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ABSTRACT

The barotropie and baroclinic stability of Jupiter's zomal jets
is investigated using a two-layer quasi-geostrophic model. Each layer
is of constant density, with the upper layer representing the cloudy
levels of Jupiter's atmosphere above p ~ 5 bars containing the zonal
jets u(y), and a much deeper lower layer in which u = 0; [roughly
consistent with Gierasch ( Icarus, 29, 1976)]. Since Jupiter's
vertical structure associated with the zonal jets is unknown at these
levels, this model attempts to include the effects of baroclinicity
and deep lower layer inertila with as few free vertical-structure
parameters as possible {(i.e., the upper layer Rossby radius of
deformation Lr and the ratio of the upper layer to lower layer

thickness §).

Given that 6 << 1 for Jupiter, the linearized dynamical equations
can be expanded in powers of § and also of é%. These expansions
naturally categorize the possible disturbances into three types;
barotropic (BTU) modes, almost entirely confined to the upper layer
with potentially 0(1) growth rates; baroclinic (BC) modes, which
depend on interactions between the two layers and can only have 0(6%)
growth rates; and barotropic (BTL) modes of the lower fluid with 0(§)
growth rates. Some results for the BC modes are presented and compared

to results of a continuously stratified model developed in the appendix,

but mostly the faster growing BTU modes are investigated for two
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analytically tractable velocity profiles [seché(y) and tanh (y),

following Lipps (e.g., J. Fluid Mech., 21, 1965)]. The x-wavelengths,

phase speeds, growth rates, horizontal morphologies and the latitudinal
forms of the eddy tramsports ETQE(y) of the fastest growing disturbances
depend on G(y) and on the model parameter Lra

In mid 1979, two Voyager spacecraft may return images of cloud
motions around the p ~ L bar level, yielding E(y) and eddy u’ (x,y,t)
and v/ (x,y,t). Models of the present type are necessary to form a
basis for interpreting such data, to initially identify and categorize
the types of disturbances, at least until more is known of the vertical
structure associated with the zonal jets. Best-fitting of the model's
results to corresponding Voyager data may constrain Lr and &, two
basic vertical-structure parameters. In the last section, the theo-
retical results for BTU modes listed above are summarized and presented

in forms most suitable for comparisons with the anticipated data.
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1. INTRODUCTION

Our present knowledge of Jupiter's meteorology has come
from observations of cloud patterns and their relative mbtions.
Ground-based observations (e.g., Peek, 1958) date back about
100 years, with spatial resolutions of a few 1000 kms;>the
Pioneer flyby spacecrafts in 1973 and 1974 returned images with
spatial resolution down to ~200 kms (Gehrels, 1976), but
provided little information on relative cloud motions. These
observations, at visible and infrared wavelengths, refer to
a layer about 100 km thick (pressures ~0.1l to ~5 bars) in
which three major cloud decks are thought to form (Weidenschilling
and Lewils, 1973; Ingersoll, 1976). The atmosphere below p~> bars
is thought to be adlabatic to depths greater than lO4 km
(e.g., Stevenson and Salpeter, 1976).

In equatorial and mid-latitudes, the overall pattern is
highly axisymmetric, with the upper cloud deck organized into
zonal (i.e., east-west) bands with latitudinal widths of ~3000
to ~10,000 km. There are zonal jets circling the planet,
centered at particular latitudes which tend to be located at
the edges of the cloud bands. Most of these jets are prograde
(i.e. flow from west to east) relative to the planetary rotation
of the deep interior aé inferred from the magnetospheric radio
rotation rate, but a few are retrograde, with typical velocities

of ~30 m/s. The whole equatorial reglon from ~7° to ~7°N forms
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a prograde equatorial jet flowing at ~100 m/s relative to the
radio rotation reference frame. Poleward of ~50° latitude,
the banded structure disappears and the pattern is more mottled.
No mean meridional (i.e., north-south) motion has been detected
at any latitude. The overall pattern is extremely long-lived and
stable, with the detailed positions, relative strengths, etc.,, of
individual cloud bands and zonal jets varying slightly on a
time scale of several years.

Local disturbances are seen embedded in the zonal flow, with
horizontal scales of 500 to 3000 km and lifetimes of several
months., Some of these . disturbances, especially at mid-latitudes,
have spiral morphologies reminiscent of mid-latitude cyclones
in the earth's jet streams. Many other disturbances are
oval-shaped, and occasionally there are wave-like disturbances
periodic in longitude. The purpose of this study is to adapt
and apply to Jupiter some simple meteorological models that
have been developed successfully to describe local dynamic
instabilities of the earth's jet streams. There are some
important differences between the basic states of the two
atmospheres, e.g. the absence of a rigid lower boundary on Jupiter.
However, if this body of theory can be applied successfully,
we can then use the growth rates, horizontal scales, etc.,
of the Jovian disturbances as diagnostics of the basic state,
e.g. to constrain parameters describing the vertical structure
of the zonal jets, about which very little is known. In mid

1979, two Voyager spacecraft are expected to return high-resolution



images over periods of several months, which will probably form a
sultable data set to test many of the theorétical results of
this study.

For a model of dynamic instabilities of Jupiter's zomnal
flow, we must make some assumptions about the basic state. At
least two distinct concepts have been proposed concerning the
basic state vertical structure of zonal jets; these are reviewed
by Stone (1976). The horizontal scale and speeds of the jets
at the observed cloud levels indicate that the jets are geostrophic;
i.e, latitudinal pressure gradients are balanced by coriolis
forces (as measured in the radio rotation reference frame).

If the jets extend down to depths that are small compared to
their horizontal scale of ~5000 km, then they are approximately
in hydrostatic equilibrium, which leads to the concept qf an
earth—like'weather’layer containing zonal shear flows bélanced
by latitudinal temperature gradients according to the thermal
wind relation. Below this layer, the planet is supposed to be
quiescent (except for small-scale random convection cells driven
by the internal heat flow). This view, which is supported by
the spatial relation of the zonal wind field to zones of
upwelling inferred from the banding of the upper cloud layer,
has been déveloped by Hess and Panofsky (1951), Stone (1967),
and Ingersoll and Cuzzi (1969). A different concept is that the

zonal jets are surface manifestations of organized convective



rolls driven by the internal heat flow, either axisymmetric and
confined inside a spherical shell (Williams and Robinson, 1973),
or non—axisymmetric and extending through the deep interior
oriented parallel to the planetary spin axis (Busse, 1976).
Such non-axisymmetric convective systems do occur in laberatory
simulations (e.g. Busse and Carrigan, 1976).

The present data and theory neither strongly support
nor rule out either of the above two concepts; this study
adopts the former, and investigates instabilitles occurring
in models that represent a thin hydrostatic earth-like ‘weather'
layer above a much deeper quiescent layer. Comparisons between
the model predictions and Voyager data will be a test of the

'validity of this concept for Jupiter.,



B, Summary of Models and Results.

In the 1940's, a self-consistent set of scaling approximations
was developed to reduce the Navier-Stokes equations to a single
equation that describes large scale, hydrostatic and nearly
geostrophic flows in the earth's atmosphere [e.g., Charney (1947);
Eady (1949)]. This 'quasi-geostrophic' system was found to
predict correctly many of the observed features of mid-latitude
cyclones occurring in the earth's jet streams. In this system,
there are generally two energy sources in the basic state that
can amplify unstable perturbations; available potential energy due to
the latitudinal temperature gradients associated with vertical shear
(du/dz) of the zonal floW'§3 and available kinetiec energy due to
horizontal shear (3u/3y) of the zonal flow. When |
the basic state contains both of these sources, the resulting
partial differential equation is non—sepérable in the independent
variables height and latitude, and for thils reason many analytic
investigations have used basic state zonal winds with either
vertical shear only ("baroclinic' currents), or horizontal shear
only ('barotropic' currents).

Because of the preliminary nature of our present knowledge
of Jupiter's basic state, we will only use simple models with
as few basic state vertical parameters as possible, that
nevertheless would still adequately describe features of mid-
latitude cyclones when applied to the earth. One suitable choice

is Eady's (1949) baroclinic model, with a zonal flow linear in



height and no latitudinal gradients in the basic state. In the
appendix, we investigate baroclinic instabilities using Eady's
model for the upper "weather' layer extending from the tropopause
at p~0.1 bars down to the base of the cloud decks at p~5 bars.
This is coupled to a2 much deeper quiescent lower layer extending
down from p~5 bars. The results show that the presence of this
deep lower layer significantly reduces the baroclinic growth rates
relative to those of the original single~layer Eady problem with
a rigid lower boundary.

This modified Eady model gives a relatively good description

of the vertical structure; however, at present it would be more

useful to model the effects of latitudinal variations of the
basic state, since the horizontal structure is much more readily
observable‘(at cloud levels) on Jupiter than the vertical.
Phillips (1951, 1954) investigated both horizonal and vertical
structure, avoiding the difficulty of non-separability of the
perturbation equation by using a two-level quasi~geostrophic
model, i.e., with only two degrees of freedom in the vertical.
This two level model is simple yet retains many important
physical processes, and is used instructively by Holton (1972).
It is mathematically equivalent to a two layer model in which
each layer is immiscible and of constant density (e.g., Pedlosky,
19643, b). We use this model for the main part of this study,

with the upper layer containing a latitudinally varying zonal



flow and representing the upper ‘'weather' layer of Jupiter above
p~5 bars; the lower, quiescent layer is much deeper but still
hydrostatic.

The formulation and development of general mathematical
results for this two layer model are collected into section 2.
We will see that all of the unstable disturbances investigated
later are modifications of various types of neutrally stable
disturbances of the upper layer, and in section 3 these neutral
solutions are derived and discussed for two types of analytically
tractable’zonal flow profiles.

Gill et al. (1974) used the two layer model withka deep
lower layer and zonal velocity in the upper layer independent
of latitude, to investigate baroclinic instabilities in the
earth's oceans. In section 4.A we see that their results are
qualitatively the same as the baroclinic results of our
modified Eady model, which indicates that the constant density
two~layer model is adequately describing the vertical structure.
In section 4.B we show that baroclinic instabilities analogous
to those of Gill et al. still occur when the zonal velocity is
a function of latitude, but we conclude that their growth time
scales are so long (~1000 earth days) due to the presence of the
deep lower layer that they would not contribute significantly
to the observed eddy fileld on Jupiter,

However, for the same basic states in the two layer model

with latitudinally varying zonal flows, another type of instability



ié possible with much faster growth rates, with the perturbation
almost entirely confined to the upper layer., This is essentially
‘a barotropic instability, and has been studied, among others,

by Kuo (1949) and Lipps (1962, 1963, 1965). In section 5 we
follow the analysis of Lipps in estimating growth rates of these
unstable waves close to the neutral curves by a variational
method, for two analytically tractable (Sech2 and tanh) zonal
velocity profiles. In section 6 we present explicit numerical
solutions confirming the existence of these unstable waves for
the sech2 velocity profile. The fastest growing solutions have
growth time scales of ~30 earth days and horizontal scales
comparable to the latitudinal scale (~5000 km) of the zonal flow.
We conclude that these 'divergent barotropic' upper layer
disturbances are the oneé most likely to be seen on Jupiter,

and in section 7 various model resulis for the phase speeds,
growth rates, horizontal streamline patterns, etc., of these
disturbances are presented. Also the dependence of these
results on various parameters of the basic state (e.g., the
effective depth of the lower layer) is discussed. Comparisons
of the model predictions in section 7 with Voyager images.of
local disturbances in mid and high latitudes in 1979 should

form a practical observational test of the validity of the
'upper weather layer' concept for Jupiter, and may help to

constrain otherwise unknown basic vertical structure parameters.



C. Problems Not Investigated.

(1) Although we have chosen particular basic-state vertical
structures for our model zonal jets, we do not attempt to model
the long=-term energy sources, sinks and transfer mechanisms that
cause these jets. Several mechanisms have been proposed to
account for the latitudinal temperature differences associated
with the zonal shears in the hydrostatic "thermal wind’®

concept described above; these include latent heat release

in the water ice cloud deck thought to exist at p~5 bars
(Barcilon and Gierasch, 1970; Gierasch, 1976), radiative
cooling to space (Gierasch, Ingersoll and Williams, 1973),

and equatorial solar heating (Stone, 1967, 1972; Williams, 1978;
but see Ingersoll and Por%o, 1978). These energy sources and
sinks have associated time constants of several years, so

they are negligible in the development of the local disturbances
whose lifetimes are several months. (However, the eddy transports
of energy due to many such disturbances accumulating over time
scales of several years may play an important role in the
energetics of the mean zonal flow; we will estimate some of

these eddy transports in the models below.)

(idi) All of the analysis in this study uses linearized
perturbation equations. Incorporating the non-linear advective

terms in a weakly non-linear analysis, Maxworthy and others
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(eege, 1976) have found neutral solitary wave solutions occurring
in latitudinally varying barotropic zonal flows that account for
many features of some Jovian disturbances, especially the Great
Red Spot. This non~linear theory gives more information than
linear theory on the longitudinal morphology of neutral
disturbances, but the present linear study gives more insight into
the energy sources and growth rates of unstable waves. Hopefully
both studies will be useful in analyzing the rich variety of

Jovian disturbances expected in the Voyager images.

(iii) The scaling approximations implicit in the quasi-geostrophic
system for baroclinic flows assume that a particular balance

exists between the basic state thermal field (which vertically
stretches fluid columns moving horizontally between isentropic
surfaces) and the strength of the horizontal motion field

(which vertically stretches fluid columns due to horizontal
convergence). The relative strengths of these two effects

depend on the horizontal scale of the motions and on the

amount of basic state stable stratification; for mid-latitude
cyclones on the earth, the two effects are approximately equal.
Gierasch (1976) has p;inted out that on Jupiter, the amount of
stratification may be different at different levels between p~5 bars

and the tropopause, so that for motions on a particular horizontal

scale, different dynamical equations may apply at the various
levels. However, the actual amount of stratification at these

levels on Jupiter is very uncertain. For this study, we
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have adopted the quasi-geostrophic system representing a stable layer
above p~5 bars. In the limits of very small or very large
stratification in this layer, the results tend continuously

to the results from using Gierasch's correctly scaled equations for
this layer; however, we have implicitly excluded his possibility

of having two or more distinct layers with different dynamical
regimes between p~5 bars and the tropopause.

Another effect concerning the stratification which may

be important on Jupiter has been suggested by Steme (1966, 1970, 1972),
who has found that non-geostrophic 'inertial' (or ‘symmeﬁric') insta-
bilities can occur, and have faster growth rates than quasi-geostrophic
instabilities, in basic states whose stable stratification lies in a
particular range of small values. However, he has used a single~layer
model with a rigid lower boundary and no deep lower layer, which is
unreaiistic for Jupiter. Also these instabilities are independent of
longitude and have very small latitudinal Wavelengths; of which no

evidence is seen in the Pioneer images.

(iv) The two~layer model is clearly a poor representation of basic
states with complicated vertical structure of the stratification

and zonal flow. Charney and Stern (1962) discussed the case of an
'internal jet' whose structure is sufficiently complicated,

[i.e., when the potential vorticity gradient changes sign with
altitude; in the modified Eady model of the appendix, this possibility
is excluded because the potential vorticity gradient is taken to

be zero throughout the upper layer], so as to allow baroclinic
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instability even with upper and lower boundary conditions that would
render simpler flows baroclinically stable. Depending on the details
of the basic state vertical structure on Jupiter between p~5 bars

and the tropopause, these 'internal jet' baroclinic instabilities

may or may not occur; like the barotropic (BTU) modes of the present
study, these baroclinic instabilities would be essentially independent
of the deep fluid below p~5 bars. They can occur in a 'three-layer'
model, in which the present upper layer is split into two layers with
different zonal velocities and the pressure perturbation is required
to be zero in the deep layer below p~5 bars. Using this model, we
find that for some zonal flows independent of latitude, baroclinic
instabilities can occur with growth time scales of ~1 week. Their
theoretical structure should be investigated for latitudinally
varying zonal flows [c.f. Stone(1969)], and both their results and
those for the barotropic(BTU) instabilities of the present study
should be compared with the Voyager data for a more thorough test

of the 'upper weather layer' concept for Jupiter.
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2, TWO LAYER MODEL DEVELOPMENT

A., Model Formulation,

The model is composed of two layers of incompressible,
homogeneous fluid with the upper layer of density Py lying
immiscibly above the lower layer of greater density Poy (see

fig. 1). The density contrast Ap = p, =~ is much smaller

2 = P

than and Poe The bottom boundary of the lower layer is a

f1
flat rigid surface, which may not be realistic for Jupiter;

this is discussed in the appendix. The top boundary of the upper
layer, which corresponds to the Jovian tropopause, is taken as

a free surface for the algebra below, but taking it as a flat
rigid 1id would cause only insignificant differences (of order
Ap/p) in the results. Upper and lower layer variables are
subscripted 1 and 2 respectively. For large scale hydrostatic
motions with viscosity and diabatic effects neglected, the

quasi-geostrophic potential vorticity equations for the upper

and lower lavers are (e.g. Pedlosky, 1964a)

oy
2 %1 3, 5 2. =2
ot 3y d% + 3x Ay vh qjl IT (¢l ¢2) (
2.1
3y, )
D 3% 0 )
3 Y p
Q. .12 o ,7'2 3 2 - -2 o1
56 "By x T ox ay) |Vn Y27 8L (i)
aqu (2°2)
+B T = ' °



FIGURE 1. Two layer model vertical section in the (y,z) plane.
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Here x and y are horizontal distance coordinates to the

east and north respectively, and t is time, is the

Vh
horizontal Laplacian operator. ¢ (¥, ¥y, t) are streamfunctions
for the genstrophic velocity field; the castward and northward

geostrophic velocities are u, = - dy /3y and vy = 3y /3% respectively.

D
(The subscript D is used to indicate a parameter is dimensional.)

