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ABSTRACT

In seismology, the basic problem is that of deducing some knowledge of the
geological structure of portions of the Earth from observed seismic
signals. This 1leads to the concepts of seismic interpretation, or more
mathematically, the formulation of inverse problems.

Some aspects of seismic wave propagation can be interpreted in terms
of asymptotiec ray theory. In Chapter 1 of Part I, we describe the
numerical ray tracing algorithm we developed for layered media with
interfaces that can vary in three dimensions. We describe in Chapter 2,
how this ray tracing method is implemented in an inversion procedure. This
method is based on the theory of non-linear least-squares inversion.

In Part II of the thesis, we discuss two formulations of seismic
inverse problems, which are more analytical in nature. Chapter 1 deals
with the use of inverse scattering theory for the Schroedinger operator in
the seismological problem. In chapter 2 of Part II, we develep the theory
of the tomographical ipversion of travel +time anomalies to determine
velocity anomalies within the Earth. Here, we have extended, in an
approximate sense, the Inverse Radon Transform to situations where the

"background" velocity field varies with depth.
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1.0 Introduction Part I.

In Part I of the thesis, we examine the use of seismic ray theory, in
direct and inverse seismic ray problems. In chapter 1 the direct problem
considered, 1is that of finding the seismic signal, within the geometric
optics approximation, at a specified receiver location. The source is
known, and the medium consists of layers of homogeneous elastic material,
that are separated by known, non-intersecting, smooth interfaces that can
vary in three dimensions. We develop efficient and accurate methods for the
determination of seismic rays and we calculate exactly the rays' travel
times, amplitudes and phases.

In chapter 2, we consider the inverse problem of estimating elastic
and interface parameters of a layered elastic medium, from a knowledge of
the travel times and amplitudes of rays between various sources and
receivers, We wutilize the efficient ray generation methods of chapter 1,

in a non-linear least squares algorithm for parameter estimation.



Chapter 1. Direct Problem

Introduction. 1.0

In our ray tracing methods, we use the first order geometric optics
approximation to the solution of the linearized equations of elasticity.

The particle displacement, U, is approximated for high frequencies W by:

—

cew(t—o (X))

_(_/:C _(_/_,(__)_{) (0.1)

Here 67 (X) is the "phase function", or travel time to a point X, and Ugq (X)
is the amplitude coefficent. Using this approximation it is found that two
forms of uncoupled waves are possible for U. The wave fronts travel with
velocities Vp:(?A*%ﬂ)[30> Vz. which is called the compressional velocity,
and Vs=(M / r )9? , which is called the shear velocity. Here“/9 is the
density and 'ﬁk and A are Lame's elastic parameters. For a compressional

(P) wave, U

will represent a longitudinal ©particle motion, and for the
shear (S) wave, y ﬁill represent a transverse particle motion. The
orthogonal trajectories to the wavefronts are called the "rays", and within
homogenecus layers the rays are straight line segments. The first order ray
approximation to the elastic wave equation sclution is invalid for many
interesting and important seismip phenomena, such as surface waves, head
waves, diffraction, and shadow zone behaviour. However, even with these
limitations, this simple ray theory approach is very useful in seismic
interpretation.

Our problem in chapter 1 consists of 2 parts: i) determining a ray



which intersects a given sequence of interfaces, starting and ending at
specified points, and ii) determining for this ray the amplitude coefficent

and phase shift of the signal at the receiver.



Section 1. The Kinematic Problem.

We seek to find all physical rays which join given initial and final
points, and which intersect the specified sequence of interfaces. The
compressional and shear velocities of each layer are assumed known. In
general, there may be several physical rays which satisfy the above
constraints. The existence and computation of all the multiple solutions
is an important but difficult problem. We will concentrate on the problem
of finding one of possibly many solutions. However, we will discuss the
procblem of multiple solutions in a later section,

The seismic ray tracing problem has often been posed as a "shooting"
problem (eg., Shah[16]). The shooting angles at the source are varied until
the ray ends sufficiently close to the receiver. For a sufficiently good
initial guess of the starting angles, a Newton iteration scheme can be used
to refine the answer. However, a good initial estimate of the starting
angles may be hard to find and the endpoint of the ray may depend unstably
upon these initial angles.

Qur approach follows that of Keller and Perozzil[91,[15] for the two
dimensional problem. We formulate the problem as a system of non-linear
equations with the scurce and receiver positions Xs and Xg as known. An
Euler-Newton continuation method is used to solve the system.

There are several important differences between the two dimensional
and three dimensional ray tracing problems. There are twice as many
equations and unknowns in the three dimensional problem. In the two
dimensional case the ray must satisfy the scalar Snell's law at each

interface. In the three dimensional case, the ray must also satisfy a



scalar Snell's 1law at each interface, but the plane in which it is
satisfied must also be determined. This is done by requiring that the
incident ray, the emergent ray, and the normal to the interface at the ray
contact point, be coplanar. These conditions can be formulated compactly
as a vector Snell's law. Hence our system of equations is larger and
different from the corresponding two dimensiconal system. However for a two
dimensional problem it is easy to show that our system can be reduced to
the smaller two dimensional system of Keller and Perozzi [9].

The velocity continuation method to generate the initial, purely
compressional ray discussed in [9], [15] for the twe dimensional problem,
is no longer directly applicable to the three dimensional problem. We have
devised a new continuation scheme, where the continuation parameter is the
deviation of the interfaces from parallel planar interfaces. The details

of these methods are discussed below.

1.1a Notation Used.

Since a ray segment in every layer is a straight line segment, any ray
is determined by specifying its initial point gg and its final point Xg ,
and in order, the N points at which it intersects the interfaces, say
l,,'!;,..., Xu. We adopt the notation that the k'th node, 2&-1ies on the

interface z ', k=1,2,...,N. In each specific case, we must specify the

(P94
k
integers i1,i2,...,iN. The source and/or receiver points will often lie on
the earth's surface which we denote as the interface Z, . The normal to

the interface at the k'th node, is:



M = [~ 22 - Zi 4 (1.1)
~ ax Yy ’

The vector Z,fés, denotes the ray segment from the source to the first node

point, and similarly for the other segments. We alsco use the notation:
__)_(k= (Yx, Y, Zi ( Xk, }'&)> k=4,..,N
= X s X'
Xz Xs —Ns T SR (1.2)

o/kf/(axk)‘+ (ayx)* + (82k)*% " K=l .. N

- = — s ‘o —.v .
DAY= Xe=YXr , BYxz Y=Yem1 » BAEZ 2,
The velocity on the k'th ray segment is Vk (k=1,...,N+1) and it is also to
be specified as either Vp or Vs for the layer containing that segment. The

above notation is illustrated in figure 1.1.
1.1b Formulation of the Ray Tracing Problem.

In each constant velocity layer the ray is a straight line segment,
but at the k'th node ( the i K interface) the two ray segments (the
incident and the emergent) must satisfy constraints. For the two
dimensional case (see Keller ,Perozzi[9]1,[15]) this is simply the scalar

Snell's law

\41::-#5 (Zkv (?_(k"xlf-i>):: \/g(Ik~(2.<k+!",§5)) (1.3)
dk A+

where 27( is a tangent to the interface at poin‘c_)_(k.:()@,é-’,/'c (Xx)) and

Vk,Vk*,the 2 layer velocities. For the three dimensional case we require



Z210xy)

22 CY,y)

Figure 1.1 T1lustration of Notation Used



that the incident ray, Xk - X4, the emerging ray, X., - Xx ., and the normal
N.,» at the ray contact point be coplanar. Their plane is called the plane
of incidence. On this plane we require that (1.3) hold. The coplanarity

condition can be written as:

(Xewr = X)) x N = oL (X = Xuet) x N (1.1)
dkﬂ Olk

where “{ 1is an arbitrary scalar. When this holds we can write:

(X = Xx-1) =7 €a +8, €2 V% 8 =1
- s ’ (1.5)
(Xisr = Xx) = %3 Cn +/81§.—. X;l* /&z=1
=

where €n is a unit vector in the normal direction, M« , and _€z is a unit
vector orthogonal to &€,, and in the plane of incidence (i.e., it is the
unit vector parallel to Z_ of (1.3)). We will choose €¢ so that /8, >0.

Then the scalar Snell's law (1.3) reduces to:

Vguﬁ: = Vk/gz (1.6)

since Zyx-€n, =0. Using expressions (1.5) in (1.4), and |using

L Cn X N & =0, we cbtain:
ﬁz €z x Ne = o(/fl €z x Ny (1.7)

From (1.6) we obtain o = %4/ Vo . Thus we obtain Snell's vector law
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Viet! (Xk -Xea)xNe = -
dx ans (\;/,'j, € Xers = X )x N (1.8)

From (1.1) and (1.8) we get:

J2, .
Vice (Ayg + Az 39-5) - Vi (A}’kﬂ + A2y, _.._ny“‘_ ) (1.9a)
dg dkfl
22, et 224
Virt (Axx + A2¢ 22k)  _ Vi (B%en + B7cn =) (1.9b)
dx d ket
VK*] ( QZ(x A Xk - DZLK A yK) - VK ( DZLK Axk*l - DZ‘K Aykf) (1.9¢)
E3 ox )
i Iieer

Only two of these three conditions are independent. For example if (1.9a)
and (1.9b) hold then we can multiply (1.9a) by 92‘.";/'9)( and (1.9p) by
92"«/13y , Subtract and obtain (1.9c). Geometrically, this is to be
expected. The two vectors of (1.8) lie in the same plane; thus equating
two components of the vectors automatically implies that the third
component of these coplanar vectors will also be equal. There are several
equivalent sets of equations which can be obtained from (1.9) From (1.9a)

and (1.9b) we have:

92;' Iy ‘
(Ayx“'+azm.-§f) - (Aﬁ«l+A2mxii“) = Vkdk#i (1.10)
Vit di

A + A2 9% AXe + A2 %)
( Yx K _b_,'.‘) ( K (4 M

Multiplying these ratios out we obtain a new equation:

QZix (DY A2ksr ~AZx BYen) _ 2Zic (AXx BZxe1 ~B2xkAXks1)

oX J
’ (1.11)

— (AXc AYk+1 =AYk AXkn) = O
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This is simply the vector equation:

((.).(K'_)_(k-o)xNk)’(_’_(xﬂ‘.XK) = O (1.12)

which is the coplanarity condition.

Another interesting derivation of (1.9) is to consider Fermat's
principle; that is, the travel time on the ray is extremal with respect to
coordinate perturbations. Using our notation we can write for the travel

time on a ray with N intersections:

N+l
d «
X = AR
tr (Xe, Xa) Vi (1.13)
k=1

From Fermat's principle, varying the j'th intersection point:

2fr = 1 (AX;+ P25 az) 1 (A¥u + 22 48a)= O (1. 1ua)
IXj  diVy X etV %)
Hr = L (Ay, + P25 82))_ L CaYju+ 92] 82/n)= O  (1.14b)

ayJ Clj \{[ Qyj q'j-fl l‘//:!l Dyj

These are the same as (1.9a) and (1.9b).

We assume that the source position '2{5 and the receiver position _Xx
are known. Thus we wish to find the unknown coordinates (x.,y,) k=1,N of
the N contact points of the ray with the interfaces. The depth
(z-coordinate) of the ray's k'th contact point is implicitly known from

z:z,k(xk,yx). Hence we have 2N unknowns, but at each contact point we have
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two conditions from Snell's law (1.9). Thus we can form a system of 2N
equations in 2N unknowns. As mentioned above,there are several equivalent
ways to formulate the problem. We chose two such formulations to study
numerically. However, the concepts of the methods which we derive and test
for these formulations, apply for any of the other formulations. We denote

our system of equations in the vector form:

F(_X_J'Y,_XS,.XR) = ._Q (1.15)

Here X denotes the vector of unknown contact points:

(X"}'“x"’ Vayoeos Xn y"’) (1.16)

VY 1is the known vector of encountered velocities. We have explicitly
stressed in (1.15) that _)SS and —XR are important parameters in the problem.
Using (1.9a) and (1.11) at each of the N contact points, we define the

components:

— Vi . | .
Foer = 22 (aye + A2 D:;«lk) = Yo (A Yoo + A2 %?_;c) (1.172)
L3 K

F‘

Ay"AZ'"'"AZ“Ay"‘”) Lk (AN A2~ A A Xkl ) (1.17b)
- (AXKAS’K-H—AVKAXI:-H) k=l,,..)N

i ¢
ox

or from (1.9a) and (1.9b) we could use:

Fokn = \/k (AV+AZc 2 ) — Vic (AYey + A2t P2ik
Kk dk Jr a;,i dkil Yiert ket Dyx ) (1.18a)
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Fax ® ﬁg (Axx + A2k ?.g‘_'.‘. ) . VY (AXkw + 82kn P2y ) (1.18b)
dx o Xk din IXx

The first two components F, and Fz involve X ¢ explicitly. Similarly the
last two components Foyg,F2v involve X. g . explicitly.

Initially, we employed (1.17) before we considered (1.18). However,
we note that for situations where the &x component of .(Xx— Xu-) ¥ Nk is
zero at some node the system (1.17) is no longer valid. Geometrically,
this is because (1.17) forces (Xx =~ Xx-1) x Ng- and
"(L(K“ —-_)_(K)x_/_\_/,(_ to be colinear. When the "e," components of these vectors
are non-zero, their equality implies the equality of the two vectors, and
hence Snell's law is satisfied. However, this argument is not correct when
((xk - Xk )xNk)e €x =0. This problem can often be circumvented by
simply redefining the coordinates for the problem. However, for the case
of zero-offset rays where Xk—Xi-; +» Xkn ~ Xk ,and Nk may be colinear,
(1.17) is not appropriate. Formulation (1.18) is valid for  these

situations. Thus from this standpecint, formulation (1.18) is preferable.

1.2 Solution of the System of Non-Linear Equations,.

We wish to solve (1.16) using either definition (1.17) or (1.18) of F,
for the ray X. One commonly used method to solve such a system is Newton's
method. If X is "sufficiently" close to the root of F, then an improved

value X is given by:
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_)_<m t O{))(m (1.19)
-/
IX = =T F (X VX, Xe)

oF
Here, J is the jacobian of the system:d = ;y/éga. When the iterates in

1l

X(ﬂf')

Newton's method are '"close" ¢to a simple root, the iterates converge
quadratically. However, in complicated problems, it may be difficult to

supply a good initial guess szsﬂv.
1.2a Generation of Initial Purely Compressional Ray.

To start the calculation of rays for a given sequence of interfaces,
we first calculate the purely compressional ray (i.e., each ray segment has
the layer's compressional velocity) between a specified source and receiver
pair. To provide a good initial estimate for +this ray, we use a
continuation method. We write each interface zd((x.y) in the form

Ezi (’XK,yk} = ij ( Xk, yx) + Cup

(1.20)

The constant c,; represents a mean depth of the interface. Instead of

(1.20) we can introduce the one parameter family of interfaces:

Zo = M (e, we) + Coo osA¢d
kK =1 N

,ll.)

(1.21)

We will sulve the ray problem for plane parallel interfaces (A=0) and then
"deform" the plane interfaces into the desired (curved) interfaces (A=1),

as 1A; goes from zero to one. To determine the ray for a parallel plane
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geometry 1is easily done, and the details of solution are given in Appendix
A. Ve can write the non-linear system of equations for the ray, as A-

varies, as:

F (X)), Z(A) = O (1.22)

where z(A.) is the vector defined in (1.21). If a ray solution to (1.22),
¥ (A), is known for some value of A , then as an initial ray estimate for

the solution of (1.22) at /\ ‘+AA, we take:

_Xw)(/\-rA/\) =_X(,\) +(A)\)X(/\) (1.23)

This estimate for X(A +A)\) is accurate to order (AA)¥%¥2, We show later
how to calculate ;d,’—('/‘d)x . Thus, between A =0 and A =1, Wwe can consider
a sequence of problems at A ={Ay},(¥=1,2,...,Jd) AA=(Idw-Ay), and at

each successive problem, we start the Newton iterations with the estimate:

X ) = X(A) +a My X (AS)

(1.24)
A'=O A:’i

We  will call the step (1.24), from the solution at A =Av to the initial
estimate at A '=*)\‘m. an Euler step. The use of Newton's metbod to solve
(1.22) at each A, in conjunction with (1.24) is called Euler- Newton
continuation,

In practice, to minimize the amount of computation, we use (1.23) with
A =0, and AA =1. In most of our numerical experiments, this value of X

(A =1) 1led to a convergent Newton's sequence. If however, Newton's method
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does not converge quickly (say 7 iterations), we return to (1.24) with

A, =0, Az =1/2 ,and A5 =1. In general, we can increase the total
number, J, of Euler steps to some Jmax, in order that the sequence (1.24)
eventually lead to a convergent Newton's sequence at A =1.

For the two dimensional problem (i.e., interfaces can vary in only two
dimensions: z=f(x)) Keller,Perozzi [9],[15] used a different continuation
method to generate the initial compressional ray. They used a continuation
in the vector of velocities V(A )=(Vp,1(A‘).Vp,Z(A.),....VN+1(A.)f: At
A =0, this vector is generated so that a simply chosen ray X is an exact
solution to the system F(X ,V(0))=0. The velocity sequence V(0) is, in
general, unphysical; some velocities may be negative and velocities
/corresponding to the same layer and type (P or S) may be multi-valued. For
the three-~dimensional problem, there are 2N unknown nodes, and so we could
not arbitrarily choose a ray vector X, and generate a N+1 component vector
V, such that F(X,V)=0. Thus we used the idea of continuation in interfaces,
as outlined above. The advantages of this method are that: 1) it is a
continuation in a physical parameter; that is, for each A the resulting
raytracing prbblem is a physical problem and it is even of interest for
some situations to know the path of solutions; 2) often problems arise in
seismology where the interfaces are only slightly different from parallel
planes, and hence the ray solution for ‘A =0 is an excellent approximation;
3) as we shall see in the numerical examples, this seems to be a robust
method in conjunction with (1.17) and (1.18). That is, even for interfaces
with appreciable slopes, X(A =0) is often a sufficiently good estimate for

X(A=1).
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1.2b Continuation in Velocities.

Associated with a given sequence of N interfaces (i1,i2,...,iN) there
is a N+1 component velocity vector, containing the velocities of each of
the N+1 ray segments. Each segment can have either a compressional
velocity Vp or shear velocity Vs. Thus allowing for every possible
sequence of shear and compressional velocities, there are 2“" possible
velocity vectors, associated with a sequence of N interfaces. We denote

N
the set of all such possible velocity vectors as {kal. If we know the ray

K=q

solution, gk, for the velocity sequence V., then to find the ray solution

Xy For the sequence Vi it is natural to consider the continuation
problem:
Fi(x\); Va))= 0 OSALA

Vr) = (1=A) Ve + AVie) 5 X (o)=__)§k (1.25)

Equations (1.23) and (1.24) (Euler-Newton continuation equations) are also

applicable to this continuation (1.25). Starting with  the purely

]
compressional ray, it 1is easy to generate the rays for all 2N*velocity

sequences, in such a way that successive velocity sequences differ by only

one component.
~1.2c¢c Continuation in Receiver Position.

Often, one wishes to calculate rays to many different receivers_&ﬁk
¥

=(Xg,Yr,2g) - Assuming we know the ray solution X for the receiver at XRi’
) =R

then a natural continuation method, to generate the ray for the receiver at
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Les cn is to consider the parameter dependant problem:
F XA Xeen)) = 0 osA¢ 1
Xr(A) = (l-/\)_){k,c' + A Xgr,(H (1.26)
Xtlo) = X/

Once again equations (1.23) and (1.24) (Euler-Newton continuation) are used

with (1.26).
1.3 Calculation of Variational Derivatives.

We use the term, variational derivative, to refer to the derivative or
variation of the ray solution X with respect to some parameter or parameter
vector, P, in the problem. We have already alluded above, to ‘the
calculation of _):(_('}\.), where A is the continuation parameter for the
deviation of the interfaces from parallel planes, or for the different
velocity sequences, or receiver/source positions. It 1is the algebraic
formulation of the problem, that makes possible the easy calculation of
these quantities. We will present the general formula, for arbitrary
parameter variation and then give the resulting formulae for some specific
cases.

Suppose we have some parameter vector p of dimension M and we wish to
calculate the 2NxM matrix d’-‘/ J_P. We indicate the parameter dependance of

the kinematic problem by writing (1.17) or (1.18) as:

F(Xtp);p) = 0 (o
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Now this relation holds for all p, and we assume that the solution X=X(p)

depends smoothly on p. Then

i‘:F;- :_i-{: d_)__{ + Q:E = O
d-P &.X d-P ap - (1.28)

or

dp - dp

where __g_ is the jacobian (1.19) of the non-linear system of equations

ax _ —J_,_OL/_-'_ (1.29)

(formed from the ray solution at the next to last Newton iteration). To

-~/
find the ray solution X, (see above) we use the already calculated J
(numerically, we know its L-U decomposition). Thus calculation (1.29) is

"cheap" numerically. If p is a scalar, A\ , then clearly (1.29) yields:

Q_I_)__(_ = - __\?_—'IQf (1.30)
dA oA

We note that if we usg different formulations for the problem as outlined
in 1.2, then the definitions of F,J, and gf/ QA are different for each
formulation. However, the result d.’.(./d)\ from (1.29) must be identical
(assuming we are at the same X ) for all cases. We used this idea to check
our algebra for (1.17) and (1.18).

We now give two particular examples. First, let us consider d—‘x /'JXR'
where Xr =( )Xo +' %) 1s the receiver position. We will take zékag):O.
From (1.29) we must calculate J—F/a_)_(k.. We will use the formulation (1.18).

The quantities Xg , Y& only enter into the vector components Faw-1, and

Fany - The derivatives aF‘d"/gxg., ""F’”‘/ayk., 95"./9XR , and 96'”/ dYe are
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respectively:

VN (XR"XN)((VK yu) -Zn 3 )" bu
JU“I

-V ((Xz- XN) +Z~ t+ 2y ”c‘”(y yN))

3
Nt

biz

Vi (Y= Yn)((Xe - Xu) - 2y ‘gﬁ";) = 52.2
dwas
_ Y 2 .,
Vv ((Yr =Y )+ 24" + 2w ay"(xk ~Xu)) = AZI
3
]
Now, we can write
IKe) o |
dx - _J
d....R » by bz |e—2N-I
| b2y D12z .JS——ZN

We now outline the calculation of the derivative X(A),

continuation parameter in (1.21). We rewrite (1.17) as:

Fee-1 = Vm(ayu()\(ﬁk -/—: )+(ci-C, DA Ay

ny

where

S (ax)® # Cag)'s (A £ )eley )

_ VK (Ayk.“ + (A (-;‘K'H 'FLK )+ (C‘KH C‘k >)\ 99;(

[ (8% Ve (ayhn)s (A (i Fi ) G

G )’

(1.31a)

(1.31b)

(1.31¢)

(1.31d)

(1.32)

A is the

(1.33a)
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Fx = A 2k Cage (Aafu +80k) ~agker (Nafy + A2k )

A gﬂ (8% (A A Fert +ACket)-AXken (l\Aﬁd‘ACk”
Yk - (1.33b)

- (4 Xk A Ykt =AYk AXkt1)

Now the analytic calculation of 13 / JN\  is straightforward (although
messy); similarly for F as in (1.18). From (1.30) we can now find X (A).

For the case of velocity continuation, we have

W(CA) = AVin + (l—/\)_\_/K (1.34)

where here Yx 1is the sequence for which we have the ray solution, and we

Now from (1.17) we have

anJ“’ I (4 Yer1 + A Zkn be" )
IV e Ix

A 2 2fk) -k
- 5 4Yx + AZ 95//:) Jt

wish the ray solution for -Ym

J'=k

K
O Ot/)el"Wt.SC (1.35)

L

aer — O J‘Zl,...)N
J Vk

Thus, the matrix °F /9V is a 2Nx(N+1) matrix of the form
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— N+1 -
tIxxo ... .

o0 O --

oxx (Y

0000

OO0 XXO --
2N

X X%

\1/.8 o

Now W (A)=(Y, ¥ )= AVk or

[
>

AV (8Ye 'I'AZW%%'-L)—A Virr (a4 +42v 2&)

4
J»u CJAI

BV (BXuet # B 2wt S m) AVm(AXwAE» )

iy olw

(v Cay, 402,50 )_ s (ayraz )] A
———
di
o
F = 9F wen=- 3 2N
A~ Bw '
Sl Aymf»d&ui% - dh(dswﬁﬁ
o dw
| o A4
For our other formulation (1.18) we obtain
Y AR
AV (BYe +47: ) A\A(Ay,wz,%)
dz o
- aVa(aX+a2, 20)
DE - - Ay (Ax:."'AZJ ) 2 (8K ,QXI 2N
A o2 d’!
IA

(1.36)

(1.37)

(1.38)
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From (1.30) we can now calculate the variational derivative of the ray
solution with respect to the velocity sequence. Thus in general, with an
algebraic formulation of the problem, it is easy to calculate the variation

of the ray solution with respect to medium paramaters.
1.4 Existence and Uniqueness of Ray Solutions; Path Following.

Thus far in the theory, we have discussed finding a particular ray
solution. However, it 1is possible that for a given source/receiver
positioning there is no ray solution. For this situation, of course, our
methods will fail to converge. Alternatively, many solutions may exist for
this non-linear problem. We now examine the path of solutions which can
exist for the path of continuation as defined in (1.21). In figures
1.2a-1.2c, we show three possible path situations. The vertical axis
coordinate is some distinguishing characteristic of the solution, such as
its norm, one of the ray components, etc. Figure 1.2a shows an example of
non-existence of a ray solution at A =1. The parameter value A :)\o is
called a "limi£ point." At this point, the Jacobian df’/'dé’ is singular.
However, from Keller [10], one can still follow the path of solutions, by
making the continuation parameter the arclength along the path. Figure
1.2b is a bifurcation diagram where (A, , Xl:c)) is the bifurcation point.
A simple example of where this arises in ray theory is shown below in

figure 1.3.
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Figure 1.3 A Physical Example of Ray Bifurcation.

We consider the zero-offset ray (ie _)_(sz_)_(", for Xs=0).The vertical ray is the
only solution until the curvature of the interface at the node (0,-10)
exceeds the radii of curvature of the wavefront, or A > 1/20. Then, there
are three ray solutions (x=0,z=-10) and (X::/%:;'_i_ L=10+ AX Z).
Finally, in figure 1.2c, we show a situation with multiple solutions, but
not with bifurcation points.

We now give a two dimensional example. If we start with the planar ray
solution, figure 1.4a, use an Euler step with A)\=1, then for }\ =1 the
resulting ray solution is shown in figure 1.4b.However, if we follow the
path from )\:O more closely with steps of AA.=1/32 , we find that the
"econtinuous"™ path changes rapidly and in fact does not lead to the solution
of figure 3b. The first path steps with )\:1/32, ).:1/16, and >\:3/32 are
shown in figures 1.5a-1.5c. Thus our continuation method with A/\ =21 leads
us to an initial estimate for which Newton's method converges to a ray
sclution on a different path of soclutions. As will be seen in the
numerical examples, our method will often converge to a ray solution with
A/\ =1. However, from above (where multiple solutions exist) this solution

may not lie on the path leading from the planar solution to A =1,
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Figure 1.2c Unconnected Solution Paths
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| e

zZ="10

Z=-20

Figure 1l.4a ©Planar Ray Solution
(Note: x,z coordinates have
unequal scalings)
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Figure 1.4b Ray Solution X = 1; ax =1
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Figure 1.5a Ray gplution A = Ak = 3%
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Figure 1.5b Ray Solution )\ = 165 AX = 33






30

Section 2. The Calculation of Amplitude.

