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Abstract

This study deals with various aspects in the development of active control of combustion
instabilities.

A low-order model is developed, reconciling along the way two different approaches taken
by researchers to attack the description of combustion instabilities. The model is demon-
strated with application to a Rijke tube and compared to experiments. The Rijke burnier
experiments suggest two major discrepancies with the model: the presence of a hysteresis
loop is unaccounted for and the model does not describe the seemingly random fluctuations
in the amplitude of the pressure oscillations in the ‘unstable’ regime. So far no explanation
for the hysteresis can be given; however, this phenomenon is successfully exploited by using
a novel nonlinear control technique to expand the stable operating range of the burner.
The origin of the ‘noise’ in the pressure trace is explained by considering entropy and
vorticity waves in the combustor. Their presence leads to a slight modification of the original
model, introducing stochastic source terms into the oscillator equations. The consequences
of the presence of these terms is analyzed by means of simulations. One interesting result
is that they allow for the identification of model parameters from a single experimental run
of a stable combustion system.

Finally, a unified approach to controlling combustion instabilities is presented. The formu-
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lation and analysis account for truncation to a few modes; uncertainties in the description of
the system (including uncertain sensing and actuating); external disturbances; and intrinsic
noise sources. An explicit expression is derived against which any controller can be checked

for stability.
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Chapter 1

Introduction

Conventional propulsion and power systems convert chemical into kinetic energy by burning
the fuel. In this work we are concerned with rocket engines, afterburners (solid or liquid
fuels) and gas turbines (liquid or gaseous fuel). These very different systéms can be treated
by a common analysis since the main feature is common to all of them: a substantial amount
of energy is released within a small spacial volume. It should not be surprising that the
resulting enormous power densities are accompanied by relatively small fluctuations. These
oscillations are usually negligible with respect to steady thrust or power produced. That’s
because even at the highest amplitudes observed in practice these oscillations consume only
a small fraction of the total available chemical energy. Nevertheless these fluctuations of
pressure or thrust, when sustained, can lead to serious problems (e.g., structural vibrations)
or annoying effects (e.g., production of pollutants).

A famous example of this sort of oscillations are the POGO oscillations that occurred in
the Apollo launch vehicle; in that case there was a strong coupling between the combustion
chamber pressure oscillations and the propellant feed system. Air-breathing propulsion

systems also suffer from these oscillations; in ramjets, for instance, their influence on the



shock system in the inlet diffuser can reduce the inlet stability margin.

More recently the occurrence of sustained pressure fluctuations in the main combustor of
gas turbines has attracted a lot of attention. This is ultimately due to an increased global
interest in clean power generation. Among the characteristics of gas turbines making them
more attractive for use in stationary power generation than traditional power plants are
higher efficiency and lower production of pollutants, especially oxides of nitrogen(NO,).
Limits on the efficiency and emission level attainable in practice are set by operating con-
ditions for which combustion can be successfully sustained. To achieve the low levels of
NO; mandated by law, most gas turbine vendors have developed some form of lean-premix
combustion. In these devices the fuel/air ratio typically approaches one-half the ideal stoi-
chiometric level (i.e., twice as much air is supplied as is actually needed to burn the fuel).
The excess air is a key to limiting NO, formation since very lean conditions cannot pro-
duce the high temperatures that create thermal NO, (the dominant mechanism of NO,
production).

Pressure oscillations driven by combustion have been a repeated problem in the develop-
ment of low-emission premix combustors. This problem is due to specific changes made
to the combustor to accommodate the premix approach. In premix systems, most of the
combustion air is sent through the fuel injector, eliminating the need for downstream com-
bustion air holes; unfortunately, this eliminates acoustic damping that reduces the likelihood
of oscillations. Furthermore, in premix systems, slight disturbances in pressure create im-
mediate changes in the airflow, producing a subsequent change in reaction stoichiometry.
Near the lean combustion limit even minor changes in reaction stoichiometry can lead to

significant variations in heat release — which, if synchronized with the resonant pressure,



can sustain an oscillating combustion. Finally, because the fuel and air are mixed before
arriving at the combustion chamber, the flame anchoring is purely aerodynamical. Oscilla-
tions can be severe énough to momentarily reverse the flow and create a flame flashback,
driving the flame towards the fuel injector. It is therefore essential to eliminate oscillations
in commercial engines. With sufficient amplitude, the vibration and enhanced heat transfer
that accompany pressure oscillations can lead to fatigue failure of the combustor liner in a
matter of hours.

The difficulties in preventing the occurrence of these pressure oscillations, known as ‘com-
bustion instabilities’ {though this term might be misleading since in almost all instances the
combustion processes themselves are stable), arise due to poor understanding and inability
to model the underlying processes such as unsteady combustion, coupling with feed systems,
and acoustics involving mean flow and nonlinear effects. Given the highly complex and un-
certain nature of the problem, predictive tools to model the stability and nonlinear behavior
of combustion chambers are impossible to develop. Hence the purpose of the theory is to
provide a framework for interpreting observations; to improve the base for understanding
the fundamental principles that govern the physical behavior; to formulate guidelines for
designing new combustion chambers; and to provide methods and tools for attacking the
problem of oscillations during the development of new combustion chambers.

The framework used here reduces the description of combustion instabilities to a low order
dynamical system. This formulation allows quick simulations of the system and assessment
of its dynamical behavior and changes thereof as a result of modifications in geometry,
propellent, etc. (this assumes a model of these various components exists that can be

included in the general framework). Furthermore, this formulation is a natural starting



point to apply control techniques to the combustion system.

Controlling combustion instabilities, reducing their amplitude or preventing them from
occurring in the first place, is a major focus of current research. Historically, if a combustion
instability is encountered in the developmental stage of a system, it is eliminated by trial
and error procedures involving changes in the feed system or the combustor geometry, or
introduction of devices to produce additional damping such as baffles and resonance rods.
These procedures are expensive and time consuming, and any ‘knowledge’ obtained while
tuning a specific system cannot in general be transfered to another combustor. Furthermore,
these methods, labeled passive control methods, are not always effective in controlling
instabilities. Therefore, active control is widely viewed as a promising approach for avoiding
problems of combustion instability.

An active control system is characterized by the presence of an actuator, a dynamic com-
ponent that perturbs the combustor to achieve the desired performance. In a closed-loop
approach a sensor monitors the state of the combustor (usually by recording pressure in the
chamber) and feeds its output to a control algorithm that computes and sends an appro-
priate control signal to the actuator. Examples of actuators are loudspeakers that produce
pressure fluctuations in the combustor or fuel injectors that modulate part of the fuel flow
(usually through secondary injection) thereby affecting the heat release in the chamber
directly. Reviews of approaches to active control, ranging from the simplest choice of a
constant gain and phase shift controller to applications of modern robust control theory,
are given by Candel (1992); McManus, Poinsot and Candel (1993); Hong, Yang and Ray
(1998); and in AGARD (1996).

As mentioned, the controller development is based on a low order model of the combustion



system. This underlying simplified model is necessary if the controller is to be easily im-
plementable on a commercial combustion system. How can the complex processes in the
combustion chamber be captured by such a simple model? The answer resides in the fact
that if the amplitudes are small, the vibrations within the chamber are related to classical
acoustic behavior possible in the absence of combustion and mean flow. Therefore, we can
reduce the dynamics of the combustion chamber to the evolution of a few modes. It is im-
portant to realize that in applying this reduction, a substantial amount of information has
been neglected: while frequency spectra of experimentally obtained pressure traces show
indeed the peaks corresponding to the various modes, there’s also a substantial broadband
noise present. This component has been largely neglected in the literature so far; however,
its influence on the design of an appropriate controller can be significant. Furthermore,
the sources responsible for the appearance of this noise might have a substantial effect on
the dynamics of the combustion system itself and could be responsible for the so-called
‘triggering’ phenomenom. This arises when a combustion system is linearly stable, meaning
that small disturbances will decay and disappear, but can be excited to produce a sustained
oscillation when hit by a finite-sized fluctuation. In the language of dynamical systems this
behavior is characterized by a ‘subcritical Hopf-bifurcation’. An example of triggering is
shown in figure 1.1.

The figure shows the firing of two identical (same geometry, same propellant) solid propellant
test motors, preformed at the China Lake Naval Air Warfare Center Weapons Division by
Fred S. Blomshield in August 1997. Motor 1 was pulsed lightly at ¢ = 1s and ¢ = 2s with a
pressure disturbance of 3.9% and 3.1% of the mean level respectively. Both pulses decayed.

Motor 2 was pulsed at a 9.7% pressure disturbance level; the disturbance grew into a limited
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(a) Motor No.1 (b) Motor No.2
Figure 1.1: Test firings of solid propellant rocket motors, illustrating ‘triggering’

cycle. This shows that linearly stable combustion systems can be unstable to ‘large enough’

disturbances in the chamber.

Qutline of the Thesis

In chapter 2 the mathematical framework used to obtained the reduced order model of
the combustion system is exposed. The text gives a brief description of the framework as
developed over the years by Culick and his students. This review serves only to establish
the underlying equations for this work and is far from complete. In particular, the technique
of time-averaging to further simplify the second-order equations to a first-order system has
been omitted because we will not use it. An essential part of the procedure as developed
by Culick is an iterative solution which is based on a two parameter expansion of the
equations. The two parameters in question are the mean flow speed and the amplitude of the
oscillations. While we will refer to the ‘order’ of the equations, the reader is referred to other

works for the details of this ordering procedure. We also present an alternative application



of the idea of spatial averaging as developed independently by Zinn and students. We show
that when applied to the same equation, the two methods lead to the same formal result.
However, the approach taken by this second method (the ‘modified Galerkin method’) can
be applied to more general cases and we discuss a few different applications.

Chapter 3 shows how the equations can be applied to what is arguably the simplest of all
combustion devices: a Rijke tube. The novel feature of the model is the introduction of
transfer functions for the heat release response into the framework developed in the previous
chapter. Simulations of a reduced order model for an electrical Rijke heater and a Rijke
burner are presented and compared with experiment. In the Rijke burner experiment, a
new type of control making use of the non linear behavior of the system (hysteresis) is
successfully demonstrated.

The experiments show some obvious deficiencies of the model. In chapter 4 we try to make
the model more realistic by including extra sources (noise) in the equation. The origin of
those terms is explained and their effect on the system dynamics analyzed. It is shown that
the presence of the noise sources allows for a convenient method of system identification of
a stable combustor, meaning that it allows to quantify stability margins without the need
of repeated experiments.

Control of combustion instabilities is the subject of chapter 5. We derive an analytical
expression which assures the effectiveness of control and against which any controller can
be checked. In this equation all factors affecting the reduced order model are taken into
account: the neglected modes and their dynamics; noise sources; uncertainties in the model
parameters and in the sensing and actuation processes. This is extremely useful as it does

not place any restriction on the design of the controller and thus any procedure (usually



depending on the performance one wants to achieve) leading to a controller can be used.
To our knowledge this represents the first time that the stability of the closed-loop system
has been analyzed under the simultaneous influence of all these effects.

