temperature are the 

dependent variables. Neither phase is independently 

conserved, so there is only one continuity equation. However, 

one has in addition an energy equation, and the 

Clausius-Clapeyron equation. 

As in the case of the Buckley-Leverett solutions, 

saturation shocks are obtained. A unique feature of the 

solutions is that depending on the boundary and initial 

conditions, there can be a variety of purely single phase 

regions imbedded in the flows. Unlike the Buckley-Leverett 

flows these regions may occur even when the boundary and 

initial conditions specify two-phase flow. 

In the present work the similarity solutions of Romero 

and Nilson are extended to include a third phase that does not 

·undergo phase change·. The ·hope is that these solutions will 

be useful in the analysis of steam-flooding of oil fields. 

The purpose of using steam-flooding as opposed to 

water-flooding in secondary and tertiary oil recovery is to 

raise the temperature of the oil, thereby lowering its 

viscosity, and enhancing its mobility. To model this effect, 

the temperature dependence on viscosity is included in the 

equations. 

In order to reduce the equations to ordinary differential 
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equations by the use of a similarity variable, several factors 

important in an oil field must be ignored. In particular, no 

account can be taken of the effects of gravity, three 

dimensionality, or the finiteness of the oil field. Despite 

these limitations, it is felt that these solutions will still 

be useful. For the problem under consideration it is so 

difficult to do experiments, or to solve the full set of 

P.D.E.s, that very little is known about the basic structure 

of the flow. It is believed that the solutions in the 

following sections will serve as a guide to experimentalists, 

and builders of more general purpose P.D.E. codes, and 

possibly to oil reservoir engineers. 
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l1. EQUATIONS OF THREE PHASE FLOW 

In this section equations for flows containing oil, 

liquid water, and water vapor are derived. To describe such 

flows a second saturation function Z(x,t) is introduced. 

Z(x,t) is the volume fraction of pore space occupied by oil, 

(1-Z) is the volume fraction occupied by water in either its 

liquid or vapor form. Of the pore space occupied by water, 

S(x,t) denotes the fraction occupied by liquid, and (1-S) 

denotes the fraction occupied by vapor. By their definitions 

it is evident that 0<S<l, and 0<Z<l. 

Oil, water, and energy must all be conserved. Below are 

the one dimensional conservation equations for these 

quantities in a porous medium. 

4a) Oil 

b) Water 

j_ (E.(t· ~) s P +. e(1·l)(1-s) f ) + 1.- ( f ut + r, U.,) = o 
9 t . Jq, v ~ 'X. ' v 

c) Energy 

1- c~ 2 f. e + E.:.(t-~)s f. e.. + e(r-i:){1-s) ~v e.v + (1-e.) f $ e..s.) 
a-e o 0 t e. 

+ !.. ( 9 i u + p"" Lt,+ f. ~ uo) ~ 0 
~ ~ ) v v v )t l t. 0 0 

As is the case from now on, 1, v, o, and s subscripts 

refer to liquid water, water vapor, oil, and the solid matrix 

(the porous medium itself). Also, from now on only one 
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dimensional flows are considered. 

In equation 4) h~ (i=l,v,o,s) stand for the enthalpies 

per unit mass. These are assumed to be linear in T with slope 

c~ (i=l,v,o,s}. The internal energies per unit mass are given 

by ee,. =h~ -P/f ._ • 

No thermal conductivity or capillary pressure is included 

in the equations. 

The water vapor is assumed to be ideal ~v= ~~ A more 

realistic dependence could easily be used, but this is not 

felt to be essential. The water is assumed to be 

incompressible, and the oil density satisfies (df./dp}/~=Y. 

The oil viscosity is assumed to vary with temperature 

11ke ~~ ~ ~ f> • It is important to note that the inequalities 

P.v <Jla. <µ
0 

wi 11 al ways be assumed to hold. 

The velocities in equation 4) are given by the 

generalized form of Darcy's law (eq 2). To simplify the 

algebra, the relative permeabilities are taken to vary 

·linearly with Z and s. 

5) "<t:: (l- ~)s 

O(v = (t- ~)(1 .. s) 

In the case of two-phase condensing flows (where the 

algebra is less complicated), numerical tests were made that 
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showed that the flows with relative permeabilities varying 

linearly with S looked qualitatively the same as the flows 

where the permeabilities were chosen to better match 

experimental data. The flows were qualitatively the same in 

the sense that for both types of profiles the same sort of 

shocks and imbedded single phase regions occurred, and the 

dependence on the parameters of the flow were similar. 

In regions with both phases of water present the pressure 

and temperature are constrained to lie on the 

Clausius-Clapeyron curve. 

6a) T=Tsat(P) Vt" ::._L. J_ -< O 
f ( f v 

In regions with only one phase of water present the 

pressure and temperature are independent, but it is required 

that 

6b) S=0 and T>Tsat(P) 

or 

·6c) S=l and T<Tsat(P). 

The above P.D.E.s cannot be classified as one of the 

standard types. In three-phase regions the equations are 4th 

order with S, z, P, and P,c being the independent variables (T 

is related directly to P by 6a)). In such regions there are 3 

sets of characteristics. Two of these are as in a hyperbolic 

system, the third has dt/dx=0, and is degenerate as in a 

parabolic system. More details on the characteristics may be 

found in appendix B. 



HJ 

In regions with S=l, or S=0, the temperature totally 

decouples from the other equations (it is a constant), one of 

the dependent variables drops out (S) , and one of the 

hyperbolic type characteristics is no longer present. 

In the following sections the problem to be analyzed is 

that of a semiinfinite region initially at uniform conditions, 

that at times t>0 is subjected to a new set of constant 
" 

conditions at the plane wall x=0. 

7) S(o,,-t)=So P(o,t.):. ~. t ':- 0 

In the above if 0<S<l, then T and P cannot be specified 

independently, but must lie on the Clausius-Clapeyron curve. 

Also, unless otherwise stated, it will be assumed that 

P(0,t)>P(x,0). 
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11.. EQUATIONS IN THE SIMILARITY VARIABLE 

The equations and boundary conditions given by 4), 5), 

6), and 7) are all invariant under the transformations x~~x, 
1.. 

t-'>~t. It follows that all quantities can be written as functions 

of a similarity variable 8=x/ft': It should be noted that the 

particular assumptions on the forms of the enthalpies, 

densities, viscosities, and relative permeabilities are not 

necessary for obtaining a similarity solution. 

When written in terms of the similarity variable, the 

system of P.D.E.'s reduces to the following set of O.D.E.'s 

c) 
§t(E:.(t-2.)S~ e. + E.(f-~)(1-s)~ e. +E:. ~P e.0 + (1-e)f e.s.) 
2.. Jt l v V )o s 

+( p (.r-~) s ~ 1'~ ..- f. (r·2)(f-S )-Av 1'.Js_ + y 'i /...
0 
~) / :; o 

;fl.. . ( Me v Mv o ,,u.. 

Here the primes refer to derivatives with respect toe. The 

boundary conditions 7) transform to 

S (o):: So 1>(o): "Po 2(o): ~o T(o)= To 

9) S (c:io):: Seo "'PCoo):: "Po- ~(oo): ioo T(oo):Te» 

T : Tso..t tt>) Ll6' l~!. s::o ct\ 

The compressibility of the oil and the water vapor make 

it allowable to assign P at infinity rather than merely 

assigning P'. This is for basically the same reason as with 



12 

the case of a single homogeneous fluid flowing through a 

porous medium. In such a case, assume that· the density is 

given by f=Alp, and that the boundary conditions admit the 

use of a similarity variable. Using Darcy's law and the 

equation of continuity one obtains 

If the fluid is incompressible, the equation reduces to P''=0, 

and it is obvious that one cannot specify P at infinity. 

However, if the fluid is compressible, P'.-.0 ass+•. It is 

thus legitimate to assign the value of P at infinity. 

It should be emphasized that P0 >P... It will soon be 

shown that as a consequence of this P'<0 for all e. 

In regions with all 3 phases present it is convenient to 

write the equations in matrix form. 

( ~,,) A ~, :. !?. 

10) ro 0 Ji!./ )<o 
A.:. 

. -~ -It fv s Ft · f.( "-(v ( , .. ~) \:' ( .s( 1-2;) r, "'tv/µ f 

-f" -ht" ( t-S) l=., - ~" hev(l·l) l="v ( (-S) (1- k) f.; -ktv/ )4.v 

-T' F"' 
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Here the following notations are introduced. 

f"v::: ~ £. ""t~: Fe ~ H .!<}e' F .. " ~ E. + ~~· 

The quantities Fv, ~, ~,and FH will be used frequently 

from now on. Their physical significance will be described in 

the next section. At the present it is important to note that 

due to the inequalitiesµvcµ~<Po and P'<0, Fv<F.e <F
0

• 

From equation 10) it can be seen that P' always has the 

same sign unless some sort of degeneracy exists in the 

equations. This is because if it ever passed through zero, 

the vector b would vanish. This is because P and T are -
b • Pv' related y the Clausius-Clapeyron, so if P'=0, then T' and > 

both also vanish. As a consequence of this P'', S', and Z' 

would vanish. Assuming the solutions are unique, this would 

imply that all the variables s, z, and P were constant 

throughout the whole flow. The numerics were never found to 

contradict the fact that P' is always the same sign. Except 

for the solutions in section 10, it will always be so that P~ 

<P
0

, so P' is less than zero. 

The determinant of A turns out to be a significant 
'2. 

quantity. After factoring out f,f..,\vC•-~) it is given by 

11) tle.t. A'= ( 1 ... s)( t - ~) Ft Fo + ( 1- ~) s Fv Fo + a F.c. Fv 
µ..., .)-(11. .)-(.o 

In regions with only one phase of water present the 

energy equation reduces to 
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12a) 

In such a region the oil continuity equation is the same 

as in the three phase case, but the water continuity equation 

simplifies to 

12b) -2'Ft .... (•-~) l'" ~ 0 -7ot S= I 

or µe 

c) ' (1 ... ~)~#: - f/Fv (1-l) -l. Fv + fc:sf S:o 
.,..c..tv 

In the actual steam-flooding of an oil field the field 

would most likely initially be subcooled. That is S~=l Too 

<Tsat(P_.). Despite this, the case with So.<l will first be 

analyzed. After seeing the variety of solutions available for 

these initial conditions the more realistic case with S..=l 

will be considered. There are several reasons for analyzing 

the case with s_<l first. The simplest solutions satisfy this 

condition, and confidence in the other solutions is obtained 

when one sees how the various regimes of flow evolve into each 

·other as one .varies the boundary conditions. Also, when S.-<l 

there are seve~al interesting regimes of flow which do not 

occur in the similarity solutions with s.=1; and it is 

possible that these regimes might occur when less restrictive 

boundary conditions are used that do not lead to similarity 

solutons. 

With these remarks in mind, assume that equations 8) and 

boundary conditions 9) hold with 5,o<l. Also assume that no 

superheated (S=0) or subcooled regions (S=l) exist in the flow 
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(later it will be seen for what boundary conditions this is in 

fact true). As with the case of two-phase flow (ref 5) one 

can obtain information about the structure of the flow by 

comparing the order of the equations with the number of 

boundary conditions, and also by examining detA. There are 

two indications that 2 shocks must be present in the flow. 

1) Equation 8) is a 4th order equation with 6 independent 

boundary conditions. 

One knows S, z, and P at 6=0. By just adjusting P' (0) one 

cannot satisfy all 3 boundary conditions at t!J =00 • If one puts 

two shocks in the flow the position of these shocks may be 

treated as extra shooting parameters. These may be adjusted 

along with P' ( 0) so that all 3 conditions at 6 ='° are 

satisfied. 

2) Note that at 8=0 F,, ,Fe , and F0 are all negative, but ate =co 

they are all positive. From looking at equation 11) it is 

easy to see that at &=0 andoo, detA>0. There must be a point 

at which Ft =0·. At this point equation 11) easily yields 

detA<0. If no shocks were present in the flow detA would have 

to pass through at least 2 zeroes as 8 went from 0 to 00 • The 

equations would thus pass through two singularities. The 

possibility of doing this in a continuous fashion was examined 

and found not to be feasible. To have such continuous 

solutions be feasible, it would be necessary that whenever the 

determinant of A vanished, the vector ~ was automatically in 

the range of A. This does not in fact happen. The conclusion 
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is that shocks must be present in order to jump over the 

zeroes of detA. Consideration of the probl~m shows that the 

singularities must be jumped over one at a time (appendix A), 

so that two shocks must be present. 
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4) SHOCK CONDITIONS 

By equating fluxes of oil, water, energy, and momentum on 

both sides of a shock moving with velocity U, one obtains the 

following jump conditions. 

a) 

13) b) 

c) 

d) 

U[£.ft(•-!a)se.,,. ~y.,(1-~.)(t-s)e., -I'" E.f0 ~e. 0 -t-(1-E..)f3 e.s1 
+ [ ~ Ae Ith (1- ~)s + f\, kv k,.&. (•- ~)(1-~) + f,), 0 A.l!_ ~} = 0 

)(t ,,tA.., )-<o 

[ F>) ~ 0 

The continuity of pressure across a shock is consistent 

with the fact that the equations of flow through porous media 

describe low Reynolds flow. This condition is usually used at 

the interface of two fluids in a porous medium, and is also 

used at the Buckley-Leverett shock described in section 1. 

In the s.imilari ty variable if the shock occurs at 8= Bs, 

then the position of the shock is x =Bs-rt'. The velocity is 

thus '-ls=,.~ • Also, "P,. =~ t: Using these relations one 

obtains the shock conditions in terms of the similarity 

variable. 

14) a) 

b) 
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and after a little manipulation, 

c) [ T1F +A [P(1-~)(f-s)Fv1::o · 
H N Jv 

d) (P) :o 

"' Here the hat on ht~ indicates that it is to be evaluated 

on the opposite side of the shock as the quantities in ~. 

The formula is true no matter on which side of the shock 

is evaluated provided it is a different side than the 

quantities in F". 

Note that F., = _L (E..v +-I< P"L ) , so except for the factor I 
' ~ Pt it 

F( measures the flux of liquid relative to the point x=eJt. 

Similarly Fv,F0 , and FH measure the fluxes of vapor, oil, and 

heat relative to x.=er:t. 

If [T]f0 certain inequalities on FH must be satisfied. 

These can be derived by including a thermal conductivity term 

in the energy equation and looking at the behavior as this 

term approaches zero. When thermal conductivity is included 

·the energy equation Sc) has a term involving T
86

• When this 

term is included, the jump in T is replaced by a region with 

large gradients in T. Note that there are no large gradients 

in P since [P]=0, so all large gradients in T must occur in a 

region where T and P are not related by the Clausius-Clapeyron 

equation. That is, in a region where 8=0 or 1. In such a 

region the energy equation including thermal conductivity is 

15) I ~'> k.,.. > o 

It can easily be seen that if T is to have boundary layer type 
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behavior, it is necessary that 

16 a)FH>0 if the boundary layer (jump in T) occurs on the 

L.H.S. of the region with S=0,or 1. 

b)F~<0 if the boundary layer occurs on the R.H.S. of the 

region with S=0, or 1. 

In reference 5) the relations 16ab) were derived by 

requiring that the jump in entropy be positive in crossing a 

shock. 

It should be noted that for the case of a shock where 

both sides have 0<S<l, [T]=0 since [P]=0, and the pressure 

and temperature are related by the Clausius-Clapeyron 

equation. 
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~ FLOWS WITH TWO SHOCKS 

The simplest flows to analyze are those that contain no 

imbedded regions with S identically 0 or 1. In this case p 

and T are always related by the Clausius-Clapeyron equation. 

It will be seen that provided P~/P0 and S0 are not too small, 

and s~ and z. are not too large, these simple flows are the 

ones that occur. 

In this case the jump conditions 14) reduce to 

1 7 ) [ z F • ] = [ ( 1-Z ) ( 1-S ) F ~ ] = [ ( 1-Z ) S Fe ] = [ P] = [ T] = 0 

The following simple identity is used frequently. 
A 

[AB]=[A]B+A[B] 

A 

Here the hat on A indicates that it is to be evaluated on a 

different side of the shock than the term B multiplying [A]. 

Using this identity the jump conditions may be written 

(the hatted quantities have the same meaning as above) 

!~l Fo .... (sj· o t CP') fi./JA.o = 0 

17') A 
+ (s)(t-~)i="t -t Z:P'l$(l-i)/µ~ -r.~1.s F.t, ::. 0 

- ('it "l ( 1-S) Fv 
A 

..- . ( 1- ~ ) ( l-~ ) ( p'1 + ·cs1 ~v ( 1- !i! ) '= 0 

µ., 

In order for this system to have nontrivial solutions the 

determinant must vanish, so 

18) Fo~t (1-~}(1-~)+ FoFv(J-~}i_ + l='.(Fvi = O 
µv At µo 

A A 
If in the above formula S and z were replaced by S and Z, 
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the left hand side would be identical to detA in equation 11). 

Equation 18) proves to be useful in determining the signs of 

[Z], [S], [P'], and also in determining necessary and 

sufficient conditions for detA to change sign in crossing 

shocks (appendices A and B) • 

In order to integrate the equations from 6=0 to B=oo 

without encountering any singularities (having detA=0), ~ , Fv, 

and F
0 

must have certain signs at the two shocks. At the 

first shock, F" <0 and F~ <0. An examination of equation 11) 

shows that if this were not so, detA would have already 

changed sign, and the equations would have passed through a 

singularity. Also, at the first shock F0 >0. It can be shown 

(appendix A) that this (along with F" <O, and F~ <'.0) is a 

necessary and sufficient condition for detA to change sign in 

crossing the first shock. As mentioned in section 3, detA 

must change sign at a shock in order to avoid later having to 

pass through a singularity. The above can also be shown to be 

·necessary anq suffic·ient conditions for the characteristics on 

the left to be overtaking those on the right {appendix B) • 

This condition should be satisfied in order to have the shocks 

be meaningful in terms of the original P.D.E.s. 

At the second shock it is necessary that Fv<0, otherwise 

by similar arguments as above one can show that detA would 

have passed through zero. To have detA change sign at the 

shock, and have the characteristics overlapping it is also 

required that ~ >0 (appendices A and B). 
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G iv en v a 1 u es S 1 , 
Z 1 , and P/ on the L • H • S • of the sh o c k 

satisfying 0<S
1

<1, 0<Z, <lit is not clear that the jump 

conditions 17) yield unique solutions 8
1

, Z~ and P~ on the 

R.H.S. satisfying 0<S&<l, 0<Z~<l. By eliminating s~ and p;_ 
from equations 17) one arrives at a quadratic equation for Z • 

&. 

19) 

One can however show that the conditions on F~ ,Fv and F
0 

that insure that detA changes are also necessary and 

sufficient conditions for 19) to have a unique solution 0<ZL 

<l, that in combination with the other equations in 17) yield 

0<S~<l (appendix C). 

To summarize, if at the first shock F"<F,<0, and F
0

>0, 

and at the second shock Fv<0, F
0

>Ft >0, then: 

1) There is one and only one solution to the system 17) 

satisfying 0<S~<l, 0<ZL<l. 

2) Other than the trivial characteristic dt/dx=0, the partial 

differential equations have 2 families of characteristics. 

At both shocks the characteristics on the left are overtaking 

those on the right. 

3) At both shocks detA changes sign. After the second shock 
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the equations may be integrated out to infinity without 

encountering any singularities. 

4) It can be shown (appendix A) that [P']>0 at both shocks. 

In sections 12 and 13 it will be seen that this gives at least 

some indication that the shocks are stable to 3 dimensional 

disturbances. 

5) In appendix A it is also shown that (Z]<0 at both shocks. 

At the first shock [S]>0, at the second [8]<0. 

