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ABSTRACT 

In seismology, the basic problem is that of deducing some knowledge of the 

geological structure of portions of the Earth from observed seismic 

signals. This leads to the concepts of seismic interpretation, or more 

mathematically, the formulation of inverse problems. 

Some aspects of seismic wave propagation can be interpreted in terms 

of asymptotic ray theory. In Chapter 1 of Part I, we describe the 

numerical ray tracing algorithm we developed for layered media with 

interfaces that can vary in three dimensions. We describe in Chapter 2, 

how this ray tracing method is implemented in an inversion procedure. This 

method is based on the theory of non-linear least-squares inversion. 

In Part II of the thesis, we discuss two formulations of seismic 

inverse problems, which are more analytical in nature. Chapter 1 deals 

with the use of inverse scattering theory for the Schroedinger operator in 

the seismological problem. In chapter 2 of Part II, we develop the theory 

of the tomographical inversion of travel time anomalies to determine 

velocity anomalies within the Earth. Here, we have extended, in an 

approximate sense, the Inverse Radon Transform to situations where the 

"background" velocity field varies with depth. 
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I.O Introduction Part I. 

In Part I of the thesis, we examine the use of seismic ray theory, in 

direct and inverse seismic ray problems. In chapter 1 the direct problem 

considered, is that of finding the seismic signal, within the geometric 

optics approximation, at a specified receiver location. The source is 

known, and the medium consists of layers of homogeneous elastic material, 

that are separated by known, non-intersecting, smooth interfaces that can 

vary in three dimensions. We develop efficient and accurate methods for the 

determination of seismic rays and we calculate exactly the rays' travel 

times, amplitudes and phases. 

In chapter 2, we consider the inverse problem of estimating elastic 

and interface parameters of a layered elastic medium, from a knowledge of 

the travel times 

receivers. We 

and amplitudes of rays between various sources and 

utilize the efficient ray generation methods of chapter 1, 

in a non-linear least squares algorithm for parameter estimation. 
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Chapter 1. Direct Problem 

Introduction. 1. O 

In our ray tracing methods, we use the first order geometric optics 

approximation to the solution of the linearized equations of elasticity. 

The particle displacement, J!, is approximated for high frequencies W by: 

u 
t"w (t- tr(~ J) 

e l/4 < .~) (0. 1) - -
Here Ir(!) is the "phase function", or travel time to a point _!, and J! 0 (X) 

is the amplitude coefficent. Using this approximation it is found that two 

forms of uncoupled waves are possible for Q.. The wave fronts travel with 

velocities Vp= (("-+=v,t.)/J') ¼., which is called the compressional velocity, 

and ( ) Ya , Vs= ft I\ which is called the shear velocity. Here..J' is the 

density and )A, and A are Lame' s elastic parameters. For a compressional 

(P) wave, 1!, will represent a longitudinal particle motion, and for the 

shear (S) wave, U will represent a transverse particle motion. The 

orthogonal trajectories to the wavefronts are called the "rays", and within 

homogeneous layers the rays are straight line segments. The first order ray 

approximation to the elastic wave equation solution is invalid for many 

interesting and important seismi? phenomena, such as surface waves, head 

waves, diffraction, and shadow zone behaviour. However. even with these 

limitations, this simple ray theory approach is very useful in seismic 

interpretation. 

Our problem in chapter 1 consists of 2 parts: i) determining a ray 
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which intersects a given sequence of interfaces, starting and ending at 

specified points, and ii) determining for this ray the amplitude coefficent 

and phase shift of the signal at the receiver. 
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Section 1. The Kinematic Problem. 

We seek to find all physical rays which join given initial and final 

points, and which intersect the specified sequence of interfaces. The 

compressional and shear velocities of each layer are assumed known. In 

general, there may be several physical rays which satisfy the above 

constraints. The existence and comput,ation of all the multiple solutions 

is an important but difficult problem. We will concentrate on the problem 

of finding one of possibly many solutions. However, we will discuss the 

problem of multiple solutions in a later section. 

The seismic ray tracing problem has often been posed as a "shooting" 

problem (~.,Shah[16]). The shooting angles at the source are varied until 

the ray ends sufficiently close to the receiver. For a sufficiently good 

initial guess of the starting angles, a Newton iteration scheme can be used 

to refine the answer. However, a good initial estimate of the starting 

angles may be hard to find and the endpoint of the ray may depend unstably 

upon these initial angles. 

Our approach follows that of Keller and Perozzi[9],[15] for the two 

dimensional problem. We formulate the problem as a system of non-linear 

equations with the source and receiver positions .Ks and ?fR as known. An 

Euler-Newton continuation method is used to solve the system. 

There are several important differences between the two dimensional 

and three dimensional ray tracing problems. There are twice as many 

equations and unknowns in the three dimensional problem. In the two 

dimensional case the ray must satisfy the scalar Snell's law at each 

interface. In the three dimensional case, the ray must also satisfy a 
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scalar Snell's law at each interface, but the plane in which it is 

satisfied must also be determined. This is done by requiring that the 

incident ray, the emergent ray, and the normal to the interface at the ray 

contact point, be coplanar. These conditions can be formulated compactly 

as a vector Snell's law. Hence our system of equations is larger and 

different from the corresponding two dimensional system. However for a two 

dimensional problem it is easy to show that our system can be reduced to 

the smaller two dimensional system of Keller and Perozzi [9]. 

The velocity continuation method to generate the initial, purely 

compressional ray discussed in [9], [15] for the two dimensional problem, 

is no longer directly applicable to the three dimensional problem. We have 

devised a new continuation scheme, where the continuation parameter is the 

deviation of the interfaces from parallel planar interfaces. 

of these methods are discussed below. 

1. 1a Notation Used. 

The details 

Since a ray segment in every layer is a straight line segment, any ray 

is determined by specifying its initial point Ks and its final point ,l.~, 

and in order, the N points at which it intersects the . interfaces, say 

We adopt the notation that the k' th node, :/.,._ lies on the 

interface zt·, k:1,2, ••• ,N. In each specific case, we must specify the 

" 
integers i1,i2, ••• ,iN. The source and/or receiver points will often lie on 

the earth's surface which we denote as the interface r0 • The normal to 

the interface at the k'th node, is: 
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( 1 • 1 ) 

The vector!,-!,, denotes the ray segment from the source to the first node 

point, and similarly for the other segments. We also use the notation: 

k=1,, .. ,N 

d1e = /(('.j xi()''· + ( A Y1e) 2. + Ct> 2"-) ~ 

( 1. 2) 

'k=-1, ... ,NI-/ 

L\ )(k : }(k .- ~-, , ti y" 5 Y1c -yl(-J , /::,.~I<= ~it - 2 ,'k:.1 

The velocity on the k'th ray segment is Vk (k=1, ••• ,N+1) and it is also to 

be specified as either Vp or Vs for the layer containing that segment. The 

above notation is illustrated in figure 1.1. 

1.1b Formulation of the Ray Tracing Problem. 

In each constan~ velocity layer the ray is a straight line segment, 

but at the k'th node ( the i K interface) the two ray segments (the 

incident and the emergent) must satisfy constraints. For the two 

dimensional case (see Keller,Perozzi[9],[15]) this is simply the scalar 

Snell's law 

( 1. 3) 

where is a tangent to the interface at point}¼=(""',2/ ('J<,c)) and 
- /C 

V~,Vktl the 2 layer velocities. For the three dimensional case we require 
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Figure 1.1 Illustration of Notation Used 
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that the incident ray, ~" - 1.1:-1, the emerging ray, ]1t .. , - ~tc , and the normal 

N~, at the ray contact point be coplanar. Their plane is called the plane 

of incidence. On this plane we require that (1.3) hold. 

condition can be written as: 

The coplanarity 

(1.4) 

where '-al. is an arbitrary scalar. When this holds we can write: 

2 z. 1 Y, .,. (31 = 

( 1.5) 

( fk+1 - X1e) = ~ ~" r !3:z. f;.r. 
dl<+t 

where ~n is a unit vector in the normal direction ,:/:1,c , and Jgt is a unit 

vector orthogonal to §n, and in the plane of incidence (i.e., it is the 

unit vector parallel to ,1; of ( 1. 3)). We will choose -~,: so that ,B, >O. 

Then the scalar Snell's law ( 1. 3) reduces to: 

= ( 1 • 6) 

since ~I< .. ~,, =0. Using expressions (1.5) in (1.4), and using 

( 1. 7) 

From ( 1. 6) we obtain cl, = ~ .. ,I Vlt' • Thus we obtain Snell's vector law 



From ( 1 • 1) and ( 1 • 8) we get : 

d,r. 

VJcrt ('1X1e +- ~i,c ~?.~) 
;;)X 

d"' 

VJ<-t-1 ( ;)2,',.: I,. X1c - ')2,ic A YK) 
:JJ ;))( 

9 

(1.8) 

(1.9a) 

dl<tl 

(1.9b) 

d IC+-1 

( 1.9c) 

d1c,,., 

Only two of these three conditions are independent. For example if (1.9a) 

and ( 1. 9b) hold then we can multi ply ( 1. 9a) by 'J2•"i<1 ::>x and ( 1. 9b) by 

d6 •ir/:-:Jy , subtract and obtain (1.9c). Geometrically, this is to be 

expected. The two vectors of (1.8) lie in the same plane; thus equating 

two components of the vectors automatically implies that the third 

component of these coplanar vectors will also be equal. There are several 

equivalent sets of equations which can be obtained from (1.9) From (1.9a) 

and (1.9b) we have: 

(1.10) 

Multiplying these ratios out we obtain a new equation: 

(1.11) 
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This is simply the vector equation: 

(1.12) 

which is the coplanarity condition. 

Another interesting derivation of (1.9) is to consider Fermat's 

principle; that is, the travel time on the ray is extremal with respect to 

coordinate perturbations. Using our notation we can write for the travel 

time on a ray with N intersections: 
N+-1 

-Cr ( ~s, :t1t) =L d I( 

v~ (1.13) 
1<=1 

From Fermat's principle, varying the j'th intersection point: 

( 1 • 14b) 

These are the same as (1.9a) and (1.9b). 

We assume that the source position Js and the receiver position J,e 
are known. Thus we wish to find the unknown coordinates (x,:.,,Ya:-) k=1,N of 

the N contact points of the ray with the interfaces. The depth 

(z-coordinate) of the ray's k'th contact point is implicitly known from 

z:z,,· ( x" ,Y1t). Hence we have 2N unknowns, but at each contact point we have 
J<. 
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two conditions from Snell's law (1.9). Thus we can form a system of 2N 

equations in 2N unknowns. As mentioned above,there are several equivalent 

ways to formulate the problem. We chose two such formulations to study 

numerically. However, the concepts of the methods which we derive and test 

for these formulations, apply for any of the other formulations. We denote 

our system of equations in the vector form: 

0 (1.15) 

Here.! denotes the vector of unknown contact points: 

(1.16) 

1 is the known vector of encountered velocities. We have explicitly 

stressed in ( 1. 15) that ,J
5 

and .1-R are important parameters in the problem. 

Using (1.9a) and (1.11) at each of the N contact points, we define the 

components: 

(1.17b) 

or from (1.9a) and (1.9b) we could use: 

( 1 • 18a) 



12 

~ ( 4X1e-tl T llZkf-1 ~,;.. ) (1.18b) 
d1t-t1 ::JX,c 

The first two components F1 and F3, involve .Xs explicitly. Similarly the 

last two components F2N.:, ,F·w involve .X-R explicitly. 

Initially, we employed (1.17) before we considered (1.18). However, 

we note that for situations where the ~K component of .( ¥K- ~1<-1) x NI( is 

zero at some node the system (1.17) is no longer valid. Geometrically, 

this is because (1.17) forces and 

(l,K+I - ~x) )( !:/K to be colinear. When the "~x" components of these vectors 

are non-zero, their equality implies the equality of the two vectors, and 

hence Snell's law is satisfied. However, this argument is not correct when 

=0. This problem can often be circumvented by 

simply redefining the coordinates for the problem. However, for the case 

of zero-offset rays where 11c -11(-J , JK.ti - .¼t ,and may be colinear, 

(1.17) is not appropriate. Formulation (1.18) is valid for these 

situations. Thus from this standpoint, formulation (1.18) is preferable. 

1.2 Solution of the System of Non-Linear Equations. 

We wish to solve (1.16) using either definition (1.17) or (1.18) of ..f, 

for the ray J;. One commonly used method to solve such a system is Newton's 

method. If ! is "sufficiently" close to the root of .f, then an improved 

value X is given by: 
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xtn+I) = xln) t- d'.½.Ua) 
(1.19) 

IX ,n> = 

rJF 
Here, i is the jacobian of the system:~ = 1/;)! <. When the iterates in 

Newton's method are "close" to a simple root, the iterates converge 

quadratically. However, in complicated problems, it may be difficult to 

-x'o>. supply a good initial guess · 

1. 2a Generation of Initial Purely Compressional Ray. 

To start the calculation of rays for a given sequence of interfaces, 

we first calculate the purely compressional ray (i.e., each ray segment has 

the layer's compressional velocity) between a specified source and receiver 

pair. To provide a good initial estimate for this ray, we use a 

continuation method. We write each interface z.~.( x ,y) in the form 

The constant ct~ represents a mean depth of the interface. 

(1.20) we can introduce the one parameter family of interfaces: 

= A i",c (XK, Y.t) 

I<.. = .1, 

(1.20) 

Instead of 

( 1. 21) 

We will solve the ray problem for plane parallel interfaces ( A =O) and then 

"deform" the plane inter faces into the desired (curved) inter faces (A.= 1) , 

as A goes from zero to one. To determine the ray for a parallel plane 
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geometry is easily done, and the details of solution are given in Appendix 

A. We can write the non-linear system of equations for the ray, as ~A 

varies, as: 

0 ( 1. 22) 

where ~(A) is the vector defined in (1.21). If a ray solution to (1.22), 

¥,(A), is known for some value of A , then as an initial ray estimate for 

the solution of ( 1. 22) at A +-'A, we take: 

• 
_½' 0 '(A+AA) = X(A) +(l>.A)i(A) ( 1. 23) 

This estimate for X( A + AA) is accurate to order (.AA) **2. We show later 

how to calculate d~ /·d>.. . Thus, between A :0 and X =1, we can consider 

a sequence of problems at A ={'1.v},('V=1,2, ••• ,J) .AA,-=(Aa.1t1-.A.,,,), and at 

each successive problem, we start the Newton iterations with the estimate: 

A,= o A:r = i 
( 1 • 24) 

We will call the step (1.24), from the solution at A =ft11 to the initial 

estimate at A = Am, an Euler step. The use of Newton's method to solve 

(1.22) at each ).. 11 in conjunction with (1.24) is called Euler- Newton 

continuation. 

In practice, to minimize the amount of computation, we use (1.23) with 

,\ =0, and .AA=1. In most of our numerical experiments, this value of X 

(A= 1) led to a convergent Newton's sequence. If however, Newton's method 
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does not converge quickly (say 7 iterations), we return to (1.24) with 

In general, we can increase the total 

number, J, of Euler steps to some Jmax, in order that the sequence (1.24) 

eventually lead to a convergent Newton's sequence at >.. =1. 

For the two dimensional problem (i.e., interfaces can vary in only two 

dimensions: z:f(x)) Keller,Perozzi [9],[15] used a different continuation 

method to generate the initial compressional ray. They used a continuation 

in the vector of velocities j(A ):(Vp,1(A ),Vp,2(A.), ••• ,VN+1(A ))"': At 

)\ =0, this vector is generated so that a simply chosen ray.! is an exact 

solution to the system [(! ,Y(O))=_Q. The velocity sequence j(O) is, in 

general, unphysical; some velocities may be negative and velocities 

corresponding to the same layer and type (P or S) may be multi-valued. For 

the three-dimensional problem, there are 2N unknown nodes, and so we could 

not arbitrarily choose a ray vector_!, and generate a N+1 component vector 

V, such that F(X,V)=O. Thus we used the idea of continuation in interfaces, - - - - -
as outlined above. The advantages of this method are that: 1) it is a 

continuation in a physical parameter; that is, for each·)\ the resulting 

raytracing problem is a physical problem and it is even of interest for 

some situations to know the path of solutions; 2) often problems arise in 

seismology where the interfaces are only slightly different from parallel 

planes, and hence the ray solution for >.. =0 is an excellent approximation; 

3) as we shall see in the numerical examples, this seems to be a robust 

method in conjunction with (1.17) and (1.18). That is, even for interfaces 

with appreciable slopes, 1',( A =0) is often a sufficiently good estimate for 



16 

1.2b Continuation in Velocities. 

Associated with a given sequence of N interfaces (i1,i2, ••• ,iN) there 

is a N+1 component velocity vector, containing the velocities of each of 

the N+ 1 ray segments. Each segment can have either a compressional 

velocity Vp or shear velocity Vs. Thus allowing for every possible 

sequence of shear and compressional velocities, there are 2~~, possible 

velocity vectors, associated with a sequence of N interfaces. We denote 
(llf-1 

the set of all such possible velocity vectors as {VK f . If we know the ray 
""'' 

solution, !i<, for the velocity sequence Y,c, then to find the ray solution 

!k~ for the sequence Yt<,t-l it is natural to consider the continuation 

problem: 

f"{Y.(A); YCA))= 0 

V (),.) : ( I - A ) VI< + A Y K+ I ; )( ( 0) = ½ K ( 1. 25) 

Equations (1.23) and (1.24) (Euler-Newton continuation equations) are also 

applicable to this continuation (1.25). Starting with the purely 

compressional ray, it is 
II-ti . 

easy to generate the rays for all 2 velocity 

sequences, in such a way that successive velocity sequences differ by only 

one component. 

1.2c Continuation in Receiver Position. 

Often, one wishes to calculate rays to many different receivers X 
-K,K 

Assuming we know the ray solution ,!.for the receiver 
C 

at X,, ! , - .. ,, 
then a natural continuation method, to generate the ray for the receiver at 
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J,:, i .,., is to consider the parameter dependant problem: 

= (1-A) XR ,: 
- I 

( 1. 26) 

Xto) = X; 

Once again equations (1.23) and (1.24) (Euler-Newton continuation) are used 

with ( 1 • 26) • 

1.3 Calculation of Variational Derivatives. 

We use the term, variational derivative, to refer to the derivative or 

variation of the ray solution_! with respect to some parameter or parameter 

vector, p , in the problem • We have already alluded above, to the . 
calculation of 1_(".), where )-.. is the continuation parameter for the 

deviation of the interfaces from parallel planes, or for the different 

velocity sequences, or receiver/source positions. It is the algebraic 

formulation of the problem, that makes possible the easy calculation of 

these quantities. We will present the general formula, for arbitrary 

parameter variation and then give the resulting formulae for some specific 

cases. 

Suppose we have some parameter vector ..E of dimension Mand we wish to 

calculate the 2NxM matrix d~ / J..p. We indicate the parameter dependance of 

the kinematic problem by writing (1.17) or (1.18) as: 

f ( X (p), .p) -- Q ( 1. 27) 
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Now this relation holds for all p, and we assume that the solution .X=X(_2) 

depends smoothly on R· Then 

or 

df 
cl.p 

dX 
di 

0 - ( 1. 28) 

( 1. 29) 

where J is the jacobian (1.19) of the non-linear system of equations 

(formed from the ray solution at the next to last Newton iteration). To 
-I 

find the ray solution 1£, ( see above) we use the already calculated J 
(numerically, we know its L-U decomposition). Thus calculation (1.29) is 

"cheap" numerically. If pis a scalar, A, then clearly (1.29) yields: 

dl 
dA 

( 1. 30) 

We note that if we use different formulations for the problem as outlined 

in 1.2, then the definitions of .f,J, and 'df; ';))\ are different for each 

formulation. However, the result dJ;d>+. from (1.29) must be identical 

(assuming we are at the same .X.) for all cases. We used this idea to check 

our algebra for (1.17) and (1.18). 

We now give two particular examples. First, let us consider 

where .KR = ( k , >'R ) is the receiver position. 

From (1.29) we must calculate ,}f I'd&_ .. We will use the formulation (1.18). 

The quantities XR , 'Jll.. only enter into the vector components F2N-J., and 

F4t.1. The derivatives ~F2N-I/;>~ , ~F:N-l;ayR.·• d?ll.!JXR, and ;JFiw; JYt are 
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respectively: 

VN (y11.-'}N)((x,. -Xw)-Zw ~) 

dN+I 

dNfl 

Now, we can write 

0 

dx _ J-' 
d~~ !>11 

ba.1 

(1.31a) 

(1.31b) 

( 1. 31 c) 

(1.31d) 

0 

( 1 • 32) 

biz. ~2N-I 

-:t>u. ZN 
.. 

We now outline the calculation of the derivative X()\), where )I. is the 

continuation parameter in (1.21). We rewrite (1.17) as: 

( 1. 33a) 



20 

( 1. 33b) 

Now the analytic calculation of ;Jf I JA is straightforward (although 

messy); similarly for Fas in (1.18). From (1.30) we can now find~ {A). 

For the case of velocity continuation. we have 

( 1.34) 

where here ]K is the sequence for which we have the ray solution, and we 

wish the ray solution for Y.,,· Now from ( 1. 17) we have 

-... 
= 

0 

0 

( /J. YKtt + !J il<tl ';){,~ ) j = k 
~!lk 

( ti </1<. + A. 2K :Jf,i ) j1-1 = k. 
;)y" 

otherw/se. 

Thus, the matrix :>f / ';))!_ is a 2Nx(N+1) matrix of the form 

( 1. 35) 



:)f =- 2N 
;;y 

21 

< •N+l----> 
)(XO,·, 
000 
0 XX · · · 
0000 
oox>(O•· 

2N 

«1\/,J( AY.,.+U... 1)- A._,C,ittJit~ 
dw+1 dw 

... 0 

For our other formulation (1.18) we obtain 

- ~ -
A \1 (.AY.z. +A~ ,!J ) - /l Vz. (~y, t /:/2, {)/,) 

I -''/J 
dz d, 

6½ ( AXz. +.d~.z 'df1 )- ll Vz..(AX, +t\-21 ~ ) 
,,?X, . ;>)v 

clz. d1 :lN 
-• . 

11 Vw ( ~ Ym, +ti.~IIH :;,)-AVAW (.1.~+u,., i: 
J,.,,, d,1 

fl VN (tJX,;,.1 f' A 2Nt-J %:J-AVNt, (dX,.,+Aiti ~) 

dNft 
c/11 

.._ -

( 1. 36) 

( 1. 37) 

( 1. 38) 
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From (1.30) we can now calculate the variational derivative of the ray 

solution with respect to the velocity sequence. Thus in general, with an 

algebraic formulation of the problem, it is easy to calculate the variation 

of the ray solution with respect to medium paramaters. 

1.4 Existence and Uniqueness of Ray Solutions; Path Following. 

Thus far in the theory, we have discussed finding a particular ray 

solution. However, it is possible that for a given source/receiver 

positioning there is no ray solution. For this situation, of course, our 

methods will fail to converge. Alternatively, many solutions may exist for 

this non-linear problem. We now examine the path of solutions which can 

exist for the path of continuation as defined in (1.21). In figures 

1.2a-1.2c, we show three possible path situations. The vertical axis 

coordinate is some distinguishing characteristic of the solution, such as 

its norm, one of the ray components, etc. Figure 1.2a shows an example of 

non-existence of a ra~ solution at A. =1. The parameter value A = Ao is 

called a "limit point." At this point, the Jacobian df /· dJ is singular. 

However, from Keller [10], one can still follow the path of solutions, by 

making the continuation parameter the arclength along the path. Figure 

1. 2b is a bifurcation diagram where (Ao , X,= o ) is the bifurcation point. 

A simple example of where this arises in ray theory is shown below in 

figure 1. 3. 



23 

2 ___________ ...,.. ___________ ~)( 

2= AX.z-10 

Figure 1. 3 A Physical Example of Ray Bifurcation. 

We consider the zero-offset ray (ie !s=!, for Js=0).The vertical ray is the 

only solution until the curvature of the interface at the node (0,-10) 

exceeds the radii of curvature of the wavefront, or)\_) 1/20. Then, there 

are three ray solutions (x=0,z=-10) and (X=~/2oA-J. ,-10+ )\>(2..). J- 2,V· 

Finally, in figure 1.2c, we show a situation with multiple solutions, but 

not with bifurcation points. 

We now give a two dimensional example. If we start with the planar ray 

solution, figure 1.4a, use an Euler step with AA=1, then for )\ :1 the 

resulting ray solution is shown in figure 1.4b.However, if we follow the 

path from )\..=0 more closely with steps of AA=1/32 we find that the 

"continuous" path changes rapidly and in fact does not lead to the solution 

of figure 3b. The first path steps with ~ =1/32, ~.=1/16, and)\ =3132 are 

shown in figures 1.5a-1.5c. Thus our continuation method with ~A :1 leads 

us to an initial estimate for which Newton's method converges to a ray 

solution on a different path of solutions. As will be seen in the 

numerical examples, our method will often converge· to a ray solution with 

tJA =1. However, from above (where multiple solutions exist) this solution 

may not lie on the path leading from the planar solution to A =1. 
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0 

Figure 1.2a Limit Point Behaviour 

X. 

0 
i 

Figure 1.2b Bifurcation 

llxli 

0 
1 

Figure 1.2c Unconnected Solution Paths 
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/X=,2 

I 
I 
I 

Figure 1.4a Planar Ray Solution 
(Note: x,z coordinates have 

unequal scalings) 

V=8 
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3 X / - X / - ID r= /so /lo 
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2. 
2=X +X-2o 

if e 

Figure 1.4b Ray Solution A= l; ~A= 1 
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X.=2. 

\ 

1 1 
Figure 1.Sa Ray Solution A= 32 ; bA = 32 
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x=o X=i X=Z 

Figure I.Sb 1 1 Ray Solution A= !6; ~A= 
32 
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Figure 1.5c. Ray Solution 11 = 
3
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Section 2. The Calculation of Amplitude. 

In the previous section we dealt with the kinematic determination of 

the seismic ray. From this, we can calculate the travel time along a ray. 