Finally our findings are summarized in chapter 6.



Chapter 2

Analytical Framework

The model structure used in this study is the result of an approximate analysis whose
development was initiated three decades ago by Culick (1971). This formulation is very
common in the combustion instability literature and has been covered in many other works,

e.g., see Culick (1994) for a review.

2.1 Pressure Wave Equation

The analysis starts (as it must) from the fluid mechanical conservation equations. In the
cases of a liquid or solid rocket, a rigorous analysis needs to consider a multi-phase flow,
but it can be shown that even with these considerations the equations are in the form of a
single medium with mass-averaged properties of the various phases. Therefore, these cases

can be treated in the same way as the gaseous combustion in gas turbines and we can write:

mass : %% +(@W-V)p = W (2.1)
momentum : p [‘g—f + (ﬁV)ﬁJ = —Vp+F (2.2)

energy : % +9pVid = —u-Vp+7P (2.3)
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For convenience the energy equation has been stated with the pressure as the independent
variable since the analysis makes use of experimentally observed properties of the pressure
which is often the only variable recorded in combustion tests. For a multiphase flow the
source terms on the right-hand side of the equations include interaction terms between the

phases, but these are ignored here and thus we define

W = —pV.4 (2.4)
F =vV.7 (2.5)
P = (y-D[V-q+Q-a-(V-7) (26)

To formally make use of the fact that combustion instabilities are closely related to acoustics,
a wave equation for the pressure is derived. This is achieved by first writing all variables as

sums of averaged and small-amplitude fluctuating parts.

p(t) = p+p'(t)
p(Z,t) = p(Z)+ (&, 1) (2.7)

W(E,t) = a(@)+d(Z,¢t)

Introducing the splitting (2.7) into the momentum and energy equations yields:

o’ "y -
,58—7; +Vp = -/ (ava’+ﬁ’-va+ﬁ’vva”)
—p (@-Vi+a-d +a i)+ F (2.8)
op’ - _y / = / = r oy / ’
—87+7pv-u = —wV-u—-ypV- -4 —-u-Vp' -4 -Vp—a' -Vp'+ P (2.9)

Now equation (2.9) is differentiated with respect to time and %“% substituted from equation
(2.8) to get

1 82 pl
2 _
VY- = b
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_ = ) ) = 1. (919' ’Yap/ -
;o=
v (@ v+ B2EN L L0 gy
pV (u Vi +’y}3 8t)+628t(u V')
0 . - 1 0P
‘*‘%a(p/V"u/)'f‘V'f/—a—i ot (210)

A corresponding boundary condition for p’ is derived by taking the scalar product of the

outward normal vector 7 with equation (2.8).

—n-Vp = f
ou - - oz
- ﬁa—lz-ﬁ+ﬁ(ﬂ-vqf’+ﬁ’-vg)-ﬁ
/ =/
s N~ pau = =
—{—p(u-Vu)-n—F?E-n—}"-n (2.11)

The functions h and f contain all relevant physical processes including motion of the bound-

ary, but every process included requires modeling, a separate matter.

2.2 Spatial Averaging

The idea of the approximate analysis is to transform the partial differential equations into
a set of equivalent ordinary differential equations. That transformation and the subsequent
expansion of the solution is especially useful in the context of control as it allows a reduction
(through truncation) of the problem to a small number of degrees of freedom (states of the
system). The transformation is achieved by spatially averaging the equations (2.10) and
(2.11).

In addition to the choice of the partial differential equation(s) to be spatially averaged
there are three essential defining features of the kind of approach used here: choice of the

independent variable(s) to be expanded; choice of the spatial functions used in the series
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expansion; choice of the weighting functions with respect to which the spatial averaging is
done, usually chosen to be the same as the expansion functions.

We will start by describing the analysis commonly used (at least implicitly) in most studies
and then compare it to an alternate approach proposed by Zinn and Powell (1970a), the
‘modified Galerkin method’. Finally we will briefly mention a popular method, proper
orthogonal decomposition, that can be used to get empirical expansion functions that are

based on the measured behavior of the system.

2.2.1 Using the Unperturbed Problem

In the first instance, spatial averaging is closely tied to the idea that any unsteady distur-
bance in a chamber can be synthesized from an infinite set of basis functions; the expectation
is that a small, finite number of these functions is sufficient to get a good approximate de-
scription of the disturbance. Examination of the frequency content of experimental pressure
traces of combustion instabilities reveals that this idea applies well to the pressure fluctua-
tions as only frequencies close to the acoustic frequencies of the chamber are present. Based
on that observation, the weighting functions for the spatial averaging are chosen to be the
unperturbed wave modes 1, predicted by classical acoustics for the same combustion cham-
ber with rigid boundaries and no combustion or mean flow. They are obtained by setting

h = f =0 in the preceding equations.

Vi + k2, = 0 (2.12)
A-Vip = 0 (2.13)

Here the wave number for the n** mode has been denoted k,. The actual averaging step is

done by multiplying equation (2.10) by %, multiplying equation (2.12) by p/, subtracting



13

the results and integrating over the volume of the combustion chamber. Applying Greene’s

theorem and substituting for the boundary conditions, the final expression is found:

%/%%25 dV+k:fL/1pnp’ dV:—/wnh dV—anf ds (2.14)

At this point the unsteady pressure p' is expanded and written as a synthesis of the acoustic

modes with time-varying amplitudes 7, (t).
N
=p Z (t)¥n(Z) (2.15)

Note that the zeroth mode (¢, = constant) is missing from (2.15). The omission means
that excursions of the mean pressure (‘DC shifts’) cannot be computed with this theory;
that is a deficiency that can be easily corrected but has not yet been treated.

Substitution in (2.14) leads eventually to a set of coupled oscillator equations

d?ny,

dt? twnmn = Py

_ 2 {/wnh aV + f s s} (2.16)

_E2

where [V, dV = §,m E2.
Taking advantage of the presence of two small parameters appearing on the right-hand
side (the Mach number of the averaged and fluctuating fields), one may devise an itera-

tion/perturbation procedure to construct approximate sets of equations.

Coupled Oscillator Equations

Starting from equation (2.16) and replacing h and f by their respective definitions given in

(2.10) and (2.11), the force F), has the form (Burnley 1996, Burnley and Culick 2000):

1
—F, = P11+ I2+Pf3+—f4

+/< 7 8t> 7 Y d5 = /[16P/¢n+f' V| dV(2.17)
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with the definitions arising from gasdynamics:

L o= / (&-V@ + @ - VE) - VpndV
8 —_ 7 = = /
L, = g/('ypv-u—i-qu)q/JndV
/ =~/
L = / <ﬁ’ Vi + ’éa—“> VdV
p Ot
I, = % / 'V i + @ -V )dV (2.18)

In case of gas turbines the last term of equation (2.17) is the most relevant one for the
driving of the instabilities as it relates the heat release of the combustion process in the
chamber volume to the ‘forcing’ function F,. For solid rocket applications the surface

integral containing %—’il -7 and representing all influences of motion at the boundary needs

response function) and it is this term that also allows one to couple the unsteady motions
within the chamber to motions of the case and of the surrounding structure such as a
test stand or a parent vehicle. Moreover, this term allows one to accommodate random
motions at the boundary, due, for example, to combustion of a heterogeneous material.
The functions P’ and F’ contain all other relevant processes within the volume and at the
surface respectively. Therefore, with spatial averaging, this formulation captures the global
effects in the chamber dynamics of all sources within the volume and on the boundary.

To evaluate the right-hand side of equation (2.16) we need to express F), in terms of the
expansion functions v,. In order to do so we complement the expansion of p’ into modes

(see equation 2.15) with the corresponding velocity from classical acoustics:

7=y v (2.19)
j=1 TRj
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We also use the isentropic relation p = Cp” in order to eliminate the density fluctuations:

g (2.20)

a2

Using these expansions, the gasdynamical part of F}, can be written as

= - 2 (Dnif + Enini) — ii (Aniinly + Bnigning + Muijnin;) (2.21)
where
Dui = E%/[(H—Z—é) Yudl - Vai + VitV - &
kl (Vip) x (V x @) - vwn} dv (2.22)
Ei = g [ / i [(F - V)& - Vb dV — @ 7( BV - dS} (2.23)
g = 5 | [ 2 (V0 Vo = V)
+@{(vw V)wj}-wn} qv (2.24)
Buj = Efg /= (T Vg + V20 i+ iV V] AV (229
Moy = g / ;k—?w(ﬁ-wj)-wn av (2.26)

2.2.2 Modified Galerkin Method

A different approach to spatial averaging was introduced by Zinn and Powell (1970a) who
extended the classical Galerkin method to allow the spatial expansion functions to be inde-
pendent of the boundary conditions for the system.

We consider a system described by the following two equations; the first one describing
the behavior of the solution in the interior of the volume of interest V (the combustion

chamber) and the second one specifying its boundary condition.

Einterior (f, t) = 0 (227)
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Eboundary (f,t) = 0 (228)

In the Galerkin method an approximate solution 7 = Z{V Gn'n to the problem is constructed
in such a way that it fulfills the boundary conditions automatically (i.e., it is assumed that
each expansion function g, satisfies the equations (2.28)). The ‘best’ # is then obtained
by spatially averaging the remaining equations over the volume V with some weighting
functions ¢, (usually taken to be the same as ¢, ), thus solving the problem (2.29) for the

unknowns a,,.

[ Buteror (7,2) 6 av = 0 (2:29)

By doing this expansion it is assumed that the functions ¢, form a complete set for the
given boundary conditions and thus any solution to the problem can be expanded in this
set.

The advantage of using a Galerkin expansion is the fact that in most applications the
desired information can be obtained by using a truncated series that contains only a few
terms. These terms describe the most important physical aspects of the problem while the
remaining (neglected) terms only provide minor corrections. If the expansion of the solution

% is truncated to N ‘modes’ then the following holds (if & is the correct solution):

N
lim #= lim Z npn =T (2.30)

N—o0 N-—yo0 “=

One major challenge in applying the Galerkin method is finding the appropriate expansion
functions. According to Zinn and Powell (1970a) the condition that the expansion functions
fulfill the stringent boundary conditions can be relaxed if those boundary conditions are

accounted for in the weighting process itself; this should be done by solving the system
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(2.31) instead of (2.29).