In the flow of oil and noncondensing water there is a 

shock, the Buckley- Leverett shock. In a two-phase condensing 

flow there is a shock with [S]<0 at which Fy<0, and ~ >0. Due 

to the signs of [S], Ft , and Fv at the two shocks it is 

reasonable to call the first shock a Buckley-Leverett shock, 

and the second shock a condensation shock. 

The equations and jump conditions were solved numerically 

for a variety of parameters. The values of s, z, and P were 

given at 8=0, then P' (0), B,, and 6,_ (the values of 6 at the two 

·shocks) were .adjusted using Newton~ method until S ("°), Z (oc), 

and P(.-) were equal to their prescribed values. An 

Adams-Bashforth predictor corrector code obtained from the 

· Sandia Laboratories math library was used to integrate the 

equations. Rather than integrating out to infinity, the 

equations were integrated out to a large but finite value of e 

(usually 8=2 was adequate) • The Jacobian was evaluated by 

differentiating both the differential equations and the shock 

conditions with respect to the parameters P' ( 0), 6, , and Bz..; 
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and solving the resulting equations along with the equations 

for P, s, and z. Figure 2 shows some sample. solutions for 

various values of P00 with the other parameters held fixed. 

Except for the values of P00 and T00 the physical parameters 

were chosen to be typical of a real oil field (ref 6). 

Similar to the case of two-phase condensing flow one 

finds that if one keeps all parameters fixed and lowers P~/P, 
0 

the value of S on the L.H.S. of the second shock increases. 

If one lowers P~/~ far enough one finds that at the second 

shock S eventually equals 1. Lowering P~ further causes the 

solutions to have regions with S>l, which is not allowed 

physically. The only way out is to introduce a region which 

wi"ll be called a liquid slug where S=l, and T<Tsat(P). This 

will be done in the next section. 

Before doing this it should be mentioned what effects 

varying the other boundary conditions other than P~ has on 

whether or not a slug develops. If one keeps all other 

.parameters fixed one .finds that 

1) if one raises z00 enough a slug will develop 

2) if one raises s~ enough a slug will develop 

3) lowering Z
0 helps a slug to develop, but for many values 

of the parameters it can be lowered to 0 without a slug developing 

4) raising S
0 

helps a slug to develop, but it can be raised 

to 1 without a slug developing. 
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P00 /p
0 

= .996 

8 0 e, 
Poo /p0 = • 995 

Figure 2 

8 

Typical profiles described in section 5. As one lowers P
00

/p
0 

the saturation profile S eventually reaches 1 just before the second 

shock. 



26 

§1_ LIQUID SLUG 

On entering into a region containing a ·liquid slug there 

must be a jump in both temperature and saturation. The reason 

for this is that inside the slug T'=0 {equation 12a), but 

dTsat{P{9))/de<0 {since P'<0). If there was no jump in 

temperature, the temperature inside the slug would immediately 

rise above the saturation temperature as e increased. This is 

the opposite of what should occur in a liquid slug. The 

conclusion is that on jumping into the slug [T]<0, hence from 

14) it can be seen that [S], [Z], and [P'] are all nonzero. 

A jump in temperature on .the right hand side of the slug 

must be ruled out. The reason is that 16a) requires Eff >0 on 

the L.H.S., but dF,./dB>0, so that Fff>0 on the right hand side 

of the slug. Since this is so 16b) rules out a jump in 

temperature. The fact that dF~/de>0 can be seen by plugging 

S=l into Sa and b) 

so that 

On moving out of the slug there must still be a jump in 

the saturations and the pressure gradient. Otherwise one 

would always have a region where s~1 just to the right of the 
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slug. Since this is not the case for flows without a slug, 

there would have to be discontinuous dependence on initial 

data. This argument is similar to the one used in reference 

5. 

Attention should be called to a certain detail in solving 

the jump conditions 14) to find the values T~, Z~, and P~ on 

the right hand side of the jump into the slug. Using 14c) 

alone one can solve for T~. By eliminating P~ from 14a) and 

b) one gets a quadratic equation for z~. 

20) f~E-.(µ01..-µt)~,_(ll--l) +f"(l-~2-)~ F0 t{ -~ µ.(Ps F:, +f (f-s)Fv) ::.o 
t 2.. J(. 0\... 2.. " )t '\. v 

Mo"J.-=- JA.o (_ T 2-) 

In general there may be more than one solution to this 

equation satisfying 0<Z~<l. The fact that two solutions may 

exist will in fact be useful in the next section. However, 

when the slug first forms, there is one and only one valid 

solution to 20). This is because in this case, due to 

continuous dependence on initial data, one has SNl immediatley 

to the left of the shock into the slug. When this condition 

is satisfied, it can be shown (appendix D) that 20) has one 

solution with 0<Z~<l, and one with Z~>l. As the slug widens 

the second root may come to satisfy 0<Z~<l, but by continuous 

dependence on data one continues using the same branch. 

Ambiguity would arise only if the two roots were to coincide. 

Numerically this was not found to occur. 

Now that the basic structure of the flow is known, the 

equations may be integrated numerically. One uses P' (0), e, 
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,and 8~ as the shooting parameters. Here 8 1 is the position 

of the first shock, and e~ is the position of the shock into 

the slug. Note that once P', e,, and 8~ are given, the 

position of the shock out of the slug is not arbitrary. This 

shock must occur at the point where T=Tsat(P). 

Figure 3) shows some profiles for this regime of flow. 

As one raises P00 the slug grows narrower, and the jumps of S 

and T as they enter the slug grow smaller. The flow merges 

continuously into the flows without a slug. As one lowers P00 

the first shock (Buckley-Leverett) gets closer to the shock 

into the slug. Eventually it catches up with it. At this 

point two possibilities exist. 

1) The two shocks are replaced by a single shock. 

2) The Buckley-leverett shock occurs inside the slug instead 

of before the slug. 

If the first possibility occurs, one of the shooting 

parameters will no longer be available. A boundary condition 

·would have to be dropped. If this were the case one would 

expect to see a type change of the equations or a 

characteristic qualitatively changing the way it transmits 

data. There is no evidence of either of these, so the 

conclusion is that the second possibility is the correct one. 
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Figure 3 

P00 /p0 = .995 

Pm/ Po =.994 · 

I· 

8 e 

Pm/ p0 = .993 

Typical profiles described in section 6. At first the width 
of the slug is infinitesimally small. As one lowers p I , the oo;po 

slug widens, and e1 approaches e2. Eventually e1 catches up with 

62. 
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1l BUCKLEY LEVERETT SHOCK INSIDE SLUG 

As just described, when one lowers PdlO eventually the 

Buckley-Leverett shock passes the shock into the slug. At the 

precise value of PGO such that the two shocks coincide, one 

uses either of two methods to solve the equations. To have 

continuous dependence on data one must obtain the same results 

whether, 

A) One first has a shock with [T]=o, followed by a shock with 

[T]<0 into the slug. On jumping into the slug one uses the 

same root of equation 20) as before the Buckley-Leverett shock 

catches up. This is the method one would use immediately before 

the shock catches up with the slug. 

Bf One first does a shock into the slug with [T],0, followed by 

a shock with [T]=0. This is the method one would use immediately 

after the Buckley-Leverett shock passes into the slug. 

It is simple to show that for case B one jumps first to 

one root Z~of 20) then to a different root Z~of 20). After 

·passing through both.shocks one must end up with the same 

value of z£as one does in A. In order for this to happen z~ 

must be the same as Z~in A, so Z~is on a different branch than 

z:a. in A. 

To have this transition between the two regions occur, it 

is necessary that two roots of 20) be available with 0<Z~<l. 

It can be shown that at the point where the two shocks merge, 

two such roots always are available (appendix B). 

Figure 4) gives examples of some of these flows. As one 
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raises P~the butte of high saturation grows thinner until it 

disappears. It grows continuously into the flows described 

earlier. However, at the point where the butte vanishes there 

is an infinitesimal strip where the saturation jumps up and 

then right back down. One would be surprised to see an 

infinitesimally small zone of high saturation in a real 

flow. However, it should be noted that when the strip gets 

very thin one finds numerically that [P']<0 on entering the 

slug. In sections 12 and 13 this will be shown to be an 

indication of instability. As one continues to lower P.the 

butte.of high saturation widens, and [P'] eventually becomes 

positive indicating that the flow has stabilized. 

If the compressibility of the oil is set to zero (the 

compressible case will be discussed later), one finds that as 

one lowers P00 further the shock inside the slug grows weaker 

and at the shock detA starts approaching 0. Eventually there 

is a value of ~such that at the shock [Z]=[P']=detA=0. If 

one continues to solve the equations as before, one finds that 

the solutions are defective in several ways. 

First, the solutions pass through a singularity. They 

can do this without blowing up due to the homogeneous nature 

of the equations inside the slug. 

21) ,,, ( ,,,, \ 
A ~, ) ::. o 

c;le.i.. >.." .. 1- ~ F0 ..,. !l. F~ 
,LI( fio 
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However, if even a small compressibility for the oil was 

included, the equations could not be integrated through detA=0 

since 21) would in this case have a nonzero right-hand side. 

Because of this the validity of the solutions must be doubted. 

Second, if one looks at the characteristics of these 

solutions (in a manner almost identical to that in Appendix B) 

one finds that they do not overlap as they should at the jump 

inside the slug. The conclusion is that one cannot continue 

to integrate the solutions and have a shock inside the slug. 

At this point either a boundary condition must be 

dropped, or a new shooting parameter must be found. For the 

same reason as in the last section it is not plausible to drop 

a boundary condition. In the next section it will be 

explained that the new shooting parameter is essentially the 

width of an expansion fan. 
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Figure 4 

8 

P00/p0 =. 992 

Poo/P0 = .987 

8 

I 

l 

Poo /p0 = • 984 

8 

8 

Typical profiles described in section 7. At first there is a 
very thin region where the oil saturation jumps up, and then right 
back down. As one lowers p .. /. this region widens, and the second 

oo/ Po 
juMp grows smaller until it eventually disappears. 
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~ EXPANSION FAN INSIDE SLUG 

There are two possible solutions to equation 21. One 

solution has P''=Z'=0. The other has nonzero values for 

z• and P'', but has detA(6)=0. When the slug first forms 

there is no doubt that Z'=P''=0 is the correct choice since 

detA,0. However, as was seen in the last section, as one 

lowers P..., one reaches a point where detA=0 at a point in the 

flow, and the shock inside the slug has disappeared. At this 

point one can introduce a singular subinterval where detA=0. 

The length of this subinterval may be used to replace the 

location of the shock as a shooting parameter. 

As in Appendix B it can be shown that at points e where 

detA(e)=0, x=er:t'is a characteristic. In the (x,t) plane 

this singular subinterval is bounded by two diverging 

characteristics. It is a type of expansion fan. 

In figure 5 are some examples of flows with this 

expansion fan. After the expansion fan has been introduced 

one may lower P~ arbitrarily without introducing any new 

regimes of flow. By' adjusting the other boundary conditions 

no new regimes of flow are encountered except for various 

types of superheated regions at the left-hand side of the 

flow. These regio~s are almost identical to those in 

reference 5. 

If the oil is compressible the above expansion fan cannot 

occur. In this case equation 21) would have a nonzero R.H.S •• 

The solution with detA=0 on a finite interval is no longer 
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feasible. Fortunately, in this case the problem of the shock 

disappearing and the equations becoming singular is found not 

to occur. For a small oil compressibility detA is small but 

nonzero over a finite interval. As the compressibility goes 

to zero these results are consistent with the results 

containing an expansion fan. It should be remarked that in 

these regimes where detA is a small over a finite interval it 

can be quite difficult to integrate the equations. In 

particular if one is using a continuation method to input 

initial guesses to Newton's method, one can use very much 

larger continuation steps if one ignores compressibility and 

introduces an expansion fan. 
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Figure 5 

Typical profiles described in section 8. Expansion fan occurs 
inside liquid slug. As·one lowers p

00
/po further no new difficulties 

are encountered. 
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il_ INITIALLY SU.BCOOLED FIELD 

As has already been mentioned, in a real oil field the 

initial conditions would satisfy T<Tsat and S=l. In terms of 

the solutions already obtained this means that after jumping 

into the slug the fluid remains subcooled all the way out to 

infinity. If the oil was incompressible this would mean that 

P''=QJ in the ~lug, so P' would not approach zero automatically 

as f)~.o. Thus, specifying P at o0 would really be specifying 

two conditions, P' (~)=0, and P(oa-)=P.,.. The similarity 

solutions could not be solved in this case. 

If compressibility is included in the equations P'-f'QJ as 9~00 , 

and the above problem does not arise. It was with this 

problem in mind that compressibility was originally included 

in the equations. 

When somewhat realistic data for an oil field are used, 

the flows look quite simple. The regime that occurs is the 

one with a Buckley-Leverett shock inside the slug. It appears 

· that the pressure ratio p....,/p
0 

must be very close to unity (not 

realistic of a real oil field) in order for the 

Buckley-Leverett shock to occur before the saturation shock. 

In figure 6 are a variety of these flows for different values 

of 50 • 
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Figure 6 

I-

So= .8 8 

So= .6 e 

I ~ 

So=. 2 8 

Oi°l saturation profiles for an initially subcooled field. 
Note that lowering s0 widens the region of high z saturation. 
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10) FLOWS WITHOUT SHOCKS 

It should be mentioned what happens when the injection 

pressure P0 is less than the initial pressure P~. In this 

case P' (8)>0, so Ft ,Fv, and F
0

are always positive. If one 

looks at detA it is easy to see that in this case there is no 

reason to pass through any singularities as e increases from 0 

to oo. This is evidence that no shocks are needed in the flow. 

When one examines the two sets of characteristics of the 

P.D.E.'s one finds that the characteristics emerging from the 

line t=0 intersect the line x=0 if P0 <P~. For the previously 

analyzed case of P0 >P~ these characteristics pointed inwards 

and did not intersect x=0. Because of this, two conditions at 

x=0 must be dropped. 

The above facts indicate that if P0 <P~, two shooting 

parameters are lost, but two boundary conditions are dropped, 

so everything still adds up properly. 

It makes a certain amount of physical sense that when P0 

·<P~ the saturations Z0 and S0 cannot be specified. If at x=0 

one forces material into the medium at high pressure, it is 

reasonable to expect that one is free to control what one puts 

·in. However, if one lets material out of the medium by 

exposing it to a low pressure P0 <P~ at x=0, it is reasonable 

to expect that one has little control of what comes out. 

Solutions for these unshocked flows were computed. In 

the compressed flows (P0 >P~), as P
0 

is increased a liquid 

slug develops in the interior. In these flows, as P
0 

is 
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decreased, a superheated steam region develops neare=0. 

These expansion flows will not be analyzed in any further 

detail here. It should be mentioned that these flows might be 

of interest for several applications. If oil is not included, 

these flows would be of interest in the analysis of geothermal 

energy systems. Also, with the oil included, they might be 

useful in analyzing the "puff" stage of a "huff and puff" 

steam-flooding process. In this process one injects steam at 

high pressure to lower the viscosity of the oil, then one 

pumps the oil back at the same point that one injected the 

steam. 
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11) SUMMARY OF FLOWS 

Before considering the question of the·stability of these 

flows, it is worth summarizing all the various regimes of 

,flow. 

For the case where P00<P0 , as one lowers the pressure 

ratio P00 /P
0 

from 1 to 0 (keeping all other parameters fixed), 

the following regimes of flow are encountered in order. 

!)Three phases are always present. There are two shocks in 
\ 

the flow. First a Buckley-Leverett type shock where [S]>0. 

[Z]<0, and [P']>0, then a condensation shock where [S]<0, 

[Z]<0, and [P']>0. 

2) There is a subcooled slug in the flow where T<Tsat(P), and 

S=l. There are 3 shocks, first a Buckley-Leverett shock as in 

1), then a shock into the slug with [S]>0, [T]<0, [P']>0, then a 

j ump out of the s 1 ug wi th [ S] < 0 , [ T] = 0 , [ P ' ] > 0 • 

3) The flow is the same as in 2) except the Buckley-Leverett 

shock occurs inside the slug. At the left end of the slug 

there is a thin stip.of high oil saturation. The jump into the 

slug has [P']<0, indicating that it is unstable. 

4) The flow is the same as in 3) but the strip of high oil 

saturation has widened, and the jump into the slug satisfies 

[P']>0, indicating stability. 

5) The flow is as in 4) , but the shock inside the slug is 

r~placed by an expansion fan where Z is an increasing function 

of e. 
By lowering S

0
, flows can be obtained that are similar to 
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the above flows, but that near ~=~ have various types 

of superheated steam regions. By varying the other 

parameters, no other regimes were found to occur provided 

P., <P0 .. 

For the case with P0 <Pao no shocks occur in the flow .. 

As one raises P./P0 a superheated steam region forms 

near s=~. 
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12) STABILITY - PRELIMINARY CONSIDERATIONS ----- -----
It would be nice if a stability analys.is could be done 

directly on the similarity solutions, but this would be 

difficult. The problem is that the flows are time developing. 

We will be content with analyzing a steady problem that has 

many of the significant features that are relevant. In 

particular, it seems plausible to focus attention on the 

stability of steadily moving shocks. 

Saffman and Taylor (ref 7) were the first to analyze the 

stability of plane interfaces in a porous medium. They 

analyzed the case where one fluid with viscositY).-<;r: and 

density f%, was pushing another fluid, with viscosity~ and 

densityfz, upwards with velocity U. With gravity included, 

the neutral stability criterion is found to be 

22) 

The first term indicates that when a fluid with a small 

viscosity pushes one. with a larger viscosity, the interface is 

destabilized. The second term is basically just a 

contribution from the Rayleigh-Taylor stability criterion. It 

. should be mentioned that if one uses Darcy's law, the neutral 

stability criterion may be simplified to [P']=0. 

The Saf fman-Taylor analysis is not sufficient to analyze 

the flows that have been considered here. The main feature 

that must be added to their analysis is the possibility of 

having condensation occur at the interface. This effect was 
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considered before by Miller (ref 8), but his analysis seems to 

be defective. He does not constrain his temperature 

perturbation to lie on the Clausius-Clapeyron curve, and as a 

result his result differs from the result in the next section. 

The Saf fman-Taylor analysis applies to the case where one 

homogeneous fluid is pushing another homogeneous fluid. In 

terms of the saturation function this means that S=0 on one 

side, and 1 on the other side. Before considering the effect 

of condensation on the stability of the shocks, at least some 

mention should be made of the effect of having S lie between 0 

and 1 on one or both sides of the shock. It is completely 

straightforward to analyze the stability of a steadily moving 

interface with constant saturation on both sides. In this 

case the neutral stability criterion is precisely the same as 

in 22). This is essentially obvious, but it shows that the 

saturation function does not have a signficant effect on the 

neutral stability analysis. 

One can sim~.lar~y ana~yze the case where there are 3 

phases present, but still no phase change. This analysis is 

also quite simple. Again the neutral stability criterion 

turns out to be [P']=0. This result does not seem to be quite 

as obvious as the case where there are only two phases 

present. 

When no phase change is allowed to occur it is as easy to 

evaluate the stability of a steadily moving interface where S 

lies between 0 and 1 on each side of the shock, as it is to 
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analyze the case where S=0 or 1 on each side. 

change takes place this is no longer the case. 

When phase 

The 

complication arises due to the fact that a simple steady flow 

does not exist when S is nonzero on either side. In this case 

the fact that P and T are related by the Clausius-Clapeyron 

equation makes it impossible to have s, T, and P be constant 

on either side of the shock. The fact that these simple 

conditions are not allowed would greatly complicate the 

analysis. To avoid this problem, when analyzing the effect of 

phase change it will be assumed that S=0 or 1 on each side of 

the shock. 
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13) STABILITY WITH PHASE CHANGE 

Consider an interface moving to the right with liquid 

water on the left, and water_ vapor on the right. Assume that 

no gravity is present, and let there be a jump in temperature 

at the interface. On both sides of the interface Darcy's law 

and the continuity equation combine to give 

23a) 2. 