In this section, we shall discuss the determination of the first order 

amplitude coefficent Uo. In general, !J,o is complex and we can write 

( 2. 1) 

where!'.!.. is the unit vector in the direction of the particle displacement, 

and E.. is the phase. If the seismic source has a time history 

f 
Q> ,w-t-

Fe t) = S{w) e dw , then according to seismic ray theory, the contribution 
-a, 

to the seismic signal at receiver 1-R• H(J~,t), from the particular ray with 

travel time IT(~i), is given by (see Cerveny and Ravindra [3]): 

w ( ½R.t) = n I u ( l!• ij (cos e Re 1 ~ .-..,fft_::;/15
• 

11
c1w ( 2. 2) 

TT o . -r loo ,;,,,{f-rr(~R.>>) 
. - Stne J.fn e Stw)dw 

I [OOu.;tf-tr(J1<>) ,rl ft:IO/e,>(t-tr{K )) 
The terms -wTm e Slw)dw and ,iRe1(>e S{c.,)dwR are a Hilbert 

Transform pair. From (2. 2) we see that the phase "£.." has an important 

effect on the pulse shape. 

We will break the calculation of Uo into three factors: 1) the 

calculation of transmission/reflection coefficents at each interface; 2) 

the calculation of the geometrical spreading factor for the ray tube; 3) 

the location of internal caustics. The formulae, which we use, are not new 

and have been derived by various authors. We have gathered together these 

various formulae required for numerical computation, for the sake of 
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completeness. 

2.1 Calculation of Transmission/Reflection Coefficents at an Interface. 

We consider an interface z=f,~(x,y)+c,~, separating two layers, A and 

B, with different elastic constants AA , µA , f A ( c11/v.+'lp~ 
..PA 

l and As , /Us, fs ( c 3 /As •2JJ• , c4 = J fa'!/: 
_,P5 /,,08 

) . At the 

xi< ,y" ,z1:;, there is an incident compressional or shear displacement. At 

this point on the interface, the following boundary conditions must hold: 

1) continuity of particle displacement across the interface; 2)continuity 

of tractional forces across the interface. For these conditions to hold in 

general, requires that there be a transmitted compressional displacement 

] 3 , a transmitted shear displacement ]t, a reflected compressional 

displacement ], , and a reflected shear displacement .Rz as well as the 

incident displacement vector at the node. We now follow the paper of 

H.B. Keller [ 11]. 

Consider, at each interface, the following coordinate system. ~, is 

the unit normal at the k'th interface , and the orientation is chosen so 

that J,•(1,c--b<-,) >O. fz is the unit tangent vector. It is in the plane of 

incidence determined by (51< - i ~...,) and 2' , and 

Its orientation is chosen so that ?z., ( "l.K - X k-l ) 

is orthogonal to 

>O. 2.3 is 

defined as For the reflected and transmitted 

compressional displacements, f.1 and ,E3 , the displacement vector lies 

along the direction of their ray, and hence entirely in the plane of 

incidence and we can write: 
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(2.3a) 

(2.3b) 

The shear displacements, E~ and .8f, lie orthogonal to their rays and 

have a component in the plane of incidence (amplitude ol2. and 

df respectively), the SV component, and in general a component normal to 

the plane of incidence, the SH component (~.a.and t34 ), and we can write for 

these displacements: 

fz. = da. st'n e-a..3, - «2. cos-0-.&~ ... + fa. z~ 
Rt/ = o/4 s,'n ti!J,j ~ -ol'I eos e,J°ja. +- f 4 ~3 

I I I 

(2.3d) 

(the small arrows indicate particle displacement direction) 

Figure 1.6 Coordinate System Used at Each Interface 

The incident wave is of the form 
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(p) (2. 4a) 

or 

(S) (2. 4b) 

From Snell's law, we can calculate all the necessary trigonometrical 

quantities; we get: 

cos 0J == OJ Jt-sin z.€7:J. or (2.5) 

tJJ = ~t j=1or2j 

We note that for some of these "splitting" angles we may have to use 

complex trigonometrical quantities. At an interface, the boundary 

conditions decouple into separate boundary conditions for the P-SV 

coef:ficents ( o(.1 , ,:;,(z.. ·, ot.3 ,ol.;. ) and the SH coefficents ( fz. •f'I ) • If the 

incident ray is shear, then the SH amplitude coefficents (i.e.,f~ or /1) 
are given by: 

_ 13
0 

/_11.s cose-4- -J!_i, CoS9z.) 
/ le.If Cz. 1/ 

(2.6) 

where: 
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~ e fls c.os e4 - PA eos 0. 
C!q t!.z. 

For the P-SV coefficents, Snell's law and the boundary conditions at the 

interface yield the following 4 by 4 system: 

-C,o&9a. ... sln~ 

o(,J 

Here for: 

a) incident compressional displacement 

/(z = - s/n e, Ki =j°A C!1 t!cs 2~ 

k4 = -& sln201 ' o, 
b) incident shear wave 

k,:: - Sine~ ka. .= - (!oS-S-L k,1 • 7°A Cz, -:.s,n2~ 

For a free surface, the system reduces to: 

a) incident compression wave 

(2.7) 

(2.8a) 

(2.8b) 

(2.9a) 
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d~ = ol..o ( 2 c., C2; c.os 20,_ St
0

n 2eo) 
(c,3-coll.2f7:L - c:sin28z.,Stn29-o) 

b) incident shear wave 

- - ol.o ( 2 c, cl- cos 2e-o sin 2 e-0) 
( e/·eos z 26-o + e:z.;.. st i1Z0J St 'n2Bo) 

o(,, (-c/·eosz.26o 1-cfst'r120-/Stn29o) 
{ C!,Z·cos2 2-90 + Cz.2-s,·n 2~, si'n2Gt>) 

./32- j8o 

(2.9b) 

Thus we have the formula for the transmission and reflection coefficents at 

an interface in terms of the local coordinate system defined above. Unlike 

the two dimensional case, where the plane of incidence is constant for all 

interfaces, the plane of incidence, and hence the definition of the SV and 

SH components, changes at each interface for the three dimensional problem. 

Also, due to the local nature of our coordinate system, the definition of 

positive shear displacement direction can be reversed from one interface to 

the next. Thus, for the case of a transmitted or reflected shear wave, we 

have to recompute olo and f,o for the coefficent calculations at the next 

interface. For a compressional ray this is not a consideration as the 

displacement is in the direction of the ray segment and hence is in the new 

plane of incidence. To calculate the new quantities o<o , /o for a shear 

wave, we simply multi ply E.2- or R 4 by the matrix which relates the two 

coordinate systems, and find the new values. 

2.2 Calculation of Geometrical Spreading Factor. 

conserves energy in an The Geometrical Optics approximation 

infinitesimal ray tube about any ray. Thus, the amplitude of the 
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disturbance at a point Xis (in Geometrical Optics) inversely proportional 

to the square root of the cross-sectional area of the tube at ,X. If r1 and...-, 

are the principal radii of curvature of the wavefront at X , the area of 

the ray tube dtr is proportional to 1, Y-7/ . If a sequence of interfaces 

is encountered we have a situation like that shown below in figure 1.7. 

, .. 

\ 
r:, 1 {Z.) 1,//l) \ l , .,, \ 

\ 

Figure 1. 7 Ray Tube at Inter faces. 

/. lo) lo) f1. 
At interface 1 the amplitude is proportional to tr1 Y'I lr,/''r,t); 
thus at the second interface the amplitude 

f.
r.; to>y-. fol 'c,) / u)D 1/i, . I i r:: , or in general 
~t•> r71'-' r, u.> r-{'-> 

spreading factor at JR• R(J5 ,J,.) is given 

I 
r.. (Flll/J.J r. lFJIIN.-} 

f 1 

is proportional to 

we have that the 

by: 

geometrical 

(2. 10) 

Thus to calculate this factor we must know the radii of curvature of the 

wavefront prior to reflection/transmission and be able to calculate the 

curvatures after. The formulae for this are given by several authors; we 
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follow the work of Stavroudis[ 17]. 

Three local coordinate systems are defined for the incident wave, the 

interface, and the transmitted/reflected wave. For the incident wave we 

define .LJ , P , and ~ ; for the interface we use the coordinates N , _[> , 

and g,· , and for the emergent wave we use _[z , ..f , and _Ql . The vectors 

[, and Ji are the normalized incident and emergent rays. The vector N 

is the unit normal to the interface, chosen such that !1 • N ~o. We use 

the definitions: 

Q, = F, xP, 
02. = _f2 X .P 

Q ·=NxP - L - _, 

(2.11) 

The incident and emergent layer velocities are denoted by V2 and V1. These 

coordinates are shown below in figure 1. 8 .. 

Figure 1. 8 Local Coordinate Systems. 

We now suppose that the two principal radii of curvature of the incident 

wavefront (the infinitesimal patch of the wavefront along the ray),',, 

r"?, and one of the principal direction vectors Yt are known. The cosine 
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of the angle between Vy and ..f is found from cose = Yt • _f If 

we denote the radii of curvature of the wavefront in the _E and _Q_ 

directions by rp 

dif~erential geometry: 

and I) we have from Euler's thereom in 

~ . 2 
...L cos e -t ,S,.l Q e7 (2.12a) 
rp r! r, 

# z ~osz.e _j_ SlQ 0 + (2.12b) 
fl? - r, 11-r; 

Denoting the torsion of the geodesic in the _g_ direction as 1/o- we can 

write: 

I I ( )t _ L} si·n 20 (2. 13) 
g- - z r"J 

Adding (2.12a) and (2. 12b) we obtain: 

I + ....L I 
-1- I 

(2.14) r, ry - r, f71 

Sub tr acting 

I I cos 2e- cosze - - (2.15) r, rl - r, {''7 

From (2. 14) and (2.15) we obtain that: 

tan 2e 
I 

- .2.. _L I (2.16) 
rr rf ft 



39 

By taking directional derivatives of Snell's vector law in the .f and ..Q. 

directions, we get: 

where: 

I - _!J_ + I., 
fj/ rp Rp 

~OS 6i - n eos~ r .l.. 
frl r r-
~ 

'1W~ -6 ~OS 0-' - + 

?' "i R.7 

b= cos~~ - n cos 9 1 

n=V2/V1 

r; ,r1 are the radii of curvature in the !,9~directions 
!'or the transmitted/reflected wavefront. 

I 
tr is the corresponding torsion 

Rp,Rq,i- are the interface quantities. 

(2. 17a) 

(2.17b) 

(2. 17c) 

In our notation, curvatures will be positive if the deviation of the 

surface from its tangent plane is in the direction of the defined normal 

vector. Here our normal vectors are _r, , f! , and !'a . A positive 

wavefront curvature corresponds to a converging wave. To begin the 

calculation of the spreading function we know that at the first interface 

(2.18) 

where "d" is the distance from the source to the first interface. We can 
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take Y, =f and hence -9 =0 and 1/.,.. =0. From equations (2.17) we now 

I 
calculate ;;; , ..L 

't;'' 
I 

and-;:, 
/ 

An angle e between a principal direction and 

can be calculated from (2.16). We now calculate the new principal 

direction vector, y,'' , and the principal curvatures .11' and / 1 • 
'1 ,., 

1, I:= _f (! OS -e,' + Qz. . e/ s,n (2.19a) 

_L <!os2
1;;" . ae,I I 

= .,. s,n f- st'n 26 (2.19b) 
r; , 

' rp' r, I tr' 

I (!()S~' • z'9, . , - .,. Stn - su,2e 
r,,, ,,, r: , tr" p 

(2. 19c) 

To transfer to the next interface we have the relation for the 

principal curvatures 

I - --,-:''----­r, '-d 
I I (2.20) 

where "d" here is tJ:}e distance travelled from the one interface to the 

next. The new angle ,B- is calculated from 
lff!t,f 

-- • V -, 
,I 

(2.21) 

and then we determine ,..; , r; , and /r. from (2 .12) and (2.13) and continue. 

At each ray node, we must calculate the principal curvatures of the 

interface and the angle between Panda principal direction. We make the 

following definitions: 
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E ('r)f )2 - 1 + :JX (2.22a) 

F - (;f){~) (2.22b) 

('Jf )2 - 1 + JJ 
(2.22c) 

')t 
L - ax1//t +a;y+(;~y' (2.22d) 

'J2f 

M = Jx1/'1 f (J: J2+{ff$J" (2.22e) 

N "J¥ - ~~+I: l + (j~t (2. 22f) 

Here, we are taking the interface to be of the form z=f(x,y). The 

principal curvatures and the associated principal directions can be found 

from the eigenvalues and eigenvectors of the system (see Stoker[18]): 

Q (2.23) 

where: 

A 
L M 

-
M N 

(2.24a) 

B 
£ F 

- (2.24b) - F (j 
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The eigenvalues k give the principal curvatures and the principal 

directions are determined from the corresponding eigenvectors. Using the 

notation_!=(x,y),the principal direction is given by 

} 

'JI-) xt1, o, dX + 

Jx~ -,- (2.25) 

Using the above described methods we can calculate the exact geometric 

spreading function for a ray as given by (2.10). 

2.3 Calculation of the Location of Caustics. 

In section 2.1, we pointed out that in general, we have a complex 

valued system to solve at each interface, which leads to complex 

reflection/ transmission coefficents and a phase shift of the seismic 

signal. The other source of phase shifts along the ray is when the ray 

tube passes through a point where the ray tube has zero cross-sectional 

area. Equivalently, this point is where one of the 2 principal radii of 

curvature of the wavefront is zero. We call such points caustics. Near 

these points, l~o f becomes infinite and the ray theory is not valid. 

However, along the ray, away from such a point, we can "patch up" the 

theory by introducing a phase shift of TT /2 sgnl.cJ to the signal. The 

location of these caustics is very easy to find in our formulation. As 

outlined in the previous section, at each interface we calculate the 

wavefront curvatures r, and r, . If t; or f-, is positive ( say ff ) then 

the wavefront is converging along the principal direction. At the next 

interface (or at the receiver) the radius will be'; -d. Hence if'; -dis 
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negative then the ray tube has passed through a caustic in this layer. The 

location of this caustic point is given by 

X co.us.J.,'c. (2.26) 

Here "d" is the distance l l X1eH - 'XI< l l and )(kH, X1c are the "k+1" and "k" 
- - 2. - -

ray node points. It is possible for there to be two different caustics 

within a layer corresponding to both radii vanishing at different points 

within the layer. If a principal radius of curvature is negative at the 

k'th node, then a caustic along the next ray segment, corresponding to this 

principal direction, is not possible. 

2.4 Modifications For Receiver at Free Surface 

If a receiver is situated right on a free surface, then the observed 

seismic response is the sum of the incident ray and the reflected and 

converted displacements at the surface. Formulae (conversion vectors) 

relating the incident displacement and the observed free surface response 

are given in Cerveny et al. [3]. Unless otherwise stated, we will, in our 

numerical examples, be calculating only the incident amplitudes. 
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Section 3. Numerical Implementation and Examples 

3. 1 Numerical Implementation 

Here we outline some of the characteristics of the ray-tracing codes 

developed. The codes were all written in Fortran-IV and implemented on a 

VAX 11/780. The user inputs analytic expressions for the interfaces 

encountered by the ray into a subroutine. The analytic expressions 

dtr I dX dfl( I 'Jy , .i{t I 'J.Xz. , d~ z.. ~ 
for l;)y , and I ~XJJ are also user 

supplied for each interface. The mean levels fc"I of the interfaces, the 

sequence of the interfaces encountered, the layers' shear and compressional 

velocities, source and receiver positions and other required information 

are input at the terminal at the beginning of execution of the program. 

Using the values [c1r.J, the parallel plane problem is quickly solved 

for the purely compressional ray. The details of this problem are outlined 

in Appendix A. At this step we form the Jacobian matrix J, for the system 

formulation used, with (\ = 0 , ~ =0, ?f1r: =0 etc. 
;ix ,,,y We then find the L-U 

decomposition of J and = calculate dis / dA . The Jacobian for all 

formulations (see figure 1.9) for N>1, has 7 bands, and thus we use a 

banded system solver. For many of the other continuation steps used in the 

programs, the L-U decomposition of J already exists, from previous Newton 

iterations, and hence can be reused. The quantity 

X 101 
- X (o) r (3.1) 
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2N > 

Figure 1.9 Banded Structure of Jacobian 
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with AA. =1 is now formed. The continuation parameter A is set equal to 

1, the Jacobian matrix and the residual vector of (1.17) or (1.18) is 

formed, and the Newton iterations begin. If the number of iterations 

exceeds 7 without the L,_ norm of the residual vector being less than .0001, 

we return to the previous value of )\ , and recalculate (3.1) with I},).. = 

/J.'A/2 We will now have to take two of these continuation steps. This 

process is continued tmtil either we reach a AA that is smaller than an 

user input minimum or we solve our problem to within a residual less than 

.0001 • 

Once we have found the purely compressional ray, there is the option 

to generate the rays for the various P-S velocity permutations. Velocity 

continuation is used between the successive velocity vectors to generate 

these rays. The algorithm used sequentially arranges 2 ~ velocity vectors, 

O< k< N, corresponding to the first k+1 layers, so that each differs from 

the previous one by only one component. As an example for k=N=3 we 

calculate for [P,P,P,P], [P,S,P,P], [P,S,S,P], [P,P,S,P], [P,P,S,S], 

[P,S,S,S], [P,S,P,S], and [P,P,P,S] (we use the notation that "P" denotes a 

compressional ray segment and "S" a shear segment). Here we have assumed 

that we wish the first ray segment always to be compressional in the 

calculations. The parameter k is input at the terminal at the beginning of 

the execution of the program. One can also return to the saved purely 

compressional ray solution and use continuation in receiver position to 

generate a seismic gather. For each ray, using the formulae of section 2, 

we can quickly calculate the ray's amplitude and phase. 

We checked the amplitude/phase calculations by rtmning some simple 

examples where analytic answers are known. For example, for a stack of 
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parallel plane layers, an analytic expression for the geometrical spreading 

function is known (see Ceverny,Ravindra[4]). We also checked to make sure 

that the 2 different formulations of the kinematic problem ( ( 1. 17) and 

( 1. 18) ) gave the same variational derivatives and solutions for the same 

problems. The program will, if desired, print out the ratios of the 

cartesian components of Vd:1 
(~k - ¥1e-,hc N k for 

k:1 to N. These 3 ratios should all numerically be equal to one, if in 

fact a physical ray has been found. 

3. 2 Numerical Examples. 

Example 1. 

In example 1, we shall show the various stages of calculations of a 

purely compressional ray [Vp,1;Vp,2;Vp,2;Vp,1] 

[Vp,1;Vs,2;Vp,2;Vp,1] for the following interfaces: 

z1: X**3/10 + Y**3/20 -X/5 + Y/4 -5 

z2: -X**2/20 - Y**2/10 - 10 

and the ray 

(3.2) 

The velocities for this model are: Vp,1:6, Vs,1=3, Vp,2=8, Vs,2=4. Here, 

we take the sequence of interfaces to be as shown below in figure 1.10. 



48 

Figure 1. 10 Schematic Cross Section for Ray 

We calculate the rays from the source (x=0,y:0,z:0) to receiver 

(x:::1,y:1,z:0). The calculations, shown below, used formulation (1.18). 

The initial planar estimate shown below in Table 1a, for the purely 

compressional ray, required 1 bisection and 2 scalar Newton iterations (see 

Appendix A). 

Table 1a. Planar Solution 

node "x" "Y" 

0 0.000000 0.000000 
1 0.214111 0.214111 
2 0.500000 0.500000 
3 0.785889 0.785889 
4 1.000000 1. 000000 
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!Table 1b. Initial 
I 
I 

lnodel "XII 

0 0.000000 
1 -0.163438 
2 -0.067111 
3 0.539834 
4 1.000000 

ray "-''·' estimate: .b = 

Ray Estimate 

"Y" 

0.000000 
0.182553 

-0.001901 
0.824263 
1.000000 

is shown above in Table 

1b. With this initial estimate we have a residual, 11 F(X) 11:,. = 1. 80. The 

two successive Newton iterations had residuals: 1. 1.255E-2 2. 6.557E-6. 

The resulting ray solution is shown below in Table 1c. 

Table 1c. Ray Solution velocities 6,8,8,6 

node II X 11 "Y" "deviation from 
plane" 

0 0.000000 0.000000 0.000000 
1 -0.069961 0.326969 0.097448 
2 0.169430 0.329889 -0.012318 
3 0.594940 1.026166 0.212640 
4 1.000000 1.000000 0.000000 

Table 1d. Estimated Ray 6,4,8,6 

node I "x" "Y" 

0 0.000000 0.000000 
1 o. 201051 -0.037784 
2 0.209590 0.178123 
3 0.612635 0.947115 
4 1.000000 1.000000 I 

We now use the solution of Table 1.c to continue to the ray for the 
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velocity sequence [Vp,1;Vs,2;Vp,2;Vp,1]. Using a single Euler step, the 

estimated ray for this velocity sequence is shown above in Table 1d. With 

this estimate, we have an initial residual of .3633 and the residuals for 

the following two Newton iterations are: 1. 1.6537E-2 2. 3.0816E-5. The 

resulting ray solution is shown below in Table 1e. 

1 Table 1e. Ray Solution velocities 6,4,8,6 
I 
I 

node "x" "Y" "deviation from I 
plane" 

0 0.000000 0.000000 0.000000 
1 0.346168 -0.214290 -0. 119150 
2 0.298160 0.069099 -0.004922 
3 0.661044 0.891464 o. 154966 
4 1. 000000 1.000000 0.000000 

We also calculated the compressional ray to the receivers (x=1,y=1,z=O), 

(x:1.5,y:1.5,z=O), and (x=2,y=2,z:O). We show the calculations for the 

interfaces corresponding to A =0, A =-5 and A =1 in figures 1.11a-1.11c. 

We also used our other .formulation, ( 1. 17), to calculate the above Tables. 

There were, outside of small numerical effects, no differences between the 

results. At each stage, formulation (1.18) always required as few, or one 

less Newton iteration, than did formulation (1.17). 

Example 2. 

In this section, we illustrate the use of continuation in receiver 

location. Our interfaces are analytically: 
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Figure l.lla 
Rays for Example l A= 0 

(Note: different scales for x,y,z coordinates) 
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Figure 1.11 b 
Rays for Example 1 A=½ 
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Figure 1. llc 
Rays for Example 1 A= 1 
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z1: -x/20 +y/15 -5 

z2: sin(x/4) * sin(y/8) -10 (3. 3) 

The receivers are located at (~=1+.5i,Y~=2+i,z=0; i=1,4) and the source is 

located at (0,0,0). The interface sequence is shown below in figure 1.12. 

Figure 1. 12 Schematic Cross Section for Ray 

In Tables 2a-2d we show the calculated ray solutions and Tables 3a-3c show 

the estimates obtained from 

X OR,iH) = X (X.R,i) + jf (3.4) 

XR (A)= (!-A) XR,i -J- A XR,i'+I 
The ray solutions are plotted in figure 1.13b and the ray solutions for the 

parallel plane interfaces are shwon in figure 1. 13b. 



55 

Table 2a. Ray Solution velocities 3,5,5,5,5,3 

node "XII "Y" "deviation from 
plane" 

0 0.000000 0.000000 0.000000 
1 0.355616 0.399356 0.008843 
2 1.122941 0.843203 0.029148 
3 1.629240 .940733 -0.018746 
4 1.641815 1. 692839 0.083807 
5 1.175562 1.969386 0.072514 
6 1.000000 2.000000 0.000000 

lTable 3a. Predicted Ray Solution 
I 
I 

lnodel II X 11 "Y" 

0 0.000000 0.000000 
1 0.516316 0.601642 I 

2 1.559414 1.384762 
3 2.181631 1.689298 
4 2.311005 2.640265 
5 1.739174 2.948629 
6 1.500000 3.000000 

I Table 2b. Ray Solution velocities 3,5,5,5,5,3 
I 
I 

lnodel "XII "Y" "deviation from 
plane" 

0 0.000000 0.000000 0.000000 
1 0.502850 0.591524 0.014292 
2 1.525755 1.359347 0.062949 
3 2.140103 1.660176 0.003673 
4 2.261189 2.604634 0.171337 
5 1.720275 2.936187 0.109732 
6 1.500000 3.000000 0.000000 
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Table 3b. Predicted Ray Solution 

nodel 11 XII "Y" 

0 0.000000 0.000000 
1 0.637028 0.773567 
2 1.895959 1.850239 
3 2.611098 2.350272 
4 2.832910 3.480368 
5 2.248235 3.888600 
6 2.000000 4.000000 

lTable 2c. Ray Solution velocities 3,5,5,5,5,3 
I I 
I I 

!node "XII "Y" "deviation from' 
plane" 

0 0.000000 0.000000 0.000000 
1 0.625378 0.764804 0.019718 
2 1.866992 1.828899 0.101978 
3 2.575636 2.325787 0.026271 
4 2.790357 3.450616 0.268561 
5 2.232003 3.878166 0.146944 
6 2.000000 4.000000 0.000000 

I Table 3c. Predicted Ray Solution 
I 
I 

lnode "x" "y" 

0 0.000000 0.000000 
1 0.737077 0.929828 
2 2.181398 2.278574 
3 2.978514 2.968482 
4 3.280462 4.268752 
5 2.729237 4.809729 
6 2.500000 5.000000 
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!Table 2d. Ray Solution velocities 3,5,5,5,5,3 
I 
I 

:node: !IX II "Y" "deviation from 
plane" 

0 0.000000 0.000000 0.000000 
1 0.727788 0.922709 0.025125 
2 2.158582 2.261891 0.143351 
3 2.950965 2.949275 0.049070 
4 3.247656 4.245577 0.367254 
5 2.717052 4.800898 0.184207 
6 2.500000 5.000000 0.000000 

From these tables we can see that the estimated solutions for the next 

receiver location are very good,and we only require one or two Newton 

iterations to sufficiently refine this estimate. 

Example 3. 

In this example, we consider the interfaces: 

z 1: -5 

z2: -10 

z3: x**2/10.+ y**2/20.-20. 

(3.5) 

The sequence of interfaces encountered is shown in figure 1.14. Due to the 

parabolic nature of the reflecting interface, we expect that there might be 

multiple solutions to this ray tracing problem. For a source at the 

origin, and a receiver at (x=2.0,y=2.0,z=0), we find that using the two 
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Figure 1.13a 
Rays for Example 2 11. = o 
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Figure 1.13b 
Rays for Example 2 11. = 1 
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different formulations (1.17) and (1.18) for the problem lead to very 

different ray solutions. Formulation (1.18) converges with a step length 

of .4A =1 to find a compressional ray. Formulation (1.17) uses .1A:1/8. 

before the ray solution at A =1 can be found. The two different ray 

solutions are shown below in Tables 4a and 4b. 