In the previous section we dealt with the kinematic determination of
the seismic ray. From this, we can calculate the travel time along a ray.
In this section, we shall discuss the determination of the first order

ampl itude coefficent Uo. In general, Uo is complex and we can write

(&
Uo(x) = LX) ne 2.1

where n is the unit vector in the direction of the particle displacement,
and € is the phase. If the seismic source has a time history

@ .
t
tw
F(t):j@ﬂhu)e Jdw , then according to seismic ray theory, the contribution

-0
to the seismic signal at receiver X,, W(Xg,t), from the particular ray with

travel time O(Xg), is given by (see Cerveny and Ravindra [3]):

D© (lt-o-(xy))

L)o(_)_(n)‘(g%&é Rel € Stw s (2.2)
. 0 wlt-5(Xg))
_?SML’Im[ e élugﬂ )

L PRl @ s (¢~ (%p))
The terms --_’—;_-Tm € Slw)dw and —ﬁ,l-keoe szmn;f are a Hilbert

WX, t)=n

Transform pair. From (2.2) we see that the phase "g" has an important
effect on the pulse shape.

We will break the calculation of Uo into three factors: 1) the
calculation of transmission/reflection coefficents at each interface; 2)
the calculation of the geometrical spreading factor for the ray tube; 3)
the location of internal caustics, The formulae, which we use, are not new
and have been derived by various authors. We have gathered together these

various formulae required for numerical computation, for the sake of
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completeness.

2.1 Calculation of Transmission/Reflection Coefficents at an Interface.

We consider an interface z:f‘;(x,y)-u-c.-‘ , Separating two layers, A and

B, with different elastic constants A, ,Ma » PA (c1=/__'\/‘_a?_/" . ‘
e2= /E ) and Ag , ﬂg,PB(c3T/A—B—-‘+2/uB Joli=z /Iy ). At the
/.74 o 8

node X o Vi1 2 there is an incident compressional or shear displacement. At
this point on the interface, the following boundary conditions must hold:
1) continuity of particle displacement across the interface; 2)continuity
of tractional forces across the interface. For these conditions to hold in
general, requires that there be a transmitted compressional displacement
R3;, a transmitted shear displacement Ry, a reflected compressional
displacement B,, ahd a reflected shear displacement Rz as well as the
incident displacement vector at the node. We now follow the paper of
H.B.Keller[11].

Consider, at each interface, the following coordinate system. 5, is
the unit normal at the k'th interface , and the orientation is chosen so
that E,-(ﬁ*&.,) >0. fz is the unit tangent vector. It is in the plane of

incidence determined by (Xk - Xg~)} and ;l , and is orthogonal to i, .

Its orientation is chosen so that ;,_'(_Xx - _)_(k-, ) >0. 53 ' is
defined as %, X i:_ . For the reflected and transmitted
compressional displacements, _R, and _gs ,» the displacement vector lies

along the direction of their ray, and hence entirely in the plane of

incidence and we can write:
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_KI = e{, aos 915 + a’/ 31.”'9/ 32_ (2.3a)

Rs =dsos @3, + o Siney 2a (2.30)

The shear displacements, .52 and 1?4, lie orthogonal to their rays and
have a component in the plane of incidence (amplitude of> and

a{, respectively), the SV component, and in general a component normal to
the plane of incidence, the SH component(éLLand 634),and we can write for

these displacements:

Ez = dzS5in 623 ~d2 COsez__?,_ ‘*ﬁz ?, (2.3c)

Ry =oy siney S, —dy Cos ©4 3, "'ﬁ‘l __;3 (2.3d)

(the small arrows indicate particle displacement direction)

Figure 1.6 Coordinate System Used at Each Interface

The incident wave is of the form
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Ro =dcosenz, +4o5in6, 3z (P) (2. 4a)

or

_80 = 0(9 SLI') 6. _?, - olp COS 6> E; +ﬂo Ej ('S) (2. 4b)

From Snell's 1law, wWe can calculate all the necessary trigonometrical

quantities; we get:

Sen © = _C_l Sin 6,
Co

cos & =05 1-Sin*@;  or —q/" (:./Sl;)z%"l (2.5)

0; = -1 J'=1or2,~ 0]=.Z j.=30r4'
We note that for some of these "splitting" angles we may have to use
complex trigonometrical quantities. At an interface, the boundary
conditions decouple into separate boundary conditions for the P-SV
coefficents ( £; , 2 yol3 +ol¢ ) and the SH coefficents (ﬁz_ ,/@4). If the
incident ray is shear, then the SH amplitude coefficents (i.e.végl or/é?y )

are given by:

/67_ _ _/@o _g‘_f; cos &y _,é{f COSGL)
A

/54 -2/,0» ci‘,, 80592,/50

(2.6)

where:
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A= HBasoy . M e
Qy Ca oS &

For the P-SV coefficents, Snell's law and the boundary conditions at the

interface yield the following 4 by U system:

— “1r - - -
COSQI Sinbdsz - QOS5 s - s:'neq o(l o kl
‘ 2.7
Siné) - Cos 62 - Siné3 Cos &4 A2 |= |doK:
A tos 28z -ﬁc,smze‘ PaCator26y (0,0, sin 26 ol3 Ao K
*é‘z« 5n29 3000526y %‘_s 5in2€s <5 Cycos26y || o4 A> Ky
3 TR - b -
Here for:
a) incident compressional displacement
A/[ = (os 6 ko = —-sing K; -:'/OA Q; Cos26,
(2.8a)
k'4 = —MA sn26;
. C'I
b) incident shear wave
k= -5in@, Ke=- 005z K; = 74 C2 i 26:
k= % Ca o5 202 (2.80)
For a free surface, the system reduces to:
a) incident compression wave
Z 2 Z .
a(/ = —olo/ C1 Cos 262 + Cp sin26€: Slnzeo) (2.9a)
a? eos* 20, - Co? sin262 511260
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dz =olo (2CiCas COS 2602 SN26,)
(¢ cos™ 20, C2°Sin26;5:n26%)

b) incident shear wave
0(1 = —do (2 c/ Cz CoS26n .S’l'nle'o)
(C%C05% 26, + C2*$(N26,SN26%)
oo (~C*cos>260 +C53¢n 26, Stn260) (2.90)
( Q*cos?* 26, + Ci*Si'n26,5:n26e)

o 5

Thus we have the formula for the transmission and reflection coefficents at

D(:.z

an interface in terms of the local coordinate system defined above. Unlike
the two dimensional case, where the plane of incidence is constant for all
interfaces, the plane of incidence, and hence the definition of the SV and
SH components, changes at each interface for the three dimensional problem.
Also, due to the local nature of our coordinate system, the definition of
positive shear displacement direction can be reversed from one interface to
the next., Thus, for the case of a transmitted or reflected shear wave, we
have to recompute 06> and Do for the coefficent calculations at the next
interface. For a compressional ray this is not a consideration as the
displacement is in the direction of the ray segment and hence is in the new
plane of incidence. To calculate the new quantitiescxé ,/52 for a shear
wave, We simply multiply lgl or 164 by the matrix which relates the two

coordinate systems, and find the new values.
2.2 Calculation of Geometrical Spreading Factor.

The Geometrical Opties approximation conserves energy in an

infinitesimal ray tube about any ray. Thus, the amplitude of the
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disturbance at a point X is (in Geometrical Optics) inversely proportional
to the square root of the cross-sectional area of the tube at X. If r? andt’7
are the principal radii of curvature of the wavefront at _)_( , the area of
the ray tube c/o‘ is proportional to f% Y'-7 . If a sequence of interfaces

is encountered we have a situation like that shown below in figure 1.7.

Xs : 4‘ unit amplitvde on Sphere surfdce
10) - /0) -
(A A

Figure 1.7 Ray Tube at Interfaces.

At interface 1 the amplitude is proportional to (Ey r,, /r ln)rm)

thus at the second interface the amplitude is proportional to

o), oW/ ey 1) 1,

Er% r’l M'i rz;_) /2' , or in general we have that the geometrical
qa) rnuy\,-i 2) ,-nu)

spreading factor at X., R(X5,Xg) is given by:

/

to) 0 t /2.
Y A f; Pr)” 77-('%“) r)/“)) (2.10)

R(Xs,_)_(k) I;(FI”M),—,?(FM/N—) [ (r () P {e ))

Thus to calculate this factor we must know the radii of curvature of the
wavefront prior to reflection/transmission and be able to calculate the

curvatures after. The formulae for this are given by several authors; we
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follow the work of Stavroudis{17].

Three local coordinate systems are defined for the incident wave, the
interface, and the transmitted/reflected wave. For the incident wave we
define_[} ,_P , and & ; for the interface we use the coordinates ﬁy ,JP ’
and _é?,' » and for the emergent wave we use _I:z ,_P , and Qz . The vectors
19 and [, are the normalized incident and emergent rays. The vector N

is the unit normal to the interface, chosen such that_!}’.él 50. We use

the definitions:

P=(r¥N), Qi=rxP, Q:=N*P
Q. =[x P

(2.11)

The incident and emergent layer velocities are denoted by V2 and V1. These

coordinates are shown below in figure 1.8.

I

tangent plane.

Figure 1.8 Local Coordinate Systems.

We now suppose that the two principal radii of curvature of +the incident
wavefront (the infinitesimal patch of the wavefront along the ray),f},

r%, and one of the principal direction vectors_y% are known. The cosine
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of the angle between _\__/; and P is found from(es® = Vs P . If
we denote the radii of curvature of the wavefront in the P and Q
directions by f} , and f% we have from Euler's thereom in

differential geomeiry:

Z . 2
A _ cose + swin & (2.12a)
Ip Iy r'y
__[— -— _S_lﬂ.:Q + Closz (2.12b)
/? .P; /77
Denoting the torsion of the geodesic in the Q direction as /g~ we can
write:
A4 _ 1 (__L _ L )sn2e (2.13)
o 2 I‘§ I

4+ = L4 L / (2. 1)
/’f f‘? p; /-7

Subtracting
L _ 1 _ CoS26 _ CoS26& (2.15)
f’,; f‘z /’? f’7 :

From (2.14) and (2.15) we obtain that:

tan 26 T _ L (2.16)

=2
oy fy
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By taking directional derivatives of Snell's vector law in the P and Q

directions, we get:

—I‘L = ._,47__ + -RA (2.17a)
P 4 P

os & = neose + b (2.17b)
o’ r F

s’y = nNess + . (2.17¢)

where:

b= cos@, - n cos 9}
n=vV2/V1

/ are the radii of curvature in the P,deirections
f%r the transmitted/reflected wavefront.

/
& 1is the corresponding torsion

Rp,Rq, &~ are the interface quantities.

In our notatibn, curvatures will be positive if the deviation of the
surface from its tangent plane is in the direction of the defined normal
vector. Here our normal vectors are jﬁ ,Ay , and l; . A positive
wavefront curvature corresponds to a converging wave. To begin the

calculation of the spreading function we know that at the first interface
p= Ny = Vivkw -d (2.18)

where "d" is the distance from the source to the first interface. We can
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take _V, =P and hence ® =0 and l/a— =0. From equations (2.17) we now

/
calculate ,‘:ﬁ; .';?L,. and 77 An angle ©  between a principal direction and

can be calculated from (2.16). We now calculate the new principal

7
direction vector, l/; , and the principal curvatures ;I-/ and ;._I'/ .
A % n
/ / . /
_M, = Poose’ + & sné (2.19a)
/
_L/ = 005’0’ 4 sin*0’ } sin2e (2.19b)
’ 7
r; I"P f‘7' o
2. 7 .2,/ . 4
A = Lo5© 4+ Si6 - 526 (2.19¢)
r,’ ’ ’ ’

To transfer to the next interface we have the relation for the

principal curvatures

/[ = / I = ,/« (2.20)

Inew) ‘.
r’ f’; d fy (hew) ry - o

AVE Y

where "d" here 1is the distance travelled from the one interface to the

next. The new angle Qwis calculated from

/

oS Gnew = Lew * Yy (2.21)

. / / / .
and then we determine > , ;.;‘, and 5= from (2.12) and (2.13) and continue.

At each ray node, we must calculate the principal curvatures of the
interface and the angle between P and a principal direction. We make the

following definitions:
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E = 1+ %)2 (2.22a)
_ [9Ff

F - (%)(%'{) (2.22b)
- of )2
= 1+ 4 (2.22¢)

G
L GG e
B rErEr e

Here, we are taking the interface to be of the form z=f(x,y). The

principal curvatures and the associated principal directions can be found

from the eigenvalues and eigenvectors of the system (see Stoker[18]):

Il

(A - kB)x 0

where:

i

A

(2.24a)

) (2.24b)

150
1
<
D Mz X
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The eigenvalues k give +the principal curvatures and the principal
directions are determined from the corresponding eigenvectors. Using the

notation_§=(x,y),the principal direction is given by

| 2f f
l(P = ,X(-I:O)DX) + y(oii;‘%)

/X’ + Yr o4 (x%a»ygyf)‘ (2.25)

Using the above described methods we can calculate the exact geometric

spreading function for a ray as given by (2.10).
2.3 Calculation of the Location of Caustics.

In section 2.1, we pointed out that in general, we have a complex
valued system to solve at each interface, which 1leads to complex
reflection/ transmission coefficents and a phase shift of the seismic
signal. The other source of phase shifts along the ray is when the ray
tube passes through a point where the ray tube has =zero cross-sectional
area. Bquivalently, this point is where one of the 2 principal radii of
curvature of the wavefront is zero. We call such points caustics. Near
these points,léb l becomes infinite and the ray theory is not wvalid.
However, along the ray, away from such a point, we can '"patch up" the
theory by introducing a phase shift of T /2 sgn& to the signal. The
location of these caustics is very easy to find in our formulation. As
outlined in the previous section, at each interface we calculate the
wavefront curvatures f} and f% . If /; or ,} is positive (say /} ) then
the wavefront is converging along the principal direction. At  the next

interface (or at the receiver) the radius will be f; -d. Hence if G} -d is
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negative then the ray tube has passed through a caustic in this layer. The
location of this caustic point is given by

xcaasl-;'e, = Xk * 5_’. (_Xk#l "’5")

g

(2.26)

Here "d" is the distance || _X""’ - )_(k Hz and ._XkH,_)fk are the "k+1" and "x"
ray node points. It is possible for there to be +two different caustics
within a layer corresponding to both radii vanishing at different points
within the layer. If a principal radius of curvature 1is negative at the
k'th node, then a caustic along the next ray segment, corresponding to this

principal direction, is not possible.
2.4 Modifications For Receiver at Free Surface

If a receiver is situated right on a free surface, then the observed
seismic response is the sum of the incident ray and the reflected and
converted displacements at the surface. Formulae (conversion vectors)
relating the incident displacement and the observed free surface response
are given in Cerveny et al, [3] Unless otherwise stated, we will, in our

numerical examples, be calculating only the incident amplitudes.
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Section 3. Numerical Implementation and Examples
3.1 Numerical Implementation

Here we outline some of the characteristics of the ray-tracing codes
developed. The codes were all written in Fortran-IV and implemented on a
VAX 11/780. The wuser inputs analytic expressions for the interfaces

encountered by the ray into a subroutine. The analytic expressions

for Q‘FK /ax , afk /9,9 , D?k Dm(/ayl.

/X%, , and P /9)(9}1 are also user
supplied for each interface. The mean levels &J of the interfaces, the
sequence of the interfaces encountered, the layers' shear and compressional
velocities, source and receiver positions and other required information
are input at the terminal at the beginning of execution of the program.
Using the values {CK}. the parallel plane problem is quickly solved
for the purely compressional ray. The details of this problem are outlined
in Appendix A. At this step we form the Jacobian matrix J, for the system
formulation used, with A =0 , %F")-(- =0, -{2—% =0 etec. We then find the L-U
decomposition of J and calculate J_’S /dA . The Jacobian for all
formulations (see figure 1.9) for N>1, has 7 bands, and thus we use a
banded system solver. For many of the other continuation steps used in the

programs, the L-U decomposition of J already exists, from previous Newton

iterations, and hence can be reused. The quantity

X' = Xio) + :_;/_;’\-f AN (3. 1)
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Figure 1.9 Banded Structure of Jacobian
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with AAk=1 is now formed. The continuation parameter A is set equal to
1, the Jacobian matrix and the residual vector of (1.17) or (1;18) is
formed, and the Newton iterations begin. If the number of iterations
exceeds 7 without the Lj norm of the residual vector being less than .0001,
we return to the previous value of A , and recalculate (3.1) with AA =
/2 . We will now have to take two of these continuation steps. This
process is continued until either we reach a A)\ that is smaller than an
user input minimum or we solve our problem to within a residual less than
.0001 ,

Once we have found the purely compressional ray, there is the option
to generate the rays for the various P-S velocity permutations. Velocity

continuation is used between the successive velocity vectors to generate

K velocity vectors,

these rays. The algorithm used sequentially arranges 2
0< k< N, corresponding to the first k+1 layers, so that each differs from
the previous one by only one component. As an example for k=N=3 we
calculate  for [P,P,P,P], [P,S,P,P]l, [P,S,S,P], [P,P,S,P], I[P,P,S,S],
(e, s,s,s], [p,s,p,s8], and [P,P,P,S] (we use the notation that "P" denotes a
compressional ray segmeﬁt and "S" a shear segmenti). Here we have assumed
that we wish the first ray segment always to be compressional in the
calculations. The parameter k is input at the terminal at the beginning of
the execution of the program. One can also return to the saved purely
compressional ray solution and wuse continuation in receiver position to
generate a seismic gather. For each ray, using the formulae of section 2,
we can quickly calculate the ray's amplitude and phase.

We checked the amplitude/phase calculations by running some simple

examples where analytic answers are known. For example, for a stack of
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parallel plane layers, an analytic expression for the geometrical spreading
function 1is known (see Ceverny,Ravindralid]). We also checked to make sure
that the 2 different formulations of the kinematic problem ((1.17) and
(1.18) ) gave the same variational derivatives and solutions for the same
problems. The program will, if desired, print out the ratios of the

cartesian components of Y."_t!(_)gk ~Xk-1)x Nk and dy'-‘ (X - Xx)X Nk for
K

d Kl

k=1 to N. These 3 ratios should all numerically be equal to one, if in

fact a physical ray has been found.
3.2 Numerical Examples.
Example 1.

In example 1, we shall show the various stages of calculations of a
purely compressional ray [Vp,1;Vp,2;Vp,2;Vp, 1] and the ray
[Vp,1:;Vs,;2;Vp,2;Vp, 1] for the following interfaces:

z1: X**¥3/10 + Y¥*¥3/20 —X/5 + Y/4 -5

(3.2)
220 -X#%2/20 - Y*%2/10 - 10

The velocities for this model are: Vp,1=6, Vs,1=3, Vp,2=8, Vs,2=4. Here,

we take the sequence of interfaces to be as shown below in figure 1.10.
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Figure 1.10 Schematic Cross Section for Ray

We calculate the rays from the source (x=0,y=0,2z=0) to receiver
(x=1,y=1,2=0). The calculations, shown below, used formulation (1.18).
The initial planar estimate , shown below in Table 1a, for the purely
compressional ray, required 1 bisection and 2 scalar Newton iterations (see

Appendix A).

iTable 1a. Planar Solution
1

1 .
inode| nyn

' ]

1

i

H : " y" :

i i I i
i 0 0.000000 i 0.000000
N I 0.214111 ! 0.214111 |
P2 0.500000 i 0.500000 |
i3 0.785889 ' 0.785889 |
P4 1.000000 i 1.000000 |
] 1 | 1
| 1 L} 1
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iTable 1b. Initial Ray Estimate
1
i

!

:
=n°de ; “x" : “y" :
b : :
1 0 0.000000 i 0.000000 |
{ 1 1 -0.163438 |  0.182553 !
i 2 | =0.067111 i -0.001901 |
| 3 | 0.53983% | 0.824263 !
A 1.000000 i 1.000000 |
] § ] ¢
1 t [} !

to) d
The initial ray estimate:_X° = _XIo) + :f% is shown above in Table
1b. With this initial estimate we have a residual, ::F(X)!:z=1.80. The
two successive Newton iterations had residuals: 1. 1.255E-2 2. 6.55T7E-6.

The resulting ray solution is shown below in Table fic.

iTable 1c. Ray Solution velocities 6,8,8,6
]

1.000000

]

]

]
inode| nwyn i nyh i "deviation from|
i i i i plane" i
i 0| 0.000000 i 0.000000 | 0.000000 i
i1 1 -0.069961 H 0.326969 | 0.097448 d
12 0.169430 i 0.329889 | -0.012318 i
i3 0.594940 i 1.026166 | 0.212640 i
I H 1.000000 | 0.000000 i
i i i i

{Table 1d. Estimated Ray 6,4,8,6

3

|
'node | Wyt ! my !
] ' i ‘
I l ] i
i 0 | 0.000000 H 0.000000 |
N 0.201051 i -0.037784 |
2 0.209590 i 0.178123 |
i3 0.612635 i 0.947115 |
I 1.000000 H 1.000000 |
' t 1 1
] i i i

We now use the solution of Table 1.¢ to continue to the ray for the
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velocity sequence [Vp,1;Vs,2;Vp,2;Vp,1]. Using a single Euler step, the
estimated ray for this velocity sequence is shown above in Table 1id. With
this estimate, we have an initial residual of .3633 and the residuals for
the following two Newton iterations are: 1. 1.653T7E-2 2. 3.0816E-5. The

resulting ray solution is shown below in Table 1le.

iTable 1e. Ray Solution velocities 6,4,8,6

i

i
inode| nxn H "yt | "deviation from|
i i i i plane" i
i 0 | 0.000000 H 0.000000 | 0.000000 i
[ I 0.346168 i =0.214290 | =0.119150 i
P2 | 0.298160 H 0.069099 | -0.004922 i
i3 1 0.661044 i 0.891464 | 0. 154966 :
T 1.000000 i 1.000000 | 0.000000 i
] ¥ ] [] 1
1 i ] ] ]

We also calculated the compressional ray to the receivers (x=1,y=1,2z=0),
(x=1.5,y=1.5,2z=0), and (x=2,y=2,z=0). We show the calculations for the
interfaces corresponding to A =0, A =.5 and A =1 in figures 1.11a-1.11c.
We also used our other formulation, (1.17), to calculate the above Tables.
There were, outside of small numerical effects, no differences between the
results. At each stage, formulation (1.18) always required as few, or one

less Newton iteration, than did formulation (1.17).

Example 2.

In this section, we illustrate the use of continuation in receiver

location. Our interfaces are analytically:
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z1: -x/20 +y/15 -5

z2: sin(x/4) * sin(y/8) =10 (3.3)

The receivers are located at (X;=1+.51,y;=2+i,z=0; i=1,4) and the source is

located at (0,0,0). The interface sequence is shown below in figure 1.12.

— \

Figure 1,12 Schematic Cross Section for Ray

In Tables 2a-2d we show the calculated ray solutions and Tables 3a-3c¢ show

the estimates obtained from

X(Xryiu) = X(Xe() + g;\x‘ (3.4)
Xe (A) = (1=-A) Xg,i + AXg ini

The ray solutions are plotted in figure 1.13b and the ray solutions for the

parallel plane inferfaces are shwon in figure 1.13b.
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i Table 2a. Ray Solution

velocities 3,5,5,5,5,3

i
i
inode| nyn H yn i "deviation from|
| i | | plane" i
i1 0 0.000000 i 0.000000 | 0.000000 i
N 0.355616 | 0.399356 | 0.008843 i
P2 | 1.122941 i 0.843203 | 0.029148 i
i3 1 1.629240 | .940733 |+ -0.018746 !
I I 1.641815 i 1.692839 | 0.083807 i
P 5 1.175562 d 1.969386 | 0.072514 i
i 6 | 1.000000 i 2.000000 | 0.000000 i
i i i i i

iTable 3a. Predicted Ray Solution |

i ]

;node : "x" : "y" ;

H i i i

10 i 0.000000 H 0.000000 |

Y 0.516316 H 0.601642 |

12 1.559414 ! 1.384762 |

I 2.181631 i 1.689298 |

I 2.311005 H 2.640265 |

15 | 1.739174 H 2.948629 |

i 6 1 1.500000 |  3.000000 |

i i i i
iTable 2b. Ray Solution velocities 3,5,5,5,5,3 i
1 . 1
i [
inode | hyn i nyn i "deviation from|
i i : H i plane" i
1 0 0.000000 i 0.000000 | 0.000000 d
N 0.502850 i 0.591524 | 0.014292 i
P2 1.525755 i 1.359347 | 0.062949 i
13 i 2.140103 i 1.660176 | 0.003673 ]
a4 2.261189 i 2.604634 | 0.171337 1
iP5 1.720275 i 2.936187 | 0.109732 i
i 6 | 1.500000 H 3.000000 | 0.000000 i
| ] 1 1 1
] [] 1 i ]
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iTable 3b. Predicted Ray Solution

|

'
lnode! My ! nyn !
[ 1 1 i
i 0 0.000000 H 0.000000 |
N I 0.637028 i 0.773567 |
P2 1.895959 i 1.850239 |
13 1 2.611098 i 2.350272 |
R 2.832910 i 3.480368 |
iP5 2.248235 | 3.888600 |
i 6 | 2.000000 H 4,000000 |
i 1 | [

iTable 2c. Ray Solution velocities 3,5,5,5,5,3

inode| nyn H nyn | "deviation from
i i i i plane"
10 | 0.000000 H 0.000000 | 0.000000
I 0.625378 i 0.764804 | 0.019718
P2 1.866992 i 1.828899 | 0.101978
i3 2.575636 i 2.325787 | 0.026271
P4 2.790357 i 3.450616 | 0.268561
iP5 2.232003 H 3.878166 | 0.146944
16 2.000000 H 4,000000 | 0.000000
] i t I

' ] } ]

iTable 3c. Predicted Ray Solution

1

J
: node : "x" : lly" ;
I | i 1
P 0 0.000000 i 0.000000 |
N 0.737077 i 0.929828 |
P2 2.181398 i 2.2785T4 |
b3 2.978514 i 2.968482 |
R 3.280462 i 4.268752 |
i 5 2.729237 i 4.809729 |
P 6 2.500000 i 5.000000 |
i [} [} I
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iTable 2d. Ray Solution velocities 3,5,5,5,5,3
1

!

i

]

}
inode | v i yn { "deviation from|
i i | | plane" |
i 0 | 0.000000 H 0.000000 | 0.000000 H
N 0.727788 i 0.922709 | 0.025125 i
i 2 | 2.158582 i 2.261891 | 0.143351 i
P30 2.950965 i 2.949275 | 0.049070 i
R I 3.2U47656 i 4,245577 | 0.367254 i
i 5 1 2.717052 i 4.800898 | 0.184207 i
P 6 | 2.500000 H 5.000000 | 0.000000 i
] ] ] ] ]
] 1 1 ] ]

From these tables we can see that the estimated solutions for the next
receiver 1location are very good,and we only require one or two Newton

iterations to sufficiently refine this estimate.

Example 3.

In this example, we consider the interfaces:

zl: =5

z3: x*%¥2/10.+ y¥%¥2/20.-20.