\lP=o 

on the left the energy equation is 

b) L ( f ~ e.t + ( 1-e) f. e ') - V · ( f ~ ~ V 'P ) ::. c 
/H:. t .s s e t .Ll( 

and on the right the energy equation is 

For a steadily moving one dimensional interface the above 

equations yield P''=T'=0 on both sides. Let the interface be 

moving with velocity U, then the continuity of mass and energy 

"flux put 2 constraints on the values of P' and Ton the two 

sides of the interface. 

24a) 

b) 

or equivalently 

::. 0 
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Here P(', and P~ stand for the pressure· gradients on the 

liquid and the vapor sides. The equations 24b and b') are 

identical, but written in different ways. In the first one, h~v 

is evaluated on the liquid side, in the second h~v is 

evaluated on the vapor side 

Given u, Te, and T~ equations 24ab) may be solved to 

determine P~' , and P./ • 

25a) 

b) 

-
("T1 ( e.Ll. Cv + ~ C-s ( 1-E.) '-l) - Ji e.v e.U. 

S't 

f-r1 ( E.U C..v + J!_ Cs.(t-'-)U) - ~t.v E. U 
~., 

It will be convenient to introduce the following notation 

which is analogous to that introduced earlier. 

t 

Ft: &U + ~Pt 
µll 

.-'4 f\ .. : l="tt ::. e. u + " ,.... .., 

For future reference the signs of these quantities should 

be noted. Since the vapor must be hotter than the liquid, 

[T]>0. It can be seen from 24b' that FH and F( must be of 

opposite signs, but if Ft >0, then obviously F
11 

>0. Thus, it is 
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seen that F' <0, and F
11 

>0. From 24a) it is thus seen that Fv 

<0. 

To analyze the stability of these solutions, assume that 

the steady solutions are perturbed by quantities that vary 

like 

When equations 23abc) are linearized about the mean flow, and 

written in a frame moving with the velocity of the interface, 

they reduce to 

26a) 

b) 

c) 
.,,,_. ' 

- c.>T~ ( E. ~t c.t + (t-E.) fs c.s) -t- It F11 :: 0 

In order to have the solutions decay at~~it is necessary 

that they be .of the following form. 

-tkrt. l...·~. s . 

A 

T:. o 0-:::. w (E.. ~"c" +(H:) Ys Cs) oa-\ -tl ... R.H. s. 
,... 

In finding the form of the solution for T it is assumed 

that~ is positive, even though the time dependence may not 

necessarily yield a positive~. This can be rigorously 

justified by taking the Laplace transform in time, and then 

finding the growth rate by finding the poles in the transform 
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plane. 

If one allows the interface itself to be perturbed by 

"t ( ~· '!.,t).: 'l ~t e.;. ( ~'b + oc. .. ll) 

the perturbed boudary conditions may be written 

27a) 

b) 

c) 

A I 

= l'v + Y(. 1\, 

[ T ) Fw + ('T] ( f v c.v ( E.W'l .- -A.-?~) + ( 1-E..) S's c.5 W "l ) 
Mv 

-re t:'t.,. c E. w 'l + k Pt ) ,,. 0 c c.o"'t 1111.1.Uto o1 e."-e.'W -1 t ... lt ) 
µe_ 

A condition requiring that the pressure and temperature 

lie on the Clausius-Clapeyron curve must also be given. One 

must be careful in deriving this condition. For simplicity 

thermal conductivity has been ignored, but if it were left in, 

there would be several consequences. The temperature profile 

·would be continuous,. the boundary between the liquid and vapor 

region would lie on the Clausius-Clapeyron curve, and the 

perturbed energy equation would be of the following form. 

A A.I ii\ 

k.T'' -T a.\ - bT= o o <. K .c.< \ 

The solutions would be of the form. 

'A+-;t. ~-'It ,,,,... 

i'+ e. + }--e.. = T 

A+ = -A. -r ~ a..,_+ ~b~ 
::t.. )C.. 

il+.: 0 (t) 

A. ::. o (...L) 
- IC 
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,.. 
To have T vanish at x=~oo it is necessary that Y~=0 on the 

R.H.S., and Y..=0 on the L.H.S. As k.+0 it is simple to show 

that the temperature profile on the R.H.S. is of boundary 

layer type, while that on the L.H.S. has no sharp gradients. 
A A 

Thus when thermal conductivity is completely ignored T and p 

must lie on the Clausius-Clapeyron equation on the L.H.S., but 

not on the R.H.S •• The same type of argument also holds for 

the unperturbed flow. That is Te =Tsat (Pt ) at the interface, 

but Tv 1'Tsat ( Pv) • 

27d) 

The 4th condition on the perturbation is thus 

( o"'- -tk~ L.H. S. Tl...~ retfu..r\>ecl 
yressu.tt.. o..~ ~""'-le.ro..-\-u..t4L ~~t lr~ 
en.I\~ .... c...lo..usu.L$ -C..\°'-l~o\I\ cu..rVQ..) 

A A A 
There are 4 unknowns, 'l.., P( , Pv , Tt , and 4 equations. To 

have nontrivial solutions, w must be chosen properly. This 

eigenvalue problem can easily be solved, but it is more 

·convenient to just do a neutral stability analysis. If one 

sets /N=0 in equation 27), one finds that the criterion for a 

nontrivial solution to exist is. 

28) 

This is of course the neutral stability criterion. For 

short wavelengths (~~-> this criterion is identical to the 

case for no condensation [P']=0. It is for short wavelengths 

that the analysis is meaningful when applied to the nonuniform 
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profiles of the earlier sections. The term 

can be shown to be a stabilizing effect for longer 

wavelengths. 

Formally, the above stability analysis can be done for 

the case where vapor is on the left and liquid is on the 

right. This analysis yields the same criterion for stability. 

The unperturbed profiles in this case are however not proper 

physically. The reason is that on the R.H.S. 2.T =0, but-f P ~o, 
Ti ')( 

so the liquid would eventually go superheated. This 

obviously detracts from the result in this case, but it is not 

unreasonable to expect that the result [P']=0 is a suitable 

neutral stability criterion for similar flows that do not have 

this difficulty. 

The results of the various stability analyses indicate 

that the neutral stability criterion [P']=0 may likely be 

applied in some generality to the problems under 

consideration. The result holds for steadily moving 

saturation shocks with three noncondensing fluids on each side 

·of the shock, and it holds for small wavelength disturbances 

of a steadily moving condensation shock with liquid on one 

side and vapor on the other. 
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APPENDIX A 

It will be shown that the conditions on Fe , Fv , and F
0 

stated in section 5 are necessary and sufficient conditions 

for detA to change sign. The signs of [S], [Z], and [P'] will 

also be determined. 

As mentioned in section 5 detA>0 at the first shock, and 

Ft<0, Fv<0, otherwise the equations would have passed through 

a singularity. From the jump conditions 17) we see that~, Fv, 

and F0 cannot change sign in crossing a shock provided 

0<S<l, 0<Z<l, on both sides. So, if F0 <0 on the L.H.S. of the 

shock, then Fv <Fe <F
0 

<0 on the R.H.S. From the form of detA 

we would thus have detA>0 on the R.H.S. This establishes the 

necessity of having Fv<0, Fe <0, and F
0

>0 at the first shock. 

Now assume that at the first shock Fv <Fe <0 ,F
0 

>0. The 

equations for the jumps may be written: 

29a) z: ~ 1 Fo + ]=.. [ P'J :::. O 

Pv 

b) [ ( , - "l·) ( t - s) 1· f" ~ ( I - 'i: ,_) ( 1- s 2. ) [ p I 1 :. D 

c) 

,.L« v 

[(1- ~) ~ 1 ft ~ ( 1- 2.a.) s.,_ ( P'1 =- o 
µ~ 

These show that [Z] has the opposite sign as [(1-Z)S], 

and [(1-Z) (1-S)]. Let detA be the determinant on the L.H.S., 

"" and detA be the determinant on the R.H.S. Equation 18) 

implies that 
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de.t. A:. ro Ft (1-~)(J-s.) + J:oFv (1-~)S + f'"t,F'/ ~ 
~v ~t µo 

:: - Fo Fe [ (1- i;)(t-s)] - F"o F'v [ (r- ~)(1-s)] 
.).,.( " JJ' 

Now since F( Fv > 0, F1 F0 
<0, and F"' F

0 
<0, it is easy to see 

that since detA>0, [Z]<0. Similar manipulations show that 

Where F0 ,F ,F are just F ,F , and F
0 

evaluated on the 
,~ v~ 04 ' v 

R.H.S. The signs of Ft, F", and F0 do not change in crossing 

the shock, so similar arguments as above show that 

So detA does in fact change sign in crossing the shock 

provided Fv<0, Ft <0, and F
0

>0. 

One also gets that [P']>0 from [Z]<0, F >0, and 2,a). If 
«> . 

·one considers 17' be). as equations for [S] , and [P'] , with [ Z] 

given one gets 

!s1:: 

(1-~a.)((1-S1)~ -1--s~l=v) 
so [ S] > 0. ..Uv Mt 

At the second shock it is necessary that ~ >0 in order to 

get over the last zero of detA. Assuming that this is so and 

that Fv<0, ~ >0 it can be shown by arguments similar to those 

above that detA changes sign, and that [Z]<0, [P']>0, and 
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[S]<0. 

In section 3) it was mentioned that it was not possible 

to jump over both zeros of detA in one jump. This is 

obviously true because of the fact that F~ , Fv, and F
0 

do not 

change sign in crossing a shock. At the shock it would be 

necessary that Ff <0 (otherwise detA would have already changed 

sign), but it would be necessary to have ~ >0 on the R.H.S. of 

the shock to avoid any further zeroes. 
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APPENDIX B 

Here it wi 11 be shown that if at a shock, Fe , F,,, , and F
0 

satisfy the conditions stated in section 5, then the 

characteristics on the left are overtaking those on the right. 
\ 

First it should be noted that if these conditions are 

satisfied, then [P]>0 (as shown in appendix A) • • 
Let V=dx/dt be a characteristic. After factoring out the 

solutions with dx/dt=OO, the following is the characteristic 

equation. 

30) ( 

This is similar to equation 4) for detA. From the shock 

conditions one can derive an equation similar to equation 18. 

31) '°' I'\ ".'\ A ( ) 
(£.Ll+-APx )(E.U+-kP"' ).!_ + (E:.U+-k P" )(~U+~ P"' )(\-~) 1-s 

>' t µ., )J..o ;Ue. ).J..o .)Av 

A " 
+ ( E-U .+ -I< p x ) ( e_ U +- /<.. p" ) ( I - 2. ) ~ :. D 

Po )). v A.e. 

" Again the hat on P~ indicates that it is to be evaluated 

. on a different side of the shock than z and s. If equation 

3 0 ) is cons i de red as a polynomial in V / P" , and equation 31 ) is 
,,.. 

considered as a polynomial in U/P~ , then the two polynomials 

are identical. Thus it follows that one of the 

characteristics satisfies 
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similarly, on the other side of the shock 

~ u 
~ = P,c p;c 

A A.2,,/ 1.. 

thus, "• a v. Pte f>'K.. 

If hatted quantities are chosen to represent quantities 

" on the R.H.S. of the shock, it is clear that v, <V, iff [1~)>0. 

This proves the result for one of the characteristics. 

To prove it for the other characteristic, note that from 

30) one can easily derive a formula for the product of the two 

roots V, VL. Evaluating this expression on both the left and 

the right (hatted quantities), and taking the ratio, one gets 

A 

Using the expression for V
1 

and v, this simplifies to 

vL( .! ~<1-2)(1-s) + (1-~)s): Va_ (.i + (r-i)(1-s) -t (1-i)s) 
P.o µ" . )J. fl Ae> .,Lt" )1 e 

A 
The quantities multiplying v~ and v~ are both positive so 

A. 

that V;.. >V,,_ iff 

,. ..!. + ( t- 2:.)(1- s) + 
Mo µ.., 

which is equivalent to 

32) 
+ (l-~)(1-s) + (t-S!.)S 1 >a 

)Av µfl 

(1- ~) s 
,tit_ 
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"'!> \.A-t, 

[ 
~ ..,. (i-~)(i-s) -r (1-2)s 1-= [ ~ ( !. + (1-1)(1-s) + (f .. a)s )1 
~ ;U.v .;A.I/. "P>e JJ.o .)A..v ,U t 

: [ _!_ 1 y 'JC ( _!. _... (1-l)(r-s) + (I-~) s) -t -4-- [pl< ( ..! + (r-~)(1-s,) ..- (1-2)s1 
'P" )-(o ,,U..v .Pt "'P .c. JA.o .JA v ,µ. f 

the second term in this last expression is equal to zero. this 

can be seen by using 

and the fact that [Z+(l-Z)S+(l-Z) (1-8)]=0, so 32) is satisfied 

provided [l/P~]<0 [Px]>0. This proves that for the 

second characteristic v~, the one on the left is overtaking 

the one on the right provided [P]>0. 
}t. 
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APPENDIX C 

Here it will be shown that if the conditions on Fe , Fv, 

and F0 hold at a shock, then there is a unique solution to the 

jump conditions 17} that has 0<Z<l, 0<S<l on the R.H.S. 

At the first shock assume Fy<0 , F-'<0, and F
0

>0. 

Equation 18} may be solved for S (the value of S on the R.H.S) 
~ 

in terms of Z and the values on the L.H.S of the shock. 

33} s : ( i f~ F.., + (_, _ i) F .. Ft) 1 (I- i) fo ft - Fo Fv ( 1-1i)) 
..u... ,µ.,, I l -;;:;;- -;;e 

"- A 
If one requires that 0<S<l two inequalities on Z are 

obtained. 

If one evaluates the polynomial in equation 19) at G and 

H one obtains 

A H -i. + l) H + C.. = - Fo ~ ( /- s )(I- 1) ( :tl; -Ji-.. ) / ( I - ~ ) 

A r-' &4+·c..: -Fo1 s(1-~)(...L-..L)/(1-&) >o 
'""t + ..Ue µ.., µo 

& 

Let f (l}=AZ+BZ+C, since A<0 we have f (~}<0, f(H)<0, 
A. 

f(G)>0, and f(-~)<0. Thus, one root to 19) satisfies G<Z<H, 
A.. A 

the other root satisfies Z<G, and will not yield 0<S<l • 
........ 

Now to have 0<Z<l it is only necessary that G>0, and H<l. 

This is easily shown to be so iff ~>0, and F,e<0. This 

completes the proof that one and only one solution of 17) 

" "' satisfies 0<S<l, 0<Z<l provided F.( , F", and F0 have the proper 
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signs at the first shock. Using identical arguments the 

corresponding result can be proven at the second shock. 
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APPENDIX D 

Here it will be shown that 

A) equation 20 has a unique solution with 0<Z~<l when the slug 

first forms, 

and 

B) At the point where the Buckley-Leverett shock overtakes the 

slug (as one varies a parameter such as P~), two roots of 20) 

satisfy 0<Z~<l. As mentioned in section 7) this is required to 

have a smooth transition from the flows in section 6) to those 

in section 7). 

=O 

Here the hatted quantities represent quantities on the R.H.S. 

of the shock. Note that 

34) 

It should be recalled that just before the slug forms the 

value of S at the second shock is approaching 1. At this 

shock Ek >0, F
0 

>0. At a point where the slug first develops (as 

one varies a parameter), S=l, ~ >0, and F
0

>0 on the L.H.S. of 

the shock into the slug. From 34) it is seen that there is 

one root with 0<Z<l, and one root with Z>l. This proves A. 

On the L. H. S. of the Buckley-Leverett shock Fv < 0, Ft< 0, 

and F
0

>0. So it is easy to see from 34) that there are either 
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0 or 2 roots that satisfy 0<Z<l at the point where the 

Buckley-Leverett shock catches up to the sl~g. The flows that 

exist immediately before the two shocks cross demonstrate that 

at least one root exists, so the conclusion is that B} does in 

fact hold. 
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Shock-like structure of phase-change flow in porous media 

By L.A. ROMERO 
Applied Ma.thematics Division 

AND R.H. NILSON 
Fluid Mechanics and Heat Transfer Division II 

Sandia Laboratories, 
Albuquerque, New Mexico 87185 

(Received 30 January 1980 and in revised form 10 April 1980) 

Shock-like features of phase-change flows in porous media are explained, based on the 
generalized Darcy model. The flow field consists of two-phase zones of parabolic/ 
hyperbolic type as well as adjacent or imbedded single-phase zones of either parabolic 
(superheated, compressible vapour) or elliptic (subcooled, incompressible liquid) 
type. Within the two-phase zones or at the two-phase/single-phase interfaces, there 
may be steep gradients in saturation and temperature approaching shock-like behav­
iour when the dissipative effects of capillarity and heat-conduction are negligible. 
Illustrative of these shocked, multizone flow-structures are the transient condensing 
flows in porous media, for which a self-similar, shock-preserving (Rankine-Hugoniot) 
analysis is presented. 

1. Introduction 
Geological applications motivate the study of transient phase-change flow in 

porous media. Examples include: geothermal systems (Brownell, Garg & Pritchett 
1977), steam stimulation of oil fields (Weinstein, Wheeler & Woods 1977), and con­
tainment of underground nuclear tests (Morrison 1973) as well as the in situ combus­
tion processes such as oil-shale retorting and coal gasification. 

A mathematical statement of the conservation principles leads to partial differential 
equations having hyperbolic, parabolic and elliptic character within different regions 
of the flow. In phase-change regions, where the fluid-matrix energy transfer pre­
dominates, the transport equations are of a mixed parabolic /hyperbolic type. In 
adjacent or imbedded single-phase regions, the velocity field becomes nearly un­
coupled from the temperature field and the pressure field is either parabolic or elliptic 
for the respective cases of compressible vapour and incompressible liquid. Transitions 
between zones are accompanied by steep gradients in saturation and temperature, 
approaching shock-like behaviour as capillary pressure and thermal conduction 
become negligible. 

Saturation shock is a characteristic feature of multiphase flows in which the pres­
sure gradient is the primary driving force rather than the gradient in capillary pres­
sure, as expected in the applications noted above (although not in unsaturated 
hydrology, the infiltration problem, or some drying processes). The best known 
example of saturation shock is the Buckley-Leverett case of immiscible fluid/fluid 
displacement (Bear 1970). Comparable behaviour occurs in isothermal phase-change 

0022-1120/81/4663-3550 $02.00 © 1981 Cambridge University Press 
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systems, as reviewed by Nikolaevskii & Somov ( 1978), but here the isothermal restric­
tion precludes the fluid/matrix energy transfer which is paramount in the applications 
noted above. When the energy transfer is included as in oil displacement by hot water 
(Fayers 1962), thermal shocks are found to accompany the saturation shocks, pro­
vided that convective heat transfer dominates over conduction. These fundamental 
examples suggest that a composite of shock-like behaviour will likely be encountered 
in the coupled problem of non-isothermal, phase-change flow. Although it is true that 
capillarity and heat conduction will always smear the shock fronts in direct analogy 
with viscous smearing of gasdynamic shocks (Scheidegger 1974), these dissipative 
effects should be moderate in the noted applications, as is already apparent in some 
previous numerical simulations. 