ITable 4a. Ray Solution velocities 6,8,12,12,8,6 
I formulation (1.18) I 

lnode "x" "Y" "deviation from 
plane" 

I 0 0.000000 0.000000 0.000000 
1 -0.144600 -1.568824 0.000000 
2 -0.345304 -3-746355 0.000000 
3 -0.782553 -8.490256 3.665462 
4 0.833719 -2.396894 0.000000 
5 1.516813 0.178380 0.000000 
6 2.000000 2.000000 0.000000 

ITable 4b. Ray Solution velocities 6,8, 12, 12,8,6 
I formulation (1.17) I 
I I 

lnode 11 X 11 "Y" "deviation from: 
plane" 

0 0.000000 0.000000 0.000000 
1 -0.256438 2.042790 0.000000 
2 -0.623406 4.966071 0.000000 
3 -1.289890 10.275302 5.445473 
4 0.344558 6.164054 0.000000 
5 1.313466 3.726889 0.000000 
6 2.000000 2.000000 0.000000 

Neither of the ray solutions above correspond to the solution path that 

originates at /\ :0. To properly follow this path we force the two 

formulations to take very small steps in/\ (AA =1/1024 and 1/2048), and 

we are lead to the ray solution at A =1 shown in Table 4c. 
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ITable 4c. Ray Solution velocities 6,8,12,12,8,6 
I I 
I I 

lnode' "x" "Y" "deviation from I 
plane" 

0 0.000000 0.000000 0.000000 
1 2.566463 0.531342 0.000000 
2 6. 425517 1. 330293 0.000000 
3 9.296496 1. 924680 8.827704 
4 7. 573200 1. 942469 0.000000 
5 4.270069 1. 976567 0.000000 
6 2.000000 2.000000 0.000000 

We can find yet another ray solution to the problem by first calculating 

the solution for the receiver at (x=.5,y=.5,z=0) and then using 

continuation in receiver position to generate, in one continuation step 

(both formulations), the ray in Table 4d. 

Table 4d. Ray Solution velocities 6,8, 12, 12,8,6 

node "XII "Y" "deviation from 
plane" 

0 0.000000 0.000000 0.000000 
1 -0.074337 -0.282214 0.000000 
2 -0.173585 -0.659000 0.000000 
3 -0.467114 -1.773354 0.179059 
4 1. 095777 0.617026 0.000000 
5 1.614200 1.409934 0.000000 
6 2.000000 2.000000 0.000000 

I I 
I I -

For the ray of Table 4d, we show the calculated amplitude information. The 

densities and velocities used are shown in figure 1.14. We assume a point 

compressional source with unit energy per unit surface area, and the 
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Figure 1.14 Schematic Diagram of Geometry for Example 3. 
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calculated travel time and amplitude is as follows: 

travel time: 4.62 

displacement: ex: 1.68E-4 

ey: 2.57E-4 

ez: 2.18E-3 

caustics located at: x:.0025;y=-1.055;z=-16.87 

x=.742;y:.0763;z=-12.22 

We note that the two caustics are located along the reflected ray in the 

bottom layer. This is expected because of the focussing properties of a 

parabolic reflector. 

Example 4. 

In the following example, we will use velocity and receiver 

continuation to generate 32 rays at 2 receivers. We consider the following 

inter faces: 

z1: x/10 sin(y/4) -5 
z2: x/8 -y/16 -10 
z3: xy/40 -20 

with the ray sequence as shown below in figure 1.15. 

(3.6) 
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Figure 1. 15 Schematic Cross Section of Ray. 
Vp=IO Vs=S,77 

We take the source at (x=O,y:O,z:O) and calculate the 32 velocity 

permutation (we take the first ray segment as always compressional) rays 

for receivers at (x=1,y=1,z=O),and (x=2,Y=2,z:O). Amplitude of the L2 norm 

of the displacement vector (log base 10) is plotted as a function of travel 

time for these two stations in figures 1.15a-b. Using our continuation 

methods for velocity continuation and receiver continuation, both 

formulation (1.18) required on average two Newton iterations per ray to 

bring the residual below the designated 1E-5 level. Thus, the generation 

of large numbers of seismic rays can be made very efficient. 



(D 
jl 
~ 
• 

N 
I 

ID 
N 
tr) 
• 

:fl 
I 

..-f 

r-1 

(0 
I 

ID 
I 

(t) 
0) 
(D 
• 

I 

0... 
L 
([ 

(D 

10.923 

65 

I 

I 
I 

I 

I I 
I I 

I 

I 
I 

I I 

I I 
I I 

I 

I I 

I 

I I 

• TIME 
I 

1 Jij2 1.361 1.579 

Figure 1.16a Amplitude vs. Arrival Time--Station 1. 



66 

l~ 
I 

I 

N I I 

I 
I I 

I I I I 

(r) 

N • 
!(O I 

i . I I 
I 

!:1 . I 

I 
I 

I 

(L I 

I: I I I 
[ I 

N 
0) 
..-f 

I 

['- I 

I I 

I 

IN 
I 

I ,ID 
['-

I • TIME ID 
10.923 1.rn1 1.359 1.578 

){/0 

Figure 1.16b Station 2 
Amplitude vs. Travel time 



Chapter 2. 

Introduction 

67 

Non-Linear Least Squares Estimation of Elastic and Interface 

Parameters From Observed Ray Data 

In Chapter 1 we dealt with a forward problem in seismology. Given all 

the necessary elastic and geometric parameters of a model of a section of 

the earth, we showed how to calculate the ray theoretic seismograms for 

various source/ receiver configurations. In this chapter we use our 

ray-tracing methods as the nucleus of a non-linear least squares algorithm 

for the estimation of elastic and interface parameters from the observed 

seismic ray amplitudes and travel times. Sometimes, there may be some 

unknown but required information about some portion of the observed data. 

The example we shall consider is when the ray types of some observations 

are unknown. To correctly estimate the medium's parameters, it is 

sometimes necessary to include these observations and we show how to do 

this in such a way that we simultaneously identify the ray types of the 

observations and estimate the parameters. In general, the observed ray 

data will be corrupted with noise, and so we examine the stability 

properties of the inversion, and show how the Singular Value Decomposition 

of a matrix can be used to determine the subspace of parameter space, that 

can be resolved in a stable fashion. 

The starting point for all methods of "solution" of inverse problems 

is to relate the observations as a mathematical function of the unknown 

parameters: 
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(0. 1) 

'K represents the observations, o( the unknown parameters (or a quantity 

from which the parameters can be recovered), and;;( is an operator. In this 

chapter ~ will be a vector of observed travel times and/or amplitudes; ex 
will be the unknown layer velocities and/ or inter face parameters, and d( 
will be the non- linear operator relating'/( and o( For our examples, 

( 0. 1) will be an overdetermined system of non-linear equations. We will 

linearize (0. 1) and solve a sequence of linear least squares problems. At 
+ 

each iteration of the algorithm we find the pseudo-inverse Zi of the 

linearized operator Xn , and determine the parameter estimate 

d.:n = ;;t,11 .,..K"11 Under certain circumstances {Z} will converge as n-->a> 

to a o(~ which we take as a local minimum of IX - ;;( '1! 1/2., . This answer is 

usually non-unique as it is only a local estimate, and for each linear 

problem, we resolve J:,, only in the row space of the matrix £n ( the 

minimal length solution). 

The solution of each linear least-squares problem involves solving the 

forward ray tracing problem. That is, for each parameter estimation oln , 

we calculate all the rays that correspond to the observations. Thus the 

entire inversion procedure can involve finding many rays. Hence, the 

efficiency and accuracy of the ray tracing method used can be very 

important for this type of parameter estimation scheme. 
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Section 1 Non-linear Least Squares Inversion 

We will rely on an optimization method to, estimate the parameter .. 
values ~ of (0.1). In general, in optimization techniques we often wish 

to constrain the unknown 
.,. 

parameters, !!!f , to lie within physically 

acceptable bounds. If the constraints are in the form of inequalities, 

then the problem is in the realm of linear or non-linear programming. If 

the constraints are in the form of linear relationships between the unknown 

parameters, then using Lagrange multipliers, we can still cast our problem 

in the form of a linear or non-linear least squares problem. 

In this section, there are implicit constraints on the unknown 

parameters. For example, we require that velocities be positive, and also 

the compressional velocity for a layer should exceed the layer's shear 

velocity. However, we will ignore these constraints and we will find that 

our estimates satisfy the appropriate physical inequalities. 

Theory of Non-Linear Least Squares Estimation (1.1). 

In this section we review the portions of the theory of non-linear 

least squares estimation that are relevant to the understanding of our 

numerical methods. We consider a fli.mction ~{;?) wh:ich depends non-linearly 

upon the set of parameters /2 = ( f,,f:, i , • • > f N ) r . We suppose that 

<pf._f) is of the form 

= I ( 1. 1) 

2 

We wish to minimize ij with respect to the parameters -f Iffo is a 
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parameter vector such that y pc~0 )=0 and .f.o = j +- A_/? 

obtain the approximation: 

Thus a Newton type method would be to take: 

t1-f = (- f1 1 p (_p>)-' Vf (.p) 

We call V2
/ the Hessian. Some algebra shows that 

V
2f 

r ;;T :;-'J - F +- ==- == = dj,. 

where J is the Jacobian matrix J'J· = d~f.i 
= 

problem (i.e.• II f ( po >If,.~ 0 ) is small, we can make 

llf en) _ {JTJ);' J.T F(plnJ) 

( '1.f small), we 

( 1. 2) 

( 1. 3) 

(1.4) 

If the residual of the 

the approximation: 

( 1. 5) 

This is called the Gauss-Newton method and is applicable for small residual 

problems. The method is used iteratively, converging (hopefully) to a 

point of zero gradient. We write: 

( 1. 6) 

where 4.f ( ,, ) i s given by ( 1 • 5 ) • 

For a small residual problem we could also consider a sequence of 

linear problems. At parameter value f we seek ~ so that: 
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(1. 7) 

or the problem at each iteration is to find 4./? from the minimization: 

(1.8) 

This sequence of linear problems is equivalent to (1.5), 

nonsingular. 

r. 
(1.6) for :TJ 

= = 

Solution of the Linear Problem (1.1a). 

As mentioned above, we will often be solving a sequence of linear 

least squares problems, so we outline here the important aspects of the 

linear problem. In standard notation, the problem we wish to solve is: 

! is a mxn matrix (m > n) 
.!. is a vector of length n 
12. is a vector of length m 

( 1. 9) 

It is well known that A possesses the following decomposition (the singular 

value decomposition) (Wiggins [20]): 

A Il A VT 
m x II mxk k.xk 1<.x n 

The matrix u contains k eigenvectors ~ 

(1.10) 

r 
of ,6 A . These 

eigenvectors are of length "m" and hence are associated with the 
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observation space (,1>). is a diagonal matrix containing k (k< n) 

non-zero eigenvalues. The matrix V contains k eigenvectors (of length n 
""' 

) 

' of A A . These eigenvectors, because of their length, are associated with 
= = 

the parameter space OD • 

relations: 

These matrices (Wiggins [20]) satisfy the 

AV=UA 
=-= - = 

ATAV=VA2. = = - -c===. 

AATU-UK -- -

(1.11) 

It is also common (Strang [19]) to write: 

A UE j~E ~ ( 1. 12) 

= 
{Plxm) (mxn) (men) 

where !le contains m orthogonal eigenvectors of MT (the first k columns 

correspond to the k non-zero singular values) and ~E contains n orthogonal 

eigenvectors of ~T!· ~E now has the structure: 

rs,',_ 0 -r 
n sk I 

0 

(1.13) 

The minimization of 11~~ -Q I la, can now be written as: 

(1.14) 

TT r UE r }{E is unitary, and the transformation defined by preserves 

the euclidean norms of a vector. We can write (1.14) after multiplying 

through by UE. T as: 
= 



m,·,, 
X 

T 
Def'ining VE' )( = y we have . - -

"'lq II -;id - fle J? t. 
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(1.15) 

(1.16) 

Since ¾e has the structure shown in (1.13), we find that the value of 

y • ,j>k has no effect on (1.16), so it can be arbitrary. Taking these 
j 

components to be zero, we obtain, 

or 
-I T 

Cb) X = YefE Ve k 
or 

Cc) X 

_, 
A£= = 

< 
1/s, 

' ' 
' 

0 

m ., 
0 r 

n 

¼le 
lo 

l o. ' o, 
Ci 

If k:n then we find that the pseudo-inverse which we define as: 

+ 
A 

is also equal to -l T 

A+= ( t/.a) A 
The geometrical interpretation of the pseudo-inverse is simple. 

(1.17) 

(1.18a) 

( 1. 18b) 

The data 

vector .!?. is projected into the column space of A, to a vector~- Then, the -
solution xis found in the row space of A such that Ax =_p. Since we take - - -
all components of x in the null space of A to be zero, we have found the 

s= 

"minimum length" solution. 
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When the rank of ft: is equal ton, then (1.18b) is equivalent to the 

"Normal Equations": 

T 

A A X =- = (1.19) 

This system can frequently be ill-conditioned and it is often advisable to 

work directly with (1.9). This is because the singular values of AT A = = are 

the square of those of!_, and hence the condition number of (1.19) is the 

square of that for (1.9). As mentioned above, multiplying (1.9) through by 

unitary transformations, does not affect the problem •• Golub [6] showed 

that by multiplying (1.9) by a sequence of Householder matrices (f;'J. 0
, one 

= J"'' 
could triangularize A to the form: 

:::: 

R -

The new problem 

m,:n 
X 

0 

.. ,--n--~"> 

i 

r 
I ( 1. 20) 

( 1 • 21 ) 

is now trivially solved. If the matrix ! is very large and storage is a 

concern, A can be partitioned and a sequence of triangularizations used. 

This is discussed in Lawson and Hanson [12]. 

Finally, we note that it is sometimes of interest to calculate the 

singular value decomposition of a matrix. The estimate, z, is determined 
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from ( 1. 17c) This method is also numerically better conditioned than 

forming the normal equations (1.19), for the same reasons discussed above 

for the QR algorithm. Also, much valuable information can be obtained from 

this decomposition. We used the singular value decomposition package of 

IMSLIB (LSVDF) which uses the algorithm of Lawson and Hanson [12]. This 

algorithm in turn is based on the work of Golub and Reinsch [7]. As 

discussed above, we can associate null-vectors Vj (length n ) of the 

parameter space with the singular 
T 

values of AA. -- For eigenvectors vj 

associated with very small singular values, the variance of the parameter 
#>,,, 

estimate in the space G spanned by these vectors is large. In other words, 

a small change in the data can lead to very large changes in the parameter 
,., 

estimates in G. The extreme case is for a zero singular value, where the 

parameter estimate in the direction of the null-vector can be completely 

arbitrary. With a singular value decomposition we avoid the problem of a 

rank deficient matrix by working only in the row space of the matrix. 

However, even for very small non-zero singular values, it is often best to 

~ consider these values to be zero, and the associated space G to be a 

subspace of the null space. There are two main reasons to do this. For 

realisitic data with noise(or for synthetic data, numerical truncation and 
,., 

round off) the parameter estimates in the space G may be totally unreliable 

and wild. In our iterative method, wild parameter estimates can lead to 

situations where ray solutions fail to exist, and our method fails. 

Secondly, the numerical algorithm can only find the singular values of the 

matrix within some tolerance, so that very small singular values are 

somewhat inaccurate and even theoretically zero singular values may be very 

small non-zero numbers. As will be discussed later, our Jacobian matrix J 
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is a numerical approximation to the "true" Jacobian, as our ray solutions 

are found numerically (residual<.0001) and for amplitude inversions we 

approximate derivatives with finite differences. The singular values are 

found to within a tolerance of order I IAI 1:il, where I IAI la, is the maximum 

singular value and e is the machine precision (here, about .000005). In 

general, in our calculations the norm of the Jacobian matrix is 0(1) and we 

usually set the pseudo-rank tolerance at .0001 (i.e., singular values less 

than this are set to zero, and the dimension of the problem reduced). In 

most cases this choice seemed to work well. 

Modifications for the Non-linear Problem ( 1. 1b). 

As discussed above, the non-linear least squares problem can be solved 

by a Newton iteration scheme (1.3), if the initial parameter estimate is 

sufficiently close to the local minimum. For the case where the problem 

has a small residual at this minimum, we can further simplify the method to 

(1.5). However, when we do not start close to the minimum it is very 

likely that Newton's method will not converge. A method which has been 

devised to circumvent the problems of Newton's iterations is the 

Levenberg-Maquardt algorithm, which we used and we now describe. 

If we consider an iteration method, where at each step we take J-1? as 

a small step in the -vi (using the notation of 1.1 ) direction so that 

IIEC_p)ll;t decreases, we have the gradient method. This method will, in 

general, decrease the residual of the problem, but often the decrease will 

be slow. 

system: 

Combining the gradient and Gauss-Newton methods, we solve the 
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( 1. 22) 

or this is equivalent to the minimization of 

r 
Jn 

n -~>, /l p r 
F ( 1 • 23) 

T 
n 
i 0 

Equations (1.22) or (1.23) are solved at each step of the L-M iterative 

scheme. However, some selection criterion for A" is needed. As A"➔oo, 

II ~J f1 ~ 0 and A-f. rotates toward the negative gradient vector 

- Vp(p) Thus we are guaranteed that if we choose ,\'l large enough, 

we will decrease the residual of the system. However, the stepsize may be 

exceedingly small. The selection criterion for Ara is somewhat ad hoc, and 

we found in our numerical experiments that the best criterion changes from 

problem to problem. In most circumstances, for zero or small residual 

problems, it was found that if the Gauss-Newton method converged, it would 

converge much more rapidly than the L-M method with A,.:/:o . Thus the 

procedure we used was to start with An = 0. Then after the Newton step, if 

the residual of the problem had increased, we recalculated the first step 

with 

A, ~ 2 A, +- 1. (1.24) 

This doubling procedure was continued until a change in the parameters was 

found that decreased the residual. For the new parameter estimate we did 

one of two things: 
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(i) set A2. 
or ( 1. 25) 

(ii) set A.2 =0 

For the case where our initial estimate was close enough to the 

minimum so that only one or two gradient steps were required before the 

Newton method would converge with decreasing residuals, then (ii) was the 

best choice. When the initial guess was "far" from the local minimum, then 

for the first several iterations (i) was the better criterion. Starting 

with a value for A2. , we repeat the procedure (1.24). In general, if we 

use the procedure as outlined above, then at the n'th iteration we may have 

to solve ( 1 • 22) for a few ( and sometimes several) values of An before we 

obtain a decrease in the value of I f(p>t. However as we show now, most of 

the computing is for the solution of (1.22) with the first value of A~ 
Successive inversions of (1.22) for other values of An can be done 

Thus for A11 {:: 0 the pseudo-inverse becomes 

r z? .. A. T yJT- Yefb+A,,JJj;v"T ( 1. 27) 

This differs from the pseudo-inverse (1.18) only in the elements of the 

diagonal matrix Thus once we have computed the singular-value 
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decomposition of the Jacobian matrix at the n'th iteration, we simply 

[ ] 
(s/·.,. /....,) I 

replace the singular values S,· by / S,." , for the solution 

of (1.22). This is the method we use in our calculations. 

However, in many practical situations one might be using the 

Householder triangularization method of Golub (1.20). We can write the 

coefficent matrix of the minimization problem (1.23) in partitioned form: 

f 
- -I n .... , 

tn 

T t -F = - (1.28) 

rJ 

l A~ I 0 
- -

Then instead of calculating the QR decomposition of the full m + n by n 

matrix for each value of A" , we can first calculate: 

Q T R R 1f 
= - l M = = 

0 l 
( 1. 29) 

This decomposition is then used for all values of ,.\. .. , and we consider 

instead the problem with coefficent matrix: 

i 
-(JE t'\ 

f ( 1 • 30) 

t'\ An I 0 

J -

For m>>n and for several values of ,A~, formulation (1.30) can be very 

economical. This method is discussed in Osborne [14]. 
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economical. This method is discussed in Osborne [14]. 

Finally we mention that for large residual problems (i.e., 

lf(f)t_>) O , where i vf (_f)~t O ), we may have to use the true Hessian for 

the problem (1.2). This greatly changes the numerical approaches outlined 

above. A survey article on large residual methods can be found in Nazareth 

[13]. In the numerical examples presented below, we will rely on the 

Gauss-Newton/ Levenberg-Maquardt algorithm. Sufficient conditions for the 

convergence of the Levenberg-Maquardt algorithm and the pseudo-inverse 

Newton's method are given by Osborne [14] and Ben-Israel [1]. Perozzi [15] 

implemented a simple Gauss-Newton algorithm in a ray data inversion example 

for a two dimensional geometry. Many of the formulae that we give below 

for the least squares Jacobian's elements can also be found in Perozzi 

[ 15]. 
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Section 2 The Seismological Problem. 

Theory of Travel Time Inversion (2. 1). 

We consider the layered media of chapter 1, and use the ray notation 

of that part of the thesis. Thus we can write for the travel time of a 

disturbance between the source ts and receiver X,. 
N+I 

tr ( 'ts ,f.fl) = L 
J= .1 

1>/ 
V-J 

(2. 1) 

Here: tr denotes travel time, N is the number of interface intersections , 

Dj is the length of the j'th ray segment, and Vj is the velocity on the 

j'th ray segment. Equivalently, we have: 

(2.2) 

We suppose that one knows several travel times for known source-receiver 

configurations <Is, KR). Also, for the time being, we assume that the 

ray types. e.g •• (PSP •• , PPS ••• , etc.), are known. Here, we use the 

notation that "P" denotes a compressional ray segment, and 11 S11 a shear ray 

segment. Later, we will examine the problem of determining ray type. 

We denote the vector of known travel times as obs, and in the notation 

of (1.1), tr,· is defined as the calculated travel time for the i'th ray. 

We set: 

(2.3) 



The Jacobian 

T 
( P , ••• , Pq) , and thus : 

J,J - Jtrt· + 
dfi 

where X denotes the vector 

82 

where pis the vector of unknown parameters 

Jtr,: ;Jx (2.4) -;)X Jf/ 
of the coordinates of the ray's intersections 

with the interfaces. However, as seen in chapter 1, from Snell's law, 
dfr,• 

which the rays satisfy at each interface, ~X = O. Thus (2.4) is simply 

(2.5) 

For the specific examples which we examine, we will write down the formula 

(2.5) for these cases. If one wishes to calculate the true Hessian (1.4) 

for the problem, we must also calculate the term 

(2.6) 

Thus for this term we must calculate the variation of the ray solution with 

respect to the parameters. However, as shown in chapter 1, this can be 

done analytically using the Jacobian of the ray solution. Usually, 

however, we will need only (2.5). 

Inclusion of Amplitude Information (2.2). 

The ray-tracing method of chapter 1 also calculates the amplitude of 

the disturbance (assuming unit energy at unit distance from source). As 
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discussed in that chapter, the amplitude is a complicated function of the 

elastic parameters and the interface geometry. Hence we do not attempt to 

analytically calculate the Jacobian, but instead we use a finite difference 

approximation. We will use ampJ to denote the amplitude of the j' th ray. 

In our numerical examples we will take the amplitude to be the modulus of 

the euclidean norm of the displacement vector, but, in general, there are 

various definitions to use for the amplitude. 

derivatives as: 

( dmfl ( f t ~;")- dmpt· Cf)) 

Ll 

We will write the 

(2.7) 

r 
where e · 

J 
= (0,0,0, .•. ,4 ,0, ••• ,0) 

J 
Thus to approximate the derivatives, 

we do a series of n ray traces (n is the number of unknown parameters), to 

calculate the perturbed amplitudes. These ray traces are very fast, as the 

ray solution for parameters p, provides an extremely good initial guess for 

the problem for .E + ~j. We make a suitable choice for ll in terms of the 

order of magnitude of the parameters, and the number of significant figures 

on the computer. 

In general, if we have M rays, and an amplitude and a travel time for 

each ray, we can write our observation vector as: 

obs observed traveltimec. . i= 1, M = 
obs = observed amplitude,: i= l ,M (2.8) 

and 

F = A ( tr,· - obs.· ) i= l,M 
F = B (amp,·- obs/) i= l,M (2.9) 

Equation (2.9) allows us to weigh differently the travel time and 
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amplitude observations (A and B). 

General Numerical Implementation (2.3). 

For the numerical examples that follow, in order to examine our 

inversion schemes, we generated the "observations" using a known model and 

the ray-tracing techniques of chapter 1 (formulation 1.17).A random number 

generator was used to simulate noise in the data. The computer generated 

numbers in the interval [0,1]. Random noise was generated by the formula: 

noise; 

k = 1 
= 2 

o{ ,k 
ave,k 
ran,i 

noise,i 

= °'«J100 x ave, ic x 2 x (ran; -.5) 

refers to travel times 
refers to amplitudes 
is input percentage 
is average of observations 
is i 1 th random number L [0,1] 
is number we add to obs 

(2.10) 

Here, the random numbers are generated by the machine in the interval 

[0,1]. By subtracting off .5 and multiplying by 2, we change the interval 

to [-1,1]. Then algorithmically we proceed as shown below in Table 1. 

Table 1. Least-Squares and Ray Tracing Algorithm. 

i) input observations (perhaps with noise) from data file 
ii) input initial parameter guess 

input desired gradient smallness; eps 
tr= 0 

iii) do for t = 1, total number of rays (M) 
a) trace ray i' with current parameter estimates ,e 
b) calculate travel time 



85 

if using amplitudes - calculate amplitude 
c) calculate residual F/ , (and F,+H ) 
d) calculate row L. in least squares Jacobian 

analytically using (2.5) 
e) if amplitudes ipcluded then 

calculate row t +Min Jacobian 
using finite difference approx. 

iv) calculate norm of gradient 
iftgr~dientJI~< eps print out parameter estimates - stop 

v) calculate residual f' F 
vi) if residual has increased from previous iteration then 

b"'~ 20-+-/ ; t'·ft-y =2. 
else 

rr~ tr/2. fry- tr~ o ; thy::: L 
-,-_ 

vii) solve problem ( J J = tr 

T 
+ o I) p = - J F with singular value 
current value of tr decomposition with 

a) if itry = 2 use 
with orevious F . -

previous decomposition of Jacobian 
and new tr 

b) if itry = l; do new composition with new o 
viii) if singular values St fall below S11,1t set 5'<:.· 
ix) form new values of parameters 
x) go to iii) if less than maximum number of 

allowed iterations- else stop 

equal to zero 

The nucleus of this algorithm is the ray-tracing. If we include 

amplitudes in the problem, and if there are M rays and N parameters, then 

we must do (N + 1 )~ ray-traces ( for travel time inversion only M) per 

iteration. Thus it is important to make the ray-tracing efficient. As 

discussed in chapter 1, most of the computation involved in our method is 

for the calculation of the first ray in a series of rays. The other rays 

in the series can be calculated very quickly by using successive 

continuations. We calculated the rays in inversion examples using both ray 

tracing formulations discussed in chapter 1. These two different 

formulations made no difference to the inversion results. 