The sequence of interfaces encountered is shown in figure 1.14. Due to the
parabolic nature of the reflecting interface, we expect that there might be
multiple solutions to this ray tracing problenm. For a source at the

origin, and a receiver at (x=2.0,y=2.0,z=z0), we find that using the two
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different formulations (1.17) and (1.18) for the

different ray solutions. Formulation (1.18) converges

of AA =1 to find a compressional ray. Formulation

before the ray solution at )\ =1 can be found. The

solutions are shown below in Tables 4a and ub.

problem lead to very

with a

step 1length

(1.17) uses AA =1/8.

two different

iTable Y4a. Ray Solution velocities 6,8,12,12,8,6

i formulation (1.18)

1

i
inode | ngn } nyn i "deviation from}
i i i i plane" i
I VI 0.000000 H 0.000000 | 0.000000 ]
i1 1 =0.144600 . =1.568824 | 0.000000 i
12 | -0.345304 i =3.746355 | 0.000000 i
i 3 | -=0.782553 i -8.490256 | 3.665462 i
I 0.833719 i —-2.396894 | 0.000000 i
15 | 1.516813 | 0.178380 | 0.000000 H
16 | 2.000000 H 2.000000 | 0.000000 i
I ] 1 [] ]
i ] 1 ] ]

iTable 4b. Ray Solution velocities 6,8,12,12,8,6

i formulation (1.17)

ray

i

i
inode | nyn H AL i "deviation from|
i i . d i plane" '
i 0 0.000000 1 0.000000 | 0.000000 i
i1 1 =0.256438 | 2.042790 | 0.000000 i
i 2 | =0.623406 H 4,966071 | 0.000000 H
i3 1 -1.289890 i 10.275302 | 5.445473 i
R B 0.344558 i 6.164054 | 0.000000 H
i 5 1 1.313466 H 3.726889 | 0.000000 i
i 6 | 2.000000 i 2.000000 | 0.000000 i
i H i i i

Neither of the ray solutions above correspond to the solution path that

originates at )\ =0. To properly follow this path

formulations to take very small steps in }\

we force

we are lead to the ray solution at A =1 shown in Table lUc.

the

two

(AN =1/1024 and 1/2048), and
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continuation in receiver position to generate,
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{Table Hdc. Ray Solution

velocities 6,8,12,12,8,6

"x"

0.000000
2.566463
6.425517
9.296496
7.573200
4.270069
2.000000

n y"

0.000000
0.531342
1.330293
1.924680
1.942469
1.976567
2.000000

"deviation
plane"
0.000000
0.000000
0.000000
8.827704
0.000000
0.000000
0.000000

from

solution

another ray solution to the problem by first

for

the

receiver at

(both formulations), the ray in Table id.

For the ray of Table 4d, we show the calculated amplitude information.

densities

(x=-5yy=05’z=0)

in one ¢

calculating
and then using

ontinuation step

iTable 4d. Ray Solution velocities 6,8,12,12,8,6

"x"

0.000000
-0.074337
-0.173585
-0.467114

1.095777

1.614200

2.000000

"y"

0.000000
-0.282214
-0.659000
~-1.773354

0.617026

1.409934

2.000000

"deviation
plane"
0.000000
0.000000
0.000000
0.179059
0.000000
0. 000000
0.000000

from

and velocities used are shown in figure 1.14,

The

We assume a point

compressional source with unit energy per unit surface area, and the
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Figure 1.14 Schematic Diagram of Geometry for Example 3.
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calculated travel time and amplitude is as follows:

travel time: 4,62
displacement: ex: 1.68E-4
ey: 2.5TE-4
ez: 2.18E-3
caustics located at: x=.0025;y=-1.055;z==16.87

X=.TH2;y=.0763;2z==12.22

We note that the two caustics are located along the reflected ray 1in the
bottom layer. This 1is expected because of the focussing properties of a

parabolic reflector.
Example 4.

In the following example, we will use velocity and receiver
continuation to generate 32 rays at 2 receivers. We consider the following
inter faces:

z1: x/10 sin(y/4) -5
z2: x/8 -y/16 -10 (3.6)
z3: xy/40 -20 :

with the ray sequence as shown below in figure 1.15.
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=1 V,=3 Vs=|.73
@ P

G="* Vp=4 Vs=2.31

T

=3
E) Figure 1.15 Schematic Cross Section of Ray.

p=1.8 V=5 Vs=2.89

Vp=10 Vs =5.77

We take the source at (x=0,y=0,z=0) and calculate the 32 velocity
permutation (we take the first ray segment as always compressional) rays
for receivers at (x=1,y=1,2=0),and (x=2,y=2,z=0). Amplitude of the L2 norm
of the displacement vector (log base 10) is plotted as a function of travel
time for these +two stations in figures 1.15a-b. Using our continuation
methods for velocity continuation and receiver continuation, both
formulation (1.18) required on average two Newton iterations per ray to
bring the residual below the designated 1E-5 level. Thus, the generation

of large numbers of seismic rays can be made very efficient.
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Chapter 2. Non-Linear Least Squares Estimation of Elastic and Interface

Parameters From Observed Ray Data

Introduction

In Chapter 1 we dealt with a forward problem in seismology. Given all
the necessary elastic and geometric parameters of a model of a section of
the earth, we showed how to calculate the ray theoretic seismograms for
various source/ receiver configurations. In this chapter we use our
ray—tracing methods as the nucleus of a non-linear least squares algorithm
for the estimation of elastic and interface parameters from the observed
seismic ray amplitudes and travel times. Sometimes, there may be some
unknown but required information about some portion of the observed data.
The example we shall consider is when the ray types of some observations
are unknown. To correctly estimate the medium's parameters, it is
sometimes necessary to include these observations and we show how to do
this in such a way phat we simultaneously identify the ray types of the
observations aﬁd estimate the parameters. In general, the observed ray
data will be corrupted with noise, and so we examine the stability
properties of the inversion, and show how the Singular Value Decomposition
of a matrix can be used to determine the subspace of parameter space, that
can be resolved in a stable fashion.

The starting point for all methods of "solution" of inverse problems
is to relate the observations as a mathematical function of the unknown

parameters:
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7{ DZ 0( (0.1

_X/_represents the observations, _q{ the unknown parameters (or a quantity
from which the parameters can be recovered), and Xis an operator. In this
chapter __X/ will be a vector of observed travel times and/or amplitudes; gi_
will be the unknown layer velocities and/or interface parameters, and o\(
will be the non- linear operator relating __K and g_{ . For our examples,
(0.1) will be an overdetermined system of non-linear equations. We will
linearize (0.1) and solve a sequence of linear least squares problems. At
each iteration of the algorithm we find the pseudo-inversez,+of the
linearized operatorj: s and determine the parameter estimate
0(:\=an_7__(’1 . Under certain circumstances {«a} will converge as n-->o
to a p_(* which we take as a local minimum of ﬂ_)g— Xzfllz, . This answer is
usually non-unique as it is only a local estimate, and for each 1linear
problem, we resolve o‘(-;, only in the row space of the matrix x,, (the
minimal length solution).

The solution of each linear least-squares problem involves solving the
forward ray tracing proBlem. That is, for each parameter estimation c-(; ’
we calculate all the rays that correspond to the observations. Thus the
entire inversion procedure can involve finding many rays. Hence, the
efficiency and accuracy of the ray tracing method used can be very

important for this type of parameter estimation scheme.
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Section 1 Non-linear Least Squares Inversion

We will rely on an optimization method to. estimate the parameter
values g(_* of (0.1). In general, in optimization techniques we often wish
to constrain the unknown parameters, _o_(*: to 1lie within physically
acceptable bounds. If the constraints are in the form of inequalities,
then the problem is in the realm of linear or non-linear programming. If
the constraints are in the form of linear relationships between the unknown
parameters, then using Lagrange multipliers, we can still cast our problem
in the form of a linear or non-linear least squares problem.

In this section, there are implicit constraints on the unknown
parameters. For example, we require that velocities be positive, and also
the compressional velocity for a layer should exceed the layer's shear
velocity. However, we will ignore these constraints and we will find that

our estimates satisfy the appropriate physical inequalities.
Theory of Non-Linear Least Squares Estimation (1.1).

In this section we review the portions of the theory of non-linear
least squares estimation that are relevant to the understanding of our
numerical methods. We consider a fumction éx{p) which depends non-linearly
upon the set of parameters 79 E(ﬁ,pfg PRI RN PM } LA . We suppose that

@('g) is of the form
Pp) =

We wish to minimize é. with respect to the parameters _P . If.1p° is a

L fz:p) Fp) £ o=1,..,M (1.1
2
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parameter vector such that Vf(ﬁ,):O and 78 :_P +A_P ( AJ) small), we

obtain the approximation:
‘ 2
Q0= Vé(}%)"“ _V@,P) + ZQEQP)'A.P (1.2)

Thus a Newton type method would be to take:

-1
A—P = (- VZQ' (f)) _V§(1p) (1.3)
We call Vzé' the Hessian. Some algebra shows that

= fTQLF g ;7_7._‘_;_7— (1.4)
ap*

where

e IL;':

IF
is the Jacobian matrix J,; = /9131 . If the residual of the

problem (i.e., "E(P,, )"r‘EO) is small, we can make the approximation:

8p" = (T (™) (1.5)

This is called the Gauss-Newton method and is applicable for small residual
problems. The method is used iteratively, converging (hopefully) to a

point of zero gradient. We write:

(n+t) (n)

7@ = 70 +A_p‘") (1.6)

where A_P (r) i35 given by (1.5).

For a small residual problem we could also consider a sequence of

linear problems. At parameter value ‘]E we seek éﬁ so that:
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o = f(p)+ %EA’P | (1.7

or the problem at each iteration is to find A from the minimization:

ITILZ}';m'za ” JQP + F ”2 ‘ (1.8)

This sequence of linear problems is equivalent to (1.5), (1.6) for

Ilg"l

nonsingular.
Solution of the Linear Problem (1.1a).

As mentioned above, we will often be solving a sequence of linear
least squares problems, so we outline here the important aspects of the
linear problem. In standard notation, the problem we wish to solve is:

men ”Al(—.b"
X = Z
—_ ‘ (1.9)
A is a mxn matrix (m > n)
X is a vector of length n
b

is a vector of length m

It is well known that A possesses the following decomposition (the singular
value decomposition) (Wiggins [20])‘

A-0AY

mxk Kkxk Kxn

T
The matrix ‘LZ- contains k eigenvectors u of Aiéi . These

eigenvectors are of length "m" and hence are associated with the
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non-—-zero eigenvalues.

space (b).

I

is a

72

diagonal matrix containing k (k< n)

The matrix l contains k eigenvectors (of length n )

T
of A _A . These eigenvectors, because of their length, are associated with

the parameter

relations:

space (X).

AY=UA

=V AANU

These matrices

"AV=VN
J=0A

It is also common (Strang [19]) to write:

A =

(;a; Jﬂzz =!é

ﬂnxnu (mxn)

(nxn)

(Wiggins

satisfy the

(1.11)

{(1.12)

7
where !22 contains m orthogonal eigenvectors of AA (the first k columns

correspond to the k non-zero singular values) and VE

eigenvectors of Aré. 45 now has the structure:

T

n

l

The minimization of [iAx -b i

men
X

Ue is unitary, and the transformation defined by

the euclidean

k—n —)|
= 2

|

norms

r
through by ([Jg'@ as:

of a vector.

N

\\V4

can now be writtern as:

L}Ezlle EZ; X - ﬁ?lll

contains n orthogonal

(1.13)

(1.14)

preserves

We can write (1.14) after multiplying
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min [ de Ve'x - Ve b e (1.15)

T L
Defining Y x = y we have
(1.16
Mmin "\/1_5}' —-Ue_l_)" )
y "= -

Since g}e has the structure shown in (1.13), we find that the value of
xj ,j>k has no effect on (1.16), so it can be arbitrary. Taking these

components to be zero, we obtains

1N

m ->

aor,an o |
2 , n

o~

(1.17)

o X =Vede Ue B O %

]
Hﬁ;.
1
IIQ“
j 5

() X

If k=n then we find that the pseudo-inverse which we define as:

-+

-4 T
A = ____\_/L.- \_/___.\-E.__-Z_j;'-' (1.18a)

is also equal to iy T
A+ = (ATA) A (1.18b)

The geometrical interpretation of the pseudo-inverse is simple. The data
vector b is projected into the column space of’g, to a vector p. Then, the
solution X is found in the row space of such that Q} = p. Since we take

A
-
all components of X in the null space of é to be zero, we have found the

"minimum length" solution.
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When the rank of A is equal to n, then (1.18b) is equivalent to the

"Normal Equations™:
T T
=_A A X = _A_ _b (1.19)

This system can frequently be ill-conditioned and it is often advisable to
work directly with (1.9). This is because the singular values ofzéTxé are
the square of those of A, and hence the condition number of (1.19) is the
square of that for (1.9). As mentioned above, multiplying (1.9) through by
unitary transformations, does not affect the problem.. Golub {[6] showed
that by multiplying (1.9) by a sequence of Householder matrices [lyin, one

(]

could triangularize A to the form:

__@__zfnPﬂ-l”'___PJ.;A_: "
<::> T (1.20)

&> —>

~T
>
&

The new problem

men
X

—

_/_Q_.X. - (___Pngpn-l ._Pi)_b ”2 (1.21)

is now trivially solved. If the matrix A is very large and storage is a

concern, A can be partitioned and a sequence of triangularizations used.
This is discussed in Lawson and Hanson [12].
Finally, we note that it is sometimes of interest to calculate the

singular value decomposition of a matrix. The estimate, x, 1is determined
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from (1.17¢) . This method is also numerically better conditioned than
forming the normal equations (1.19), for the same reasons discussed above
for the QR algorithm. Also, much valuable information can be obtained from
this decomposition. We used the singular value decomposition package of
IMSLIB (LSVDF) which uses the algorithm of Lawson and Hanson [12]. This
algorithm in turn is based on the work of Golub and Reinsch [7]. As
discussed above, we can associate null-vectors Vj (length n ) of the
parameter space with the singular values of AE. For eigenvectors vj
assoclated with very small singular values, the variance of the parameter
estimate in the space 5 spanned by these vectors is large. In other words,
a small change in the data can lead to very large changes in the parameter
estimates in E. The extreme case is for a zero singular value, where the
parameter estimate in the direction of the null-vector can be completely
arbitrary. With a singular value decomposition we avoid the problem of a
rank deficient matrix by working only in the row space of the matrix.
However, even for very small non-zero singular values, it is often best to
consider these values to be =zero, and the associated space E'to be a
subspace of the null space. There are two main reasons to do this. For
realisitic data with noise(or for synthetic data, numerical truncation and
round off) the parameter estimates in the space [ may be totally unreliable
and wild. In our iterative method, wild parameter estimates can lead to
situations where ray solutions fail to exist, and our method fails.
Secondly, the numerical algorithm can only find the singular values of the
matrix within some tolerance, so that very small singular values are
somewhat inaccurate and even theoretically zero singular values may be very

small non-zero numbers. As will be discussed later, our Jacobian matrix g
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is a numerical approximation to the "true" Jacobian, as our ray solutions
are found numerically (residual<.0001) and for amplitude inversions we
approximate derivatives with finite differences. The singular values are
found to within a tolerance of order :{A::zg, where [{Alip is the maximum
singular value and £ 1is the machine precision (here, about .000005). 1In
general, in our calculations the norm of the Jacobian matrix is 0(1) and we
usually set the pseudo-rank tolerance at .0001 (i.e., singular values less
than this are set to zero, and the dimension of the problem reduced). In

most cases this choice seemed to work well.
Modifications for the Non-linear Problem (1.1b).

As discussed above, the non-linear least squares problem can be solved
by a Newton iteration scheme (1.3), if the initial parameter estimate is
sufficiently close to the local minimum. For the case where the ‘problem
has a small residual at this minimum, we can further simplify the method to
(1.5). However, when‘ we do not start close to the minimum it is very
likely that Newton's method will not converge. A method which has been
devised to circumvent the problems of Newton's iterations is the
Levenberg-Maquardt algorithm, which we used and we now describe.,

If we consider an iteration method, where at each step we take Alg as
a small step in the —V@5 ‘(using the notation of 1.] ) direction so that

"f?(P)llz decreases, we have the gradient method. This method will, in
general, decrease the residual of the problem, but often the decrease will

be slow. Combining the gradient and Gauss-Newton methods, we solve the

system:
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(—J';TJ; + Anl)é_P = g-';T-F(-p) (1.22)

or this is equivalent to the minimization of
r_ 1 |-
L F
n L (1.23)
| ap e
¢ n %T
An ]r n
= -h& _O J 2
Equations (1.22) or (1.23) are solved at each step of the L-M iterative

scheme. However, some selection criterion for )\n is needed. As An—)co)
" A£ ﬁl—é O . and A_P rotates toward the negative gradient vector
- y@’(.P) . Thus we are guaranteed that if we choose )\q large enough,
we will decrease the residual of the system. However, the stepsize may be
exceedingly small. The selection criterion for )\n is somewhat adhoc, and
we found in our numerical experiments that the best criterion changes from
problem to problem. In most circumstances, for zero or small residual
problems, it was found that if the Gauss-Newton method converged, it would
converge much‘ more rapidly than the L-M method with /\-.qéo . Thus the
procedure we used was to start with An: 0. Then after the Newton step, if
the residual of the problem had increased, we recalculated the first step

with
A, é"—ZAc + | (1.24)

This doubling procedure was continued until a change in the parameters was
found that decreased the residual. For the new parameter estimate we did

one of two things:
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(1) set Az = Ag /2
or (1.25)

(ii) set Az =0

For the case where our initial estimate was close enough to the
minimum so that only one or two gradient steps were required before the
Newton method would converge with decreasing residuals, then (ii) was the
best choice. When the initial guess was "far" from the local minimum,;then
for the first several iterations (i) was the better criterion. Starting
with a value for Az- , We repeat the procedure (1.24). 1In general, if we
use the procedure as outlined above, then at the n'th iteration we may have
to solve (1.22) for a few (and sometimes several) values of An before we
obtain a decrease in the value of “f(p)"z. However as we show now, most of
the computing is for the solution of (1.22) with the first value of )\n .
Successive inversions of (1.22) for other values of )\n .can be done
"cheaply)

From the singular value decomposition (1.12) of J we can write

_QJ::T = -_Veél:.‘(ls =VET 7 4;-’-‘ 457:{__15

(g’gm,,_z)=__y;@;+/m,,__z)=_y£
- 2 A7
(7T WI) = Velpe+ 1) Ve

(1.26)

Thus for An*O the pseudo-inverse becomes

-4 T 2 =2 r T
(777 e mI) T VelferhI) L Ve com

This differs from the pseudo-inverse (1.18) only in the elements of the

diagonal matrix \ILE Coe Thus once we have computed the singular-value
. =
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decomposition of the Jacobian matrix at the n'th iteration, we simply
2

replace the singular values {S’c‘] by (s 1PA")/&_' , for the solution

of (1.22). This is the method we use in our calculations,

However, in many practical situations one might be using the
Householder triangularization method of Golub (1.20). We can write the
coefficent matrix of the minimization problem (1.23) in partitioned form:
= 7

m l F

= (1.28)

Jr_/\nl O—J

Then instead of calculating the QR decomposition of the fullm + n by n

matrix for each value of An , We can first calculate:
T 1 [
T-R R-= g

Q et (A = O iI‘ (1.29)

This decomposition is then used for all values of An , and we consider

instead the problem with coefficent matrix:

’T’_gf

IS
% | B (1.30)
i

—

An O
- -

For m>>n and for several values of )\n , formulation (1.30) can be very

I~y

economical. This method is discussed in Osborne [14].
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economical. This method is discussed in Osborne [14].

Finrally we mention that for large residual problems (i.e.,
ﬂf(-P)ﬂ;»o , where UV§CP)"2=O )y we may have to use the true Hessian for
the problem (1.2). This greatly changes the numerical approaches outlined
above. A survey article on large residual methods can be found in Nazareth
[133. In the numerical examples presented below, we will rely on the
Gauss-Newton/ Levenberg-Maquardt algorithm. Sufficient conditions for the
convergence of the Levenberg-Maquardt algorithm and the pseudo-inverse
Newton's method are given by Osborne [14] and Ben-Israel [1]. Perozzi [15]
imple@énted a simple Gauss-Newton algorithm in a ray data inversion example
for a two dimensional geometry. Many of the formulae that we give below
for the least squares Jacobian's elements can also be found in Perozzi

[151.
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Section 2 The Seismological Problem.
Theory of Travel Time Inversion (2.1).

We consider the layered media of chapter 1, and use the ray notation
of that part of the thesis. Thus we can write for the +travel time of a

disturbance between the source _x; and receiver 2gg :

Nt D, (2.1)
X de) =0 3
JeL Y

Here: +tr denotes travel time, N is the number of interface intersections ,
Dj is the length of the j'th ray segment, and Vj is the velocity on the

j'th ray segment. Equivalently, we have:

Nt —
_ \/(Xj" Xj—l)z* {y;- Yy )% (Z/’Zjﬂ)
tr (Xs, Xr) = V; (2.2)
J=1

We suppose that one knows several travel times for known source-receiver

configurations (Xs . KR ). Also, for the time being, we assume that the
ray types, e.g., (PSP.., PPS..., etc.), are Kknown. Here, we use the
notation that "P" denotes a compressional ray segment, and "3" a shear ray
segment. Later, we will examine the problem of determining ray type.

We denote the vector of known travel times as gbs, and in the notation
of (1.1), tr" is defined as the calculated travel time for the i;th ray.

We set:

Fo = fﬁ' (_)_<s,c') )_(R,[) ~0b8. (2.3)
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The Jacobian .75'; QEL/ZFU , Where p is the vector of unknown parameters

T
(P y...y, P), and thus:

IJ =_§)_f_l:'£’ ¢ Jtry JX (2.4)
% JX QPJ'

where X denotes the vector of the coordinates of the ray's intersections

with the interfaces. However, as seen in chapter 1, from Snell's law,

which the rays satisfy at each interface, %g%- = 0, Thus (2.4) is simply

J:J = 9'{:0’[ (2.5)
JPy

For the specific examples which we examine, we will write down the formula

(2.5) for these cases. If one wishes to calculate the true Hessian (1.4)
for the problem, we must also calculate the term
d?tr, :__szr; t o Q_Q‘){_Q_g(_ (2.6)
dpedpy Opedp, OX L IR/ I
Thus for this term we must calculate the variation of the ray solution with
respect to the parameters. However, as shown in chapter 1, this can be
done analytically using the Jacobian of the ray solution. Usually,

however, we will need only (2.5).
Inclusion of Amplitude Information (2.2).

The ray-tracing method of chapter 1 also calculates the amplitude of

the disturbance (assuming unit energy at unit distance from source). As
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discussed in that chapter, the amplitude is a complicated function of the
elastic parameters and the interface geometry. Hence we do not attempt to
analytically calculate the Jacobian, but instead we use a finite difference
approximation. We will use amgj to denote the amplitude of the j'th ray.
In our numerical examples we will take the amplitude to be the modulus of
the euclidean norm of the displacement vector, but, in general, there are
various definitions to wuse for the amplitude. We will write the
derivatives as:

Q&mgc' — (ampL- (}_) + gJ’)—c?mp[(ﬂ)) (2.7)
Pj A

J
we do a series of n ray traces (n is the number of unknown parameters), to

where e-1-= (0,0,0,...,4 +0yeee,0) . Thus to approximate the derivatives,
J

calculate the perturbed amplitudes. These ray traces are very fast, as the
ray solution for parameters.g, provides an extremely good initial guess for
the problem for P+ Sj' We make a suitable choice for 8 in terms of the
order of magnitude of the parameters, and the number of significant figures
on the computer.

In general, if we have M rays, and an amplitude and a travel time for

each ray, we can write our observation vector as:

obs = observed traveltime,/ i= 1,M

obs = observed amplitude i= 1,M (2.8
and

F = A (tr;, - obs') i= 1,M

F = B (amp,~ obsS) iz 1,M (2.9)

Equation (2.9) allows us to weigh differently the travel time and
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amplitude observations (A and B).

General Numerical Implementation (2.3).

For the numerical examples that follow, in order to examine our
inversion schemes, we generated the "observations" using a known model and
the ray-tracing techniques of chapter 1 (formulation 1.17).A random number
generator was used to simulate noise in the data. The computer generated

numbers in the interval [0,1]. Random noise was generated by the formula:

noise; = “%/100 x ave,x x 2 x (ran; -.5) (2.10)
K=1 refers to travel times
=2 refers to amplitudes
ok is input percentage
ave,k is average of observations
ran,i is i'th random number & [0, 1]
noise,i is number we add to obs

Here, the random numbers are generated by the machine in the interval
[0,1]. By subtracting off .5 and multiplying by 2, we change the interval

to {-1,1]. Then algorithmically we proceed as shown below in Table 1,

Table 1. Least-Squares and Ray Tracing Algorithm.

i) input observations (perhaps with noise) from data file
ii) input initial parameter guess
input desired gradient smallness; eps
r=0 .
iii) do for t = 1, total number of rays (M)
a) trace ray, with current parameter estimates.g
b) calculate travel time
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if using amplitudes - calculate amplitude

¢) calculate residual F; , (and Foey )

d) calculate row [ in least squares Jacobian
analytically using (2.5)

e) if amplitudes included then
calculate row { + M in Jacobian
using finite difference approx.

iv) calculate norm of gradient
iflgradientl,< eps print out parameter estimates - stop

v) calculate residual F F
vi) if residual has increased from previous iteration then
€20+l ; thy=2
re ol o T€O ; ihysl
vii) solve problem (J’E + 5 1) p=-4 F with singular value
decomposition with current value of O
a) if itry = 2 use previous decomposition of Jacobian
with previous F and new 0
b) if itry = 1; do new composition with new 6
viii) if singular values 5§ fall below Sww set §. equal to zero
ix) form new values of parameters
X) go to iii) if less than maximum number of
allowed iterations- else stop

The nucleus of this algorithm is the ray-tracing. If we include
amplitudes in the problem, and if there are M rays and N parameters, then
we must do (N + 1)M ray-traces (for travel time inversion only M) per
iteration. Thus it is important to make the ray-tracing efficient. As
discussed in chapter 1, most of the computation involved in our method is
for the calculation of the first ray in a series of rays. The other rays
in the series can be calculated very quickly by using successive
continuations. We calculated the rays in inversion examples using both ray
tracing formulations discussed in chapter 1. These two different
formulations made no difference to the inversion results.

To illustrate how the ray-tracing can effectively be included in the

inversion algorithm, we suppose that we have two arrays on the earth's
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surface, with three receivers each. Further, we assume in this simple
example that there is a primary reflector and we have recorded the
information for the PP and PS rays at each receiver. Then schematically
our ray-tracing algorithm could be as shown in figure 2.1.

Thus for each array, the "most" work is often put in at the first
iteration, for the first station's purely compressional ray Then
continuation methods quickly generate all the other rays for the array.
For our methods, a continuation method can mean using the previous solution
as the initial guess for the new velocity sequence's or new receiver's ray

solution(ete.), or we can use a one derivative Euler correction:

XA =X lo)+dX a (2.11)
dA

The method of calculating

h%

Jr is discussed in chapter 1. From one
iteration to the next in the non-linear least squares method <(especially
near the minimum) the parameter change is often small, so we use the saved
rays from the previous iteration as initial ray estimates for the first
compressional ray at the new parameter values.

In general, one might have to use more than one continuation step in
the above techniques, but in our computations one step was sufficient. We
did not use the first derivative corrections for the various continuations
for these problems, but these can be simply and cheaply included if
desired. Finally, we mention that, in general, there exists more than one
ray solution for a specific ray type. Thus we want the ray solutions
calculated by the non-linear 1least squares program to lie on the same
solution branch as the observed data. This could perhaps cause problems,

but in our computations this problem did not often arise.
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Figure 2.1 Schematic of Continuations That can be Used in Least--

Squares Inversion.
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Section 3. Inversion Examples.
Inversion of Travel Times for Layer Velocity Estimates (3.1).