¢l and ¢2 are proportional to the hydrostatic pressure deviation

from the horizontal mean, and are given by

_ 8 B ;
1 = 5o [(hy = Hp) + (hy = H),

~ °1 (b, = ) + (b, - H)D] ,
i =t ['3; 17" 2 7 "2

where h1 and h2 are the local thicknesses of the upper and
lower layers respectively; the constant global mean thicknesses

are Hl and Hzo g is the gravitational acceleration, and fo is

the value of £ = 20 sin (latitude) at the central latitude of
the disturbance, where (0 is the planetary rotation rate; QD-is
the value of df/dy at the central latitude.

Lr is the Rossby radius of deformation for the upper layer,
given by
} 1/2

Ap g Hl

Py ¢ 2
o

Lr is the horizontal length scale of motions for which the

strengths of the dynamic and thermal stretching effects described
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in section 1.C (iii) are approximately the same; in Eady-type
models the x-wavelengths of the most unstable baroclinic waves
have this scale, which for the earth corresponds to the observed
scale of mid-latitude cyclones (e.g. Holton, 1972)., 1In the
appendix, Lr for Jupiter's upper weather layer is estimated
to be between ~500 km and ~3000 km.

6 = H1/H2 is the ratio of the mean thickness of the upper
laver to that of the lower layer. The appropriate value of
8 for Jupiter depends on the effective thickness of the deep
fluid below p ~ 5 bars, The lower boundary of this reglon is
taken to be a flat rigid surface for the two layer model, which
represents simply some reflection mechanism for the disturbances
deep in the Jovian interior, e.g. from a molecular-metallic
phase transitionat p~3 X% 106 bars across which Ap/p ~.1
(Stevenson and Salpeter, 1976, 1977) [compared to ‘%g‘” 10—2.
across thé model interface at p~5 bars (Gierasch 1976)], or from
non-hydrostatic effects at depths greater than the horizontal
scales of the disturbances (see appendix). For compressible
models the equivalent parameter to & is the ratio of the upper
layer pressure thickness to the pressure thickness of the disturbance
in the lower layer, and for reflection due to the molecular-
metallic phase transition, & ~ 10_6.

We will investigate the stability of basic states with a

quiescent lower layer (Eb = ;5 = Q) and an upper layer containing

(v) (with ;b = 0). For small

a zonal velocity field Gb

perturbations (X, ¥, t) away from this basic state, the
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coefficients in the perturbation forms of (2.1) and (2.2)
depend only on y, so in the linearized equations (i.e., neglecting
terms of order ¢'2), we can look at the stability of individual

Fourier-components of the form

4

§' = Re {@ (y) exp {ikD (x - cp )] .

Also it is convenient to non-dimensionalize (2.1) and (2.2) using a
- velocity U and length scale L (both positive) characteristic of the

magnitude and latitudinal scale respectively of GD(y), Defining

- 2
y/L, u= uD/U’ B = BD L°/U, A = L/Lr’ c = CD/UB

i

A
y

k= kL, = ¢/LU,

and subsequently dropping the A& superscripts, 9y and Py obey

the linearized non~dimensional equations

2

4 . kz - KZ + _.b @, + xz @, =0 (2.3)
2 1 2

dy u-=-c
2 2 —

_@____kz_&)\z_‘,ﬁ__:_@__}x___,"}_ (P.;_{))\ch = 0 R (2.4)
2 -C 2 1

dy

Here b (y) Z B -u _ + kz u is the non-dimensional basic state

Jy
potential vorticity gradient in the upper layer. The pl/p2 term

appearing explicitly in (2.2) has been approximated to be 1 in (2.4)
for eclarity; this is equivalent to the Boussinesq approximation, and
does not significantly affect any of the results below for Ap/p << 1.

For Jupiter U is typically ~30m/s and L is ~5000 km. £ is typically
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0(1) and XZ may be between 1 and 100. The time scale defined

by L/U is ~2 earth days (~4 Jovian days). [The quasi-geostrophic

scaling is strictly valid only for szv O(lj, but‘(2e3) and (2,4)

yield correct results for xz >>1 and << i; see section 1.C(iii).]
We will usually use horizontél boundary conditions requiring

that the perturbation vanish as y— & «, but in some cases the

flow will be confined between rigid latitudinal walls at

which 'Vi'z y;i= 0, f.ees @ =gy =0 for k # 0. Each of

these boundary conditions can only be approximately correct for

Jupiter; the former is accurate if the waves are evanescent

in v and decay nearly to zero before being modified by basic state

variations in neighboring latitudes, and the latter represents

reflection in y (important for waves oscillatory in y) either

by neighboring basic state variations or by the sphericity of

the planet. For a particular real x—wavélength k (always

taken positive without loss of generality), (2.3) and (2.4)

present an eigenvalue problem to find ¢ so that the solutions

satisfy the horizontal boundary conditions. If c; E Im (c) >0,

the wave is amplified; if cy < 0, the wave is damped; and if

c; =0, the wave is neutrally stable. Since all parameters in

the coefficients of (2.3) and (2.4) are real except ¢, for any

solution with ¢ = c. + 1 cy there is a complex conjugate solution

with ¢ = e, - i cy (but see Lin, 1955, Ch, 8.4).
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1/2

B. & and & Expansions . (Deep Lower Laver),

Since § = Hl/H2 << 1 and all other quantities are generally
>> 0(8) and << 0(6—1), we can expand (2.3) ‘and (2.4) in powers of §.
This is useful because the expansion can be used to categorize
the types of possible disturbances in this two layer system. Writing
a= i a(n) 5"
n=0
where a represents any of P12 Py OT Cy and defining the operators

2 2
LG S S SO B

= ’ -
dy u - c(o) dy2

RO

it

_B_
NON

then substitution into (2.3) and (2.4) yields the zero order

equations
[G(o>] cPlco) o2 (Pz(m 2.5)
W] 4 -
The first order [0 (8)] equations are
L
(0) 1 _ 2 () b c (0)
[G ] 2 S R OIS ) (2.7)
u - c ) _
O, @W__.2 @ 2(i-P o <P (o
[H }‘*’2 RS ] ”7‘( NORN A AR OV R
(2.8)

Assuming this 6 expansion is uniformly valid over the
whole latitudinal range, solutions fall into two categories,

One type is basically a free barotropic disturbance of the upper

(0)

layer, i.e., a solution ®1 of the homogeneous equation (2.5)
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(0) (1

with ¢, = 0, which forces an 0(§) disturbance ®y in the
lower layer through (2.8). This is called a 'BTU' mode below.
The other type is basically a free barotropic disturbance

of the lower layer, i.e., a solution @2(0) of (2.6), which forces

(0) in the upper layer through (2.5).

an 0(1) disturbance ®q
This is called a "BTL' mode below.

In both BTU and BTL modes, the interactions between the
two layers only cause 0(8) modifications to the basically
Single—layer.O(l) free disturbances, and for the BTU mode
we will see below that if the u (y) flow is barotropically
stable at 0(1), the interaction with the lower fluid cannot

destabilize the flow at 0(8). However, we now show that there is

one other type of expansion of (2.3) and (2.4) in powers of 51/2 with

@2(0) = 0, which permits an 0(61/2) interaction between the layers
that can destabilize at 0 (61/2) an otherwise stable E'(y)
flow, Writing a = z;: a(n) 6n/2’ where a represents any of
Py @ or ¢, then suizzitution into (2.3) and (2.4) with
@2(0) = ( yields just one zero order equation:
[c©) 9o,V =0 : (2.9)

/2

The first order [0 (6l )] equations are

(1 (0)

1 2 1 b
@] e K . (2.10)
(u=-c")
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[H(oq 0, = 0 (2.11)

The second order [0(§)] equations are

0 2 2 2 b
[G()] cplm“k cPZ()__ b
(u=-c")
(2.12)
2
W ()
NP PP, ®
= (0 ‘
U - C
(1)
{Hm)} 0, P =22 @ _Be T, D : (2.13)

L)

In this system of equations, there can simultaneously be

(0 in the upper layer obeying (2.9)

(1

an 0(1) free disturbance ?y

/

and an 0(51 2) free disturbance ®, in the lower layer obeying

(2.11), We will see that c(l)

is determined by the higher
order interactions in (2.10) and (2.13), and that these interactions
can cause an essentially baroclinic instability. This is called
a.’BC' mode below.

By inspection the three disturbance modes (BIU, BTL and BC)

described by the § and 61/2

expansions above seem to be the only
essentially unique modes contained in (2.3) and (2.4). Before
considering specific solutions for particular basic state

zonal wind profiles, we will first derive some general results
for each type of mode that will put limits on the phase speeds,

growth rates, and the types of modes and profiles for which

instability is possible.
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C. BTU Mode (Barotropic Upper Layer).

The governing zero order equation for this mode is (2.5)

. 0, i.e., the divergent barotropic vorticity

with P,
equation for a single layer containing zonal flow u (y).
This equation has been studied extensively [e.g. Kuo (1949),
Lipps (1962, 1963, 1965)1, and both stable and unstable
solutions have been found with boundary conditions ¢ = 0
either at rigid walls or as y - iAQ.

With these boundary conditions, we can show that if the

flow is stable for the zero order BTU mode, it is still

stable at 0.(§). Forming the equation

fcpl(o)* ° eqn (2.7) - fcpz(l) * eqn (2.8)*

where * denotes complex conjugate andvi‘denotes y-integration

over the whole latitudinal range, we find

2 2
: (0) (1)
ey b !q’l | _ d“?z
G- (02 dy
2 B <1)l2
L
» c
if c(o) is real and outside the range of G, this equation
(1 (0)

implies ¢ is real, For real c within the range of u,
there would be singularities and corresponding imaginary
contributions (Foote and Lin, 1950.) from the left hand integral;

however in this case we will see in section 5 that there must
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be neighboring @1(0) solutions unstable at 0(1l) with

ici(o)!>>[6c(l)i » Therefore for BTU modes the presence of
the lower layer cannot destabilize at 0(§) an otherwise
barotropically stable u (y) flow in the upper layer.

Kuo (1949) and Pedlosky (1964b) have derived a necessary
condition for the existence of neutral and marginally unstable
( c; K ¢ ) waves that have critical pdints where u (y) = C s
in one and two layer models. We now rederive this result In a
similar way, for a single barotropic layer. This result will be
useful for the analysis of neutral upper layer solutions in
section 3; furthermore, these neutral solutions form the
starting points for investigations of unstable BTU modes in

subsequent sections (see start of section 3), Writing.

0,V = A () exp [1 6 )]

where A and © are real, then substituting into (2.5) with

@2(0) = 0 and taking the imaginary part of this equation,
we find
0) 2
2 c, b A
Ed; Az"g—g>=-lm ?'b"'é-('T) =-—'];“""’“""""‘2 ° (2.14)

u-=20a lﬁ_c(O)l
In the limit as ci<0) - 0, the right hand side tends to zero
at all points where u (y) # cr(o), so A2 %% becomes constant

(0)

in latitude except acrosscritical points where u = c. o

In the vicinity of these critical points, viscosity becomes
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important, but Foote and Lin (1950) show that the inviscid
solutions on either side are joined correctly for ci(O) = 0

by taking the path of integration in the complex y-plane

above the critical point if Gy = g%wc 0, and below the critical
point ifbay > 0,

Integrating (2.14) with respect to y, the total change

in A2 %% over the whole latitudinal range in the limit ci(o) - O+
is then
2 do b (y) a? (v.) ,
2 [ - S, : (2.15)
dy c u (v )
y yc »
where the sum is over all critical points y = Ve where u = cr(o).

However, Az-%% must equal zero at both latitudinal boundaries
(since ml(o) = 0 there), so either the critical point jumps
must cancel out or bA2 must equal zero at every critical point.
For velécity profiles that are monotonic, or symmetric and
monotonic in each half range, the critical point jumps cannot
cancel, so either b or A must vanish at every critical point.

Furthermore, we can generalize Kuo's (1949) proof that A(y)

cannot vanish at the critical points to cover divergent barotropic

(0)
flows. Equation (2.5) with mz = 0 can be written
_cf__cpwu k2+s+x2c(°) P °91(0)
dy2 1 c(o) -u u - c(o)

0
=S @l( ) °
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This is to be compared with the equation

(a1
ref
1y

= | —IY __ =
2 5 = Q) F SF F
y u=-c

(0)

which has a solution F = u - ¢ with F = 0 at critical

(0

points, For real c and any velocity profile u (y) with

critical points, S > S_ at all points either between two

F

adjacent critical points or between a critical point and the

adjacent boundary, So for one or the other of these two

(0)

ranges, Sturm's comparison theorem implies that P cannot

be zero at both end points of the range, since F oscillates

(0)

over the range and has a zero only at one

(Oﬁ

slower than P,

end point. Hence A = le cannot be zero both at the

boundaries and at all critical points., For velocity profiles

that are monotonic, or symmetric and monotonic in each half

range, thé only remaining possibility satisfying A [A2 %% = Q

is that the basic state potential vorticity gradient b (y)
vanishes at all critical points. Therefore, for all neutral or
‘ﬁarginally unstable waves in the single upper layer,}éither cr(o)
lies outside the range of u or else the basic state potential
vorticity gradient b (y) vanishes at all critical points where
i) = cr(O)_

Charney and Stern (1962) derived a different condition
which,applied to the present single layer,requires that b (y)

must vanish at some latitude for any unstable waves to exist,

Combining this with the condition derived above, we see that the



27

only u (y) flows that can be unstable to BTU modes must have
b (y) vanish éomewhere, and the only neutral disturbances for these

(0) (0)

flows either have c' ' outside the range of u or have c
equal to u (yc) where b (y,) = 0. These criteria will be useful
for the analysis of the BTU modes in subsequent sections since they
only allow situations inwhich the governing equation (2.5) is
non-singular over the whole latitudinal range.

Pedlosky (1964 a, b) has derived several inequalities
bounding the phase speed c. and growéh rate kci for a two~layer
model. Some of these results (non-dimensionalized as in
section 2.A) are listed below applied to a single divergent
barotropic layer, which causes slight différences from
Pedlosky's two layer versions; however the derivations are
essentially the same., These results will be useful in section
6 iﬁ finding BTU solutions numerically, since they limit the
areas in the (c?, ci) plane to be searched for eigenvalues,

Fof a single layer containing zonal flow u (y) with

¢ = 0 boundary conditions, the equivalent equation to (4.2.6)

of Pedlosky (1964a) is

2 - ' 2 -
B+A u B+aA u.
a 4p - WX 0, __ﬁ_z___9%§.s c <u + max {0, - — m;n
min 2(k +}\) r max Z(k +)\)
(2.16)
where u and‘ﬁ are extrema for the whole latitudinal
min max : -

range., (2.16) applies only to unstable disturbances with
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¢y # 0. For neutral disturbances, the single layer equivalent

to (2,9) in Pedlosky (1964b) is

- V!z g - -
- - + -
umin P P 2p (umax umin) =c S'umax tq

2 - 5
+v/€ +2q (umax - umin) (2117)
2 - 2 -
B+ umax i B+ um:i_n
where p = max {0, > > and q = max {0, - 55 ||
2 (k" + A7) 2 (k" +2\D)

By a straightforward adaption of Kuo's (1949) proof that
c s ama# for non-divergent flows, we can also show that for

neutral disturbances

-2 3 ' -B 3 ,
min AZ’ in( < © S max hz, u el (2.18)

The one layer versions of (4.2.11) and (4.2.12) in Pedlosky

(1964a) are

| <15 pa (2.19)
ke,| s —L max 2,19
| 1| RN
2 -
k™ (u b) _
(ke)? s —F—B2% (2.20)
K* + A

In both (2.19) and (2.20), the growth rate bounds decrease to
zero as the non-dimensional Rossby radius of deformation XF1

decreases to zero., This behavior is seen for explicit

solutions in sections 5 and 7 ,
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D. BTL Mode (Barotropic Lower Layer)

The governing zero order equation for this mode is (2.6),

the barotropic vorticity equation for a single quiescent layer.

(0)

The only type of boundary conditions that solutions Py can
satisfy are @ = 0 at rigid latitudinal walls, which require

(0)

that c¢ is real, so that these solutions are neutral
(westward propagating) Rossby waves in the lower fluid.
With these boundary conditions, we can derive an expression

(1)

for ¢ . Forming the equation

[‘Pl(o) * eqn (2.5)* - f‘Pz(o)* * eqn (2.8) R

we find
<0)
‘”fl O j‘“" KON i“’ (o>| ’d“Pl
(0) 2 dy
- 2 ,,2__ b (0)
j(k + A = (0)> lcpl l .

outside the range of u, this equation iﬁplies

(0

(0)

For real c

LD

is real. For real c within the range of u, the last

integral on the right hand side contains critical point

singularities and corresponding inaginary contributions to

¢H)

c sy (unlike the BTU mode above, there are not necessarily

any neighboring BTU solutions unstable at 0(l) since the upper

(0

layer equation (2.5) now contains the Py forcing term and

section 5 does not apply).
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So for BTL modes, the kinetic and potential energies of

the upper layer flow u are available to amplify 0(1) free
(0

Rossby waves in the lower layer, if c is within- the range of

u. However due to the inertia of the lower layer the instability
can only occur at 0(8), compared to 0(1) for unstable BTU modes

/

and 0(61 2) for unstable BC modes (see below), and so we do not

consider the BTL mode any further in this work.
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E. BC Mode (Baroclinic).

(0)

The zero order equation for this mode is (2.9) for Py

in the upper layer, which is the same equation as for the zero

/ &)

order BIU mode., The lower layer 0(61 2) solutions 9,

are free Rossby waves obeying (2.11). With boundary conditions

P =9, = 0 either at rigid walls or as y = + «, (2.11) requires
(0)

that ¢ be real; the only distinction of the BC mode as

compared to the BTU mode is the possibility of destabilizing ét
0(61/2) an otherwise barotropically stable flow in the upper
layer.