To illustrate how the ray-tracing can effectively be included in the 

inversion algorithm, we suppose that we have two arrays on the earth's 
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surface, with three receivers each. Further, we assume in this simple 

example that there is a primary reflector and we have recorded the 

information for the PP and PS rays at each receiver. Then schematically 

our ray-tracing algorithm could be as shown in figure 2.1. 

Thus for each array, the "most" work is often put in at the first 

iteration, for the first station's purely compressional ray Then 

continuation methods quickly generate all the other rays for the array. 

For our methods, a continuation method can mean using the previous solution 

as the initial guess for the new velocity sequence's or new receiver's ray 

solution(etc.), or we can use a one derivative Euler correction: 

- X to)+ dx 1,. A (2.11) - -
dA 

The method of calculating is discussed in chapter 1. From one 

iteration to the next in the non-linear least squares method (especially 

near the minimum) the parameter change is often small, so we use the saved 

rays from the previous iteration as initial ray estimates for the first 

compressional ray at the new parameter values. 

In general, one might have to use more than one continuation step in 

the above techniques, but in our computations one step was sufficient. We 

did not use the first derivative corrections for the various continuations 

for these problems, but these can be simply and cheaply included if 

desired. Finally, we mention that, in general, there exists more than one 

ray solution for a specific ray type. Thus we want the ray solutions 

calculated by the non-linear least squares program to lie on the same 

solution branch as the observed data. This could perhaps cause problems, 

but in our computations this problem did not often arise. 
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Figure 2.1 Schematic of Continuations That can be Used in Least-­

Squares Inversion. 



88 

Section 3. Inversion Examples. 

Inversion of Travel Times for Layer Velocity Estimates (3. 1). 

For the estimation of layer velocities, the analytic expression for 

the elements of the least-square's jacobian (2.5) is: 

Nt/ 

-L_ 
j=i 

(dJ~K =1 if v corresponds to the same layer and velocity type 
(P or S) as vi< ;clJ·,I{ =0 otherwise.) 

(3.1) 

For example, for the geometry shown in figure 2.2, with v =v2,s we have: 

cf,, 1c =O, J'i.,1< = 1, fh~K. =0, r:/.,,1c: =0, ds-,K = 1, and dl.J1' .:0. 

V.,p V,,s 

Figure 2.2 Model Geometry for Example 

As a first example, we consider the planar interface structure shown 

below in figure 2. 3. 
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Figure 2. 3 Model Geometry For First Inversion Example 

We have used 10 stations and the purely compressional ray at each, as shown 

above. This problem is numerically singular, with a minimum singular value 

of O(1E-6). Thus even when we start close to our known answer of 

(12, 14,16), we do not neccessarily converge to this estimate,as our method 

deletes one parameter direction from the problem at each step. Starting 

with an initial velocity estimate of (11.00,13.00,17.00) (residual .304, 

gradient .197), we converge in 3 iterations to (12.21,13.20, 16.13) 

(residual 8.23E-6,gradient 4.83E-6). It is not obvious why the Jacobian is 

nearly singular but, as we show, this is because the angles of incidence of 

the rays for this geometry (even for the receiver at x:10,y:10) are 

relatively small. The three columns of the Jacobian matrix are from (3.1): 

J;,·, I - -~ P,, ,.: - 2 P.1) c· -
v,2- ""a. vjZ 

Ji,z - -])2, i 1)5", L. - - 21)2, l.
0 

(3.2) 

Vi..L Vs-.&. Vz. z. 

Jc;.3 - D3,; .- 7J1J,,: - - 2 7)'1, l 0 -
¼a. V4-.z. VJ;z.. 



90 

Now for small offsets we have that 

(3.3) 

where CK is the thickness of the k'th layer and hJ<
1

i° is the horizontal 

distance travelled by the i 'th ray in the k'th layer (here hi(,,· .=a ~X'K,/). 

The ray solution satisfies the scalar Snell laws: 

V1 s/n ez. v;_ s,n .e-.L 

V1 s,n -&., - ¼ s,'n .e-1. 
(3.4) 

______ _.__~--k---'------,1.--------- 2 • -IS' 

k,s-,; 

--------.¥---------L--------- -2 = -30 

Figure 2.4 Notation Used For (3.4) 

For small 0, we make the approximation: 

(3.5) 
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Similarly, 

Using these approximations, we can write the columns (3.2) as: 

(3.6) 

For the case V1=11,V2=13, and V3=17 we find (a,b,c) such that 

= 0 (3.7) 

Normalized, we find that this triplet is (.245,-.957,.157). The calculated 

eigenvector ( associated with s=2.46E-6) from the singular value 

decomposition is: 

(.247,--957,.152) (3.8) 

Thus the near linear dependance of the columns arises mathematically 

from the fact that the small angle approximations are valid here. 

Physically this means that velocity perturbations in the direction (3.8) 

will effectively have no effect on the travel times. If we consider the 

model of figure 2.4 with the interface depths at z=-2,z=-4, and z=-6, we no 
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longer have a numerically singular matrix.( the angles of incidence are no 

longer small) With an initial velocity estimate of (14.00,18.00,22.00) 

(residual =.716, gradient= • 067) we arrive at the estimate 

(11.99,13.99,16.02) in three iterations. 

Returning to our original model, we now include a second ray in the 

inversion process ( figure 2. 5) This problem ( at least for estimates we 

considered) was non-singular, and for "sufficiently close" guesses (e.g., 

V= (13.00,16.00,18.00)) we converged rapidly to the zero 

V:(12.00,14.00, 16.00). However, when we start farther off we do not 

neccessarily converge to this zero. 

inversion are shown below in Table 2a. 

The results for this two ray 

Table 2a. Two Ray Family Inversion 
I 
I 

lit velocities residual gradient 
I I 
I I 
I 0 (20.0,11.0,6.0) 20. 16 119.27 I 

: 1 /2 (26.47,1.32,9.75) 34.80 
I 1* (20.07,11.11,9.3) 7.53 18.65 

2 ( 20. 2, 11. 34, 12. 09) 2.26 3.20 
3 ( 20. 19 , 1 1. 32 , 13 • 4) 0.84 • 495 
4 ( 19. 9, 10 • 87 , 13 • 89 ) 0.66 .104 
5 1(19.38,10.02,14.31) 0.51 • 085 
6 1(18.78,8.91,14.94) 0.30 .104 
7 1(18.4,8.09,15.6) 0. 12 • 083 
8 I ( 18. 29, 7. 8, 15. 93) 0.025 • 015 

I 9 1(18.26,7.76,16.) 0.009 .0008 I 

: 10 I < 18. 25, 7. 75, 16) 0.0088 2.78E-5 
I I 
I I - *-increase tr; {J" =2 tr +1 
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Table 2b. Three Ray Family Inversion 
I 
I 

lit velocities residual gradient 
I I 
I I -I 0 ( 20. 0, 11 • 0, 6. 0) I 22.1 I I 

1 (7.45,13.26,9.74)1 15. 07 47 .40 
2 (10.28,13.96,13.55)1 4. 136 6.87 
3 ( 11. 76, 14, 15. 62) .536 .69 
4 ( 1 1. 99 , 14 , 15 • 97 ) 1. 17E-2 1. 4E-2 
5 (12,14,16) 6.78E-6 7. 8E-6 

I 
I -

Table 2c. Four Ray Family Inversion 

it velocities residual gradient 
I 
I 

0 (20. 0, 11. 0, 6. 0) 22. 97 
1 (6.73,13.42,9.76) 20.56 90. 95 
2 (9.68,13.99,13.56) 5. 97 13.22 
3 

. I ( 11 • 55, 14, 15. 63) • 89 1. 43 I 

4 ( 1 1. 98 , 14 , 15 • 99 ) 2.71E-2 4.13E-2 
5 (12,14,16) I 3. 10E-5 4. 68E-5 

For the three ray and four ray inversions, the results of which are 

shown above in Tables 2b and 2c, we have added the rays between the source 

and receivers (x=i,y=x i= 1, 10) shown below in figure 2. 5. 

Figure 2.5 Second Ray Added 

For the other two inversions, the rays are shown below in figure 2.6. 
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Figure 2.6 Third and Fourth Rays Added 

For the two ray inversion, the bottom layer is transversed the most 

frequently with ray segments, and the velocity estimate for this layer is 

accurate. The three ray inversion forces the velocity estimate to the 

zero residual value of (12,14,16). The inclusion of a fourth ray does not 

seem to greatly improve the inversion process. 

We now investigate the effect of noise on the inversion process. Table 

3a shows the synthetically generated travel time data for the 4-ray case. 

Table 3b shows the same data but with a 2% level of random noise added. We 

also generated data set~ with .1% and 5% noise. The inversion results for 

the noise corrupted data are shown below in Table 4. 
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Table 3a. Theoretical Travel Time Data 
I 
I 

:Ray I 
l 4. 257115 4.260601 4.266404 4.274514 4.2849171 
14. 297596 4.312529 4.329691 4.349054 4. 370587: 
'Ray II I 

I 

6.131699 6.133937 6. 137665 6.142880 6. 149580: 
6. 157757 6.167406 6.178520 6.191091 6.2051081 
Ray III 
4.971238 4.974237 4.979229 4.986211 4.995172 
5.006102 5.018986 5.033809 5.050553 5.069198 
Ray IV 
5. 923528 5.926254 5.930795 5.937145 5.945300 
5.955250 5.966986 5.980497 5.995770 6.012790 

I Table 3b. Data With 2% Random Noise Added 
seeds:(21,23) 

I I 
I I 

14. 150548 4.155611 4.167043 4. 194750 4.272062' 
14.295577 4.416106 4. 326548 4.255034 4.477531 
16.119734 6.170942 6.038863 6.074052 6. 197310 
16.206653 6. 244928 6.204394 6.291408 6.145629 
:4.997062 5.021716 5.031688 5.087910 4.918983 
:4.919220 4.969139 5.088148 4.968181 5.157207 
:5.907382 5.894323 5.884533 5.946950 5. 991971 
:5.932769 6.054843 6.067191 5-939481 5.966097 

Table 4. Effect of Noise on Inversion 
I 
I 

noise added velocities I residual gradient: I 

to data 

.1% (1,3) 11.998,13.994,16.003 12. 16E-2 4. 90E-5 
(2,7) 11.998,14.014,16.004 l 1. 76E-2 4.75E-5 

2% (17,4) 12.126, 13.644, 16.169 I .347 2.63E-5 I 

(21,23) 12.038,13.980,15.970 I .431 3. 86E-5 I 

5% ( 4, 4) 12.099,14.878,15.760 I .482 2. 72E-5 I 

(6. 1) 12.308,13.983,15.780 11. 040 1. 05E-5 

(i1,i2) refer to input seeds to the random numbe generato 

It is hard to qualitatively measure the stability of a problem, but here 

even at the 5% noise level we are still obtaining useful velocity 

estimates. One would expect this to be a stable problem as the condition 
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number (ratio of largest to smallest singular value) is only about 60 here. 

Our above example was for a plane geometry and we inverted 

compressional travel times for the compressional velocities. We consider 

now an inversion for both compressional and shear velocities for a fully 

three dimensional problem. The interfaces are given below in (3.9). 

z1: -x**2/18 + y/20 -10 

z2: x/16 -y**3/10 -20 

(3.9) 

Synthetically, we generated the rays (P,P),(P,S),(P.P,P,P),and (P,S,P,P) 

for the source at the origin and the receivers at x=i,y=i :i=1,5 This model 

is shown schematically in figure 2. 7 below. 

Figure 2.7. Rays generated 

The layer velocities we used to synthetically generate the data were: 

= 3 ; V p,z. = 8 ; Vs 2- = 4. 6 ,I 

We show in Table 5 that there are two ray solutions for the purely 

compressional ray from sourc.e x = 0, y = 0, z = 0 to receiver x = 2, y = 2, 

z = o. 
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Table 5 Ray Coordinates of Two Solutions 
I I 1--------------------------------------------------------1 
!velocities: 6.000, 8.000, 8.000, 6.000 
!ray coordinates: 

interface 

1 
2 
3 
4 

I 5 I 

X 

0.000000 
0.653699 
1.755344 
1.630442 
2.000000 

I travel time = 5.844254 
I 
I 

iray coordinates: 
interface X 

1 0.000000 
2 0.654532 
3 1.762799 
4 1.635942 

I 5 2.000000 I 

y 

0.000000 
-0.174863 
-0.571727 

0.953441 
2.000000 

Family I 

y 

0.000000 
0.235391 
0.379107 
1.367517 
2.000000 

I travel time = 5.833599 Family II 

deviation from 
plane 

0.000000 
-0.032483 
o. 128397 

-0. 100014 
0.000000 

deviation from 
plane 

0.000000 
-0.012031 

0.104726 
-0.080308 

0.000000 

Thus we see that the· 2 ray solutions have very similar x-coordinates and 

very similar travel times. The solution which the ray tracing program 

finds in this example is very dependent upon the initial estimate for the 

ray. For the ray from the source to receiver (x = 1, y = 1, z = 0), using 

the "planar solution" ( see chapter 1) as an initial estimate resulted in 

the convergence of Newton's method to family II. Using the "planar 

solution" with a continuation derivative correction term, Newton's method 

converges to family I. 

The non-linear least squares program, used in this example, calculated 
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rays which corresponded to family II. We also used the reflections from 

the first interface in our inversion, but there was no problem of 

multi-solutions for these rays. Thus for our inversion to make sense, the 

inversion program should calculate the branch of solutions that corresponds 

to the data. In this numerical example, we make our synthetic data be of 

the form of family II. In practice, however, the problem of "close" 

multisolutions, when it arises, may not be so easily avoided. In Table 

6.a, below we show the results of our inversion for the 2 layers' P and S 

velocities. 

lTable 6a. Inversion for Shear and Compressional Velocities 
I 
I 
I it I velocities residual gradient I I 

0 (4.00,2.00,10.00,6.00) 7.685 46.347 
1 (5.33,2.67,7.55,4.23) 2.642 8.938 
2 (5.93,2.96,7.98,4.57) .246 .686 
3 (6.00,3.00,8.00,4.60) 2.78E-3 7.62E-3 
4 (6.000000,3.000000, 2. 02E-6 2.29E-6 

7.999999,4.600000) 

As a matter of interest, we use family I in the observational data, and the 

inversion results are shown in Table 6b. 

Table 6b. Inversion Using Family I. 
I 
I 

lit velocities residual gradient 

0 (4.00,2.00,10.00,6.00) I 7.661 46. 196 
1 (5.33,2.66,7.45,4.21) 2.673 9.037 
2 (5.93,2.96,7.91,4.56) .568 1.257 
3 (6.00,3.00,7.94,4.59) 3.25E-2 7.66E-3 
4 (5.999054,3.000239, 3.24E-2 2.20E-6 

7.940210,4.590474) 
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Thus we see that, for this example, computing on the wrong branch of 

solutions does not destroy the velocity estimates. 

The Ray Labelling Problem (3.2). 

Thus far in our inversion examples, we have assumed that from the 

field data we are able to properly identify the ray types of the different 

arrivals. Also, we have not addressed the problem of how to "pick" travel 

times. If one had fairly good estimates of the layer velocities (e.g., 

from well log surveys), using our forward modelling program (chapter 1) 

could help determine the ray types which correspond to the different travel 

times. However, we will consider the problem where one wishes to include 

various travel times in an inversion but is unsure of the corresponding ray 

type (e.g., does a particular arrival time correspond to a PPPP,PSPP,or 

PPSP disturbance, etc.). 

For a medium consi~ting of a stack of parallel layers, there are often 

several rays with exactly the same travel times and amplitudes. We call a 

group of rays that have identical travel times for all offsets a 

kinematically equivalent family. Similarly, a group of rays with identical 

amplitude characterisitics is called a dynamically equivalent family. From 

Hron[8], the group of compressional rays shown below in figure 2.8 is an 

example of a kinematically equivalent family. We also show dynamically 

equivalent sub-families. 
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Figure 2. 8 A Kinematically Equivalent Family of Rays 

We will characterize a class of rays for the planar case with the vector 

n,p denotes the number 

of compressional ray segments in the i'th layer and n,S the number of 

shear ray segments in this layer. For the case, where there are no P-S (or 

S-P) conversions (i.e., n,5 = 0 or n .. ,= 0 for all i), Hron [8] has given 

the number of kinematically equivalent rays in a class. This number is: 

These concepts of similarity are very useful for forward modelling, 

using parallel plane layers. When the travel times or the amplitude of a 

particular ray has been calculated, one has effectively calculated for an 

0 
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entire family of rays. However, we can clearly see a non-uniqueness in 

assigning ray types to arrival times or amplitudes, in the inverse problem 

for a planar geometry. For slightly non-planar interfaces, the travel 

times for the rays of a kinematically equivalent family will, in general, 

now all be slightly different. 

To illustrate our technique for including unknown ray types in the 

inversion problem, we consider the following interfaces: 

z1:-x1**2/18 +y1/20 -5 

z2:x2/16 -y2/10 -15 

(3. 11) 

The velocities used to generate the data were Vp,1 = 5, Vs,J =2.9 Vp,2 = 7, 

and Vs , 2. = 4. For our first example, we shall include the rays from the 

primary reflector (P,P) and (P,S), and from the second reflector (P,P,P,P), 

(P,S,P,P), (P,S,S,P), and (P,P,S,P). The source is at x = 0, y = 0, z = 0 

and the receivers are located at (x = i, y = i, z = 0) (i = 1,5). The 

synthetic travel time data are shown below in Table 7. 

Table 7. Ray Type and Travel Times 

pp PS PP PS pp 

2.011079 2.736598 2.070584 2.816977 2.172013 
2.956534 2.309438 3.147441 2.476372 3.381163 

PPPP PSPP PSSP PPSP PPPP 
4.843695 5.899878 6.954338 5.899583 4.869617 

PSPP PSSP PPSP PPPP ••• etc 
5. 929223 6.979764 5.920315 4.910124 5.974652 
7.015685 5.948861 4.964833 6.035735 7.0618201 
5.985007 5.033229 6. 111891 7. 117856 6.028548l 
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As we can see, the travel times for the (P,S,P,P) and (P,P,S,P) rays are 

very close. If the interfaces had been parallel planes, then in fact these 

times would be identical. In practice, the accurate determination of 

travel times is a major problem, and 
0
whether one could in fact, resolve the 

small time differences of some of these rays is doubtful, but we will not 

concern ourselves with this problem. These examples simply serve to 

illustrate a type of method that can be used to include unknown ray types 

in the inversion process. However, there are still many problems of travel 

time determination and ray type identification which we are avoiding. We 

suppose that we know which of the observations correspond to the (P,P), 

(P,S) and (P,P,P,P) types of rays, but the other "labellings" we are unsure 

of, although we assume here that they lie in the group (P,S,P,P), (P,P,S,P) 

and (P,S,S,P). However, in order to determine the second layer's shear 

velocity, we wish to include these rays of unknown type in our inversion. 

In the inversion program, when we calculate the travel time, for 

example, for the (P,S,P,P) ray for a particular station, we do not know 

with which of the three observed times to associate it. In particular, for 

the residual vector£ (F,·= calculated traveltime. - observation.), we do 
l L 

not know which observation to subtract from the calculated travel time. 

Conversely, we can consider the i'th observation as fixed, and the 

calculated travel time to associate with it undetermined. We will consider 

the problem from the viewpoint of trying to determine the observation to 

use with a fixed calculated travel time. 

To formulate this mathematically, we denote the calculated travel 

times for (P,S,P,P), (P,S,S,P) and (P,P,S,P) rays at a particular receiver 

as tr,·., fr,· , and tr/ , respectively. We denote the group of observations 
' J. J 
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for these rays as of>s-,j , t>bS,"a_ , and o6Si.J , and now we wish to determine 

which of cbSti , o6s,L and ohstj to associate with -1:r,j etc. Explicitly 

putting this indeterminancy into the problem we form: 

(3.12) 

Ideally, we would wish the triplets (o/1 • o/,_, ol.3 ) • <!31 • (d• • f.J ) and (~. Yi., 

~) to be of the form {(0,1,0), (1,0,0), (0,0,1)} or some permutation of 

this. In general, the values of "4. ,o/J. ,OU •ft ,etc. will not be integral, but 

one hopes that they will be sufficiently close to zero or one, so that the 

ray labels can be easily determined. Thus we have reformulated an integer 

problem as a continuous variable problem. Hopefully, the continuous answer 

will correctly indicate.which integer nodes to examine for the optimal 

solution. With this in mind, we rewrite (3.12) as: 

r- = f.r: - 1, ohs/ - r/2.ohSt' - ( /-d1-ot.z.)ohs,3 J-tl '1 Dt.,L I .2. 

(3.13) 

These same parameters are introduced into the corresponding terms for the 
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other receivers. By using the same coefficents at each station, we are 

assuming that by some means (perhaps by establshing some trends in the 

data) we have been able to arrange the data into groups of unknown ray 

type. In general, we may wish to introduce new coefficents at specific 

receivers, indicating that for these stations we are unsure of with which 

group of travel times to associate the station's unknown ray times. We 

have introduced four new parameters into the problem and four new columns 

into the least squares Jacobian. The new Jacobian entries are as follows: 

:JF:~ = obsc~ - obs,; ;)~~ = obs,3 _ obs/~ 
dd, Jdz. 

';)Ft'z_ = obs,3 - obsii ;;;r;~ = oh~,3 _ obst",z 

df, ~(32-
(3.14) 

;)"a ohs,; - obs<3 ;)h3 = obs,"z - obsi3 
';)J, - ;)ola 

;)F,.3 = o6sii - ObSt.j ;)Ft~ = obsti - obsc~ 
a13, 'J/3:z. 

Thus this modified Jacobian has the structure: 
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Figure 2.9 Elements of the Least Squares Jacobian 
x-denotes non-zero entry 

For the case Vp, 1 = 5, Vs., =2.9, Vp,2 = 7, Vs,2. = 4, ol, = 1, ol.1- = O, /1 = 

0, {3L= 1, the numerical inversion results are as follows: 

I 
I 

IT l 

-0-

1 

2 

3 

4 

Table 8. Inversion for Velocity and Ray Type 

VELOCITIES LABELS 

(8.00,4.00) ( • 300 , • 300) 
(12.00,6.00) ( • 300, • 300) 
(3.20, 2. 49) ( • 977, 1. 45E-4) 
(3.43,3.00) ( 1. 32E-2, 1. 000) 
(4.35,2.85) , (. 989, 1. 86E-4) 
(7.86,5.67) (-2. 25E-2, 1. 000) 
(4.92,2.90) C.995,9.74E-5) 
(6.53,3-99) (-8. 34E-3, 1. 000) 
(5.00,2.90) ( 1 • 00, 1. 02E-5) 
(6.97,4.00) (-1.28E-3, 1.00) I 

I 
I 
I 

RESIDUAL I 

10.38 

16.08 

4.57 

.728 

3.73E-2 

GRADIENT 

15.46 

124.19 

18. 65 

2. 134 

9.36E-2 

------ ----...,...--- -----,---,-- ~---,--Final estimate: ve ocities: (5.000000,2.900000,6.999860, 
4.000000) labels:(1.000008,2.164E-7,-1.095E-5,.9999999) 

residual: 1.56E-4 gradient:3.78E-4 

We note that in this example, we allowed Newton's method to continue 
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unchanged even after an increase in the residual at the first step. In 

this problem there is a moderate amount of ill-conditioning. Physically, 

this arises because the travel times for the (P,S,P,P) and (P,P,S,P) labels 

are so similar, yet we find distinct labels to assign to these times. Thus 

small perturbations to these travel times can give rise to large variations 

in the resultant labels. With one percent random noise added to the 

observational data we obtain the following estimates: 

velocities: (5.04,2.91,6.97,3.98) 
labels:(.769,1.46E-2,.1464,.996) 
residual:.147 gradient=4.41E-6 
(Seeds for random number generator :(17,2) 

Thus with this noise level, which can be greater than the time difference 

between the (P,S,P,P) and (P,P,S,P) rays for most of the receivers, we 

cannot clearly distinguish between these ray types. However, simple 

arithmetic shows that we do weight the observation for the (P,S,S,P) ray 

correctly, and our velocity estimates are good. 

We now try another numerical example. Our interface geometry is as 

above (3.11) and the velocities are the same as the above example. We 

calculate the rays (P,P),(P,P,P,P),(P,S,P,P) (tri 1),(P,S,S,P) ( tri 2), 

(P,P,S,P) (tri3), and (P,P,S,S) (tri4) for the source at x=O,y=O,z:O and 

receivers at x=.05+(i-1),y=x and z:O (i:1,6). For this case, we assume we 

know the purely compressional observational travel times. However,we 

consider that for the remaining four observations for each station, we do 

not know whether they are of (P,S,P,P)~(P~S,S,P),(P,P,S,P) or (P,P,S,S) 

type. Including the unknown ray types in the inversion, introduces nine 

additional parameters. Following (3.14), we can write for this case: 
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~::fr-~-~ obsi1 - o;_ obSc',_ - £13 obs'3 -{/-OJ-i'i-~)obs<1 (3.
15 ) 

F.:1= trt"1--0-d1 -f,..; o,)ohs(i - {/-ct12-f2.. - ra)obsc"L - {1-o1.3-133- 'th )obs,j 

t { o1, -t o/2. ., ol.1 +13, t-(3:z +;3,3 +Yt -1-Yz. + dJ- z) obs.,11 

Numerical inversion results for this example are shown below in Table 9. 