/OT { / Frgorion (;; t) b dV — 7[ Fhoundary (55 t) bn ds} dt =0 (2.31)

Connection to Section 2.2.1

In the problem of combustion instabilities we can start with the governing equations as
given by (2.10) and (2.11) in the interior of the combustion chamber and its boundaries

respectively. Thus we can apply equation (2.31) to obtain:

/Einterior (_x:a t) ¢n av - fEboundary (3:3” t) ¢n dS =0 (2'32>

/ <v2p’ Lo h) bn dV  — 7{ (A Vo' + £) dn dS =0 (2.33)

© a2 o2

This last equation can be rewritten to give:
1 8217/ 2 1 = /
_—2/5ﬁ¢n dV—/V 5 dv+fn-vp¢n dS:-/hqﬁn dV~j§f¢n ds  (2.34)
a
Making use of Greene’s theorem we get
- / V2, dV = 7( (0'Vén — $u VD) - 7 dS — / oV2, dV (2.35)

If the weighting functions ¢, are now chosen to coincide with the functions 4, as defined

and used above (equations (2.12) and (2.13)), this last equation turns into
- / V2P o dV = ]{ (0~ 4uVp' - 7) dS + 2 / P AV (2.36)

Substituting (2.36) in equation (2.34) the integral equation for the pressure as given by

equation (2.14) is recovered:

él—z/wn%il;—/ dv+k3/¢np’ dv = ~/¢nh dV~?{¢nf ds (2.37)

This shows that equation (2.31) is compatible with the above averaging procedure; in par-

ticular the boundary conditions are incorporated into the solution in the same manner.
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It is worth noting at this point that not only do the expansion functions v, not satisfy those
boundary conditions but so does any expansion solution we obtain. This is a consequence
of the fact that while the functions %, form a complete set for the acoustic boundary
conditions, they do not form a complete set for the nonlinear boundary conditions. Thus
any approximate solution p’ obtained by using expansion functions such as these will not
converge pointwise to the full solution p’; (2.30) is no longer valid. Instead the convergence

is achieved in an integral sense:

N 2
lim {p/(f, )= mn®n(2)| dV =0 (2.38)

N—o00
Other Applications of the Modified Galerkin Approach

The modified Galerkin approach is obviously very general and can be applied to a variety of
problems. Some applications in the context of combustion instabilities are briefly mentioned
(Zinn and Powell 1970a, Zinn and Powell 1970b, Powell 1970, Powell and Zinn 1971, Lores

and Zinn 1973).

Velocity Potential Wave Equation

When the Mach number of the mean flow is small (assuming % and @ are of same order
€) the unsteady flow in the combustor can be described to second order in € by a wave
equation (2.39) for the velocity potential ® (for a careful derivation of this equation see
(Powell 1970)). Tt is permissible to write @ = V® since it can be shown that up to the

second order considered the perturbation flow field is irrotational.

2 . _0d _ 0d
v2<1>_a_q’zza-va—t+y(v-a)a—+2v¢-va—q’

0 3 e o +(7—1)—(—97V o+ W, (2.39)

In this equation the source term W), accounts for the combustion process.
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The variable to be expanded in this approach is the velocity potential ® and we write:

N

Z n(t)¢n(Z) (2.40)

Using the same functions ¢ as weighting functions, the modified Galerkin method can then
be applied to equation (2.39). The appropriate boundary condition (Q,, is an unsteady
mass source at the boundary) reads:

0P 00 ) (2.41)

, —_— —_— — —
Q + <V<I> U = 3y Vo

This procedure leads to a set of N second order differential equations for the A,(t) (for
detailed expressions of the resulting equations see Zinn and Powell (1970b)). Just as in
section 2.2.1, Zinn and Powell (1970b) use the classical acoustic modes 1, of the combustion
chamber as expansion functions ¢,,.

After solving for @ the pressure perturbation field is obtained through the second-order

momentum equation (2.42).

(F) = l<3_@)2_3_‘b~_2. EESS
p(x,t)—'y{z 5 5 U Ve 2V<I> Ve (2.42)

Comparing this solution to the previous section it is noticeable that the unsteady pressure
field does not necessarily vanish on the boundaries anymore and thus could in principle
accommodate equation (2.11). However, in this approach the limitation is on the boundary
condition for ® and thus does not improve the quality of the solution.

While this approach is very attractive, it does have some drawbacks. It is constrained to
irrotational flow and the underlying equation (2.39) cannot be augmented to account for
higher order terms. Furthermore, the assumption that the mean flow field is of the same
order of magnitude as the perturbation fields is a severe restriction when compared to the

previous method.



20

Application to the Full Equations of Motion

The ‘modified Galerkin method’ is not restricted to be used on a single equation but can
be applied to a collection of equations describing the solution.

The unsteady flow field in a combustion chamber is described by a system of five partial
differential equations (the equation of continuity, 3 components of the momentum equation
and the energy equation) and the equation of state. In the preceding approaches this system
has been reduced to a single equation before applying a Galerkin type analysis. Powell and
Zinn (1971) skip this reduction and apply the analysis directly to the equations of motion.
The independent variables to be expanded in this case are the density fluctuation p’, pressure
fluctuation p/, enthalpy fluctuation A’ and the three components of the velocity perturba-

tion u/,v’ w’. In order to be able to use the same expansion functions (e.g., the acoustic

)

modes) for all perturbed quantities the velocity components are expressed in terms of ‘quasi-
potentials’ (¢, 1, £) - this is because the velocity disturbance is out of phase with the pressure
disturbance (the same ‘trick’ is used in the approach used in this work by putting @’ ~ V;

see equation (2.19)):

9y on ¢
r_ r_ r_
U= v 3y W= (2.43)

These ‘quasi potentials’ are then expanded alongside o/, p/, and #/, i.e. we write
p=2APM6@ =T A 0@ =2 AT O
F=YAPWeu(@) P =A@ W =Y AT Oen(@) (244)

At this point it should be noted that this use of ‘quasi potentials’ allows for a general

representation of any velocity disturbance and thus rotational flows can be studied. Tt is

easy to see that the traditional Helmholtz decomposition is equivalent to the use of the
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‘quasi potentials’. If we write

@=V®+VxA with A= (A1 Ay As) (2.45)

then we can always find functions X, ), and Z such that

5] Is) o 16) o 16) 0
e B G ke B

2= 2424 o
Therefore, the equivalence is given by defining o =P+ X, n=0 + )Y, and £ =d + Z.
Powell and Zinn (1971) use this approach to study the radial and tangential modes in
a cylindrical combustion chamber. In that investigation the Galerkin expansion series
is limited to one term - the acoustic mode being studied. Thus the ‘expansion’ is p/ =
A,(t) cos(mb)Jm(Smnt), etc. Here J,(x) is the Bessel function of order m and s, is the
nth nonzero root of the equation J;,(z) = 0.

This procedure will provide first order differential equations for %ﬂ, d—iﬁ‘l, -‘%, %, %’l’
(stemming from the equations of continuity, momentum and energy) as well as one algebraic
relation for Ay (from the equation of state). This last equation is used to eliminate Ay and
numerically integrate the remaining system.

Note that just as before care needs to be taken in the ordering procedure. Powell and Zinn
(1971) assume that all perturbed quantities are of the same order, i.e., O(¢) = O(n) =
O(&) = O(p') = O(p') = O(W) = ¢ furthermore, the mean flow field is assumed to be of
the same order.

This approach of expanding six different quantities is much more complex than the previous
approaches; this explains the short expansion series used. In the way it is presented here

and has been studied in (Powell and Zinn 1971) there is another point of concern: the

averaging procedure has been applied to the equation of state. Thus the equation of state
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is not fulfilled at each point anymore (as it must) but instead is fulfilled in an average
sense. As shown below this ‘smearing out’ effect affects the nonlinear terms of the system
of equations and can alter their dynamical behavior.

Numerical results suggest indeed that the dynamics of the system change depending on
whether the enthalpy A’ is eliminated from the systems of equations before or after apply-
ing the Galerkin approach. The different behavior is solely due to the spatial averaging
procedure.

To try to understand this qualitative change let’s look at two-dimensional modes (v’ = 0)
in a cylindrical chamber. For that case the energy equation and equation of state read

respectively:

Oh _ oh, 1 ,0h,] ~y—-10p d
/= / 1 / A t - / t _  (an\B! AR N -0 7 \
o+p)—r +(p+7p) {—(% M7 e s 7, P+ Wby =0 (2.47)

1 T A y-1
I /) /=2 12 12
= —— (p phe + pu)+—-—2 (v* +w?) (2.48)
As mentioned above this approach has been applied with only 1 expansion mode. Therefore,

consider Y, = Jm(Smnr) cos(mé) with m = 1. Then we get

p ~p ~ R~ ~apy, ~ cost
W' ~ Zp1, ~ sind (2.49)

1

Focusing on the term (5 + p)sw/ %};-/1 of the energy equation we see that spatial averaging

produces the term

o n1 ,0h
[ )l St bindt ~ A, Ac (2.50)

From the spatially averaged equation of state we get an expression for A, (Powell and Zinn

1971) that can now be used in (2.50):

Ah = Oqu + OLQAp + OégApA% -+ OZ4APA§ (2.51)
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If on the other hand, we first substitute h} from equation of state and then do the spatial
averaging with 1, we end up with

rro / N Y—1, 9
/0 [%(p—ﬂfhﬂ-—z"‘/”i)—i-

~1 8
7T(p' +P)55 (v’2 T w'2>J Wpindl ~ A2 Ag + BAY (2.52)

It should be obvious that this type of discrepancy (A,A¢Ap in (2.50) versus A2 A + Ags in
(2.52)), that changes the nature of the nonlinearities in the differential equations and thus
their dynamical behavior, occurs also if m # 1 and thus qualitative changes occur also if

other modes are considered.
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Figure 2.1: Bifurcation diagram for the 1R mode obtained by using the averaged equation

of state (black) and by first eliminating h (grey)

The numerical example displayed in figure 2.1 illustrates these qualitative differences due to
the averaging process. The calculations follow those in (Powell and Zinn 1971) and are done

for a one mode expansion of the first radial mode in a cylindrical combustion chamber. The
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combustion term is assumed to follow an n — 7 model with fixed n and 7 and the equations
simulated include all terms up to 0(e?).

As shown in figure 2.1, the subcritical Hopf bifurcation for the 1R mode, obtained by
applying the spatial averaging to the equation of state, changes into a supercritical one if
the state equation is eliminated before the averaging step (Appendix A provides a short
introduction to the various type of bifurcations that occur in the context of this work).
Thus triggering in the linearly stable regime is no longer possible with a 1 mode analysis.
A similar effect is observed for the first tangential mode. Instead of reaching a limit cycle in
the linearly unstable case as reported by Powell and Zinn (1971), the pressure oscillations

grow indefinitely if the averaging of the equation of state is removed.

Accommodating the Boundary Conditions

The proper choice of terms to be used in the Galerkin expansion is crucial to the method.
All the previously described approaches use the chamber’s acoustic modes in the series ex-
pansion. This is well founded on experimental data which indicate that the behavior of high
frequency combustion instabilities resembles those acoustic modes. Thus the expansions (in

the 1-D case) read:

N N N 9
P = Z An(t)¢n(z) p= Z B (t)pn(z) Uge = Z Cn(t)%q/}n(x) (2.53)
n=1 n=1 n=1

In general those expansions do not satisfy the boundary conditions set by the problem. If
the complete equations of motion are used in the analysis, the velocity perturbation u' can

be modified in such a way as to fulfill the boundary conditions by writing
u =, +u, (2.54)

Lores and Zinn (1973) study the longitudinal modes in a cylindrical combustion chamber
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closed at one end and a choked nozzle at the other one. The quasi-steady nozzle boundary

condition for the nozzle (at z = 1) reads

-1 ~1
u'(1,t) — 72 Tep (1,1) + 77176])'2(1,75) =0 (2.55)
Y

With the only other boundary condition (the problem is treated in one dimension only)

being u(0,¢) = 0 (closed front end), both conditions can easily be fulfilled by choosing

y—1_ Y=1_ 5
Tep (1,t) + tep“(1,1t)| 2.56
e/ (16 + (1, (2.56)

up(x, t) =

In a more general case we would have uj = f(p,p’). The Galerkin method (without the
boundary residuals which have now been eliminated) can then be applied to the equations
of continuity, momentum and energy as above with the v,, as weighting functions.