For the estimation of layer velocities, the analytic expression for

the elemerts of the least-square's Jjacobian (2.5) is:
Nt/
T = Jtry = - D ik
LK - 77 (3.1
IV, V2
K - J
/=1
(4Lk =1 if v corresponds to the same layer and velocity type

(P or 5) as v, ;d}:K =0 otherwise.)

For example, for the geometry shown in figure 2.2, with v =v2,5 We have:

ﬂ,k =O,‘O@,g :‘I’vJ‘;’,< =0,o/"},/c =0, f/}’k =1,and 0{2)‘;0,

P S VI,P VI;S

5 p p S V'»P v‘;s

Figure 2.2 Model Geometry for Example

As a first example, we consider the plarar interface structure showuwn

below in figure 2.3.
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K)\ _V(l)‘)O) (‘0\‘OLD)
\\ / v{,=|z Z=-10
\% / \/‘D=l4' 2=-I5
\\\v/// \\\3\\\N/;{// VP=|G 2=-30

Figure 2.3 Model Geometry For First Inversion Example

We have used 10 stations and the purely compressional ray at each, as shown
above. This problem is numerically singular, with a minimum singular value
of O(1E-6). Thus ever when we start close to our known answer of
(12, 14,16), we do not neccessarily converge to this estimate,as our method
deletes one parameter direction from the problem at each step. Starting
Wwith an initial velocity estimate of (11.00,13.00,17.00) (residual .304,
gradient .197), we converge ir 3 iterations to (12.21,13.20, 16.13)
(residual 8.23E-6,gradient 4.83E-6). It is not obvious why the Jacobian 1is
rearly singular but, as we show, this is because the angles of incidence of
the rays for. this geometry (even for the receiver at x=10,y=10) are
relatively small. The three columns of the Jacobian matrix are from (3.1):

\7;',1 = —'ﬂ/,c. B pé,t‘ = =2 Di,c'
| V2

Vlz. \/‘:.

‘.7;12 = —'th" - _.'5:1_‘: = -ZDZJL. (3.2)
Vi# VS" V. ®

4,

V,* Vi

Jis = ~Dsi ~Dac T —2Dw¢
2 ng-
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Now for small offsets we have that

2
2 z ! | Ay (3.3)
. . A — k;l

where Cx is the thickness of the k'th layer and bkb[ is the horizontal
distance travelled by the i'th ray in the k'th layer (here /Ik,[_:fz_d)(kl,').

The ray solution satisfies the scalar Snell laws?

V_l Sin €, = \é Sin €y

’ (3.4)
v
.\
G =lo
& '

* Z=-]0

p1 C,=5
: { z- -S

‘D‘ hs-)': 03=15‘
W 2=-30

Figure 2.4 Notation Used For (3.4)

For small & , we make the approximation:
\Q_-ﬁan € = \41'411n'€2i

(3.5)

p—

\/A h(,z. = VL ht.>.‘_ . h‘_"z:' ’ _v_a-_ hl.)l
)
5 1o 2 Vi
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Similarly,
’ /0 Y,

Using these approximations, we can w"ite the columns (3.2) as:

Toy = 2 [/o+ he ,1

2

Joz = "'__2 {5_ + V&)z /1‘)1
} —
% Vi

(3.6)
- _ =2
Vi
For the case V1=11,V2=13, and V3=17 we find (a,b,c) such that
a g:',_[ + b_j:',z + c:\z;.i =0 (3.7

Normalized, we find that this triplet is (.245,-.957,.157). The calculated

eigenvector ( associated with s=2.46E-6) from the singular value

decomposition is:

(.247,-.957,.152) (3.8

Thus the near linear dependance of the columns arises mathematically

from the fact that the small angle approximations are valid here.

Physically this means that velocity perturbations in the direction (3.8)

will effectively have no effect on the travel times. If we consider the

model of figure 2.4 with the interface depths at z=-2,z=-U, and z=-6, we no
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longer have a numerically singular matrix.( the angles of incidence are no
longer small) With an initial velocity estimate of (14.00,18.00,22.00)
(residual =.716, gradient= .067) we arrive at the estimate
(11.99,13.99,16.02) in three iterations.

Returning to our original model, we now include a second ray in the
inversion process (figure 2.5) This problem ( at least for estimates we
considered ) was non-singular, and for "sufficiently close" guesses (e.g.,
V= (13.00,16.00,18.00)) we converged rapidly to the zero
V=(12.00,14.00,16.00). However, when we start farther off we do not
neccessarily converge to this =zero. The results for this two ray

inversion are shown below in Table 2a.

Table 2a. Two Ray Family Inversion

1(18.25,7.75,16)

] I
1 i
it | velocities | residual | gradient |
1 1 § ] 1
] I ] ] ]
i 0 1(20.0,11.0,6.0) i 20.16 i 119.27 /
1172 1(26.47,1.32,9.75) i  34.80 H i
i 1% {(20.07,11.11,9.3) i T7.53 i 18.65 ]
i 2 1(20.2,11.34,12.09) | 2.26 H 3.20 i
1 3 1(20.19,11.32,13.4) | 0.84 i U495}
i 4 1(19.9,10.87,13.89) | 0.66 H 104 |
15 1(19.38,10.02, 14.31) | 0.51 H .085 |
i 6 1(18.78,8.91,14.94) | 0.30 H 104
i 7 1(18.4,8.09,15.6) i 0.12 i .083 |
i 8 1(18.29,7.8,15.93) i 0.025 | 015 |
19 {(18.26,7.76,16.) d 0.009 | .0008 |
110 H 0.0088 | 2.78E-5 |
] ] 1 ]
1 i i [}
+

—

¥_increase g~ 0 =2 0
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Table 2b. Three Ray Family Inversion

i i
i i
1it | velocities ! residual | gradient]
i H i i i
10 | (20.0,11.0,6.0) | 22.1 i i
N (7.45,13.26,9.74)} 15.07 i 47.40 i
i1 2 1 (10.28,13.96,13.55)1 4.136 H 6.87 i
i3 (11.76,14,15.62) | .536 H .69 i
R I (11.99,14,15.97) { 1.17E-2 | 1.4E-2 |
i 5 1 (12,14,16) i 6.78E-6 | 7.8E~6 |
i i i i i
i Table 2c¢. Four Ray Family Inversion H
i i
{ it | velocities | residual | gradient |
] ] ] ] I
1 ] ] [} [}
i 0 | (20.0,11.0,6.0) i 22.97 i i
i1 1 (6.73,13.42,9.76) | 20.56 i 90.95 |
- (9.68,13.99,13.56) | 5.97 i 13.22 |
P31 (11.55,14,15.63) | .89 i 1.43 |
HR I (11.98,14,15.99) | 2.T1E-2 | 4.13E-2 |
i 5 (12, 14,16) | 3.10E-5 | U4.68E-5 |
i i i i i

For the three ray and four ray inversions, the results of which are
shown above in Tables 2b and 2c¢, We have added the rays between the source

and receivers (x=i,y=x : i=1,10) shown below in figure 2.5.
Av4

/
N

VAV,

Figure 2.5 Second Ray Added

For the other two inversions, the rays are shouwn below irn figure 2.6.
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VY

Figure 2.6 Third and Fourth Rays Added

For the two ray inversion, the bottom layer 1is transversed the most
frequently with ray segments, and the velocity estimate for this layer is
accurate. The three ray inversion forces the velocity estimate to the
zero residual value of (12,14,16). The inclusion of a fourth ray does not
seem to greatly improve the inversion process.

We now investigate the effect of noise on the inversion process. Table
3a shows the synthetically generated travel time data for the Y4-ray case.
Table 3b shows the same data but with a 2% level of random noise added. We
also generated data sets with .1% and 5% noise. The inversion results for

the noise corrupted data are shown below in Table 4.
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H Table 3a. Theoretical Travel Time Data
i

tRay I
14.257T115  4,260601 4,.266404 4.,274514 4,2849171
14.297596 4.312529 4,329691 4, 349054 4,370587!
{Ray II ]
16.131699 6.133937 6.137665 6.142880 6.149580
16.157757 6.167406 6.178520 6.191091 6.205108}
iRay III H
14.971238  4.974237 4,979229  4.986211 4.9951721
15.006102 5.018986 5.033809 5.050553 5.069198 |
{Ray IV {
15.923528 5.926254 5.930795 5.937145 5.945300}
15.955250 5.966986 5.980497 5.995770 6.012790}
1 ]
i Table 3b. Data With 2% Random Noise Added }
! seeds=(21,23) H
] ]
t4.150548 4, 155611 4,167043 4, 194750 L,272062 |
14.295577 4.416106  4.326548  4.255034  4.477531)
16.119734 6. 170942 6.038863 6.074052 6.197310]
16.206653 6.244928 6.204394  6.291408 6.1456291
14.997062 5.021716 5.031688 5.087910  4.918983]
14.919220 4.969139 5.088148 4.968181 5.157207 |
15.907382 5.894323 5.884533 5.946950 5.9919711
15.932769 6.054843  6.067191 5.939481 5.966097 |
1 i
! Table L. Effect of Noise or Inversion i
] i ]
| noise added | velocities ! residual | gradient|
| to data ' i i 1
] i ] ] 1
bW 1% (1,3) i 11.998,13.994,16.003 }2.16E-2 | 4.90E-5 |
] (2,7 i 11.998,14.014,16.004 |{1.76E=2 14.75E-5 |
i 2% (17,8) | 12.126,13.644,16.169 | .347 i2.63E-5 |
H (21,23) | 12.038,13.980,15.970 | .431 13.86E-5 |
i 5% (4,4 1 12.099, 14,878, 15.760 | .482 12.72E-5 |
i (6,1 i 12.308,13.983,15.780 }1.040 11.05E-5 |
i ] 1 ] i
(i1,i2) refer to input seeds to the random number generator

It is hard to qualitatively measure the stability of a problem, but here

even at the 5% noise 1level we are still obtairing useful velocity

estimates. One would expect this to be a stable problem as the condition
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number (ratio of largest to smallest singular value) is only about 60 here.

Our above example was for a plane geometry and we inverted
compressional travel times for the compressional velocities. We consider
now an inversion for both compressional and shear velocities for a fully

three dimensional problem. The interfaces are given below in (3.9).

z1: —x¥%2/18 + y/20 =10 (3.9)

z2: x/16 ~y¥¥3/10 =20

Synthetically, we generated the rays (P,P),(P.S).(P,P,P,P),and (P,S,P,P)
for the source at the origin and the receivers at x=i,y=i :i=1,5 This model

is shown schematically in figure 2.7 below.

Figure 2.7. Rays generated

The layer velocities we used to synthetically generate the data were:

Vp =6 ;3 Vs, =3;th =83 V5,2 = 4.6
We show in Table 5 that there are two ray solutions for the purely
compressional ray from scuree ¥ = 0, y = 0, z = 0 to receiver x = 2, y = 2,

Z:O.



97

Table 5 Ray Coordirates of Two Solutions

{
i
ivelocities: 6.000, 8.000, 8.000, 6.000
iray coordinates:

interface | X i y | deviation from

H H H plane
i i i

1 i 0.000000 | 0.000000 | 0.000000

2 i 0.653699 |-0.174863 | -0.032483

3 i 1.755344 1-0.571727 | 0.128397

y i 1.630442 | 0.953441 | -=0.100014

5 i 2.000000 | 2.000000 | 0.000000

ray coordinates:

i
H
i
i
i
H
i
H
!
H
i
H
travel time = 5.844254  Family I i
i
:
:
]
]
i
i
i
1
i
H
travel time = 5.833599 Family II i
t

]

]
i
1
t
[}
1
]
i
1
i
1
i
t
t
!
]
[}
i
1
]
i
}
t
i
t
1
1
1
1
1
1
1
1
{
1
I
1
}
1
]
1
[}

interface | X H y { deviation from
i i i plane
i { i
1 i 0.000000 | 0.000000 | 0.000000
2 i 0.654532 | 0.235391 | -0.012031
3 i 1.762799 | 0.379107 | 0.104726
4 ! 1.635942 | 1.367517 | ~0.080308
5 i 2.000000 | 2.000000 | 0.000000
:'

Thus we see that the 2 ray solutions have very similar x-coordinates and
very similar travel times. The solution which the ray tracing program
finds in this example is very dependent upon the initial estimate for the
ray. For the ray from the source to receiver (x = 1, y= 1, z = 0), using
the "“planar solution" (see chapter 1) as an initial estimate resulted in
the convergence of Newton's method to family II. Using the "planar
solution" with a continuation derivative correction term, Newton's method
converges to family I.

The non-linear least squares program, used in this example, calculated
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rays which corresponded to family II. We also used the reflections from
the first interface 1in our inversion, but there was no problem of
multi-solutions for these rays. Thus for our inversion to make sense, the
inversion program should calculate the branch of solutions that corresponds
to the data. 1In this numerical example, we make our synthetic data be of
the form of family II. In practice, however, the problem of "close"
multisolutions, when it arises, may not be so easily avoided. In Table
6.a, below we show the results of our inversion for the 2 layers' P and S

velocities.

iTable 6a.Inversion for Shear and Compressional Velocities)

1

H 1
Vit | velocities | residual | gradient |
] ] 1 1 ]
] ] i ] )
i 0 | (4.00,2.00,10.00,6.00) { 17.685 i U46.347 !
I (5.33,2.67,7.55,4.23) | 2.642 i 8.938 i
i 2 | (5.93,2.96,7.98,4.57) | 246 i .686 H
i3 (6.00,3.00,8.00,4.60) | 2.T8E-3 i 7.62E-3 |
tu (6.000000, 3.000000, i 2.02E-6 ! 2.29E-6 |
i E 7.999999, 4.600000) i E i
1 ] ] ] 1

As a matter of interest, we use family I in the observational data, and the

inversion results are shown in Table 6b.

Table 6b. Inversion Using Family I.

7.940210,4.590474)

i i
i i
tie velocities i residual i gradient |
i H i i i
10 | (4.00,2.00,10.00,6.00) | T.661 i 46.196 |
I (5.33,2.66,7.45,4.21) | 2.673 H 9.037 !
P2 (5.93,2.96,7.91,4.56) | .568 H 1.257 i
: 3 : (6.009300017-9414-59) : 3-25E—2 : 7066E"3 :
R (5.999054, 3.000239, i 3.24E-2 i 2.20E-6 |
i i i H i
i i i H {
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Thus we see that, for this example, computing on the wrong branch of

solutions does not destroy the velocity estimates.

The Ray Labelling Problem (3.2).

Thus far in our inversion examples, we have assumed that from the
field data we are able to properly identify the ray types of the different
arrivals., Also, we have not addressed the problem of how to "pick" travel
times. If ore had fairly good estimates of the layer velocities (e.g.,
from well log surveys), using our forward modelling program (chapter 1)
could help determine the ray types which correspond to the different travel
times. However, we will consider the problem where one wishes to include
various travel times in an inversion but is unsure of the corresponding ray
type (e.g., does a particular arrival time correspond to a PPPP,PSPP,or
PPSP disturbance, etc.).

For a medium consisting of a stack of parallel layers, there are often
several rays with exactly the same travel times and amplitudes. We call a
group of rays that have identical travel times for all offsets a
kinematically equivalent family. Similarly, a group of rays with identical
amplitude characterisitics is called a dynamically equivalent family. From
Hron[8], the group of compressional rays shown below in figure 2.8 1is an
example of a kinematically equivalent family. We also show dynamically

equivalent sub-families.
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4 \ N/ 5
v —Y _V\\// 6

¥.0- dynamically equivalent subfamilies.

Figure 2.8 A Kinematically Equivalent Family of Rays

We will characterize a class of rays for the planar case with the vector
(n,P: Nig s N2p s Mg s r),r; Mygrnseneseces NyiNyg ) where /7(,,', denotes the number
of compressional ray segments in the i'th layer and /743 the number of
shear ray segments in this layer. For the case, where there are no P-S8 (or
S-P) conversions (i.e., ng = 0 or Ih?: 0 for all i), Hrorn [8] has given

the number of kinematically equivalent rays in a class. This number is:

J-1 Hf*ﬁ.'u =/
N(ﬁ,,o, l")nJ-P) - lZ:]- Cﬁc‘u

ﬁ;rr;,;"-l _ _
C,—,. = (f)t'fﬂm -,Z)./ (3.10)
/7”1./(/7;_‘1)/

ne = Nyp/2

These concepts of similarity are very useful for forward modellinrg,

using parallel plane layers. When the travel times or the amplitude of a

particular ray has been calculated, one has effectively calculated for an
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entire family of rays. However, we can clearly see a non-uniqueness in
assigring ray types to arrival times or amplitudes, in the inverse problem
for a planar geometry. For slightly non-planar interfaces, the travel
times for the rays of a kinematically equivalent family will, in general,
now all be slightly different.

To illustrate our technique for inecluding unknown ray types in the

inversion problem, we consider the following interfaces:

z1=—x1%%2/18 +y1/20 -5 (3.11)

z2=x2/16 -y2/10 =15

The velocities used to generate the data were VF,1 =5, Vs, =2.9 Vp,z =7,
and Vg ,2 = 4. For our first example, we shall include the rays from the
primary reflector (P,P) and (P,S), and from the second reflector (P,P,P,P),
(p,s,p,P), (P,S8,S,P), and (P,P,S,P). The source is at x = 0, y=0, z= O
and the receivers are located at (x =i, y=1i, z =0) (i = 1,5). The

synthetic travel time data are shown below in Table 7.

Table 7. Ray Type and Travel Times

i i
i i
i PP PS PP P3 PP i
12.011079 2.736598 2.070584 2.816977 2.172013}

12.956534  2.309438  3.147441  2.476372  3.381163]

i PPPP PSPP PSSP PPSP PPPP |
14.843695 5.899878 6.954338 5.899583  4.869617i
i PSPP P3SP PPSP PPPP ... etc g

15.929223  6.979764 5.920315  4.910124  5.974652]
17.015685  5.948861 4.964833 6.035735 7.0618201
15.985007 5.033229 6.111891 7.117856  6.028548}
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As we can see, the travel times for the (P,S,P,P) and (P,P,S,P) rays are
very close. If the interfaces had beer parallel planes, then in fact these
times would be identical. In practice, the accurate determination of
travel times is a major problem, and whether one could in fact, resolve the
small time differences of some of these rays is doubtful, but we will not
concern ourselves with this problem. These examples simply serve to
illustrate a type of method that can be used to include unknown ray types
in the inversion process. However, there are still many problems of travel
time determination and ray type identification which we are avoiding. We
suppose that we know which of the observations correspond to the (P,P),
(P,S) and (P,P,P,P) types of rays, but the other "labellings" we are unsure
of, although we assume here that they lie in the group (P,S,P,P), (P,P,S,P)
and (P,S,S,P). However, in order to determine the second layer's shear
velocity, we wish to include these rays of unknown type inr our inversion.

In the inversion program, when we calculate the travel time, for
example, for the (P,3,P,P) ray for a particular station, we do not know
with which of the three‘observed times to associate it. In particular, for
the residual véctor F (ﬁha calculated traveltimei - observationz). we do
not krnow which observation to subtract from the calculated travel time.
Conversely, we can consider the 1i'th observation as fixed, and the
calculated travel time to associate with it undetermined. We will consider
the problem from the viewpoint of trying to determine the observation to
use with a fixed calculated travel time.

To formulate this mathematically, we denote the calculated travel
times for (P,S,P,P), (P,S,S,P) and (P,P,S,P) rays at a particular receiver

as én&;, éﬂi’ and {ns. respectively. We denote the group of observations
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for these rays as oéstl' , obs;“_ , and 065‘;_;., and now wWe Wwish to determine
which of 0659 ' fcﬁaé and obSQ to associate with'{74 etc. Explicitly

putting this indeterminancy into the problem we form:
= re— o obs — - :
/—:1 + LI 0(]0 SL/ "(LObSlZ 0(3 Ob3¢3

(3.12)

F:;z -l{-rlz _ﬁ/ ob,_S‘L) -/f,_ObSL;-'ﬁg ObSL\;

F,; = fr‘s ”Dgob&) "x_ob&;’“}gobsﬁ;}

Ideally, we would wish the triplets (eoff, oy, o3), (ﬁ,, /3;., (83) and (), Y.
b:;) to be of the form {(0,1,0), (1,0,0), (0,0,1)} or some permutation of
this. In general, the values ofoﬁ,&,&,ﬁ,,etc. will not be integral, but
one hopes that they will be sufficiently close to zero or one, so that the
ray labels can be easily determined. Thus we have reformulated an integer
problem as a continuous variable problem. Hopefully, the continuous answer
will correctly indicate which integer nodes to examine for the optimal

solution. With this in mind, we rewrite (3.12) as:

© = try — 4y 0bs; — o2 obs.,— Cl-oly-od2)0DS
(.I / 1 / 2.

R = thy= /3 obs; ~fBaobsy = (- Blobs.,

(3.13)

F‘; -t or ~( f--%r{,@;)obsa}"( /—dz-ﬁl)o&r‘;(,,(,,fg,h&% )obs,é

These same parameters are introduced into the corresponding terms for the
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other receivers. By using the same coefficents at each station, we are
assuming that by some means (perhaps by establshing some trends in the
data) we have been able to arrange the data into groups of unkrown ray
type. In general, we may wish to introduce rew coefficents at specific
receivers, indicating that for these stations we are unsure of with which
group of travel times to associate the station's unknown ray times. We
have introduced four new parameters into the problem and four new columns

into the least squares Jacobian. The new Jacobian entries are as follows:

I - obs; - obs, I, _ obsy - obs,
Jd, Jdz

I, _ obsy - ohs,: F, _ obS’,;3 _ obse,

Vi

2B, I

(3.14)
s _ obS,,' - obs&;J JFiz  _ obst-z - obg,-j
o Jola
EHEQ = OASQ"Cuané 2R3 - CDbSQ = Cfgﬁk

%B, %51

Thus this modified Jacobian has the structure:



—t
(=]
i

_él _él .42 _éL 9 o 9 42

IVt %1 pz Iz Ad) 8 IJdr 5=
station 1 (P,P) X 10 1% 1o 1o ! o'g' i 0 i 0'8 i
(P,S) i Xx {1 x o {o (o jo o }|o |
station 2 (P,P) i X o o {o (o o o |o |
(P,8) ix ix o o fo (o jo jo |
] 1 1 ] 1 ] 1 ] t
. { i i ] 1 ] ] ] ]
I ] ] ] 1 I ] 1 ]
. I ] ] ] 1 ] ] ] i
station 5 (P,P) ix o to o o o o | o |}
(P,S) i x tx o o o o ‘o }o |}
station 1 (P,P,P,P){ x J 0o ' ¥ o o o 1o | o |
(P,S,P,P)I x J o I x ' x tx {x o o |
(P,S,8,P)I x o o Ix 1o to +x | x |
(P,P,S,P)I x 0o | x }x }Jx }x | x | x |
] t 1 1 1 ] 1 ] 1
. ] ] ] i ] ] ] ] ]
. i | i | i i H i H
station 5 (P,P,P,P)! x | 0o | x {0 Jo ‘o to ! o |
(P,S,P,P)) x J o tx tx Jx J!x ‘o | o |
(P,S,S,P)ix o o tx Jo o I x | x |
(P,P,S,P)I x 0o | x {1x {x Ix |x |x |

Figure 2.9 Elements of the Least Squares Jacobian
x-denotes non-zero entry

For the case VP,I =5, VS.( =2-9’VP'2 =7, Vs, = 4, ’([ = 1, ‘(l_ =0, ﬁ[ =

0, KﬁL: 1, the numerical inversion results are as follows:

Table 8. Inversion for Velocity and Ray Type

1 t
! 1
i IT | VELOCITIES| LABELS i RESIDUAL] GRADIENT |
| i [ | ) i
i 0 | (8.00,4.00) }(.300,.300) i 10.38 1 15.46 H
i i (12.00,6.00)](.300,.300) H i i
i1 1 (3.20,2.49) 1(.977,1.45E-4) | 16.08 | 124.19 |
{1 (3.43,3.00) 1(1.32E-2,1.000) | : :
| 2 | (8.35,2.85) 1(.989,1.86E-4) ! 4.57 | 18.65 |
! i (7.86,5.67) {(-2.25E-2,1.000)i i i
|3 1 (4.92,2.90) 1(.995,9.74E-5) | 728 | 2.134 |
| 1 (6.53,3.99) !(-8.34E-3,1.000)1 ] :
i 4 1 (5.00,2.90) {(1.00,1.02E-5) | 3.73E-2 | 9.36E-2 |
| 1 (6.97,4.00) |(-1.28E-3,1.00) ! ] ]
| : ' : :

[} }

Final estimate: velocities: (5.000000,2.900000,6.999860,

4,000000) labels:{1.000008,2.164E-7,-1.095E-5,.9999999)
residual: 1.56E-4 gradient:3.78E-4

We note that in this example, we allowed Newton's method to continue
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unchanged even after an increase in the residual at the first step. 1In
this problem there is a moderate amount of ill-conditioning. Physically,
this arises because the travel times for the (P,S,P,P) and (P,P,S,P) labels
are so similar, yet we find distinct labels to assign to these times. Thus
small perturbations to these travel times can give rise to large variations
in the resultant 1labels. With one percent random noise added to the

observational data we obtain the following estimates:

velocities: (5.04,2.91,6.97,3.98)

labels:(.769,1.46E-2,.1464,.996)

residual=. 147 gradient=4.41E-6

(Seeds for random number gererator =(17,2)
Thus with this noise level, which can be greater than the time difference
between the (P,S,P,P) and (P,P,S,P) rays for most of the receivers, we
cannot clearly distinguish between these ray types. However, simple
arithmetic shows that we do weight the observation for the (P,S,S,P) ray
correctly, and our velocity estimates are good.

We now try another numerical example. Our interface pgeometry is as
above (3.11) and the. velocities are the same as the above example. We
calculate the rays (P,P),(P,P,P,P),(P,S,P,P) (tri1),(P,S,S,P) (tri2),
(p,P,S,P) (tri3), and (P,P,S,S) (tril) for the source at x=0,y=0,z=0 and
receivers at x=.05+(i-1),y=x and z=0 (i=1,6). For this case, we assume we
know the purely compressional observational travel times. However,we
consider that for the remaining four observations for each station, we do
not know whether they are of (P,S,P,P),{(F,5%,3,P),(P,P,S,P) or (P,P,S,3)

type. Including the unknown ray types in the inversion, introduces nine

additional parameters. Following (3.14), we can write for this case:
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£ o=tr-&obss, -z 0bS:y, ~dz 0bSy ~Cl-udi-ds=ols ) 0bSiy

¢

Fe, =tro-gobs; 7% obsy -5 0bsy ~ (1615 7/0’3)05&;(

Fo=tr-0j obsy = 03 0bs, = 03 0bs ~(1o-0-%)obsy 31
E‘f= éﬁ%t—(/—a(!_ _ﬁl;%)Obst,;l —(/‘dz’/gz”b/z)omc}_ - (/"033 ’ﬁ_;'%)obfeé
1 () + oz + +Ig, fﬂz 3+ +0e + - 2 )Obj'.‘,;

Numerical inversion results for this example are shown below in Table 9.
(the observations are such that:(, =1,o(2=0,o(3=0,/5, =0,/3,=1,4;=0,

.&’:O, X[:O, and 33‘:1).