Shock-like phenomena are observed in numerical simulations of non-isothermal, 
phase-change flows in porous media (e.g. Weinstein et al. 1977; Morrison 1973), but 
there have been no analyses which explain the mathematical and physical character 
of these phase-change shocks which occur as a consequence of fluid/matrix energy 
transfer. Such an analysis is particularly needed because the direct numerical integra­
tion of the primitive equations is a very difficult task (subject to the numerical in­
stabilities and dispersion which result froni nonlinearity, type-change, and sharp 
fronts (Settari & Aziz 1975)). There has been no opportunity to assess the accuracy 
by comparison with a reliable but non-trivia.I solution, and the physical structure 
of the flow has been obscured by numerical smearing. 

In the present study of phase-change shocks, consideration is given to self-similar 
flows. The ordinary differential equations are solved by a shock-preserving method, 
using Rankine-Hugoniot (jump balance) conditions in crossing the shock fronts. 
A representative example problem is that of transient condensing flow of a pure sub­
stance within a porous matrix. Depending on the initial and boundary conditions, 
several flow structures are found to occur as described in the individual sections of 
the paper: 

(a) two-phase flow divided by a saturation shock (§4); 
(b) two-phase flow divided by an imbedded slug of subcooled liquid, with shocks 

on both sides of the slug(§ 5); 
(c) superheated inflow shocking into a two-phase zone like either (a) or (b) above 

(§ 6), 
(d) two-phase inflow shocking into a superheated vapour zone, followed by a two­

phase zone like either (a) or (b) above(§ 7); 
(e) entry flow like either (c) or (d), shocking into a central two-phase zone, followed 

by a fully-wet subcooled far-field flow(§ 5). 
Thus, the central structure is generally two-phase, divided by either a shock or an 
imbedded slug of liquid. The inner and outer zones respectively depend upon the 
boundary (inflow) data and the initial (far-field) data. 

The primary purpose is to communicate the structure of the flow, based on a widely­
used mathematical description of the physics. To accent the shock-like structure, 
the dispersive effects of capillarity and heat conduction are suppressed. The 
shock-preserving, self-similar method of solution is well suited because it affords the 
opportunity for rigorous analysis as well as reliable numerical computation based 
on well-established algorithms for ordinary differential equations. Qualitative 
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observations and structural aspects are representative of a broad class of flows, not 
just the considered self-similar examples. 

2. Transport equations 
The transient, two-phase flow of a pure substance in a porous medium is governed 

by conservation of mass, energy and momentum (Cheng 1978; Whitaker 1977): 

0 8 at [ £Sp1 + £( 1 - S) p,,] +ox [p1u1 + p,,it1,] = o; ( 1 a) 

8 at [6Sp1h,+ 6(1-S)p,,,h,,, +(1-6)pmhm] 

o o [ oT] DP + ox[p,h,u,+p,,h"ui,]- ox (k) ox - Dt = O; ( 1 b) 

KoP 
u,,, = -a,,, µ,,,ox, a,,= 1-S; 

KoP u, =-a,-- a,= sa, 
'"'ox' l ( 1 c) 

where the subscripts l, v, and m refer to liquid, vapour and solid matrix; Kand e are 
permeability and porosity; and Sis the volume fraction of the pore space containing 
liquid. All other variables have the usual meaning. In the generalized Darcy equations, 
which relate velocity to pressure gradient at low Reynolds number, the relative 
permeability functions a1 and a,,, are taken in a simple form which facilitates the 
analysis while still representing the proper qualitative behaviour (Scheidegger 1974; 
Wooding & Morel-Seytoux 1976). Although experimentally-determined a1 and a,,, are 
considerably more complex, particularly near the single-phase extremes at S = 0 and 
S = 1, the basic qualitative behaviour of the flow should be essentially the same for 
any smooth monotonic functions (as verified by obtaining some comparative solutions 
in which both a1 and a,,, were presumed linear in S). 

Body forces and capillary pressure are neglected, thermal equilibrium between 
fluid and solid is presumed, and under the supposition of a high Peclet number, the 
conduction terms need only be included for the discussion of shock structure. Viscosi­
ties are assumed constant, the liquid is incompressible, the gas is ideal (p = P /RT), 
and the enthalpies hi = ei + P /Pi depend linearly on T with slope Ci for i = l, v, m. 
Consistent with the low-Reynolds-number Darcy approximation, the kinetic energy 
and u. VP work terms are neglected. 

In a region of two-phase flow, the pressure and temperature are related by the 
Clausius-Clapeyron equation 

dP Ii,,,, TTP 
dT = -T ' = sat ( ) v,,, (2a) 

in which h1,, = h,,, - h1 > 0 and v"' = p-;,1 - p-,1 > 0. In a single-phase region, it is instead 
required that 

S = 1, T < Psat(P), 

S = 0, T > Psat(P), 

for the cases of su bcooled liquid and superheated vapour, respectively. 

(2b) 
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The initial and boundary conditions to be imposed are 

S(x, 0) = Sa:., P(x, 0) = P 00 , T(x, 0) = T 00 ; 

S(O,t) = S0 , P{O,t) = P 0 , T(O,t) = T 0 • (3) 

To induce a forward flow (fJP /ox < 0) and vapour condensation, the boundary pres­
sure and temperature are abruptly increased to P 0 > P 00 , T 0 > T 00 • If the driving state 
is saturated, T 0 = T sat (P 0), and S 0 must be specified. If superheated, T 0 and P 0 are 
independent, but S0 must vanish. In either case, there are two independent boundary 
conditions at x = O; and similarly, there are two independent initial conditions. 

The system reduces to a set of ordinary differential equations under the similarity 
transformation (Morrison 1973; Nikolaevskii & Somov 1978) 

() = :_( eµv )i 
ti P

0
K . 

Normalizing P, T, p, hzv, Ci and k by P 0 , T 0 , Pvo, h1vo, h1v0/T0 and k0, respectively, the 
transformed equations are 

}8(p1S + ( 1 -S) Pv)' + ((pva,v + Rp1a1) P')' = 0, ( 4a) 

T'(Fh)-h1v(!8p1S'+Rp1(a1P')')-!OrP'+Pe-1 (kT')' = 0, Pv = P/T, (4b,c) 

in which the derivatives, denoted ( )', are taken with respect to the similarity variable 
8, and the parameters 

R = µv/µ 1, r = RT0/hzvo' Pe-1 = k0 T 0µve/p0 h1v0 KP0 

are all small numbers. t The convective energy flux involves the group 

Fh = 0 1F1+0vF,,+pm0m(i8)(1-e)/e 

in which we introduce the notation 

F1 = p1(l8S+Ra1P'), F., = p"av(i·O+P') 

for the mass flu;x of liquid and vapour relative to the moving self-similar co-ordinate 
system. The transformed boundary conditions are 

S(O) = S0 , P(O) = 1, 

S(oo) = S«J, P(oo) = P 00 , 

T(O) = 1; 

T(oo) =Too' 

with P 00 < 1 and T 00 < 1. 
Within a two-phase zone, the equations are conveniently written 

A(::)= b, 
A= J. .. ( Pv<Xv -pv(!O+P') ) 

'"l .. p1a1R p1(!8+ 3RS2P') ' 

b = (-hzvp;av(!O+P')-T'Fh) 
T'Fh ' 

det A= hfi,p1pv(av(!8 + 3RS2P') + Ra1(P' + !8)). 

(5) 

(6a) 

(6b) 

(6c) 

(7) 
t From now on, both r and Pe-1 will be neglected, except for the discussion of shock structure 

in §6. 
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In single-phase regions, the energy equation (4b) reduces to 

T'(FA) = 0 

471 

(in which FA is somewhat degenerate since either F.., or F, vanishes in one-phase 
regions), and the continuity equation (4a) reduces to either 

P"=O, (9a) 
or 

(p.., (P' + !8) )' = iBp..,, (9b) 

for the liquid and vapour cases, respectively. 
Although the system is third order, there are four independent boundary conditions 

suggesting that added flexibility is needed. It is noted that for 8 0 > 0, det A < 0 at 
the origin, but that det A -+ + oo as 8 -+ oo. Either the flow contains a singularity at 
which detA = 0 or a shock at which detA changes sign. The first alternative affords 
the needed flexibility only if b becomes orthogonal to all solutions of ATy = 0 when­
ever det A = 0 - this being a sufficient condition for the existence of a singular sub­
interval of variable breadth. Since this compatibility condition is not automatically 
satisfied, a shock must be present. 

3. Shock conditions 
Mass, energy and momentum must be conserved in crossing a shock. From this fact 

(or by integrating (4) across a shock), we obtain the following shock conditions 
(Slattery 1972): 

[F1]+[F..,] = 0, 

[T]Fh +.h,,,,[F.,,] = 0, 

[P] = 0, 

(10a) 

(10b) 

(10c) 

in which the circumflex on h1.., indicates that it is to be evaluated on a different side of 
the shock than the quantities in Fh. Since h1.,, may be evaluated on either side, and since 
h1.,, has the same (positive) sign on both sides, so must Fh have the same sign on both 
sides. The pressure cannot jump (in 10c) because the Reynolds number is presumed 
low in Darcy flow and the inertial terms are, therefore, absent. 

The entropy cannot decrease in crossing a shock. Letting </> denote the specific 
entropy, this condition can be written 

(11) 

Since the pressure does not change in crossing shocks 

dh OidT 
d<f>i = T = p-=> [</>i] = Oi[lnT]; i = v,l,m. 

Using this result and the identity $1.., = h1..,/T, the second law (11) is combined with 
the energy equation ( 1 Ob) to arrive at the inequality 

(12) 
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in which quantities with circumflexes lie on the two-phase side. To examine the 
consequences of this statement, first note that 

1 
[lnT]-tt[T];:: o 

whenever the two-phase region is on the right, and that this inequality changes 
direction whenever the two-phase region is on the left. It is, therefore, concluded that 
only three possibilities are consistent with the second law: 

[T] = o, 
[T] ::f 0, the two-phase region is on the left, and F h ;:: 0, 

[T] ::f 0, the two-phase region is on the right, and F h ~ 0. 

4. Two-phase /two-phase 

(13a) 

. ( 13b) 

(13c) 

Consider the simplest case of a strictly two-phase flow (containing no single-phase 
regions) as occurs whenever N = Pif P0 and S(oo) are not too large and S(O) is not too 
small. As already mentioned, there must be a shock at which det A jumps from nega­

. tive to positive. But, in passing from a two-phase region into another two-phase 
region, [P] = 0 => [T] = 0, so that the jump conditions (10a, b) reduce to 

or, equivalently, 
[F1] = [F11] = 0 

[S](!O+RP'(S2+s2+sS))+RS3[P'] = o 

(1-S)[P'] = [S](!O+P') 

(14a) 

(14b) 

where quantities with circumflexes will now represent quantities on the right side of 
the shock. 

The two-phase shock conditions (14a, b) combine to give a cubic equation for S 

F(S) = (!O+RP'(S2+SS+S2))(1-S)+RS3(!0+P') = 0. (15) 

The existence of a unique physical solution is demonstrated by examining the behav­
iour of F(S). 

F(-oo) = -oo, F(O) = !O+RP'S2 ;;;:.: 0, (16a,b) 

detA 
F(S) = ----p < 0, F(1) = R(!O+P') ~ 0, F(oo) = +oo. (16c,d,e) 

P1P11 iv 

The above inequalities on F(1) and F(O) are based on the observation that. the veloci­
ties of vapour and liquid, each measured with respect to the shock, 

(17) 

must have positive and negative signs, respectively, in order that it be possible for 
det A to have the necessary sign-change in crossing. (The supportive argument is 
based on the following observations: det A is roughly a linear combination of V,, ['..nd 
V1, V,, and V1 have the same sign at the origin, V" and V1 cannot both change sign to 
the left of the shock without a singularity, neither V,, nor J'1 can change sign at the 
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shock, and V v > V,.) The sign changes in ( 16) show that there are three real roots to 
thecubicequationF(S) = 0. 

s1 < o, s2 > 1, o < sa < s. 
Since only Sa is physically meaningful, it is concluded that: 

(a) a unique solution exists; 

(b) [S] < 0, so the shock faces forward; 

(c) [P'] > 0, from (14b); 
A A A A A 

(d) detA = RP'av(S+2S)[S]+[P'](S2 +S2 +SS)av+Ra1 > o, from(15). 

The last inequality guarantees that det A has the necessary sign-change in crossing 
the shock. 

The stability of the shock can be assessed from the local features noted aboYe. The 
inequalities (17) on V11 and Vi are sufficient to establish the one-dimensional stability 
in the sense that the characteristics on the left are overtaking the characteristics on the 
right. In addition, the inequality on [ P'] is, according to the steady planar analyses of 
Miller (1975) and of Laude & Morrison (1979), sufficient to suggest the stability of the 
present flows under two-dimensional perturbations. In some of the more complex 
flow structures to be discussed in later sections it is not so easy to determine the 
stability from an a priori analysis, but an examination of the computed results 
(particularly the sign of [P']) suggests that the criterion is satisfied. 

Numerical solutions are obtained by a forward-marching shooting method, as 
described in the appendix. The shooting parameters are P'(O) and 88 • The ordinary 
differential equations (6) are integrated outward to fJ8 ; the jump conditions ( 14a, b) are 
used to cross the shock; integration of (6) is resumed. The values of the shooting par­
ameters are adjusted until the far-field boundary conditions are satisfied. 

Typical profiles of S, P, and Tare shown in figure 1. Upon increasing S(O), as in 
figure 2, the saturation profile becomes spike-shaped at the leading edge. For large 
enough S(O), say S*(O), the peak of the spike rises to S = 1, indicating liquid-full 
conditions behind the shock. The algorithm still converges for S(O) > S*(O), but the 
answers are unphysical since S > 1 in the region immediately behind the shock. 
Thus, for S(O) ~ S*(O) we seek to accommodate the excess liquid by making allow­
ance for a liquid-full zone of finite width, as described in the next section. 

S. Two-phase /subcooled liquid /two-phase 
A condensing flow may contain a subcooled-liquid zone which lies imbedded within 

an otherwise two-phase region (figure 3). Such a situation arises as the continuous 
extension of a strictly two-phase flow under a change of data which favours liquid­
flooding of the pore space: increase of S(O) as in figure 2, increase of S(oo), increase of 
6.T = T 0-T 00 • In the transition from a strictly two-phase flow to an imbedded-liquid 
flow, the shock-line of the two-phase flow broadens into a liquid-filled zone of finite 
width. 

Within the subcooled zone the structure is simple: 8 = 1, T' ~ 0 from (8) with 
r ~ 1, and P' =constant for an incompressible liquid. The last implies uniformity of 
the liquid velo~ity as in a so-called ~lug-flow. Aside from these consequences of the 
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conservation equations, there is the thermodynamic requirement that T ~ T sat (P) 
everywhere within the subcooled slug. 

A temperature jump [T] < 0 must occur at the left end of the slug 8 = 88 • Recall 
that the fluid temperature T and the saturation temperature T sat (P) are identical at 
88_. Now, in crossing the slug, the saturation temperature must decrease (since P' < 0), 
while the fluid temperature remains nearly uniform (from (8)) 

dTsat d dT 
~ < 0 an d8 = 0. 

Were it not for an abrupt temperature drop upon entering the slug (T(88_) > T(88+)), 
the saturation temperature would fall below the fluid temperature, indicating super­
heated rather than subcooled conditions. The thermal shock which prevents this 
situation is physically indicative of a narrow thermal boundary-layer (of thickness 
Pe-1) which lies within the slug at its left extremity. 

The second law (13b) admits the temperature jump at 88 , provided that Fh ~ 0 at 
8w Using the definition of F,,, and the condition that P' = constant within the slug, 
it is seen that 

dFh 
d8 > 0. 

It follows that F 1, > 0 at the right end of the slug which, from second-law considera­
tions ( 13c), rules out a temperature jump at the right. The absence of a right ·hand 
temperature jump serves to determine the extent of the liquid slug, as explained in the 
numerical procedure of the appendix. 

16 FLM 104 
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A typical imbedded-slug flow is presented in figure 3. Although a thermal shock 
occurs only at the left end of the slug, a saturation shock is found to occur at both ends, 
as in the back-to-back shocks of Fayers' hot-water flood problem. The width of the 
slug depends upon the given data. 

(a) Upon decreasing 8(0), the slug solution properly transforms into the strictly 
two-phase solution of §4. AsS(O) ~ S*(O) from above, the width of the slug and the 
jump in T both approach zero. 

(b) An increase in 8(0) causes increased slug-width but only to a finite extent as 
8(0) ~ 1. 

(c) An increase in ~T (i.e. T 0/T «))causes increased slug-width, because more con­
densate is then produced in raising the temperature of the solid matrix. 

(d) An increase in S(oo) causes increased slug-width. As S(oo)~ 1, the slug extends 
toward infinity, and the liquid compressibility 1fr must be taken into account. For a 
fully-wet far field (i.e., S(oo) = 1), the pressure disturbance penetrates to a relatively 
large depth(},..., (P01frµ.,/µ,)i, (roughly, P - erfc(x(µ1elfr/Kt)i) in the far field) com­
pared to the two-phase condensation region which remains confined to a boundary­
layerofthicknessfJ - (p.,/p1)J. 

6. Superheated /two-phase ... 
Under superheated inflow conditions 

80 = 0, T 0 ~ T 11&t(P0), 

there is a narrow superheated-vapour zone adjacent to the entrance, followed by a 
two-phase downstream region (perhaps containing an imbedded slug of liquid) like 
that described previously. 

A shock with [T] < 0 must occur in passing from the superheated region into the 
two-phase region. To show this, first note that F h < 0 at (J = 0 and that F h must then 
remain negative throughout the superheated region. Otherwise, there is a singularity 
in the energy eqµation (8). Now, with F,,, < 0 and P' < 0, 

dT T' = 0 and dfj' < 0, 

indicating that the flow becomes more superheated as (J increases. A temperature 
drop must, therefore, occur in the superheated/two-phase transition. 

The shock into the two-phase region occurs when F h = 0. This is demonstrated by 
examining the shockless behaviour of the system for small (but now non-zero) values 
of the thermal conductivity (k) and the capillary pressure Pc which respectively 
appear as multipliers of T =: and S=:. 

(a) In the shock-like transition region there are sharp gradients in T but not in P. 
Such a situation cannot occur in a two-phase region where the Clausius-Clapeyron 
equation relates T' and P'. Thus, the sharp gradients in T must occur in the single­
phase region. 

(b) When (k) and Pc are both non-zero, T and T' are both continuous in going from 
the superheated region to the two-phase. Thus, the sharp temperature gradients of 
the single-phase region must flatten out before entering the two-phase region. 
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(c) F,,, must change sign (i.e., become positive) in the single-phase region. Otherwise, 
T' could not flatten out. This assertion is based on the extended form of the energy 
equation (8) which includes thermal conduction 

Pe-1T" = -(F,,,)T', 0 < Pe-1 ~ 1. 

Once the temperature gradient becomes negative (T' < 0), it grows progressively 
steeper (T" < 0), unless F,,, becomes positive (F,,, = +6). 

(d) F,,, must not change sign (i.e. remains negative) throughout the single-phase 
region and in crossing the shock into the two-phase region. This condition is a conse­
quence of the shock relations, as previously noted in § 3. 

To resolve the apparent contradiction between (c) and (d), it is concluded that 
F,,, = + 6 ~ 0 at the sup,erheated/two-phase transition. _This conclusion rigorously 
satisfies the continuous boundary-layer argument (c) and approximately satisfied the 
lower-order shock-layer argument (d) as 6 ~ 0. The condition that F,,, = 0 serves to 
determine the position of the superheated/two-phase shock, as described in the numer­
ical procedure of the appendix. 