The resulting differential equations for A,,(t), B, (t) and C,,(t) contain some new terms which
didn’t appear before: the introduction of the boundary term into the expansion creates an
additional ‘self-coupling’ (terms like A2, AndTAtﬂ, ...) among the modes. Whereas these
self-coupling terms are present in the previous approaches, they are of higher order and are
generally introduced through the combustion model. By accounting for boundary conditions
in the expansion itself, the dynamics of the system (especially for a low order analysis) are
substantially changed. The presence of the self-coupling terms allows for triggering in the
linearly stable region, a phenomenon not possible without them.

In the one-dimensional approach used by Lores and Zinn (1973), the expression for v} is
easily found. In a general three-dimensional case such an expression is virtually impossible

to derive. Therefore, the application of this approach to real systems is severely limited.
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2.2.3 Proper Orthogonal Decomposition

As we have seen the choice of the expansion functions for the Galerkin method is critical.
A commonly used tool for extracting coherent structures from data, either experimental
or computational, is the Proper Orthogonal Decomposition (Holmes, Lumley and Berkooz
1996).

Given a set of data, represented as functions of space and time, the POD determines a
basis set of orthogonal functions of space which span the data optimally in the L? sense.
Thus, when p(z,t) is a function of space and time, POD (also known as Karhunen-Loéve
decomposition) defines the functions ¢, (z),n = 1,2,..., such that the truncation to the
first N functions, p (see equation (2.57)), has the smallest error. The functions 1), are called

POD modes, Karhunen-Loéve eigenfunctions, or empirical eigenfunctions.

N
plz,t) = Z () n () (2.57)

n=1
The error here is defined by

Elllp - 511 (2.58)

where E[-] denotes the time average and || - || denotes the L? norm. It can be shown that

the functions v, that minimize this error are determined by the following equation:

[ K@ gbale)dy = 2ote) (2.59)
The Kernel of the Fredholm integral equation is defined as

K(z,y) = Elp(z,t)p(y, t)] (2.60)

Equation (2.59) reduces to a standard eigenvalue problem if the data, as is usually the case

in practice, is discretized in both space and time. In such a case a numerically efficient
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method to compute the POD modes is the so called ‘method of snapshots’. In that method

one uses a number k of ‘snapshots’ at times ¢;,7 = 1,...,% of the function p(z,t) at the [
discretized spatial points z;,7 =1, ..., to construct the data matrix
p(z1,t1) plza,t1) - plwg,ty)
p(z1,t2) p(xa,t2) - p(21,t0)
A= (2.61)
p(z1,tx) p)Tate) oo plar,ty)

The POD modes are then the right singular vectors of A which can be easily computed
by standard algorithms for singular value decomposition (attention needs to be paid that
this gives the solutions to equation (2.59) only if the discretization in time and space is
uniform).

The POD modes are ‘optimal’ for modeling or reconstructing the original signal — it can
be proven that among all linear decompositions the POD is the most efficient, in the sense
that, for a given number of modes the projection on the subspace used for modeling will
contain the most energy possible in an averaged sense. In addition, the time series of the
coeflicients of the decomposition are uncorrelated.

To proceed the POD modes are used in lieu of the acoustic modes in the development given

above.

2.3 Summary and Remarks

The derivation of the pressure wave equation and the coupled oscillator equations in section
2.2.1 is very straightforward. Unfortunately, this derivation does not provide a clear recipe

for ordering the solutions according to the expansion in the two small parameters, mean
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flow p and perturbation amplitude e. A more concise derivation can be based on a Green’s
function approach. While the final result is the same, it provides clearer guidelines to
achieve an approximate solution by iteration. We chose not to give the full procedure here
as it is rather lengthy; the reader is referred to Culick (1997).

As for the two parameter expansion, it is important to realize that the two parameters y
and € have different physical origins. p represents the intensity of the mean flow and the
combustion while ¢ measures the amplitude of the unsteady motion. Therefore, we can
selectively choose to retain terms having various order in € and u. Note that Zinn and
students have not made that distinction but instead relate ¢ and u in an arbitrary fashion.
This explains some of the discrepancies found in the literature as, depending on which order
in p and € is retained, different equations form the starting point for the Galerkin procedure.
Culick (1997) provides the full details of the ordering procedure.

It has been pointed out that while the various approaches find the same linear stability
limits, the non-linear behavior can differ between approaches. That difference seems to
be mainly due to the coupling (and self-coupling) terms which depend on the expansion
functions, the combustion model, and the underlying PDE(s). These inputs affect the
structure of the equations derived and hence also the dynamical behavior of the system.
Therefore, any conclusions drawn from numerical simulations are only valid within the scope
of both the order of the parameter expansion and the accuracy of the combustion model.
From here onwards we will use the equations as derived in section 2.2.1. That approach
seems to be the most consistent one as it allows for a clear ordering in the expansion terms
and first reduces the equations of motion to one single PDE (the wave equation) before

spatially averaging that equation, thus reducing the ‘smearing out’ effect.
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Thus we will also use the acoustic modes of the chamber as expansion functions. While
POD modes would be more ‘efficient’ by providing a more accurate model with the same
number of modes, we simply have no way of knowing them a priori. We would need either
finely resolved spatial and temporal experimental data of the pressure within the combustion
chamber or compute a detailed direct numerical simulation of the combustion process. This
is because the empirical eigenfunctions from the POD are only useful if the snapshots are
representative of the dynamic characteristics of the system under consideration. However,
the aim of the approach used in this work is to predict the approximate behavior of the
system without having to do a detailed analysis and/or specific experiments for the special
case under consideration. Furthermore, experience has shown that even a small number
of the acoustic modes seems to be able to capture the main dynamics of the combustion
system (Burnley 1996). If detailed data is available, proper orthogonal decomposition is
the best method to obtain low-order models which then can be used for bifurcation analysis
and control — an example of an application to self-sustained oscillations is given by Rowley,
Colonius and Murray (2000). In that work POD modes are extracted from direct numerical
simulations in order to obtain a low-order dynamical model of oscillations in the flow past
an open cavity.

A further simplification of the dynamical model could be achieved by applying time-averaging
to convert the second-order equations (2.16) into first-order equations. The motivation for
this is the experimental observation that combustion instabilities usually have slowly vary-
ing amplitudes and phases of the modes contributing to the motions. We have not presented
that approach here as we will not use it; the reason is that we will (in chapter 4) include

noise sources in the equations and those sources are assumed to evolve on faster time scales.
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Chapter 3

Application: Rijke Tube

One of the simplest generic geometries to study combustion instabilities is the so called
Rijke tube; it gets its name from its discoverer, P.L. Rijke (Rijke 1859). Inside a Rijke tube
a localized heat source is placed and there is a steady flow of gas (by means of natural con-
vection or other). Depending on the position of that source (heated gauze, anchored flame)
it can excite an acoustic oscillation. This oscillation is longitudinal, with a frequency close
to an eigenmode of the tube. These ‘singing flames’ or ‘gauze tones’ have been observed and
studied by numerous researchers (for a review, see for instance Raun, Beckstead, Finlinson
and Brooks (1993)).

A general criterion for the acoustic instability to occur was first proposed by Rayleigh
(1896). It states that when heat is released locally and periodically in a gaseous mediur,
an acoustic oscillation is amplified if the oscillating components of pressure and released
heat flux are in phase. Therefore, it is crucially important to be able to describe the response
of the rate of heat release to flow perturbations.

In this chapter we will apply the framework developed above to the Rijke tube. The Rijke

tube example is instructive as it can be dealt with as a one-dimensional problem and thus
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the computations are substantially simplified without losing the complex dynamical behav-
ior of the system. We will show how the heat release is incorporated into the analytical
framework by means of transfer functions that characterize the response of the heat source
(e.g., flame) to fluctuations in velocity and pressure. These transfer functions can be com-
puted analytically or measured experimentally for the heat source under consideration and
are used here as inputs to the model. Results of the numerical integration of the model are
compared to experiments.

The experiments with a burner described in section 3.3.2 show some interesting features
that are not captured by the model. We show how the presence of an hysteresis loop in the
dynamics of the combustion system can be exploited through a simple control algorithm to

expand the stable operating range of the Rijke burner.

3.1 Applying the Analytical Framework

In a Rijke tube the heat release is concentrated in a region much smaller than the acoustic
wavelength. 1In that case the system can be modeled by two uniform regions, split in
between by the (infinitely thin) heat source. Furthermore, since the acoustic vibrations are
longitudinal, a one-dimensional approach can be used to describe the problem.

We will therefore assume that the mean quantities (pressure, density, velocity, ...) are
uniform throughout both sections. The region where heat is added to the flow is viewed as a
discontinuity between the downstream and upstream sides across which the mean quantities
‘jump’. Special attention needs to be attributed to these ‘jump’ conditions (matching
conditions) at the interface between the constant regions.

A schematic of the Rijke tube is shown in figure 3.1. Quantities in the upstream volume
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heat source S ¢

/

Figure 3.1: Rijke tube model

V™ are denoted with an ~ whereas downstream quantities are marked with an . Using the
velocity fluctuations v’ and pressure fluctuations p’ as independent variables, the matching

conditions across the discontinuity are defined in the most general way by

T - = T(Ww)uT 4+ Z(w) p

pPr—p~ = RW v +Sw)p~ (3.1)

where T'(w), Z(w), R(w) and S(w) are transfer functions across the heat source. As such
they are imaginary quantities, which means that they carry both frequency dependent
amplitude and phase information. These functions, along with the shapes of the various
modes, are responsible for the selective driving of the modes depending on the position of
the heat source in the tube.

Usually it is assumed that a flame does not support any pressure difference (thus putting

R(w) and S(w) to 0) but depending on the device considered (e.g., a flame stabilized by a
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porous gauze) it might be necessary to include this term (McIntosh 1987) and therefore we
will carry it through in our calculations.

The equations (3.1) can be used to describe the most general case since they include the
fundamental variables in the problem. In the literature one finds quite commonly models
describing the fluctuating heat release ¢’ in terms of v’ and p’. The next paragraph shows

how any such model can easily be recast in terms of the matching conditions (3.1) used

here.