Table 9. Inversion for Velocity and Ray Type: Example 2

ITIVELOCITIES LABELS RESIDUAL { GRADIENT

o L 1.4) (0,0,1),(1,0,0)

i
;
|
' 17.70 167.13

0,2.21)1(1.41,.225,-.372)

(3.0

(5.0,3.0) | (0,1,0)
1 14,2
(6.4

i i

i i :

i i ]

i i i

i [} ]

i 3,3.71)1(9.24E-2,1.075,-.179) | 4.63 L 24.79
| 1(.180,9.56E~2,.802) ; !
1(4.87,2.79)}(1.08,4.67E~2,~T7.82E=2) ! |
1(6.95,3.96)(2.92E-2,1.02,-4.97E-2) | .585 ! 2,62
: | (4,15E-2,2.21E=2,.954) | |
1(5.00,2.90)!(1.00,1.07E-3,~1.89E-3) ! ;

1 (7.00,4.00)}(1.24E-3,1.00,~1.92E=3) | !

i H i

i i ]

i i i

i i i

i i i

1 (8.55E=U, 4. THE-4,.999)

Y

1.25E-2 5.44E-2

(5.00,2.90)1(1.000,9.64E-5,~-1.61E-4)

(7.00,4.00){(-7.68E-5,1.000,6.08E-5)
1 (=2.66E-4,-1.26E-4,1.00)
i

8.6UE-6 3.69E-5

The condition number oflg is approximately 5E3. Adding 1% noise destroys
the labels, but we still have fair velocity estimatéé. We note that if we
had left out the rays (P,S,P,P),(P,S,S,P), (P,P,S,P) and (P,P,S,3) we
could not have determined either of the layers' shear velocities. With the

same 1initial estimates as above but with 1% random noise (seeds=(1,3)) we
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converge to the following estimates:
velocities (5.115,2.513,6.842,4.064)
labels (.605,2.11E-2,.444) (~.732,.272,.654)
(—-627t—0350’1.581)
residual: .122 gradient: 7.21E-6
or:  o=,605 o2=.021 of3=.44¢ oLy =(l-cl~dz=ol3)=~. O70
=82 Ba=2T2  fB=.65F fy = (:—ﬁ,—/@;ﬁsk . 806
%==627 92=-350 05=1.581 ¥ =(1-%-2%-0)° .3%
(1-dy-8-%)=1.754  (I-co4Be=1:)=1.057

(/—0/5755—33 =-/L678 (/—d4764'2f4)="./32

3.3 Inversion for Interface Shape and Layer Velocities.

Thus far inr our examples we have assumed that the depths and the
shapes of the interfaces are known. Now we will include the depths and
shapes of the reflectors as parameters in the inversion scheme. Wé wish
the reflectors to be represented in some form that can be easily
parametrizable. For example, one might represent the interfaces by a
collection of bicubic splines with unknown coefficents. In our case to
simplify the brogramming, we take the interfaces to be arbitrarily dipping
planes. Thus %54x 7&y + ﬂt (i=1, number of interfaces). We shall also
take the layers' velocities as unknown.

A least squares approach to this type of problem has also been
formulated by Gyoystdal and Ursin [5],but their method is different than
ours. They wutilize timemaps at the surface (a timemap is the function
tr(x,y) where tr(x,y) is the zero offset travel time at source-receiver
location (x,y) for a specific sequence of interfaces). This allows them,

with an initial velocity estimate, to find the rays' intersections with the
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interfaces. Cubic splines are then fitted to these intersection points to
approximate the interfaces. Non-zero offset travel times are then used
with the interfaces found from above to estimate the layer velocities, and

the procedure is then repeated iteratively.

We do not require timemaps, and we invert simultaneously for all the
unknown parameters. In the section on layer velocity estimates we had the

formula for the Jacobian elements:

N+
J:k = er,"-‘-, - -DJ. J_/',k (3.16)
9 Vk I
J.:.l J

(af;,(‘ﬂ, if VJj corresponds to the same layer and velocity type (P or S) as
Vk; otherwiseof),(::O). To invert for the plane's parameters (o ,IBK,)E), we

must calculate 9‘*«'/3)&, Db?/%ﬁc' and Q'b;/a);. From

N+
Ly = S, c- X, V4 (Y50 =Y o) 4 (B0 2y, 0)
;=
\(j.

J=4

(where a subscript zero refers to the source
location Xs
a subscript N+1 refers to the receiver
location Xk')
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we obtain:

otr; _ f a2, (%) Xy —S2,,k XJ'-/)

ek NEZ ! 2

JHr, — K 82; ( 2k Yy~ 2w Yy-t) (3.18)
ﬂ@% yey, Dy vy ‘
dry _ N 82 (k- LR,k)

?dk < DV

where Z,c=11if X, is on the k'th interface;
0 otherwise

Mk =1 if X,+ is or the k'th interface;
0 otherwise.

With this expanded Jacobian, we are ready to include the interface
parameters in the inversion. For our first numerical example, we use the
following model:

z1=.08 x1 -.1y1 -5 (3.19)

z2=,20 x2 +.1 y2 -10

Vp,1=12 Vs,1=6 Vp,2=14 Vs,2=8.2
For the first inversion example, we shall use one array: source at x=0,y=0,
z=0 and receivers x=i,y=i,z=0,i=1,5. We synthetically generate the travel
time data for the (P,P),(P,S),(P,P,P,P), and (P,S,P,P) rays at each
receiver, We observe that there is a stability problem with this type of
inversion using a single 1linear array. For example, if we make the
interface parameter estimates e(,.:(;’, and da .-.ﬁ;, then the calculated ray
solutions are such that Xi=Yi for all i, and it is easy to see from (3.18)
that there are two pairs of identical columrns. Thus the dimension of the
right null-space of J is two and is spanned by the vectors

A

! 1 : . ; .
=.,=.,0,0,0,0 p, =[0,0,0,0,0,0,0,/.,.¢,0]. This 1is
T 0,0,0,01 and P, =[0, ) < .zl ]

physically sensible., For this case, the ray solutions all 1lie in the

P, .=[0,0,0,0
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vertical plane determined by the line x=y as shown below in figure 2.10.
X3

-
<

Figure 2.10 Rays Lie in Plane Determined by Line x=y

Changing the parameters o(, ,ﬁ, so that of =:ﬁ,‘ has no effect on the depth of
the interface along the line x=y; similarly for the second interface and «2
and Bz . Thus to first order in oﬁ;,fﬂ;,bh , and /52 , changes in the
parameters in the above form have no effect on the travel times for the
array along x=y; 2=0. Using a singular value decomposition of the Jacobian
matrix, we find the estimate which is orthogonal to the null-space(i.e., we
stay in the space 0(,:.=/3, -‘,{',:-(92\. Thus if our initial parameter estimate 1is
such that ,,2,-:/'4, , and 'dz.:ﬁ; we will always remain in this space at each

iteration ir the non-linear least squares algorithm.

Numerical Inversionrn Example. Table 10
iteration 1

velocities 8,4, 10,5
interface (0,0,-4)
(0,0,-8)
residual 1.792 gradient 3.908
singular values 2.868,1.782,.467,.370,.340,.193,
2.31E-2,3.99E-3,5.00E-9,5.99E~-16
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iteration 2

velocities 10.59,5.30,13.40,7.37
interface (-6.338E-3,-6.341E-3,-4.61)
(9.878E-2,9.878E-2,-9.397)
residual .433 gradient .888
singular values 2.180,1.953,.346,.232,.164,.115,
1.23E—2,2,19E—3,9.13E—8,8.80E—8

iteration 3

velocities 11.82,5.91,14.08,8.20
interface (-9.785E-3,-9.753E-3,~4.92)
(.148,.148,-9.93)
residual 3.03E-2 gradient 5.87E-2
singular values 2.208,1.927,.309,.200,.127,9.62E-2,
9.70E-3,1.97E-3,1.06E-6,3.81E-8

iteration 4

velocities 12.00,6.00,13.98,8.20
interface (-1.001E-2,-9.899E-3,-4.96)
(.1496,.1496,-9.97)
residual 4.17E-4 gradient 7.798E-4
singular values 2.247,1.900,.303,.196,.127,9.61E-2,
9.39E-3,1.96E-3,4,02E-6,5.88E-8

iteration 5
velocities 12.00,6.00,13.98,8.19
interface (-1.001E-2,~9.899E-3,-4.96)

(.1497,.1496,-9.97)
residual 3.16E-5 gradient 4.66E-T7

For the more general case of 41#51 , and 'ofz_qéﬂz,. there still seems to be
a null-space. That is, one can find a direction of parameter changes so

that to first order the travel times along the array x=y are unchanged.
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Table 11. Sirgular Velocity/Interface Inversion

i velocities | interfaces | resid | grad |3min
] i [] 3
— ] i ] ]
0} (8.000,4.000) {(.1000,0.000,-4.00 )} 1.565 | 3.854 |2,4E-7
(10.00,5.000) }(.0000,.1000,- 8.00)!} i i
1 H
1 ]
11 (10.519,5.259){(.456,-.427,-U4.730) 371 4
]
i
]

1
i

.758 16.0E-8
(13.394,7.077) 1 (7.04E-2,.156,-9.37) H
!

2.88E-214.23E-216.U4E-8

1
2.52E-214,59E-2
1

i
4.37E-318.80E-3

(13.3497,7.077)1(.104,.199,-10.01)
H

o
.

(o))
v
(o]

i
3 (11-983750992):(0125’—0145’_5001)
1

(14.020,8.258) 1(.165,.134,-9.96)
4,

(o))
v
<o

i
4} (12.000,6.000)1(9.7E-2,-.117,-5.01)
(1”.000'8-200) :(0191’-1081-9099)

|
i
i
i
i
i
i
i i
2: (11.653950829):(0219!_0236'-5000)
i
i
i
i
1
i
i
i

e mm e e e e e e . mme— -

i '
5{ (12.000,6.000)}|(8.6E-2,-.106,-5.00){6.50E-U4{1.29E-3{4,.5E-8

1(14.000,8.200) i(.201,9.9E-2,-10.00){ i

t
1

i ] i
6 (12.000,6.000)(8.3E-2,-.103,-5.00)}{3.48E-5{6.78E-5
1(14.000,8.200) {(.203,9.7E-2,-10.00)}

When we add data from a second linear array we stabilize the problem.
To numerically illustrate this we use the same model as above, but also
generate the travel times for the array of receivers %=-i,y=i, 2z=0, 1i=1,5.

A numerical inversion example is shown below in Table 12.
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Table 12. Velocity/Interface Inversion: 2 Arrays H

t
i
re51d.grad ’Sm1n i
i
i

!

H

1iti velocities | interfaces ! i
i 1 1 '

1 1 i H 1
1”0} (8.000,4.000) }(.000,0.000,-4.00 )} 1.28. 3. 81 .3 6E-3
it 1 (16.00,7.000) {(.000,0.000,-8.00 )} H H H
I i ) i | i i
i 11 (10.56,5.283) 1(.053,.062,-4.59) | .287 | .598 {2.3E-3!
i 1 (15.99,9.526) 1(.196,.118,-10.08) | i H i
I i i i i i
i 1(14.09,8.259) 1(.197,.124,-10.03) | | % i
. H i i H H
! 31 (12.00,5.999) }(.080,-.100,~5.00) {1.6E-3}3.6E~3}{2.6E~3]
i 1(14.00,8.203) {(.200,.010,-10.00) | i i H
i H H H i H
i 47 (12.000,6.000)}(.080,-.100,-5.00) 4. 6E—4.9 OE-4}1.7E-3!
i H

:(14 000, 8.2000)}(.200,.100,-10.00)
I 1 ; ] ]
Flnal estlmates. velocities:(12.00001,6.000006, 13.99997,8.1999982)
interfaces:(8.0000073E~2,-. 1000006,-5.000005)
(.1999997,9.9999577E~-2,~9.999994)
residual :2.02E-6 gradient :2.18E-6

As can be seen below in Table 13, these estimates are sensitive to noise.

Finally we consider another model. The interfaces are:

z1: z1=.11 x1 + .1 y1 -5. (3.20)

z2: 22=.05 x2 + .1 y2 -10.

and the velocities Vp,1=6 Vs,1=3 Vp,2=8 Vs,2=4. Once again we generated
the travel time data for the (P,P),(P,S),(P,P,P,P), and (P,S,P,P) rays at
the receivers of the two linear arrays described above. A numerical

inversion example is given below ir Table 14,
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Table 13..Effect of Noise on Estimates

] i
i i
i % ivelocity est. {interface estimate ifinal |{final |
H H H iresid. lgrad. |
i i i i i i
{1’3 :(13-70 ,8.02) :(-197 ,0101 ;_9089) : : :
i i i i i i
113,51(13.82,8.10) 1(.198,.102,-9.93 ) i i }
i d d i i i
i .5 1(11.83,5.93) 1(.082 ,-.104,-4,91) {2.1E-2 {7.6E-T|
16,9 1(16.91,9.99) 1(.229,.0854,-10.97) | i {
1 i ] 1 ] ]
I i i I I i
i .5 1(12.14,6.07) i (.085,-.108,-5.05) |2.5E-2 |{3.3E-6]|
t14,11(14,22,8.36) ! (.200,.084,-10.16) | i i
! i i i i i
117, 1+ (13.04,7.73) 1 (.186,.110,-9.24) i i i
i 191 i { i !
: o8 :(11.4195066) : (-082'—-0651-4073) ‘3-7E—2 :1-1E"'5=
:3’5 : (12.0897.09) : (-183!-115’-9007) : : :
i i i i i i
i1 1(11.59,5.75) i (.080,-.092,-U4,76) |4.2E-2 {2.8E-6|
47, 1(11.94,7.0%) i (.191,.115,-9.12) H i i
) 22 | i i i i
13,2 1(17.14,10.25) 1 (.221,.100,-11.06) | i i
i i i i i i
the random number generator

q.,z; are the input seeds to
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Table 14, Model (3.20) Estimates

i i
i i
tit | velocities | interfaces iresid | grad |Smin |
i ! d i i i i
{0 1(6.00 ,5.00 )i(0.000,0.000,-5.00) {2.47 15.169 }{6.5E-3]
1 1(6.00 ,5.00 )i(0.000,0.000,-10.00) i H i
| i ! i i i i
11/21(5.82 ,1.80 ){(.163,.204,-4,92 ) {2.60 | H i
i 1(7.91 ,4.10 )i(.064,.103,-10.14 ) | i i '
i i i i i i i
i 1% 1(6.30 ,4.55) 1(.139,-.278,-5.29) {1.454 | 1.924}7.5E-3]
] 1(6.36 ,4.67) 1(.054,.144,-9.90) i i / H
i ] d d i i |
11.51(5.55 ,2.34) 1(.072,.412,-4.05) i 2.17 | H ]
i 1(7.88 ,4.00) i(.029,.297,-9.89) i i i i
i i i i i i i
12% ((6.48 ,3.98) i(.116,-.044,-5.45) {.973 | 1.240}6.1E-3}
i 1(6.56 ,4.485) 1(.077,.044,~9.87) i i i i
i i i i i i i
i3 1(5.65 ,2.61) {(.103,.182,-4.68) 1.263 | .B90}7.6E-31|
i 1(8.61 ,4.38) ((.041,.145,-10.18) | i ] ]
i i i { g t {
4 1(5.91 ,2.94) ((.108,.115,=4.93) {4.2E-2] .1687.8E-3]|
i 1(8.06 ,4,03) 1(.047,.104,-9.99) i i i |
i i i i i i i
i5 1(6.00 ,3.00) i(.109,.100,-5.00) 1 1.2E<315.5E-3}7.7E=3]|
i i i i i i i
¥ . Levenberg-Maquardt parameter set to one.

Final Estimates

Velocities: 5.999988,2.999993,8.000032,4.00017

Interfaces: (.1099999,.1000013,-4.99999)
(.04999926,.09999909,-10.00001)

residual: 2.8E-6 gradient 7.67E-6

In this example we used a non-zero Levenberg-Maquardt parameter twice
during the iterations to force the residual down. In this example we reset

the parameter to zero after the residual had decreased.

3.4 Inclusion of Amplitude Information,

Thus far we have dealt only with the inversion of travel time data. We
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nrow discuss the inclusion of amplitude information in the inversion
process. There are several different definitions of amplitude that can be
used. By using seismometers with different orientations at the same
recording point, one can record the three amplitudes of the particle
displacement 1in the three cartesian directions, or amplitude can refer to
~ some scalar function of these amplitudes. In the work that follows we
shall take "amplitude" to mean the euclidean norm of the displacement
vector. We will for these examples calculate and invert using the true
observed free surface amplitude (see Chapter 1 2.4).

As mentioned in (2.2), we will calculate the derivatives of amplitude
with respect to variations in the parameters by using finite difference
approximations. The derivatives of the travel time function are calculated
aralytically as outlined above. There is a fundamental problem associated
with the inversion of amplitude information. The derivativesémmﬁfaﬂ , where
Y 1is some parameter, are often ill-behaved and for some values of Y
discontiruous. (where rays are becoming critical). Thus one can experience
problems in the iterative inversion scheme when parameter values are near
or pass through these critical regions.

In the numerical example that follows, we avoided this problem by
considering arrays with very small offsets, thus Kkeeping the angles of
incidence of the calculated rays very small. However, other calculations
with larger offsets showed slow convergence, often to parameter values not
used in the synthetic data generation. The model for the synthetic data

generation was one of those used in the previous section and is shown below

in figure 2.11.



(J-‘-'Z Vpsi=12 Vs, = 6.9
22:.2X4,1y- 10

G:Z.S‘ \/P,th- Vs,2 =8.1 9:3 VP=L5' Vs=8,7

Figure 2.11 Schematic Model for Synthetic Data Generation

We gererated the rays (P,P),(P,S),(P,P,P,P), and (p,S,P,P) for the source
at  x=0,y=0,2=0 and receivers at x=.05 +(i=1)/10 y=x (i=1,3) and
X==,05-(i~1)/10,y=.05+(i-1)/10 (i=1,3). As mentioned previously, our

residual function is now weighted,

- 24
4+ FF = E (&) Utro~cbs;) v (ra)Qamp; ~0bsisae)”  (3.21)
(=1

E
and the Jacobian ..71:,:3—)7—‘ is modified accordingly. The results of the
J .

inversion for layer velo_cities for the top 2 layers (we assume that the

parameters of the lower half space are known; we also know the layer

densities) and the interface parameters are shown below in Table 15.

21:.08X4+.1y-5
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Table 15. Effect of Weightirg Amplitudes

i i
i i
irt jrajfiral vel. H final interfaces |(resid. jgrad. |il
1 ] ] 1 ] 1 ] I
] l_____l [} i 1 Pt
i1 10 1(9.38,5.39) 1(6.23E~2,-6.56E-2 11.86E~4]1,07E-5|3|
i i 1(8.21,4.78) | -3.89) H i P
] v i (.130,4.83E-2,-6.77 | i P
] 1 ] 1 [} ! i 1
1] 1 ] 1 . ] ] ] [}
1100{1 {(12.00,6.90) | (.0800,~.100,-5.00) |3.67TE-4{2,6TE-2}{4}
i i 1(14.00,8.10) | (.200,.100,-10.00) i { v
] ] ] ] t 1 ] I
1 i 1 i 1 1 ] 1
i1 11 1(12.00,6.90) | ¢ nn 11.26E-4]1,7T1E~6 | 4|
H i 1(14.00,8.10) | v no i i P
i i i i i .
T AL wei (.0796,-.103,-5.00) i5.59E-4]9.00E-64}
: P ml (.201,.107,-10.00) | ] I
1 1 1 1 I ]
t [} i i i

[} I
i 1 1

"i" is the number of required iterations.

—

For all four of the above runs, the initial estimate was Vp,1 =9, Vs,1 =5,
Vp,2 =8, and Vs,2 =4 with interfaces (0.,0.,-4.),and (0.,0.,-B.). We see
that for this model we require non-zero weights for the amplitudes to force
the estimated parameters to the model values.

As a final example of the use of amplitude information,we consider the
following planar example'shown below in figure 2.12.

gX=y=05¢-1((-1) (=1,§

7,0:2 \/?Jt =6 Vs, 1=3

Jp=3 VP\l = 8 \/S'.Z = i

Figure 2.12 Model for Travel Time/Amplitude Inversion

We generate the travel times and amplitudes for the primary reflections,
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(P,P) and (P,S). We have no rays passing through the second layer, but by
utilizing the amplitude information we hope to estimate this 1layer's
seismic velocities as well. If we set rt=1, ra=0, then at each iteration
we have 2 singular values corresponding to Vp,2 and Vs,2. Starting at
(Vp,1=10, Vs,1 =5, Vp,2 =7, Vs,2 =3) we érrive at a final velocity estimate
of (6,3,7,3). For the case rtz1, raz1 our results are shown below in Table

16.

Table 16. Velocity Irversion Using Amplitudes

(8.0000,3.9966)

H i
1 1
! 1
1it} velocities | residual | gradient } Smin !
i H H d i
10} (9.000,5.000) V2.452 11,140 | 5.76E-3 |
i 1(10.000,6.000) ! g | i
I i i i {
1.5V (4.5000,1.666) | 3.813 i H i
i 1 (6.7788,2.548) | i i i
I | i i i
i1 1 (8.4621,4.2399) | 1.961 i 1.178 | 6.20E=-3 |
i+ (10.001,6.0000) | H : i
i ] 1 ] ] t
1 ] ] 1 1 H
V1 (7.0802,3.1534) | H H i
Pl . i H H H
13 1 (5.8299,2.9125) | 0.1989 | 0.2534 | 8.53E-3 |
i 1 (7.8271,3.8658) | i H H
. H ‘ H i H
i4 1 (5.9952,2.9974) | 5.559E-3 | 6.708E-3 | 8.31E-3 |
i1 (7.9948,3.9935) | H H i
- i H H i
15 | (6.0000,3.0000) { 1.267E-5 | 5.90E-6 | !
HE i H H H
I | i i |
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Appendix A - Solution of the Parallel Planar Problem

We consider here the three-dimensioral plane problem for a source
point _)_(_s and receiver at _X_R .« For any velocity sequence, V, for the
layers, there will always be an unique solution. We immediately satisfy
the coplanarity condition by considering all rays to lie in the plane, P,

shown in figure A-1, determined by‘_)_(_g - Xs and the z-axis.

’les 5 y
rd
Y[\ %
e A
e ”
e "/"' rays lie n plane P
- P
rd

Figure A-1 Geometry for Planar Problem,

Thus we consider only two coordinates: the z-axis, and define the x-axis to
lie in the plane P, orthogonal to the z-axis. Looking into the P-plane we

have the model shown below ir figure A-2.

X
AT >
Vz N‘ 62 Dz
Vs T 6s Ds

Figure A-2 P-Plare Cross Section of Figure A-1

We let Vg denote the velocity of the k'th layer; Dy is its thickress, and

&8¢ is the angle that the ray in the k'th layer makes with the z-axis.
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From Snell's Law,sin & =Vx/V, sin &, . The "x" distance travelled by the

ray in the k'th layer is Dy tan ©x = Dk sin &/ ;- 5,n%ex

i =

(A-1)

D Vk 3
) " // V/VI)ZSI'II zél'

Thus, over N 1ayers

D ofx Sin o,
d = 42\. ,/ﬂ - oo Sth 2O | (A-2)

where ol = V’%/_{ . Now we consider

N
= N Deole
F(X)E //"G(Kz X2 (A-3)
k=1

where we restrict "x" (= 51n9) such that 0<x< min Zx . In this range, %(x)
is a continuous funection of x j;at x=0, F(O):O, and as x --->ﬂ!fné‘, %(x)
———=> 00 Thus from the "Intermediate Value Theorem)' 'I::(x) must at some
point attain the value "d' where "d" is the horizontal distance between

source and receiver. Hence, we have a ray solution. Also we can calculate

(A-4)

Z 3xoti D
FUx) =2 - —ix?) (4-5)

”~ -~
We see that F(x) is strietly increasing and hence F(x) is one-to-one from
(O,min 7= ) to (0,00).

. Lol
We know that F(0) < d and that as X -->m«:i F(x) > d. Thus we can
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divide the interval [0, .9 min ;é] into 9 increments, Ax, and starting with
x1, locate the first xi such that F(xi) > d. Now using the bisection
method we can reduce the residual of F(x)-d to less than one  (typically
for our problems two bisections). Applying Newton's method, this residual
can quickly (2 or 3 iterations) be reduced to .00001. With this value for
x, X =sin &,., we calculate c/k, in the plane of incidence from (A-1). These

coordinates are then converted to cartesian coordinates from

Xe = Xs +(ZJ ) cos ¥
Ys + (ZC/ ) Sin Y (A~6)

It

Yx

It 1is inrteresting to note that, for this problem, we carn say when
Newton's method is guaranteed to converge. From the Fourier conditions
(see Burden et al. [R 1), Newton's method will converge irn the interval

(a,b) if the following conditions hold:

(1) F(a) F(b) < 0
(ii) F/(x) is either strictly increasing
or decreasing on (a,b)
(iii) Flzx) does not change sign on (a,b)
(iv) if "c" is the endpoint of (a,b) at which }F/(x)}

te,
is smallest, then |’fm; < b-a

In our case F(x)= E DK"(”X Ol , and (a,b) =(0, min ’x) and F(x) has the

k=1 VI X*
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following properties.

(1) F(a) F(b) < 0 for d > 0

(ii) F ,(x) is strictly positive

(iii) Fx) is non-negative on (a,b)

(iv) 0 is the endpoint at which :F’(x): is smallest

and JF(0)/F(0)} = &/ 5 Duste .

k=l

d
Thus if /dek""‘;‘—i, we have guaranteed convergence of Newton's method
A

for any initial guess in (0 ,min L ).
oAx
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PART II INVERSE SCATTERING AND CURVED RAY TOMOGRAPHY
WITH APPLICATIONS TO SEISMOLOGY.
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II.0 Introduction Part II

In Part II of this thesis, we discuss two methods of approaching
inverse problems ir seismology. As discussed in the irtroduction to
chapter 2, Part I, we are interested in the determination of parameters o

from a knowledge of some observations j&f

Z{ = Xd (0.1)

Iin chapter 2 Part 1 we estimated jﬁ by the use of non-lirear least
squares. In Part II, we deal with the exact and approximate inversion of
equations of the form (0.1) by more analytical methods.

In chapter 1, we discuss the use of inverse scattering theory to
determine the velocity and density (or sometimes just the impedance
profile) for physical models where the parameters vary only with depth.
Herej{ is the observed particle velocity, 5{ is the velocity and density
protiles and gfis an integral operator relating 2§ ando{. In chapter 2, we
consider the situation where the velocity field of the medium may vary
three dimensionally. We linearize (0.1) by taking the velocity field to be
a perturbation from a known background field. 2@’ will be a vector of
observed travel times (actually, travel time perturbations), f{ will be the
unknown perturbation to the slowness field (reciprical to the velocity
field) and;{'will be the operator which projects _2{ aleng rays of the
known background field. We will take the background field to vary only

with depth and derive approximate inversion formulae for (0.1).
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Chapter 1., Applications of Inverse Scattering Theory to Seismology.

1.0 Introduction

In this chapter, we discuss the application of inverse scattering
methods to the problem of parameter determiratior in elasticity. For
problems described by a scalar wave equation, where the medium parameters
vary only with depth, a knowledge of the surface response of the medium to
an impulsive source yields the profile of some parameter or combination of
parameters exactly. By an impulsive source we mean a source functior which
is a spatial delta function at the surface, and in time contains all
harmonics. We will also take the source to be a delta function in time.
Thus, for this case, the impulse response is simply the Green's function
for the problem evaluated at the surface of the medium.