The typical superheated/two-phase flow of figure 4 is somewhat comparable to 
Morrison's numerical calculation for a condensing steam/water flow in the presence 
of confluent air. The superheated region is always quite small, even for large 
values of T 0/Tsat(P0 ). Furthermore, an increase in T 0 has very little effect on the 
downstream solution, as apparent in a comparison of figures 1 and 4. The effects of 
superheat are small because 0,, is small (compared to h111 ), and hence the flow is 
desuperheated in a region which is narrow (compared to the condensation region). 
In taking the limit as 0 11 ~ 0, the superheated region shrinks to zero, the tempera­
ture shock moves to the inlet, and the two-phase equations start off singular. 

When the amount of superheat approaches zero, (i.e. (T(O)-T sadP(O))) ~ 0), the 
breadth of the superheated region remains finite. This behaviour is a consequenee of 
the energy equation (4b) which demands that T'(O) = 0 whenever S(O) = 0 (provided 
thatOv + 0). Since 

dT 
T' = 0 . and P' < 0 => dft < 0 at 0 = 0, 

it is concluded that for S(O) = 0 the saturation temperature dives below the fluid 
temperature, resulting in a superheated region at the inlet. It turns out that this 
tendency toward superheat persists for small (but non-zero) values of S(O) as described 
in the next section. 

7. Two-phase/superheated/two-phase/ ... 
For small values of 80 there is a two-phase region adjacent to the boundary, fol­

lowed by a superheated zone, followed by a two-phase downstream region (perhaps 
containing an imbedded slug of liquid). The occurrence of an imbedded superheated 
region can be explained on the basis of mathematical or physical arguments. The 
differential equations demand that, for S(O) + 0, S'(O) - h111 P'(O), as also apparent 
in figure 2, indicating that the flow must become dryer as it moves forward into the 
medium. Physically, the inflowing fluid experiences a decreasing pressure (DP/ 
Dt < 0) which, according to the Clausius-Clapeyron equation, must be accompanied 

16-2 
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FIGURE 4. ·.rwo-phase flow with superheated inflow region (otherwise same as figure 1). 

by a decreasing temperature (DT / Dt < 0), and this cooling is apparently accomplished 
by evaporation of the liquid (DS / Dt - oS /ox < 0, at the boundary where conditions 
are fixed in time). 

Downstream of the two-phase entry, the structure is identical to the previous 
superheated flow. So, the only new feature is the two-phase/superheated transition. 
There cannot be a temperature jump in passing forward from the two-phase region 
into the superheated region. Supposing to the contrary that [T] =t= 0, the second law 
(13b) requires that Fh ~ 0. Then, from the continuity equation (9b) and the definition 
of F h' it is seen that 

in the superheated region, so Fh > 0 at the right end of the region. This is in con­
tradiction with the logic of the previous section which showed that F h. ~ 0 at the right 
end. Hence, [T] = 0 at the two-phase/superheated transition. 

A stopping condition is needed to determine the location of the two-phase/super­
heated transition. Since [T] = 0, the shock conditions require that [Fv] = [F,] = 0. 
Further, since S = 0 and F1 = 0 on the superheated side, it follows that 

F1 = (!O +P'RS2 )S = o => !O+P'RS2 = 0, ( 19) 

on the two-phase side. Here we have ruled out the possibility that S = 0, since this 
would require a singularity (det A= 0) in the two-phase region. 

Flows which enter under two-phase conditions may have different character, 
depending on the value of S(O). The two-phase/superheated/two-phase solution of 
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this§ 7 is valid for small S(O) but fails when S(O) is too large. Conversely, the strictly 
two-phase solution of§ 4 is valid for large S(O) but fails when S(O) is too small. To 
demonstrate continuous dependence on data (i.e. on S(O)) and the nature of the type 
7 /type 4 transition, computer runs were made for a succession of S(O) values, starting 
from S(O) = 0, as illustrated in figure 5. Letting 8* be the point at which the two­
phase region ends and the· superheated region begins, a necessary condition for the 
superheated region to exist is that F h (8*) ~ 0. As S(O) increases, F h (8*) increases 
until it approaches 0. At this point, the superheated region has shrunk to zero length, 
since it ends when F h = 0. Above this value of S(O), the method of§ 4 is applicable. 

8. Summary 
Shock-like phenomena are seen to occur in transient condensing flow through 

porous media. A pressure-driven, phase-changing flow will develop steep gradients 
in saturation and temperature, approaching shock-like behaviour when the dis­
persive effects of capillarity and heat conduction are small. Several different flow 
structures may occur, depending upon the initial (i.e. far field) and boundary \i.e. 
inflow) data: 

(a) Two-phase/two-phase. Strictly two-phase flows occur when: S(O) is not too small; 
S(oo) is not too large; and t:..Tis not too large. A two-phase/two-phase saturation shock 
divides the flow, but thermal shock is absent. 

(b) Tu·o-phase/subcooled liquid/two-phase. For large S(O), large S(oo), or large t:..T, 
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the two-phase/two-phase shock line broadens into a subcooled liquid region of finite 
width. Saturation shock occurs at both ends of the liquid slug, accompanied by thermal 
shock on the trailing end. 

(c) Two-phase/subcooled liquid. As S(oo)-+ 1, the subcooled region extends to 
infinity and the compressibility of the liquid must be taken into account. 

(d) Two-phase/superheated/two-phase/ .... For small S(O), an imbedded superheated 
region appears near the boundary. Saturation shock occurs at both ends of the super­
heated zone accompanied by thermal shock on the leading end. As S(O) -+ 0, the super­
heated zone extends backward to the entrance and the left-hand shock shrinks to 
zero leaving only a superheated/two-phase/ ... structure. 

(e) Superheated/two-phase/. ... With S(O) = 0, the inflow may be superheated, 
causing accentuation of the superheated region. However, the width of the super­
heated zone depends strongly on the specific heat ratio (vapour to solid), not on the 
amount of superheat. As Ov-+ 0, the superheated zone collapses into the origin, 
leaving a thermal-shock and a singularity (det A= 0) at the origin. 

In all cases, the transitions from one flow-structure into another depend continu­
ously on the data. There are many possible combinations of inflow and far-field 
structure, for example, two-phase/superheated/two-phase/subcooled/two-phase. 

Further study of the condensing flow problem is reported in another paper (Nilson 
& Romero 1980) where we restrict to a representative case in which the inflow and 
far-field are both prescribed as dry saturated-vapour states. Particular emphasis is 
given to the various length scales which arise in the phase-change flows. The overall 
penetration depth of the flow is a consequence of the gross energy-balance and 
momentum-balance, as embodied in the scaling of the similarity variable (used in the 
present figures), 

B* = ~ (.!./!::!__)i (D..Sp1,,)i 
tt KD.P P1J0 

in which 
D..S = (p0)0D.T /ep1(h,v)o and (p0)0 = (1- e)pmGm + eD..Sp/Jz. 

But, there are several boundary-layer zones within the flow field: 

1. The imbedded superheated zone (as in figure 5) collapses into a singularity at 
8 = 0, asO"AT /h,,,-+ 0. 

2. The precursor two-phase zone, which lies ahead of the subcooled-liquid zone, 
vanishes as (D..S Piv/ P1J0) -+ oo. 

3. The thermal boundary-layer, which lies at the trailing edge of the subcooled­
liquid zone, approaches a thermal shock as Pe -+ oo. 

4. The increasing saturation region (S' > 0), which lies to the left of all shocks, 
collapses into the origin as R = (µv/ µ1) -+ 0. The central shock front moves backward 
into the origin in this singular immobile-liquid limit. 
In the companion paper (Nilson & Romero 1980) discussion of these matters is 
illustrated by a family of calculations concerning steam-flow in sandstone. 

A complex flow structure has been encountered, even in a rather elementary single­
component, one-dimensional problem. It is not, however, suggested that a detailed 
knowledge of the flow structure is always a critical issue in the analysis of engineering 
systems, particularly in the geologic applications where there is only limited knowl-
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edge concerning the structure of the porous medium. Nevertheless, it is important to 
understand the fine structure which is predicted by the customary and well-established 
mathematical model. It is only through this knowledge that the appropriate engineer­
ing approximations and computational tools can be formulated and tested. 

This work was supported by the U.S. Department of Energy under Contract 
AT(29-1)-789. The Sandia Laboratories is a U.S. Department of Energy Facility. 

Appendix 
The numerical integration procedure is based upon the well-known shooting method. 

Standard library routines perform the major operations: integration by a fifth-order 
Runga-Kutta method and iterative adjustment of the shooting parameters by a 
simplex minimization procedure. A general outline which includes all of the special 
cases is as follows: 

(1) Guess the values of P'(O) and 08 • 

(2) Integrate the two-phase equations (6) until Fz = 0. 

(3) Shock according to (10) with S = 0 on the right. 

(4) Integrat.e the superheated equations (8) and (9b) until F,,, = 0. 

(5) Shock according to (14a, b) with T = Tsat(P) on the right. Here (14a, b) replaces 
( 10) because F,,, = Oin (10b). 

(6) Integrate the two-phase equations (6) until 0 = 08 • 

(7) Shock according to (10) with S = 1 on the right. 

(8) Integrate the subcooled liquid equations (8) and (9a) until T = Tsa.t(P). 

(9) Shock according to (14a,b) with T = Tsat(P) on the right. 
(10) Integrate the two-phase equations (6) out to large 0. 

A minimization procedure adjusts the values of the shooting parameters, P'(O) and 
08 , until both of the far-field boundary conditions are satisfied. 

Although it is possible that all of the integration steps might apply to a particular 
flow, there are also a number of subset procedures which generate the simpler flows 
that are described in the individual sections of the paper. 

§4. Two-phase/two-phase (1), (6), (9)-(10) 
§ 5. Two-phase/subcooled/two-phase (1), (6)-(10) 

Two-phase/subcooled · (1), (6)-(8) 
§ 6. Superheated/two-phase... (1), (4)-(7), (8), (9), (10) 
§ 7. Two-phase/superheated... (1)-(7), (8), (9), (10) 

The presence of the subcooled slug, (7) and (8), is optional in§§ 6 and 7. 
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Abstract - Similarity solutions are obtained for the propagation of a condensation wave into an initially dry 
porous matrix which receives an inflow of saturated vapor due to a step increase in temperature and pressure 
at the boundary. The generalized Darcy (low Reynolds number) formulation of two-phase flow leads to 
hyperbolic/parabolic equations in which capillarity and heat conduction are suppressed in order to 
emphasize the shock-like behavior. Application of the x/.jt similarity transformation gives ordinary 
differential equations which are solved by shooting methods, using jump-balance (Rankine-Hugoniot) 
conditions to preserve discontinuities in saturation (quality), pressure gradient and sometimes temperature. 
The distribution of condensate (saturation) is wave-shaped, with a forward-facing shock on the leading side. 
For a small temperature difference, there is little condensate and it is nearly immobile; the saturation shock 
lies close to the boundary, and the outer region is described by a reduced system of equations. With increasing 
temperature difference, the shock moves forward into the flow and gains in strength until the medium is 
liquid-full behind the shock. Beyond this, the shock splits into a pair of back-to-back shocks separated by a 
subcooled liquid slug. The considered prototypic problem is representative of a broad class of two-phase 
flows which occur in energy-related and geologic applications. 

NOMENCLATL1RE 

Independent variables 

x, X = x/L; 
t, '! = t/t0 , 

0, e = 0/R, 

Dependent variables 

c, C = ell T /(h111 )0. 

h, H = h/(h111)0 , 

k, K = k/k0 , 

p, P = (p - Po)/D.p, 
s, S = s/lls, 

t, T= (t - t0 )/6t, 
u, U = u/u0 , 

v, V= r/u0 , 

"" K 1 = K 1/6s
3

, 

p, p = p/Npo, 
</>, ti> = </>to/(h,11)0, 
(pc), (pC), 

= (pc)/(pc)0 , 

position; 
time [t0 = fcL/u0 ]; 

similarity variable () 
=X/J"C. 

specific heat ; 
enthalpy [(h1J0 = hit.<Po)]; 
thermal conductivity; 
pressure (llp =Pi - Po); 

.saturation: liquid fraction 
by volume 
temperature (flt= ti - t 0 ); 

Darcy velocity (u0 

= Kllp/Lµr); 
interstitial velocity; 
relative permeability of 
liquid; 
relative permeability of 
vapor; 
density [Po = Pv(Po. to)]; 
entropy; 

bulk specific heat, (pc) : 
(1 - l)pmcm + csp,c,, (pc)o 
= (1 - l)PmCm + cdsp1c1• 

*This work supported by the U.S. Department of Energy. 
Contract DE-AC04-76DP00789. 

tA U.S. DOE facility. 

Physical constants 

R, 
l>, 

£, 

"· µ, 

gas constant; 
characteristic pore 
dimension; 
porosity; 
permeability; 
viscosity. 

Dimensionless parameters 

N =Pi/Po• 

P _ Npouoh1v 
e - (k)D.t/L' 

R = µv Pt ds
3 

µ,Po N' 

Re= u0 l>Po 
µv ' 

r = llsp,v 
Npo' 

p = £p1c1 , 

(1 - l)PmCm 

(pc)0 1lt 
As=---, 

£p,(h1v)o 

). = 6t/t0 , 

pressure ratio; 

Peclet number; 

relative liquid mobility; 

Reynolds number; 

relative density change; 

specific heat ratio; 

nominal liquid saturation; 

relative temperature change. 

I. INTRODUCTION 

CONDENSING flows in porous media occur in a number 
of energy-related applications. Steam injection into oil 
fields produces a condensation wave which heats the 
oil sands and reduces crude oil viscosity. In situ 
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combustion processes such as oil shale retorting and 
coal gasification are accompanied by propagating 
zones of evaporation and condensation. Hypothetical 
reactor accidents may involve boiling and conden­
sation in fragmented debris and in porous concrete 
which is subjected to intense heating. Other examples 
arise in geothermal systems and in the containment of 
underground nuclear tests. 

A distinctive feature of pressure-driven condensing 
flows in porous media is the occurrence of a sharp, 
wave-like saturation front. The steep gradients of a 
condensation front are apparent in numerical simu­
lations such as those of Morrison [1] and Weinstein, 
Wheeler and Woods [2]. However, the customary 
integration techniques permit smearing of the satu­
ration shocks [3] in a manner analogous to the 
artificial viscosity effects of numerical gas dynamics. 
Also, the previous studies include application specific 
aspects such as multiple chemical species in either the 
liquid or the vapor phase, which de-emphasize the 
generic features of condensing flows in porous media. 
In contrast, the present study is concerned with a more 
fundamental condensation wave, and our primary 
purpose is to describe the mathematical and physical 

·features of the shock phenomena. 
The prototype condensation problem to be con­

sidered is the one-dimensional, transient flow of a 
compressible pure substance. Hot, dry vapor flows 
into a cold, initially dry, solid matrix, therein forming 
condensate which flows concurrently with the vapor. 
Energy transfer occurs by convection and conden­
sation, and for each fluid phase the balance between 
viscous and pressure forces is accounted for by the 
generalized Darcy law which incorporates relative 
permeability functions. To emphasize the shock-like 
behavior, capillary pressure and heat conduction are 
suppressed. . 

The parabolic/hyperbolic transport equations re­
duce to ordinary differential equations under the 
similarity transformation,(}= xi.Jr. Since the system 
is only third order but has four independent boundary 
conditions, a saturation shock must occur. The or­
dinary differential equations are solved by a shooting 
method which uses jump-balance relations in crossing 
the shocks. A family of steam flows in geologic media 
serves to illustrate solution behavior over a broad 
range of the parameters. A summary of the main 
results is given at the end of the paper. 

2. FORMULATION 

The transport equations for transient, one­
dimensional, two-phase, compressible flow of a pure 
substance in a porous medium are as follows [ 4): 

a a 
Or {lsp1 + £(1 - s)pv} + ox {p1u1 + PvUt,} = 0 

_ !_{(k) ~t }- Dp = 0. OJ ex ex Dt 

The subscripts /, v and m, respectively, refer to the 
liquid, the vapor, and the solid matrix; s is the local 
volume fraction of the pore space which is occupied by 
a liquid,£ is porosity, (k) is bulk thermal conductivity 
of the fluid saturated medium, and the other symbols 
have their usual meaning. The apparent velocities, ut 
and uv,represent average volumetric flow rates per unit 
sectional area of the medium. Darcy's law serves as a 
constitutive equation which relates velocity to pres­
sure gradient in low Reynolds number flow 
(Re = ul>/v) where viscous forces are in balance with 
pressure forces, 

K cp 
Ut. = - Ki. - -;::­

µt. ox 

K rp 
U1 = -K,- -:::-· 

µt ox 

(2) 

The relative permeability functions Kr and Kt are 
introduced as a means of extending Darcy's law to a 
two-phase flow. The utility of this approach derives 
from the experimental observation that Kt and K,. are. 
for a given medium, primarily functions of saturation 
alone [5]. The present study will make use of analytical 
expressions similar to those given by Scheidegger [6]. 

1'1 = s3 
Kr = 1 - S, (3) 

with the understanding that these functions are only 
representative of the expected behavior. In addition. it 
is assumed that the fluid and the solid are in local 
thermal equilibrium; that buoyancy forces are neglig­
ible, and that interfacial tension is accounted for 
implicitly through the relative permeability functions. 

Thermodynamic relationships are described by the 
conventional analytical approximations. The liquid is 
incompressible; the gas is ideal, Pr = p.'Rt, and in two­
phase regions, the pressure and temperature are 
related by the Clausius-Clapeyron equation 

dp ht.·P1· Pt phtr P1 
-=---::::::~2-& t Pk Rt Pk 

(4) 

in which h1v = hi. - h1 > 0 and P1i- = p1 - Pr > 0. The 
enthalpies h,, hr and hm of the liquid, the saturated 
vapor and the matrix each depend linearly on tempera­
ture with respective slopes (specific heats) c1, er and cm. 
To eliminate secondary parameters, let c,. = 0, and 
suppose that the viscosities, µ1 and µ .. , and the matrix 
properties, " and £, are constants. 

Regarding initial and boundary conditions, con­
sider the case of a semi-infinite porous medium which 
initially contains dry saturated vapor at a temperature 
t0 and corresponding saturation pressure p0 . The 
transient is begun by suddenly subjecting the boun-
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dary to an external environment which contains dry 
saturated vapor at ti and Pl> such that !l.t = t 1 - t0 

> 0, and !l.p = Pi - Po > 0. Condensation occurs as 
the hot, high pressure fluid penetrates into the col~ 
porous matrix. 

Upon normalization (as defined in the Nomencla­
ture) and introduction of Darcy's law, the conser­
vation equations are rewritten in a form which isol­
ates the effects of phase change and emphasizes the 
primary dependent variables (P, T, S) 

as a { aP} 1 aPv - - - (PK + RK1)- = - -(1- S!l.s)-a"C ax v v ax r a"C 

(PC) ar - H, {as -R j_(K, ap )} 
o"C v a"C ax ax 

( 
&p )R oP oT 

- 1 + 11sp " 1 ax ax 

= Pe-1 a (<K> oT) + r-1 Rto (N -1) DP (5) 
ax\_ ax £h1v N D"C 

(1 + &pS) 
(PC) = (1 + &p) ; Kv = 1 - /l.sS; K1 = S3 

p = 1 + (N - l)P{_l_} 
v N 1+}.T 

H1 =1-(~)T. 
v t +asp 

Here and hereafter we make the approximation that 
PJP1v ~ 1. The principal parameters are N, }. and pas 
defined in the Nomenclature; as well as the character­
istic saturation l1s = (pc) 0 11t/£p1(h1v)0 , which repre­
sents the amount of condensation nominally required 
to produce the temperature change /l.t; and the relative 
liquid mobility R = µvp111s3/µ 1Np0 , which character­
izes the relative significance of mass flow in the liquid 
and vapor phases. An.important scaling consideration 
is the choice of a characteristic time t 0 

£L 
to= r-, 

Uo 
(6) 

which recognizes that the two-phase wave speed is 
very slow (r » 1) compared to a single-phase pressure 
wave (for which t 0 = £L/u0 , (17]), because the repre­
sentative density change is 11sp1v rather than N p0 • 

Since rand the Peclet number, Pe, are usually very 
large, we can safely neglect: the time derivative of 
vapor density, the material derivative of pressure and 
the heat conduction which all appear on the RHS of 
the above transport equations. 