From the linearized energy equation we get the relation

ql
U =Y = ——= 3.2
7 (3.2)

Therefore, if we define the heat release fluctuation ¢ as
¢ = Tuw) w'= + Ty(w) o~ (3.3)

we can define T'(w) and Z(w) consistent with (3.1) as
v—1 y-1
T(w)=——T,(w) and Z(w) = —Tp(w) (3.4)
yp

Other authors (Hathout, Annaswamy, Fleifil and Ghoniem 1998) express ¢’ as a function

of an equivalent flame speed, i.e.,
¢ =Tr(w) u} where up=au' T+ (1—a)ut (3.5)

Once again this model is easily converted to the notation used here by defining

(= DTr(w) 56

) = G- V@)

Finally the ‘classical’ n — 7 model defines the heat release fluctuation through

¢ =nid(t-71) (3.7)
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This fits into the framework described here as well, with a T that has an absolute value
defined by n and its phase is given by 7. Note that we do not put any restrictions on n and
7 and thus both the interaction index n and the time delay 7 are allowed to be dependent
on the frequency w of the instability.

We see thus that any model describing the linear response of the heat source in terms of
either v’ or p’ is described by the matching conditions (3.1). We emphasize linear, as the
model described in this chapter does not take nonlinearities in the heat release into account
(but we do include nonlinear gasdynamics). The simulations will show that this might be
a major limitation in estimating the amplitude of pressure oscillations in the system.

The general equations derived by the procedure of spatial averaging in the previous chapter
can now be applied to each section separately, i.e., the integration over the volume is
interpreted as an integration over the sum of V™ and V*. By doing so we have introduced
a new boundary into the problem: the flame front S¢. Therefore, we need to be careful
with the application of Green’s theorem in the spatial averaging procedure.

Recall that

1 0%/
2.1 —_ 2y 2 2 —
S5 =h V24 + k2tpn = 0
n-Vp =—f 7 Vipn = gn (3.8)

Note that the last equation has been modified to include g, as we want to apply this
condition at the interface Sy where g, # 0.
Using these equations and assuming that g,, vanishes on the walls of the tube, the following

relations hold (where S; and Sy denote the upstream and downstream end surfaces of the
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Rijke tube):

§ VP — Vi) S = - F @ +9g0)dS = § (G +Po0)dS (3.9
S

St S

§ (VP —PVn) e dS = - F @nf + 99048 — § (Guf +1/g0)as (3.10)
S— S1 S

The integrals over S7 and Sy disappear since at the openings of the tube we have either
p' =0 and ¥, = 0 (for an open end) or f =0 and g,, = 0 (for a closed end). Therefore, the
spatially averaged equation reads (compare with equation (2.14)):

82])’
Yn—odV + E2pnp'dV = — [ a*p,hdV
ot2

V-4Vt V-4V+
- f (wha f —yra® ) = (p*a* g - -a* g, )|dS  (3.11)
At this point we follow the same procedure as before by expanding both pressure and
velocity perturbations (h and f are functions of p’ and «') into the modes 1, to finally

arrive at a set of coupled oscillator equations:

N N N N
> ( nifli + w C'mm) = = (Dniti + Enini) = > > (Anggnitlj + Bragning + Muijnin;)
i=1 =1 i=1j=1

N N N
+ Z (Fnznz + annz + Jni’rh + Z Z TLZ]/’?Z?]] + Kn?,jnz/r]] + Ifrn]'nzn])(*g 12)
=1

i=1j=1
Comparing with equation (2.21) we see that the second line of (3.12) is a result of the
boundary terms introduced through the flame front. Thus the heat release modifies both
linear terms (driving/damping and frequency shift) as well as the nonlinear terms (energy
transfer between the modes). This is not in contradiction with the fact that we included
only linear heat release dynamics; the nonlinear terms (Hy;j, Knij, Ini;) result from the
interaction of the nonlinear gasdynamics with the linear heat release. Note that since the

‘jump’ in v’ and p’/, as well as in the mean quantities at the interface, is taken into account
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in determining the ,,, the matrix C,; is not necessarily diagonal — this provides additional
coupling between the various modes.

Starting from the definitions of f in (2.11) and A in (2.10), it is straightforward to write
down an analytic expression for the various coefficients. Thus on the right-hand side of

equation (3.11) we can write (note that we have dropped the ’ to simplify the notation):

art a2 [ o B~ du-  p Ou-
A Y S [,y W) a2y 3;+&7J

o) L out dut p
+ + + p_ou’
-, { o0 + G . +yu e + o o (3.13)

Now introduce the conditions (3.1), rearrange the terms, and drop the superscript (i.e., all

quantities unless otherwise marked are ~— quantities) to get

it =t = [ am St o 22
il
+fngt + 'yz”ﬁTgy— + ’y_+gz
+va+Z§—p
+7TU§—TU + WTuaﬁu + 'yuaiTu + ’yuaiu + —Ru%Zp
+7Tu§Zp + ’yuaa Zp+ ’yZpaa Tu+ fyZpaiu + Z—j—(%Z + %Ru%Tu
+— RU%TU + jSp%Zp
+7ZpaﬁZp+g%T +p§tu+ SpaatTqu Sp%u] (3.14)

Inserting the expansions (2.15) and (2.19) for p and u respectively leads straight to the

formulas for F', H, I, and K. To get G and J we need to consider in addition the term

1 P on O[T ol O
5(p+a2+g?f patgy) = %(a“ ——ai — a2 ——C;i )
EL2+ 8¢n 6rlb’rb



37

Finally we arrive at the following expressions:

L
Cni = [ Ynihidz
/
AT oy
D = | ( )«pn()a;}
J L
Enp = 0
L -
- 1 (opiow; 0 1 (0 8%; 9,
Anij = O/ Y& (83: Tz TV a:c?)% V3K (83: 52 _a?ﬂdx
L
O O o O; Oy,
B _0/[ fi)(ai % 1 o m) i %aﬂdx
Oy O |
Muij = / k?wz a;éj oz
o; oY,
Fu = kgwx ) wa(;f)T(wH ,j 2 fatap) = bulo)]
0%
Gni = ””prn(m}-)@bi(x;)z(wi)_ zwn(fcf)%)":r(wi)
a*t 8¢n($f)8¢1($f)
kI oz Oz R{wi)
1 0%z,
E"'W(jf_) [ﬁv¢n(x;) - ﬁ+¢n(x]f)]
8’(i n 8 n T
Jni = =T Ga(a}) pa(;f)z(wz‘)—ﬁHd)i(iE;) 1/)8(?)5(%)
- +
i(a7) {#—__8"”’52”1” ) gt _—wgff ) }
Oi(z7) 0% (7
oy = ~pzin(e) wa(;f ) ?;ff (7)) + Tle) + T(w)]
o;
() P e R 2Z(0)
1 Otilz; )5 Y;(zy) _
R s o V7~ e(a)]
1) oz 81 " 82 (e
Lyj = —%wn(x}r) [ 1/’3(;]8) ¢8(Zf) +¢i(xj7)—1gjx(#—)-J (T (wj) Z (w3) + Z (wi)]

P @ )i(y )i () [S(wi) Z (w;) + Z(wy)]

(3.16)

(3.17)
(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)
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a2— O (x5 ) O (T
+;T%J2wn(m}) waif ) 1/)8(;]( ) [R(w;)T(w;) + R(w;)] (3.26)
+ ) |, a*~
Knij = —Ynl(e;)i(e;)—5—— P Z(wz')Z(wy')—T[T(wj')+5(wz')T(wj)+5(wz')]
a* _ Op(xy) _
o ti(ap) =5 [Yalef) - Yulay)] (3:27)

As mentioned above, if the heat source is a flame it is usually assumed that S(w) = 0 and
R(w) = 0 (and thus wk(m}r) = x(z;)) which considerably simplifies the nonlinear terms
Hijy Inij, and Kp;j. The remaining terms that have been introduced by the flame can then

be traced to either one of the following sources (recall the matching conditions (3.1)):
e the jump in the mean quantities (a, a)
e a coupling of the heat source with the velocity fluctuations through 7'(w)
¢ a coupling of the heat source with the pressure fluctuations through Z(w)

All three of these factors contribute directly to the driving/damping of the various modes
through G,;.

For simulation purposes we convert the linear part of equation (3.12) into state-space form,
a form commonly used for designing control laws (see for instance chapter 5). To achieve
this the nonlinear part and any control commands are grouped into the input w to the

system and thus the linear part of the system reads:
[(Cni — Fni) i + (Dpi — Gra) 15 + (wﬁcm' + En; — Jni) 771'} = Up (3.28)
i=1
This system with input u , outputs 7 and 7, and states n and 7 takes on the following
state-space form (we use the full state as an output of the system since the full information

about the states is used as an input to the block describing the nonlinearities — see figure
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3.2):
n 0 1 n
7i ~(C-F)' (W C+E-J) —(C-F)YD-G) 7
0
+ U (3.29)
(Cc-F
n n
=1 +0-u
n U
(3.30)
pressure

control x=Ax+Bu
(+) y=Cx+Du

nonlinearities

Figure 3.2: Isolating the linear part in state-space form

With this formulation the equations can be integrated by commercially available software.

All simulations in this work have been done using the SIMULINK extension of MATLAB

as this software has been designed especially with control applications in mind.

3.2 Electrical Rijke Tube

In this section the Rijke tube model developed above is applied for the case of an electrically

heated Rijke tube and compared to experimental results. The experiments have been carried

out in the Jet Propulsion Center at Caltech by Winston Pun and Konstantin Matveev and
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are described in more detail by Pun (2001).

3.2.1 Experiment

The experimental apparatus used for this experiment is shown in figure 3.3. The main
part of the apparatus is the rectangular steel tube (with a square cross section) which is
placed horizontally in order to eliminate convection effects. Therefore, the air flow becomes
an experimental parameter that is set by the operator through the use of a blower which
‘sucks’ the air out of the tube. A damping chamber has been added between this blower
and the tube so as to dampen the blower noise and ensure a stable airflow. The heat source
consists of an electrically powered nichrome gauze. The gauze is mounted on rods that feed
the electrical power and allow for easy displacement of the heat source location within the
tube.

Further characteristics of the tube are summarized in table 3.1.

I— l Rijke tube damping chamber

valve blower

Figure 3.3: Layout of the electrical Rijke tube used in the JPC lab

The input variables that set the operation condition of the tube are thus given by the

imposed airflow through the tube, the position of the heat source, and the electrical power
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Tube length 1.002m
Cross section side 10.16¢cm
Inner cross section area .907dm?

Gauze wire number density | 15.75wires/cm

Table 3.1: Electrical Rijke tube characteristics

provided to the gauze. These variables are set and/or measured by the data acquisition
system which is installed on a PC.

The instrumentation on the tube consists of two piezoelectric pressure transducers mounted
at a distance of 15cm and 80cm respectively from the upstream end of the tube, as well as
sixteen thermocouples mounted along the length of the tube. During an experimental run
these data, alongside the variables, are sampled at a rate of 7500H z by a digital acquisition
board mounted in a PC. This sampling rate is sufficient to capture the important acoustic
modes of the tube, as the first mode associated with the pressure fluctuation is observed in
the 100 — 200H z range.

Poncia (1998) provides further details about the experimental apparatus, its instrumenta-
tion and the acquisition system.