There are several approaches which have been developed in inverse
scattering theory. We will examine some of the aspects of the theory of
Gelfand and Levitan[11] and its time domain extensions (Symes [18], and
Burridge [u]); Although this theory was developed for one dimensional
Schroedinger operators in the spectral and time domains, the wave operators
which we will consider can be brought to this form through suitable
transformations. Very recent work (e.g., Bube and Burridge [3], Santosa
and Schwetlick [16]) deal with the wave equation directly, without any
transformations - to the Schroedinger form. However, the theory of Gelfand
and Levitan is still of fundamental importance to the problems of inverse

scattering.

For a multidimensionally varying medium, the inverse problem is more
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difficult. One can not always transform the problem to Schroedinger form
(Jacobs [121]), Approximate perturbatiorn methods have beer developed. If we
assume that the parameters are perturbations from known parameter fields
(the background fields), we can express the Green's function in terms of
the Green's function for the background wave operator., This yields the
Lippman-Schwinger series. With a knowledge of the Green's function at the
surface this series can be iteratively inverted to produce the true
parameter fields. (Clayton and Stolt [71,[8], and Stolt and Jacobs [171)
This iterative procedure can be shown (Prosser [14]) to converge, under
certain circumstances, to consistent parameter values (i.e., the
reconstructed operator will produce the observed data.)

For all these problems the stability of the methods are very
important. There are many practical problems that arise in the
determination of the true impulse response. The data contains noise, and
often the data has to be deconvolved of the source and receiver frequency
characteristics. If the source or receiver is bandlimited ( firite
frequency response), then it is not possible to recover the impulse reponse
function.

In the work that follows, we will examine various aspects of the
Gelfand- Levitan theory. Some of our approaches are somewhat different
from those mentioned in the literature and our numerical examples are new.
But this is basically a survey and, in some cases, an extension of the

methods already discussed in the literature.
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Section 1 Inverse Scattering for the Schroedinger Operator.
1.1 The Integral Equations of Gelfand and Levitan.

Gelfand and Levitan [11] considered the inverse problem of determining
q(x) and the boundary parameter h for the half-line eigenvalue problem
((1.1a) with boundary conditiorn (1.1b)), from a krowledge of the spectral
function (defined below) for this Schoedinger problem. Later, we shall
consider the finite interval inverse problem with the second boundary

condition (1.1e).

¢”+ (/\—q(x))¢ =0 (1.1a)

¢//0) +h glo) =0 (1. 1b)

¢//L) +/)z¢/L)= O (1.1¢)

The starting point of Gelfand and Levitan's inversion procedures are

the representations:
X
¢(x,/\) = CoS JAX + j%[x,é)c'osﬁfdz‘ (1.2a)

or
X

COSVEX = (x,A) + [X/(x, OB At om
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Now we assume a knowledge of the spectral furnction €)(4\). The spectral

function is defined such that formally

[ =]

¢(X,/\)gb//§,/\)c%oo\) = (x-3) (1.3)

-0

We take (?(hu) to be monotonically increasing and of the form

_PA) = % JA + O0(A) Ay o (1.1

0(A)  Aso
and assume that the integral
oo
f(x,y) = COS JA X CoS/A Y do(A) (1.5)

-0

exists. Here, we are assuming that e()\) is the spectral function for a
Schroedinger equation. Later, we shall give sufficient (and less
restrictive than the existence of (1.5)) conditions for an arbitrary
function to be the spectral function for some Schroedinger equation -and
boundary condition. Two integral equations are derived by Gelfand and

Levitan; a linear equation:

FCx,y)+ L, ) (x,)dt + & (x,y) = O
OSY&x  gix)=2 di’(xzx); h, = (o,0) (1.6)
X

and a non-linear integral equation:
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£(x,9) = Kxy)+ L %, 00 xae, 924 (1.7)

OLy ¢ X ?(x):-zc;‘% K(x,x) hy=-K(0o,0)
Equations (1.6) and (1.7) were originally derived using the theory of the
spectral properties of the Schroedinger - operator. However, it is very
useful to think of (1.7) (or we could similarly consider (1.6)) in the time
domain. Here we follow closely the papers of Burridge[4] and Symes[18].

Following Symes, and using his notation, we consider the initial value

problem.
o _ 9t gx)) Ux,¢) = O
t* IX*
%% (o) + /11 Ulo)t) =0 (1.8a)
Ucx,0)= o (x) %J(X,o) =0 (1.8b)

We will call the solution of this problem the Riemann function R(x,t;0,0).
The solution for the same problem but with initial conditions (1.8b)

replaced by:

U(lx,0) = o _QgU(X)O)=Op(X) (1.8¢)
Y

is given by

t
g-(x,é,- 0,0) = \/; E(x}ﬁ—)' 0,0/) do- (1.9)

From Duhamel's principle,G(x,t ;0,0) is a Green's function for (1.8a).
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In Symes [18] and Burridge [#4] it is shown that the unknown kernel K(x,t)
in (1.7) is simply the regular part, K(x,t;0,0), of the Riemann function
R(x,t;0,0). The function f(x.y):[?‘osﬁxms/?y de=CA) is
recovered from a knowledge of the Rie;:nn's function at x=0.

(1.10)

f(x,y)=2_/ (X//o, X+y:0,0) 1 k/o,/x—yl;o,o))

If instead of the initial value problem (1.8b) we have quiescent initial
conditions and a point source O/QX) O/%t) on the right hand side of
(1.8a) then from (1.9) the Riemann function R(x,t;0,0) is simply the time
derivative of the Green's function G(x,t;0,0). In our applications this
time derivative will correspond to particle velocity in seismology.
Solving equation (1.6) or (1.7), we can reconstruct the potential q(x) and

the boundary condition parameter h.
1.2 Modifications of the Theory for a Finite Interval.

A major aanntage of the time domain formulation of the Gelfand ard
Levitan theory is that in order to determine the poterntial q(x) for x
[0,T), we need only know the impulse response function K(x=0,t;0,0,) for a
time interval O0<t<2T. To recover the spectral information from the signal
would require a knowledge of the signal for all time.

Let us now consider in the spectral domain the problem (1.1) with a
second boundary condition imposed at x=L. Assuming this operator has a
discrete spectrum, then the integral relations (1.6) and (1.7) are still

valid for 0<x,y<L but now:
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1 eosJAk X cos SRy ~(2-do,k)eos kuy coskn
-/(x y)~ 2 ~— 0 1a

K=o

where {Ak},k=1,00 are the eigenvalues and/& = £L¢z(/1k;X'/ dx’
where ¢( Ak,x) is the eigenfunction and %( Ak,0)=1. The second boundary
condition parameter, h2, is found by constructing the ratio gﬁZh#)/gQ}x,g)
if the kernel J0(x,¢) has been determined.

Once again, it is easy to see formally, from the separation of
variables, that f(x,y) is simply formed from the regular part of the

Riemann's function:

7<[0 t,0,0) = Z e cos At — {2""°"‘)Cos(klrt)
- K

(1.11b)
//x,y) = 7’ (7€/o,x+y;o,o) + X (o0,1x-y1; o, a))
More fundamentally, from causality, the second boundary corndition, has no
effect on the observed signal at x=0 until time t=2L. Thus for a firnite
length of time, 0<t<2L, there are an infinite number of discrete spectral
representations of the observed sigral at x=0, corresponding to finite
interval problems on 0<ka with different boundary conditions at x=L.
After time =21, the second boundary will influence the observed signal,
but this later portion of the signal 1is not needed for the potential
determination. As we shall see later, it is sometimes useful to consider a

finite length of sigral as a discrete spectral sum.
1.3 Solvability and Stability of the Gelfand-Levitan Equations.

We first consider the non linear integral equation:
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X
Fex,t) = Z/(X,é)+/o, Kls,x )R (s, ¢t)ds (1.7
ogXsteT
Symes [18] has shown that (1.7) can be put in the operator form, for

0<x<t<T

I*'_Q(X,é)=(l-+ kK™XNT+ %) (1.12)

Dexey= TR x<E .
flt,x) x>t

D=L 00t dre)ar (1130

X dox) =y Kint) dledt

KBy =L Kt x) ot .

The operator decomposition (1.12) of (1.7) leads to the following.

Thereom 1 (Symes)

The integral equation (1.7) has a solution K(x,y) in the space

m
W;(C) if and only if K(0,t;0,0) satisfies:

(i) K(0,t;0,0) & wz' (0,2T)
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(ii) there exists an €; >0 such that for any ¢{£ L,[0,T]
T, 2 T, 7, 7 ' T2
Lié . f dx_/; dt oo gie) font) 5 €, [ 141* dt (1.1

where:
/(X,f) = 2’-[\/(’/0,'&)(;0, o)+ Klolt-xi; o,o)}

Here bdr is the Sobolev space of functions with m absolutely integrable
derivatives. The domain C, is defined as {(x,t): 6« X « £ ¢ T } and
)V}"' denotes the subspace of w.f with a well-defined restriction to each
line in ﬂ?z', lying in w: of functions on the line.

As mentioned above, the kernel K(x,t) 1is the regular part of the
Riemann function and hence must satisfy the appropriate wave equation in
the sector x<t. Symes [18] showed that there 1is a complete equivalence

between the solution of (1.7) and the non-linear hyperbolic problem:

(252 +9x)) Kixe) =0
e "ok T L
Q% lo,t) + h Klojt) =0
oX

%lo,0) = h
Klo,t) = F(¢t) gex)= =2 Cl\kd()CZX)
X

(1.15)

This problem can be discretized and solved numerically and Symes [18] has
proved stability results for various discretizations of (1.15).
We now discuss the stability of the inverse problem. If we perturb an

impulse response function K(0,t;0,0), is the resulting function an impulse
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response function, and if so what can we say about the difference between
the two potentials? We can easily answer the first question. Symes[18]
shows that condition (ii) of Theorem 1 is stable to Ly perturbations of
F(t)=K(0,t;0,0) In other words, if condition (ii) holds for an impulse
response function F1(t), there exists a " such that if iF1(t)—F2(t)i¢;<o’-’
(0<t<2T), thern condition (ii) holds for F2(t). Thus, F2(t) is also an
impulse response function for some potential q(x) and boundary parameter h,
if it is sufficiently smooth (condition (i)) We now answer the second

question from above.
Thereom 2.

We consider a pair of impulse response functions Fj(t), j=1,2 0<t<2T, with
corresponding potentials and boundary parameters (qj(x),hj), xe[0,T]. For
any € >0, there exists a Op( € ) such that if HFT(t)—F2(t)H‘§J’, then

X
IhT-hZHHL(g,(X')- Zz(x'))dle < €.

Proof:

We consider the integral equaticn

X
f(x,y)fjovo\((x,s’) fls,y)a/s + ol (x,9)=0 (1.6)
Oy ¢€X ¢T |

Here f(x,y) is the symmetric kernel (F(x+y)+F(}x-yi)/2. For fixed x,

g(y)=f(x,y) and ¢/$)= X(XPS’) we can write:

X
g!y)+/;7£/5)9)¢’(s)a’3+¢/(y)=o (1.16)
osy<¢x
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From Symes's positive definiteness condition for the kernel f(x,y) in
(1.16) it follows that (1.16) has a unique solution. Now we write (1.16)

for the kernels f1(x,y),f2(x,y) derived from F1(t) and F2(t).

'
Q

g t9) + (If'f:_;)ﬁ,“

(1.17a)

(2] (1.17b)

galy) + (T+ é)dz

X
AN
Here Fj is the operator 5¢{5£’6'{5)9) ¢f$) dS ., Subtracting (1.17b) from

(1.17a) we obtain

(9,-9;)*—(9{,—;/;% l—/'/\q{,"/:‘:sfz (1.18)
" lg-9:) ¢ (o) + E (J-f)+ (F-R) g = O
(é,-¢;) =»‘(I+,£[)-’{-(gl’_9z)+(El"ﬁz)¢?-} (1.19)

From the triangle inequality

"¢1 "¢zﬂw § ‘I(I+€)~'(jx"9z)‘la: +I (I+ E))-‘(;:\I ‘Ez,>¢z oo (1.20)

We will now bound the first term in the sum of (1.20). We set:

Viy) = (T+ El)_l(j’:“ﬂz) (1.21)
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and applying (I+I?I) to both sides of (1.21)
(I+ I‘—i)%(}‘):‘ (ﬂ:"ﬂz) ' (1.22)

A
Thus from the definition of FI

X
Yily)+ L Ai(s,9)0(s)ds = (9-9:) (1230

19 9l 1(5= 9 Mm #1113 5y (5,99 Vit d5 s (1.2

Now from the Cauchy-Schwarz inequality

114 Gs,9) % es)ds € 1Y)l 1 (-, 9l —
My& [O) X] ‘

Thus taking the maximum over y, of both sides of (1.24), we obtain

1 L0, 9) 0 t5)dslloo €U ()l na 1yl e

A ~1 A -
Now, X,(Y)=(I+Fl ) (g1-g2) or | X; (')“; i1 (I+F g )HLH81—EZHj From

x %
E 3
g(y)=f(x,y)=(F(x+y)+F(ix=y}))/2., we have that Hg1-g2Hz=‘£ (3,-3,_) :) <
-
X'/ch’ for JFj(e)-Fa(t) e < L, or HY,(-)H2< H(I+‘l:'l) H).X'ILJ' In
(1.25) we have for the other term y
X 2 2,
max “10[(’, 9)"1 = max (.ﬁ 'Pl (S;y)dS)
Y I Yo
§ max x max 1$03,9)¢ X Hhs,9llec  (1.26)
Y 0C3<X

Here, we take the maximum norm over 7 ,y2[0,Tl. Thus,
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A =)
” Sox'plcs)ﬂ) m(s)c]sum\( Xg”(I‘l’H) “z““"l(;)}))“m (1.27)

or from (1.25 )

1% (yMes € S(L+x H(I—rﬁ Y, I f (;,3)“oo> (1.28)

Thus, we have bounded the first term in the sum of (1.20).
A el A PN
For the second term of (1.20), {{(T+F) (F,-Fz)dz Hi following

the reasoning above, we have

A o] A A Ny
1(T+F) (R -F)dalloo s SCLHCTHR) e XUA Gy Mo MMBilleo (120
Finally, we obtain the bound from (1.28) and (1.29)

Idy-hlles € SCLH Il L+ IR I X IR Gul)  (1.30)

Now, we consider E, 18g0 yfz to be fixed quantities, and take F,,g,, J, to be

perturbations about the j=2 quantities. We will now replace all the Jj=1

quantities on the right hand side of (1.30) by j=2 quantities. From the
A —», ~ o ~n =i

Banach Lemma we can write U(T+F;) ll. ¢ W(I+F2) "z/(i'll(Isz_) H‘S) and clearly

1)1 < 123,91+ & . Thus we can write for (1.30)

I #_qu”w\( ISETITAPSE +2ll(I+§.).}ILT("1€($;9)”¢+S)) (1.31)

! .
where we have taken Cr< /(qu(u.r,)'u;) . This bound is good for all
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xge [0,T], when we replace all the norm bounds in (1.31) by their
corresponding maximum value for X¢[0,T]. For a sufficiently small Cr' we
can make Hg!,- gi{}é € /5. With the definition of @,’, we have
@i ty) = oY; (x,y)
og;‘ (x,x) = szoxqj'cx')clx’ + by (1.32)
H & (x,y) —Z. (x,y)ﬂw < s

which implies

| & cxx) - o 6|, < %+
”Zfo?(‘(“"') = Qu(x)dx’ + h-ha] < % (1.33)

Evaluating (1.33) at x=0, we have |h1-h2|{<€./s so that

LX (g, —%,(x')dx’ﬂ +lh-hl< € (am

o

and the proof is complete.

Symes [18] has shown in a Sobolev space setting that the mapping F:-->(q,h)
is continuous in the appropriate norms from WT" toﬁwf' ¥ R ). However,
in general, for two impulse response functions very close in the L, norm
(0<t<2T), all we can say about their corresponding potentials, is that the
potentials' "mean" properties will be close.

In this section, we have given necessary and sufficient conditions
(Thereom 1) for a function F(t) (0<t<2T) to correspond to an impulse
response function for a Schroedinger wave operator. In the spectral

domain, Gelfand and Levitan proved the following:
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Thereom 4.

Let P (A) be monotonically increasing on (-e0,e0 ) and let
':Zr' JA + 0 (A) AS O

CA) =
e 5CA) Ac¢O

Suppose CD (A) satisfies

(1) f c CJF(A) < oo og X < o0

a
¢o
(ii) aoo:[ ‘-—'E;\J—T-\-—)-(- do=(A) has continuous fourth derivatives
1

then there exist a continuous potential gq(x) and boundary

parameter h for which e (M) is the spectral function.

For a finite interval problem, with a discrete spectrunm,

integrals are replaced with the analagous infinite sums.

1.4  Analytical Solutions of the Inverse Scattering Problem.

condition

the above

For some impulse response functions F(t), the derived kernel f(s,#) =

{F(t+s)+F({t-s:)%% is such that we can analytically solve the linear

integral equation (1.6). As we discussed above, we can express

a finite

length of the observed impulse reponse function as a discrete spectral sum.
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[~2d
(x =/ e COSSARXCOSVAnY (2.4 ,
f :y) Z (F/X-Iy}f'F(IX_ yl)—g——j;___ - {,7-.9 ”)COS_I_L_’"HCOS%TX (1.47a)

We can truncat% this series and write

2 cos JAn X Cos JAn ¥ -do,n)COSNAX CosAMY
#All ZX)V) = \ﬁn - [2111.0)”» VT T—' (1.u7b)

Ao

In the spectral domain, this series corresponds in the spectral domain to

the spectral information

2
[/{olﬁ")/‘l)ﬂ) ver) A”I)p”/)_[A%:%)—Z‘)F,Z-)‘“) (1.48)

Assuming /ly, < [”l“’):”dI , (1.48) corresponds from Thereom 3 to an impulse
response function 7a:'1d in fact, since f,/l.(x,y) is analytic in its arguments,
so is the calculated dw, (x). If we choose N1 large enough and || F - FNI e
< )’ , for some Y >0, we can from Thereom 2 reconstruct accurately the

mean properties of the potential corresponding to F(t) using Fu, (t). The

kernel f‘;vl is a degenerate kernel and hence the integral equation

7[,:'; (x,y)+ [X(X/S)& (s,y)d8 + og(x,y)=o

can be solved algebraically. Following Whitham [21] (pp.593-594) we obtain

that:
= — / /
?(X) Zj;{; (/’5} Cfff ) (1.49a)
where: ’_
— B,
Q - _1_-+_.i Pz,
- = (1.49b)
AN+2
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x
Pik,j =;,;’£ch&& COS.//U‘SC/.S’ J;k=0,...,N (1.49¢)
¢ L .
P - 2z K cos JAx S "05!,_7,”_':? ds (1.49d)
/ X o
. < oy
Ak, = P l cos kns cos JA; S ds (1. 490}
(1.49f)

X .
cosKrs cos yIrs os
A T T

/741 k“). = {Z'J;)k)
T

For /‘k <0, we replace cosine terms with hyperbolic cosine terms in the

If we consider an operator with spectral information

above formulae.

22 2,3
n° 2z .
48 7:5 tolw, (MH) T 2, N;j)"’,;,-»)m.sm

(0, L #cbo, T* 2 #el), ..., N
T e’ TE
are different from

(i.e., only the normalizations of the eigenfunctions,

the (q=0,h=0) case), we can reduce the above matrix formulation to

= - / /1@l : @=T+P a
gx) 25{%{'[75—10{45) Q=+ (1.51a)

where:
(1.51b)

o n (2mmkx k=]#0
/?(J a(x(’?&)g +7‘sm(___{’_7.7__)) J
4k T

k=j=0 (1.51¢)

ij = Ao X
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Pej= T [sin/tkej)m sin [/ (Kk=))m (1.51d)
J AT (‘“'r"_/ * ( T )/
(k+j) (kfﬁjj

Using these formulae, we can derive analytically some results, which

we will refer to, later on.

Example 1.

Consider F(t)=zH>0, a constant or F(t)=(1/T + H) cos 0t- 1/T cos Ot.

Using the formulae (1.52) we obtain:

q(x)=2/(x+1/H)*%2 (1.52a)

h=F(0)=H (1.52b)
Example 2.

Consider F(t)=1/ Qo cos (e t) - 1/ m (0§t€2m ). Using formulae

(1.51) we obtain:

Z%+5"“34-'%‘:;¥ CT’I; é, sin Jho X
Q = +4 VAo
= (1.53)
1 sinje X X -4
T Fo m
_ J

or
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sin ’J/To X
.Y

=1 X* X sin2/RX
/]l zm tip e T

-Pf’ (1.54)
( X &+ smz./"é )

Example 3.

We consider F(t)z of cos(nt) (0<t<2w ) and apply formulae (1.51) to

obtain

z[x) =2 {nd S{n2nX + Na*Xsin2nX +d SmZan'o( ‘eos hX} (1.55)
2

oAX +o(.Slnc’lnX 2
Frdr )

We nrote that as o —=>0 q(x)=2n o« sin(2nX), or if we let o =1/n,for

n—-> o0 q(x) = 2 sin(2nx). Thus }{F(t)ii, -->0, but iiq(x)ii, =2. However,

11,9 =20 for n-->0 as predicted by Theorem 2.

X
(1 fp 2 5in (2nx")+ &
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Section 2. Application of 1Inverse Scattering Theory for Schroedinger

Operators to Scalar Equations for Elasticity.

2.1 Transformations of General Wave Operators to Schroedinger Form.

We now show that for media with parameters that vary only with depth,
we can transform the governing wave operator to Schroedinger form and hence
apply the techniques we have described above. We give two examples of

problems, of interest, that can be handled in this manner.

Example 1 (from Burridgel41)

A one-dimensional wave equation describing elastic wave propagation in

a medium, or wave motion on a string, with a source term is:
A U A Az
Jo(z) tt"'[/O(Z)C.(Z) Uszde = Jr2)d1¢) 2.1

Here ©(z) is the wave velocity and ﬁ;(z) is the density. A stress free
boundary at z=0 implies that 90./Da: =0, We now make the following change

of variable:
Z
/ [ dzs
_ A
X"' o C(2') (2.2)

(i.e., X is the travel time to depth z) Equation (2.1) now becomes with

¢ (=cu), f@=pW:
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(X) - 1 (pCUx)x = J(t)dlx)

P Vet b c o) (2.3)
or multiplying through by c(X)

XX I ke = (U x = Jt) S(x) (2.4)

P
Now we define "7 =( p[x) C(x) )Az and letting the new dependant variable

?(X)‘: Y](x)U(x),. we obtain:

?_H, - S + Yxx 3 = S (¢) SCx) (2.5)
) 7 (o)
The boundary condition becomes:
Uz=0 = Ux=0=>(f)=0
7 X (2.6)

@;x—g”j_{:o at X=0
7

Thus, assuming we know 77 (z=0), we can apply the inverse-scattering theory
to obtain q(x):ﬂ""/ '77 and h=-’7"[°)/7)lo) . Hence for this problem, we must

also solve the ordinary differential equation (initial value problem):

Vxx - ?(")77 =0
Vie) =71, N lo)==h, (2.7

. . . A
o recover the impedance profile W[X)C[x)) . We note that the best we
can do for this problem is to determine the product JOCX)C(X) . Our

answer 1is 1left as a function of the travel time X, and since we cannot
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uniquely determine c(X), we cannot convert X back to z.
Example 2.

We consider a two-dimensional problem. Figure 1.1 shows a cross

section of a three~dimensional space z>0 with a line source at z=0,x=0.

, line source
J/ l _Q‘{ > X

pla) Q(a)

Figure 1.1 SH Line Source in a Half Space.

The wave equation describing the propagation of SH particle motion

(displacement in ey direction) is:

(:\)(-Z)Uft - V- (/ﬁ(g) VU) = J’(X)J(Z)({’{f') (2.8)

with ‘QU/DE- =0 at z=0. We now Fourier Transform (2.8) with respect to "x"

to obtain formally:

O@ Vet + ok O - 2 (@ Ua)= SO dE)
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We also take the Fourier Transform with respect to "x" of the surface

response

o t.oéxx
Flkx,t)= _fwé Ul(x, z=0,t) dx t»>o0

(note that F(kx,{—) is real since U(x,z,t)=zU(-x,z,t))

-~ )
Letting c(z)=(AM /(0 )/3(2.9) becomes

"~

\jJ(a)C’}tt +F(a)62(z)k:(’>— ((SE‘Ue Ja (2.10)

Now we transform (2.10) as in Example 1 to obtain:
A

See - N@-c + Che'ew) + Mzt )g = ) dtt),
2 ) 4o )JZ . . % /o)

e gy 1TEO T 2T

~ A -~ Mclo)

?,t.}—h;-.-o at T=0 h = -——_7'/7)'

(2.11)

For this two dimensional example, by using F(kx1,t) we can recover the

. 2 Nt .
potential kx,.c (t) + — .3 using another wavelength ky, we can recover
. 11 )
2 2 .
Kx,zc(T) + __77_’:_’:_ "« By using these two potentials (or in
J

general wusing a fit for several wavelength values) we can recover both

e(?T) and ) (T) and we can convert these profiles to © (z) and /u (z).

We can also transform three dimensional problems with point sources to
Schroedinger form by applying a Fourier Bessel transform to the wave
equation and the observed surface scattering data. Coen [9] has also
discussed the use of multi-offset data to recover both the velocity and

impedance profiles.
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From above, we see that one often has to solve the O.D.E. (2.7) after
the inverse scattering problam has been solved. We have shown that the
mapping F(impulse response functions):—>(q,h) (potential ,boundary
condition) is continuous if we measure distance in the (q,h) space by
d((a1,h1),(g2,h2))= max i _[x(g, (x') = 92 ¢x’) ) dx?)i+ih1-h2} and
use the Lo, norm in the space of continuously differentiable impulse

response functiors. We now prove the following theorem.

Theorem 4.

Let q1(x),q2(x) be continuous functions, 0<x<T,and consider the two

solutions of the initial value problems

y'u - 7,()()},/ =0

(2.12a)
Y, to) =d, y,'t0) = b,
and
yz” - ?z ('X)yz,= O
(2.12b)
/
Yz (0) = dz W'te) = bz
For a fixed positive number €., there exists a "J&)" such that

X
’
A (g.tx') = gox?) dxliis o, ipip2ic o and lat-azic o
implies, that for (q2,a2,b2,y2) the fixed quantides we are perturbing

1 - 1. / 4 1 J
- R \ —_ . < o .
about, jiy1 y2..m <f and 1} yl yz" 1
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Proof:
The following proof is based on a method used by Symes [20] for
bounding the L, norm of solutions to an O0.D.E. of the form (2.12).