(0)

With these béundafy conditions and c¢ real, the same

criterion applies for the existence of neutral solutions of
(2.9) as for the zero order BTU mode above; i.e., if there

(0)

are any critical points at which u (yc) =¢ ’',then b (yc)

must vanish., Therefore the phases of @1(0> [from (2.15)] and

of @2(1) are constant in latitude, even across critical points.
\ (0) N /
Having found free solutions 91 and P, for 'a given
(0) (1)

, we can derive expressions giving c and the

(0)

real c

and ¢2(1). Multiplying

relative amplitudes and phases of 91
. .
(2,10) by @1(0) and (2.13)* by @2(1), and integrating over

the whole latitudinal range, we find

| 2 2
0) D
@] P I°P1 | w* [P I‘Pz | 2f  * (1)
¢ 2 ~ ¢ R 2] ?) .
, (- (9] C(0)

u=-c
(2.21)
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If c(l) # 0, taking the modulus of the left hand equality

in (2.21) shows

. 1 2
: 2
2 (0) b 'm (0)’
(1), _c 1
P2 =T B 7 > (2.22)
- @ - Oy
. L (1) . (0) .
which sets the magnitude of P, relative to P . Taking
arguments in both equalities of (2.21) and eliminating arg [c(l)]
shows :
2
o)
*
arg [’[¢1(0) cpz(l):] = —]2'- arg f***—l-ﬁ—-z-:l +nm . (2.23)
| (3 - <O
Finally the right hand equality in (2.21) implies
‘ B | o, ™
1 L2 0 1)* ‘
N CD I fcpl( ) cpz( ) f-——-———~————2 . (2.24)
, « NOMES

Tn (2.23) n = 0 or 1, chosen to make Im (c(l)) = 0. So if the
upper layer integral on the right hand side of (2.23) is either

real and negative or is complex due to critical point singularities

0) _ (1)

(Foote and Lin, 195Q), then P, and P are out of phase

(1)

(in the x direction) by an amount other than 180°, and c

(1)

depends on the 'interaction'

(0)

is complex. The magnitude of ¢

* :
integral./.ml(0> @2(1) , which generally can be large when @1

1)

and 9, have similar y-wavelengths (i.e. G(O) 2 H(O)) over

a large latitudinal range.

(0)

The above shows for the BC mode that c must be real,

€3]

but ¢ may be complex, So the dynamics of the lower layer
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/2

can destabilize at 0(61 ) an otherwise barotropically
stable flow in the upper layer. We will see in section 4.A
that this type of instability still occurs for u independent

of latitude, so it is essentially baroclinic in nature.
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F. Energy Equations.

As discussed in section 1. C(i), the baroclinic and
barotropic disturbances have associated eddy fluxes that
transfer energy between the zonally averaged flow and the
disturbances. In later sections some of these fluxes are
evaluated for various disturbance modes to see if their
accumulated effect could be significant in the long-term
energetics of the zonal flow., To derive energy equations
describing these transfers, we can start from the two
layer non-linear equations (2.1) and (2.2). The standard

method [e.g. Holton (1972) Ch, 11] is to form the equations

v c @D, ,/‘1’1 C e, . @D

qf'z * (2'2)' | s

where the overbar denotes zonal mean, the prime denotes
departure from the zoﬂal mean, and vl—denotes integration over
y with v = dy/3x = 0 at latitudinal boundaries. After some
manipulation, this yields (with all quantiﬁies dimensional

including u and v)

2 2 \
1 - - - - - |
"aaffipl (u) +vy) Hy = jpl Y1 “_["1 u1(“1 Vl) Hy > (2.23)
+ Ty :
I
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(2.26)
. 2 )
Q2 [ 1 - - = f’““‘“
e 28% by =-Jp W LS P
. i
(2.27)
— - - T
ff Py (ul u2) vy hl ,
ji:/— Lga ;T— = ~l~ W +] W,
ac) 28°p N Pr¥1) 2 V2
I I (2.28)
c - -
o pl (ul u2) al hl ,
2 2
3 (1 3 s. == 5 o v
at_[zpz_(uz *"2) fpz‘”z ) fpz“z(uz"z) 5o
| I
(2.29)
2 [1 w?+v?) = W + | o, uy dl VA H
ac J 2 P2 \%2 2 P2va | _ 2 "2 \"2 V2fy T2

Here p = fo p ¢ is the local hydrostatic pressure, and
h is the local thickness of a layer, related to ¢1 and Y, as in
section 2.A. I+ and I~ denote values taken on horizontal surfaces

just above and below the fluid interface, respectively. w is the

vertical velocity upwards of fluid particles; for the two layer

‘model, w is linear in height within each layer and is related to
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¢ and h by the kinematic'conditidns at the fluid surfgces [e.g.
Pedlosky (1964a)].

(2.25) and (2.26) ére the zonal meanAand eddy kinetic energy
equations for the upper layer, and (2.29) ané (2.30) are the same
equations for the lower layer. (2.27) and (2.28) are the zonal
mean and eddy equations for the available potential energy
(a.p.e.) of the sloping fluid interface., [The a.p.e. of the
free top surface of the upper layer has been omitted from this
set of equations, since this a.p.e. 1s of order Ap/p compared
to the interface a.p.e. for flows with O(!yll) £ O(‘wl - ¢2‘),
e.g. for all BTIU an& BC disturbances.] These two layer
equations (2.25) to (2.30) correspond term for term with the
quasi—geosirophic energy equations with continuous vertical
resolution [e.g. Holton (1972) Ch. 11], but here the available
potential energy and vertical energy transfers are concentrated
at the interface and not distributed over all depths. This
provides further evidence that the two layer model contains all
the important quasi-geostrophic processes of vertically continuous
models.

Although these equations are derived from the non-linear
equations (2.1) and (2.2), the corresponding eddy equations (2.1Y , 2.2)
and also (2.26), (2.28) and (2.30) are obeyed exactly by the
i liﬁear disturbances of this work, and in subsequent sections

gseveral of the energy transfer terms on the right hand sides
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of the energy equations are interpreted and evaluated for some

explicit linear solutions.
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3. NEUTRAL WAVES

All of the unstable modes investigated in later sections
will be either barotropically unstable waves in the upper
layer (BTU modes), or Earotropically stable waves in the upper

/2) by

layer that are destabilized baroclinically at 0(61
the perturbing effect of the lower layer (BC modes, in section
4). In section 5, the growth rates of ﬁnstable BTU modes are
estimated analytically by a variational method for waves

just slightly different from the neutrally stable waves, so
for both these sections the starting Eoints are the zero

order upper layer neutral solutions to (2.5) with @2(0) set

(0)

equal to zero and with ¢ real. These neutral waves are
derived below for particular velocity profiles used in the
subsequent sections.

For u independent of y, the only unstable modes are
baroclinic (BC), with nearly free Rossby waves in each
layer, In section 4 we investigate this case to cbmpare
with the continuously stratified model of the appendig. For
u dependent on y, the criterion of section 2.C requires that

(0) within the range of u(y), the potential vorticity

for real c
gradient b(y) be zero at the point where u(y) =c' .

For this case we investigate the two analytically

tractable sech2 and tanh profiles used by Lipps (1962, 1963,
1965), both of which yield evanescent neutral disturbance

solutions obeying ¢ - 0 as y = + ». In addition we find neutral

solutions for the sech2 profile that are oscillatory in y
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outside the jet and can only obey the boundary conditions

p = 0 at rigid‘latitudinal walls, The femaining case of
cr(o) having general values outside the range of u(y) would
be relatively complicated analytically; however the numerical

. . 2 . .
searches in section 6 for the sech™ profile found no. solutiomns

with this property.
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A, Sech2 Velocity Profile,
As in Lipps (1962, 1963) we consider profiles of the form

(in dimensional quantities)
T(y) = U, + Uy, sech? (y/L)
D 1 0

where UO and Ul can be positive or negative. This type of

profile represents an isolated zonal jet centered at y = 0

embedded in a constant velocity field Ul' Many Jovian disturbances
are observed at the centers of retrograde jets, corresponding |

. 0)
to U0 < 0 and U1 + Uo < 0, To find neutral solutions P of

(0) = (, it is analytically convenient to

(2.5) with Py
non-dimensionalize in a slightly different way from that in

1° Defining

section 2.A, to absorb the ambient velocity U
b=y, a=@G -U)/U, B=(, +L 20)/@ V)
’ D 1 ’ D r 1 r 072

© _ ., (0 ~ . _ N
e = ey = U/, ko=ky L, A= L/L, = /L T,

then dropping the A and (0) superscripts, (2.5) with @2(0) =0
'#s replaced by the non-dimensional equation |
22 ;9 [(B+G) xz—ﬁyy} |
;;-z-cp-km-hfp+ et (3.1)

with u = sech2 yv. For this profile, the potential vorticity
gradient (B + u) hz - ny can be written as the quadratic
652+(A2 -4) u+ th. For real c¢ lying within the range of

u (i.e., 0 < c < 1), the condition of section 2.C requires. .
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that the potential vorticity gradient vanish at u = c,

so that ¢ must be a root of this quadratic. Therefore
2
2 2 2
N \/A -4 B A
c = < 12 >:|: ( 12 ) - 6 ’ (3.2)

and (3.1) becomes

2

JLE o + (6 sech2 y - k2 +6c -4) p=0
dy

Following Lipps, we change the independent variable to 2 = tamh y,

which implies

o2 2
(1-22) 980 _ g, d0, | [kl -6ct+ 4 @=0 .. (3.3)
2 dz 2
dz ‘ 1-2

(3.3) is a form of Legendre's equation (e.g. Abramowitz and
Stegun, 1965, sec. 8.1). With boundary conditions ¢ = 0 as
y <+4 o, i,e., as Z = + 1, there are only two (associated

Legendre function) solutions; the symmetric solution (i.e.,

an even function of y)

p=(Q~2) 1+ 2)-= sech’ y  for which k2 = 6c s (3.4a)
and the antisymmetric solution (i.e., an odd function of y)

=2z (1- z)l/2 1 + z)l/2 = gech (y) tanh (y)
(3.4b)

for which k2 = 6c - 3 .

Since kz = 0, the latter wave is possible only if c = 1/2.

These solutions are evanescent as y — + «, decaying with the
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same latitudinal Ilength scale L as the jet., (Numerical solutions
in section 6 indicate that these modes are modified insignificantly
by imposing rigid wall boundaries at y = + Y for Y » 3.)

There are other solutions to (3.3) that are oscillatory
far from the jet, essentially becoming Rossby waves there.
On Jupiter, such waves would be reflected and/or absorbed at
large ly| either by basic state variations of the neighboring
belt~zone structure or by the sphericity of the planet. The
form of the boundary conditions most gppropriate for.jupiter
is largely unknown; for simplicity below we consider purely
reflective boundaries by imposing rigid walls at various
y =+ Y. The oscillatory solutions are (Abramowitz and Stegun,

1965, Ch. 15.4)

1/2

10/2
= (i t z) 1+ &2 + 3igz - 3 zz) where f, = + (6c - 4 - kz)

and 12 = - 1, This requires 6¢c - 4 - kz > O, so these waves
are possible only if c¢ > 2/3. Rearranging, this'gives two

independent symmetric and antisymmetric solutions

1/2
(l + &2 -3 zz) cos [:/L In <%§> ]

. 1/2
- (3p2z) sin |4 1n<i t 2> } s

1/2
1+ z
(342) cos [L 1n <1 — ] |

/ 1/2
+(1+L2—3z2) sin &1n(lt2) :l .

S
i

(3.5a)

RS
It

(3.5b)
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1+ 2|2
As y 2 £ o0, £ 1In 1= > = Ly so these solutions become

sinusoidal with y~wavenumber {. For particular basic states
and walls located symmetrically north and south of éhe jet
center, there are generally several discrete values of { that
place ¢ = 0 nodes of these oscillatory waves at the walls where
% = tanh (Y).

The latitudinal forms of the neutral wave types (3.4a, b)
and (3.5a, b) are shown in fig. 2. For the oscillatory
waves, ¢(y) depends on the value of Ls but the qualitative
shapes including the central structures are essentially
independent of 4.

For basicstate profiles observed on Jupiter, the theory
above predicts that neutral waves travel with the veloéity
GD at which the upper layer potential vorticity has an extremum,
However this can not be tested directly by observations of
cloud motions, since even if GD(y) is measured perfectly, the
potential vorticity still depends on the unknown upper layer
radius of deformation Lr’ (which enters in the ﬂon—dimensional
parameters B and XZ above). The dependence of the locations of
potential vorticity extrema on the values of Lr’ QQ and Ul is
discussed in detail below for the sech2 velocity profile,
for general ranges of the equivalent non-dimensional parameters,
Some particular examples fdr values of Lr’ Uo and Ul most

likely to be useful for analysis of Jovian observations are

presented in section 7.
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FIGURE 2. Latitudinal shapes of u. and the upper layer neutral

D
solutions (3.4a,b) and (3.5a,b) for the velocity profile

up = U1 + U0 sech2 (y/L). (Relative scales on the abscissae are

arbitrary.)

(a): uy vs. (poleward) latitudinal coordinate y/L, for retrograde

jet with U, < 0,

0

(b) and (c): ¢ vs. y/L for evanescent solutions (3.4a) and (3.4b),
respectively.

(d) and (e): ¢ vs, y/L for oscillatory solution, (3.5a) with ¢ = .99,

and oscillatory solution (3.5b) with £ = 1.29, respec- .

tively.
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For given values of the non-dimensional basic state
parameters B and xz, the phase speed ¢ of all the neutral
disturbance types on the sech2 velocity profile is determined
by (3.2), and is equal to the value of u at the potential
vorticity extremum, Fig, 3 shows ¢ as a function of B for
various values of xz. .This ¢ = (cD - Ul)/UO is non~dimensionalized
relative to the jet so that c equals zero for waves with
dimensional phase speed cD equal fo the flow Ul outside the
jet, and ¢ equals 1 for waves with p equal to the velocity
U0 + U1 at the jet center, If a given basic state has both
c's as defined by (3.2) outside the range (0, 1), the neutral
waveé found above can still exist but then there is no.potential
vorticity‘extremum at any latitude, and the criterion of
Charney and Stern (1962) shows no barotropically unstable
disturbances can exist; for this reason these cases are not
investigated iﬁ this work.

The parameter B is equal to (BD + Lr_2 Ul)/(Lr-z/UO) where
BD is the dimensional planetary vorticity gradient and Lr
is the upper layer radius of deformation. This parameter
is the ratio of the contribution to the upper layer potential
vorticity gradient (which dimensionally is BD - (ED)yf + Lr_'2 ﬁD)
from BD plus the slope of the fluid interface associated with

the ambient Ul’ compared to that from the interface slope

associated with the sech2 jet strength UO' The parameter
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FIGURE 3. Non-dimensional phase speeds c = (cD - Ul)/U0 of neutral

disturbances on velocity profile GD = Ul + UO sech2 (y/L), as func-
tions of the basic state parameter B = (BD + L;z Ul)/(L;2 UO)’ for

various values of hz = LzlLi.
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Figure 3
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2 _ .2, 2, . - 2
A =1L /Lr is a measure of the vorticity gradient (uD)yy,~ UO/L

due to the horizontal shear of the jet compared to that due
to the sloping fluid interface of the jet ~ UO/er. For
large values of ), Lr and Ap are small so that the fluid
interface slope is large for a given GD’ and (GD)yy (and BD)
are relatively unimportant compared to GD/er; for hz - 0,
the converse is true., (Fig. 3 cannot show the non-divergent case
XZ = 0; this is shown in Lipps (1963), whose parameter B
corresponds to the present B Az, and also in fig. 18.)

For Jupiter, xz is probably 2 4 (Lr € 2500 km); for these
values the potential vérticity gradient is controlled more by
the interface slope ~ GD/ er than by BD or (ED)Qy’ so vorticity
extrema cgn only occur close to points where GD
e, = 0 an& cr - Ul/UO' For large xz, B~ Ul/UO and so
in fig. 3 all curves with xz

= 0, so that

> 4 cluster around the XZ = w

straight line with slope ~1. Usually for Jupiter U, > 0

1

so that vorticity extrema are only possible in retrograde

0 < -Ul. For values of xz < 4, B and the sech?

curvature (GD)yy become more significant and the curves in

jets with U

fig. 3 have more complex behavior with Possibly two values of

U .
0 and 12 0;

this case with XZ ~ 1 is more appropriate for the earth's

c for given basic states [which may be prograde with U

jet stream and Gulf Stream (Lipps, 1963)]. Some implications
of fig. 3 for Jovian observations are discussed in section 7.

‘The values of the x-wavenumber k of the various neutral
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wave types in (3.4a, b§ and (3.5a, b) are determined by

k2 = 6¢c + consfant; however as shown above this constant is
different for each type of neutral wave, and the range of c
for which a particular wave is possible may be restricted
by the constraint k2 =2 0, which in turn maybrestrict B to
certain ranges via fig. 3., For a particular basic state and
for values of k smallef than the neutral value, the waves
become unstable, and in section 5 growth rates are estimated

using a variational method by considering departures from

the neutral curves of fig. 3.
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B, Tanh Velocity Profile,

Following Lipps (1965), another type of velocity profile
that is still analytically tractable is (in dimensional

quantities)

uvD(y) = U; +7U, tanh (y/L). .

This represents a shear zone between two constant velocity
regions, and may be a better‘representation than the sech2
profile of some regions of Jupiter, e.g. at the latitudes of
the Great Red Spot.