The behavior of this electrical Rijke tube has been exhaustively investigated by varying
the experimental conditions. Of interest here are the measured stability limits of the tube
with the heater positioned at the L/4 location; they are displayed in figure 3.4. The
measurements have been done by fixing the mass flow rate of air through the tube and
varying the power supplied to the heater element. The symbols o and * mark the power
level at which the transition between stable and unstable operation occurred while the power

was increased, respectively decreased. While the stability limit seems to be independent



42

of the transition direction for most conditions, it is worth noting that for mass flow rates
above 3g/s, the two limits diverge. This occurs only on the upper end of the operating
conditions of the tube, and further experiments, currently being conducted by Konstantin

Matveev, will try to clarify this behavior.
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—®—
¥
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Figure 3.4: Stability diagram for the electric Rijke tube as measured in the laboratory (o:

increasing power, *: decreasing power)

Another experimental result that we will be trying to model is the amplitude of the pressure
oscillations when the tube is ‘singing’. The observation is that the tube settles into a limit
cycle whose amplitude is almost independent of the operating conditions (as long as we are
in the unstable regime obviously). At a power level of P = 500W the maximum of the

pressure oscillation is about .06psi, or p//p = .4%.
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3.2.2 Model

While there are quite a few authors who have developed models for an electrically driven
Rijke tube (Raun et al. 1993), we choose to follow the approach taken by Nicoli and Pelce
(1989), chiefly because they derive a simple analytical expression that can be used directly
in the formulation considered in section 3.1.

Nicoli and Pelce (1989) determine the transfer function 7T'(w) defined in equation (3.1) in
the limit of small Mach number of the average flow. Their development is an expansion of
earlier work by Carrier (1954) and Merk (1957). The generalization is done by taking into
consideration the effects of gas compressibility, viscosity and temperature variation in the
transport properties of the gas. The heating apparatus considered is a grid perpendicular to
the tube axis, infinitely thin and conductive, heated at a constant temperature. An analysis
of what happens to the stationary solution when a sound wave of frequency w encounters
the grid provides a differential equation for T" that can be solved analytically if the quantity
pp/cp is assumed to be constant. This analytical solution (equation (77) of Nicoli and Pelce

(1989)) reads:

_ 2yt
T Tt VT e o 851

Where 7 is defined as vy = (TT ~T7)/T~ and 7 = /@ is the diffusive timescale, 4 is the
thickness of the diffusion zone (the analysis shows that the main effects occur with a thin
diffusion region around the grid through the mass flow rate perturbance of the incoming
sound wave). The same analytical expression is also valid in the limit of small yp without
any restrictions on the viscosity p. Furthermore, Nicoli and Pelce (1989) show, through
numerical calculations, that the dependence of 1 on the temperature has little importance

for the general form of the transfer function and therefore we assume that (3.31) is a good
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description of the actual T'(w) and use it in our calculations. The behavior of the transfer

function for various values of ~r is illustrated in figure 3.5.
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Figure 3.5: Transfer function 7" for an electric Rijke tube for various values of vy (—
yr=.5;- 1 yp=1; -— : yp=5)
Simulations

Using the transfer function given in (3.31), we numerically simulate a 1m long electrical
Rijke tube with the heater located at the 1/4 location. The simulations were done using the
first 4 longitudinal modes of the tube. The mode shapes and their respective frequencies
are given in figure 3.6 for the case with @ = .2m/s and T = 230C.
The two parameters that affect the stability of the system - given the position of the heater,
fixed at L/4 here - in our model are % and T (the downstream temperature 7'~ is given
by the room temperature). The limit between stable and unstable regions of operations is

plotted in terms of these parameters in figure 3.7 and is in fact a straight line.

In the unstable region a random disturbance grows into a finite amplitude limit cycle. To
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1% mode | 181 Hz
27 mode | 243 Hz
37 mode | 517 Hz

4" mode | 702 Hz

X

Figure 3.6: Mode shapes for the electrical Rijke tube (simulation)
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Figure 3.7: Stability diagram for the electric Rijke tube as predicted by the model
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analyze the nonlinear behavior of the system, we trace this amplitude as mean speed and
temperature are varied. The simulations are done at either fixed @ or fixed T'. The resulting

bifurcation diagrams are given in figure 3.8 in terms of the remaining free parameter.
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(a) constant T of 230C (b) constant @ of .2m/s

Figure 3.8: Limit cycle amplitude at 15¢m from the upstream end of the Rijke tube as a

function of mean flow and upstream temperature

3.2.3 Comparison with Experiment

Before we can compare the simulation results with the experimental data points, we need
to relate the parameters used in the experiment (mass flow rate ri and electrical power P)
and in the simulation (mean flow speed @ and downstream temperature 7F) to each other.
Knowing the area A of the tube, we can readily convert the mass flow rate into a mean

velocity by using the continuity equation:
U= — (3.32)

Relating the electrical power to % and T'" is not that straightforward. To achieve this, 7"
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has been measured as a function of r for different power levels (i.e., the measurements have

been carried out at constant P). The results for two power levels are shown in figure 3.9.
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(a) P = 500W (b) P = 900W

Figure 3.9: Temperature vs. mass flow rate at constant power

From the distribution of the data points we suggest the following functional form for
T+ (m, P):

TH=(a-P+b)- (e e0m™) (3.33)

This relation is purely empirical and not based on any physical model. Nevertheless we find
that by choosing a = .83, b = 330, ¢ = .75, and d = .8, the resulting curves fit the observed
behavior of T well for the various power levels. In figure 3.9 the suggested fit is shown as a
solid line for two selected power settings.

Using relations (3.32) and (3.33) figure 3.7 can be mapped to the rn— P plane. The predicted

and measured linear stability limits for the electrical Rijke tube are compared in figure 3.10.

As seen in the figure the linear behavior of the Rijke tube is well described by the pre-
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Figure 3.10: Comparison of simulated and measured stability diagrams for the electric Rijke

tube

sented model. This shows that a rather simple transfer function for the heater element
in combination with a low order gasdynamical model is sufficient to capture the stability
characteristics.

To compare the nonlinear behavior of the model with the experiment, we take a look at the
amplitudes of the limit cycles. From figure 3.8 it is obvious that those amplitudes are an
order of magnitude too large and thus we conclude that the present model is not sufficient
to capture the nonlinear dynamics of the system. We get an even stranger result if we make
use of relations (3.32) and (3.33) and try to trace limit cycle amplitudes at a constant power
level. The result of that attempt is seen in figure 3.11.

During the simulations it was noted that the model equations did not always converge
towards a limit cycle. Therefore, the number of modes in the model was doubled to 8.

This gave convergence over a broader range of parameter values but was still not sufficient
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Figure 3.11: Pressure amplitude (from simulation) at z = 15¢m vs. mass flow rate for a

constant power setting (P = 500W)

in all cases. The points marked by a * in figure 3.11 did not give a limit cycle and thus
the amplitudes are unknown for these mass flow rates. Since we already found that the
nonlinear gasdynamics were not sufficient to explain the experimental observations, we did
not try to include further modes.

It is therefore obvious that while a transfer function may be able to capture the linear
behavior of the heater element, a much more complex model is needed to describe its

nonlinear dynamics and its interaction with the flow field.

3.3 Rijke Burner

The same approach as above is now taken for a Rijke burner, i.e., the heat source consists

of an actual flame. As before, we use a model based on transfer functions and compare its
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predicted results to experiments.

3.3.1 Model

Clavin, Pelce and Longting (1990) derive a transfer function Z(w) (the notation here is in
accordance with equation (3.1)) that characterizes the feedback mechanism of the acoustic
wave on a flat flame front. Assuming a flat flame and a simplified combustion model with
a one-step reaction controlled by an Arrhenius law with an activation energy much larger
than the thermal energy, Clavin et al. (1990) give the following analytical expression for
Z(w) (i.e., the coupling of the heat release to the pressure perturbations) as a function
of the acoustic frequency w. Note that diffusive and thermal effects within the flame are

included in this model through the Lewis number.

Z(Q):!EMT_*<21);_%)
(VITam 1) (VITan - £2) . T 40
[(M—l)-mg@e—l)-(l\/erZiQ)

(3.34)

Here Q) = w - 73 where 7, = Dy, / “12 is the transit time through the flame front with Dy, the
thermal diffusivity of the gas, u; the laminar flame speed, and £ is the reduced activation
energy. The derivation of equation (3.34) is explained in detail in (Clavin et al. 1990) and
the characteristics of the resulting function Z(w) are displayed in figure 3.12.

Similarly we need to consider the effect of the acoustic acceleration on the geometry of the
flame front. No flame is perfectly flat and instead most ‘flat’ flames exhibit a distinctive
cellular pattern. The amplitude of these cellular structures is modulated by the periodic
acoustic acceleration of the gas if an instability is present. This leads to a corresponding
modulation of the total flame surface area and thus to a modulation of the global heat

release rate. Pelce and Rochwerger (1992) use a laminar flame model with a planar (on
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Figure 3.12: Transfer function Z for a flat flame for various values of Le (— : Le =
B; - Le=1;.-—: Le=1.2)

average) flame front that is perturbed by a two-dimensional sinusoidal wrinkling of small
amplitude to derive an expression for the transfer function 7'(w) which characterizes the
coupling of the flame to the velocity perturbation introduced by the acoustic disturbance
(see equation (3.1)). Clanet, Searby and Clavin (1999) extend that formulation to a flame
model with temperature dependent diffusion coefficients and relax the assumption made
by Pelce and Rochwerger (1992) that the cell size is given by the marginally unstable
wavenumber k.. However, these additions do not change the general behavior of T(w) and
thus we decide to use the (somewhat simpler) formulation of Pelce and Rochwerger (1992)
given in equation (3.35) — the advantage being that this is an analytical expression that can

be easily evaluated.

(agke)® T+ —T- —iwC(ked)

2 - — (wn)? A(ked) + iwr, B(ked) (3.35)

T(w) =

The functions A(k.d), B(k.d), and C(k.d) depend on the temperatures 7, 7 and on the
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Markstein number; their expression and details on the derivation are given in the references
cited above. Figure 3.13 illustrates the behavior of the transfer function.
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Figure 3.13: Transfer function T for a flat flame for various values of yp = (T —T77) /T~

(=i =5;-t9p=1; -— : 4p=5)

Simulations

The above defined transfer functions Z(w) and T'(w) have been used to numerically simulate
a flat flame burning at the 1/4 location of a 1.5m long tube (as used in the experiment in
section 3.3.2). The parameters used for the various expressions are given in table 3.2.
The simulations use the first four modes of the Rijke burner; it has been found that addi-
tional modes do not alter the results. These modes are illustrated in figure 3.14.
With these parameters and mode shapes, a random initial disturbance grows into an easily
identifiable limit cycle. Figure 3.15 shows the pressure trace at the 3/4 location of the tube

for the baseline case with @ = .70m/s and T+ = 700K .