(the observations are such that:o{1 =1,c/.2 =0,d.3=0,/J, :0,.!3.z.=1,,,S...,=0, 

-0,=0, ti_:o, and 6j =1). 

i Table 9. Inversion for Velocity and Ray Type: Example 2 I 
I 
I 

lITlVELOCITIES LABELS RESIDUAL GRADIENT 
I 
I 

0 1 (3.0,1.4) (0,0, 1) ,(1,0,0) 
(5.0,3.0) (0,1,0) 17.70 167.13 

1 (4.20,2.21) (1.41,.225,-.372) 
(6.43,3.71) (9.24E-2,1.075,-.179) 4. 63 24.79 

(.180,9.56E-2,.802) 
2 (4.87,2.79) (1.08,4.67E-2,-7.82E-2) 

(6.95,3-96) (2.92E-2,1.02,-4.97E-2) .585 2. 62 
I (4.15E-2,2.21E-2,.954) I 

:3 1(5.00,2.90) (1.00,1.07E-3,-1.89E-3) 
(7.00,4.00) (1.24E-3,1.00,-1.92E-3) I 1. 25E-2 5.44E-2 

I (8.55E-4,4.74E-4,.999) I 
I I 

14 (5.00,2.90) (1.000,9.64E-5,-1.61E-4): 
(7. 00, 4. 00) (-7.68E-5,1.000,6.08E-5)1 8.64E-6 3. 69E-5 

(-2.66E-4,-1.26E-4,1.00)I 

The condition number of J is approximately 5E3. Adding 1% noise destroys = 
the labels

1 
but we still have fair velocity estimates. We note that if we 

had left out the rays (P,S,P,P),(P,S,S,P), (P,P,S,P) and (P,P,S,S) we 

could not have determined either of the layers' shear velocities. With the 

same initial estimates as above but with 1% random noise (seeds:(1,3)~ we 
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converge to the following estimates: 

velocities (5.115,2.513,6.842,4.064) 
labels (.605,2.11E-2,.444) (-.732,.272,.654) 

(-.627,-.350,1.581) 
residual: .122 gradient: 7.21E-6 

or: cla..:. 021/ 

(>, =- -.732 /2 =.272 
~ =-.,27 

rl.3 = .444- "" = (J-ol,-tiz.-o(3 )= -. 070 

133 =. 651 ft; = (1-p,-;32.1/3~)= . 806 

4a.= -.3S-o o'J= I.SB! o+ = (1-t-~- t)=. 396 

(1-d, -/3,- OJ)=/. 7S-4 ( l-rla. j3z. - 0:1. )= I. 057 

(1-ola -/• -o,) = - I. ,78 {/-«4 p'I- 04 )= - .132 

3.3 Inversion for Interface Shape and Layer Velocities. 

Thus far in our examples we have assumed that the depths and the 

shapes of the interfaces are known. Now we will include the depths and 

shapes of the reflectors as parameters in the inversion scheme. We wish 

the reflectors to be represented in some form that can be easily 

parametrizable. For example, one might represent the interfaces by a 

collection of bicubic splines with unknown coefficents. In our case to 

simplify the programming, we take the interfaces to be arbitrarily dipping 

planes. Thus ~-=J;X +/iY + Ii, ( i=1, number of interfaces). 

take the layers' velocities as unknown. 

We shall also 

A least squares approach to this type of problem has also been 

formulated by Gyoystdal and Ursin (5],but their method is different than 

ours. They utilize timemaps at the surface (a timemap is the function 

tr(x,y) where tr(x,y) is the zero offset travel time at source-receiver 

location (x,y) for a specific sequence of interfaces). This allows them, 

with an initial velocity estimate, to find the rays' intersections with the 
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interfaces. Cubic splines are then fitted to these intersection points to 

approximate the interfaces. Non-zero offset travel times are then used 

with the interfaces found from above to estimate the layer velocities, and 

the procedure is then repeated iteratively. 

We do not require timemaps, and we invert simultaneously for all the 

unknown parameters. In the section on layer velocity estimates we had the 

formula for the Jacobian elements: 

N+/ 

J:lc = Jlri' = }_ ])J c/_;~k (3.16) -
dVI(. V,, 

J= 1 J 

cdJ-,(=1, if Vj corresponds to the same layer and velocity type (P or S) as 

Vk; otherwisecl:K·=O). To invert for the plane's parameters (o/tr.,f1e,'t,;,), we 

must calculate dtr-'/~• Jtr-1«¥~• and ~o/~~- From 

N+-/ 

t v· _ L_J<x;~i·-')(i-1J)'-+ ('jJ~t·-y;.,,i")'"+f~~t--?j._,,)
2 

'l - ---------------- (3. 17) v· . 1 j J = . 

(where a subscript zero refers to the source 
location Xs 
a subscript N+1 refers to the receiver 

location x- ·) -~ 
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we obtain: 
AU·/ 

';;tr; =L c1:2J ( ~J~k X/-../2 ;~k Xj-1) 
"Jrllk. J•i ~· V;' 

Jtr/ WI 
/J.2-j ('c/,x yJ·_J2J~K Y/-1) ~z_ 

q(31c 1)/ Vi ~t ;Jtr,· '1~/ { 1:;~k. -..12.J~Jc) 
dOK J>i V;' 

J•I 

(3.18) 

where 0~K : 1 if x· -',/ is on the k'th interface; 
0 otherwise 

.J}_J~K. = 1 if li-, is on the k'th interface; 
0 otherwise. 

With this expanded Jacobian, we are ready to include the interface 

parameters in the inversion. For our first numerical example, we use the 

following model: 

z1:.08 x1 -.1 y1 -5 
z2=.20 x2 +.1 y2 -10 

Vp, 1=12 Vs, 1 =6 Vp,2:14 

(3.19) 

Vs,2:8.2 

For the first inversion example, we shall use one array: source at x=0,y=0, 

z:0 and receivers x=i,y=i,z=0,i=1,5. We synthetically generate the travel 

time data for the (P~P),(P,S),(P,P,P,P), and (P,S,P,P) rays at each 

receiver. We observe that there is a stability problem with this type of 

inversion using a single linear array. For example, if we make the 

interface parameter estimates o(,.=(3, and dJ. fJ., then the calculated ray 

solutions are such that Xi=Yi for all i, and it is easy to see from (3.18) 

that there are two pairs of identical columns. Thus the dimension of the 

right null-space of J is two 

I I T y1 .=[0,0,0,0~ ~-,0,0,0,0] and 

and is spanned by the 
T 

P;,. :[0,0,0,0,0,0,0, /.,./ ,OJ. 
- ii. .fl. 

physically sensible. For this case, the ray solutions all lie 

vectors 

This is 

in the 
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vertical plane determined by the line x=y as shown below in figure 2.10. 
~ 

Figure 2.10 Rays Lie in Plane Determined by Line x:y 

Changing the parameters o/1 , (3, so that o{, =[3, · has no effect on the depth 

the interface along the line x=y; similarly for the secor:d inter face and 

and /3z. . Thus to first order in ol1.,f,.,d1, and (32. ' changes in 

parameters in the above form have no effect on the travel times for 

of 

olz. 

the 

the 

array along x:y; z=0. Using a singular value decomposition of the Jacobian 

matrix, we find the estimate which is orthogonal to the null-space(i.e., we 

stay in the space ~,-=(3, J1 ="(12 ). Thus if our initial parameter estimate is 

such that ct, =fl , and ·ch .. =f, we will always remain in this space at each 

iteration in the non-linear least squares algorithm. 

Numerical Inversion Example. Table 10 
iteration 1 

velocities 8,4,10,5 
interface (0,0,-4) 

(0,0,-8) 
residual 1.792 gradient 3.908 
singular values 2.868,1.782,.467,.370,.340,.193, 

2.31E-2,3.99E-3,5.00E-9,5.99E-16 
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iteration 2 

velocities 10.59,5.30,13.40,7.37 
interface (-6.338E-3,-6.341E-3,-4.61) 

(9.878E-2,9.878E-2,-9.397) 
residual .433 gradient .888 
singular values 2.180,1.953,.346,.232,.164,.115, 

1.23E-2,2.19E-3,9.13E-8,8.80E-8 

iteration 3 

velocities 11.82,5.91,14.08,8.20 
interface (-9.785E-3,-9.753E-3,-4.92) 

(.148,.148,-9.93) 
residual 3.03E-2 gradient 5.87E-2 
singular values 2.208,1.927,.309,.200,.127,9.62E-2, 

9.70E-3,1.97E-3,1.06E-6,3.81E-8 

iteration 4 

velocities 12.00,6.00,13.98,8.20 
interface (-1.001E-2,-9.899E-3,-4.96) 

(.1496,.1496,-9.97) 
residual 4.17E-4 gradient 7.798E-4 
singular values 2.247,1.900,.303,.196,.127,9.61E-2, 

9.39E-3,1.96E-3,4.02E-6,5.88E-8 

iteration 5 

velocities 12.00,6.00,13.98,8.19 
interface (-1.001E-2,-9.899E-3,-4.96) 

(.1497,.1496,-9.97) 
residual 3.16E-5 gradi~nt 4.66E-7 

For the more general case of o(1 f {3 J , and ch .. /= ;J,-, there still seems to be 

a null-space. That is, one can find a direction of parameter changes so 

that to first order the travel times along the array x=y are unchanged. 
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Table 11. Singular Velocity/Interface Inversion 
I 
I 
I• I 
1 l 1 velocities interfaces resid grad !Smin 
I I I 
I I I 

01 (8.000.4.000) (.1000.0.000.-4.00 )I 1.565 3. 854 2. 4E-7 
( 10. 00, 5. 000) c.0000,.1000,- 8.00>1 

I 
I 

1 I (10.519,5.259) (.456,-.427,-4.730) • 371 .758 6. OE-8 
(13.394,7.077)1(7.04E-2,.156,-9.37) 

I I 
I I 

21 (11.653,5.829)1(.219,-.236,-5.00) 2. 88E-2 4.23E-2 6.4E-81 
1(13.3497,7.077)1(.104,.199,-10.01) 
I I I 
I I I 

31 (11.983.5.992) 1 
( .125.-.145,-5.01) 2. 52E-2 4. 59E-2 1 6. 6E-8 I 

1(14.020,8.258) (.165,.134,-9.96) 
I I 
I I 

41 (12.000,6.000) (9.7E-2,-.117,-5.01)'4.37E-3 8.80E-3 4.6E-81 
1(14.000.8.200) (.191,.108,-9.99) 
I 
I 

51 (12.000,6.000) (8.6E-2,-.106,-5.00) 6.50E-4 1.29E-3 4.5E-8 
1(14.000,8.200) 1(.201,9.9E-2,-10.00) 
I I 
I I 

61 (12.000,6.000)l(8.3E-2,-.103,-5.00) 3.48E-5 6.78E-5 
, 1(14.000.8.200) :c.203,9.1E-2,-10.oo) 
I I ·-·------- --------------- ---

When we add data from a second linear array we stabilize the problem. 

To numerically illustrate this we use the same model as above, but also 

generate the travel times for the array of receivers x=-i.y=i, z=O, i=1,5. 

A numerical inversion example is shown below in Table 12. 
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Table 12. Velocity/Interface Inversion: 2 Arrays 
I 
I 

litl velocities interfaces resid l grad Smin 
I I I I I 
I I I I I 

01 (8.000,4.000) l(.ooo,o.ooo,-4.00 ) l 1. 28 l 3. 81 3. 6E-3 I 
(16.00,7.000) l(.000,0.000,-8.00 ) I 

I I 
I I 

1 I (10.56,5.283) (.053,.062,-4.59) .287 .598 2.3E-31 
(15.99,9.526) ( • 196 , • 11 8, -1 0. 08 ) 

I 
I 

21 ( 11. 82, 5. 917) (.077,-.097,-4.94) .034 .065 2. 7E-3 
1(14.09,8.259) (.197,.124,-10.03) 
I I I 
I I I 

31 ( 12. 00, 5. 999) (.080,-.100,-5.00) l1.6E-3l3.6E-3l2.6E-3 
1(14.00,8.203) (.200,.010,-10.00) 
I I I I 
I I I I 

41 (12.000,6.000) (.080,-.100,-5.00) 14.6E-4l9.0E-4l1.7E-3 
l{14.ooo,a.2000) (.200,.100,-10.00) 

I I I I I 
I •------- _________ 1 ___ 1 ___ 1 

Finalestimates: velocities:(12.00001,6.000006,13.99997,8-.-19_9_9_982) 
interfaces:(8.0000073E-2,-.1000006,-5.000005) 

(.1999997,9°9999577E-2,-9.999994) 
residual:2.02E-6 gradient:2.18E-6 

As can be seen below in Table 13, these estimates are sensitive to noise. 

Finally we consider another model. The interfaces are: 

z1: z1=.11 x1 + ·.1 y1 -5. (3.20) 

z2: z2:.05 x2 + .1 y2 -10. 

and the velocities Vp,1=6 Vs,1=3 Vp,2=8 Vs,2=4. Once again we generated 

the travel time data for the (P,P),(P,S),(P,P,P,P), and (P,S,P,P) rays at 

the receivers of the two linear arrays described above. A numerical 

inversion example is given below in Table 14. 



115 

Table 13. Effect of Noise on Estimates 

% !velocity est. interface estimate lfinal final 
: resid. grad. 

I I I I '--•-,----~--,--- , ______ , 
l • 1 I ( 12 • 00 , 6. 00) (. 088 , - • 102 , -4 • 99 ) : 4 • 6E-3 3 • 2E-7 : 
'1,3 :(13.70 ,8.02) (.197 ,.101 ,-9.89) 

I 

• 1 ( 1 1. 97 , 5. 99) 
13,5 (13.82,8.10) 

.5 (11.83,5-93) 
6,9 (16.91,9-99) 

.5 (12.14,6.07) 
14,1l(14.22,8.36) 

: • 8 I < 11 • 66, 5. 78) 
117, I (13.04,7.73) 

19 
• 8 ( 11. 41 , 5. 66 ) 

3,5 (12.08,7.09) 

1 (11.59,5-75) 
47, (11.94,7.05) 

22 
I 1 (11.81,5.90) 
: 3 , 2 ( 17 • 14 , 10 • 25 ) 
I I 

'(.080,-.099,-4.98) 
(.198,.102,-9.93) 

I I 
I I 

'4.7E-3 4.8E-7l 

I I 
I I 

(.082 ,-.104,-4.91) 2.1E-2 17.6E-71 
(.229,.0854,-10.97) 

I I 
I I 

(.085,-.108,-5.05) 2.5E-2 :3.3E-6I 
(.200,.084,-10.16) 

I I 
I I 

(.083,-.083,-4.83) ,3.8E-2 1.8E-61 
(.186,.110,-9.24) 

I 
I 

(.082,-.065,-4.73) 3.7E-2 1.1E-5! 
(.183,.115,-9.07) 

I 
I 

(.080,-.092,-4.76) 4.2E-2 2.8E-6: 
(.191,.115,-9.12) 

I 
I 

(.087,-.106,-4.88) 3.8E-2 3.2E-51 
(.221,.100,-11.06) 

I -------'----------------~, l~ are the input seeds to the random number generator 
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Table 14. Model (3.20) Estimates 
I 
I 

lit velocities I interfaces 'resid I grad ISmin I I 
I I I I I 
I I I I I 
1-0- I (6.00 ,5.00 )l(0.000,0.000,-5.00) 2.47 15.169 16.5E-3 

I ( 6. 00 ,5.00 )
1 (0.000,0.000,-10.00) 

I I 
I I 

11/21(5.82 ,1.80 ) (.163,.204,-4.92 ) 2.60 
1(7.91 t 4. 10 ) (.064,.103,-10.14 ) 

I I I 
I I I 

11* I ( 6. 30 ,4.55) (.139,-.278,-5.29) 1 1.454 1. 924 7.5E-3 
I (6.36 ,4.67) (.054,.144,-9.90) 

I I 
I I 

1. 51 ( 5. 55 ,2.34) (.072,.412,-4.05) 2. 17 
I< 7. 88 ,4.00) '(.029,.297,-9.89) 
I I 
I I 

2* I< 6. 48 ,3.98) (.116,-.044,-5.45) .973 1. 240 6. 1E-3 I 
l C 6. 56 ,4.45) (.077,.044,-9.87) 

I I 
I I I 

,3 (5.65 ,2.61) (.103,.182,-4.68) I .263 .890l7.6E-31 
(8.61 ,4.38) (.041,.145,-10.18) 

I I I I 
I I I I I 

4 (5.91 ,2.94) (.108,.115,-4.93) l4.2E-21 .168l7.8E-3l 
(8.06 ,4.03) (.047,.104,-9.99) 

I I I I 
I I I I I 

5 I ( 6. 00 ,3.00) (.109,.100,-5.00) l1.2E-3l5.5E-3l7.7E-3l 
I ( 8. 00 ,4.00) (-.05,.100,-10.00) 

I 

------ ----------'--- --- ---* - Levenberg-Maquardt parameter set to one. 
Final Estimates 
Velocities: 5.999988,2.999993,8.000032,4.00017 
Interfaces: ( .1099999, .·1000013,-4.99999) 

(.04999926,.09999909,-10.00001) 
residual: 2.8E-6 gradient 7.67E-6 

In this example we used a non-zero Levenberg-Maquardt parameter twice 

during the iterations to force the residual down. In this example we reset 

the parameter to zero after the residual had decreased. 

3.4 Inclusion of Amplitude Information. 

Thus far we have dealt only with the inversion of travel time data. We 
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now discuss the inclusion of amplitude information in the inversion 

process. There are several different definitions of amplitude that can be 

used. By using seismometers with different orientations at the same 

recording point, one can record the three amplitudes of the particle 

displacement in the three cartesian directions, or amplitude can refer to 

some scalar function of these amplitudes. In the work that follows we 

shall take "amplitude" to mean the euclidean norm of the displacement 

vector. We will for these examples calculate and invert using the true 

observed free surface amplitude (see Chapter 1 2.4). 

As mentioned in (2.2), we will calculate the derivatives of amplitude 

with respect to variations in the parameters by using finite difference 

approximations. The derivatives of the travel time function are calculated 

analytically as outlined above. There is a fundamental problem associated 

with the inversion of amplitude information. The derivativesddl'I\P/,'.W, where 

y is some parameter, are often ill-behaved and for some values of )) 

discontinuous. (where rays are becoming critical). Thus one can experience 

problems in the iterative inversion scheme when parameter values are near 

or pass through these critical regions. 

In the numerical example that follows, we avoided this problem by 

considering arrays with very small offsets, thus keeping the angles of 

incidence of the calculated rays very small. However, other calculations 

with larger offsets showed slow convergence, often to parameter values not 

used in the synthetic data generation. The model for the synthetic data 

generation was one of those used in the previous section and is shown below 

in figure 2. 11. 
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~--- 21: ,OBX f .1y-S' 

Figure 2. 11 Schematic Model for Synthetic Data Generation 

We generated the rays (P,P),(P,S),(P,P,P,P), and (P,S,P,P) for the source 

at x=O,y=O,z:O and receivers at x=.05 +(i-1)/10 y=x (i:1,3) and 

X:-.05-(i-1)/10,y:.05+(i-1)/10 (i:1,3). 

residual function is now weighted, 

T 24 

As mentioned previously, 

1 ff 2 {rt/{frc"-Obst)~ ( rtJ) 2{JTYJft' -Ob5,'t2 t/ )z. (3.21) 

/= 1 

our 

and the J b
. -,-,. ;)F,' 

aco 1an ..J 'J =- ;}>'J, is modified accordingly. The results of the 

inversion for layer velocities for the top 2 layers (we assume that the 

parameters of the lower half space are known; we also know the layer 

densities) and the interface parameters are shown below in Table 15. 
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Table 15. Effect of Weighting Amplitudes 
I 
I 

lrt Ira I final vel. final interfaces resid. grad. I• I 
1 l I 

I I I I I 
I I I I I 

:-1-:0 {9.38,5.39) (6.23E-2,-6.56E-2 1. 86E-4 1. 07E-5 l31 
(8.21,4.78) -3.89) 

(.130,4.83E-2,-6.77 I I 
I 

I I I 
I I I 

100 l 1 (12.00,6.90) I (.0800,-.100,-5.00) 3. 67E-4 2. 67E-2 41 
( 14. 00, 8. 10) (.200,.100,-10.00) 

I I I 
I I I 

1 l 1 (12.00,6.90) 1111 II II 1. 26E-4 l 1. 71 E-6 4l 
( 14. 00, 8. 10) II II 1111 

I I I 
I I I 

1 l5' 11 II II II (.0796,-.103,-5.00) 5.59E-4l9.00E-6 4l 
1111 1111 (.201,.107,-10.00) I I 

I I 
I I I I I 
I _,_ l l i -II i II is the number of required iterations. 

For all four of the above runs, the initial estimate was Vp, 1 =9, Vs, 1 =5, 

Vp,2 =8, and Vs,2 =4 with interfaces (0.,0.,-4.) ,and (0.,0.,-8.). We see 

that for this model we require non-zero weights for the amplitudes to force 

the estimated parameters to the model values. 

As a final example of the use of amplitude information,we consider the 

following planar example shown below in figure 2.12. 

7 
p:::2 v p,, = , vs. , = 3 

Y1>,>2. = B Vs,z = 4 

Figure 2.12 Model for Travel Time/Amplitude Inversion 

We generate the travel times and amplitudes for the primary reflections, 
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(P,P) and (P,S). We have no rays passing through the second layer, but by 

utilizing the amplitude information we hope to estimate this layer's 

seismic velocities as well. If we set rt:1, ra=0, then at each iteration 

we have 2 singular values corresponding to Vp,2 and Vs,2. Starting at 

(Vp,1=10, Vs,1 =5, Vp,2 =7, Vs,2 =3) we arrive at a final velocity estimate 

of (6,3,7,3). For the case rt=1, ra=1 our results are shown below in Table 

16. 

Table 16. Velocity Inversion Using .Amplitudes 
I 

.. 
I 

:it: velocities residual gradient Smin 
I I 
I I 

0 I (9.000,5.000) 2. 452 1.140 5. 76E-3 I 

: ( 10. 000, 6. 000) 
I 
I 

.5: ( 4. 5000, 1. 666) 3.813 
(6.7788,2.548) 

1 (8.4621,4.2399) 1. 961 1. 178 6. 20E-3 
(10.001,6.0000) 

2 (4.9900,2.4875) 1. 3729 I 2.3911 9.72E-3 I 

(7. 0802, 3. 1534) 
I I -

3 (5.8299,2.9125) 0.1989 0.2534 8.53E-3 
(7.8271,3.8658) 

4 (5.9952,2.9974) 5. 559E-3 6.708E-3 8.31E-3 
(7.9948,3.9935) 

5 (6.0000,3.0000) 1. 267E-5 5. 90E-6 
(8.0000,3.9966) 



121 

Appendix A - Solution of the Parallel Planar Problem 

We consider here the three-dimensional plane problem for a source 

point Xs and receiver at XR . For any velocity sequence, V, for the 

layers, there will al ways be an unique solution. We immediately satisfy 

the coplanarity condition by considering all rays to lie in the plane, P, 

shown in figure A-1, determined by XR - Xs and the z-axis • 
..._ -

2
Xs .Aoi::--"--------~>' 

X 

Figure A-1 Geometry for Planar Problem. 

Thus we consider only two coordinates: the z-axis, and define the x-axis to 

lie in the plane P, orthogonal to the z-axis. Looking into the P-plane we 

have the model shown bel.ow in figure A-2. 

~ 

Figure A-2 P-Plane Cross Section of Figure A-1 

We let VK denote the velocity of the k'th layer; D~ is its thickness, and 

0~ is the angle that the ray in the k'th layer makes with the z-axis. 
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From Snell's Law, sin •6f. =V/f./V1 sin e, . The "x" distance travelled by the 

ray in the k' th layer is D 1c; tan o" = D,.; sin ~ / J1- sin :iG)"' • or 

Thus, over N layers 
N 

d 
- ~ 1)1( o/,c. s/nev , 
= L (/2-,t1cs,t1 •e, 

I(,,, .I. 

where °'" = V1/V1 . Now we consider 
N 

f"<x) =C z ])Ko{~ 

K=l 

where we restrict "x" (= s,nb1) such that O<x< min ¼~. 

(A-2) 

(A-3) 

.... 
In this range, F(x) - ~ x ;at x:O, F(O):O, and as x --->llfi11l., F(x) 

o/.14 
is a continuous function of 

,If. 

----> oO Thus from the "Intermediate Value Theorem;' F(x) must at some 

point attain the valµe "d,' where "d" is the horizontal distance between 

source and receiver. Hence, we have a ray solution. 
N 
~ 'l>A: ol1t 

F'c"', = L {1-o1,/xil) 
31

'" 
/(,., J. 

~ ~ 

Also we can calculate 

(A-4) 

(A-5) 

We see that F(x) is strictly increasing and hence F(x) is one-to-one from 

(O,min o1.: ) to (0, oO ) • 

~ 

We know that F(O) . ' ... < d and that asx -->mtn_ F(x) > d. Thus we can 
~ 
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divide the interval [0, .9 min d~J into 9 increments, AX, and starting with 

x1, locate the first xi such that F(xi) > d. Now using the bisection 

method we can reduce the residual of F(x)-d to less than one (typically 

for our problems two bisections). Applying Newton's method, this residual 

can quickly (2 or 3 iterations) be reduced to .00001. With this value for 

x, X =sin a,., we calculate dk, in the plane of incidence from (A-1). These 

coordinates are then converted to cartesian coordinates from 
I( 

Xk - Xs + ( 2_ d/) cosy 
j=J. 

<jk = Ys ,,. (i_ d;) sin i' (A-6) 
J=l 

It is interesting to note that, for this problem, we can say when 

Newton's method is guaranteed to converge. From the Fourier conditions 

(see Burden et al. [2]), Newton's method will converge in the interval 

(a,b) if the following conditions hold: 

(i) 

(ii) 

(iii) 

(iv) 

F(a) F(b) < 0 

I 
F (x) is either strictly increasing 

or decreasing on (a,b) 
,, 

F (x) does not change sign on (a,b) 
/ 

if "c" is the endpoint of (a,b) at which IF (x) I 

. 11 t th ,FleJ, < b-a is sma es , en 'Ft:J' 

, and (a,b) =(0, min J") and F(x) has the 
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following properties. 

(i) 

(ii) 

(iii) 

(iv) 

F(a) F(b) < 0 ford> 0 
I 

F (x) is strictly positive 

F
11
(x) 1·s t· ( b) non-nega 1ve on a, 

O is the endpoint at which :F 1
(x)l is smallest 

and lF(O)/F
1
(0)l =di% D"'oltc, 

IC.•I 

d 
Thus if /~'A..ltc~,..,.J.., we have guaranteed convergence of Newton's method 

~ ""' 
for any initial guess in (o , ni,·n J. ) • 

o(,k 
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PART II INVERSE SCATTERING AND CURVED RAY TOMOGRAPHY 

WITH APPLICATIONS TO SEISMOLOGY. 
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II.0 Introduction Part II 

In Part II of this thesis, we discuss two methods of approaching 

inverse problems in seismology. As discussed in the introduction to 

chapter 2, Part I, we are interested in the determination of parameters d 

from a knowledge of some observations 

( 0. 1) 

In chapter 2 Part I we estimated o(, by the use of non-linear least 

squares. In Part II, we deal with the exact and approximate inversion of 

equations of the form (0.1) by more analytical methods. 

In chapter 1, we discuss the use of inverse scattering theory to 

determine the velocity and density (or sometimes just the impedance 

profile) for physical models where the parameters vary only with depth. 