The partial differential equations cannot be class­
ified as any one of the three basic types. Superheated 
vapor regions are generally parabolic. Subcooled 
liquid regions generally appear to be elliptic because 
the compressibility is negligible. Two-phase regions 
are of a mixed parabolic/hyperbolic type [8], but 
become strictly parabolic as R (the liquid mobility) 
-o. The hyperbolic character is therefore attributed to 

liquid mobility and the dependence of relative per­
meability on saturation. 

Under the similarity transformation [l, 7, 9] 

o--=- r-- X X ( iµv )112 
- .jt .jt Kf1p 

(7) 

the partial differential equations become ordinary 
differential equations 

~S' + {(PvKv + RK,)P'}' = 0 (8) 

+ (~) RK P'T' = 0 (9) 
1 + f1sP I 

subject to the boundary conditions P(O) = T(O) = 1, 
S(O) = O; P(a:) = T(a:) = S(x) = 0. 

If shock-like discontinuities occur at a singular 
point 8 = (}:r. local conservation must be enforced 
through the jump-balance [10] or Rankine-Hugoniot 
conditions. The jump-balance of momentum, roughly 
[p] = ord{pu2 }, usually admits a first-order pressure 
jump at a shock, but the estimates u - ord{!l.pK/µL} 
and" - ord{t52

} suggest that [P] - ord{Re b/L}, so 
that [ P] becomes negligible once the flow has penet­
rated deep enough (L/b » Re) to be considered asymp­
totically' self-similar (i.e., independent of Re, which is 
the Darcy assumption). The jump-balances of mass 

· and energy are then 

[£(1 - s)Pv(Yv - V.) + £sP,(V, - ~)] = 0 (10) 

[£(1 - s)PvHv(Yv - V.) + £sP1H,(V, - V.) 

+(1-£)PmHm(-V.)] (11) 

= Pe-
1 

[ K~~J 
in which V. = (dx/dt)/u0 is the interface velocity of the 
discontinuity,and Vv = UJ(l - s)rnnd V1 = UJsrnre 
the so-called pore velocities or interstitial velocities of 
the liquid and vapor. The second law of thermody­
namics must also be satisfied in crossing a shock 
[£(1 - s) <PvP vCYv - V.) + £s <P,P,(V, - V.) 

+ (1 - l) <PmPm( - V.)] (12) 

_ 1 [ K dTJ 
~ Pe 1 + }. T d(} . 

Since P does not change in crossing, changes in the 
specific entropy <P are calculated as d<P = dh/t or d<P 
= c1dt/t and, hence, 

[<Pi) = C1(ln( 1 + }. T)]/ }. ; i = l, v, m. 

As in the differential equations, heat conduction will 
be ignored in the jump equation under the supposition 
that Pe» 1. 
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3. WEAKLY-SHOCKED, STRICTLY 
TWO-PHASE FLOW: MODERATE N 

Since saturation conditions, T= 7;0 ,(P), are pre­
scribed at both ends of the interval, it is reasonable to 
suspect that the intermediate states might also be 
saturated. Such strictly two-phase flows are found to 
occur, provided that the temperature difference (or 
pressure ratio) is sufficiently small, that a liquid-full 
condition does not occur at any cross section. 

Within two-phase regions, the temperature and 
pressure are related by the Clausius-Clapeyron equa­
tion [now in a dimensionless form which reflects the 
boundary conditions: T(P = 0) = 0, T(P = 1) = 1] 

dP {1 + (N - l)P}Hfo { f. 1 
dP I 

dT = (1 + ).T)2 
0 {1 + (N - l)P} 

f
1 

H,.,dT } l3 
o (1 + ). T)2 ( ) 

and the conservation equations reduce to a third-order 
system of the form 

A =b [P"] 
S' 

(14) 

subject to four independent boundary conditions, 

P(O) = 1, S(O) = O; P(x.) = 0, S(x.) = 0. (15) 

The system is therefore overconstrained. 
A sign change of the determinant, det A, suggests the 

presence of a shock. By application of the boundary 
conditions, it can be seen that det A > 0, as 0 - x.. 
Conversely, at 0 = 0 (where the equations are sing­
ular), an expansion in powers of 0112 shows that · 

(J1i2 

S = .j( -6P(,R) +... (16) 

{ 

9112 } 

P' = P'o 1 + .1~ .j(-6P(,R) :t- ... (17) 

d 
detA = 0, and dO (detA) < 0 at 0 = 0. 

Thus, det A must change sign in crossing the interval. 
Allowance is made for a shock on the interior of the 

two-phase interval. Since both phases are present on 

both sides of the shock, [P]:;,; 0 implies [T] = 0, and 
hence, [Pa= [Ha= 0, i = l,v,m. Thus, with Re« 1 
and Pe » 1, the jump-balances of mass and energy 
jointly require continuity of both the vapor flux and 
the liquid flux 

[(1 - S.1s)(l';. - Ys)] = 0 

=> [ Kv( P' + ~ r- 1
) J = 0 => [Ki.P'] ~ 0 

(18) 

[S&(V, - Ys)] = O=> [ RK1P' +~SJ= 0. 

This means that there is no local phase change at the 
shock and that the second law is automatically 
satisfied through equality. 

Letting 'hatted' quantities represent function values 
downstream of the shock, the two conditions can be 
combined as follows to eliminate P' 

,,... {o } ,,... Kv 2 + RP'(S2 + S2 +SS) + RK1P'.1s = 0. (19) 

Which, on simplification, provides a quadratic in S 
having only one positive, real root. Thus, for given 0, S, 
P, and P' there is a unique shock strength. Once S is 
available, P' is readily determined from the first shock 
condition. It is interesting to note that if S = S, the 
above requirement reduces to the condition for det A 
= 0. It can also be shown that det A has the necessary 
sign change in crossing the shock, provided that [SJ 
= S - S < 0. So, the two-phase saturation shock must 
face forward, although not as a consequence of entropy 
change. 

The system of equations is solved numerically by a 
shooting method. For chosen values of P'(O) =ex, a 
three-term expansion from the singular origin is 
followed by rightward numerical integration, stopping 
at a presumed shock location (}s- Integration is then 
restarted with values of S and P' determined from the 
shock conditions. The two shooting parameters ex and 
Os are adjusted until the asymptotic boundary con­
ditions, P( x) = S( x) = 0, are both satisfied. 

As an illustrative family of solutions, consider the 
case of dry saturated steam flowing into sandstone ({J 

Table 1. A family of steam flows 

Configuration parameters Shock locations Pressure gradient 
N & R ;. (0,) o. P0 (R-0) 

N-1 0 0 0 ( -1/.jrc) 
2 0.034 0.009 0.040 O.Q35 - 0.533 (- 0.554) 
5 0.084 0.083 0.098 0.435 -0.512 (- 0.557) 

10 0.127 0.185 0.148 0.961 - 0.505 (- 0.574) 
15 0.161 0.292 0.180 1.17 - 0.505 (- 0.589) 

19.5 0.184 0.371 0.202 (1.18) 1.18 - 0.507 (-0.601) 

100 0.359 0.924 0.360 (1.00) 1.13 - 0.515 (- 0.726) 
1000 0.855 2.56 0.688 (0.91) 1.21 - 0.525 (- 2.161) 
2500 1.26 4.38 0.874 (0.89) 1.28 -0.521 (:r.) 
5000 1.75 7.31 1.04 (0.89) 1.34 - 0.510 
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FIG. 1. Pressure profiles for various pressure ratios N = p .!Po· 

~ 0.6) and suppose that the initial temperature in the 
medium is 530° R, corresponding to an initial .pressure 
of P0 = 0.025atm. For such a choice offtuid, medium 
and initial state, As, R, and ). become increasing 
functions of N. The parameter values corresponding to 

·particular choices of N are listed in Table 1 along with 
\he shock location Os and the surface pressure gradient 
P'(O) which were determined. Figures 1and2 illustrate 
the results. 

The pressure profiles of Fig. 1 lie within a rather 
narrow range of 8 which (based on the scaling 
considerations) suggests that the process is largely 
controlled by mass transfer in the vapor phase. As· 
N-+ 1 the pressure is given by P(O) = erfc(0/2), and for 
large N the pressure profiles become proximate. The 
local condensation rate, (P vKt.P')', is non-negative 
everywhere in the flow and reaches a maximum in the 
vicinity of the pressure inflection. With increasing N 
the saturation shock becomes more pronounced and 
moves forward into the flow. There is a limjting 

l.O ---~--.....----.-----. 

z 
0 

0.8 

;:: o. 6 
< a:: 

~ 
Q 

:; 0.4 
CT 
::::; 

19. 5 

L5 2.0 
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FIG. 2. Saturation profiles for various pressure ratios N. 

pressure ratio N (here N::::: 19.5) for which the pore 
space becomes liquid-full behind the shock. 

It is generally true that the low-velocity liquid is 
overtaken by the shock and that the high-velocity 
vapor passes forward through the shock. As N -+ N 
the shock conditions (for r -+ x) require that P'+ -+ 0 
(suppressing a slight precursor ahead of the shock) 
and that V1- - Vs, indicating that the wall of liquid 
advances with the shock velocity. 

4. UNSHOCKED IMMOBILE-LIQUID LIMIT: 
SMALL N 

When N is small, there is little condensate, it is 
relatively immobile, and the shock lies close to the 
surface. A secondary, inner scale in 8 results from the 
disparity in phase velocities, as evident both in the 
saturation profiles of Fig. 2 and in the (0/R) 1 2 terms 
which appear in the inner series expansion. Such 
behavior suggests the existence of an outer, down­
stream solution complemented by a singular­
perturbation boundary-layer. 

In the limit of vanishing liquid mobility (R -+ 0) the 
ttansport equations reduce to the following form 

~<PC)P' + :~ H,v(PvKvP'Y = 0 (20) 

dT dS T 
- or S= (21) 

H1v - (PC) 1 + As{J( 1 - T) 

The first equation describes the transient, Darcy flow 
of a vapor with a large apparent compressibility 
because of the phase change. The second ensures 
energy conservation by attributing local temperature 
change to local condensation, whereupon T becomes 
an explicit function of S. With S(T(P)) now available 
in analytical form, it is only necessary to solve a 
second-order, parabolic equation for the pressure. The 
dependence of S on P is such that the two outer 
boundary conditions are simultaneously satisfied if 
P( x) = 0, but the inner boundary conditions become 
incompatible. In choosing to satisfy the pressure 
condition P(O) = 1, it must also be accepted that S(O) 

= 1 and the surface can no longer be dry. This change 
in boundary conditions is physically reasonable be­
cause the condensate which forms near the origin must 
now remain in place. 

The immobile liquid approximation is illustrated in 
Fig. 3 by a family of saturation profiles corresponding 
to parameter values (N, 8s, and i.) of Table 1, except 
that R = 0 is now imposed. A comparison with the 
liquid-mobile solutions from Fig. 2 emphasizes the 
typical singular perturbation behavior [11). For small 
R, there is a narrow inner region where saturation 
gradients are steep, while the outer region remains 
nearly unaffected by the boundary layer and, to a good 
approximation, still satisfies the condition S ..... 1 as 
8-+ 0. As apparent in comparing the last two columns 
of Table l, the immobile liquid approximation (R -+ 0) 
gives a good approximation to the inflow pressure 
gradient. 
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FIG. 3. Immobile liquid approximation (dotted lines) com­
pared with shocked solutions (solid lines) for various pressure 

ratios N = Pi/Po· 

The most natural description of the boundary layer, 

if it exists, should involve a rescaling of the variables 
and matching with the outer region, a matter not 

pursued here. It is, however, interesting to replot the 
saturation profiles using e = O/R as the independent 
variable. For small e, all of the curves are nearly 

coincident, and as R becomes small (N -+ 1 ), the shock 
position approaches a nonzero limit. 

5. STRONGLY-SHOCKED, IMBEDDED-SLUG FLOW: 
LARGEN 

Recall from Section 3 that for large enough N (e.g. 

N-+ N = 19.5 in Fig. 2) the medium becomes liquid". 
full behind the forward-facing shock. When N exceeds 
N, the peak of the saturation wave· broadens into a 

subcooled liquid zone. Within the subcooled zone 01 

< 0 < Os the saturation is uniform at S = 1/ /ls, but P 
and Tare independently variable, so that the transport 
equations become 

P" =0 
(22) 

llsfJ ( O 1 + P) T' 1 , 0 --- RK1P'+-S-- +-T'= . 
1 + lls{J 2 {J Pe 

The pressure therefore decreases linearly in crossing 
the slug (i.e. velocity is uniform), and with conduction 
neglected (i.e. Pe -+ oc) the temperature must be 
uniform within the slug. 

Allowance is now made for shocks both on the 
leading side and on the trailing side of the liquid slug. 

Letting hatted quantities refer to the slug side (wet 
side) of either shock and letting [P] = P(O+) - P(O_) 

= 0, Pe-+ oc, and r-+ oo; conservation of mass and 
energy, respectively, require that 

[RK1P' + ~S] + [P 11 K11 P'] = 0 (23) 

lls{J I A - 0 - 1 + p) 
l + lls{J [T]\ RK1P' + 2 S-{J-

+ H1v[Pt,KvP'] = 0. (24) 

Phase change is, therefore, allowable, provided that 
the change in liquid flux relative to the shock is offset 
by the change in vapor flux and that the enthalpy of 
phase change accounts for the temperature jump of the 
mass flowing through the shock, including the mass of 

the solid phase. In addition, it is necessary to satisfy the 
second-law of thermodynamics (entropy-jump 
inequality) 

&s{J [ln(l + ).T)] ( "' -, 0 -1 + P) 
l + lls{J ). RK1P + 2s-{3-

H 
+ ~T [Pt.Ki.P'] s 0, (25) 

1 +I. 

which reflects the identity, '1>111 = H111/(1 + ). T). Fi­
nally, there is a temperature-jump inequality, Ts T, 

which ensures that the slug side is not superheated. 
In checking the necessity and the admissibility of 

temperature jumps, it is found that T= Tsa1[P(Bs)] 
everywhere within the slug. The argument consists of 

two main points: 

(1) There must be a downward temperature jump at 
01• Suppose to the contrary that T = Tsa1(P) at 
01+. Then, upon moving rightward into the slug, 
T stays constant (from energy equation) while 
Tsa1(P) decreases as the pressure falls. So, Tsa1(P) 

falls below T, suggesting superheated conditions 
in a liquid region - a contradiction. 

(2) There cannot be a temperature jump at Os. At 
any shock location, 0, the jump conditions on 
energy and entropy jointly require that 

{[ln(l + ).T)] - [l + ~-~]} 
(1+1.) 

x ( R K, P' + ~ s 1 
; p) s 0. (26) 

Now, at 01 the slug side is ahead of the shock, so 
that the script brackets above cannot be po­
sitive. Conversely, at Os the slug side is behind, so 
that the script brackets cannot be negative. 
Thus, a temperature jump is second-law ad­
missible at 01 and/or at Os, only if 

and/or 
..... - 0-1+{3 

RK1P' + -S-- < 0 2 p -

(27) 

at 01 and Os, respectively. Since the first condition 
must be satisfied [because (1) above demands a 
T-jump at 01], and since Os>O,, {3>0, and R K1 

P' is the same at 81 and Os (from continuity); it is 
impossible to satisfy the later inequality. There 
can be no temperature jump at (J5• 
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In view of the above observations and the previously 
noted absence of an internal temperature gradient, it is 
concluded that T= Tsar[P(05 )] on [81+, lJ5]. 

Since temperature jump cannot occur at the leading 
edge, Os, phase change cannot occur and the energy 
balance requires that PvKvP' = 0 at Os+· The density 
cannot vanish; and if K 1,+ = 0, then S = 1/~s on both 
sides, and det A does not change sign in crossing. Thus, 
it must be that P'+ = 0, whereupon S'+ vanishes along 
with all of the higher-order derivatives, ruling out 
downstream variation in the dependent variables. So, 
in view of the boundary conditions, it must also be true 
that 

P = 0, S = 0, T = 0 at Os+ (28) 

and it only remains to satisfy the jump-mass balance 
which now reads as 

SIMILARITY VARIABLE ll 

(29) FIG. 4. Pressure profiles for various pressure ratios N = pifp0 . 

This is recognized as the liquid-wall condition, fl = Ys. 
which previously accompanied the vanishing (sup­
pressed) precursor in the limiting case as N-+ N. So, 
the slug solution appears to be a continuous extension 
of the earlier two-phase flows. 

Now, consider the trailing shock which lies behind 
the slug at 81• A temperature drop, [T] = -T(01), 

must occur here to ensure subcooled conditions 
throughout the slug. Using this, the jump-balances of 
mass and energy are alternatively combined to give 
both of the following expressions: 

Pt.KVP'+ T 1 :s!sP {RK,P' + (s + ~:p)n = 0 

(30) 

~ ~SJ { ( (J ) P' = R H1v RK1P' + 2s 

_OT (1 + P> _ H1.,0}· 
2(1 + &p) 2~s 

The first is a compatibility condition which must be 
satisfied on the upstream side of the shock. It is used to 
determine the shock location. The second gives P' in 
terms of upstream data. This is all that is needed to 
resume downstream integration since P = P, T= 0, 
and S = l/&. 

The computational procedure for a doubly shocked 
flow is simple because there is only one shooting 
parameter. For chosen ex= P'(O), the two-phase equa­
tions are integrated forward until the compatibility 
condition is satisfied, thereby determining 01• Then, 
P'((J1) is calculated from the upstream data. Recalling 
that P" = 0 in the slug and that P(Os) = 0, the leading 
shock must lie at Os= 01 - P(01)/P'(01). Then, since 
P'(()s) = P'(01), there is sufficient information to in­
dicate whether or not the remaining shock condition 
(V, = ~)is satisfied at Os; this being the sole criterion 
for iterative adjustment of ex. 

Doubly-shocked solutions are illustrated by the 

pressure and saturation profiles of Figs. 4 and 5. With 
increasing N, the slug broadens (see Table 1), and the 
pressure rises at 81 to overcome the viscous drag on the 
slug. Both the liquid and the vapor overtake the 
condensation shock. At the leading edge (J5 the liquid 
velocity matches the shock speed. However, on both 
sides of 01 the liquid velocity exceeds the local shock 
speed, providing a mechanism for the timewise growth 
(self-similar stretching) of the slug. 

6. DISPERSIVE MECHANISMS 

Smearing of saturation shocks by the capillarity of a 
porous medium is analogous to viscous smearing of 
gas-dynamic shocks, as discussed previously [5, 6] for 
the classical Buckley-Leverett problem. If a finite 
capillary pressure were explicitly included in the 
present model, sxx would appear along with sx and Sr in 
the continuity equation, the system would become 
fourth order with a proper number of boundary 
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conditions, and there would be no mathematical 
necessity for a shock (although computational difficul­
ties may still persist). Although the mechanisms of 
capillarity and hydrodynamic dispersion preclude a 
true discontinuity in saturation, these smearing effects 
should be local, as in gas dynamic shock. Likewise, the 
effects of macroscopic fingering instability (which 
might occur in two-phase drive of a liquid slug) should 
be negligible because of the stabilizing influence of 
volumetric contraction at the moving condensation 
front [12]. 