Linear stability limits are determined by monitoring the first occurrence of the instability
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temperature upstream
temperature downstream
reduced activation energy
mean velocity (upstream)
flame transit time
laminar flame speed

Lewis number

Markstein number

Tt

Uy

Le

Ma

297
700

20

1073

1.2

4.5

Table 3.2: Parameters for simulation of Rijke burner
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512.3 Hz

Figure 3.14: Mode shapes for the Rijke burner (simulation)
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Figure 3.15: Pressure trace at 3/4 location for baseline case

as the model parameter % and T are varied. Figure 3.16 presents the stability curve as
predicted by the numerical simulations.

We obtain the bifurcation diagrams recording the final amplitude of the limit cycle (at the
3/4 location) as a function of the mean flow speed % and upstream temperature 7. These
diagrams are given in figure 3.17. The sudden appearance of a finite amplitude limit cycle is
striking, a feature that is duplicated in the experiments (see figure 3.23). The amplitude of
the limit cycle is comparable to the one measured in the experiment, a fact that might lead
us to hope that in the case of a flame (as opposed to the electrical heater) the gasdynamics

dominate the nonlinear behavior.

3.3.2 Experiment

The Rijke burner used in this experiment consists of a 1.5m vertical glass pipe, open at
both ends, with a high temperature Bunsen burner positioned inside. Consistent with the
theory the maximum driving is obtained with the heat release at the 1/4 location so in this

experiment that’s where the burner is placed. The experimental setup is displayed in figure
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Figure 3.16: Stability diagram for the Rijke burner as predicted by the model
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Figure 3.17: Limit cycle amplitude at the 3/4 location as a function of mean flow and

upstream temperature
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3.18. A photograph of the actual apparatus is shown in figure 3.19.

Presswre
Transducers

100

79 4 A
37

Figure 3.18: Layout of the Rijke burner

The apparatus exhibits two burning modes: stable combustion characterized by a very
quiet burning process that does not couple with the acoustics of the tube and unstable
combustion exhibiting large coherent pressure oscillations at the resonance frequencies of
the tube. A pressure trace taken during these self-sustained oscillations is shown in figure
3.20. A minimum heat release is necessary to drive the oscillations. Several burner models,
with different heat releases characteristics, were tested. In order to be able to achieve
this lower limit, we settled on a Humboldt high temperature Bunsen burner. A picture
of the burner is shown in figure 3.19. At the bottom of the burner a fuel jet entrains
air which then mixes with the fuel inside the main burner body. When the self-sustained

pressure oscillations inside the Rijke tube occur, the burning is extremely violent and flame
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(a) Rijke burner apparatus (b) Humboldt bunsen burner

Figure 3.19: Experimental Rijke burner

stabilization becomes an issue (the upwards velocity due to natural convection and the
oscillating velocity when burning unstable initially caused severe flame blow-out problems).
To provide additional flame anchoring, a metallic net was added at the top of the burner.
The airflow through the tube is determined by natural convection and thus the parameters
determining the operating condition of the tube are reduced to the position of the flame
and the amount of fuel being burned (i.e., the strength of the flame). The fuel flow is set
manually through valves and monitored via a digital mass airflow sensor.

The Rijke tube is instrumented with three piezoelectric pressure transducers positioned



o8

10 T T T —
Q.15 T T T T T T T

3 5 6 7 8 0 200 400 600 800 1000
t[s] v [Hz]

(a) (b)

Figure 3.20: Typical pressure trace (a) and spectra (b) when tube is ‘singing’

respectively at 1/3, 1/2 and 3/4 of the length of the glass pipe. Their signals are amplified
and acquired, with the fuel flow rate, via a digital acquisition board on a PC. The signals
are sampled at 2000H z which compares well with the 115H z of the first acoustic mode of
the tube.

Figure 3.21 illustrates the transition of the system from stable to unstable burning; the
signal shown is the pressure at the 3/4 location. Shadowgraphs taken during the transition
phase are given in figure 3.22. The photographs were taken in .2 second intervals at a
shutter speed of 1/2000. Only half of the burner is shown (the dark area in the picture
is the burner lip), the system being axisymmetric. The vertical lines are an effect of the
non-uniform thickness of the wall of the cylindrical tube. The shadowgraph system uses an
Hg-lamp with a pinhole screen as a point light source which is placed in the focal point of
a spherical mirror. The mirror projects the light (coming out in parallel rays) through the

glass tube section into the camera lenses. Thus the pictures shown are actually integrated
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along the line of sight. Nevertheless they provide some interesting information as they
clearly show that the vortex shedding from the lip of the burner plays an essential role and
changes dramatically between both burning modes. Note that the edge of the photographs

does not coincide with the tube wall; the tube has a 15¢m diameter whereas the diameter

of the burner is only 4.5¢m.
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Figure 3.21: Transition from stable to unstable burning

A plot of the pressure amplitude against the fuel flow rate reveals a curious result: the
Rijke tube presents a kind of hysteresis; that is, for certain values of the fuel flow rate the
pressure amplitude can take on two distinct values depending on whether this operating
point is reached from above by reducing the flow rate from a ‘singing’ state of the tube or
from below by incrementing the heat release in a ‘quiet’ state. Figure 3.23 demonstrates

this behavior.

3.3.3 Discussion

The appearance of an hysteresis loop is a novel result. The model proposed above is not
capable of capturing any such effects; the nonlinearities included serve only to limit the am-
plitude of the pressure oscillations. The nonlinearities in the model produce a supercritical

Hopf bifurcation, instead of a subcritical one accompanied with a saddle-node bifurcation
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(a) (b)

(©) (d)

(e) ()
Figure 3.22: Shadowgraph images taken at .2s intervals during the transition period from

(a) stable burning to (f) unstable burning
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Figure 3.23: Dependence of the pressure amplitude in the tube on the fuel flow rate for two

different fuels (hysteresis); grey - increasing the fuel flow; black - decreasing the fuel flow

(see appendix A). Thus, effects such as triggering and hysteresis cannot be described. At
this point it is unknown what causes this peculiar behavior and how widespread it is in
combustion systems. Based on the shadowgraph visualization we speculate that the vortex
shedding mechanism is a major factor. We have found a similar hysteresis in a dump com-
bustor and there too the vortex shedding seems to dominate the flow dynamics. Results for
the dump combustor have been reported by Isella, Seywert, Culick and Zukoski (1997).
The presence of two possible states of the system at the same operating condition allows
for some interesting applications of control algorithms. In order to control the burner a
secondary fuel line is added to the system. A two-way normally closed solenoid valve serves
as the actuator of this secondary line and is controlled directly by the computer through a
fast-response time solid state relay. The layout of the system is shown in figure 3.24.

The control of the system is achieved through a simple step modulation of the fuel supply
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Figure 3.24: Sketch of the experimental setup; the dotted lines are signal connections

by opening momentarily the second line. Timing and duration of the extra fuel release
are control parameters. Below we show two examples of a nonlinear control law that take
advantage of the particular characteristics of the system at hand.

In figure 3.25 the operating point of the Rijke tube is defined by the methane flow rate of
1.5SLM. A glance at figure 3.23 reveals that this point is well within the hysteresis region
and thus the system can be in any of the two states (‘quiet’ or ‘singing’). The idea now is to
expand the operating range of the system into the hysteresis region by forcing a transition
from the limit-cycling state into the ‘quiet’ state. This should be possible as both states are
dynamically stable states of the system and thus all we need to do is to ‘push’ the system
out of the region of attraction of the limit-cycle and into the region of attraction of the
‘quiet’ state. That this can in fact be done is demonstrated in figure 3.25. Here a single

pulse (duration: .5s) is sufficient to successfully switch from one branch of the hysteresis
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loop to the other one.
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Figure 3.25: Forced transition from large oscillations to the ‘quiet’ regime in the hysteresis

region

A second characteristic of the system is its rather slow growth rate (see figure 3.21). The
logarithmic plot in figure 3.26 shows that the initial growth is indeed exponential and if we
write p//p ~ et/™ we can get an estimate for the time constant 7: 7 = .32s. In other words
it takes the instability about .74s to grow a factor of 10. Therefore, even if the system
is operated in a regime where the ‘singing’ state is the only dynamically stable state, it
takes some time for the pressure oscillations to grow to the limit cycle if they start off at
a small amplitude. We have demonstrated above that the Rijke burner can be forced to
transition to the ‘quiet’ state by temporarily adding fuel. Intuitively it should therefore be
possible to repeatedly ‘kick’ the system and keep the amplitude of the instability within a
predetermined range. This approach is demonstrated in figure 3.27. The fuel flow rate is

3SLM and thus the operating point is to the right of the hysteresis loop. By commanding
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the controller to open the secondary fuel line for .05s each time the pressure hits a certain
threshold, we effectively suppress the oscillations for a short period of time. Note that the
‘quiet’ state is dynamically unstable and thus we cannot hope to remain in this state (as
opposed to above); instead, the control action needs to be applied repeatedly, that is each

time the threshold is reached again.

0

10

Figure 3.26: Logarithmic plot of the growth phase of the pressure oscillations (part of the

trace in figure 3.27)

3.4 Summary

In this chapter we have shown how the analytical framework developed in chapter 2 can be
applied to a Rijke tube.
Using a simple one-dimensional transfer function approach, we have shown that the linear

stability boundaries can be computed with a low order model (only four modes were used
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Figure 3.27: Control in the ‘unstable’ region

in the simulations, giving rise to four coupled second order differential equations).

To correctly capture the nonlinear behavior of the system, a more complex model is needed.
It appears that nonlinear heat release effects need to be included; and - based on the flow
visualization of the Rijke burner transition - a one-dimensional description of the flow field
may not be enough.

The demonstrated possibility of a controlled transition between the stable and unstable
branch of the Rijke burner suggests a new approach to designing control laws for combus-
tion systems. However, a deeper knowledge of the nonlinear dynamics - obtained either
through an experimental investigation or a more sophisticated model - is required to use

this approach.
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Chapter 4

Effects of Noise

Observing experimental pressure traces it is obvious that they are not as ‘clean’ as the
ones the model produces. In fact a look at a pressure spectrum shows the presence of a
broad background ‘noise’ across all frequencies. It should be clear that the model, in the
way presented up to here, is not capable of producing frequency components different from
the modal frequencies. In this chapter we attempt to explain the origins of the noise and
show how to integrate it into our model. Finally we analyze how the presence of stochastic
sources affects the dynamics of the system. The main purpose here is to investigate some of
the behavior that is possible. We will not attempt to construct realistic models, but rather
explore some aspects of solutions to the oscillator equations with stochastic sources, to aid
interpretation and understanding of observed behavior.

From time to time in the past fifty years or so the subject of combustion noise has been
an active area of research for brief periods of time. Usually attention has been directed to
certain aspects treated at least partly in analogy with the more highly developed subject
of aerodynamic noise generated in jets, shear layers and boundary layers. The true origins

of the noise observed in combustors remains largely obscure.
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Even less attention has been paid to matters relating to connections between noise generated
by the combustion field and the dynamical behavior of the chamber containing the reacting
flow. Indeed, this aspect of the subject has been so much out of the mainstream of research
activities generally that it seems to have been approached more or less independently, and
with varying degrees of effort, by only five groups of workers: several coordinated efforts
in Russia beginning in the 1960’s; Summerfield and his students in the 1970’s; Strahle and
co-workers in the 1970-80’s; Hessler in the 1980’s; and Paparizos, Culick and Burnley in the
1990’s.