Here ~ is the observed particle velocity, o/ is the velocity and density 

profiles and tis an int:egral operator relating ~ and o(. In chapter 2, we 

consider the situation where the velocity field of the medium may vary 

three dimensionally. We linearize (0.1) by taking the velocity field to be 

a perturbation from a known background field. X will be a vector of 

observed travel times (actually, travel time perturbations), o( will be the 

unknown perturbation to the slowness field ( reciprical to the velocity 

field) and l will be the operator which projects o( along rays of the 

known background field. We will take the background field to vary only 

with depth and derive approximate inversion formulae for (0.1). 
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Chapter 1. Applications of Inverse Scattering Theory to Seismology. 

1.0 Introduction 

In this chapter, we discuss the application of inverse scattering 

methods to the problem of parameter determination in elasticity. For 

problems described by a scalar wave equation, where the medium parameters 

vary only with depth, a knowledge of the surface response of the medium to 

an impulsive source yields the profile of some parameter or combination of 

parameters exactly. By an impulsive source we mean a source function which 

is a spatial delta function at the surface, and in time contains all 

harmonics. We will also take the source to be a delta function in time. 

Thus, for this case, the impulse response is simply the Green's function 

for the problem evaluated at the surface of the medium. 

There are several approaches which have been developed in inverse 

scattering theory. We will examine some of the aspects of the theory of 

Gelfand and Levitan[11] and its time domain extensions (Symes [18], and 

Burridge [4]). Although this theory was developed for one dimensional 

Schroedinger operators in the spectral and time domains, the wave operators 

which we will consider can be brought to this form through suitable 

transformations. Very recent work (e.g., Bube and Burridge [3], Santosa 

and Schwetlick [16]) deal with the wave equation directly, without any 

transformations to the Schroedinger form. However, the theory of Gelfand 

and Levitan is still of fundamental importance to the problems of inverse 

scattering. 

For a multidimensionally varying medium, the inverse problem is more 
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difficult. One can not always transform the problem to Schroedinger form 

(Jacobs [12]).Approximate perturbation methods have been developed. If we 

assume that the parameters are perturbations from known parameter fields 

(the background fields), we can express the Green's function in terms of 

the Green's function for the background wave operator. This yields the 

Lippman-Schwinger series. With a knowledge of the Green's function at the 

surface this series can be iteratively inverted to produce the true 

parameter fields. (Clayton and Stolt [7],[8], and Stolt and Jacobs [17]) 

This iterative procedure can be shown (Prosser [14]) to converge, under 

certain circumstances, to consistent parameter values (i.e., the 

reconstructed operator will produce the observed data.) 

For all these problems the stability of the methods are very 

important. There are many practical problems that arise in the 

determination of the true impulse response. The data contains noise, and 

often the data has to be deconvolved of the source and receiver frequency 

characteristics. If the source or receiver is bandlimited ( finite 

frequency response), then it is not possible to recover the impulse reponse 

function. 

In the work that follows, we will examine various aspects of the 

Gelfand- Levitan theory. Some of our approaches are somewhat different 

from those mentioned in the literature and our numerical examples are new. 

But this is basically a survey and, in some cases, an extension of the 

methods already discussed in the literature. 
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Section 1 Inverse Scattering for the Schroedinger Operator. 

1.1 The Integral Equations of Gelfand and Levitan. 

Gelfand and Levitan [11] considered the inverse problem of determining 

q(x) and the boundary parameter h for the half-line eigenvalue problem 

((1.1a) with boundary condition (1.1b)), from a knowledge of the spectral 

function (defined below) for this Schoedinger problem. Later, we shall 

consider the finite interval inverse problem with the second boundary 

condition (1.1c). 

( 1 • 1a) 

(1.1b) 

(1.1c) 

The starting point of Gelfand and Levitan's inversion procedures are 

the representations: 

X 

</>tx,A> =cos/Ax+ J, £ {K, tJcosJXtdt ( 1 • 2a) 

or 

X 

Cos$ X = c/(x,A) + 1 'J<{x, tJ</ lt1 A )dt ( 1. 2b) 
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Now we assume a knowledge of the spectral function ~ (A). 

function is defined such that formally 

00 /¢ (x,A) <J t, ,;. )ft;.) = d{ x-1 J 
-c:io 

We take e (A ) to be monotonically increasing and of the form 

.2. ff+ tr(A) .,,. 

and assume that the integral 
a, 

ltx,y) = / cos./Ax cos/Ay d~(;.J 

-c::o 

The spectral 

(1.3) 

( 1. 4) 

( 1. 5) 

exists. Here, we are assuming that ~ (>..) is the spectral function for a 

Schroedinger equation. Later, we shall give sufficient (and less 

restrictive than the existence of (1.5)) conditions for an arbitrary 

function to be the spectral function for some Schroedinger equation and 

boundary condition. Two integral equations are derived by Gelfand and 

Levitan; a linear equation: 

f ( X > y ) + 1, XI { y, t ) i( (X I l) dt r ~ ( X, y) = 0 

( 1. 6) 

and a non-linear integral equation: 
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/('11:,y) = 7-c("K,y).,. ;;,y "Klt-,x) 'Klt,'J)dt' ( 1. 7) 

0 ... < y l X y ( r ) = - Z d~ ~ ( ><, x) h, ::= - '1< Io, o ) 

Equations (1.6) and (1.7) were originally derived using the theory of the 

spectral properties of the Schroedinger operator. However, it is very 

useful to think of (1.7) (or we could similarly consider (1.6)) in the time 

domain. Here we follow closely the papers of Burridge[4] and Symes[18]. 

Following Symes, and using his notation, we consider the initial value 

problem. 

'JV ( D ,f) + h I u (o ,-1:) 
';)X 

=o 

U(x,o)= cl'(x) 2Jd(x,o)=o 
Jt 

( 1 • 8a) 

( 1.8b) 

We will call the solution of this problem the Riemann function R(x,t;0,0). 

The solution for the same problem but with initial conditions (1.8b) 

replaced by: 

0 (1.8c) 

is given by 

t 
(j(K, t; 01 0) - J; R{x1 U-; 0 1 o) do- ( 1.9) 

From Duhamel's principle,G(x,t ;0,0) is a Green's function for (1.8a). 
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In Symes [18] and Burridge [4] it is shown that the unknown kernel K(x,t) 

in (1.7) is simply 

R(x,t;O,O). The 

the regular part, K(x,t;O,O), of the Riemann 

function f(x,y)=L7:os./Axcos.!Ay dtr(A) 

function 

recovered from a knowledge of the Riemann's function at x=O. 

l{x,y) = , 
2 

(1.10) 

( '7< ( oJ x-1-y; o,o) f 'KI o,lx-y/j o,o)} 

is 

If instead of the initial value problem (1.8b) we have quiescent initial 

conditions and a point source d(x) d(t) on the right hand side of 

(1.8a) then from (1.9) the Riemann function R(x,t;O,O) is simply the time 

derivative of the Green's function G(x,t;O,O). In our applications this 

time derivative will correspond to particle velocity in seismology. 

Solving equation (1.6) or (1.7), we can reconstruct the potential q(x) and 

the boundary condition parameter h. 

1.2 Modifications of the Theory for a Finite Interval. 

A major advantage of the time domain formulation of the Gelfand and 

Levitan theory is that in order to determine the potential q(x) for x 

[0,T), we need only know the impulse response function K(x=O,t;O,O,) for a 

time interval O<t<2T. To recover the spectral information from the signal 

would require a knowledge of the signal for all time. 

Let us now consider in the spectral domain the problem (1.1) with a 

second boundary condition imposed at x=L. Assuming this operator has a 

discrete spectrum, then the integral relations (1.6) and (1.7) are still 

valid for O<x,y<L but now: 
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co 

/(x, y)'°-G
0 

/ 

eos ..!Ak X cos ./Xtcy -(z.-rfo,1')eoslrux ~!!.!!Y 
L L L (1.11a) 

where {Ak},k=1,«> are the eigenvalues andf" = .J:,L<}z(A1,c,X')dx" 

where¢< ,A,t,x) is the eigenfunction and'¢( Ak,0)=1. The second boundary 

condition parameter, h2, is found by constructing the ratio rp'a~L.}/ /rA1e,L} 

if the kernel£'(x,t) has been determined. 

Once again, it is easy to see formally, from the separation of 

variables, that f(x,y) is simply formed from the regular part of the 

Riemann's function: 

(1.11b) 

More fundamentally, from causality, the second boundary condition, has no 

effect on the observed signal at x=0 until time t=2L. Thus for a finite 

length of time, 0<t<2L, there are an infirli te number of discrete spectral 

representations of the observed signal at x=0, corresponding to finite 

interval problems on 0<x<L with different boundary conditions at x=L. 

After time t=2L, the second boundary will influence the observed signal, 

but this later portion of the signal is not needed for the potential 

determination. As we shall see later, it is sometimes useful to consider a 

finite length of signal as a discrete spectral sum. 

1. 3 Sol vability and Stability of the Gel:fand-L.evitan Equations. 

We first consider the non linear integral equation: 
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( 1. 7) 

Symes [18] has shown that (1.7) can be put in the operator form, for 

O<x<t<T 

( 1. 12) 

and: 

(1.13a) 

f{fJX) X > t 

J2 /rx J = iJ2rx, tJ r}(tJdt 
(1.13b) 

T 

X ¢{xJ = l !<(x,t) ~(t)dt (1.13c) 

k.,.¢(x) = 1x k(t,x) <}!t)dt (1.13d) 

The operator decomposition (1.12) of (1.7) leads to the following. 

Thereom 1 (Symes) 

The integral equation (1.7) has a solution K(x,y) in the space ,., 
),v,<Cr) if and only if K(O,t;O,O) satisfies: 

"" (i) K(O,t;O,O)E W.L (0,2T) 
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(ii) there exists an €1>0 such that for any ¢e La.[O,T] 

( 1. 14) 

where: 

Here W~ is the Sobolev space of functions with m absolutely integrable 

derivatives. The domain C.,... is defined as { ( x, t) : o ~ )( ,< f. ..,c "T' } and 

~M denotes the subspace of W 1 with a well-defined restriction to each 

line in fR 2- , lying in w; of functions on the line. 

As mentioned above, the kernel K(x,t) is the regular part of the 

Riemann function and hence must satisfy the appropriate wave equation in 

the sector x<t. Symes [18] showed that there is a complete equivalence 

between the solution of (1.7) and the non-linear hyperbolic problem: 

{.1.2. _ ..21. + q(-x.J) 7('(x, t-) = o 
Jl:2- ;))(_2. ( . 

~ lo,t) +- h 'k!o1t) = O 
;)X 

'1< I c1 t) = Ftt) 

(1.15) 

This problem can be discretized and solved numerically and Symes [18] has 

proved stability results for various discretizations of (1.15). 

We now discuss the stability of the inverse problem. If we perturb an 

impulse response function K(O,t;O,O), is the resulting function an impulse 
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response function, and if so what can we say about the difference between 

the two potentials? We can easily answer the first question. Symes[18] 

shows that condition (ii) of Theorem 1 is stable to Lc:operturbations of 

F(t)=K(O,t;O,O) In other words, if condition (ii) holds for an impulse 

response function F1 (t), there exists a "d" such that if IF1 (t)-F2(t) Ito<<:/' 

(O<t<2T), then condition (ii) holds for F2(t). Thus, F2{t) is also an 

impulse response function for some potential q(x) and boundary parameter h, 

if it is sufficiently smooth (condition (i)) We now answer the second· 

question from above. 

Thereom 2. 

We consider a pair of impulse response functions Fj{t), j=1,2 O<t<2T, with 

corresponding potentials and boundary parameters (qj(x),hj), x£[0,T]. For 

any € >O, there exists a cf ( € ) such that if l l F1(t)-F2(t) l l < r/', then -
l h1-h2 l+ l l fox( f, (x')- fz.(r'))d/: l < €. 

Proof: 

We consider the integral equation 

)( 

l(x,y)-t .£/L(x,s) fts,'J)ds 1- ~(x,y)= o 

01 y l'X ~'71 

Here f(x,y) is the symmetric kernel (F{x+y)+F(lx-yl)/2. 

g(y):f(x,y) and r/,ts): ~ ( X1 S) we can write: 

X 

g t y ) + £ I { s, y) c/ ( s) Js + </ I 'I ) = o 

Ot'ytx 

(1.6) 

For fixed x, 

(1.16) 
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From Symes's positive definiteness condition for the kernel f(x,y) in 

(1.16) it follows that (1.16) has a unique solution. Now we write (1.16) 

for the kernels f1(x,y),f2(x,y) derived from F1(t) and F2(t). 

""' !fi 19) -r { Tt-F,) </>, = o ( 1. 17a) 

( 1. 17b) 

Here Fj is the operator 

(1.17a) we obtain 

~<fi!i[~IsJ')) /ts)ds. Subtracting {1.17b) from 

(1.18) 

or 

(1.19) 

From the triangle inequality 

( 1. 20) 

We will now bound the first term in the sum of (1.20). We set: 

(1.21) 
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A 

and applying (I+F1) to both sides of (1.21) 

.... 

(I+ S) O,ly) = (J,-J~) 

"' Thus from the definition of F1 

J( 

Y, l 'J J + [ I, ( s, y J 'ft ts )ds = t 9,-92.) 

Now from the Cauchy-Schwarz inequality 

(1.22) 

( 1. 23a) 

(1.23b) 

(1.24) 

Thus taking the maximum over y, of both sides of (1.24), we obtain 

( 1. 25) 

(1.26) 

Here, we take the maximum norm over 1 ,Y t [O,T]. Thus, 
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or from ( 1 • 25 ) 

( 1 • 28) 

Thus, we have bounded the first term in the sum of (1.20). 
A. _, ,. ... J. 

For the second term of ( 1. 20), 11 (I+ 'F1 ) CF, - F:- ) z. I I following 
• ,ol 

the reasoning above, we have 

Finally, we obtain the bound from (1.28) and (1.29) 

( 1.30) 

Now, we consider F2 ,82.• ?a. to be fixed quantities, and take F, ,g,, ¢1 to be 

perturbations about the j:2 quantities. We will now replace all the j:1 

quantities on the right hand side of (1.30) by j:2 quantities. From the 

Banach Lemma we can write ll(r+Far'u2.! U(I+Fzf
1
112/C1-11Crt1=zS11&) and clearly 

t 

lf1(1',y)I < lf2(J,y)l+f. Thus we can write for (1.30) 
l e. .. 

( 1. 31) 

(I 1/2 .... , ) 
where we have taken O < / (2 ,c ll(t+S:-1) Iii. • This bound is good for all 
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X£ [0,T], when we replace all the norm bounds in (1.31) by their 

corresponding maximum value for Xc[O,TJ. For a sufficiently small cf we 

can make 11¢,-9\11~ ~/5. With the definition of </.i·, we have 

¢i· ( y) : ~- (XI Y ) 

~-(x,x) = ½Lx?./CX'Jdx' + h;" ( 1.32) 

II £, (~, y) -;C._ (x, y)la> < c/s-
which implies 

II Jt, (x,x) - ~ Cx, x >floo < o/s-

11~ 1}<{, (x'J -<z:t(X'))d'I./ .,. h,-h:z.! < o/s C 1.33) 

Evaluating (1.33) at x=O, we have lh1-h2l<E-.ls so that 

( 1 • 34) 

and the proof is complete. 

Symes [18] has shown in a Sobolev space setting that the mapping F:-->(q,h) 

is continuous in the appropriate norms IWI -,.1 (, '" ) from W, to lw, " IR • However, 

in general, for two impulse response functions very close in the La, norm 

(O<t<2T), all we can say about their corresponding potentials, is that the 

potentials' "mean" properties will be close. 

In this section, we have given necessary and sufficient conditions 

(Thereom /) for a function F(t) (O<t<2T) to correspond to an impulse 

response function for a Schroedinger wave operator. 

domain, Gelfand and Levitan proved the following: 

In the spectral 



143 

Thereom 4. 

Let jJ ( A ) be monotonically increasing on 

~(A): 
{ 

: .JA r tr"'(A) 

tr(A) 

Suppose f ( A ) satisfies 

(i) < 00 

a, 

(-oo, oo ) and let 

A~,, o 

A< o 

o<><<oo ... 

(ii) [ 
eos.fAX dtr(A) 

a(x)= A has continuous fourth derivatives 

1 

then there exist a continuous potential q(x) and boundary condition 

parameter h for which (: ( A ) is the spectral function. 

For a finite interval problem, with a discrete spectrum, the above 

integrals are replaceq with the analagous infinite sums. 

1.4 Analytical Solutions of the Inverse Scattering Problem. 

For some impulse response functions F(t), the derived kernel f(s,t) = 

{F(t+s)+F( I t-s I) Ji is such that we can analytically solve the linear 

integral equation (1.6). As we discussed above, we can express a finite 

length of the observed impulse reponse function as a discrete spectral sum. 
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( 1. 47a) 

We can truncate this series and write 
p ./!!:- cos 6n x eos.Jr., y {2-l'oJn) t!D5 n nx cos"" Y 

T~ {x,y) == L _,on - T- · .5'- T-' 
11""0 

(1.47b) 

In the spectral domain, this series corresponds in the spectral domain to 

the spectral information 

( 1. 48) 

Assuming All, < (N,t-l),.,r~ , (1.48) corresponds from Thereom 3 to an impulse 
,,., & 

response function and in fact, since r11,.(x,y) is analytic in its arguments, 

so is the calculated q~ (x). If we choose N1 large enough and : : F- FN
1 

I lt:ID 

< Y , for some Y >O, we can from Thereom 2 reconstruct accurately the 

mean properties of the potential corresponding to F( t) using F111 (t). The 

kernel f~ is a degenerate kernel and hence the integral equation 

~ (x,y).,. J £( x1 sJ I"" ts,y)ds + £ (x,y) ~ o 

can be solved algebraically. Following Whitham [21] (pp.593-594) we obtain 

that: 

- 2 d (-' di QI) 
dx /GI dx ( 1. 49a) 

where: 

r = (1.49b) 
i----___,,,__ __ ~2N+Z 
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R I £x 
:t. K>j = PK ~ cos ./7vc s cos JX} s els J~k =OJ ••• , N (1.49c) 

7) • / ;;" • r2 k,J :: flC c> cos /Ai: s cos J;s ds (1.49d) 

( 1. 49e) 

~ k,J = {l-~,k)ix<!osk,;s cosj:;.s els 
TT 0 

(1.49f) 

For JI I( <O, we replace cosine terms with hyperbolic cosine terms in the 

above formulae. If we consider an operator with spectral information 

(i.e., only the normalizations of the eigenfunctions, are different from 

the (q=O,h:0) case), we can reduce the above matrix formulation to 

(1.51a) 

where: 

RJ - cl1e { i + r st"n t27;,kx )) k::j:/:o ( 1. 51 b) 

4k 7T 

PkJ = JoX k=J·= o (1.51c) 
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+ s,·n { ( l<~/Jrr}} 
(k-/J 'j 

( 1. 51d) 

Using these formulae, we can derive analytically some results, which 

we will refer to, later on. 

Example 1. 

Consider F(t)=H>O, a constant or F(t)=(1/T + H) cos Ot- 1/T cos Ot. 

Using the formulae (1.52) we obtain: 

q(x)=2/(x+1/H)**2 

h=F(O):H 

Example 2. 

(1.52a) 

( 1. 52b) 

Consider F(t):1/ €)o cos (.n:;, t) - 1/ ,r (O~t~21T ) • Using formulae 

(1.51) we obtain: 

(X + s,n~n.")1- I St"n~X 
2, 1/JX. eo 

@o ./k + .L Q = 
(1.53) 

..L s,n JA. ~ )( -1 
7T Jifo rr 

or 
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/ Q/ = _t_ x2. + x s,'n 2.n;;,x + ..K _ 1 
Z "/'° TTf'o f./Ao 'TT f>o1T' 

( 1. 54) 

I { X st'n 2 ./Ao X ) - 1 - po 2 + +.!Ao 
Example 3. 

We consider F(t)= o{_ cos(nt) (O<t<21T) and apply formulae (1.51) to 

obtain 

{ a/.X + ol.S1"n2n]( ,,,_ 1)..t 
2 fn 

We note that as o{ -->O q(x)=2n o<. sin(2nX), or if we let o{ =1/n>for 

n--> oo q( x) = 2 sin (2nx). Thus 11 F( t) 1100 -->O, but 11 q( x) I lco =2. However, 

11 J,/'2 s,·n ( 2,n)( ')+-; : 1
00 

-->O for n--> co as predicted by Theorem 2. 
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Section 2. Application of Inverse Scattering Theory for Schroedinger 

Operators to Scalar Equations for Elasticity. 

2.1 Transformations of General Wave Operators to Schroedinger Form. 

We now show that for media with parameters that vary only with depth, 

we can transform the governing wave operator to Schroedinger form and hence 

apply the techniques we have described above. We give two examples of 

problems, of interest, that can be handled in this manner. 

Example 1 (from Burridge[4]) 

A one-dimensional wave equation describing elastic wave propagation in 

a medium, or wave motion on a string, with a source term is: 

(2. 1) 

~ A 
Here c(z) is the wave velocity and f (z) is the density. A stress free 

boundary at z=O implies that ;)I) /;)a =0. We now make the following change 

of variable: 

X- (2.2) 

(i.e., Xis the travel time to depth z) Equation (2.1) now becomes with 

C {z)= C (j)' p (z)= e (t): 
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or multiplying through by c(X) 

J'(t)J'(><) 
Clo) 

(2.4) 

Now we define 1 =( ptx) C(x)) 1/.z and letting the new dependant variable 

71(x) =. Y/ (x) U( x ). , we obtain: 

The boundary condition becomes: 

J'{t) d(X) 
7710) 

U.z = o ~ Ux = o ~ { r ),/ o 

9 ~x - 1 ~ = o at X = o 
-"Y/ 

(2.5) 

(2.6) 

Thus, assuming we know 7/ (z:0), we can apply the inverse-scattering theory 

to obtain q(x)= 'Y/,oc/7} and h=--//1-lo)l"YJ/o). Hence for this problem, we must 

also solve the ordinary differential equation (initial value problem): 

-rJxx - { (x) '7. =- O 

) "Y/x lo)= -h f/0 (2.7) 

to recover the impedance profile </'{X)C(x)) 1/L_ We note that the best we 

can do for this problem is to determine the product JO CX) (!_ ( X) Our 

answer is left as a function of the travel time X, and since we cannot 
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uniquely determine c(X), we cannot convert X back to z. 

Example 2. 

We consider a two - dimensional problem. Figure 1.1 shows a cross 

section of a three-dimensional space z>0 with a line source at z=0,x:0. 

/ lin~ :sourec.. 

Figure 1.1 SH Line Source in a Half Space. 

The wave equation describing the propagation of SH particle motion 

(displacement in ey direction) is: 

(2.8) 

with ~v /';)~ =0 at z=0. We now Fourier Transform (2.8) with respect to "x" 

to obtain formally: 

(2.9) 
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We also take the Fourier Transform with respect to "x" of the surface 

response 

F{kx,t) = t>o 

(note that F{k>< 1 i-) is real since U(x,z,t):U(-x,z,t)) 

,. ¼ 
Letting c(z)=(~ If ) (2.9) becomes 

Now we transform (2.10) as in Example 1 to obtain: 
~ ~ ~ 

~H - ~'t't -,. C k,/•ca.C't) + Y/-c:t. ) ~ = 
Y/ 

J'Cr) J'{t) -----) 

n.,, : r ~.,. I d c ✓, 1'j 1o ( (DC ) '/.z. > ~ E ">') U 
L - Jo c (e') \ ~ 

">/ lo) 

"' '\. 11: +- h 7 =- o at t- = o) 
h = - -r'/r: / 0 ) 

'Yj/O) 

(2. 10) 

(2.11) 

For this two dimensional example, by using F(k1<,1,t) we can recover the 

. , using another wavelength kt,~ we can recover 

By using these two potentials (or in 

general using a fit for several wavelength values) we can recover both 

c( 't") and -f/ ( ?") and we can convert these profiles top (z) and ft (z). 

We can also transform three dimensional problems with point sources to 

Schroedinger form by applying a Fourier Bessel transform to the wave 

equation and the observed surface scattering data. Coen [9] has also 

discussed the use of multi-offset data to recover both the velocity and 

impedance profiles. 
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From above, we see that one often has to solve the O.D.E. (2.7) after 

the inverse scattering problam has been solved. We have shown that the 

mapping F(impulse response functions):->(q,h) (potential,boundary 

condition) is continuous if we measure distance in the (q,h) space by 

d((q1,h1),(q2,h2))= m;x l( .[x(f,<x') - fz. (x')) dx ✓ )l+lh1-h2l and 

use the L(lO norm in the space of continuously differentiable impulse 

response functions. We now prove the following theorem. 

Theorem 4. 

Let q1(x),q2(x) be continuous functions, O<x<T,and consider the two 

solutions of the initial value problems 

!/1 II _, 1 I ( X) y I : Q 

(2. 12a) 

and 

(2. 12b) 

For a fixed positive number ~ . , there exists a "dfE)" such that 

l l fox If, tx') - f/1- (x'J) dx~l ~ t:f' , lb1-b2l< d and la1-a2l< ti' 
implies, that for (q2,a2,b2,y2) the fixed quantiues we are perturbing 

about, l l y1-y2 l l'» < rf , and I I· !}1 
1 

-
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Proof: 

The following proof is based on a method used by Symes [20] for 

bounding the Leo norm of solutions to an O.D.E. of the form (2.12). 