Firstly, we rewrite (2.12a) as a Volterra integral equation to obtain:
X
4 /
_9/ = A/ + [ ?, (X')}/,(X'} C/X (2.13a)

X
Yy =d,+bx + ‘[(x—x’) 9 (x") Y (x*)dx’ (2.13b)

X
Now we let K1(x)= L ?, (x') dx’ . Using integration by parts we rewrite

(2.13) as:

X x
91 (X)= a; + O X — ‘/o.(X’X')y,/k, (X')c/)(’f'./o‘jll(x')»(‘,(x’)Jx’(&1L;a)
X
y'tx)y= b + Ki(x)y, (x)- Z K (x*) y, tx*) dx” (2.14b)

We can write similar expressions for y2(x) and y2,(x). Subtracting the two

expressions we obtain:

X , X
(Y- Y2 ) +.£(x-x’) Kily,-92) Jx’—ékl (y, - 93 )dx” (2.15a)
X X
=(h-b)x ffo (k,- k2)y: Lk, ~k2)y, (x-x")dx’ + (3=d2)
X
(91"}’;),"kl(y,"}’z)+.£k,(y,-Yz)/Jx/ (2.15b)

X
=(b-b)t (koK) ye- Lo CKy KD vs"dx”

r'4
Now y2,y2 is the solution of the problem about which we are perturbing,
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so we assume that [ly2ii, +1iy2'iloo are known. By assumption O0<x<T,
Ib1-b2i<d", 1!K1-K2}lgp< O . and {al-a2/<d’. Clearly, we can make the
right hand side of (2.15a) and (2.15b), which we denote as gi(x) and g2(x),
small for d sufficiently small. We now make the substitution
'}L (x)=(yl=y2)'=K1(y1-y2), This then leads to the system of Volterra

integral equations:

(4-1u) # L x-xt) by Yex' )’ e Jo i Chitxex)=2)y,-y.) = 3,

X X , (2.16)
'}L + /;/(;%c/x/-!- /o‘/(! (}h"}l‘j = Jz
We write this in operator form as
91'}’z Fi F, =Y, 49’
- = (2.17)
¥ R mri\¥/ 1%
Using the method of Picard iterations we write formally:
9%) (4 [F &)%) [ BR[| [
= + + + o000 (2.18)
¥ yl F; Fy4 91_ Fk Fy %
z

If we let Kemax{T!!K1!lpy, ! K1} larT! iK1} l0g ,::Km;,}, then it is easy to
show that the n'th term in the series of (2.18) is bounded by
] (an%, '?na'%t"oﬂgilo)).Thus the series (2.18) is majorized by the series of
(' Higlii+ 11820es Yexp(2KT). In terms of K; we can write %<
M—M{T(ﬂkll!m-!—g)) |'(Kaueo+§+’Takzuwa)b) T (ﬁKzﬂm+S)L }. Thus

ZHKLBT '
gy, oo CU3‘ll.a+u9;:|a)e. CL+ $(5)) = (5) (2.19a)

pD(5)>0 do0
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Ny~ ys'lles € 1 Flo + (il + "M yi-yelico
§ 205)C1+lklloo + §) (2.19b)

Hence we can "choose" d(e) so that H1yl-y2lice < € and ::_y,'._ Ya H‘f € and

hence the proof is complete.

Combined with Theorem 2, we have a stability result for the inversion
of the observed impulse response function F(t) for the one dimensional
impedance profile in example 1, ( Q(x)CCx)) 2 » where Q(X) and C (x)
have two continuous derivatives. For a fixed € >0, there exists a "S(E)"
such that {(F1(£)-F2(t)ilg < J, , for Fi1(t),F2(t) impulse response
functions, and | "7/ (0)= Mz(0)} <J). implies the impedance profiles are
such that }| ,(x)—Y)z(x){Lé € and H"?/,(X)-'ﬂz,(x g <€over a finite
interval )( £ [0,'_1']. For the two dimensional example, we can similarly
determine "'7()() in a stable fashion, given the impulse response function
F(t,k) for two different wave numbers ki1,k2 (1k1}j#1k2}). Similar stability
results for this inverse elastic wave equation are given (and derived in a
different fashion) by Symes [20]. For the two dimensional SH problem
(example 2), we can determine both the impedance profile and the velocity
profile from a knowledge of the surface response for two different
horizontal wave numbers. However, we do not consider here the stability
properties of the mapping F(k,t)-—>(€f&) ,/1(2)).

We observe that the comparison of the two impedance profiles is in the
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2 v 2 / de”
_ ’ 2
3 - Py ” = ~ R
travel times X1= L Z (2/) c/z , and X2 ‘/; e. (z’) B
Thus, in the physical coordinate, the profiles could look very different if

E)#Ez and in fact they might not even be defined on the same depth domain.
2.1 Some Practical Problems Arising in Seismological Data.

There are, of course, severe practical limitations to the methods
discussed above, for use with exbloration seismological data. As discussed
in the introduction, it is hard to determine the ¢true impulse response
function. The exact frequency characteristics of the scurce and the
receiver are seldom known, and the recorded seismic signal 1is often
corrupted with noise. From our stability results we knoﬁ, that provided
the recorded 1is not "too far away" from the true impulse response, that we
are able to reconstruct accurately the impedance profile. However, for
large errors, it is not even clear that the recorded signal is in fact an
impulse response function for any continuous profiles. For bandlimited
sources and receivers, required spectral information is lost.

In theory; it seéms possible, althoﬁgh perhaps difficult, to fit a

non-harmonic series of the form
N
1 Cos/Xfl' -(2-ds j)cOS(JIIf)
Flt)= = 7 o (2.20)
J=L

to the signal F(t) for0<t<2T, thus extracting a finite amount of spectral

data within the possible bandwidth. By assuming the form of the unknown
2 2 2

spectral data (e.g., take .Ax:k m/T, Fk:Z/T for k>N,k<L), we construct a

spectral data set which 1is krown to correspond to some potential. If
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because of finite bandwidth we have 1lost high frequency information in
F(t), one would hope that this might lead to only small errors in the
signal, and hence the calculated impedance profile would be accurate. The
loss of 1low frequency information, as illustrated by Example 1 (2.53) can
be disastrous. For F(t)=zH, a D.C. filter would destroy the sigral and the
reconstructed potential would be q(x)=0 instead of the correct potential
q(x)=2/(x+1/H)%%2,

Also, in reality the parameter profiles of the Earth vary three
dimensionally. Even if a vertically stratified model 1is a good
approximation to the geological section of irnterest, it is neot known how
much the three~—dimensional properties will affect the inversion scheme.
Also, the Gelfand-Levitan method is meant for twice differentiable profiles
and it is not clear how discontiruities in the medium will affect the
inversion method. However, modifications to the continucus theory, and
discrete inverse scattering methods allow for the inclusion of jump
discontinuities in the profiles. The paper by Bube and Burridge [3]
discusses in detail various other numerical inversion schemes that can be

used for impedance profile inversion.
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Section 3. Numerical Examples.

To numerically invert the impulse respornse function F(t) for the
potential q(x), we used Syme's [19] second order discretization of the
non=linear hyperbolic problem (1.33). The inversion program was written in
single precision Fortran and run on an IBM 370 anrd a VAX-780. The
numerical scheme was checked with analytic answers from (1.50). We
calculated our answers with various grid sizes to make sure that the

discretization had stabilized.
Example 1.

We consider the three dimensional wave equation:

VPx,y,2,¢) - DZP = JLlt)L(z)(r)
a 2

AmTr

(3.1

P (2=0,x,y,t) =0 F = Jdx*+y?
o2 ' _

If we take the Fourier Bessel Transform of (3.1) we obtain:

2B _ 2P _pP =dlt)dl) 6.2
9Z% Jt* 21T

The causal solution of (3.1) is:

Plart)=-1 Jflt-R) H(t) 3.30)
T R
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or

P(z=o0,r, ) - —;%T‘ Ilr) i) (3.3b)
r

Here R= /f?{ésl and H(t) is Heaviside's function. The Bessel transform of

the surface data is:

=)
Vo) = 7 Topr) [ Ll Hit) [

(3.4)
= -1 J;(pf‘)/‘/[f)
2r
Differentiating with respect to time:
Wpt) -/ pT(pt) ~ 1 To (pt) S (t)
ot QT QI (3.5)
The regular part of the Riemann function,K(x,t) is
® -t T (pJiT=2%)
— _g_)fU;(Pr)r cf[‘("’k)c/l— = == P ! ID (3.6)
> Jo R \/f -Z22

Thus we take F(t)=-pJy (pt). According to theory, the inversion should
produce a potential of p¥¥2 for this case. The results for three

inversions are shown below.
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F(t)=-.8J,(.8t) "8"=.05

X ioa(x) i
] ]
0. ! .6402560]
o1 i .6400014])
.2 | .6400035}
.3 | .6400082}
U i .6U40014T}
.5 | .6400195}
.6 | .6400245}
T | .6400359}
.8 1 .64004875}
.9 ! 6400579}
1.0 | .6400734}
]

Table 2. F(t)=-=-J,(t) "8"=.025

Table 3.

X boalx) i
[] 1
| ]

0. 11.000156 |
.1 11.000002 |
.2 11.000005 |
.3 11.000010 |
LU $1.000030
.5 11.000036 |
.6 11.000050 |
T 11.000081 |
.8 11.000119 |
.9 11.000155 |
1.0 11.000210 |
i i
F(t)=-10 J4(10t)

X boalx) i
1 §
] ]

0.0 ]100.0625 |
.05 1100.0065 |
.10 1100.0262 |
.15 1100.0704 |
.20 1100.1644 |
.25 1100.3588 |
.30 1100.7687 |
.35 1101.6228 |
LU0 1103.4054 |
Li45  1107.1018 |
.50 i

]

]

1114.7560
1

"A" z. 005



161

The results for p=10 at x=.5 are: "A"=.01 , q(.5)=167.4181 and for
"AT= .02, q(.5)=-17248.02. It is clear from (3.5) and (3.6) that, as "p"
increases, smaller and smaller step sizes are needed to properly resolve
the oscillations of F(t) and the variation of K(x,t). We note that for
this example, the inversions for different values of "p" allow us to

properly deduce that 77»(/_7 =0 and c(z)=1.

Example 2.

We now consider the interval 0<&<J37 and 0<t<2 71T . Now the solution

of the problem

Pze P{:t P *P = oplf)cf(i) (3.7)

P.
525 ° 2=0, T

is

i Cos nz sindnZepr € (5 Jém)f/lé)

P[z,f,) ~a=a JhEepr (3.8)

Now from causality the

z (eos fimpt - eosnt) | ! (cospt-1)
Thus F(t) = - T
nn,

boundary z= I has no effect upon F(t) until t=2m. Thus for 0<t<2m

[z~
(2-do,n) [eosmf*cos‘?{”)
'J{}’f) nZ T (3.9)
=0

Instead of an infinite sum we can consider;
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2 (Z2-do,n) ( rowTE
— - Y- 2 -—
Fu (t) = g, s (eos it~ cosnt) (3.10)
n=e
This corresonds to taking the zero potential (h=0) spectral information
(A, () for j>N. These approximations will be inaccurate chiefly in  the
(N+1) frequency component; hence as figures 1.2-1.4 indicate, the

2m
N7y
In figure 1.2 we show F,,(t) for 0<t<2m; in figure 1.3, F g55(t) O<Kt<27,

approximation oscillates about -in(pt) with roughly the period

and in figure 1.4 we show Fge(t) for 0<Kt<1. We now calculate the
potentials resulting from F10(t) and F50(t) ("a"=.01,"A"=.005), These
potentials, along with the calculated potential from F(t).—.-J, (t), are shown
in figures 1.5 and 1.6. We then used the potentials of figure 1.5, q10(x)

and q(x)=1 and solved the initial value problem
s = 92)y =0
Nio)=1 9 1o)== Flo) (3.11)

Thus, we are considering instead of the three dimensional problem, where
77122/ ‘)7 =0, the one dimensional problem
%%—i_ - -;-:—:; - Nzz o S1e)(2), Figure 1.7 shows these impedance
profiles obtained from (3.11). They are, within plotting resoclution,
identical. These results are in agreement with Theorems 3 and 5. The

theoretical answer to (3.11) for +the correct potential q(&)=1 is

"I? (2)=cosh(®).
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0.00 2.093 1187 b.280

Figure 1.2
N = 10 Approximation to —Jl(t) O<tg2n
A~ Jl(t) "+ - N = 10 series
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Figure 1.5
Reconstructed potential, N = 10, A = .01

"¥" - true potential "+ " - N = 10 approximation
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/\cl(x)
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Figure 1.6
Reconstructed potential, N = 50, A = .005

"% " - true potential "+'" - N = 50, approximation
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Figure 1.7
Reconstructed Impedance Profile N = 0

" %" - true profile "+" - N = 10 approximation
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Example 3.

We now consider the Mathieu Equation

2 2
P _ P +2cosz P = Llt)Slz) (3.12)
ot FES
2P = o Z=0,T
oy
The first eight eigenvalues and normalizations of the associated equation
—'i’i' + (Z cos’z )}l =/\)’ , , dg=03‘0,” are from [22].
dz* , dz
lkl ] [
BTN
10y .87823 | 5.54317|
111 2.46676 | 1.80500}
121 5.10090 © 1.387771
131 10.01761 | 1.47255]
{41 17.00836 | 1.51848]
{51 26.00521 | 1.53814]
161 37.00357 | 1.54841]
{71 50.00260 | 1.55446]
L | |
- Table 4. Spectral Information for (3.12)

7
L cosdmt_ 2 cosnt) /L cosSAat — 1
We now form F7(t)=§:{p., : ,‘” T "‘(@ SMé v/ . The
N=1i

corresponding potentials qT7(x) and 2 cos (x) are shown in figure 1.8. We
now calculate the corresponding impedances with 72 (0)=1 and 7]’(0):-1-’(0)
(0< x < 1) The two resulting impedance profiles are shown in figure 1.9.
We see that once again the tw impedance profiles are extremely close. If
we 1let 2 cosz(x) =1 + cos(2(x)), the eigenvalues of Table 4 are shifted by

-1 and the normalizations are now appropriate for the equation:
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P _ P + (cos(z22))P = L) S(z) (3.13)
Jt? az*
2P =0 Zz=o, 11

We note that the first eigenvalue is negative so that

e S et ) <

The calculated potential and cos(2(x)) are shown in figure 1.10. We have
for x>.2 done a better job here than ir figure 1.8. in reconstrucitng the
approximate potential. This is perhaps because of the asymptotic behaviour
of Sturm-Liouville spectra (see Gasymov and Levitan [10]), For a{x)=2 005‘2,

T
f 2(1’) d2’ #0 and we have that:
(-]

K + —[,’-é + O(’/Ks) (3. 14a)

S
X
s

Cy /
Qn'”% - ? O(/K«f) b,e #0 (3. 14b)

We can now see that the series for F(t) converges very slowly, by writing

Fli)- F/f) Z 2 (cos(/c+b,)t - coskt) Z O(K‘)

k=N Kk=N¢]

Smkf

FH’)* '{btz 2 O{ (3.15)

K=N#l N+/
sinkt _ (wr-t)
Kk 2
k=4
sinkt
Thus F(t) converges like -—E— , or, in other words, a finite

k=l

sum approximation is not very good. The derivatives of the finite sum do

not neccessarily correspond to the derivatives of the true impulse response
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function. On the other hand, for g(x)=cos(2(x)) ‘[‘”—?(z’) dz’ =0
(h1,h2=0) and JA=K+0(1/k**3), so that the resulting firite sum
approximations to the impulse reponse function converge absolutely and much
more rapidly. The derivative of these sums also converges to the derivative
af the impulse response function.

Now we show the results of the 1loss of 1low frequency spectral
information. We set the 1lowest eigenvalue JAo :0 and Eb =1Tr. The
resulting potential and cos(2(x)) are shown in figure 1.11 and the 2
resulting impedance profiles in figure 1.12. As one might expect, the loss
of low frequency information, affects the mean 1level of the calculated

impedance profile.

Example 4.

In this example, we consider the formula (1.55). We take JA,=.93714,
and Qb=5.543. This is the first eigenvalue and weight from Table 4. As
might be expegted from the closeness of JAs and JGC =1, the potential is
ill-behaved. We show the results of the numeric inversion (step sized =

.028) and the analytic answer below in Table 5.
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Figure 1.8
Reconstructed Potential - Mathieu Equation

A= .01, "*" - 2coszx, "4 = N = 7 approximation
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Figure 1.9

Reconstructed Impedance Profiles

" _ true profile ny " _ reconstructed profile
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Reconstructed Potential - Mathieu Equation

A= .01, "*" -cos2x "+" -N = 7 approximation
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X q{x) numeric qa(x) from (1.51)

] ] ] ]
1 ] | [
10.0000} .038038 i .038037 i
i .310 | 245775 H 245827 i
! .620 | L4U43657 d . 443753 !
i .930 | .617327 H 617430 i
11.240 | . 784602 H . 784701 i
11.550 | .998352 i .998352 i
11.860 | 1.373961 i 1.373796 i
12.170 | 2.206190 ! 2.205336 g
12.480 | 4.560701 H 4,555356 i
12.790 | 15.76951 i 15.68920 |

i 80.22237 i 77.94135 i

12.987
: [} 1 1
Table 5. Comparison of Numeric and Analytic Calculations.
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Chapter 2 Tomographical Reconstruction of Velocity Anomalies.

Introduction (1.0).

Tomography refers to the techniques of reconstructing a field“/DCg?
from a knowledge o€/§(7). wherﬁ/ali) are the projections (line or surface
integrals) of“/o(x) on surfaces or curves which are parametrized by the
coordirates jg . For example, in medical x-ray tomography, one can deduce
from x-ray attenuation factors the function P(®,t) which is equal to
‘[qu,y)dl where the line AB is a distance t from the origin and has slope
dx/dy: -cot ©. The function f(x,y) could be, for example, the density
field of the patient's‘ tissue. P(®,t) is called the Radon Transform of
f(x,y). An inverse transform exists so that from a knowledge of P(0,t) one
can reconstruct f(x,y). The Radon Transform and its inverse are extendable
to higher dimensiorns.

In seismology, the field of interest is the "slowness" field,
n(x,y)=1/V(x,y) where V(x,y) is the velocity field (compressional or
shear). The travel times of disturbances from various scurces to various
receivers are the "projections" of +the slowness field along the rays
joining the sources to the receivers. Here, the problem is complicated by
the fact that the rays themselves depend upon the unknown velocity field.
Thus in general this problem is non-linear. We will linearize the problem

by considering the slowness field to be a perturbation from a known

background field.
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Section 1. Theory

1.1 Linearization of the Inverse Problem.
As suggested above let us suppose that

n(x,y)=n,(x,y)+ n, (x,y) (1.1)

in, (x,¥) i<<ina (x,¥)1 ¥ (x,9)

We will take n (x,y) to be piecewise smooth. Similarly,we write for the

travel time:

T Xs, Xr) = 0o (Xs,Xe) + T, (Xs, Xr) (1.2)

where 22(_)_(5,!;) is the travel time from Xs to Xa for the slowness field
Dix,y). Z{_X,,_Xg)is the resulting perturbation of the travel time. If we
consider 2'(!;,_&) as a function of the field n(x,y) we write formally the

first order expansion of 2: - about n(x,y)=ng(x,y):

P(Ks, Xe, Botng) tanty) = 2o + LE SN (n) + LT 40 .
Ix 4n °

where ’X represents the ray path joining _XS to l(g (for a continuous
medium we think of _X_ as a functional, and for a discretized medium
(i.e., the Earth divided into cells) we think of _)_(_ as a vector). From
Fermat's principle f'l'/fz = 0 (this holds in both continucus and

discontinuous media), Thus from (1.3)



180

L (Xs.Xe)=Tan= [ N (x,y)ds (1.
dn
ray for No(x,y)
Thus the principle which is fundamental to linearized travel time aralysis
is: the perturbation of the travel time between Xs and X&r is to first
order thé projection of the pertubation of the slowness field on the

unperturbed ray joining _)_(5 and l(g .
1.2 Formulation and Solution of Linearized Inverse Problem.

The aralysis of travel time anomalies has often been formulated as an
optimization problem. Let us consider the geometry shown below in figure

2.1.
! 2 3v 47 S+

n,m%\ﬂuds. N34S |/ 4 5'\ \C 7

g | 1o/l 1]z N
/

N\

N

W \\

source
1

Figure 2.1 Discretized Model of Section of Earth

We consider that from various earthquake sources (source 1) we have
determined travel time perturbations ti. That is, we have determired the
differences of the observed travel times from the theoretical values for an
assumed velocity model of the Earth. To model the earth, the earth is

discretized into cells that we enumerate. The perturbations of the
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slowness field in the cells are deroted by 4% ,45%,4S5,45%,...,4S5 . The
rays are traced from source to receiver using the assumed background
velocity field. We denote the length of ray i in cell j as‘[£[. In matrix
formulation we wish to solve the problem

48 = At (1.5)

NX1 Mxl

2~

M

or for M # N, the least squares problem
men " L a3 - At ” (1.6)
4s = 2

The methods discussed in Chapter 2, Part I are now applicable to (1.6).
However, the problem for the determination of velocity anomalies from
travel time data can be formulated more aralytically. For the case, where
the velocity field is an increasing function of depth, we do not always
need the ébove assumptions and linearizations. The Wiechert-Herglotz
inversion formula (see AKi and Richards [2]) is applicable to this problem.
However, we consider the problem for V=V(x,y) and we consider the followinrg
reflection geometry. We will denote the background velocity field as C(y)
(i.e., we take the background field to vary only with depth) and the basic

reflection geometry is shown below in figure 2.2.



Figure 2.2 Reflection Seismology Geometry

Referring to figure 2.2, there will in general be rays with turning
points within the layer. We will not include these rays in our
formulation. We consider instead only the rays that reflect back to the
surface from the reflector. In keeping with common exploration geophysics'

coordinates, we define the offset h and the midpoint m coordinates.

H¥ (X - Xs) (1.7)

-
"

=
n

5% (xg +Xs)

We will now denote the travel time perturbations L (Xs,xs) as t(m,h) and we
denote the perturbed slowness field n;(x,y) as U(x,y). The ray segments
rﬂ and RL are parametrized "'in terms of the coordinate vy. The ray

solutions for a velocity field that varies only with depth are simple

(Whitham [21]).

y (y?)dy’
petyiy
X=X = f a7 o = L
Yo WI=-P €Y dy  Ji-pEciuy
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y do’
b4
Z(X,y,'xu )= .4’,01}/7//._,0%'@9 (1.8)
Xs

x
coS 6, IQO«,
P(h) = C(O) y
1 dx

We will use "p" irn this chapter to denote the ray parameter p=zq;9 a5

This variable is constant along a ray and hence is simply related to the

"shooting angle" &, at the source, p= Eg?g??‘. We will consider p as a

function of the offset h., Using the notation of (1.8), we can write
%U()(,ly'),y’)tly' + %U(Xz ty'hyt)dy’

o /71 ._/ozczly'j o /1T- /yzc‘(y') ) (1.9)

timh) =

vhere xl(y) is the "x" coordinate on fﬁ

/” Ec(y’)dy’
X (y) =m - 9,// _Plcl(y'} (1.10a)

and x2(y) is the "x" coordinate on fa :

%o pely')dy’
Xaly) =m+ y//-f’c‘ly') ' (1.10b)

This ray formulation follows closely that of Romanov [15],who considers the
inverse problem for a continuous medium (not a reflectiorn problem), and
formulates the problem with the turning point Z(p) of the rays being an
important coordinate. We take the Fourier Transform of both sides of (1.8)
with respect to m

- l.km m

z?{km,b)-‘-_é f(m,ﬁ)c dm (1.11)
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to obtain:

e - U(k.,, [ P(h)cly”}dy ] ‘o
m, b)) =2 | = ID‘/)C‘/?‘) S { kn VT dy" (1.12)

where we'have used the shift formula of Fourier Transforms on the right
hand side of (1.8). This is the fundamerntal relation we wish to solve.
However, due to the Fredholm nature of (1.12) it is not known whether in
fact a solution to (1.12) exists. Thus, in gereral, we are attempting to
find U(m,y) such that (1.12) is "approximately" satisfied. One possibility
would be the discretization of (1.12) and an optimization sclution of the
resulting problem. The formula (1.12) for the special case C(y)= constant,
was derived and used by Kjartanssor [13] in his inversion of travel time
anomalies. He "inverted" (1.12) by using a least-squares approach.

We now also consider the case C(y)= constant. We will derive directly
the Radon-Inversion formula for (1.12). This has beer derived before by
Clayton [6]. Also, although the usual Radon Transform (e.g., as used in
Medical X-ray Tomographx ) is formulated in terms of different variables,
our formula can‘be obtainred from the more standard formula with appropriate
assumptions and changes of variables. However, we present our derivation
as our more general formula (C=C(y)) will follow from this.

Instead of the reflection problem (figure 2.2), we consider the entire
velocity field in the layer to be reflected about the line y=y, and we

consider the equivalent transmission problem shown below ir figure 2.3.



Figure 2.3 Equivalent Transmission Problem

Now we can write:
: 296

tlm,h) = /é‘ U(XIy),y).//iza‘ %o* a’y (1.13)
Yo

Xty) = m +/;(_3'-1)

Defining‘%(m,h)= %5CQt+,?' t(m,h), and taking the Fourier Transform of both

sides of (1.13) with respect to "m" we obtain:

~ . zyo—l.kmb(/_';,’{) ~
t Ckm,h) = A e U Ckm,y) dy (1.18)

We now assume a solution for (1.14). Then, we can extend the limits of the

integration and consider the new problem
x TN RTIN
t (km,h) = e Ulkm, y) dy (1.15)
-0

We will find the solution to (1.15) by using successive Fourier Transforms
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and the answer will be unique (at least for km#0). Hence, if (1.14) had a
solutiorn, then the answer to (1.15) must simply be the solution to (1.14)
for 0<y<2y, ,and zero elsewhere. If, in fact, t(m,h) does not correspond
to the rectilinear projection of any anomaly field for 0<y<2y,, then we
hope that the solution to (1.15) will be a good approximation to (1.14) for
(‘)<y<2y° .

Recognizing that the right hand side of (1.15) 1is simply a Fourier

Transform over the "y" coordinate we obtain

Ymh X g
L ‘ tlkm,b) = Ulkm, bkn ) (1.16)
271' Yo

A / b ué:y A
where UUlkm,ke) :=§'ﬁ'[we U (km,y) dy . Making the change of variable
ky = hkm, Y. we obtain

~ a
lk/yo A -
A f(km,}/oky) = U(km,/(y) 1.1
(1.17)

m T

Equation (1.17) illustrates the limitations of our method. In order to
&. ~

determine U(km,ky) for #m =0, Ky # 0, we must know t(m,h) for infinite

offset. 1In practice we can only measure the travel times to some maximum

offset h max. For simplicity, we set t(km,h)=0 for (h|>h max. Thus we

cannot hope to resoclve the slow lateral variations of the field.

Performing the inverse Fourier Transform of (1.17) we obtain:

@ .o
/ ..m "'Cé y
~e -~

Now we let ) = ky yykm::h and obtain:
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t.k,., (7)— 7].};1"0!)‘\'

U(m,y)=_’_//e @(k.,,n)_lg-._ldlcmchz (1.19)
21T-° A Yo

The factor |kmi/y, 1s the Jacobian of the transformation (km,ky) -->
(km,.'tl) and we note that the Jacobian is singular for km=0. However since
t(km=0,h)=0 for |hi>hmax, we can exterd our integral to the whole space.
Now we assume that ?c‘(km,—vl) decays sufficiently fast as a function of km so
that we can approximate }km}‘z' by f‘(km)fk, where f(km) is chosen so that

~I
? (f(km)) exists. Using the convolution theorem we obtain:

Ulm,y) =Flm) + 'Z(mf-)?(l-,_’f ),72)0‘7 (1.20)
21 Y Yo

-0

=]
Here, F(m) is y (f(km)) and "¥" denotes convolutiorn. Numerically we will
take f(km) to be the tapered function |kicos(k/kmax * T /2) for k< kmax and
zero elsewhere. This filter functiorn is shown schematically below in

figure 2.4, , AF(km)

b4

= Kmax Kmax km

Figure 2.4 Filter Function In Fourier Space

The function F(m) is in "m" space a rapidly oscillating function with zero

mean. From simple geometry (figure 2.5) it is easy to show that ignoring
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the filter F(m) in (1.20), the integral in (1.20) is simply the irtegration
of all the travel time perturbations over all the rays that pass through
the point (m,y). We show below in figure 2.5 two rays that pass through
(m,y) and correspond to the same offset "h". We denote their intersections

with the reflector at y=y0 as m1 and m2.
<+-l1——ﬂ

Yo

Figure 2.5 Relation Between Point in Space,O0ffset, and Midpoint

Some geometry shows that m1=h(1-y/y0)+m and m2=m-h(1-y/yo). These are the
same two expressions that appear in the integrand of (1.20), We will call
the formula of (1.20) without the filter function F(m) the back-projection
approximation. We now show how this approximation is related to the "true

field." Consider:

hnﬂx

Uap[m,y}’:- Z(m+/7(l"_}%),/))db (1.21)

_bmax

t?(m,/;) =__[° U;r(mfh(—b%-i),y)c/] (1.22)

“ap"-approximate & -true
Substituting (1.22) into (1.21) we obtain:
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hmax o
Uip (m,5) = Ul (m+h (y-7), 5 ) dh dy (1.23)
Yo
"bmx -0
Let us now change to polar coordinates (r,®) where 6=z tan-1(y / ) and y -

V= r sin®. Using this charge we ¢gbtain:
b fdn (v‘

Uap(m,y) = / Uktr(m+rcose, grrsmé)rdrde (1. 21)
-t Yor [sinel

‘Ian()/

2 -tfan” (90/
U-l-r (mtrcose, y+rsin6)rdrde
Yo I |sin el

fan ( yyhm)

Thus, when we use the "back projection" method, we have found a field which

is given by:

Uap(m,y)=_0(m,y)* ar (m,y) (1.25)
Yo |

where the filter /2 (x,y) is shown schematically, below irn figure 2.6.