Defining non~-dimensional quantities using UO, Ul and L
as above for the sech2 profile, u is now tanh y and the

potential vorticity gradient (B + u) 12 - uyy can be written
3

as the cﬁbic -2 u + (hz +2) u+ sz. For real ¢ lying within
the range of u (i.e. -= 1< ¢ < 1), c must be a root of this

cubic, and then the differential equation becomes

a%e 2 2 2.
> + (2 sech” y -~k = 2c tanhy~-2¢") =20 . (3.6)
dy

Again changing the independent variable to z = tanh y, this

becomes

i
o

. 3.7

2 , / 2 2
1= ZZ deg - 2y deo + |2 - 2cz + 2¢” + k
( )
2 dz 2
dz . 1 ~-c¢c :

Following Lipps (1965), a solution obeying boundary conditions

0Oasy—4+ o (z=41) is found by substituﬁing

< €
| i

= (1 + z)p (1- z)q z" where P, q and r are real constants,
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This gives

1 -¢c)/2

o= (1+z2)" ( 2

1 -2 2 e ihicn K =1-c%,
(3.8)
Since (3.7) is not a standard equation, it would be complicated
to find other solutions; hbwever, Lipps (1965) notes that for
B = XZ = 0>(3.7) reduces to Legendre's equation and (3.8)
is the only solution that vanishes at Z = + 1,
The latitudinal forms of three neutral wave solutions

(3.8) are shown in fig. 4. The shape depends on the value of

¢, becoming more skewed for larger values of IC
Fig. 5 is the equivalent diagram for the tanh profile

to fig. 3 above, showing'the neutral phase speed c (deFermined

from the roots of the cubic in u above for the potential

vorticity‘gradient) as a function of the basic state parameter

B = (BD + Lr'-2 Ul)/(Lr-z UO), for various values of KZ = Lz/er.

The discussion of fig. 3 above also applies to fig. 5, except
now. the range of the non~dimensional u and c is extended to
(- 1, 1). Due to the antisymmetry of u about y = 0, the

solution @(y) for a particular value of U 6 is antisymmetric

U

to the solution for U0 of the opposite sign, and both solutions

have the same dimensional phase speed c This behavior is

D.
reflected in fig. 5, and implies for instance that all
~2
i c U
disturbances on profiles with By + L_ Ul > 0 have ¢p< U,

irrespective of the sign of Upys and vice versa. -
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FIGURE 4. Latitudinal shapes of u. and two upper layer neutral

D

solutions (3.8) for the velocity profile GD = Ul + U0 tanh (y/L).

(Relative scales on the abscissae are arbitrary.)
(a): GD vs. poleward latitudinal coordinate y/L, with U0 >0

representing a region of anticyclonic shear.

(b): ¢ vs. y/L for solution (3.8) with ¢

0 (c. =U)).

D 1
(c): ¢ vs. y/L for solution (3.8) with ¢ = -.4 (cD = Ul -4 UO);

(d): ¢ vs. y/L for solution (3.8) with ¢

-08 (CD = Ul _.8 UO).
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FIGURE 5. Non-~dimensional phase speeds c = (cD - Ul)/U0 of

neutral disturbanées on velocity profile GD = U1 + U ‘tanh (y/L),
2

as functions of the basic state parameter B (BDv+ L; Ul)/(L;ZUO),

for varibus values of Az = Lz/Li.



Figure 5
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4. BAROCLINIC (BC) INSTABILITY.

The 61/2

gxpansion in section 2 showed that bareclinic
instabilities, which rely on the dynamics of the disturbance

in the lower layer, can have non-dimensional growth rates

only of order 61/2. For Jupiter the appropriate value of

6 may be ~40—6 (see section 2.,A) which would imply growth times
of ~103 days, much longer than those of the barotropic upper
layer (BTU) modes in sections 5 and 6. However a study of
baroclinic instabilities in the two ;ayer model enables
comparisons to be made with the results of the continuously
stratified model in the appendix; also the approprilate Jovian

value of § may be greater than1~10-6.

A, u = constant Velocity Profile,

We consider the simplest possible upper layer velocity
profile GD independent of y, with rigid wall boundaries.
The y-dependences of P and P, must be sinusoidal, and as with
the x and t dependences, the only non-zero linear’interactions
between ¢, and ¢, occur for individual fourier components
with the same y-wavenumber., If the boundaries are sufficiently
far apart, a nearly continuous spectrum of y-wavenumbers is
allowed. The original perturbation equations (2.3) and (2.4)
are simply algebraic and the general solution is given below,
but some insight is gained'by first considerihg the 6 and 61/2

expansions for this case.

It is convenient to non~dimensionalize using the constant
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velocity u. (which may be negative) and the upper layer radius

D

of deformation\Lr, by defining
B=8. L 7%/a, c=cfu, k=kL
D r'D D' "D’ kD r :

This non-dimensionalization is essentially the same as that

for equations (2.3) and (2.4),and all the equations of section
2 apply here with A =1, U =1 and b = B + 1. We also define

K = KDLr =\/;é + Lz where { is the non-dimensional y-wavenumber

(0)

of the perturbation. For general k and c

(0)

, the 6 expansion

real and { determined by (2.5)

= 0 and with the forced amplitude of @2(1) set

is appropriate, with c

with ¢2(0)

by (2.8). Then as shown in section 2.C the flow is also

stable at 0(8). However for the particular values of k and

RO ©) _ (0

such that G =H"/, i.e.,

o2 e—B*L 2. B

s (4.1)
O MO
then (2.8) would resonate and @2(1) could not be zero at both
boundaries. So in this case we are led to the 61/2 expansion,

in which the leading equations (2.9) and (2.11) require

@

k and { to satisfy (4.1), which implies

‘= |B|1/4 L (O IB|1/2 , (4.2)

for which B must be negative, i.e. u. must be retrograde. Then

D
(2.22) to (2.24) imply
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) , ]1/2 W
L P a9 - sl Er— ] @
B (B +D lgf 77 +1

(1)

c is imaginary and the mode is unstable at 0(61/2) if
-1< B< 0, i.e., if the upper layer potential vorticity

gradient BD + Lr—2 u,. is negative [cf. Pedlosky, 1964a,

D
(3.2.4)]. Also (2.24) implies
1/2

IS GO O 1 A
© D o177 - 1

. (4.4)

(0) (1)

are 90° out of phase.

- lB|l/4

So for unstable modes, P, and @,

As K departs from the particular value Kc we

1/2

would expect a transition from unstable § ~ solutions with

/2), to stable

|cp2/cpll ~ 06%?) valid for | K - k| < (st
6-solutions with I@z/@livv 0(8) valid for K outside this range.
This is more easily seen using the general results from (2.3)

and (2.4). Defining v = ¢ K, elimination of Qz/ml between

(2.3) and (2.4) yields the dispersion relation

2

vz [1+K + 8] +v [-K3 + B (2K + K—l) + 8 (Bm"l - ZK)]

2 ; (4.5)
+(@-€) @-8=0 . u
Gill et al. (1974) derived this equation [their eqn. (9.3)]
for their two layer model of baroclinic instabilities in the
earth's oceans, and used it directly to obtain the results
(4.1) to (4.3) above. The exact solutions of (4.5) for unstable
waves are shown in fig. 6, where the non-dimensional phase

speeds c, = Re [cD/GD] and the growth rates
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FIGURE 6. Baroclinic instability for u = constant, showing the un=-
stable exact solutions of equation (5.5) with &6 = ,005.
(a): Non-dimensional phase speeds c, = Re[cD/ﬁD], and
(b): Growth rates v, = Im[kD cD/(L;lIGDI)] for k = K, as func~-
tions of the horizontal wavenumber K = KD Lr = ngi;%zzﬁ
fq; various values of B = BD Li/ﬁD. For particular values
of P and values of K outside the ranges in fig. 6, [and also
for all K if P is outside the range (—1,6%)], both solutions

of (4.5) are neutrally stable (vi = 0) and correspond to the

BTU and BTL modes of the 6-expansion in section 2.
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v; = In [k cD/(Lr-1 ED )] arebplotted (for k = k) as functions
of the horizontal wavenumber K = KD Lr’ for various values of

B = BD er/ﬁD. (For a given K, the faétest growth occurs for
the largest value of k consistent with k2 + Lz = Kz, so that
the most unstable waves have perturbation velocities and
wavenumbers oriented mainly north-south.) The growth rates are
0(61/2) and are largest for values of B intermediate between

0 and -1, for which the upper layer potential vorticity gradient

2

By + Lr— ED is comparable to but has the opposite sign of the

lower layer gradient BD. For clarity, an arbitrary value of
§ = .005 is used for fig. 6. For a given intermediate value of
B, fig. 6 shows the waves are only unstable for a range of

/2), in agreement with the

(0)

K-wavenumbers of width ~ 0.1 ~ 0(61
1/2

c(l) for unstable waves predicted by (4.2) and (4.3) agree with

1/2

] expansion analysis above; (also the values of K, ¢ and

fig. 6). TFor Jupiter, & may be ~10_3 so only an extremely

small range of K would be unstable if u were constant;/however
we will see in section 4.,B that this constraint no longer
applies for u dependent on y.

As B = 0 (i.e., for very small BD or very large |GD|)

the wavenumbers of unstable waves tend to zero [K =~ Isll/4

from (4.2)]; however for O(Kz) or O(IB]) < 0(61/2), the 61/2

. expansion [which implicitly requires all quantities except

1/2 /

) to be >> 0(6l 2)] becomes invalid, as do (4.1) to (4.4).
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We discuss the case B = 0 below; although this case is

instructive, in practice it is not a problem in applying the

1/

2 . . . s
(and 8) expansions to Jupiter since the non-dimensional

/

8
B's of this work are all >> 0(61 2) at mid and high latitudes.
For B = 0, the general equation (4,5) is still valid.

We compare this below with equation (10) of the appendix,
which is the equivalent equation for a similar two layer model
with BD = 0, but with continuous basic state stratification

and vertical shear of u in the upper layer., For the present

constant density model with 8 = 0, (4,5) can be written

3

vz-vJ—-i +5“'—}—"""2" (\)—K)z =0 (4.6)
1+K 1+ K

and in equivalent units for the continuously stratified model,

equation (10) of the appendix becomes

2 tanh K 2 K-~tanh K\ | _
[vi = v (K -~ tanh K)] + 6 m Q) - vk + fanh K = 0,
' 4.7)

The forms of these two equations are evidently very similar,

and their exact solutions (stable and unstable) are compared in
fig. 7, with & again arbitrarily chosen to be .005. The unstable
parts of the curves for (4.6) labelled CD in fig. 7 correspond

to the B = 0 curves in fig. 6, but here the vy axis is scaled

3/4

relative to § , since approximate solutions of (4.6) and (4.7)
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FIGURE 7. Baroclinically unstable and neutral solutions for

u = constant with BD = (0, showing non-dimensional phase speeds

- = = -1~ =
c, = Re[cD/uD], and growth rates v, = Im[kD cD/(Lr [uDI)] for k = K,

as functions of the horizontal wavenumber K = K Lr = 2 + &2

D
Curves labelled CD are exact solutions of (4.6) for the constant
density model, and curves labelled S are exact solutions of (4.7)

for the continuouély stratified upper layer ﬁodel, both using

6 = .005.

(a): Phase speeds c. Vs, K showing the neutral solution branches
with e~ 0(1) of the quadratics (4.6) and (4.7).

/

(b): Phase speeds c. vs. K showing the 0(63 4) unstable solutions

(£ € .5), and also the neutral solution branches with
c, ~ 0(8) (K » .5).

(c): Growth rates v; Vvs. K showing the 0(63/4) unstable solutions.
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(see appendix) show that only long waves with 0 < K < (126)1/4

374y,

(= .5 for 8§ = ,005) are unstable and have vy and cr‘; 0@
The similarity of the curves in fig. 7 suggests that the present
constant density model is adequately representing the basic
mechanisms of the more complex continuouslyjstratified model,
at least for B = 0, However, Gill et al. (1974) found more
marked differences between their two model results (continuously
stratified single layer vs., two layer constant density) for
B # 0.

In practice ‘B‘ ~ 0(1) for Jupiter, and a general result
from this section is that for velocity profiles u = constant,
the only baroclinically unstable flows with the full 0(61/2) growth
rates realizable in the BC mode are retrograde flows of moderate
strength (—BD er < GD*< 0). This result will echo through
subsequent sections in analogous results both for barocliﬁic
and barotropic (BTU) instabilities for u = sechzy profiles;
in all cases the flows are most unstable when the plangtary
vorticity gradient BD is approximately cancelled by the gradient
associated with the flow - (GD)yy + GD/er.‘ This is also a
reflection of the necessary criterion for instability of Charney
and Stern (1962).

Finally for the U = constant profile with B # 0 we evaluate
the zonal mean eddy fluxes due to growing baroclinic disturbances

appearing in the energy equations in section (2.F). Although

the ﬁpper layer flux of zonal momentum [i,e,, the ﬁ&’;& term



67

appearing in (2.25) and (2.26)] is dominated by unstable BTU

disturbances (see section 6), the latitudinal tranéport of upper

1

is the two layer model representation of latitudinal heat transport]

fluid [i.e., the V h& team appearing in (2.27) and (2.28), which

occurs only at 0(6) for BTU modes, compared to 0(61/2) for
baroclinic modes. So for the latter transport, baroclinic
instabilities may be important even with comparatively small
magnitudes of ®q. From the informat;on in (4.1) to (4.4), we
find for the present baroclinic instabilities that the conversion

of mean a.p.e. to eddy a.p.e. appearing in (2.28) is (averaged

over y)
| oo v g T
£ oo n Gy =-ot/23 AL k1 1 1 Hgl’*”
o1 D11 D 2 KL |B|1/4\/l _'B'l/z
(4.8)
where V, = Kp |¢1| is the (dimensional) magnitude of the
disturbance velocity in the upper layer. 53 hﬁ is negative,

so that 'heat', (i.e. positive h&) is being transported equatorward
from the 'warm' side (ﬁlk> 0) of the retrograde mean flow to
the 'cold' side (h; < 0).

The vertical energy flux upwards fromvthe interface into

the upper layer appearing in (2.26) is (averaged over y)
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dh?L
PV +="p1 <t i A1 uy (4 D)
I v - (4.9)
=-51/2‘ 11 5__1_H1/4 1 - gl .
YD T2 KL 1+|B|1/2

Since ED is negative, this flux is positive and energizes the

disturbance kinetic energy in the upper layer.
These eddy fluxes are proportional to Vlz, and we can
estimate how large V1

comparable to other known planetary fluxes. For instance, the -

would have to be to make the eddy fluxes

magnitude of observed latitudinal variations of I.R., emission

on the belt-zone scale is typically ~103 ergs/cmzlsec (Ingersoll
(1976) fig. 10). 1In the present two layer model, this would

be analogous to a diabatic forcing on the right hand side of the
mean a.p.e. equation (2.27). For the baroclinic eddy conversion
term (4.8) to be comparable to this forcing, (using GD = -~ 30 m/s,

B =-0.2, Hl/Lf = 0.1, 6§ = 10—6),\’l would have to be ~ 30 m/s. This
is perhaps unreasonably large for typical eddy velbcities, but if

0 were ~'10_4, the required V, would be ~ 3 m/s.

1
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B. Sech2 Velocity Profile,
/2 (W)
i

The growth rate k 61 of unstable baroclinic (BC)
modes given by (2.24) depends on the 'interaction' integral

*
fcpl(o) CPZ(l) dy. cpz(l) is always purely sinusoidal for BC

modes, and for the ED = constant case above with ml(o) purely
sinusoidal, this integral is non-zero only if ml(o) and ¢2(1)
have the same y-wavenumber, constraining k and c(o) to

particular values in (4.2). When u depends on y, this constraint

is relaxed since the interaction integral is generally non~zero:

(0)

for non-sinusoidal P e Below we investigate baroclinic
instability for the isolated jet velocity profile (in dimensional

quantities) GD = U1:+ U sech2 (y/L).

0
If the appropriate locations of rigid wall boundaries for

Jupiter (see section 3,A) are far away from the sech2 jet, i.e.

at y/L = + Y with Y >> 1, then the neutral oscillatory @1(0)

solutions (3.5) would be essentially sinusoidal over most of
the latitudinal range, so the interaction integral and whole
baroclinic instability would be nearly the same as for the

(0)

u. = constant case above with u_ = U of the

D D 1° Also P

evanescent solutions (3.4) is only significant in the vicinity
of the jet (Iy/LI € 3), so the interaction integral and |c(l"

1/2 for

from (2.22) and (2.24) would be proportional to Y
Y >> 1. However, if the appropriate rigid wall locations are
~ just slightly outside the sech2 jet, the dependence of u on

y will have a significant new effect on baroclinic instabilities
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and ci(l) can be 0(1). We illustrate this case below for the

symmetric evanéscent upper layer solutions @1(0) = sech2 y of (3.4),

using the non-dimensional notation defined in section 3.A.

(0)

These ol solutions are modified insignificantly by

imposing rigid wall boundaries at y =+ Y for Y » 3 (see section

(0)

6). Then the zero order phase speed c is determined by

(3.2) and k2 = 6c(0); [for other values of k, the upper layer
@1(0) solutions would be barotropically unstable at 0(1)

(see sections 5 and 6)]. The y~wavenumber Lz of the lower

layer is set by (2.11), i.e.,

2
! L
2 2. Bp
'fzz = -k + e (0) . (4.10)
D
@2(1) is proportional to cos (Lzy) for the symmetric mode; in

reality the boundary conditions ©, = 0 at y = + Y would only

allow discrete values of &2, but for simplicity’in fig. 8 below»we
adjust Y for each wave to Y = max(3,{2ﬂ/2), (so ‘that for &2>>6/n
the lower fluid boundary conditions are actually not 6beyed). Then

(1)

the relative magnitude and x-phase of Py

@

are determined by (2.22)

and (2.23), and ¢ is determined by (2.24).

Fig. 8(a) shows the non~dimensional phase speed

NONSNC

- - - = funct

(cD Ul)/UO and x~wavenumber k kDL as functions
-2 -2

of the basic state parameter B = (BD + Lr Ul)/(Lr UO),

for XZ = L2/Lr2 = 4, This value of hz corresponds to an upper

layer radius of deformation\Lr 6f ~2500 km, which may be
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FIGURE 8, Baroclinic instability for upper layer velocity profile

1-‘ID
(a):

(b):

(c):

sech2 (y/L), and Kz = LZ/Li = 4,
(0)

1 0
Non-dimensional phase speed c = (céo) - Ul)/U0 and x-wave-
number k = kD L set by the symmetric upper layer neutral
solution (3.4a), as functions of the basic state parameter

_ -2 -2 ‘
B = (BD + Lr Ul)/(Lr Uo).
Non-dimensional baroclinic growth rate

vy = 51/2 Im[kD c(l)/(L-llUOI)] and y-wavenumber {, of the

" lower layer solution, as functions of B for velocity profiles

~ with U1/U0 = -,5,

As for fig. 8 (b), but for velocity profiles with

UO = —BD LZQv -~ 50 m/s).