Firstly, we rewrite (2.12a) as a Volterra integral equation to obtain: 

X 

'J, 1 
- b, + £ y, (x'J :J, (X') Jx / (2. 13a) 

.Y, = O, + b,x ~ J;x-x'J y, cx'J y, ex' Jdx 1 (2.13b) 

J( 

Now we let K1(x)=· J;, f, (X ') J.x/ . Using integration by parts we rewrite 

(2. 13) as: 

)( 

y,'tx) = b, + k, (x) y, tx) -£ k, (x') y, 1( x') dx" (2.14b) 

, 
We can write similar expressions for y2(x) and y2 (x). Subtracting the two 

expressions we obtain: 

[

I( X 

I 'J,-y,.) + ~ (y.-x') k, {y1 - 'jz.) Jx' -.£ k, ( !/J - y,.)dx" (2. 15a) 

= lb,- ~)x r k(k,-k,.)y,. -k(k, -kz.)y/fx-x'Jdx 1 + (J,-J,,.J 

X 

t Y, -y.,_J '- /<, ly,-Yz.J + 1 k, l !J,-y,.J I d}(/ (2. 15b) 
X 

= ( b, -bz) + ( k, - kz.) Ya. - [ {K, -k,._) Yz./ dx/ 

, 
Now y2,y2 is the solution of the problem about which we are perturbing, 
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so we assume that I I 21 I I I 2' I I 
I I Y I·~ t I I Y I 100 are known. By assumption O<x<T, 

lb1-b2l<J'·, I IK1-K21 I«>< cf'_ and la1-a21< cf'. Clearly, we can make the 

right hand side of (2.15a) and (2.15b), which we denote as g1(x) and g2{x), 

small for cf' sufficiently small. We now make the substitution 

Y, (x):{y1-y2)'-K1(y1-y2). This then leads to the system of Volterra 

integral equations: X 

{J,-'jJ.) f- J/'t'l(-'I(') k, '/-(x')dx 1
.,. J;, kJ (k,(>t-~')-1 )ty,-y~) ~ J1 

(2.16) 

We write this in operator form as 

(2.17) 

Using the method of Picard iterations we write formally: 

(2.18) 

~ ~ ~ 
If we let K=max{TI IK1 I le,, I IK1 I l~i-TI IK11100 , 1IK111 00 - }, then it is easy to 

show that the n'th term in 
II "- II {z t."'/ 1 I< (il,,U1»+119;.a.y. Thus the series 

/n. 

the series of (2.18) is 

(2.18) is majorized by the 

(- can 

Thus 

2. U Ka.Lt 'T' · 
l(y,-9i-lla, f (ll~11l1t:1+Uj2-ll0>)e. (1+ t-(r)) = -12.{f) 

JL{J) ➔ O J'➔ O 

bounded by 

series of 
A 

write K< 

(2.19a) 
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l/y,'-y:11«> S. ll'Y--lf0+-(ltk2.lltt>+-d)l/y,-yLtloo 

,< _fl(;)( 11-/lka.llcc+-J') (2. 19b) 

Hence we can "choose" J'(E:) so that : : y1-y2 l :00 < e and : : y,'- y3- 1 
: ~ E and 

hence the proof is complete. 

Combined with Theorem2, we have a stability result for the inversion 

of the observed impulse response function F(t) for the one dimensional 

impedance profile in example 1, ( (>C,c) cCx)) 1/2. , where Q ()() and C. (X) 

have two continuous derivatives. For a fixed E- >0, there exists a "8C£.)11 

such that l :F1(t)-F2(t)llcc < cf , for F1(t),F2(t) impulse response 

functions, and : "'71 (0)- 7/1-(0) I < f, implies the impedance profiles are 

such that : : YJ, {X) - Y)2 (x) : : < ~ and 
~ 

I , 
: : Y/1 (')<) - 'Y/2 (x): :~ <€over a finite 

interval X £ [0,T]. For the two dimensional example, we can similarly 

determine 1CX) in a stable fashion, given the impulse response function 

F(t,k) for two different wave numbers k1,k2 (lk1lllk2l). Similar stability 

results for this inverse elastic wave equation are given (and derived in a 

different fashion) by Symes [20). For the two dimensional SH problem 

(example 2), we can determine both the impedance profile and the velocity 

profile from a knowledge of the surface response for two different 

horizontal wave numbers. However, we do not consider here the stability 

properties of the mapping F(k,t)-->(f(~ ,JJ.(~)). 

We observe that the comparison of the two impedance profiles is in the 
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[,
~ I 

traveltimesX1= oc,(i!:.') di!/ ro -i! ' , and X2= JD C..,_ ( e.,) 

Thus, in the physical coordinate, the profiles could look very different if 

c1 /:.ca, and in fact they might not even be defined on the same depth domain. 

2.1 Some Practical Problems Arising in Seismological Data. 

There are, of course, severe practical limitations to the methods 

discussed above, for use with exploration seismological data. As discussed 

in the introduction, it is hard to determine the true impulse response 

function. The exact frequency characteristics of the source and the 

receiver are seldom known, and the recorded seismic signal is often 

corrupted with noise. From our stability results we know, that provided 

the recorded is not "too far away" from the true impulse response, that we 

are able to reconstruct accurately the impedance profile. However , for 

large errors, it is not even clear that the recorded signal is in fact an 

impulse response function for any continuous profiles. For bandlimited 

sources and receivers, required spectral information is lost. 

In theory, it seems possible, although perhaps difficult, to fit a 

non-harmonic series of the form 

F{t) = i { ~- cos./lyt -{2~J;,;JeoyJ;t~ 

J=L 
(2.20) 

to the signal F(t) forO<t<2T, thus extracting a finite amount of spectral 

data within the possible bandwidth. By assuming the form of the unknown 

I z. z. .t 
spectral data (e.g., take /\,t=k 1T IT I f',<=2/T for k>N,k<L), we construct a 

spectral data set which is known to correspond to some potential. If 
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because of finite bandwidth we have lost high frequency information in 

F(t), one would hope that this might lead to only small errors in the 

signal, and hence the calculated impedance profile would be accurate. The 

loss of low frequency information, as illustrated by Example 1 (2.53) can 

be disastrous. For F(t)=H, a D.C. filter would destroy the signal and the 

reconstructed potential would be q(x)=O instead of the correct potential 

q(x)=2/(x+1/H)**2. 

Also, in reality the parameter profiles of the Earth vary three 

dimensionally. Even if a vertically stratified model is a good 

approximation to the geological section of interest, it is not known how 

much the three - dimensional properties will affect the inversion scheme. 

Also, the Gelfand-Levitan method is meant for twice differentiable profiles 

and it is not clear how discontinuities in the medium will affect the 

inversion method. However, modifications to the continuous theory, and 

discrete inverse scattering methods allow for the inclusion of jump 

discontinuities in the profiles. The paper by Bube and Burridge [3] 

discusses in detail various other numerical inversion schemes that can be 

use.d for impedance profile inversion. 
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Section 3. Numerical Examples. 

To numerically invert the impulse response function F(t) for the 

potential q(x), we used Syme's [19] second order discretization of the 

non-linear hyperbolic problem (1.33). The inversion program was written in 

single precision Fortran and run on an IBM 370 and a VAX-780. The 

numerical scheme was checked with analytic answers from (1.50). We 

calculated our answers with various grid sizes to make sure that the 

discretization had stabilized. 

Example 1. 

We consider the three dimensional wave equation: 

- /'I/;) J'(r )r/{ r) 
2,.,,.,.. 

If we take the Fourier Bessel Transform of (3. 1) we obtain: 

The causal solution of (3.1) is: 

- I 
2T 

cllt-R.J Hit) 
I<. 

(3. 1) 

(3.2) 

(3.3a) 
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J' {t-,,.) H l+) 
,- (3.3b) 

Here R=Jt_2-t21, and H(t) is Heaviside's function. The Bessel transform of 

the surface data is: 

0 Cp,t) = le; J;; (pr){;~ J' ~-,) H {t >} d..­

= -_!_ J;{pt-)Hlt) 
27T 

Differentiating with respect to time: 

_j_pJ:(pf:) - I ✓o(p-t)c/'/t-) 
/)TT dll 

The regular part of the Riemann function,K(x,t) is 

(3.4) 

(3.5) 

Thus we take F(t)=-pJ 1 (pt). According to theory, the inversion should 

produce a potential of p**2 for this case. The results for three 

inversions are shown below. 
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Table 1. F(t)=-.8J,t(.8t) "A"=.05 

X q(x) 

o. .6402560 
• 1 .6400014 
.2 .6400035 
.3 .6400082 
.4 .6400147 
.5 .6400195 
.6 .6400245 
.1 .6400359 
.8 .6400475 
.9 .6400579 
1. 0 .6400734 

Table 2. F(t)=-J.1.(t) "D "=. 025 

X q(x) 

o. 1.000156 
• 1 1.000002 
.2 1.000005 
.3 1.000010 
.4 1.000030 
.5 1.000036 
.6 1.000050 
.1 1.000081 
.8 1.000119 
.9 1.000155 
1. 0 1.000210 

Table 3. F(t)=-10 J,t(10t) "ll" =. 005 

I X q(x) I 
I 

0.0 100.0625 
.05 100.0065 
.10 100.0262 
.15 100.0704 
.20 100.1644 
.25 100.3588 
.30 100.7687 
-35 101.6228 
.40 103.4054 
.45 107.1018 
.50 114.7560 
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The results for p:10 at x=.5 are: '~"=.01 , q(.5)=167.4181 and for 

".A"=. 02, q (. 5) =-17248. 02. It is clear from (3.5) and (3.6) that, as "p" 

increases, smaller and smaller step sizes are needed to properly resolve 

the oscillations of F(t) and the variation of K(x,t). We note that for 

this example, the inversions for different values of "P" allow us to 

properly deduce that r?w I "1 =0 and c(z) = 1. 

Example 2. 

We now consider the interval O<i!-< rr and O<t<2 rr . Now the solution 

of the problem 

p 2. P = cfltJ cl't~) (3.7) 

r==O, 1T 

is 

l!.t>.:S II~ ;r,",,J11a.+p• 't {z-/o,11) J.1/f) 
✓ IJ 2.+ pa , 7r (3.8) 

l't. ~ {f-DSJ••,,.,•t- cwnt) )-".! (ctJSpt-1) 
Thus F ( t) = TT ·· / 7T" • Now from causality the ,,., 
boundary z= 7T has no effect upon F(t) until t:2 77. Thus for O<t< 2.1T 

DO 

-J, r,1:J =L 
n::1 o 

7T (3.9) 

Instead of an infinite sum we can consider: 
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"' 2 (Z~.,,.,) ( eos ✓n'--1-r 't- C'os11t:) 

n=o 
(3.10) 

This corresonds to taking the zero potential (h=O) spectral information 

( AJ' , pJ·) for j>N. These approximations will be inaccurate chiefly in the 

(N+1) frequency component; hence as figures 1.2-1.4 indicate, the 

. t. . 11 t b t J ( t) . th hl th . d 27T' / approxima ion osc1 a es a ou -p 1 p wi roug y e per10 JAur1. 

In figure 1.2 we show F10 (t) for O<t<2rr; in figure 1.3, Fs0 (t) O<t<2iT, 

and in figure 1. 4 we show F so (t) for O<t< 1. We now calculate the 

potentials resulting from F10(t) and F50(t) ("A 11 =.01,".1"=.005). These 

potentials, along with the calculated potential from F(t):-J1 (t), are shown 

in figures 1.5 and 1.6. We then used the potentials of figure 1.5, q10(x) 

and q(x)=1 and solved the initial value problem 

7? 2a - ? (r) "? = o 

) YJ 1/o)::: - F/D) (3. 11) 

Thus, we are considering instead of the three dimensional problem, where 

dimensional problem 

1.7 shows these impedance 

profiles obtained from (3.11). They are, within plotting resolution, 

identical. These results are in agreement with Theorems 3 and 5. The 

theoretical answer to (3.11) for the correct potential 

7t (r)=cosh(2). 

q(r)=1 is 
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Reconstructed Impedance Profile N = 0 

" .... - true profile "+" - N = 10 approximation 



169 

Example 3. 

We now consider the Mathieu Equation 

(3. 12) 

.J..P = 0 
;)2 

z=O,TT 

The first eight eigenvalues and normalizations of the associated equation 

Table 4. 

lkl A1< I I 
I I 

10 1 .87823 
11 2.46676 
:2 5. 10090 
:3 10.01761 
14 17.00836 
15 26.00521 
16 37.00357 
:1 50.00260 
I 
I 

I 
I 

, :f.t = () 2=(), 7T are from [22]. 
dil 

pk. I 
I 

5.543171 
1. 80500: 
1. 38777 I 
1. 472551 
1. 518481 
1.538141 
1. 54841 I 
1. 554461 

I 
I 

Spectral Information for {3.12) 

'1 

We now form 
~I....!_ eos.JA:, t _~cos rrl:)+/_l .ccs .n;;, I:. .:..·-1.} 

F7{t)~{_0, . rr lf>6 ·, 71' • 
TJ: I 

The 

corresponding potentials q7{x) and 2 cos {x) are shown in figure 1.8. We 

now calculate the corresponding impedances with 12_ (0)=1 and '7 1 (0)=-F(O) 

(O< x < 1) The two resulting impedance profiles are shown in figure 1.9. 

We see that once again the tw impedance profiles are extremely close. If 

~ 
we let 2 cos (x) =1 + cos(2(x)), the eigenvalues of Table 4 are shifted by 

-1 and the normalizations are now appropriate for the equation: 
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(3.13) 

0 2= o," 

We note that the first eigenvalue is negative so that 

Fjt) c t,r-os;t _; eosnt) + (cos~~t --!; ) 
The calculated potential and cos(2(x)) are shown in figure 1.10. We have 

for x>.2 done a better job here than in figure 1.8. in reconstrucitng the 

approximate potential. This is perhaps because of the asymptotic behaviour 

of Sturm-Liouville spectra (see Gasymov and Levitan [10]).For 

J
0

.,,. f Li=") d2./ -/:0 and we have that: 

.,.. 

+ b,, e., -:1. o 

a. q(x)=2 eos i!.1 

(3. 14a) 

(3. 14b) 

We can now see that the series for F(t) converges very slowly, by writing 

IJO 

= F;lf)+ :b,tL 
K=N"I 

sinkt ( 17-t-J = I< 2 

si'nkt 
k 

DO 

Thus 
~ s,'nkt-

F( t) converges like L_, I( 
k=I 

(3. 15) 

, or, in other words, a finite 

sum approximation is not very good. The derivatives of the finite sum do 

not neccessarily correspond to the derivatives of the true impulse response 
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function. On the other hand, for q(x)=cos(2(x)) - .[TT'll~') dz" ·=O 

(h1,h2=0) and ..,/A;:K+0(1/k**3), so that the resulting finite sum 

approximations to the impulse reponse function converge absolutely and much 

more rapidly. The derivative of these sums also converges to the derivative 

of the impulse response function. 

Now we show the results of the loss of low frequency spectral 

information. We set the lowest eigenvalue ../Ao :0 and eo ='TT. The 

resulting potential and cos(2(x)) are shown in figure 1. 11 and the 2 

resulting impedance profiles in figure 1.12. As one might expect, the loss 

of low frequency information, affects the mean level of the calculated 

impedance profile. 

Example 4. 

In this example, we consider the formula (1.55). We take JAo=.93714, 

and ~ =5. 543. This is the first eigenvalue and weight from Table 4. As 

might be expected from the closeness of $o and IX', =1, the potential is 

ill-behaved. We show the results of the numeric inversion (step sizeA = 

.028) and the analytic answer below in Table 5. 
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x : q(x) numeric q(x) from (1.51) : 
-----:------------ -----------------
0.0000: .038038 

.310 .245775 

.620 .443657 

.930 .617327 
,1.240 .784602 
:1.550 .998352 
:1.860 1.373961 
:2.170 2.206190 
12.480 4.560701 
12.790 15.76951 
12.987 80.22237 
I 

.038037 

.245827 

.443753 

.617430 

.784701 
-998352 

1.373796 
2.205336 
4.555356 

15.68920 
77.94135 

, ___ ------- --------
Table 5. Comparison of Numeric and Analytic Calculations. 
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Chapter 2 Tomographical Reconstruction of Velocity Anomalies. 

Introduction (1.0). 

Tomography refers to the techniques of reconstructing a field.J)(~) 

from a knowledge or..flf), where_flf) are the projections (line or surface 

integrals) of_,/)(~) on surfaces or curves which are parametrized by the 

coordinates 'J For example, in medical x-ray tomography, one can deduce 

from x-ray attenuation factors the function P(e,t) which is equal to 

f 1-(x, y > Jl where the line AB is a distance t from the origin and has slope 
AS 

dx/dy= -cot -e-. The function f(x,y) could be, for example. the density 

field of the patient's tissue. P(e,t) is called the Radon Transform of 

f(x,y). An inverse transform exists so that from a knowledge of P(O,t) one 

can reconstruct f(x,y). The Radon Transform and its inverse are extendable 

to higher dimensions. 

In seismology, the field of interest is the "slowness" field, 

n(x,y):1/V(x,y) where J(x,y) is the velocity field (compressional or 

shear). The travel times of disturbances from various sources to various 

receivers are the "projections" of the slowness field along the rays 

joining the sources to the receivers. Here, the problem is complicated by 

the fact that the rays themselves depend upon the unknown velocity field. 

Thus in general this problem is non-linear~ We will linearize the problem 

by considering the slowness field to be a perturbation from a known 

background field. 
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Section 1. Theory 

1.1 Linearization of the Inverse Problem. 

As suggested above let us suppose that 

n(x,y)=n.(x,y)+ n,(x,y) ( 1 • 1 ) 

In, (x,y) l«ln 0 (x,y) I >,/(x,y) 

We will taken (x,y) to be piecewise smooth. Similarly,we write for the 

travel time: 

(1.2) 

where 2-'. (~s,X1t) is the travel time from Xs to XR for the slowness field 

fl.(x,y). 2;(l'$,Xt)is the resulting perturbation of the travel time. If we 

consider 't(fs,!R.) as a function of the field n(x,y) we write formally the 

first order expansion of 't about n( x,y)=n 0 (x,y): 

( 1.3) 

where X represents the ray path joining Xs to XR ( for a continuous ,..., 

medium we think of ~ as a functional, and for a. di.scretized medium 

(i.e., the Earth divided into cells) we think of X as a vector). From 

Fermat's principle /1: / IX = 0 ( this holds in both continuous and -
discontinuous media). Thus from (1.3) 
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( 1. 4) 

Thus the principle which is fundamental to linearized travel time analysis 

is: the perturbation of the travel time between Xs and xi( is to first 

order the projection of the pertubation of the slowness field on the 

unperturbed ray joining 1-s and lR . 

1.2 Formulation and Solution of Linearized Inverse Problem. 

The analysis of travel time anomalies has often been formulated as an 

optimization problem. Let us consider the geometry shown below in figure 

2. 1. 

sou~ 
2, 

Figure 2. 1 Discretized Model of Section of Earth 

We consider that from various earthquake sources (source i) we have 

determined travel time perturbations ti. That is, we have determined the 

differences of the observed travel times from the theoretical values for an 

assumed velocity model of the Earth. To model the earth, the earth is 

discretized into cells that we enumerate. The perturbations of the 
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slowness field in the cells are denoted by Ll~ , /JS., , dS.J , /JSf, ••• , .4 S11 • The 

rays are traced from source to receiver using the assumed background 

velocity field. We denote the length of ray i in cell j as L,j' . In matrix 

formulation we wish to solve the problem 

L L1 s - IJ t (1.5) - MX1 NtN NX1 

or for M '/ N, the least squares problem 

mtn II L llS t1 t Iii /JS - ( 1. 6) 

The methods discussed in Chapter 2, Part I are now applicable to (1.6). 

However, the problem for the determination of velocity anomalies from 

travel time data can be formulated more analytically. For the case, where 

the velocity field is an increasing function of depth, we do not always 

need the above assumptions and linearizations. The Wiechert-Herglotz 

inversion formula (see Aki and Richards (2]) is applicable to this problem. 

However, we consider the problem for V:V{x,y) and we consider the following 

reflection geometry. We will denote the background velocity field as C{y) 

(i.e., we take the background field to vary only with depth) and the basic 

reflection geometry is shown below in figure 2.2. 
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Yo 

l 
-tr\ 

Figure 2.2 Reflection Seismology Geometry 

Referring to figure 2.2, there will in general be rays with turning 

points within the layer. We will not include these rays in our 

formulation • We consider instead only the rays that reflect back to the 

surface from the reflector. In keeping with common exploration geophysics' 

coordinates, we define the offset h and the midpoint m coordinates. 

h= • 5* ( X1t - Ks ) 

m= • 5* ( Xll + Xs ) 

( 1.7) 

We will now denote the travel time perturbations t<~,!JV as t(m,h) and we 

denote the perturbed slowness field n1(x,y) as U(x,y). The ray segments 

P, and r.z. are parametrized in terms of the coordinate y. The ray 

solutions for a velocity field that varies only with depth are simple 

I 



(1.8) 

coseo 
p(h) == C(o) 

We will use 11 p11 ir: this chapter to denote the ray parameter 
1 dx 

P= Cly) dS • 

This variable is constant along a ray and hence is simply related to the 

II h t . 1 II ."'1 t th COS B-o s oo 1ng ang e 170 a e source, p=- e{o) - . We will consider p as a 

function of the offset h. Using the notation of write 

( 1. 9) 

where x1 (y) is the 11 x11 coordinate on r.1. 

and xz(y) is the 11 x 11 coordinate on f1. 

( 1. 10b) 

This ray formulation follows closely that of Romanov [15],who considers the 

inverse problem for a continuous medium (not a reflection problem), and 

formulates the problem with the turning point Z(p) of the rays being an 

important coordinate. We take the Fourier Transform of both sides of (1.8) 

with respect tom 

(1.11) 
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to obtain: 

where we have used the shift formula of Fourier Transforms on the right 

hand side of (1.8). This is the fundamental relation we wish to solve. 

However, due to the Fredholm nature of (1.12) it is not known whether in 

fact a solution to (1.12) exists. Thus, in general, we are attempting to 

find U(m,y) such that ( 1. 12) is "approximately" satisfied. One possibility 

would be the discretization of (1.12) and an optimization solution of the 

resulting problem. The formula (1.12) for the special case C(y)= constant, 

was derived and used by Kjartansson [13] in his inversion of travel time 

anomalies. He "inverted" (1.12) by using a least-squares approach. 

We now also consider the case C(y)= constant. We will derive directly 

the Radon-Inversion formula for (1.12). This has been derived before by 

Clayton [ 6 J. Also, although the usual Radon Transform (e.g., as used in 

Medical X-ray Tomography) is formulated in terms of different variables, 

our formula can be obtained from the more standard formula with appropriate 

assumptions and changes of variables. However, we present our derivation 

as our more general formula (C:C(y)) will follow from this. 

Instead of the reflection problem (figure 2.2), we consider the entire 

velocity field in the layer to be reflec,ted about the line y=y O and we 

consider the equivalent transmission problem shown below in figure 2.3. 
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Figure 2.3 Equivalent Transmission Problem 

Now we can write: 
ZYo 

t ( m 
1 
h ) c 1 U ( X t y J, y) J J, ~ + y. • 

Yo 

Xly) 

dy (1.13) 

Defining t(m ,h) = Y~ t(m ,h), and taking the Fourier Transform of both 

sides of (1.13) with respect to "m" we obtain~ 

. -, !(,.,,,..,-Vo "' 1
2Yo . 1/' y > 

= () e U{km, y) dy (1.14) 

We now assume a solution for (1.14). Then, we can extend the limits of the 

integration and consider the new problem 
«> 

~ J -,.'kw, (1-1 )IJ"' t ( kwa, h) = e Y• U(k,,,, !I) dy (1.15) 

We will find the solution to (1.15) by using successive Fourier Transforms 
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and the answer will be unique (at least for km/0). Hence, if (1.14) had a 

solution, then the answer to (1.15) must simply be the solution to (1.14) 

for O<y<2y0 ,and zero elsewhere. If, in fact, t(m,h) does not correspond 

to the rectilinear projection of any anomaly field for O<y<2y0 , then we 

hope that the solution to (1.15) will be a good approximation to (1.14) for 

Recognizing that the right hand side of (1.15) is simply a Fourier 

Transform over the "y" coordinate we obtain 

(1.16) 

~ I !~ ,"J:.y "'-
where U(k,,,,ke) := 27T -co e U (k,,,,, y) dy . Making the change of variable 

ky = h km/ Yo we obtain 

(1.17) 

Equation (1.17) illustrates the limitations of our method. In order to 
~ 

determine 0(km 1 ky) 
.... 

for K1Yf=0, Ky/ O, we must know t(m,h) for infinite 

offset. In practice we can only measure the travel times to some maximum 

offset h max. For simplicity, we set t(km,h)=O for lhl>h max. Thus we 

cannot hope to resolve the slow lateral variations of the 

Performing the inverse Fourier Transform of (1.17) we obtain: 

Now we let J = Ky Y1/kna=h and obtain: 

field. 
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(1.19) 

The factor l k 111. l IY"o is the Jacobian of the transformation (km ,ky) --> 

(km, 'Yj) and we note that the Jacobian is singular for km=O. However since 

t(km=O,h)=O for lhl>hmax, we can extend our integral to the whole space. 

~ 
Now we assume that t(km • 1 ) decays sufficiently fast as a function of km so 

~ ~ 
that we can approximate lkmlf by f(km)t 1 where f(km) is chosen so that _, 
~ (f(km)) exists. Using the convolution theorem we obtain: 

00 

U(m,y) =Ftml •Jt{m-,."YJ{,-J_ ), n.)d; 
21T Jo Yo 

(1.20) 

•I 
Here, F(m) is :/ (f(km)) and "*" denotes convolution. Numerically we will 

take f(km) to be the tapered function lklcos(k/kmax * TT/2) fork< kmax and 

zero elsewhere. This filter function is shown schematically below in 

figure 2. 4. 

Figure 2.4 Filter Function In Fourier Space 

The function F(m) is in 11m11 space a rapidly oscillating function with zero 

mean. From simple geometry (figure 2.5) it is easy to show that ignoring 
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the filter F(m) in (1.20), the integral in (1.20) is simply the integration 

of all the travel time perturbations over all the rays that pass through 

the point (m,y). We show below in figure 2.5 two rays that pass through 

(m ,y) and correspond to the same offset "h". We denote their intersections 

with the reflector at y:yO as m1 and m2. 

'I • ' . , ,. 
· 1 .. ·, 

Figure 2. 5 Relation Between Point in Space,Offset, and Midpoint 

Some geometry shows that m1=h(1-y/yO)+m and m2=m-h(1-y/yo). These are the 

same two expressions that appear in the integrand of (1.20). We will call 

the formula of (1.20) without the filter function F(m) the back-projection 

approximation. We now show how this approximation is related to the "true 

field." Consider: 

( 1. 21) 

00 

fori,h) = 1 [A. lm+ h (-f.-1), y) dy ( 1. 22) 

¥ ap ., -apprDximatt! ,, ,, + ·b· - r«e. 