Y
tan'f Yo )
( ot

— L yx

/
L20%9)= jgi ——

Figure 2.6 Back Projection Filter

We note that the field Uy (m,y) under consideration, in our formulation is

the symmetrized field shown below in figure 2.7.
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O
y=0
U( X, y)
, y=bo
U (X, 2%-Y)
y=2Yo
O

Figure 2.7 Symmetrized Field.

Thus the filter F(m) is chosen to negate the effects of convolution

with 2 (x,v). It is certainly not obvious that y(F(m)) = lkn| is the
27
appropriate choice. To show that this is indeed the proper F(m), we take

the Fourier Transform of both sides of (1.23) with respect to "m" obtaining

hmax e

~ ~ —~tkm h .{_ﬂ)
(L,p Ckm, 5 ) =f U, (kmiy)e Yo dey (1.26)

—bmax -—-co
Furthermore taking the Fourier Transform (formally) of both sides of (1.26)

with respect to ¥ we obtain
' hmax 00

(] ~ —c'kmé_z
(]ap(km,ky) =21 /Uﬂ[/(m,y)of(é_;:g—ky é %C//)d}l(.l_27)
o
~hmax —©
Now we define ; = hkm /y, for kmf0. Thus
X Mothnar 0 ~(3y
wp (km,ky)‘Zﬂ'f Uw(kmy)f[?‘ky)!/o € J? ‘I] (1.28a)
‘lkn;h Yeo lkml
oo .
[ ~ -—¢k,y
wp(km,ky) =27H(M 'ky) CZér (km,y)c Jy (1.28b)
Io kml

- 00
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X : N
wp (km,ky)""/'/(/kmlllmu-k}')z”.Zo Ué*(km, ky) (1.28¢)
, Yo

lkml

ky Y
Km

€ Rmax (1.28d)

x : %
Ohtr Ckm, ky) = keml Uap Ckimyby)
2nY

Here H(x) is the Heaviside function. Thus we can start with the
back-projection approximation and derive F(m) by finding the required
filter to make the approximation as exact as possible.

We now return to the more general problem where the known background
field C(y) is not a constant. Once again we éonsider. the transmission

problem and we indicate some of our notation below in figure 2.8.

<« h
Yo
n >
29,
[
; = Y
M -¥
Figure 2.8 Geometry for General Transmission Problem

For a reflection problem, we consider the velocity field and the rays
reflected about the line y=y,. Our results are easily extendable to the
general transmission problem through a layer of thickness of 23, where the

field is not neccessarily symmetric., However, for this case the coordinates
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m,h would be the most appropriate. Let us now suppose that the velocity

anomaly lies in a very thin layer which is shown below if figure 2.9.

A
9 ravel time on ot
ye2a /
AN
y=ye
=h
B
Figure 2.9 Thin Layer Velocity Anomaly For Transmission Problem

The "true" seismic experiment measures the travel time difference from A to
B, but instead we consider another "experiment" where the sources are on
the surface y=y , and the receivers are at y= ; +24 . We denote the travel
time perturbations between y=y and y=§+24, along the ray joining the points
A and B, as -t1, and .t1 will equal the perturbation t2 along the entire
ray since there is no velocity anomaly outside the region 28. Now we will
suppose that 4 is very small and we have only a finite range of offsets,
so that the rays are locally very straight in the layer. Using a straight

line approximation, we have from our approximate inversion formula (1.20)

hmax
U(m,9)=2{:r€1:) # t {me by (1- l—‘%z-)):/?:) dh, (1.29)
= hmax ds/dylg

In (1.29), h1 refers to the infinitesimal offset of the ray segment in the

layer 24 , and:

b 4 98| 5 & (mahy (- ty=30), b)) = (s Ly, h(b ), (b))
! dyiy 2
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( ) _f P(h)C(.y')c{y/ ( ) ’ (1.30)
I = peor <ﬂ —131— o

. Thus dx I
I:y max

Ulm,y) = Flm) % tL(M+g(y,Uﬁ(hz))J/g/1/) (1.31)
2T s sy ly Y
Now from J? {dh d/d )'y we have

hmo.x
- m+ %h)d% | Jh
Ulm,y) = Flm) 4 talmrgly, b)) 4 (1.32)
’ 21 ds/cly , - c/ya'/)l
"'hma-x

Thus, if indeed our anomaly was restricted to a thin layer, then formula
(1.32) would be an accurate approximation at this depth. However, it is
not clear that this formula is accurate for the general problem, but it is
a limiting formula which we should obtain, when we consider a more general
formula.

We now derive another formula, which is a near zero offset

approximation. We begin with the integral relation (1.12)

~ zya —Lkmz (y “h)
t(km)h) = U[Km, 9)C c{S (y;/))dy (1.33)

(<]

and we expand the integrand of (1.33) about h=0 to obtain

n a —chm[ fyyz‘y )dy '] 5F Inzo
tCkm, h) = U myle c/y (1.34)

Here we have used that ds/dy. =1, d/dh(ds/dy) i, =0, q(y,h)i4.0 =0, and

d/dh(q(y, h’ [f ety')dy’ ];_)f ’ . Now we rewrite



194

Yo Jo J ,
j; C(y')a?':/; C(y')d]"'[C'(y)dy = 2: "Z'l_y) (1.35)

We change variables in (1.34) from "y" to "2" and use that dp/dh' '/z- .
(here, we are specifically considering a reflection geometry) and dy/dp =

-1/c(y(Z)) to obtain:

i © —ckmb tkm:—t—-b
'f(/cm,b)=/H(.222)U(km,y('L'))e = dz.
Z clylzl) (1.36)
H(zt)=1 osgTere,,; © otherwise
Hah) £ km, b) = H(A/))j(km, knh ) |
j(km Z") = H(Z%)U(km,y(t‘))clku (1.37)

C/j(t))

Here H(ah) signifies that this result is only accurate for 0<h<ah where ah
is some appropriate small interval. However we will simply let g(km,km
hWzo) :Aé(km,h) for all h. Now (1.34) is simply the same expression (1.15)
we had for the constant velocity case, but here y,--> 75 and ?I(km,y)  d

'l\J’(km,y)/c(y). Thus proceeding formally we obtain:

j(m,y) = F(m) # ‘f(m+/)(l" té”)) h)dh (1.38)
2rt |

Now we let

glmy) = glmy)+ Elmy) (1.39)

where E(m,y) is the error from the extension of (1.37) to all "h! Thus
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Ulmyy) = Flm) ety)s /tcmw-t_zz»,hwh 1.0
Znto o L —c(y)E(In;y)

We drop the error term from (1.40). We note that in (1.40), t(m,h) is the
"true" travel time (not the normalized travel time as in the constant
velocity case) since in the zero offset approximation ds/dy=1. The term

m+h(1- %/ %) is simply the first order approximation to m+q(y,h) and the

. If we insert the

expression c(y)/To is simply - dz'z’yc[yo(h h=o"

values of these expressions for arbitrary "h" into (1.40) we obtain

hma—x
Ulm,y)= ~F(m)+% tlmrgly,h)h) dg dh  (4.u1)
"hmax

When we restriet (1.41) to small offsets, it is consistent with (1.40)
restricted to small offsets (it is consistent to O(Al’f) since J%J‘M Ihso =0
and ds%/cjjcll\‘-]hzozo). Formula (1.41) reduces to (1.20) for c(y)=zconstant.
Thus this simple approximation to equation (1.34), and our derived formula
(1.32) seem to suggest the formula (1.41) as a possible approximate
inversion formula, although so far, we have no strong justification for
this.

We now examine (1.42) in more detail. Equation (1.42), neglecting the
filter F(m), is a generalized backprojection formula. That 1is, to
reconstruct the field at a spatial point (m,y) we sum up all the
"normalized" travel times corresponding to rays that pass through the
point. Here the normalization is a local one; we divide the traveltime by
the local arclength ds/dy and multiply by the local focussing factor
.._dz?/clya!h . We call the term — dzq/cjyclh the focussing factor as this

represents the change in the local slope dx/dy of the ray when we change
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the offset "h by a slight amount. We 1illustrate this concept

schematically, below in figure 2.10.

constant Vvelocity Varcable velocity

Figure 2.10 Focussing of Rays at a Spatial Point

We see from figure 2.10, that for the constant velocity case there 1is no
focussing of rays and "J?;/gth,=1/y°. For a background velocity field
that varies with depth there will, ir general, be focussirg and defocussing
of the rays. The focussing factor in the integral of (1.42) simply
equalizes the weighting of the angular slope coverage by the rays of the
point (m,y).

As in the constant velocity case, we now find an integral relation
between the "true" field Qh(m,y) and the "approximate" field q,(m,y), where

UaP(m.y) is the field obtained from the generalized backprojection formula.

We have:
bﬁ!‘.ﬁ
Y
(5,4),4 h
UaP (m,'y')": f(,nf7 5,4 )JyJﬁ9J (1.43a)
e ds,/ dy |y
and:
240

tim,h) = /o‘ O (m-yly./»),ﬂ;lq@ (9,4) dy (1.43b)
9
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-

Substituting (1.43b) inté (1.42) we obtain

hrnax Zya C/
» as (y,4)
Tap(m,jl= - Ur(m 7ly,h)+7(y,b)y) 55’ d ¢ dydh 1.y
-4 ° G’JJ & )‘/ dh
maX

Now we conéider a polar. coordinate system'ééntred at (m,y) which we show

diagramatically below in figure 2.11

S in ' -:DZ,

(mfﬁ)

Figure 2.11  Rays and the Polar Coordinate System

Mathematically, D, is the domain:}y/x:>tah 8,.., We now change variables from

(h,y) to (&,r) where

- ,--/',‘ | r
@::‘COZL ! _4)_{) = - cot (.‘zz__(__y)_b)l—) gj‘l; =-Sl'n'9t-

d 2y
4 . I (1.45)
Y-y =rsiné X —M =rcoso '
an J30001an » the transformatlon is simply

2
Z// g Sin éi) Tnus we can rewrite (1. uu) as

U;P(m,y) ] ar(m+rc'o:9+/?/9 r), §#+rsine)#Rlsr)rdrdoc1.u6)
ly -yl

Here D2 is the domain shown in figure 2.11, The teras R,(83r) and Ry(&,r)
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are remainder terms from the first order expansion of the integrand of
(1.45) about y=y. (R1(8,r),R2(8,r) —=> 0 as y—> ¥y ) Now since the
integrand decays like 1/|y-y| we assume that a good approximation to (1.46)

is the local approximation where we let the "y" limits of D2 go to 200 .

U;,. (Mf rcose, Y+rsin é) rdrde
Uar (m,9)= ’y_ -y-, (1.47)

D,

This approximation is most valid for one of two situations; when the

anomalies are fairly confined and isolated vertically or as ds/dy and
q(y,h) become independent of y (i.e., c(y)--> constant). As the offsets
become smaller, ds/dy(y,h) and q(y,h) vary less with depth, and
approximation (1.47) becomes increasingly accurate for the small offset
information. This is independent of the spatial properties of the anomaly
field, and the inversion formula which we derive from (1.44) and (1.47),
will be consistent for small "h" with formula (1.40). Alternatively, for
any fixed finite maximum offset, if there is only one anomaly region and it
is confined to a small vertical thickness 24 at y=y, then as 4 -->0 the
local assumption for (1.47) becomes increasingly valid for y=y, and our
formula (1.50b) will simply be (1.32). For c(y) becoming a constant, then
(1.44) becomes (1.47) globally, and  from (1.47) we obtain the formula
(1.20). In general, there are certainly situations, where the
approximation (1.47) may not be good. For example, if the anomaly field is
not localized, then our approximation to relatiorn (1.46) ((1.47)) may not
be so wvalid. However, it is true, that per unit area, the integrand of
(1.46) is weighted most heavily for y = ?, and more practically, the

approximation (1.47) allows us to proceed mathematically. In a more
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algorithmic sense, for general background velocity fields, the
backprojection approximation to the anomaly field can always be defined.
The question that arises is how to best narmalize the travel time data for
the backprojection. Our algorithm has suggested a very local
normalization; we divide the travel time data, corresponding to a
particular ray by the 1local arclerngth at a depth ¥ (to reconstruct the
field at y=y) and compensate for the local focussing. However, for an
anomaly field which is global in rnature, perhaps it would be better to use
another normalization scheme. Clayton [5], has related this problem to the
solution of (1.6).When the normal equations for the problem (1.6) are
formed, there are various iterative methods of solution which could(at
least theoretically) be used to solve the resulting linear system of
equations(eg. Jacobi,Gauss-Seidel,etc.) The first iteration (with 48 =0)
gives an estimate which can be shown to be very similar to the
backprojection approximation. However, there is an arbitrariress in the
weighting for a least squares problem, and different weightings lead to
different normalizations for the backprojection formula.

Equation (1.47) is almost identical to (1.24) for the constant
velocity case, except that the domain of integration changes with depth.
That is,from (1.47) it seems as if we are locally convolving the true field
with the function 'ﬁes,’-‘,,’y) where ﬂ%‘.‘(x,y)z}/iyl for \ly/xi>tan Y mn and
Jzﬁﬁéx.y)=0 otherwise. This function 1is schematically shown below in

figure 2.12.
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L, (my)=©

) .GM ;'n\_ ? m

/
_Qem.‘n (m"y) = m

<
vy /
Figure 2.12 Convolution Function J29;g7,9>

For a constant background field, €w;,is constant with depth. In general,
however, ©m.;,changes with depth. However, we will still write for the

back-projected approximate field UaF(m,y):

Usp tnry) =2 (m,y)% Ur (myy) + Elm,y) (1.48)

ém.'n

E(m, Y )=error ferm

In the Fourier domain, we can write (1.48) as:

~ I A
Dap (km,ky) = TkL;/ U-I-r(km,k,)-f-E(km,l(y))!f]_'_,at;n Emin
‘ Km (1.49)
~x
E(km,kj) l_‘ﬂ_'( tan e'min
) Km
A X &
We now define U,,.(m,y) such that q(km,ky)= ijkm,ky) for lkm/ky!<cot Omin
N r~
and ﬁEFm,ky):O otherwise. Now we can write (1.49) as:
a , N ~

and
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Uer (m,y) = FUm) % ULp(m,y) = Fm)# E(m,y) (1.50b)
Now within the approximatiorn (1.48), E(m,y) is independent of "m" so that:

Oer (m,§5) = (F—(m)¥up(m,y))ly=§ (1.51a)

and

ky s tan Bumen (1.51b)
Km

x A
U;r (k"’)kV) = U-H (km,ky)

We note from (1.27¢) that F(m) is independent of ©mi. However, how
accurately we can resolve U, (m,y) (i.e., how close ﬁg, is to Uy4) does
depend on Omin. As we have mentioned, in the Fourier domain, we can only
resolve %ﬁ(km,ky) for (ky/kmi< cot ©m;,. Now we consider what this means in
the spatial domain. As can be seen below in figure 2.13 , near vertical
rays can resolve the ex?reme lateral boundaries of an anomaly. As the
offset is incréased, the lateral resolution is increased,but we have little

vertical resolution. Similarly, large offsets resolve the vertical

variations but do not resolve well the lateral boundaries.
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Figure 2.13 Spatial Resolution of the Rays.

<

Thus, near the top of the layer where the rays are more vertical than at
the bottom, we can not resolve well the vertical extent of anomalies,
whereas at the bottom of the layer we have both vertical and horizontal
resolution.

" In summary, our approximate inversion formula, for a vertically
varying background velocity is as follows. We wuse the backprojection
formula (1.43a). This means that at a particular point in space (x,y), we
have approximately, that the backprojected field (at depth y) is the
convolution of a particular function.J?enuh(V.y) with the true field. We
then showed that deconvolving Cafthuy) (i.e., convolution with F(m)/27T )
the backprojeéted field of f(nyb) gave us at depth y an approximation teo
the true anomaly field within certain resolution 1limits. For a c(y)
increasing with depth, the resolution of our method increases with depth
(oppositely for e(y) decreasing ). However, the validity of the method
depends upon the validity of a localization assumption. (see (1.47) and
(1.48)) As anomalies become spatially smaller(vertically wise) and more

isolated from each other, or as c(y)--> constant, this assumptior should

improve.
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Section 2 Numerical Implementation.

To test our ideas on tomographic inversion we required two basic
programs: one to generate synthetic travel time perturbations for a known
anomaly field and background field, and, secondly an inversion program
using equations (1.41) or (1.40) to invert the travel time information.
All computations were done in single precision Fortran-77 on a VAX

computer.,
2.1 Details of Numerical Programs.

The data are synthetically generated from the projection of the
unperturbed ray through the anomaly field. In other words, the data does
not correspond exactly to the perturbations which would be measured in a
"true" seismic experiment. However, as discussed above, for relatively
small amplitude anomalies, this is a first order accurate approximation.
Hence our numerical results, do not test the validity of the 1linearizationr
of the problem, but instead show the accuracy of the inversion formula
(1.41) and (1.40), assuming that the linearized problem is valid. We hope
in the future to redo some examples, using finite difference modelling to
generate the observed acoustic sigrals, and address the problem of
determining the exact perturbations (accurately "picking" traveltimes is in
reality, a major problem in itself), and using this data as input to our
inversion program. The background field we consider 1is of the form
’c(y)zay+b. We take the velocity anomalies to be disks. Their radii,

postion, and the strength of the constant perturbation within the disk are
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user input parameters. Due to the linearity of the data generation we can
superimpose disks to form other interesting shapes (e.g., an annulus). It
can be shown that the rays are the arcs of circles. Some algebra allows us
to determine the equation of these circles. The intersection points of a
ray yl1l,i and y2,i with disk "i" are found by applying the quadratic formula
for the intersection of two circles. Then the contribution of disk "i" to

the perturbation t(m,h) is
t(m,h){— t(m,h) + V; s (2.1)

Here Vi 1is the constant perturbation in the disk i and s, is the computed
arclength of the ray between y1,i and y2,i. We repeat these calculations
for the ascending ray segment x2(y). The user specifies the maximum and
minimum midpoint, and the percentage of the maximum offset to calculate.
The maximum offset, for a velocity profile that increases with depth,
corresponds to the ray that has a continuous turning point at y=y, (for a
profile that decreases with depthrthe maximum offset corresponds to the ray
that 1is horizdntal at the surface). Sixty four increments in h, and m are
then calculated (we only calculate h>0 as we know that t(m,-h)=t(m,h)) This
data file is then stored for future use, and can be displayed by a raster

plot in the format which is illustrated below in figure 2,14.
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Figure 2.14 Travel Time Data Plot

The two basic formula we wish to examine numerically are equations

(1.40) and (1.41):

hmax
(Ulm,y) =FE(m) & timigty,b)h) 39 | dh (2.2a)
<M Pax I579Y 2y ah
Amax
U(lm,y)=cly) F(m)# f[m+/7(/—_2% ), h)dh (2.2b)
yx)
~hmax

In fact, we do not actually consider negative offsets but write, for

‘example, (2.2a) as:

hmax
Ulm,y)=F(m) % | {tlmrqly,h)h)t¢lm-a! A1 dh o,
™9/ I A - 954y (9:h) J,atz, 2.3

Numerically, we use the trapezoidal rule to approximate (2.3), where A h
and h, are known from the available data. The corresponding midpoints,
m;+q(y,h;) or m/-q(y,h;) for (2.2a), or m; * h(1=%/%) for (2.2b), may
not correspond to generated data points, so we use 1linear interpolation
between neighbouring midpoints to determine the appropriate value to use.

When m/+q(y,h;) > M max or m -q(y,h) < M min, we set t(mS/ = q(y,h/)) =0,
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where M max and M min are the limits of the recorded midpoint data. This
will 1lead to artifacts at the edges of the anomaly field, in our
reconstruction procedure.

When all the integrations have been done, we have reconstructed the
back- projected field. This field can now be convolved with the function
F(m) to improve the "map" of the anomaly field. We do this convolution as
follows. In the discrete Fourier domain we construct the wavenumber

function which is shown schematically below in Figure 2.15.

AF(k",i) i
F(')=21T'Cosrr) 20,32
- /'e"ﬁ S
F(324)) = F(32-))  )=1,3]
I‘ S d A ﬁ\_ J
332 J"'u*

Figure 2.15 Filter Function in Wavenumber Space.

This function is then transformed back to the physical domain for F(m).
F(m) is, by construction, a periodic function which is shown schematically

below in Figure 2.16.

A Flm)

Figure 2.16 Filter Function in Physical Space
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If we simply convolve the function shown in figure 2.16 with U(m,y) we will
have undesired spatial aliasing effects. To circumvent this, we augment
the vector F(mj) j=0,63 with sixty-four zeros, so that schematically F(m)

now is as shown below in Figure 2.17.

» F(mj) ,
1 /
‘ /
( /
/ F(32) Ftz) /
/ ; )
s | .
A AV¥”“- ~f 2 ! J
| 2 12
x

Figure 2.17 Augmented Filter Function

Similarly, we augment the vector U(mj,y) with zeros. We now take the
F.F.T. of each sequences, multiply the Fourier coefficents together and

transform back. We can plot the reconstructed fields with a raster plot.

2.2 Numerical Examples.

Example 1.

For our first example, we consider a disk of radius 1, with constant
perturbation 1, 1located at the centre of the field. Our minimum and
maximum midpoints are for this example, M min=-5 and M max=5, and the
thickness of the layer is d=4. Our basic model for this example is shown

schematically below in figure 2.18.
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Figure 2.18 Synthetic Anomaly Model

We will vary the velocity profile and also the offset coverage for various
examples. In all examples we calculate 64 midpoint positions, where the
discreie midpoint positions are giver by mj=M min +(j-1)x (M max -M
min)/63. To start, we consider the constant velocity case. We shall
synthetically generate t(m,h) for mj and hj=(j-1)X8.953/63 (j=1,64). For
the inversion of this data file we shall use the constant velocity formula
(1.21). Figure 2.19a shows the travel time perturbation data for this
problem. The plot layout is as in figure 2.14. We note the two "arms" of
data. If we had taken a point anomaly instead of a finite thickness disk,
then the arms would be two straight lines, and the slopes of these lines
would give the depth to the anomaly. For the point at (m,y), then from the

two arms of figure 2.19a, we would have from (1.20):

m-m - /-3 (2.4)
h Yo

Thus, the slope of these arms leads to a depth estimate for a spatially

confined anomaly. However, from (1.41) for the general case, we have that

for h =0
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_ y
m-m _ /- f, cty'ddy’ (2.5)
h Vo ? 7
fo cly')dy

Hence, as we shall see, simply using (1.20) for c(y)=constant will, along
with other errors, incorrectly determine depths of anomalies.

Figure 2.19b shows the resulting back-projected field (i.e., no
filtering applied). In these plots of the reconstructed field, we see the
64 midpoints, and 16 depth increments yk=(k-1)x4/15 (k=1,16). Figure 2.19b
agrees intuitively with the idea of convolving the "true" symmetrized field
with {2 (m,y) (see (1.25)), and we see immediately, that applying a filter
which "kills" slow horizontal variations is an appropriate choice. Figure
2.19¢c shows the results of applying the filter F(m) to Figure 2.19b.
Figure 2.19d shows the reconstructed field, when the maximum offset
coverage has been reduced to hmax=4,U48. The two offset coverages correspond

to the angles shown below in figure 2,20.

¢——8 95 ——> «—4.48—
62
4.
9!
6 = 65.92° O,= 48.24°

Figure 2.20 Angular-0Offset Coverage

We see, as we expected, that the vertical resclution of the anomaly, has
decreased. Figure 2.19e shows the synthetic travel time perturbations for

C(y)=.2y+1. For this case, the offset corresponding to a turning point at
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y=4 is h=T7.48, and we numerically take hmax=.8x7.48=5.98. The
reconstructed field is shown in figure 2.,19f. We note, that as we
discussed in the theory, the vertical resolution of the anomaly,
particularly at the top of the anomaly has decreased. We used equation
(2.3a) for this reconstruction. For our largest gradient example, we take
c(y)=1y+1 and compute t(qrqg;(mj,hj) for hj from zero to 3.92. Figure
2.19g, shows the result of inversion, using the constant velocity formula
(1.21). As expected from above, we see that the circle is too high in the
field.Figures 2.19h and 2.19i show the results of using (2.3a) and (2.3b)

respectively.The results are very comparable.

Example 2.

As we have discussed, our method is most accurate for anomalies near
the bottom of the layer for velocity profiles which increase with depth.
We will consider such a situation, with three disks of varying position,
radii, and perturbation strength. Some rays will pass through more than
one anomaly. We choose cirecles of radii (.5,1,.5). Their centres are
located at (x1=-3,y1=3), (x2=0,y2=3), and (x3=2,y3=3). The constant
perturbations in each are (2,1,2) respectively. Schematically, the anomaly

field is as shown below in figure 2.21.
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Figure 2.21 Anomaly Model

In figure 2.22a we show the.generated travel time data for this problen.
Figures 2.22b and 2.22¢ show the reconstructed anomaly fields using
formulae (2.2a) and (2.2b) respectively. Once again, there is not a great
deal of difference between the results of using (2.2a) or (2.2b). However,
there are some slight differences; formula (2.2a) seems to be more accurate
with the vertical resolution of the anomalies. This is to be expected, as
formula (2.2a) treats the larger offset rays more correctly than does

equation (2.2b).

Example 3.

In this example, the anomaly model consists of three disks, all of

radius .5, which we show below in figure 2.23a.
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Muminz -4 Mmay =4

Figure 2.23a Anomaly Field Model 1I.

For the model shown in figure 2.23a, the disks' centres are at (x1=0,y1=3),
(x2=0,y2=2), and {(x3=.5,y3=3) and the disks all have slowness perturbations
of one. The total anomaly extends over two depth units. The generated
travel time data is shown in figure 2.24a and the resulting reconstructed
field is shown in figure 2.24b. We now change the anomaly model to be that
shown below in figure 2.23b; here we have positioned the overlapping disks
higher in the field.

Mmin= =5 Mmax:=5.

Figure 2.23b Anomaly Field Model II.

The resulting reconstruction is shown in figure 2.24c¢c and it is seen that

we have not done as well for this second model as for the first case.
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Reconstructed Anomaly Field-Model of Figure 2.23a
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