72

172, ~ L \
5210} N\ £,

172
310 \ 2,

Figure 8



73

appropriate for Jupiter, Fig., 8(a) is determined by the upper
layer neutral solution; the same curve appears in fig. 3 and

is discussed in section 3A., For U, > _BDer’ only retrograde

1
(0)

jets (u0 < 0, B < 0) can have neutral 9y solutions.

For the non-dimensional quantities used in fig. 8(a),
(4.10) becomes

2 9 2 (B-—UllUO)

1,5 = -k -
2 ©) >
@ + v /v

So to specify ¢, we must choose a particular (arbitrary) value for

Ul/UO' Fig. 8(b) shows the non-dimensional y-wavelength 4, of @2(1)

2
and the baroclinic growth rate v; = 61/2 Im [kD c(l)/(L_lonl)]
‘of the disturbance as functions of B, for velocity profiles
with Ul/U0 = -~ 0,5, Fig. 8(c) shows Ly and vy for profiles with
UO equal to - BDLZ (so that U1/UO =B + x_z). In theée figures,
the requirement LZZ > 0 restricts the baroclinic instability to
certain limited ranges of B.

Thé maximum growth rates in figs. 8(b) and (c) are somewhat
smaller than those for the GD = constant profile in fig. 6,
because now only the centers of the retrograde sech2 jets are
locally baroclinically unstable, and the eﬁergy extracted there

from the mean flow must be distributed to amplify the disturbance

over the whole latitudinal range.

0)
p* ¥

in fig. 9 for the particular BC mode with Az =4, B =~ 0,7,

6]

The latitudinal forms of u and 9y are shown
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FIGURE 9, Latitudinal forms of a baroclinically unstable mode for
upper layer velocity profile GD = Ul + U0 sech2 (y/L), with
B=-.70, A% = 4, and Uy = -B 1” [cf. fig. 8 ().
(a): GD vs. y/L, for retrograde jet‘with UO < 0.
(b): TUpper layer symmetric evanescent solution ¢§0)ctsech2 (y/L).
(¢): Lower layer symmetric solution 61/2 ¢§0)0=cos(L2 Y),
(scaled relative to lq{o)(O)l). |
(d): y-dependence of energy transfer term f0 Py ED(;gfﬁﬂgb,
(scaled relative to IUOI Pl(|¢£0)(0)|2/2L2) hz HllL).
(e): vy-dependence of energy transfer term Ei—;{ |I+,[sca1ed.relative

to same factor as in (d)].
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Lz_[which has a relatively significant growth rate in

/2

Up == Py
fig. 8(c)]. Fig. 9 also shows the y-dependences of the 0(61 )

energy transfer term fo Py GD ;g_ﬁz- (associated with the
horizontal trgnsport of 'heat' hl) and the vertical energy

flux intb the upper layer EI—EE— ; these were discussed for the

u = constant profile in section 4A. In this case these fluxes

are acting to amplify the disturbance baroclinically only in

the central region where the jet is retrograde., The amplification
in the outer regions must rely on the upper layer GI-VZ flux

to redistribute upper layer kinetic energy; [however, this flux

/2)

would be complicated to evaluate since it involves the 0(6l

(1)

forced @, solution of (2.10)].

Since all baroclinic instabilities can potentially have

1/2

growth rates only of order § , we expect that the upper layer
eddy velocity field on Jupiter is dominated by the barotropic
(BTU) instabilities of sections 5 and 6, For this reason we
will not present any more general baroclinic results than the
examples above; i.e., for other values of AZ, for othéf ¢1(0)
solutions, and for the tanh velocity profile., All of these

other cases have baroclinic growth rates smaller than or comparable
to those presented above. [For instance, as the value of 12
increases above ~4, maximum baroclinic growth rates for both

sech2 and tanh profiles decrease at rates comparable to

h—a (not shown).]
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5. BAROTROPIC (BTU) INSTABILITY: “VARIATIONAL RESULTS.

In section\3, various types of neutrally stable upper layer
solutions {(3.4), (3.5), (3.8)] were found for the sech2 and
tanh velocity profiles, Fdr a given basic state, their phase
speed ¢ is determined uniquely by the velocity GD at the basic
state potential vorticity extremum (figs. 3 and 5), and the
x~wavenumber k = kDL for each type of neutral wave is a
particular function of c. For other values of k, the same wave
type may still exist but with c complei to still satisfy the
boundary conditions; i.e., the upper layer BTU solution to
(3.1) may be»barotrqpically unstable at 0(1) [with only insignifiéant
0(§) interactions with theylower layer]. In this section,
following';ipps (1962,1963,1965), we estimate growth rates for
x-wavenumbers close to the neutral values over wide ranges of
the basic state parameters.In section 6, explicit numerical
solutions are found for a few particular basic states, and their
growth rates confirm the variational estimates for the evanescent
wave types (3.4), but differ considerably from variatidﬁal
estimates for oscillatory wave types (3.5). For this reason
the general variational results of this section are shown only
for the evanescent (i.e. ¢ = 0 as y —» + ®) wave types.

Below we use the non-dimensional notation defined in
section 3.A, in which the basic state is speéified by the
parameters B = (B + Lr_2 Ul)/(Lr-Z U,) and 22 = iZ/er.

Neutral curves in the (B,k2) plane (with AZ fixed) are obtained
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. immediately from the neutral curves in the (B,c) plane of
figs. 3 and 5 using the function k = k(c) appropriate for each
wave type. Growth rates are estimated for waves close to

these neutral curves by expanding c and ¢ in Taylor series of

the form
Y IS 13 2 g2
c=c, + 35 ds + aB‘dB + 0 (ds™, dB") s

where s = - k2 and s QE-and QE-are evaluated at some point

os oB
on the neutral curve. As shown in Lipps (1962), %% and %% are
given by |
dc ¥ 2 T ®+D 2" - GYY] 2 |
=y ' (W= e

Y Y - 2 -
2 (B+u) )\ -
2 ) 2
g;=-k [ u v [ 2 yyilcp v

(5.2)
where y = + Y are the latitudinal boundaries at which mf# 0;
(for the evanescent waves, these integrals are essentially
independent of Y for Y 2 3).

In (5.1) and (5.2) there are singularities at the critical
points where u = c; Foote and Lin (1950) show that the inviscid
solutions on either side of é critical point are joined
by taking the path of integration in the complex y-plane

around the singularity in the direction consistent with the
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limit Im (cD) - 0+ for marginally unstable waves, [taking care

here to allow for the sign of U, in the definition c = (cD—Ul)/UO].

0
These singularities give finite (simple pole) imagina;y
contributions to dc/ds and dc/dB. This procedure yields

correct results only for unstable waves (Im (cD) > 0¥, so

that unstable waves exist only to one side of a neutral curve

in the (B,kz) plane (e.g. Lin, 1955, Ch, 8).

By evaluating dc/ds and dc/dB at closely spaced points
along individual neutral curves in the”(B,kz) plane, we can
build up estimated curves of constant*cilthat are correct to
within O(dsz,de) close to the neutral cﬁrves. (The dimensional

< 0, ¢, is negative for

L

growth rate is k ¢y (UO/L), so if U0

unstable waves,) Fig. 10 shows the neutral 1cil = 0 curves

i

for the symmetric’evanescent solution [ = sechzy of (3.4a)]

and the assoclated 'ci' = ,025 curves for unstable waves, on
the velocity profile GD = Ul + UO sech2 (y/L) with XZ =1,

4 and 10; and also the curves lci\ = 0 and !cil = .6625 with
A% = 100.

For xz = 4, the phase spéeds c. for any point on the dashed
unstable curves is approximately the same (+ S .l) as for the
associated point on the neutral curve with the same value of B
[since O(acr/as)vv 0(aci/as) << 0(1) for xz = 4]; the phase
speeds ¢ = k2/6 for the neutral curves are shown in fig. 3.

. For values of B outside the ranges of the neutral curves shown,
the basic state contains no potential vorticity extrema and so

\ci!= 0 for all BTU disturbances by the criterion of Charney and
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FIGURE 10, Curves of constant Icil = Im(cD)/IU0| in the (B,kz)

plane associated with the symmetric evanescent BTU disturbance (3.4a)
on the sech2 velocity profile, for various values of hz = L2/L3.

The solid |ci| = 0 curves are thg neutral curves shown in fig. 3 in
thew(B,c) plane. The circles represent estimates of the unstable
curves from values of aci/as on the neutral curves, and the triangles
represent estimates from values of aci/aB. For values of

B =(B, +.L;2 Ul)/(L;Z Uy) outside the ranges of the neutral curves
(e.g., beyond the hatched horizontal boundaries), the flow is baro-

tropically stable.
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Stern (1962). Consequently as these stable regions are approached
in fig. 10, the dashed unstable curves tend to diverge from
the neutral curves and the estimates based on aci/as {circles)
tend not to agree with the estimates based on aci/aB (triangles).
However the two estimates agree well for intermediate values of
B where ’aci/asl and Iaci/aB| have their largest values, and
extrapolation to large ds and dB would indicate the fastest
growth rates for intermediate values of B with k2 ~ 2,

Fig. 11 shows the same set of cons;antlcilcurves
associated with the antisymmetric evanescent solution [p = sech
y tanh y of (3.4b)] on the sech2 velocity profile, and fig.

12 shows the same set associated with the evanescent solution

(3.8) on the velocity profile vy = U1 + U0 tanh (y/L). For XZ = 10 and
100 in fig. 12, values of aci/EB are approximately half the values
that would be consistent with the aci/as values, and the dashed curves
are based completely on aci/as. Apart from this anqmaly, the discus-
sion of fig. 10 above applies equally to figs. llyand 12; in all these
cases the estimated growth rates are largest for intermediate values
of B (corresponding to values of c_ between ~.3 and ~,7 from figs. 3
and 5) with k> ~ 1 for fig. 11 and k> ~ .5 for fig. 12.

For all three types of disturbances in figs. 10 to 12,
the maximum growth rates (= k lci‘ )} in the (B,kz) plane
are approximately the same for a given value of xz, and they

decrease as xz = L2/Lr2 increases above ~4, For X? < 4 (i.e.,
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FIGURE 11. Curves of constant lci’ = Im(cD)/IUOI (as in fig. 10)
associated with the antisymmetric evanescent BTU disturbance (3.4b)
on the sech2 vel&city profile. Because k2 = 6¢c - 3 2‘0 for the
neufral waves, the neutral (lcil = () curves here correspond to the

segmenté of the neutral curves in fig. 3 with 1/2 < ¢ = 1.
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FIGURE 12. Curves of constant Ici[ = Im(cD)/IUOI (as in fig. 10)
associated with the evanescent BTU disturbance (3.8) on the tanh
velocity profile. Due to the antisymmetry involved in the neutral
solutions (see discussion of fig. 5), the dependence of lcil onﬂk2
is independent of the sign of B, allowing |B| to be used as an axis

in fig.v12.
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upper layer radius of deformation,Lr 2 2500 km) the estimated
maximum k Icil are ~ .05 (corresponding to growth timé scales

on the order of,v(.OS)—l L/IUO| ~ 40 earth days), and for larger -

xz the maximum !cil decrease roughly as 1/A2, at least ﬁp to

XZ ~100 (Lr ~500 km, gréwth time scales ~4007earth days).

This behavior may be a usefui diagnostic for the value of,Lr

on Jupiter from observations of disturbance growth rates (see
section 7);.it may be explained. qualitatively for the two layer -
model as follows. For larger values of 12 (smaller L and Ap)
the slope of the fluid interface associated with a given velocity
profile GD becomes larger, so that any north-south motion in

the upper layer would require excessive vertical stretching

of fluid columns, and so the growth of disturbances (which

depends on north-south advection) is inhibited.
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6. BAROTROPIC (BTU) INSTABILITY: NUMERICAL RESULTS

Since the BTU growth rate estimates of section 5 are just
linear extrapolations out from the neutral curves, tﬂey are
not necessarily correct over the whole (B,kz) plane. 1In this
section we present results of explicit BTU solutions found by
numeric#lly integrating the upper layer potential vorticity
equation (3.1), yielding exact growth rates and phase speeds
as functions of the x-wavenumber k for a fewiparticular basic
states,

Numerical results are presented for symmetric disturbances
on the 'isolated jet' sech2 velocity profile with xz = LZ/Lr2 = 4
(i.e. Lr ~2500 km, a reasonable but fairly large value for
Jupiter). For evanescent waves, the numerical growth rates
below. agree well with the corresponding variational estimates,
which suggests that the general variational results in section
5 for other evanescent cases and other values of hz are
accurate over most of the (B,kz) plane, These generai results
have indicated that the maximum growth rates for the other
cases (figs. 11 and 12) are comparable to or slightly less than
the case (fig. 10) investigated numerically below, and in all
cases the growth rates decrease roughly as 1/}\2 for XZ 24,

Depending on the value of k, the solutions found are either
evanescent outside the jet [corresponding to (3.4a)] or are
oscillatory outside the jet [corresponding to (3.5a)]. As
discussed in section 3.A, we impose rigid wall boundary conditions

@ = 0 at y/L = + Y; the oscillatory solutions (but not the
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evanescent solutions) are strongly affected by the wall locations,
and all results‘below are presented both for Y = 3 (corresponding
to walls ~ 15,000 km from the jet center to simulate the possible
effect of adjacent belt-zone structure on Jupiter), and for
Y = 10 (corresponding to walls ~ 50,000 km from the jet center to
represent the finite size of Jupiter).

The method of solution parallels one used by Pedlosky

) _ ¢ (y) is integrated

(1964b, sec. 3). Equation (3.1) for P
numerically for a given k from the jet center at y = 0 (where

dp/dy is set at zero to obtain symmetric solutions) out to the
boundary at y = Y, This is done for many values of ¢ covering
progressively finer grids in the (Cr’ci) plane, and theicorrect

eigenvalues for c are the intersections in the (cr,ci) plane of

the zero lines of @ (Y) and ®4 (Y).
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A. Growth Rates vs., x—wavenumber k,

Fig. 13 shows growth rates v, = Im [kD cD/(L-lonl)] found
numerically for symmetric disturbances on the velocity profile
GD = U1 + U0 sech2 (v/L), for XZ = 4 and three values of
B = (BD + Lr'-2 Ul)/(Lr-z UO) representative of the unstable
range of B in the hz = 4 graph of fig. 10. The phase speeds
c,. are found to be nearly independent of k (& ~.05) for each
graph of fig, 13, and are approximately equal to the basic
state velocity at the potential vorticity extrema shown in
fig. 3.

By the similarity of the latitudinal forms of ¢ (y),
most numerical solutions are clearly related to a particular
neutral wave type. The segments of the k-axis with numerical
solutions corresponding to a particular neutral wave type are
indicated in each graph of fig. 13. The symbol 0 indicates the
evanescent type (3.4a), and 1, 2,...N,... indicate the oscillatory
types (3.5a) with N half-wavelengths between the central structure
and each wall te.g., figs. 14(b) to 16(b)]. The verticél dividing lines
are drawn exactly at the wavenumber kN of the various neutral

1/2

waves; in each graph the k0 = (6c) of the neutral evanescent

= (6c - 4 - {Nz 1/2.

wave is greater than all of the oscillatory kN
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FIGURE 13. Non-dimensional growth rates v; = Im[kD cD/(L-lIUOI)]
as functions of the x-wavenumber k = kDL for symmetric disturbances
on velocity profile GD =U, + 0, sech2 (y/L), with Kz = Lz/Li = 4
and B = (BD + L;z Ul)/(L;2 UO) = -1.4, -1.0 and -0.5. Results are
shown for the two different locations y/L = £ Y of the rigid wall
boundaries, Y = 3 and Y = 10, Solid curves are for exact numerical
solutions and dashed éurves are variational estimates from the neu-
tral waves using (5.1). For B = ~1.4, the phase speeds ¢, are

.97 + .02 for all k shown; for B = -1.0, c_= .83  .03; for

B'= -0.5, c_= .53 .05,



92

Figure 13
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Unstable solutions related to a particular neutral wave with wavenumber
kN are found only for k < kN’ consistent with the variational estimates
of section 5. However for a given k we generally find just one unstable
numerical solution,related to the neutral solution type with wavenumber
kN (>k) closest to k. ’As k decreases through the next lowest kN +1
value of the next neutral wave type, the form of the unstable numerical
solution changes rapidly to resemble the new neutral wave type N + 1,
with correspondingly rapid changes in the growth rates 7] in fig. 13.
The dashed curves in fig. 13 show the variational estimates ext;apo~
lated using (5.1) from the neutral solution appropriate for each k-axis
segment. These estimates agree well with the numerical values for
evanescent solutioﬂg,but they often differ considerablyifor the smaller
k with oscillatory solutions. Perhaps this discrepancy is related to
the fact éhat for a given (small) k, the variational method predicts
several unstable solutions corresponding to the several neutral solu-
tion-types with kN > k, and does not anticipate the vanishing of all
but one of‘these in tﬁe numerical solutions as deécribed above.

Very occasionally for values of k in the transition regions k n-kN
between two types of unstable solutions, two similar unstable solutions

with different c~eigenvalues were found for the same k, One of

these solutions always had a comparatively small growth rate

(vi S 501) and was not included in fig, 13. For each basic state in
fig. 13 and for several values of k, the entire region of the (cr,ci)
plane in which unstable eigenvalues are possible according to the

constraints (2.16), (2.19) and (2.20) was searched for symmetric
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solutions. No other solutions were found except those in fig. 13
and those mentioned above; however the simple numerical method used
(described above)‘did not permit the searches to be‘completely
exhaustive within reasonable computation times in the subregions where
'cr| and ‘ci] << 1.