Substituting (1.22) into (1.21) we obtain: 
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h,,,Al( oo 

U.ptm,j)~J j ChdM~hlyz),y JJhJy 
-h,,,." -co 

( 1. 23) 

Let us now change to polar coordinates (r,0-) where e: tan-1(y /) and y -

y= r sin-&. Using this change, we obtain: 
rr- t.,,-•( ~._.) co 

UrAp(m,y) =/ 7u,..,{m+-rcostJ,9'frS1"ne)rr/.-cl9- (1.24) 

_, Yo r / :s,·n 9 / 

·ku1 { !r .. , • .) o 

, 12"-fa" _,(Yyb...,._1 oe> 

+ U+,,. (mfrcose,,j+rs,ne)rJ,-.Je 

-, !I ) !f O r / s ,.n e / 
1T+lan { /~ o 

Thus, when we use the "back projection" method, we have found a field which 

is given by: 

Uap ( m, 9} = _[}_ ( m,!J) * t.hr ( m, y) 
ye, 

( 1. 25) 

where the filter Jl (x,y) is shown schematically, below in figure 2.6. 
') 

Figure 2. 6 Back Projection Filter 

We note that the field u.,.,. (m ,y) under consideration, in our formulation is 

the symmetrized field shown below in figure 2.7. 
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0 
________________________ yco 

UC x, y J 
-------------------J=9o 

_____________________ y=2!Jo 

0 
Figure 2.7 Symmetrized Field. 

Thus the filter F(m) is chosen to negate the effects of convolution 

with .fl (x,y). It is certainly not obvious that ,!f(F(m)) = U:,.1 is the 
7-ir 

appropriate choice. To show that this is indeed the proper F(m), we take 

the Fourier Transform of both sides of (1.23) with respect to "m" obtaining 

h1ttM co "' j J "" -,·k .. h f1-iJ 
Uap ( 1:.,,,, j) = [4. ( k.,, Y J e y;;-dh dy (1.26) 

- hWIA,)( - oo 
Furthermore taking the Fourier Transform (formally) of both sides of (1.26) 

Now we define f = h k wi /y O for km/0. Thus 

~ l~hw ~ -io 
u.p{k.,k,J~2uf ,. J u,..{k.,y)/'{J-ky)!J.e ,J.1d1 

Jk,./ 
• Jt..l h,w - co 

( 1. 28a) 

'I• 

(1.28b) 

-co 
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~ ~ 

l/Ap {k111,Ky) =-H (/Jc,./hmu-ky) 21fJo U1;.,-(k,,,, ky) 
. ~ lb/ 

~ ~ 
Ufr (k,,,,ky) = lk.l u~, {k.,k,); 

21tYo 

( 1. 28c) 

(1.28d) 

Here H(x) is the Heaviside function. Thus we can start with the 

back-projection approximation and derive F(m) by finding the required 

filter to make the approximation as exact as possible. 

We now return to the more general problem where the known background 

field C( y) is not a constant. Once again we consider the transmission 

problem and we indicate some of our notation below in figure 2.8. 

2Yo 

Figure 2. 8 Geometry for General Transmission Problem 

For a reflection problem, we consider the velocity field and the rays 

reflected about the line y:y 0 • Our results are easily extendable to the 

general transmission problem through a layer of thickness of 2J0 where the 

field is not neccessarily symmetric. However, for this case the coordinates 
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m,h would be the most appropriate. Let us now suppose that the velocity 

anomaly lies in a very thin layer which is shown below if figure 2.9. 

A 

Figure 2. 9 Thin Layer Velocity Anomaly For Transmission Problem 

The "true" seismic experiment measures the travel time difference from A to 

B, but instead we consider another "experiment" where the sources are on 

the surface Y=Y , and the receivers are at Y= y + 21, • We denote the travel 

time perturbations between y=y and y=y+2A, along the ray joining the points 

A and B, as t1, and .t1 will equal the perturbation t2 along the entire 

ray since there is no velocity anomaly outside the region 24. Now we will 

suppose that A is very• small and we have only a finite range of offsets, 

so that the rays are locally very straight in the layer. Using a straight 

line approximation, we have from our approximate inversion formula (1.20) 

h....,~ 

Utm,y)= F(m) •! f 1 {1n+h,(1- 1J-ff)),h,) dh1 
2.rrl\ A 

- h .. tAJC d1/dv I ; 
(1.29) 

In (1.29), h1 refers to the infinitesimal offset of the ray segment in the 

layer 24 , and : 
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( 1. 30) 

Thus 

V(m,y)~ Rm) 'I- t.. (1111-fty/1),h(h,))d{Jx{ ) c1. 3n 
2 TT -/~;/#Jll).)C ds/dy /y dy j 

Now from ·J~ ! dh = d(clx) l- we have 

U(m,;: -F:~) ~f ~'j'm,..7ly, h), h) d"f I dh c1•
32

i 

2 rr ds/4 .9 f g dydh y 
-hWlo.X 

Thus, if indeed our anomaly was restricted to a thin layer, then formula 

(1.32) would be an accurate approximation at this depth. However, it is 

not clear that this formula is accurate for the general problem, but it is 

a limiting formula which we should obtain, when we consider a more general 

formula. 

We now derive another formula, which is a near zero offset 

approximation. We begin. with the integral relation (1.12) 

2«jo "k , ) 

1 
"V -l ltf'l_(y,h 

t_ (/<m h) = U{km, y
1
)e ds {y~h )dy ✓ (1.33) 

, dy 
0 

and we expand the integrand of (1.33) about h=O to obtain 

1v -[

2

Y•.., -,K,.[f/~1y')Jy1]jf~.,,'1 

tCkm> fi) - U(k,,.,y)e. dy (1.34) 

0 

Here we have used that ds/dyl 6 =1, d/dh(ds/dy)lh:o=O, q(y,h)l.4., 0 =0, and 

dldh(q(y 0 hf:_[~~ly')dy 1
] tf (

0
• Now we rewrite 
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rYo r'° I' ly Cly'ldy'= Jo Cly'Jdy'-
0 

Cly')dy
1 = t - tty) ( 1.35) 

We change variables in (1.34) from "Y" to ''t" and use that dp/dhl
4 
•• = 1/ro, 

(here, we are specifically considering a reflection geometry) and dy/d~ = 

-1/c(y(~)) to obtain: 

!
CO 'L ,: I, 

I\, "-' -t'k,,,.h LIC",n z=; 
ttkm,h)= Htir.)U(k,,.,J(?:J)e e dr. 

-oo ctyt~JJ (1.36) 

H(Z 't'o) = 1 O l i- f 2 2'o ; o otherwise 

or 

( 1.37) 

Here H(Ah) signifies that this result is only accurate for O<h<Ah where Ah 

is some appropriate small interval. However we will simply let g(km,km 

IV 

h/z;.) = t(km,h) for all h. Now (1.34) is simply the same expression (1.15) 
,..,, 

we had for the constant velocity case, but here y
6
--> ~ and U(km,y) --> 

~ U(km,y)/c(y). Thus proceeding formally we obtain: 

(1.38) 

Now we let 

( 1. 39) 

where E(m,y) is the error from the extension of (1.37) to all "h!' Thus 
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a, 

U(m,y) = F(m) e.t,).;.jtcm1-h{1-'l:l!J))) h)dh (1.40) 
2rrto t, _ e.t'}JE(m,y) 

-(X) 

We drop the error term from (1.40). We note that in (1.40), t(m,h) is the 

"true" travel time (not the normalized travel time as in the constant 

velocity case) since in the zero offset approximation ds/dy: 1. The term 

m+h( 1- 'I::/~) is simply the first order approximation to m+q(y,h) and the 

expression c(y)/1:o is simply cJZ I 1/clydh h:o' . If we insert the 

values of these expressions for arbitrary "h" into (1.40) we obtain 

1 
hMo.-JC 

U( m, ')) = -F{m):i' Hm·•tJ• h), I,) 
2 Tr ds dy 

(1.41) 

-hm.o..,c 
When we restrict (1.41) to small offsets, it is consistent with 

I. 
is consistent to 0(4h) since restricted to small offsets (it 

and cJS'l, 111 J1'1.J =0). Formula /dJ ta~ 
(1.41) reduces to (1.20) for c(y):constant. 

Thus this simple approximation to equation (1.34), and our derived formula 

(1.32) seem to suggest the formula (1.41) as a possible approximate 

inversion formula, alt~ough so far, we have no strong justification for 

this. 

We now examine (1.42) in more detail. Equation (1.42), neglecting the 

filter F(m), is a generalized backprojection formula. That is, to 

reconstruct the field at a spatial point (m,y) we sum up all the 

"normalized" travel times corresponding to rays that pass through the 

point. Here the normalization is a local one; we divide the traveltime by 

the local arclength ds/dy and multiply by the local focussing factor 

_d~ dJdh . We call the term - d~yd~ the focussing factor as this 

represents the change in the local slope dx/dy of the ray when we change 
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the offset "h" by a slight amount. We illustrate this concept 

schematically, below in figure 2.10. 

cons t.an t Velccity 

Figure 2. 10 Focussing of Rays at a Spatial Point 

We see from figure 2. 10, 

focussing of rays and 

that for the constant velocity case there is no 
_Ja 1/d~dh .=1/y 0 • For a background velocity field 

that varies with depth there will, in general, be focussing and defocussing 

of the rays. The focussing factor in the integral of (1.42) simply 

equalizes the weighting of the angular slope coverage by the rays of the 

point (m,y). 

As in the constant·velocity case, we now find an integral relation 

between the "true" field u..,..cm,y) and the "approximate" field U1'(m,y), where 

Ucap (m ,Y) is the field obtained from the generalized backprojection formula. 

We have: 

and: 
2y,, 

Um,h) = [ U,, (m-'lfy,h),y)~ ly,!,)Jy 
Jy 

(1.43a) 

(1.43b) 
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Substituting (1.43b) into (1.42) we obtain 

diagram~tically below in figure 2.11 

f 
Fig-ure 2. 11 Rays and the Polar Coordinate System 

Mathematically, D..z. is the domain: l y/x l >tan -e,..,n We now change variables from 

(h,y) to (&,.r) where 

-'{J) . -r-;Joty b)I ) 0 = c.o t ~ = - cot L J _ 

dy ;;y J -
(1.45) 

y - y . = rs, /1 -e X ~ fY1 · = r cos -e-

and the Jacobian of the transformation is simply 

-1/ ( c.f2¼Jdh} J st'n G) . Thus we can rewrite ( 1. 44) as 

Up(~> y) =1 U,, { m rrcos 0-r R, I a-, r), 'ij ;- r sin a-){lt'i/,1 ", r ))rdrdB( , . 46) 

V..z, I J - y I 

Here °.z is the domain _shown in figure 2.11. The terms R1(e-,r) and R2 (-9-,r) 
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are remainder terms from the first order expansion of the integrand of 

(1.45) about Y=Y· (R1(9,r),R2(&,r) -> O as y-> y ) Now since the 

integrand decays like 1/ly-yl we assume that a good approximation to (1.46) 

is the local approximation where we let the "Y" limits of D2 go to ! oo 

-Jfh,.(mt~cose., yrrslne) rclrde-
Uo.p c rn, y J - J y - '9 I (1.47) 

l>.1. 
This approximation is most valid for one of two situations; when the 

anomalies are fairly confined and isolated vertically or as ds/dy and 

q(y,h) become independent of y (i.e., c(y)--> constant). As the offsets 

become smaller, ds/dy(y,h) and q(y,h) vary less with depth, and 

approximation (1.47) becomes increasingly accurate for the small offset 

information. This is independent of the spatial properties of the anomaly 

field, and the inversion formula which we derive from (1.44) and (1.47)1 

will be consistent for small 11 h11 with formula ( 1. 40). Alternatively, for 

any fixed finite maximum offset, if there is only one anomaly region and it 

is confined to a small vertical thickness 24 at y=y, then as A -->O the 

local assumption for (1.47) becomes increasingly valid for y=y, and our 

formula (1.50b) will simply be (1.32). For c(y) becoming a constant,then 

(1.44) becomes (1.47) globally, and from (1.47) we obtain the formula 

(1.20). In general, there are certainly situations, where the 

approximation (1.47) may not be good. For example, if the anomaly field is 

not localized, then our approximation to relation (1.46) ((1.47)) may not 

be so valid. However, it is true, that per unit area, the integrand of 

(1.46) is weighted most heavily for y = y, and more practically, the 

approximation (1.47) allows us to proceed mathematically. In a more 
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algorithmic sense, for general background velocity fields, the 

backprojection approximation to the anomaly field can always be defined. 

The question that arises is how to best normalize the travel time data for 

the backprojection. Our algorithm has suggested a very local 

normalization; we divide the travel time data, corresponding to a 

particular ray by the local arclength at a depth y (to reconstruct the 

field at y:y) and compensate for the local focussing. However, for an 

anomaly field which is global in nature, perhaps it would be better to use 

another normalization scheme. Clayton [5], has related this problem to the 

solution of (1.6).When the normal equations for the problem (1.6) are 

formed, there are various iterative methods of solution which could(at 

least theoretically) be used to solve the resulting linear system of 

equations(eg. Jacobi,Gauss-Seidel,etc.) The first iteration (with /JJ =0) 

gives an estimate which can be shown to be very similar to the 

backprojection approximation. However, there is an arbitrariness in the 

weighting for a least squares problem, and different weightings lead to 

different normalizations for the backprojection formula. 

Equation (1.47) is almost identical to (1.24) for the constant 

velocity case, except that the domain of integration changes with depth. 

That is,from (1.47) it seems as if we are locally convolving the true field 

with the function ..ll.~(~, y) where J1.e:.. (x,y)=•'iyl for ly/xl>tan -e ... ,·n and ....... ••• Yi 
.O.~_(x,y)=O otherwise. This function is schematically shown below in 

llHA 

figure 2. 12. 
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-fle-_ . (m,!-J)= O 
M1J1 

M 

I 
/4------- JlG>_,,, ( m ,,J) = I 9 I 

Figure 2. 12 Convolution Function 12.,,,__ (_fY/, 9) 
""n1111 

For a constant background field, e-Minis constant with depth. In general, 

however, e "''ii changes with depth. However, we will still write for the 

back-projected approximate field U11.f'(m,y): 

(1.48) 

In the Fourier domain, we can write (1.48) as: 

~ I R: ~ 
f/4.p {k,,.,ky) = lkMI U+,,-{km,k,)+E(km,ky))/~1~ -bn &m.iti 

km (1.49) 

Pd t:'11 
~ ~ ~ 

We now define U4-r(m,y) such that U(km ,ky) = U,_(km ,ky) for l km/ky l <cot B Mit\ ..... ...... 
~ and U(km,ky)=0 otherwise. Now we can write (1.49) as: 

+... 

(1.50a) 

and 
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(1.50b) 

Now within the approximation (1.48), E(m,y) is independent of "m" so that: 

(1.51a) 

and 

(1.51b) 

We note from ( 1. 27c) that F(m) is independent of -&,.u·,,. However, how 
,,.. 

accurately we can resolve u-,. ... (m,y) (i.e., how close U+,. is to U-+ .. ) does 

depend on -8min. As we have mentioned, in the Fourier domain, we can only 
~ 

resolve U (k111,ky) for lky/k111I< cot -9,.,,n. Now we consider what this means in 

the spatial domain. As can be seen below in figure 2.13, near vertical 

rays can resolve the extreme lateral boundaries of an anomaly. As the 

offset is increased, the lateral resolution is increased,but we have little 

vertical resolution. Similarly, large offsets resolve the vertical 

variations but do not resolve well the lateral boundaries. 
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Figure 2.13 Spatial Resolution of the Rays. 

Thus, near the top of the layer where the rays are more vertical than at 

the bottom, we can not resolve well the vertical extent of anomalies, 

whereas at the bottom of the layer we have both vertical and horizontal 

resolution. 

In summary, our approximate inversion formula, for a vertically 

varying background velocity is as follows. We use the backprojection 

formula (1.43a). This means that at a particular point in space (x,y), we 

have approximately, that the backprojected field (at depth y) is the 

convolution of a particular function ../l. t?wa,,J", 'J) with the true field. We 

then showed that deconv~lving 'U,;.p{M,y} (i.e., convolution with F(m)/27f ) 

the backprojected field of t( n,.11) gave us at depth y an approximation to 

the true anomaly field within certain resolution limits. For a c(y) 

increasing with depth, the resolution of our method increases with depth 

(oppositely for c(y) decreasing). However, the validity of the method 

depends upon the validity of a localization assumption. (see (1.47) and 

(1.48)) As anomalies become spatially smaller(vertically wise) and more 

isolated from each other, or as c(y)--> constant, this assumption should 

improve. 
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Section 2 Numerical Implementation. 

To test our ideas on tomographic inversion we required two basic 

programs: one to generate synthetic travel time perturbations for a known 

anomaly field and background field, and, secondly an inversion program 

using equations (1.41) or (1.40) to invert the travel time information. 

All computations were done in single precision Fortran-77 on a VAX 

computer. 

2.1 Details of Numerical Programs. 

The data are synthetically generated from the projection of the 

unperturbed ray through the anomaly field. In other words, the data does 

not correspond exactly to the perturbations which would be measured in a 

"true" seismic experiment. However, as discussed above, for relatively 

small amplitude anomalies, this is a first order accurate approximation. 

Hence our numerical results, do not test the validity of the linearization 

of the problem, but instead show the accuracy of the inversion formula 

(1.41) and (1.40), assuming that the linearized problem is valid. We hope 

in the future to redo some examples, using finite difference modelling to 

generate the observed acoustic signals, and address the problem of 

determining the exact perturbations (accurately "picking" traveltimes is in 

reality, a major problem in itself), and using this data as input to our 

inversion program. The background field we consider is of the form 

c(y)=ay+b. We take the velocity anomalies to be disks. Their radii, 

postion, and the strength of the constant perturbation within the disk are 
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user input parameters. Due to the linearity of the data generation we can 

superimpose disks to form other interesting shapes (e.g., an annulus). It 

can be shown that the rays are the arcs of circles. Some algebra allows us 

to determine the equation of these circles. The intersection points of a 

ray y1,i and y2,i with disk "i" are found by applying the quadratic formula 

for the intersection of two circles. Then the contribution of disk "i" to 

the perturbation t(m,h) is 

(2. 1) 

Here Vi is the constant perturbation in the disk i and s c' is the computed 

arclength of the ray between y1,i and y2,i. We repeat these calculations 

for the ascending ray segment x2(y). The user specifies the maximum and 

minimum midpoint, and the percentage of the maximum offset to calculate. 

The maximum offset, for a velocity profile that increases with depth, 

corresponds to the ray that has a continuous turning point at Y=Yo (for a 

profile that decreases with depth the maximum offset corresponds to the ray 

that is horizontal at the surface). Sixty four increments in h, and mare 

then calculated (we only calculate h>O as we know that t(m,-h)=t(m,h)) This 

data file is then stored for future use, and can be displayed by a raster 

plot in the format which is illustrated below in figure 2.14. 
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J .. -------
h 

M 11t, 11 H max 
Figure 2. 14 Travel Time Data Plot 

The two basic formula we wish to examine numerically are equations 

(1.40) and (1.41): 

Utm, y) = Flm) •lh-;fm,fty,hl,h) :)'~ I dh 
2 TT _ IAtAI( dS/dy ~,Jb 

(2. 2a) 

U(m, y) =Cly) F(m)lf J hrnt{m1-h(1-.!. ), /,)dk 
- t, 't1> 

-hlh.4., 

(2.2b) 

In fact, we do not actually consider negative offsets but write, for 

example, (2.2a) as: 

hm-x 

U( m, y) = F(m) .. Jrttm1-q(y1 h),h)t t(m-'ll~16h h )} I J, IJh (2. 3) 

l TT 
O 

d1/Jy <,, b) J,~4 

Numerically, we use the trapezoidal rule to approximate (2.3), where Ah 

and h~ are known from the available data. The corresponding midpoints, 

m;1-q(y,h;) or m,'-q(y,h;) for (2.2a), or m,· :t h(1-~/Z.) for (2.2b), may 

not correspond to generated data points, so we use linear interpolation 

between neighbouring midpoints to determine the appropriate value to use. 
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where M max and M min are the limits of the recorded midpoint data. This 

will lead to artifacts at the edges of the anomaly field, in our 

reconstruction procedure. 

When all the integrations have been done, we have reconstructed the 

back- projected field. This field can now be convolved with the function 

F(m) to improve the "map" of the anomaly field. We do this convolution as 

follows. In the discrete Fourier domain we construct the wavenumber 

function which is shown schematically below in Figure 2.15. 

,- . , 

Figure 2. 15 

F(k11,j) 
F(j) = 2rrj cos/.!!i) j = 0)32 

6'f- {-61-

f (321-J) = F( 32-j) 

Filter Function in Wavenumber Space. 

This function is then transformed back to the physical domain for F(m). 

F(m) is, by construction, a periodic function which is shown schematically 

below in Figure 2.16. 

I~ 

-----.:....f-'-d-'.....:\~:~' ..l-....--+-+-·-+-..lt-+"'-v"--~.,..,,.,1¥'1--,._-"""'"1¥ ........ ~-1---'~--+~ J 
~ \ I 

\1 J=32 

j 

Figure 2.16 Filter Function in Physical Space 
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If we simply convolve the function shown in figure 2.16 with U(m,y) we will 

have undesired spatial aliasing effects. To circumvent this, we augment 

the vector F(mj) j=0,63 with sixty-four zeros, so that schematically F(m) 

now is as shown below in Figure 2.17. 

I 
I 

I 
( 

I 
I 

F<mj) 

( 

I 
I 

J 

I 

--------4'rr..-i-..:,-!--l--+-+\l'¥11.._~~--.¥...--1'-~,A,,-...:..(_~J 

Figure 2.17 Augmented Filter Function 

Similarly, we augment the vector U(mj,Y) with zeros. We now take the 

F.F.T. of each sequences, multiply the Fourier coefficents together and 

transform back. We can plot the reconstructed fields with a raster plot. 

2.2 Numerical Examples. 

Example 1. 

For our first example, we consider a disk of radius 1, with constant 

perturbation 1, located at the centre of the field. Our minimum and 

maximum midpoints are for this example, M min=-5 and M max=5, and the 

thickness of the layer is d:4. our basic model for this example is shown 

schematically below in figure 2.18. 
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(s-,o) 

Figure 2. 18 Synthetic Anomaly Model 

We will vary the velocity profile and also the offset coverage for various 

examples. In all examples we calculate 64 midpoint positions, where the 

discrete midpoint positions are given by mj=M min +(j-1)x (M max -M 

min)/63. To start, we consider the constant velocity case. We shall 

synthetically generate t(m,h) for mj and hj=(j-1)X8.953/63 (j=1,64). For 

the inversion of this data file we shall use the constant velocity formula 

( 1. 21). Figure 2.19a shows the travel time perturbation data for this 

problem. The plot layout is as in figure 2. 14. We note the two "arms" of 

data. If we had taken .a point anomaly instead of a finite thickness disk, 

then the arms would be two straight lines, and the slopes of these lines 

would give the depth to the anomaly. For the point at (m,y), then from the 

two arms of figure 2. 19a, we would have from (1.20): 

m-m 
h 

I - y 
!/o 

(2.4) 

Thus, the slope of these arms leads to a depth estimate for a spatially 

confined anomaly. However, from (1.41) for the general case, we have that 

for h =O 
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/- 1Ycty')dy 1 

4 "0
c(y 1)dy 1 

(2.5) 

Hence, as we shall see, simply using (1.20) for c(y)=constant will, along 

with other errors, incorrectly determine depths of anomalies. 

Figure 2.19b shows the resulting back-projected field (i.e., no 

filtering applied). In these plots of the reconstructed field, we see the 

64 midpoints, and 16 depth increments yk=(k-1 )x4/15 (k=1, 16). Figure 2.19b 

agrees intuitively with the idea of convolving the "true" symmetrized field 

with .fl. (~,y) (see (1.25)), and we see immediately, that applying a filter 

which "kills" slow horizontal variations is an appropriate choice. Figure 

2.19c shows the results of applying the filter F(m) to Figure 2.19b. 

Figure 2.19d shows the reconstructed field, when the maximum offset 

coverage has been reduced to hmax=4.48. The two offset coverages correspond 

to the angles shown below in figure 2.20. 

4-

Figure 2. 20 Angular-Offset Coverage 

We see, as we expected, that the vertical resolution of the anomaly, has 

decreased. Figure 2.19e shows the synthetic travel time perturbations for 

C(y)=.2y+1. For this case, the offset corresponding to a turning point at 
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Y=4 is h:7.48, and we numerically take hmax=.8x7.48=5.98. The 

reconstructed field is shown in figure 2.19f. We note, that as we 

discussed in the theory, the vertical resolution of the anomaly, 

particularly at the top of the anomaly has decreased. We used equation 

(2.3a) for this reconstruction. For our largest gradient example, we take 

c(y)=1y+1 and compute t(m_;,h)j (mj,hj) for hj from zero to 3.92. Figure 

2.19g, shows the result of inversion, using the constant velocity formula 

(1.21). As expected from above, we see that the circle is too high in the 

field.Figures 2.19h and 2.19i show the results of using (2.3a) and (2.3b) 

respectively.The results are very comparable. 

Example 2. 

As we have discussed, our method is most accurate for anomalies near 

the bottom of the layer for velocity profiles which increase with depth. 

We will consider such a situation, with three disks of varying position, 

radii, and perturbation strength. Some rays will pass through more than 

one anomaly. We choose circles of radii (.5,1,.5). Their centres are 

located at (x1=-3,Y1=3), (x2=0,y2=3), and (x3=2,y3=3). The constant 

perturbations in each are (2,1,2) respectively. Schematically, the anomaly 

field is as shown below in figure 2.21. 
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Figure 2. 19e 
Travel Time Data-C(y)=.2y+1 
M min=-5, M max=5, h max=5.98 
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Figure 2.21 Anomaly Model 

In figure 2.22a we show the generated travel time data for this problem. 

Figures 2.22b and 2.22c show the reconstructed anomaly fields using 

formulae (2.2a) and (2.2b) respectively. Once again, there is not a great 

deal of difference between the results of using (2.2a) or (2.2b). However, 

there are some slight differences; formula (2.2a) seems to be more accurate 

with the vertical resolution of the anomalies. This is to be expected, as 

formula (2.2a) treats the larger offset rays more correctly than does 

equation (2.2b). 

Example 3. 

In this example, the anomaly model consists of three disks, all. of 

radius .5, which we show below in figure 2.23a. 
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1 

.1 

Figure 2.23a Anomaly Field Model I. 

For the model shown in figure 2.23a, the disks' centres are at (x1=0,y1=3), 

(x2=0,y2:2), and (x3=.5,Y3=3) and the disks all have slowness perturbations 

of one. The total anomaly extends over two depth units. The generated 

travel time data is shown in figure 2.24a and the resulting reconstructed 

field is shown in figure 2.24b. We now change the anomaly model to be that 

shown below in figure 2.23b; here we have positioned the overlapping disks 

higher in the field. 

Mmat=S'. 

Figure 2. 23b Anomaly Field Model II. 

The resulting reconstruction is shown in figure 2.24c and it is seen that 

we have not done as well for this second model as for the first case. 
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