Smearing of thermal shock by heat conduction is 
assessed by reformulation of the current problem 
under the suppositionof asymptotically large, but now 
finite, Peclet number. Within two-phase regions, the 
perturbation (due to £ = 1/Pe « 1) is regular [11] 
because the T" conduction term in the energy equation 
can be grouped (using Clausius-Clapeyron) with the 
stronger P" terms and, hence, the order of the equation 
is not changed. However, in the subcooled liquid slug, 
the addition of T" raises the order of the energy 
equation. The temperature distribution then remains 
uniform across the slug, except within a thermal 
boundary layer which replaces the temperature jump 
at 81• The singular perturbation [11] of the slug 
solution shows that the boundary layer thickness is of 
order 1/ Pe and that the temperature gradient at 81 is, to 
the first order 

T' = [T]Pe 
1 
!s~p(RK1 P' + ~s 1 ; P). (31) 

in which [T] is now interpreted as the temperature 
change in crossing the boundary layer. In writing the 
jump energy balance for the saturation shock which 
still persists at 8" temperature jump is now omitted, 
but a conduction term [T'/Pe] is included, thereby 
arriving at identically the same shock conditions. As 
Pe - co, the solution is, therefore, the same as before. 

Regarding second-la·w considerations, it is note­
worthy that a necessary condition for existence of the 
(exponential) thermal boundary layer at high Pe is that 

(32) 

Since this criterion is identical to the entropy-jump 
inequality (27a) for a thermal shock, it follows that the 
second-law becomes extraneous when heat conduc­
tion is included. An analogous situation occurs in 
shocked gas flows where the inviscid equations must 
be supplemented by entropy considerations, but the 
complete Navier-Stokes equations (including viscous 
smearing through u") are self-sufficient. 

7.SUMMARY 

The considered prototype problem retains only the 
essential features of a condensing flow in a porous 
medium: concurrent gas/liquid mass transfer, con­
vective energy transfer, and condensation due to 
fluid/solid energy exchange. Since capillarity and heat 
conduction are suppressed, the transport equations 

are of a mixed parabolic/hyperbolic type which de­
mands shock-like jumps in saturation and tempera­
ture. In the considered case of a dry saturated-vapor 
inflow there is a singularity at the injection surface 
which suppresses the inner structure in order to focus 
on a representative, but relatively simple, outer struc­
ture. In a subsequent paper [13], we consider the 
behavior under other boundary conditions, parti­
cularly those which result in imbedded regions of 
superheated vapor, as well as the case of a partially wet 
or fuJly wet far field. 

Physical characteristics of the flow are strongly 
dependent on the magnitude of the temperature 
difference .1 T (parameterized by the pressure ratio, N), 
since it determines the nominal amount of conden­
sation,&. 

1. When .1 T is smaJI, there is little condensation 
and the liquid is nearly immobile. The flow 
contains a weak saturation shock which lies 
close to the inflow boundary. The outer down­
stream region is second-order parabolic and 
resembles a single-phase vapor flow with a large 
(phase-change) compressibility. 

2. So long as d T is moderate, the amount of 
condensate is insufficient to cause liquid­
blockage of the pore space. At the saturation 
shock both phases are present on both sides, and 
the jump conditions require that: the shock faces 
forward, that there be no local phase change, 
that there be no local temperature jump. The 
low-mobility liquid is overtaken by the shock 
while the high-mobility vapor passes forward 
through the shock. Each mass flow is continuous 
in the shock frame, as in the classical 
Buckely-Leverett flow [5, 6]. 

3. At large d T, the liquid-full condition prevails 
over an interval in which the (incompressible) 
flow velocity and the temperature are uniform. 
The leading edge of this liquid slug is simply a 
wall of liquid, and the medium is undisturbed 
ahead (for r - z ). This full strength forward­
facing shock is the continuous extension of the 
previous two-phase shock and, accordingly, 
there is no local phase change. On the trailing 
side of the slug there is a backward-facing 
saturation shock. Both liquid and vapor over­
take the shock, and there is a temperature jump 
and some local condensation. 

A family of steam flows in geologic media serves to 
illustrate solution behavior over a broad range of the 
parameters. It is noteworthy that the penetration 
depth Os=:::: 1 and the pressure gradient P'(O) =:::: -0.5, 
are very weak functions of the parameters, because the 
scaling considerations absorb the first-order depen­
dency (as also checked for other fluid/solid systems). 
Thus, the scaling considerations and the compu­
tational results have considerable generality in es­
timating penetration depth, flow rates, and flow struc­
ture for condensing flows in initially dry porous media. 
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ECOULEMENTS SELF-SIMILAIRES AVEC CONDENSATION DANS LES 
MILIEUX POREUX 

Resume-On obtient des solutions similaires pour la propagation de l'onde de condensation dans une 
ma trice poreuse initialement seche et qui r~it un flux de vapeur saturee du a un accroissement en echelon de 
temperature et depression a la frontiere. La formulation generalisee de Darcy (faible nombre de Reynolds) 
d'un ecoulement diphasique conduit a des equations hyperboliques/paraboliques dans lesquelles la 
capillarite et la conduction thermique sont supprimees de fa~on a degager le comportement semblable a un 
choc. L'application de la transformation en X/Jt donne des equations aux derivees partielles qui sont 
resolues en utilisant un bilan de saut (Rankine-Hugoniot) pour traiter des discontinuites de saturation 
(qualite) de gradient depression et de temperature eventuellement. La distribution du condensat (saturation) 
presente un front. Pour une faible difference de temperature, ii ya un faible condensat proche de l'immobilite; 
le choc de saturation est proche de la frontiere et la region externe est decrite par un systeme d'equations 
reduit. Lorsque la difference de temperature augmente, le choc se deplace en avant et gagne en intensite 
jusqu'a ce que le milieu soit plein de liquide derriere le choc. Le choc se deplace en avant et gagne en intensite 
jusqu'a ce que le milieu soit plein de liquide derriere le choc. Le choc se separe en deux chocs dos-a-dos, 
separes par un noyau de liquide sous-refroidi. Le probleme considere est representatif d'une grande classe 

d'ecoulements diphasiques qui sont rencontres dans les applications liees a l'energie et a la geologic. 

AHNLICHE KONDENSIERENDE STROMUNGEN IN POROSEN MEDIEN 

Zusammenfassung-Fiir die Ausbreitung einer Kondensations-Welle in eine anfanglich trockene porose 
Matrix, in die durch ein sprunghaftes Ansteigen von Temperatur und Druck an ihrem Rande gesattigter 
Dampf einstromt, werden Ahnlichkeitslosungen gewonnen. Die verallgemeinerte Darcy-Formulierung 
(kleine Reynolds-Zahl) filr Zwei-Phasen-Stromung fiihrt auf hyperbolisch/parabolische Gleichungen, in 
denen zur Betonung des stoBartigen Verhaltens Kapillarwirkung und Warmeleitung vernacblassigt werden. 
Die Anwendung der X/Jt-Ahnlichkeits-Transformation fiihrt zu gewohnlichen DifTerential-Gleichungen, 
die durch Mon te-Carlo-V erfahren gelost werden; hierbei werden Sprungbedingungen (Rankine-H ugoniot) 
verwendet, um Unstetigkeiten der Sattigung (Dampfgehalt) des Druckgradienten und manchmal der 
Temperatur zu erhalten. Die Kondensat-Verteilung (Sattigung) ist wellenformig, mit einer StoBfront an der 
Vorderseite. Bei einer kleinen Temperatur-Differenz entsteht wenig Kondensat, und es ist fast unbewegt; der 
Sittigungs-StoB liegt nahe am Rand, das Gebiet auBerhalb wird durch ein reduziertes Gleichungssystem 
beschrieben. Mit zunehmender Temperatur-Differenz bewegt sich der StoB vorwarts in die Stromung und 
nimmt dabei an Starke zu, bis hinter dem StoB gesiittigte Flilssigkeit vorliegt. Danach teilt sich der StoB aufin 
ein Paar durch einen unterkiihlten fliissigen Pfropfen getrennter StoBe. Das betrachtete beispielhafte 
Problem steht fiir cine grolle Gruppe von Zwei-Phasen-Stromungen, die im Bereich der Energietechnik und 

der Geologic Anwendung finden. 

HMT23:11.E 
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_Part II 

THE FINGERING PROBLEM IN A HELE SHAW CELL 
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!.l INTRODUCTION 

There is an analogy between two dimensional flow in a 

porous medium and flow betw~en two flat plates that· are very 

close together. The latter apparatus is known as a Hele-Shaw 

cell. In such an apparatus, since the two plates are very 

close together, Stokes' equations for low Reynolds number flow 

are applicable. 

If one assumes that w is negligible compared to u and v, 

and that a~. and £.. are negligible compared to ~'Z. , one 
4a2C.- .,0... ~22. 

obtains the equations 

If the plates are separated by a distance h, after 

·averaging the above equations with respect to z, one finds the 

equations for the net rate of fluid transport in the xy plane 

These are identical to the equations in a two dimensional 

porous medium. From now on the brackets on U will be dropped, 

and it will always be assumed that all the velocities refer to 

velocities averaged with respect to z. If the fluid is 

assumed to be incompressible, one finds 
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1) 

Saffman and Taylor (ref 1) analyzed the stability of a 

moving plane interface in a porous medium or a Hele-Shaw cell. 

They found that if no body force or surface tension effects 

are included, the interface is stable if and only if the more 

viscous fluid is pushing the less viscous fluid. They did 

experiments in a Hele-Shaw cell to confirm this result. The 

experiments also showed that an unstable plane interface will 

at first develop several finger-like protrusions. As time 

develops the larger fingers grow at the expense of the smaller 

ones until a steady state is reached where there is just one 

long finger present. 

Saffman and Taylor were able to analyze the shapes of 

these steady fingers. They assumed that the less viscous 

fluid that pushes the more viscous fluid is of such negligible 

viscosity that the pressure is essentially constant throughout 

it. Assuming. that the walls of the Hele-Shaw cell are a 

distance L apart (not to be confused with the small distance h 

that separates the plates of the cell), the problem can be 

stated as follows. 

On the surface of the finger, 

a) </>: O 

2) 

b) 
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,... 
here n is the unit normal to the finger, and U is the velocity 

of the finger. At y=!L 

c) 

and as x ~oe 

d) ;~_,,. i\.v 2A=width of finger 

this last condition follows from conservation of mass. 

The condition f=0 on the surface of the finger is valid 

only if surface tension is neglected. Introducing w=fti~, 

·writing the equations in a coordinate system with the finger 

at rest, and rewriting the conditions 1) and 2a-d) in the 

hodograph plane, one gets 

a) 

3) b) 

c) 
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The solution to this boundary value problem can be shown 

to be 

4) ~ w -
The shape of the finger can be found by plugging ~=0, and 

y=1/u into the above formula. 

5) 

There are two dimensionless parameters that indicate the 

relative importance of viscous stresses to surface stresses. 

Depending ~n whether one scales the surface stresses by the 

radius of curvature of the mean two dimensional surface, or 

the radius of curvature of the meniscus in the narrow gap, one 
l. 

obtains the dimensionless parameters µUL , or µ. u L 
T"'Z.. Th 

Experiments show that as long as these are very small, the 

finger width is 1/2. The finger shapes computed by Saffman 

and Taylor agree very well with the experimental shape 

. provided ~=1/2 i~ plµgged into their formula for the shape. 

Unfortunately they could not explain why A=l/2 was the 

appropriate value. Additional confirmation of these 

experimental results may be found in reference 4. 

Saffman and Taylor analyzed the stability of these steady 

fingers and found that under the assumptions they were making 

the fingers are unstable. This is not at all in agreement 

with the experiments. 

Recently McLean (references 2 and 3) analyzed the 
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problem of steady fingers in a Hele-Shaw cell taking into 

account the affects of surface tension. When surface tension 

is taken into account, the boundary condition at the surface 

of the finger isAP=T{l/R1 +1/R~). Here R 1 is the radius of 

curvature of the two dimensional interface seen by an observer 

looking at the Hele-Shaw cell from above. R2 is the radius of 

curvature of the very thin meniscus that one would see if one 

were to look at the narrow gap between the two plates. 

Obviously the second term is much larger than the first. 

However if the second term is assumed to be constant, then it 

merely plays the part of an additive constant in the problem. 

McLean proceeded on this assumption and got some interesting 

results. 

By using analytic function techniques he was able to 

reduce the free surf~ce problem to a nonlinear singular 

integral equation. He then solved this problem numerically 

using Newton~ method. He found that if one includes surface 

·tension in the problem {ignoring R~), then there is a unique 

value of ~ for each value of the surface tension. 

Furthermore, as the surface tension goes to zero the value of A 

goes to 1/2. 

It seemed as though one would be able to determine the 

value of ~ as T went to 0 using a perturbation expansion. But 

neither McLean nor Saffman was able to do this. When the 

expansion was done, there was no condition to determine A • 

McLean also analyzed the stability of the fingers with 
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surface tension included and found that surface tension did 

not seem to stabilize the fingers. 

McLean~ results were a significant contribution to the 

problem, but there are still loose ends. 

1) The perturbation analysis does not agree with the numerics. 

2) The experiments show that the fingers are stable, but the 

analysis does not. 
2 

f-u.L:. 
3) The curve of /\as a function of Th2 does not agree with 

the experiments as well as one might hope. 

The above loose ends are enough to keep one from calling 

the Saffman-Taylor problem a closed issue. The present work 

considers the effect of changes in the radius of curvature 

that McLean assumed was constant. McLean's problem may be 

considered to be a subclass of the problems to be considered 

here. Part of the motivation for the present study is to 

check McLean's results by an independent numerical scheme, and 

thus to bolster confidence in his results. 

It is not an easy matter to take into account the effect 

of the radius of curvature in the small dimension. Unless one 

solves the full three dimensional Stokes equations, one must 

make an assumption on how R2 is related to the two dimensional 

flow field. It is felt that it is reasonable to assume that R2 

is some function f (v) of the normal velocity of the two 

dimensional interface. For lack of any data on such a problem 

it is assumed that f (v) is a linear function of the normal 

velocity. It should be mentioned that it would be interesting 
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to try to obtain the function f (v) by modeling the full flow 

in the narrow gap, and in fact this problem is 

currently being studied. 

Besides the possibility of clearing up the stability 

issue and the agreement with experimental data, it was felt 

that it would be interesting to see if unique solutions are 

still obtained when only the effect of R~ is taken into 

account. One reason this issue is interesting is that if the 

boundary condition using R8 is so significant in determining 

the value of A , then it seems clear that one must be careful 

in using a Hele-Shaw cell as an apparatus to model fingering 

in a porous medium. This is because in a porous medium the 

real interface is a very jagged one that only statistically 

can be thought of as being smooth. The radius of curvature of 

this mean interface is not necessarily significant in 

determining the pressure drop across the interface. The 

problem of determining whether the pressure drop depends on 

the mean radius of curvature is an interesting problem, and to 

I the authors knowledge has not been solved. The condition 

AP=f (v) is possibly more realistic of the condition at the 

surface of an interface in a porous medium. 
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~ FORMULATION OF PROBLEM 

The problem to be considered is identical to the 

Saffman-Taylor problem and the problem that McLean solved 

except for the boundary condition on the surface of the 

finger. 

The fluid satisfies 

6a) 

On the finger 

b) 
) 

12.. 

c) 

On the walls y=±L 

d) 
4>"": 0 

Also, 

e) 4>~....,, v a~ ~ ~ "'° V:. A.t.l 

From now on it will be assumed that L=l. 

If the shape of the finger was known, the conditions 

6acde) would alone determine f · The problem is to find the 

particular shapes of the boundary such that the equations 

labcde) can all be satisfied. 

It is possible to proceed as McLean did and derive an 

integral equation to determine the shape of the boundary. 
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However, since part of the motivation for the present study is 

to check McLean~ results by an independent numerical scheme, 

this is not done. Instead, the more direct approach of 

iterating on the shape of the boundary until all the boundary 

conditions are satisfied is used. 

/ To do this one must have a way of solving Laplaces 

equation quickly for an irregular region. One does not have 

to know the solution in the whole region, but only on the 

boundary. An effective method for doing this is to use 

Theodorsen•s method of numerical conformal mapping. Using 

I 
this technique one can solve Laplaces equation and find the 

necessary information on the boundary in only O(NlogN) 

operations where N is the number of points on the boundary. 

In order for Theodorsen's method to converge one must first 

map the regio~ of interest onto a region that is fairly close 

to a circle. The Saffman Taylor solution can be used to do 

this. 

Consider the function Z=f (W(~)), where Z=f (W) is the 

function given in equation 4), and 

W(r) : - v .e."' r 
'))-" 

This function can easily be shown to map the Saffman-Taylor 

finger of width ~onto the unit circle. When surface tension 

is included, it will map fingers of width A onto a region that 

is approximately circular. Also, whether surface tension is 

included or not, it will map the walls y=+l onto the strip 
• 
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I~ (T') = o , -I.(. Re. ( r) ..(0 

This cut in the T1 plane may be removed if one assumes the 

fingers are symmetrical. Finally one may use Theodorsen's 

method to map this near circle onto a circle. One can then 

solve Laplaces equation using fast Fourier transforms. 

Diagrams of these mappings are sketched in figure 1. 

Let A=A(P) be the mapping that maps the near circular 

finger shape in the r plane onto the unit circle. One must 

write down the boundary conditions 6bcde) in terms of the 

mapped variable A. 

LetJl..(s) describe the finger in any plane..fl... The normal 

derivative of f in this plane may be written 

7) 

where dW and d..a. are the changes of W and ..n_ along the curve 

.n.(s) • In the z plane equation Ge) and 7) can be seen to yield 

so in the A plane 

this last equation can be seen to be equivalent to 

8) 

At this point it might be well to explain what 
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Theodorsen•s method is, and how it is used to determine dZ/d~ 

LDC.. 
in equation 8). Let T':: f(ee..)e.. describe a curve in the T' 

plane. Let T'(A) be the function that maps the unit circle 

onto this curve, and that satisfies r{0)=0. This mapping maps 

any point on the unit circle with anglee onto a point on the 

curve with angle ~(9). This function ~(8) can be shown to 

satisfy 

9) 

Here&4-(h(l)) denotes the conjugate harmonic function of h that 

satisfies h(0)=0. 

Theodorsen's method solves this equation using picard 

iteration (ref 5). 

The function ~n ( y (oc) ~ may be evaluated using fast 

Fourier transforms. (It will be seen that for the problem 

·under consideration this last step must be slightly modified) 

The end result is that one knows ~A=~(~) k=l,N-1, and hence 

Ut. 
r( 6;\) = f {o(k) e.. "- One can now evaluate d f'/dA by using 

'1 r :: - -~'A JP -J..e 
Then dZ/dA=(dZ/dr) (dr/dA), where dZ/dr can be evaluated 

analytically. 

To evaluate 6b) in the mapped plane one has to know how 

to express l/R, , and~~ in terms of the function Z(b). To 
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evaluate the curvature one only has to know how to evaluate 

the first two derivatives of Z(S), where Z(e) describes the 

finger in the physical plane in terms of the anglee in the 

mapped plane. These derivatives are 

10a) & i. ~Ad'i. = -cl& ti.A 

b) d2~ -cl2~ a - Ji. 6. : A. 
tJ. e 2. el A a dA 

The expression for tp~ =U•t'\ in terms of Z (A) is 

11) 
U·M. ".:r: .... ( u~) = I'""(lHi. \ ~\ ~) cl A 

, 
= - c... 

1'1~\ 1Hi d 1 f J.A-l lc:l~\ A 

To evaluate 6e) in the mapped plane, note that as x~~, 

r-=> 0. Also, 

- _,_ ( J_ + 2. i\- f ) 

1r rt H· r 

From 6e) it is known that dW/dZ~V as x~~. So as r~0, 

So there is a point source of strength -V/~ at r=0. 