Because k2 = 6c - 4 - Lz =z 0 for the neutral oscillatory waves, c
must be greater than 2/3 for these waves to’exist, which for AZ = 4
requires B < -2/3 from (3.2). Fig. 13 shows this criterion still holds
approximately for unstable waves, since oscillatory solutions are only
found for B = -1 and ~1,4. For a given value of B, the oscillatory
waves have significantly smaller growth rates than the evanescent
waves, possibly because the former have significant amplitudes over
the wholeﬁlatitudinal range and must use some of the kinetic energy
extracted from the shear (GD)y in the central jet to amplify‘the
disturbance in the outer regions. However, the oscillatory growth
rates decrease only slightly as the distance to the boundaries is
increased from 3 to 10, and not at a rate comparable to ~ Y_l as might
be expected from the above effect., Perhaps this effec£ is cancelled by
more efficient transport of energy to the outer regions for larger
values of Y.

The maximum growth rates in fig. 13 fof symmetric disturbances on
the sech2 velocity profile are vy~ .07, and occur for k ~ 1,3 on
basic states with intermediate values of B, i.e.y, B~ =1 and c.~ 0.8

(consistent with the variational estimates in fig. 10). This implies
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growth time scales of ~ (.07)-1 L/lUO!'~ 30 earth days; as discussed
above the general variational results in section 5 indicate that these
maximum growth rates are typical of or slightly greater than those for

other types of BTU disturbances and velocity profiles.
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B. Latitudinal Forms,

Three examples of the explicit numerical solutions found
above for fig. 13 are shown in figs. 14 to 16. Fig. 14(b)
shows the real and imaginary parts of ¢(y) for the symmetric
evanescent solution on the sech2 velocity profile with xz = 4,
B=~1,0 and k = 1.3; this solution has one of the largest
growth rates (vi = ,07) in fig. 13. Figs. 15(b) and 16(b)
show @(y) for two oscillatory solutions with N = 1 (k = .09)
and N = 2 (k = 0.4) respectively, on the same basic state as
fig. 14 with latitudinal walls at Y = % 10; these have smaller
growth rates than the evanescent solution (see fig. 13 for
B=-1and Y = IO). The streamline patterns in the (x,y)

plane implied by these solutions are discussed in section 7.

The real parts P, of the solutions in figs. 14 to 16 are

similar to the corresponding neutral solutions [cf. fig. 2(b) and
"2(d)]. The evanescent ¢, ~ sech2 (y/L), but the central 'peaks'
around y ~ 0 of the oscillatory P, in figs. 15 and 16 are larger
than those of the neutral solutions. Also, the oscillatory P
appear slightly exponential in the outer regions, whereas the
corresponding neutral solutions must be entirely sinusoidal from
(3.5a).

Figs. 14(c) to 16(c) show lines of constant k x + arglo(y)] in
‘the horizontal (x,y) plane. These lines define the tracks of the

ridges, troughs and zero-lines of the stream function



97

FIGURE 14. Latitudinal forms of symmetric evanescent unstable BTU

solution found numerically for velocity profile

- 2 L2 2
uy = U1 = U0 sech” (y/L) with A" = L

-2 -2
@By + L2200/ (" Uy

/L2 = 4 and
r

B

-1.0. The disturbance parameters are

k kDL = 1,3, c, = Re[(cD - Ul)/UO] = .81,

- -1 -
v; = Im[ky e /(L IUO])] = ,075.

(a): Velocity profile u_ vs. (poleward) latitudinal coordinate y/L,

D

for retrograde jet (U0 < 0). Dashed line shows disturbance

phase speed c. relative to the jet.

~(b): Solid curve is @_ = Re[m(o)] vs. y/L; dashed curve is
T 1

¢y = Im[@io)] vs. y/L.

(¢): Line of constant kx + arg (¢) in the horizontal (x,y) plane.
the difference between x and y scales,

(d): y-dependence of the latitudinal flux of zonal momentum Eg??,
scaled relative to !@io)(O)/le.



98

%1 2andrg

l[)‘..

JI L el
0 ¢- /X0 -
1 ) 1 - 1 )
C Vs ¥ (¢




99

FIGURE 15. Latitudinal forms of symmetric oscillatory (N = 1)
unstable BTU solution for the sech2 velocity profile, with rigid

wall boundaries at y/L = + 10. Parameters are as defined for fig.

14, except here k = 0,9, c. = .82, v; = .047.

(a): GD vs. y/L.

(b): Solid curve is %, Vs. y/L; dashed curve is P; VS. y/L.
(¢): Line of constant kx + arg (¢) in the horizontal (x,y) plane,

Note difference between x and y scales.

(d): y-dependence of ui v&.
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FIGURE 16. Latitudinal forms of symmetric oscillatory (N = 2) un-
stable BTU solution for the sech2 velocity profile, with rigid wall
boundaries at y/L = 4 10, Parameters are as defined for fig. 14,
except here k = 0.6, c. = .81, v; = .032,

(a): GD vs. y/L.

(b): Solid curve is ¢, vs. y/L; dashed curve is ®; vs. y/L.

(c): Line of constant kx + arg (¢) in the horizontal (x,y) plane.

(d): y-dependence of ua vi.
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V= Re{@(y) explik (x - ct)]} at any one instant of time t,

and indicate the skew of the streamline patterns in the (x,y)

plane (cf. section 7). (For neutral waves, arg[op(y)] is independent
of y so their y=-ridges, etc,, would run exactly north-south.) The
amount of east-west skew is least for the fast-growing evanescent
wave in fig., 14(c), and increases as the y-wavenumber of the oscil-

latory waves increases,

This skewing of the streamfunction pattern is associated

with the latitudinal flux of zonal momentum u’ v&, which appears

1
in the right hand sides of the kinetic energy equations (2.25)
and (2.26) and is essential for the barotropic instability of the
wave. The y-dependences of Gq—vg are shown in figs. 14(d)
to 16(d); the divergences (Einsg)y of these fluxes are correlated
with GD so as to amplify the waves and to take kinetic energy out
of the retrograde center of the jet [cf. (2,25) and (2,26)].
The fast-growing evanescent wave has relatively large GZE;E'
concentrated near the jet center, compared to the oscillatory

ua ;a which have tails extending into the outer regions to

transport kinetic energy to the sinusoidal waves there.



104

C. Secondary Meridional Circulation,

As discussed in section 1.C(i) and 2.F, the eddy transports
of momentum and energy due to many local disturbances over time
scales of several years may be important for the long—term
balances maintaining the zonal mean flow system. The only
potentially order 1 eddy fluxes appearing in (2.25) to (2.30)
that are due directly to the growing BTIU disturbances are the
ﬁgﬁ?Zf_ternu which converts mean to eddy kinetic energy in the
upper layer, and the 5§"§€ term which converts some of this eddy
- kinetic energy to eddy availlable potential energy of the sloping
interface. All other eddy terms in these equations depend on
the 0(8) interactions with the lower layer and so are insignificant
by comparison.

As mentioned at the end of section 4.A, net diabatic heating
due to planetary fluxes would appear as a forcing term on the right
hand side of the zonal mean a.p.e. equation (2.27). There are no
0(1) eddy fluxes in (2.27) for BTU disturbances, so we cannot
compare eddy to planetary fluxes as in section 4.A. However,
(2.25) shows that for the zonal mean flow to remain constant
in time, there must be a (non-geostrophic) mean meridional
circulation causing a EI GI correlation to balance the slowing
of the mean jet by the Gg'%ﬁ eddy term; the Ez Gz term ‘pumps’
the upper layer mean flow by using mean a.p.e. of the sloping

interface, and so appears in (2.27). Below we compute the

strength of the meridional circulation implied by a given amplitude
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of BTU disturbances, and then compare the EI ﬁ; term with a
typical diabatic heating in (2.27).

To describe these long term balances of the zonal flow
system it is more convenient to use the zonal mean dynamical
equations rather than the energy equations (Phillips, 1954;
Holton, 1972, Ch. 11.4). The analogous equation to (11.33)
of Holton, for the zonal mean vorticity of the upper layer of

the present two-layer model (with neglected), is (using
Vo

dimension notation defined in section 2.A)

w . (6.1)

44l g = @V o
(at > llrrlyy 1 lyy - A

Here the overbar denotes zonal mean, and LA is the vertical
velocity (upwards) of *fluid particles at the interface between
the two layers. The linear drag term d is a crude representation
of internal dissipation by small scale processes, The zonal mean

upper layer equation analogous to the thermodynamic energy

equation (11.34) of Holton (again with ¢2 neglected) is

2

3 _ fo Lr _ _
(a—t-l-d) \lyl=—-—"—H—1"~‘" WI-'R . (6.2)

Here R is a forcing term representing net diabatic heating, and
d represents thermal damping by small scale processes with the
same time constant as the linear drag in (6.1) for simplicity.

(6.1) and (6.2) follow, for instance, from equations (2.25)
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of Pedlosky (1964a).
Eliminating Jl between (6.1) and (6.2), we obtain an

equation for w. analogous to (11.37) of Holton:

I

2 H 2
(5 - B)s - S5 5(aw - 5) o

2 -
oy L. fo Lr 3y

As discussed in Holton (1974, Ch. 11.4), these secondary vertical
velocities are necessary to maintain the geostrophic and

hydrostatic balances of the zonal flow u

D=~ Jl , whether the

v
flow is steady (d ﬁl/at = 0) or not.

By combining (6.3) with the primitive mass continuity

equation for the upper layer (integrated over x and z)

ovy V1

oy T H
and using rigid wall boundary conditions at which vy = 0,
we could solve for the secondary zonal mean meridional circulation

system ;l’ w. in the (v,z) plane of the upper layer, caused

I
by a given eddy flux u’ V., and diabatic heating R. However,

11
the latitudinal dependence of R is largely unknown for Jupiter,
depending for instance on details of cloud processes and the
internal heat flow (Gierasch, Ingersoll and Williams, 1973;
Gierasch, 1976; Ingersoll and Porco, 1978).
As in Phillips (1954), we may set R =0 in (6.3) and solve

for that part of the meridional circulation pattern caused by the
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eddy transports of BTU instabilities., We have done this numerically

for the ua v& distribution due to the fast-—growing evanescent disturb-

ances on the retrograde sech2 jet presented in fig. 14, and the re-
sulting meridional circulation is shown in fig. 17. By continuity

in the lower layer, the streamline cells must be closed by a deep
circulation below the fluid interface. There is an 'indirect' cell
centered on the retrograde jet, with rising motion poleward of the
jet center (0 < y € 1), equatorward motion in the upper layer through
y = 0, and sinking motion equatorward of the jet center (-1 <y < 0).

For basic state parameters U, = -30 m/s, !UO/fOL‘ = Hl/L = ,03, we

0

find that the meridional circulation term 51 Gl in (2.27) would be
compérable to a typical diabatic heating term ~ 103 ergs/cmz/sec(e,ge,
due to latitudinal variations of I.R. emission; see end of section

4,A) if the BTU disturbance velocities u’ and v/

1 ] were ~ 1 m/s, imply-

ing velocities of the meridional circulation v, ~ .5 cm/s and

1
~ .03 cm/s (cf. Gierasch, 1976, table III). Although the actual

1

meridional circulation pattern may be different from fig. 17 due to

the diabatic heating R, the magnitudes of ;] and 51 above are reason-

able estimates for the actual strengths if the G& v& eddy flux is

actually significant in the long term balance of the zonal flow.
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FIGURE 17, Secondary meridional circulation caused by the ui vi

eddy flux [shown in fig. 14 (d)] due to unstable symmetric evane-

scent BTU disturbances with k = 1.3, on the retrograde (UO < 0) jet

uy = U1 + UO sech2 (y/L) with B = 1.0 and Kz = 4,

(a): Zonal mean poleward velocity v, in the upper layer, scaled -

1
by [UOI |U0/foLl IU’/UOI2 kz where U/ is a typical disturbance
velocity in the upper layer.

(b): Zonal mean vertical velocity (upwards) at the interface w.,

scaled by lUO! IUO/fO L| lU‘/UO]2 Xz(Hl/L)o

(c): Streamlines of the meridional circulation (;l,al) in the (y,2)

plane. The vertical scale for the lower layer is compressed

to show the lower layer 'return' flow.
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7. SUMMARY: POSSIBLE OBSERVATIONAL TESTS

In the preceding sections theoretical results have been
presented (in varying degrees of generality) for linearized
disturbances on two types of upper layer velocity profiles in
the two~layer model. By comparing these model predictions with
data of Jovian disturbances in Voyager images, we may hope
to test whether the concept of an upper 'weather' layer above
P ~ 5 bars is correct for Jupiter's zonal jet system. However,
the general theoretical format of most model results above is
not the most suitable for such comparisons. In this section
several examples of these results, that may be particularly
diagnostic of the validity of the model for Jupiter, are presented
in forms designed for easier comparisons with anticipated Voyager

data.
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A. Effect of Deep Lower Layer.

The basic effect of the deep quiescent lower layer below
p ~ 5 bars was shown by the §-expansions of section 2. For
values of § (the ratio of the mean thickness of the upper layer
to that of the lower layer) much less than unity, the only
types of disturbances with (non-dimensional) growth rates
potentially of order one are essentially free divergent barotropic
disturbances confined almost entirely to the upper layer (BTU
modes). If the observed Jovian disturbances are indeed BTU
modes, then since they have only insignificant [0(§)] interactions
with the lower layer, there would be no practical way of
determining the appropriate Jovian value of § from their
observations, beyond confirming that § << 1.

The results of section 5 and 6 show that the fastest
growing BTU disturbances, on the sech2 and tanh upper layer
velocity profiles at least, have growth rates on the order of
~30 earth days and x and y-scales comparable to the latitudinal
scale of the zonal jets, ~5000 km. These quantities are
roughly consistent with present observations of many local
Jovian disturbances (section 1.A), although more detailed data are

necessary to positively identify the observed disturbances as

the predicted BTU modes (see below).
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B. Phase Speeds: Effect of Lr'

It was shown in section 2.C that for any neutrally stable
BTU modes to exist with phase speed c. within the range of the
upper layer zonal flow u(y), the basic state upper layer potential
vorticity gradient b(y) must vanish at some latitude and c.
must equal the value of u at that latitude. [The same
criterion holds for baroclinic solutions (BC modes, section 2.E).]
The numerical solutions for the sech2 velocity profile in section 6
show that the same criterion still holds approximately (to
within + £.05 in the non-dimensional phase speed) for unstable
BTU disturbances; also, no unstable solutions were found with
c  outside the range of uly). 1If c. of Jovian disturbances and
b(y) of the Jovian basic state were measurable from Voyager
images, the phase speed criterion above would provide a
stringent observational test of the validity of the model for
Jupiter. However, the (dimensional) potential vorticity

gradient is BD - (GD) + Lr'_2 ED’ where Lr is the Rossby
yy

radius of deformation for the upper layer (see section 2.A).

The planetary vorticity gradient BD is known and GD(y) may be
measured from Voyager images, but Lr cannot be measured directly
by Voyager since it depends on Ap/p, which represents the unknown
amount of stable stratification above p ~ 5 Ears,

However, by assuming the present two layer model is valid
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for Jupiter, the above criterion for the phase speeds may

provide an indirect rough determination of the upper layer

Rossby radius Lr° Fig. 18 shows the dependence of the non-
dimensional neutral phase speed c. = Re [(c.D - Ul)/UO]s determined
by the value of u at the zeros of b(y), on the non-dimensional

2

basic state parameters BDLZ/U03 Ul/UO and )\~ = L2/Lr2, for the

velocity profile GD = Ul + UO sech2 (y/L). This profile with
Ul/UO &£ 0 seems fairly realistic for many of the maxima and
minima of ED(y) in the observations to date of Jupiter's zonal
flow (Chapman, 1969; Ingersoll and Cuzzi, 1969). Fig. 18 is
similar to fig. 3, but the axes in fig. 18 are chosen to
separate out the non-observable parameter hz from the observable
ones,

For Jupiter, L _may reasonably lie between ~500 km and
~2500 km (see appendix), which correspond to XZ ~100 and
hz ~ 4 respectively for L ~ 5000 km, (For KZ > 100, the fig. 18
curves would lie very close to the limiting xz = © curves,)

From a given set of observations the parameteré BDLZ/UO, U,/Uu

170

and c_ can hopefully be measured, so that Az could theoretically
be determined from fig. 18. (As mentioned above, all unstable
BTU disturbances on a given basic state have phase speeds within
~,05 of the neutral Cr°) However, since the Voyager images

can only measure changes in horizontal cloud patterns with time,

there may be some ambiguity between changes due to advection by
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FIGURE 18. Non-dimensional phase speeds ¢ = (cD - Ul)/UO of neutral

disturbances on velocity profile GD = Ul + UO sech2 (y/L) as func-

tions of the basic state parameter BD LZ/UO, for various values of

2 2,2
AT =1 /Lr and Ul/UO°
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u and due to wave motions Ce Unless this can be resolved and
both u and c can be measured surprisingly accurately, this
method may only yield a rough estimate for Az, since xz is
sensitive to small changes in the measurable parameters in many
regions of fig. 18.

As an example, if the dimensional phase speeds (cD)r

are consistently observed to be approximately zero in system III

(i.e., cr¢3 0 which corresponds to the Az = o dashed lines in
fig. 18), this would indicate a large value of hz (kz = 10,

so that Lr £ 1500 km). Conversely, if the observations

consistently fall in the shaded (no solution) regions of

fig. 18, this would indicate the whole model is incorrect for

Jupiter; [for instance, if BDLZ/U0 > 1 and Ul/UO ~ 0, i.e,,

for weak prograde jets with zero (or positive) ambient velocity

Ul’ theoretical BTU solutions are impossible for all values of
2

A"]. The relationships shown in fig. 18 are discussed

qualitatively in section 3.A (fig. 3).
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C. Growth Rates: Effect of Ly,

The Voyager images should be able to follow individual
large-scale disturbances continuously for several months,
allowing measurements of any e~folding growth times that are
comparable to or less than this time scale. The maximum
growth rates of BTU disturbances on both éech2 and tanh velocity
profiles in the two-layer model depend strongly on the order of
magnitude of xz, so that growth rate measurements may yield an
approximate but firm estimate of Lr; this should be consistent
with estimates using phase speed measurements as described above.

The solid curves in fig. 19 are contours of non~dimensional
growth rates v, = Im [kD cD/(L_l|UO!)] in the (B,kz) plane
for the (fast growing) symmetric evanescent disturbances
[corresponding to (3.4a)] on the velocity profile GD = Ul + UO sech2
(y/L). The basic state parameter B is (BD + L}:2 Ul)/(Lr—z UO),
and k is the disturbance x~wavenumber kDL. The non-dimensional

phase speeds c. = Re [(CD - Ul)/UO] are also shown by the dashed

lines in fig. 19, Both 7 and c. in fig., 19 are variational
estimates from extrapolating (5.1) out from the neutral curves, as
in fig. 10. The numerical solutions in section 6 confirmed that

the variational estimates are accurate over most of the (B,kz) plane,
except in regions where oscillatory solutions are possible; however,

the oscillatory growth rates of these regions are significantly

smaller than the evanescent growth rates (see fig. 13). These
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FIGURE 19. Contours of growth rates and phase speeds in the (B,kz)
plane, from variational estimates using (5.1), for symmetric evane-
scent solutions on the velocity profile GD = Ul + UO sech2 (y/L).
The basic state parameter B is (BD + L;z Ul)/(L;2 UO), and k is the
disturbance x-wavenumber kD L. Solid curves show non-dimensional
growth rates v, = Im[kD cD/(L_1|U0|)], and dashed lines show non-
dimensional phase speeds c,. = Re[(cD - Ul)/UQ]° Regions where the

variational estimates are not expected to be accurate (see text) are

shaded.
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oscillatory regions (for rigid walls at y/L = £ 3) are shaded in
fig. 19.

For XZ € 4, the maximum vy in the (B,kz) plane are fairly
constant at ~,06, corresponding to e-folding growth times of
~30 earth days. For kz 24 (Lr £ 2500 km) the maximum 7]
decrease at roughly the same rate as K—Z’ so that for xz = 10
(erv 1500 km) the fastest growth times are ~60 earth days,
and for KZ = 100 (Lr~ 500 km) the fastest growth times are
~300 days. The phase speeds c. and x-wavelengths k of these
fastest growing waves are fairly independent of the value of
hz; they are cr-0.6 [i.e., (cD)r m'Ul + .6U0] and k ~ 1.3
(thv 6500 km).

The actual value of the basic state parameter B for a par-
ticular Jovian jet may not be the value that gives the maximum BTU
growth rates in the (B,kz) plane. Also, B involves Lr as well
as BD’ UO and Ul, so that without knowing Lr we do not know B
for a particular jet a priori. However, the variety of zonal
jets on Jupiter is (hopefully) sufficiently rich that the
maximum growth rates are realized for at least some of the
jets; as mentioned above, disturbances on these jets should

then have c. ~ 0.6 and k ~ 1.3.
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D. Disturbance Morphology.

In addition to the relationships described above between
various parameters of BTU disturbances and the basic states,
the two layer model predicts specific upper layer streamline
patterns of disturbance velocities in the horizontal (x,y)
plane. Equivalent patterns in the vertical (x,z) plane of
linear quasi-geostrophic models correctly predict several observed
features of baroclinic instabilities in the earth's jet streams;
(for instance, the westward tilt of the wave pattern with height;
e.g., Charney (1947), Holton (1972) Ch. 7 and 8).

As an example for the present BTU modes, fig. 20(a)
shows streamlines of the perturbation velocity field (ua, v&)
for the fast growing evanescent disturbance with k = 1,3

on the sech2 velocity profile with B = ~1,0 and kz 4

(shown in fig, 14). As discussed for figs. 14 to 16, the wave
patterns of unstable BTU waves are skewed to the west at
latitudes away from the jet center of retrograde jets:; this

’ and v/ to be correlated so as to remove

skew is required for uy 1

retrograde momentum -Py U from the central region of the jet
and to amplify the disturbance (sections 2.F and 6.B).

In Pioneer images it seems that many features of the
disturbances embedded in the zonal jets are visible primarily
because of the contrast between the white‘ammonia clouds

(at p ~ .7 bars) and the brown/blue lower levels (Gehrels, 1976).
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If the cloud features are actively generated by the disturbances, e.g.,
by vertical velocity w& < -3 ¢1/at, one would expect to see patterns
resembling fig. 20(a) moving through the fluid in the east-west direc-
tion at the phase velocity (cD)r. However, if the clouds are pre-
existing passive tracers of the horizontal velocities, the measured
velocity field at any instant would include the basic state velocity
GD’ Fig. 20(b) shows the streamline pattern of the combined velocity
field (u&, v&) + GD for the same disturbance as fig, 20(a) and the
sech2 velocity profile GD’ as measured in a frame moving with

x-velocity U, + .5 U, (i.e., in system III for profiles with

1 0
U, /Uy = =.5).
Since the whole pattern of velocities in fig. 20(b) is
moving through the fluid with phase speed (cD)r, a passive
area of clouds after a while may be advected into a pattern
quite different from that of the instantaneous velocity field.
Fig., 21 shows the development in time of a line of fluid particles,
initially aligned east-west at the jet center, whose positions
at subsequent times (in units of ¢ = L/lUO!) have been computed
numerically using the velocity field of fig., 20(b). The resulting
'curly' morphology is réminiscent of many mid-latitude disturbances
in Pioneer images,
Depending on the type of analysis of Voyager data and the

interactions between the disturbances and the cloud layers,
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FIGURE 20. Geostrophic streamline patterns in the (x,y) plane.

(a)

(b)

°
°

Disturbance streamlines [i.e., equally spaced cohtours of the
streamfunction Re(wl)] showing the instantaneous velocity field
(ui, va) in the horizontal (x,y) plane, for the symmetric evan-
escent unstable BTU disturbance with k = 1.3 on the sech2
velocity profile with B = -1.0 and 12 = 4 (shown in fig. 14).
This pattern would travel in the east-west direction with the
dimensional phase velocity (CD)r (relative to the quiescent_
lower fluid rest frame, i.e., system III),

Streamlines for the same disturbance as in (a), but with the

basic state velocity profile ED = U1 + U0 sech2 (y/L) super-

1 0
(i.e., system III frame for profiles with Ul/UO = ~0,5).

imposed using |¢{O) ) |/L = O.BlUOI, as seen from a frame
moving in the east-west direction with velocity U, + .5U
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FIGURE 21, Advection of a line of fluid particles in the horizontal
(x,y) plane by the velocity fields of fig. 20, i.e., by the basic
state sechz velocity profile and the BTU disturbance of fig. 1l4.
Units of time T are L/IUOI ~2 earth days, and the initial amplitude
of the disturbance was chosen so that I@iO) (0) | /L = 0.2|U0| at
t/T = 0, TFor t/t >> 1 the neglected non~linear advective terms
and/or higher order non-geostrophic terms would probably signifi-
cantly alter the pattern shown, Stretching and compression in the
direction of the line of particles are implied in fig., 21 as the
spacing between the marker dots changes from the initial uniform
spacing.

Thanks are due to Daniel Wenkert of the Division of Geological

and Planetary Sciences, C.I.T., for programming the numerical

computations required for fig. 21.
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the data may reflect features of any of the patterns in figs.
20(a) , 20(b) or 21. These patterns are for a symmetric evanescent
BTU solution; if any observed patterns correspond to oscillatory

solutions (cf. figs., 2, 15, 16), they could provide information

on the effective locations of the latitudinal boundaries of the
disturbances (see section 3,A). If the observed 'skew' in
the disturbance streamline patterns [cf. fig. 20(a)] is actually
to the east away from the center of retrograde jets, (so that
the G;nng eddy transport is amplifying the mean jet), this would
be indicative of baroclinic instabilities rather than barotropic
instabilities (e.g., Pedlosky, 1964b; Stone, 1969). Since
baroclinic growth rates are proportional to 6_1/2 in the two
layer model (section 4), this would imply an effective magnitude
of & somehow much larger than the value ~&0~6 suggested above,
(A value of § ~ 0(1) could possibly be caused by more complex
vertical dynamics at intermediate levels around p ~ 5 bars
than considered abeve; however such an effect would be outside
the scope of terrestrial meteorology.)

For brevity in sections 5 to 7 above, we have presented
results only for a few illustrative examples, concentrating
mostly on the symmetric evanescent BTU disturbances on the sech2

velocity profile., This type of disturbance was chosen for its

large theoretical growth rates, and the presentations attempt
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to show the extent of what can be learned about Jupiter's vertical
meteorological structure by comparisons with the observed disturb-
ances., However, there are many other cases contained in the two=-
layer model that are treated above; antisymmetric and oscillatory
BTU disturbances, tanh velocity profile, and baroclinic disturbances.
Rather than present all these results in full generality, it should
be more efficient to wait at least for some initial Voyager data and
then to analyze in detail the theoretical case above that resembles
the observed disturbances most closely. There's just so many angles
you can éossibly see, got to figure on those and let the other ones

be (Hunter, 1975).
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APPENDIX

In this appendix, baroclinic instabilities are investigated on
u = constant velocity profiles using a model with continuous vertical
stratification; this models the vertical structure of the basic state
and baroclinic disturbances more realistically than the constant density
model of the main text, but latitudinal variations of the basic state

are neglected.

The appendix as it appears here has been submitted for publication

to ICARUS under the title:
'BAROCLINIC INSTABILITIES IN JUPITER'S ZONAL FLOW'

*
by P.J. Gierasch , A.P. IngersollT and D. Pollardt.

%
- Cormell University, Ithaca, New York
1

California Institute of Technology, Pasadena, California

(The hydrostatic model in sections 2 and 3 of the appendix was
originated by the first two authors, and the non-hydrostatic model

in section 4 was originated by the third author.)
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ABSTRACT

The baroclinic stability of Jupiter's zonal flow is investigated
using a model consisting of two continuously stratified fluid layers.
The upper layer, containing a zonal shear flow and representing the

Jovian cloudy regions above p ~5 bars, is the same as Eady's (1949)

model for the Earth. The lower layer has a relatively large but finite
depth with a quiescent basic state, representing the deep Jovian fluid
bulk below p ~ 5 bars. Due to the presence of the lower layer, the
linearized non~dimensional growth rates are drastically reduced from the
0(1) growth rates of the original Eady model. Only very long wavelengths
relative Qo the upper fluid's radius of deformation Ll are unstable.

Eddy tramsports of heat are also reduced relative to estimates based

on scaling arguments alome. Since the hydrostatic approximation for

the lower layer perturbation breaks down at great depths, a second

model is presented in which energy propagates downward in an infinitely
deep lower fluid obeying the full linearized fluid equations. 1In this
model, the growth rates are again very small, but now all wavelengths

are unstable with maximum growth rates occurring for wavelengths 0{1)
relative to Ll' These results are consistent with the observed longevity
and spatial regularity of Jupiter's zonal jets, and illustrate the
importance for the upper layer meteorology of the interface boundary

condition with the lower fluid, which is radically different from the

rigid lower boundary of the Earth's troposphere.
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1. INTRODUCTION

Observations (e.g., Peek, 1958) of Jupiter'’s atmosphere reveal

a zonal flow varying latitudinally on a quarter-wavelength scale of
~5000 km. The overall pattern is highly axisymmetric, with
particular jets and their associated cloud bands varying on a time
scale of several years. The observations refer to a layer about
100 km thick (pressures 0.1 to 5 bars) where three major cloud
layers are supposed to form (Weidenschilling and Lewis, 1973;
Ingersoll, 1976). The atmosphere bglow is thought to be adiabatic
to depths greater than 104 km (e.g. Hubbard and Smoluchowski,

1973; Stevenson and Salpeter, 1976).

Local disturbances are seen gmbedded in the zonal flow, with
horizontal scales of 500-1000 km and lifetimes of months to
yvears. These disturbances do not destroy the basic structure of
the zonal jets, but their accumulated eddy transports could possibly
be important in balancing the energy sources and sinks of the zonal
flow. This is the role of baroclinic instabilities in the earth's
jet streams; however, the Jovian jets seem less distorted by instabilities
than the Barth's. Below we investigate the forms and behavior of
baroclinic instabilities occurring in model Jovian atmospheres, to
see what effect the presence of the deep lower region has on the
stability of the upper cloudy region.

We do not attempt to model the energy sources causing the zonal
jets. The persistence time of particular zonal flow patterns is
several years, which is comparable to the thermal time constant
of the cloudy upper layers (Gierasch and Goody, 1969), suggesting that
the zonal jets are associated with latitudinal temperature differences

in the upper layer. Support for this view also comes from the relation
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of the horizontal wind field to zones of upwelling inferred from

cloud heights (Hess and Panofsky, 1951; Ingersoll and Cuzzi, 1969).
Energy sources that have been proposed to account for these temperature
differences include latent heat release (Barcilon and Gierasch, 1970),
radiative cooling (Gierasch, Ingersoll and Williams, 1970), and
equatorial solar heating (Stone, 1967, 1972; Williams, 1975; but

see Ingersoll and Porco, 1978).

To investigate baroclinic instabilities, we first use a simple
extension of Eady's (1949) quasi-geostrophic model developed for the
Farth's atmosphere. The cloudy region of Jupiter's atmosphere
is assumed to be baroclinic with finite static stability. The
zonal velocity profile is assumed to vanish (relative to the
planetary rotation) at the base of this region, and the deep lower
region is assumed to be at rest, with static stability near zero.

As in the original Eady problem, the static stabilities of the two
regions are taken to be constant, and the lateral variations of

zonal velocity, coriolis parameter, and potential vorticity all

are neglected. These assumptions lead to a particularly simple
mathematical problem from which the effect of the deep lower

layer on upper-layer baroclinic instability may be investigated.

The general success of the Eady model as applied to the Earth's
atmosphere makes it a good first choice for Jupiter investigations,
especially considering our lack of knowledge of Jupiter's temperature
and wind distributions. We also present below a second simple model
in which the lower layer perturbatlon is allowed to be non-hydrostatic,
since on Jupiter the disturbance depth scale in the lower layer

may be comparable to or greater than the horizontal scale.
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In later papers, we will investigate how the present results are
modified by latitudinal wvariations of the basic state and by
ageostrophic effects.

In both models below, we find that the deep lower layer inhibits
the growth rate of the fastest growing disturbances relative to
those of the original Eady problem, and in our modified Eady
model. the east-west wavenumber of these modes is reduced. The
reduction in growth rates is consistent with Gill et al. (1974),
who used an incompressible 2-layer modelvwith a deep lower layer to
investigate baroclinic instability in the Earth's oceans. These
results are at least qualitatively consistent with the persistence
of Jupiter's zonal flow patterns. Further, they help identify needed
observations and necessary extensions of the theoretical model.
Finally, the results illustrate an important difference between
Jovian and terrestrial meteorology, namely, the lower boundary
condition, which we hope will be seriously considered in future

investigations.
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2. MODIFIED EADY MODEL FORMULATION

The motion is assumed to be hydrostatic and quasi-geostrophic,
with pressure p as a vertical coordinate. The notation and
governing equations follow ch. 8 of Holton (1972). x and y are
horizontal distance coordinates to east and north, respectiyely,
and t is time. The eastward and northward velocities are u and v,
respectively. w =dp/dt is the vertical yelocity in this coordinate
system. The static stability ¢ = —(l/ps) d 1In eS/dp is a function
of p only, where ps(p) and es(p) are the horizontal mean density
and potential temperature, respectively. The coriolis parameter
is f =2 Qg sin (latitude) where Qg is the planetary'rotation rate.
The motion conmsists of a basic state u = u (p) plus a perturbation
“i = - a¥/dy, v = dv/ex, w' = w. Here Y(x,y,p,t) is the streamfunction
of the perturbation, and is proportional to the perturbation height
of surfaces p = constant at (x,y,t).

With these approximations, the equations for § and w are the

perturbation vorticity equation
(ﬁ-+ai)vh2\p—f@=o. , 1)

and the perturbation energy equation

'3 , =9\ d¢ du , o ,
L 4 72 \oY ) 9 = .

(\Bt “ ax) 3 w ap £ =0 (2)
2

Here Vh is the horizontal laplacian operator, and we have used
df/dy = du/dy = 0, as in the original Eady problem. If o # 0,
we can eliminate w to obtain the perturbation potential vorticity

equation



- 23 (1o¥\| , o¥ g _
<at+uax>[vh t + £ 3 <0 ap)}+ax Sy 0 . 3)
where
2 __ 22 (laul _
dy £ ap(c BP) ° - )

is the basic state potential vorticity gradient. Equation (4) is
the essential simplifying assumption of the Eady problem. For the

upper region, which extends from Py down to Py, we let o = 01 =

constant and u = (p, - p) uy/(p,~py). For the lower region, which
1 Y%/ *P17Pg

extends from pl down to pz, let ¢ = 02 = constant and u = 0. If

9y = 0, we cannot use (3) for the lower layer. In this case,
(2) implies } is independent of p in the lower layer, and (1)

implies g% = constant. However, it happens that the correct results

for o, = 0 coincide with the limit, as o

this paper.

9 = 0, of the results in
The above equations are applied separately within each layer.