12) w AJ -v ~ r 
1t 

This point source is mapped into a point source of the 

same strength in the A plane. 
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Figure 1 

The function w = w(z) defined by z = ~ + z( ~-A) 1 n~ (l+e -nw/v) 
maps the region bounded by the Saffman-Taylor finger of width A and 

the walls y = ±1, onto the semi-infinite strip lwl < v q» 0. The 

mapping r = e-TrW/v maps this region onto the unit circle. The walls 

w = ± v map onto the cut -1 < Re r < O. Finally, if the finger shape 

in the z plane was only close to the Saffman-Taylor shape, the region 

in the r plane is only approximately circular. One can use Theodorsen's 

method to find a mapping ~ = ~(r) that maps the r plane onto a circle. 
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11_ ANALYSIS OF SINGULARITY OF THE MAPPING 

The basic plan of attack is to find the· shape of the 

r i.°" finger in the fl plane. Let =r(~)~ describe the shape of 

the finger in this plane. For the case of no surface tension, 

r:l. Before proceeding with the numerics it is necessary to 

find the form of r(~) near ~=t". If care is not taken in 

solving the equations around this point, the numerics are 

foµnd not to converge as one raises the number of points used 

to describe the finger. 

It will soon be shown that the solution near ~=tr depends 

on the asymptotic behavior of the solution as x~oo. First 

however, this asymptotic form will be found. 

As %""-oo assume that y has the form y=A+Ae'Y1'.. To first 

order l/R=-A ··/·eY')(. 
I 

and ,., ;( 
U·t'\ = -rAue.. 

A y~ ·Now assume that ~al~o decays like e In order to satisfy 

Laplace~ equation, and the condition f~=0 at y=l, 4' must have 

the form 

a.s x -'> - "° 

Now if these asymptotic forms are plugged into 6b) and c), 

one finds that to have A and B be nonzero Y must satisfy 

13) 
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If T and (h are zero, Y= 'iJ-
i{/-.:\) 

If T and f-' are positive 

.., < _!!::_ • 
,.( 1-:>.) 

The dependence of r near «='ir will now be found. 

that near o< ='it, 

0-
r(e<.) .r I -r A('ir-0() 

Using dZ/do<= J. 'i. J.r one gets 
et f' d_K 

Assume 

J~ r I+ r'L .... J. r ces D{ + 2. (A-')., ( r + Co3 C<.) 1 L - .2.. (A-l) f SW\. o<. 
..;..Q.Z ~ 

Jt l+r1 *'"':J..r c..osoc.. + .2.(.A-t)t (r+c.os'<)+ L.. 2(.A-l) s•""o< 
(" 

Near et=1rthe leading order terms give 

1-0-!1 :: -(-n--~) 
14) el" A(i+l>") 

One can use equation 4) to find that as x-t-OO and l>t.. ~'tr 

)
'lz_ x N - l.( , - A) e~ t ( '+ r 2 +-" r cos ot N 2 ( I- i\ ) .e~ ( 7r - O{) 

1T 7r 

so 

Combining 14) and 15) one gets 

~ (P"-•) 
~ -;:: c_ e_.2.(t-'>-) 

·tt 'X 

so that 

Comparing this to equation 13) yields 
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16) 

Si nee ")' < .1L , we see that O" ( 2. This· means that the 
:t{h\) 

second derivative of r{«) blows up as «~1r. If one were to try 

to expand r in a Fourier series, the coefficients would decay 

like l/n~+•. To find the curvature one must take the second 

derivative of r. O"·. The second derivative would decay like l/n • 

Since ~-1<1, this is totally unsatisfactory. 

For the numerical.calculations the function r is assumed 

17) 

The first term on the right hand side has the proper 

behavior near 0( ='lr, and is zero at &<=0. The remaining terms 

are just a Fourier expansion that is restricted to have 

r{0)=1. This last conditition merely assures that the tip of 

the finger will be at x=0. 

The singularity near ol=1r must also be accounted for in 

other ways. When finding the conformal mapping one must 

account for the singularity when evaluating...f.ln{~{~)) in 

equation 9). If the function f (rx) was analytic at C(=1r, then 

one could find the conjugate harmonic by using fast Fourier 

transforms. Due to the singularity at «='Ir, the Fourier 

expansion of ln{f{~)) only decays like l/nF••. One obtains 

better accuracy if one splits the function up into two parts. 
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The Fourier components of the first part decay like l/n~~ 

and its conjugate may be found using fast Fourier 

transforms. The conjugate of the second part may be found 

analytically. 

In order to evaluate the curvature, and U•n, it is 

necessary to evaluate dZ/dA. and hence dr/dA. To determine dr 

/dA, one uses equation 10), so dr/de must be evaluated 

accurately. The function dr/d8 can be evaluated by either 

doing finite differences, or by using fast Fourier transforms. 

Whichever technique is used (in the present work the first was 

chosen), one must subtract off the singularity before taking 

the derivative, differentiate the singular part analytically, 

and add this onto the less singular part of the derivative. 

After one has determined the mapping ~=~(Z), and found 

the boundary cond~tions in the A plane, one must account for 

the singularity when solving Laplaces equation in a circle. 

Using equation 8) (except evaluating all quantities in the r 
plane instead of the· A plane) one can find a formula for 

near tX=1r. Near ot=1r, if r(rA)=l+A(fr-t<( , then 

18) 

In the r plane f has a singularity at r=-t. 

4> = Re.. (;z.(1-~)~ (P+t{-' ) 
1l'" co~ 1.t ( ,. ... 2-l 

:L 

so in the A. plane, cp has a singularity at A=-l • 

O' •• 

4> :: ~L ;1.(1-il) U ( A+I) 
1t eos lr ( P' .. 2.) 

a.. 
l:>=·•) 0--1 
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To solve the Neumann problem in equation 8) one 

should analytically find the solution to the most singular 

part of the potential. Then one can use fast Fourier 

transforms to solve for the remaining part. 



107 

.!l IMPLEMENTATION OF NUMERICS 

The shape of the interface in the r plane is represented 

using 17). 
I ~ For McLeans problem the values of Ar A, and 2 -2 

Fourier coefficients a~ are used to represent the boundary. 

After mapping this region to a circle, the Neumann problem 

given by 6c) is solved, and the residuals from equation 6b) 

are computed. Newton~ method is then used to adjust~, A, and 

the a~s, until the residuals go to zero. A few details of the 

implementation should be pointed out. 

To begin with, it is interesting to note that the 

representation 17) is unique only if one imposes the extra 

condition that the Fourier coefficients die down as rapidly as 

possible. To see this note that the mapping from the Z plane 

to the r plane is a function of A. 

19) 
~ ( r) = ... ...L t"' r ...- 2 < 1- x) ~"' ..1- ( r + f") 

'Tr '0- 2. 

Suppose that r(oc.) has a nonzero derivative at Dl=ffr. 

Then, 

From 19 ) i t is seen that as o< ~ i: 1t" 

~ -> ± (a - r ) ; A t\ 

If the value of A used in the transformation 19) is the 

same as the width of the finger, a=l, and there is no 
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I 
discontinuity in r (o<) at o( =.:HT , otherwise there is a 

discontinuity. It is seen that the Fourier ~oefficients die 

down fastest when A is chosen to correspond to the width of 

the finger, but if )... is chosen differently, then there is 

still a represenatation of the form 17). 

The same point also applies to the coefficient A in 

equation 17). For any value of A, there is a representation of 

the form 17), but only for the correct value will the Fourier 
,,..,. ' coefficients die down faster than l/n • When actually 

implementing the numerics, it turns out that one does not have 

to explicitly impose the constraint that the Fourier 

coefficients die down rapidly. Newton~ method just naturally 

chooses A and A so that the coefficients die down as fast as 

possible. 

It was felt that it was too difficult to find the exact 

Jacobian of this numerical scheme. However, it was too 

expensive merely to evaluate the Jacobian by brute force 

·numerical differentiation. This would require finding a new 

conformal mapping for each row of the Jacobian. Instead, the 

following method is used. 

Let ev(«) be the perturbation in the normal direction to 

the finger in the r plane. An equation for !-1. = 1 can be 
?>~ T 

derived (appendix A). This equation involves the solution to 

the unperturbed problem, and may be solved numerically to find 

the Jacobian. There is no need to evaluate the conformal 

mapping each time. This method is used for finding the 
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derivatives with respect to the a~s. The derivatives with 

respect to A, and A are found by brute force numerical 

differentiation. 

Let M=2~ be the number of points used in finding the 

conformal mapping, and in solving the Neumann problem. Let 

N=2~ be the number of points at which boundary condition Ge) 

is required to be satisfied, and also the number of points 

used to describe the boundary. Since the solutions are 

symmetric, it is only necessary to satisfy Gb) at half the 

points. If n=m-1 it is found that Newton~ method does not 

converge. ·This is because the Jacobian is not evaluated 

exactly, and there is considerable error in the derivatives of 

the high frequency components of the Fourier series. If Gb) 

is only required to be satisfied at every 2nd , 4th, or 8th 

point, this problem does not occur. In the calculations to 

follow using every 4th point was found to work quite well. 
~ 

After Newtons method has converged, the points that were 

·not required to sati$fy Gb) can be looked at, and the errors 

can be evaluated. I It was found that for McLeans problem, the 

maximum of these errors E.At{N), decayed about like l/N~. In 

the following section this error is included in the table of 

results. 
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/ 
~ COMPARISON WITH MCLEANS RESULTS 

To begin with, ~was set to zero, and the results were 

compared with McLean~. Just as McLean found, for positive 

values of T, A could not be determined arbitarily. However, a 

solution branch other than the one McLean found was also 

found. McLean~ program was obtained to see if it would also 

give this branch. By modifying his initial guess, this branch 

was obtained. The two methods appear to be in excellent 

agreement. 

Table 1) shows how the numbers vary as one raises the 

number of points used to describe the boundary. Note that as 

one raises N, the maximum error decreases about like l/N~, and 

that ~ - ~ decays like l/N~ 
~ N 

In table 2) are shown the Fourier coeficients for N=32. 

The decay is faster than l/N~. 

For both branches, A approaches 1 as the surface tension 

becomes very large. For McLean$ branch, it appears that ~~1/2 

·as T~0. This does n0t appear to be the case for the other 

branch. Figure 2) shows the branches plotted as functions of 
'2. 

the dimensionless parameter J-'.tt '- • Plotted along with these 
.,-"""' 

two branches is a third branch that was found using McLean~ 

code. An initial guess could not be found that yielded this 

branch using the conformal mapping approach. 

It should be noted that both codes have trouble computing 

solutions for very small values of the surface tension. If 

one makes the surface tension small enough, both codes give 
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solutions with A<l/2, but thes~ solutions are most likely not 

val~d. As one raises N,A increases, but before it settles 

down, the solutions become too costly to compute. 

McLean~ method of solving an integral equation turns out 

to be less cumbersome than the method described in this work. 

The main advantage is that the amount of programming is 

considerably less. As the number of points N used to describe 

the boundary becomes large, the major expense of both codes is 

solving Newton's method. Since the Fourier coefficients in 17) 

decay about like l/N', the present method is less expensive 

if very high accuracy is desired. However, unless very high 

accuracy is desired, McLean~ method is considerably less 

expensive. 
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Table 1 

N >...' ' E-11 :A"- E. ~. 
~ 

4 .5222342 .18E-3 .5841376 .41E-3 
8 .5217650 .. 40E-4 .5863854 .13E-3 

16 .5217398 .13E-4 .5863619 .. 32E-4 
32 .5217349 .. 35E-5 .5863599 .81E-5 
64 .5217345 .93E-6 .5863600 .20E-5 

Dependence of A, and E~ on the number of points N used 
to describe the boundary. Superscripts indicate which 
branch is being considered. 

.28E0 
-.70E-5 
-.68E-6 
-.13E-6 
-.23E-7 

.31E-3 
.43E-5 
~49E-6 
.. 10E-6 
.14E-7 

Table 2 

-.12E-3 
-.28E-5 
-.37E-6 
-.78E-7 
-.96E-8 

.. 49E-4 
.18E-5 
.28E-6 
.60E-7 
.52E-8 

-.23E-4 
- .. 13E-5 
- .. 22E-6 
- .. 45E-7 
-.22E-8 

.12E-4 
.91E-6 
.17E-6 
.33E-7 
.51E-9 

Example of typical decay of the Fourier coefficients 
for N=32, ~=0, T~0, ~=.5217. The coefficients are 
listed in increasing order from left to right, and 
from top to bottom. 
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&l MODIFIED BOUNDARY CONDITION 

After checking to see ~hat when ~=0 the results agreed 

with McLeans, shapes were computed with TP0, and ~f0· Then T 

was gradually reduced to see if the determinant of the system 

went to zero as in the case when ~ =0. It was found that this 

in fact did happen. Table 3 shows how the determinant of the 

system decreases as one lets the dimensionless parameter "Th~ 

go to zero keeping ~ fixed. 

Twas set to zero, and the code was then adjusted so that~ 

was specified instead of being an adjustable parameter in 

Newton~ method. It was found that the solutions converged 

nicely. All indications are that the boundary condition with 

bP=~{>V\ does not eliminate the arbitrariness of A. in the 

problem. Table 4 shows an example of how the maximum error E~ 

and the coefficient A in the representation 17) vary as one 

varies N (the number of points used to describe the boundary) • 

It is reasonable to assume that ~ is proportional to -r;h. 

·Also, it is reasonab~e to assume that as the normal velocity 

of the interface increases, the curvature l/R~ also increases. 

This corresponds to requiring that ~be positive. One finds 

that for any particular value of Tf0 or 1, the finger widths 

grow larger as one increases/;>. The values of i\ as T~0 or , 

remain the same as in the case where ~=0. The effect of 
'2. 

modeling l/Rl- is 1;.o modify McLeans curve >t(.uuL~i.) so that it 

stays fixed at 0 and oo, but it is raised for intermediate 

values. As seen in figure 2, this is qualitatively what is 
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needed to bring the curves into agreement with experimental 

data. 

The code was also run assuming that l/Rz..= f; ~".,_• The 

conclusion was the same. A unique value of A was not 

determined unless one took into account l/R
1 

• In table 5 it 
.,-~ "1. 

is shown how the determinant goes to zero as one lowers -µ u.Li.,, 

I. 'I. 
Also the curve A(pLU/Th ) was raised for intermediate 

~ ~ ~ values of pLU/T~ as when th~ dependence on~~ was assumed to be 

linear. 

By slightly modifying McLean~ derivation, it is easy to 

derive an integral equation for the shape of the finger when 

both radii of curvature are taken into account. 

::.: -s pf e(s'> ds' 
fr s '(s'-s) 

The definitions of q,8, and s may be found in McLean~ 

thesis. It is interesting to note that when the parameter T 

is nonzero, the second derivative of e is brought into the 

problem, but when ~ is nonzero, only the first derivative of e 
is brought in. The parameter T appears to perturb the 

equations in a more singular way than the parameter (J. It is 

not surprising that ~ by itself does not fix the value of A 
the way that T does. 
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Table 3 
,a.l IA LL det -...,.Do\. .... 
.124 .27E-3 
.156 .70E-4 
.195 .18E-4 
.24 .50E-5 
.30 .15E-5 
.48 .29E-6 
.61 .13E-6 
.81 .23E-8 

Table 4 

N A E.-... 
8 .7675 .2E-4 
16 .6816 .7E-5 
32 .6525 .2E-5 
64 .6405 .SE-6 

Table 5 
a.. 

.,t.tu.L det -....,.."" ... 
.17 .14E2 
.28 .80E-l 
.39 .72E-3 
.59 .llE-4 
.88 .30E-6 

1.3 .19E-7 
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ll. CONCLUSIONS 

McLean~ results were checked by a different numerical 

scheme, and the agreement between the two methods was found to 

be quite good. Another solution branch was found on which it 

appears that A does not approach 1/2 as T approaches 0. The 

physical significance of this branch is not known. 

The effect of the radius of curvature R~was modeled by 

assuming that l/R1=~~~. It was found that if one ignores the 

large radius of curvature R
1

, ~is arbitrary as in the case 

where one completely ignores the surface tension. One finds 

that when both radii of curvature are taken into account, the 

effect of l/R2. is to modify the curve A=A.(JCu'-JTk.1-) in a way 

that is qualitatively in agreement with experiments. 
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APPENDIX A 

Let the finger shape in the r plane be given by 17). In 

this appendix it will be shown how to evaluate the derivatives 

of the function given by the residuals in equation Gb), with 

respect to the parameters a~ in 17). If one perturbs the 

Shape in the r plane by Changing One Of the aP\ IS by e~t\ I it 
A t.e 

changes the shape of the finger in the A plane to (1+~~(9))e , 
A 

where v(&) can be calculated knowing dr/d~ and the 

perturbation to the shape in the r plane. The problem then 

reduces to finding how a small perturbation to the shape in 

the A plane affects the residuals in Gb). 

" Let <f>=f
0 

+E:.f be the potential for the problem with the 
A. 

perturbed finger shape. One can derive a Neumann problem for ~ 

on the unit circle that is accurate to o(~). In equation 8) 
'1d 

both U and nA are changed. To first order 

so 

A N 

u( (lf-E.~)A)-= utA) + ~.JA du 
dA 

Also, 
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A 

The above, along with equation 8) determine 8 tP up to 
'J;:-

0 {e) on the perturbed boundary. To the same order, the value 

~ ~ '.'.\'2~. on the unperturbed boundary is found by subtracting ~~ o ~ 

The final result is 

9~ "' d-3' a~ +- U.TA .J' + .j du A.~) 
2~ 8t aA 

A 
One can use fast Fourier transforms to compute ~(e). 

I I 

Let A=A(~) be the mapping obtained from Theodorsen's 

method that maps the perturbed shape in the A plane onto the 

unit circle. To order~ Theodorsen's method gives 

. A 

e(e')= e'+ rA ~~(t+E.~e'(e))~ e'+ ~ ,A~(e) + o(E:-2 ) 

We thus get 
A 

e(e')- e'-= E-t-4-J(e) 

The term on the right can be evaluated using fast Fourier 

transforms. Dividing by E- and taking the limit as £~0, we 

obtain an expression for d8/dL. This derivative tells at what 

' ·angle points in the A plane must have originated from in the .0. 

plane. To evaluate the contribution to 6b), the change in 

the potential, one must first take into account the con-
A 

tribution off, and one must then take into account the fact 

that the function f is being evaluated at both a different 

radius and a different angle. The total contribution is 

One now must calculate the change in fk=U·~ in 6b) caused 
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by perturbing the boundary in the A plane. One can do this by 

noting that the normal in the z plane can be· written 

Where d~ and dA are taken along the boundary of the finger in 

the z and A plane respectively. Taking into account the 

perturbation in the A Plane one gets 

!l = ~o -t- "'(-~ .f 1
{A) A el.o. + 31 f(~) .6.) 

l tfA\ 
To evaluate u.n one merely takes the x component of the 

vector n. 

Again one must correct for the fact that one wants to 
I 

evaluate the function in the ~ plane and not the .A plane. To 

do this one must correct 4'~ by adding a term 

~de el <f> 
t:i'E tte ~ 
To calculate the change in the curvature one uses 

..L -
~. 

x' ca'' .. i x.'' 
Cx' 'I.+- ~ "l. r~1~ 

The perturbations to the derivatives of x and y may be 

calculated using 

" L.e 
A :: ( ,.._ t:. .J ) ~ 

The perturbation to the curvature can easily be obtained by 

gathering the contributions of order e. One again must add a 

term due to the fact that all quantities should be evaluated 
I 

in the A plane. 

( J_) 
~. 
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