The tropopause at Pg = 0.1 bars is assumed to act as a rigid 1lid

on which w = 0. The same condition w = 0 is imposed at p = Py, as

if there were a rigid horizontal surface at depth. This is meant

to represent simply some reflection mechanism for the waves deep

in the Jovian interior; e.g., from a molecular-metallic hydrogen

phase transition at p ~ 3 x 106 bars, across which %§-~ 0.1

(Stevenson & Salpeter, 1976, 1977), or from non-~hydrostatic effects

at depth, as in section 4. We also consider the limit as p2 -

with‘c2 finite.
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The boundary conditions imposed at the interface p & Py
follow from continuity of pressure, temperature and mass flux
through the interface. V is continuous because the height of

constant pressure surfaces is continuous, and so is
w-v (& : (5)
oy 1

which is proportional to mass flux mormal to the interface. Here

(ap/ay)1 is the slope, in pressure coordinates,of the interface

with respect to latitude. For ¢, >> g,, this slope is approximately

1 2

equal to the slope of potential temperature surfaces (ap/ay)e in the

upper fluid, provided temperature is continuous. Thus we have

) of2m) oy e g ®)
3y )y BY)G (ae/ap>y o, dp :

For quasi-geostrophic flow, béth the slope (6) and the ratio w/v

in (5) are of order Rc(p1 - po)/L, where Ro is thg Rossby number

uo/fL, a small parameter. Thus both terms in (5) are of the same
magnitude. However, continuity of § implies continuity of

v = Jy/dx, so (5) reduces to w continuous. The boundary conditions

are then
w=0 , P = Py H
Y & w continuous, p = Py ; (7)
w=20 » P =P

The complete solution is a sum of modes of the form § = ¢(p)
exp [ikx (x-ct) + iky y] and w = Q(p) exp [ikX (x-ct) + ikyy].

For such modes, Eq. (3) becomes
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w2 2 2.d (1 de)_
(kx + ky ) o+ £ ap <0 ap 0 ’ (8)

and Eq. (2) becomes

ik £ do du
Q= - s (u-c) dp - CP _C—l.p—] ° (9)
. . op -ap
For constant ¢, the two independent solutions are e and e .

where az = (kX2+ky2) c/fz. There are four constants of integration,
two from the upper fluid and two from the lower fluid, and four
conditions (7) to be applied at the boundaries p = PgsPysPy- As

in the original Eady problem, the complex phase speed c¢ is determined

by the boundary conditions. In dimensionless form, the equation for c is

[vz + v ( tanh k - k)] + ¢ {vz tanh k - vk tanh k
(10)
+ (k - -tamh k)] =0
1
Here k = o Apl = Ll(kx2+ky2)é is the total horizontal wavenumber
1
(kX2+kyz)/é scaled by the upper fluid's radius of deformation

1
- 2 . - _ . ,
Ll = 01 Apl/f, with Apl Py Py - The eigenvalue v is kc/qo,

2, 2
whence the disturbance growth rate kxci = vi(uO/Ll)[kx/(kx +ky )5]

is greatest when ky = 0 and is then equal to viuolLl. Finally,
¢ = s/ tanh(ksd), where s = (02/01);i and d = Apz/Apl, with
Apz =Py~ Py- S and d measure the stratification and depth,
respectively, of the lower fluid relative to the upper fluid.

Each of the two bracketed terms in (10) is quadratic in v.
As ¢ tends to zero, (10) tends to the first quadratic, which is
the dispersion relation for the problem of the single upper layer with

lower boundary condition ¢ =0 at p = Py- This basic state is

stable, with v real for all k. As ¢ tends to infinity, (10) tends
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to the second quadratic, which is the dispersion relation for the
original Eady problem of the single upper layer with lower boundary
condition w = 0 at p = Py- This basic state is unstable, with

= 0(1) for some k

vy o).
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3. MODEL RESULTS
Figure 1 shows the dimensionless growth rate v, as a function

of k and ¢ = s/tanh(kssd). For ug = 50 m/s and L, = 1000 km,

1
(see section 4), the unit of time is 2 x lO4 sec, about 0.2 earth days.
According to (10), the value of v depends only on ¢ and k.
However, the fact that ¢ depends on k presents a slight complication.
One generally seeks the most unstable disturbance for a given
basic state; i.e., one seeks the disturbance wavenumber k that gives
the maximum growth rate vy for given values of the basic state
parameters s and d. For Jupiter, the lower fluid is both deep
(d >> 1) and nearly adiabatic (s << 1). If ksd >> 1, then ¢ ~ s
and the solid curves in Fig. 1 correspond to given basic states.
If ksd << 1, then ¢ ~ (kd)ml and the dashed curves correspond to
given basic states.
In both cases, the dimensionless growth rates v, are of order
€ << 1, implying that the growth time scale of the instability is
very long compared to the zonal flow time scale Ll/uo. Near the
region of maximum growth rate, we have both k3 and v of order ¢,

whence the solution of (10) is approximately

_ . _ 1.3 . (1.3 1 .6
\)—\)r+1vi—~6‘k il'§k€“¥k . (11)

As d = » we have ¢ - s, whence the maximum v; occurs at wavenumber

k = (68)1/3 = (6«-.')1/3 and is given by Vi =8 =¢. As s~ 0 we

have ¢ = (kd)-l, whence the max Lmum V, occurs at wavenumber k = (Q/d)% =
(46)1/3 and is given by v, = 2d~3/4/3 = 23/2 e/3. So the wavelengths
of these modes are very long ~ompared to the Rossby radius Ll’ and

their phase speeds (Vf/k) ug are very slow compared to ug, with

vr/k ~ 0(62/3).
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FIGURE 1 OF APPENDIX,

Non-dimensional growth rate v; as a function of
non-dimensional wavenumber k in the modified Eady model.
The square root of the stratification s and depth d of
the lower fluid relative to that of the upper fluid enter
through the parameter ¢ = s/tanh(ksd). The case of

interest for Jupiter is s <<l, d >> 1, e << 1,
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Energy relations are derived from (1) and (2) after multiplying
by ¥ and dy/0p respectively, and integrating with respect to x, y
and p over both fluid layers. Surface terms arising from partial
integrations in y are assumed to vanish. Denoting averages over

the fluid by angular brackets, one obtains

d /o /o¥\2 | L [o¥\2) _ 0
TEORNCIRRE-

4 <ﬁ(\gw.)z> _ <_f_2_ aa _a_m'»;>_ o 139
dt 20 \ op g dp ox op op
Eq. (12) 'gives the rate of change of disturbance kinetic
energy; the right side is proportional to the average vertical heat
flux upwards. Eq. (13) gives the rate of change of disturbance
available potential energy. The first term on the right side is
proportional to the horizontal heat flux from the warm side of the
zonal jet u to the cold side.
For the fastest growing disturbance, the streamfunction ¢
is smaller in the lower fluid than in the upper fluid by a factor

/3

0(e/k) = O(e2 ). The bulk of the vertically integrated disturbance

energy is available potential energy in the upper fluid. Vertically
integrated kinetic energy and available potential energy in the

lower fluid are smaller than the upper fluid available potential

energy by the same factor 62/3. The complex phase of the disturbance

streamfunction does not vary with height in the lower fluid,

2/3

and varies by only ¢ in the upper fluid. Consequently, the horizon-

tal heat transport scaled by the disturbance velocity and temperature

2/3

fluctuations is of order ¢ . TFinally, the complex phases of w
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2/3

and Yy differ by n/2 + 0(e ), implying that the vertical heat

transport scaled by the disturbance vertical velocity and temperature

fluctuation is also of order 62/3. In other words, the fastest

growing disturbance is a nearly neutral wave confined largely to

the upper fluid with energy conversions and transports of order

62/3 relative to estimates based on scaling arguments alone.

2/3

The small factor ¢ is approximately the square root of the
ratio of upper fluid pressure thickness Apl to the pressure thickness

of the disturbance in the lower fluid. As shown above, for s — 0

4/3 4/3

we have ¢ ~ ke = 1/d = Apl/Apz. And for d = ® we have ¢’ "~ ke

~ alApls = azApl. In the former case the disturbance amplitude is
appreciable down to the bottom, whence the relevant pressure

thickness in the lower fluid is Apz. In the latter case the disturbance
-0, P

amplitude decays as e » whence the relevant pressure thickness

9

The growth rates are much smaller than those in the

in the lower fluid is «

original Eady problem because the upper fluid must now have

{ = zero + 0(62/3

) at its lower boundary p = Py- This is imposed

by the presence of the deep, hydrostatic, quiescent, nearly adiasbatic
lower fluid. If § were 0(1l) at the interface, the pressure and
associated geostrophic velocity field would be felt to great depths
in the lower fluid, and a propagating disturbance would require,

for vorticity comservation in Eq. (1), vertical stretching of the

entire lower fluid columns, i.e., prohibitively large vertical
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velocity w at the interface. So, the upper fluid feels a free

2/3

surface [ to within 0(Ce )] as its lower boundary; energy-releasing

flow across lines of comstent potential temperature (Charney and

/

Stern, 1962) can only take place at O(e2 3), and so the flow is

only unstable at 0(52/3)°
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4, NON-HYDROSTATIC LOWER LAYER

The hydrostatic approximation in the quasi-geostrophic model
used above requires that, in each layer, the vertical scale of
motion is much less than the horizontal scale. Yet for d = « and
s = 0, the model predicts that the disturbance extends downwards
indefinitely in the lower fluid, so that non-hydrostatic effects would
modify the above results to some extent. We have studied only a
particularly simple example of non—hydfostatic behavior, with a
Boussinesq upper layer, an incompressible lower layer, and a
vertical rotation vector. WNevertheless, this example supports our
basic conclusions that the deep adiabatic lower fluid inhibits
baroclinic instability.

For the upper layer, we use exactly the same quasi-geostrophic
model as above, but now p, w, y, and 0 refer to a Boussinesq fluid

in the region z, < z < Zys where z 1s a vertical coordinate

0

increasing downwards. Thus in equations (1) to (9) we replace p
by p gz, w by p_gw, ¥ by p'/(_fps), o, by —(oz/pszg) de/dz, and
Apl by psg (zl— zO) = ps g Azl. Here, ps is the mean -density (a
constant), w is vertical velocity downwards, p' is perturbation
pressure, o is the thermal coefficient of expansion, and © is potential
temperature.

The lower fluid extends downward from z = z, and is assumed to
be incompressible with density Pye The equations in the lower

fluid are linearized about a hydrostatic basic state with u = 0.

Thus we have
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dv 1 op
Jt Pg Y ’
ow _ 1 op'
ST e o (16)
. _a_.l.'l; , .a‘.v- , :@.‘! =
Syt =0 . (17)

We want to reduce (14)-(17) to a single equation in one variable.

Forming,jl 9(14) + a($5) + £ 3(15) - 6(14)] , and using (16) and

ot | ox o) dx dy
(17) to eliminate du/dx + dv/dy and p', we get

2 2 2
—"12-+52 -3-—‘21 +-a——2—vhzw=o i (18)
ot oz ot

The pressure perturbation obeys

2 A
2., _109 2) ow
1 R R I 3 v . a9

ll-'

Qo _
s ot ot

©

As in section 2, we look at individual solutions of the form

w = W(z) exp[ikx(x-ct) + ikyy]. Then (18) becomes

2 -1
dHir? a-r’V) Vw=o (20)
X x
d2
2 2.5 . . .
where 2 = (kX + ky )° z is a non—dimensional vertical coordinate,

v is ke/u., R = (u./fL.) k (k 2 + k 2)_li and k = (k 2
0’ "x 0" Txx y > x

2.5
+ ky ) Ll'
The lower boundary condition is a radiation condition on the
vertical emergy flux, corresponding to a growing disturbance energized

by the upper layer. We require that p'w be positive and tend to

zero as z — *, where the overbar means an average over x and y,
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and with p' obtained from (19).Thisv follows straightforwardly
from the energy equation formed by u-e (14) + ve (15) + we (16).
. 2 -/z
Solutions of (20) are W = exp [+ i RX a - Rx v) vzl, The
radiation condition as 2 — « (downwards) requires that we use
only the plus sign. Continuity of p' and w at the interface with

the upper layer at 2 = 2. follow as before from continuity of

1
pressure, temperature and mass flux. Using (19) we then obtain an
expression for p'/w at 2 = 21 in thevlower‘fluid. This expression
constitutes an interface boundary condition for the upper fluid.

The eigenvalue ¢ is determined by requiring the upper layer solutiomns
to simultaneously satisfy this interface condition and also

0" The resulting‘dimensionless eigenvalue equation
for v is the same as Eq. (10), the equivalent equation in the

previous model, but now the small parameter ¢ is given by

¢ = - 1vR (2, /L)A-RADT . (21)

In the previous model Eq. (10) was simply a quadratic for v,
but now € depends on v in a complicated way. However, we can still
use the fact that ¢ is much less than 1: Defining 6 = Rx (Azl/Ll) <1,
then € ~ 0(8), and we can find a root of the eigenvalue equation
close to v = Vo? where vo= k -tanh k is the non-trivial solutiomn
of (10) with ¢ éet equal to zero. This 1s not strictly valid for
small values of k, nor does it find all the roots, but a numerical
computation of all the roots of the exact eigenvalue equation

showed that the only non-spurious (i.e., consistent with
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quasi-geostrophic scaling in the upper fluid) unstable root is the
one found by the above method, for all values of k.

Correct to lowest order in 6, we find

v~ k = tanh k + 0(62),
(22)

vy~ 6§ (k - tanh k) sech2 k + E

where the error E = 0 [max (62, Rx2 8)]. Maximum growth rates

kc, = v, Rf occur for k_ = 0, so that the disturbance velocities
x 1 i'x v
are entirely in the y direction. The maximum of v, occurs at
k = 1.3 and is given by.(vi)max = 0,11 Ro (Azl/Ll)°
In estimating dimensional values from these expressions, the
most uncertainty comes from the Jovian upper layer stratification

which enters via the Rossby radius L Assuming that the zonal jet

1.
system is confined to the cloudy upper layers above p ~ 5 bars

and that the stratification originates from latent heat release

in the water clouds (Gierasch, 1976), then L. ~ 500 km; a rough

1
upper bound for L1 corresponding to an isothermal upper layer

= 100 km, u, = 50 m s"l,

is ~ 3000 km., Using L 0

= 1000 km, Az

1 1

and £ = 3.5 x 10_4 sec-l, we find that

(v.)  ~1.6x%x 1072 at k = 1.3

i’ max

which corresponds to a growth time scale of ~ 0.4 earth years

with kx'1.~ 750 km.
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5. DISCUSSION

Although both the pure quasi-geostrophic model of sections 2
and 3 (called 'H' below) and the non-hydrostatic lower layer model
of section 4 (called 'NH' below) predict drastic reductions in
baroclinic growth rates due to the preseﬁce of the lower layer,
their results differ in some respects. Below we compare the two
models and discuss which, if any, is most applicable to Jupiter.

In model H, thé small parameter that reduces the grgwth

4/3

rates is ¢ , the ratio of the upper fluid pressure thickness

Apl to the pressure thickness of the disturbance in the lower fluid.
The equivalent small parameter in model NH, from (22), is

& = RX AzllLl vhich is somewhat analogous in meaning to

64/3, since LI/Rx is approximately the vertical wavelength in

the lower fluid and Az1 is the upper fluid thickness.

Referring to fig. 1, we see that the maximum growth rates

in model NH would be comparable to those of model H if, for

instance, o, = 0 and ke = d”1 = Apl/Ap2 were ~ 3 % 10_4,

Vi

i.e., if Py ~ 104 bars. However, the wavelength-dependences

N in (10) and (24) are different: in model H with o, = 0,

only long wavelengths [k < (12/d)1/4] are unstable, but in

of v

model NH, the non-hydrostatic effects have destabilized all
wavelengths and the maximum growth wave has k ~ 0(1).
Consequently, the pﬂase speeds of the most unstable waves in
model NHare 0(1) relative to ugs compared to O(d—3/4)

for the unstable waves of model H. These differences indicate

that non~hydrostatic processes not contained in the hydrostatic
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model H can significantly affect the phase speeds and wavelength-

dependences of baroclinic waves, The fundamental result
common to both models is the reduction in growth rates, which
depends on the effective pressure thickness of the disturbance
in the lower layer,

The pressure level pz'v 104 bars for the lower boundary

of model H suggested by the comparison above with model NH
is somewhat misleading., TFor an adiabatic, perfect gas lower
layer in model NH (not shown above), the vertically propagating
waves decay much more slowly with depth than for the constant
density lower layer of section 4., The corresponding growth
rates are then much smaller, and are comparable to model
H growth rates with the rigid lower boundary at P, ~ 108 bars.
This is well below the metallic~molecular phase transition
at p~ 3 x 106 bars, at a depth of ~0.24 relative to Jupiter's
radius. So a better model would have a non-hydrostatic
lower layer with a rigid lower boundary at p~ 3 x 106 bars.
The analysis would take into account the finite size of
Jupiter, and would employ a realistic equation of state.
However we suggest, on the basis of results shown above,
that the growth rates will still be small as long as the
lower fluid 1s deep and nearly adiabatic.

Another possibly serious deficiency is the neglect
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of the effects of convection., Convection may introduce

a negative static stability within the lower layer, thereby
altering the basic states considered above. Also, vigorous
convection cells associated with Jupiter's internal heat flow,
with scales on the order of one scale height, may seriously
dissipate the baroclinic waves. However, in the model

lower layers (p > pl), both the horizontal and vertical
scales of the unstable baroclinic waves are sufficiently
large, compared to one scale height, that the waves may

not be seriously affected. Gilerasch (1976) has estimated turnover
times and eddy diffusivities of Jovian convection cells using
mixing~-length theory which imply tiﬁe scales of ~ 100 days for
horizontal mixing over ~ 1000 km at p ~ 10 baré. To model this
effect, we included Rayleigh friction terms in the three momentum
equations (14)-(16) of model NH, with a time constant t.. The
analysis goes through as before, and the phase speeds and growth
rates are only altered by a multiplicative factor 1 + O(Vr—lezuD—z tcfz),
which is ~ 1 + 0(10_4) for v, o~ 0(1) and tc ~ 100 days. This
suggests that the baroclinic waves are hardly affected at all by the
convection in the lower layer. In the upper layer (pO <p< pl),
the vertical scale of the waves is comparable to one scale height;
however, we are hypothesizing that mixing-length convection is
inhibited in this region by the stable stratification of the basic
state, and that the internal heat is transported upwards either

by baroclinic instabilities, by a secondary mean flow associated

with the zonal jets, or by cumulus-tower convection as in the earth's

intertropical convergence =zone.
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