The earliest work by the Russians treating problems of chamber dynamics and combus-
tion instabilities in liquid rocket engines was not known in the West until the early 1990’s
(Denisov, Kadishevish and Povolotzky 1995). Broadly those efforts led to a practical method
of assessing the stability margins of stable liquid rocket engines manufactured in large quan-
tities. In practice, the stability margin of a particular engine could be assessed for practical
purposes (e.g., acceptance for launch operations) by analyzing the statistical properties of
a single firing of that engine. That method was used routinely instead of the method of
’bombing’ with small explosive charges developed by NASA during the Apollo program.
Hessler (Hessler 1979, Hessler 1980, Hessler 1982, Duer and Hessler 1984) advocated some-
what related ideas for solid propellant rockets but the approach was not followed in the
U.S. to the extent it evidently was in Russia.

Those methods amount to attempts to answer the question, ”What information about
potential combustion instabilities can be gained from analysis of the pressure record for a
firing of a stable motor?” The usefulness of the answer of course depends not only on careful

data processing of the record but especially on interpretation of the results of the analysis;
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the interpretation in turn depends entirely on understanding the dynamical processes in the

combustor.

4.1 Stochastic Sources

According to a general principle most thoroughly discussed by Chu and Kovasznay (1956),
it is not enough to consider only acoustic disturbances in the combustion chamber. Chu
and Kovasznay (1956) show that any small disturbance in a compressible medium can
be synthesized of three kinds of waves or ‘modes of motion’: acoustic waves, entropy or
temperature waves, and vorticity waves. While it is correct that in the limit the acoustic
waves carry all the pressure fluctuations and are thus observed as combustion instabilities,
the other two wave kinds will affect the dynamics of the system.

In particular, keeping in mind all 3 modes of motion allows one to write down explicitely
the contributions from gasdynamics to the functions h and f defined in section 2. It’s also
the gasdynamical terms that represent the most significant sources of noise, although it is
conceivable, as others have pointed out, that other sources contribute noise (Glick 1996
99), such as the randomness associated with combustion of heterogeneous propellants. The
major task is to extract from h and f representations of noise sources in such a form that
modeling can be done, either theoretically or using experimental results.

In this section a procedure is outlined to incorporate the effects of entropy and vorticity
(following Burnley (1996)). Based on the discussion of Chu and Kovasznay (1956) the flow
variables (notably the velocity) in the functions A and f are written as sums of contributions
associated with each of the three modes of motion. The details of manipulating the various

terms in h and f depend crucially on properly respecting the formal ordering procedure
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(Culick 1997). The new variables are then inserted in the equations derived by spatially
averaging, producing integral representations of noise sources in terms of stochastic flow
variables.

In order to obtain numerical results, models of the stochastic variables must be chosen or
constructed. In this work white noise behavior is assumed. The analysis produces stochastic
differential equations for amplitudes of the acoustic modes assumed to represent a combus-
tion instability. Solving these equations then gives amplitudes reflecting the stochastic or
random character of the sources. Results obtained do appear to be realistic but there is no
basis for making quantitative comparisons with measurements.

It is important to understand that we are not using this analysis to calculate the noise field
in the chamber. To do so would require considering an enormous number of terms in the
expansion of the pressure (2.15) in order to cover the broad range of frequencies contained
in the spectrum of noise. Rather, we are interested in determining the possible influences
of noise on the time-varying amplitudes of the lowest (dominant) modes of the chamber.
Hence we will retain only two or three of the set (2.16). The source terms representing noise
generated within the volume (part of 2) and at the boundary (part of f) will, on the other
hand, contain a broad band of frequencies—the precise form depends on the model chosen

for the fundamental noise sources.

4.1.1 Three Modes of Motion

Unlike the analysis in chapter 2 in which only the organized oscillatory acoustic field was ac-
counted for, we include here both the deterministic (acoustic) part and the non-deterministic

(stochastic or random) part of the motion. According to the principle cited in Chu and
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Kovasznay (1956), we can write for weak disturbances
p'=p,+ o+ P (4.1)

where pl,, pq, P, are the pressure fluctuations associated respectively with acoustic, vorticity,

and entropy waves. Corresponding to (4.1) we may split the velocity, vorticity and entropy

fields:
u = U+ Ug+ U,
@ = @G+
s = &, +sh+s, (4.2)

In lowest approximation (small amplitude, uniform mean flow) the three types of waves

propagate independently and have the properties (Chu and Kovasznay 1956):

Acoustic waves: pressure and velocity fluctuations only
Vorticity waves: velocity and vorticity fluctuations only
Entropy waves: velocity and entropy fluctuations only

Hence to this lowest approximation,

pP= P

Q =

s = 4

@ = U, +dy+ T, (4.3)

The density fluctuation for this case of independently propagating waves is
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As in previous applications of spatial averaging (see above, Culick and Yang (1992), Culick
(1994) and references cited there) the central idea motivating the structure of the analysis,
and the ordering procedure, is the following. The phenomena called generically combustion
instabilities are dominated by acoustic waves. Hence the pressure field is represented by

the expansion (2.15) with p’ identified as the acoustic pressure and we write

P =L = 5> nas (87 (45)
=1

The approximation is that p’ ~ p in the left-hand sides of (2.10), (2.11) and therefore
Tn — Tan in (2.16):
d*1an

—_dtZ + w72177an = I, (46)

To write (4.6) as a system of equations governing the 74, as the independent variables
requires, as seen above, approximating the flow variables p/, @', and p’ appearing in the

integrals defining F,.

4.1.2 Gasdynamical Terms

The forcing function F;, is given in equation (2.17). For the purposes here we must concen-
trate on the integrals Iy,..., I as defined in equation (2.18). The nonlinear contributions
I3 and I4 eventually generate coupling between the acoustic field and those motions iden-
tified as noise. To simplify the following calculations we simply ignore entropy fluctuations
(clearly not strictly permissible for analysis of combustors) and substitute (4.2) and (4.4)

in the definition of Is:
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1
+/ (ﬁ;-w@+ﬁb-v*’ + ;%‘1——“@) VipndV

. / ) - Vi dV (4.7)

The terms in curly brackets form part of the ‘second order acoustics’ treated at length
in references cited earlier. Within the ordering procedure followed in those works, it is

legitimate! to replace %/, by the same series expansion as above

[ee]

Z 1 2 v% (4.8)

j=1 J

Note that term by term, the two series (4.5) and (4.8) satisfy the classical linear acoustics

equations,
o,
= 0
8
op!
Yo \ pv i, = 0 (4.9)

ot

Substitution of (4.5) and (4.8) in the curly brackets in I3 and in all corresponding terms
appearing in I, Iy and Iy leads to the familiar terms nonlinear in the 7,; and 17,; quoted
above (see equation (2.21)).

Since we have ignored entropy fluctuations, we are assuming here that non-deterministic
or stochastic motions (i.e., all non acoustic notions) are contained in the vorticity fluctua-
tions. In solid propellant rockets, two sorts of vorticity may exist: vorticity associated with
turbulent motions; and organized vorticity in the form of shear waves generated at burning
surfaces (Flandro (1995); Majdalani and van Moorhem (1995)). The second type is also a

subject of current research and will be ignored here.

Legitimate, that is, to the order to which those analysis were taken. The substitution is not correct
to higher order; finding the correct substitution, or an equivalent procedure, when contributions of higher

order in the average Mach number are accounted for, is a subject of current research.
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Therefore, the result of this analysis so far is that the part of I3 that might be identified as

a source of noise is
, 1 pg, Qg
oo = [ (1 Vit + ity V7, + 22522 . 9,0y
+ / (g - Viig) - VippdV (4.10)

Leaving u, unspecified for the moment, substitute the expansion (4.5) and (4.8) in the

integrals. The result contains three kinds of terms having the form

(Is)noise = 3 € (£)ai(t +Z£ "Hai(t) + EQ(2) (4.11)
i=1

It is fairly easy to see from the definitions given in (2.18) that I, will generate terms having
the same form. Because they are linear, I; and Is produce terms that represent either linear
attenuation, due to interactions between the mean and fluctuating fields but independent of
g; or independent of the acoustic field and linear in f, that can be symbolically combined
with 57(13) (t). Similar reasoning can be applied to surface integrals in (2.17), and (4.11) is
the general form for noise sources at the boundary as well as within the volume.

The result of this reasoning is the following system of acoustic equations that are the system
used in previous work (Culick 1995, Culick and Yang 1992, Culick 1994) with the additional

source terms representing stochastic or noise sources:

T + wr%nn = 20p0n + 2wn0nnn — Z Z nij i -+ angnﬂ]]]
i=1j=1
oo
+ (Fn) e + D _1Eni ()7 + Eni()mi] + En(t) (4.12)
i=1

We have dropped the unnecessary subscript ( ), on 74, and we ignore linear coupling of
the modes (Culick 1997). In later calculations here we will also ignore the term (F,)NL
representing the influences of other processes not discussed here, notably nonlinear com-

bustion. Note that the linear terms include all linear processes, including linear combustion
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dynamics. The combustor is linearly stable if and only if all modes are linearly stable, ie.,

o, negative for all n.

4.1.3 Discussion

We now analyze the extra terms in the oscillator equations. Two of those terms have the
form of multiplicative noise coupled directly to the oscillators (i.e., the acoustic modes).
As well as coupling the modes, some of those terms represent random fluctuations of the
damping and spring constant (i.e., the natural frequency) of the modes. This form of cou-
pling between noise and the motion of the system is sometimes called parametric excitation.
The remaining terms, independent of the oscillators’ motions are called additive; they are
‘external’ to the acoustic modes representing deterministic motions in the combustor. It is
important to notice that both multiplicative noise terms as well as the additive term appear
even though in the limited derivation given here we have only used vorticity waves. If we
include entropy waves the same sort of terms appear. One can indeed argue that no matter
what disturbances are included, terms having the same form will appear. Of course the
exact expression of the terms will change, but since we assume here that they all average
out to white noise, no new phenomena will arise. However, by using only one further dis-
turbance (vorticity waves) we have shown that those three terms are indeed necessary to
capture the whole behavior of the systems. In the literature, noise terms have in general
been ignored or at most external disturbances, acting as additive noise, have been consid-
ered. We argue that this might lead to an inaccurate description of the system, especially
when applied to design an active controller (see chapter 5).

The response or transfer function for a combustor has infinitely many relatively narrow

peaks or resonances in its frequency spectrum. Hence a broadband noise field—here we
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will assume white noise—is capable of exciting the acoustic modes due to the action of the
additive noise contributions. Because natural damping processes become stronger as the
frequency increases, only the lowest modes are likely to be excited.

If the combustor is linearly stable, then the noise sources will, according to this picture,
excite apparently random motions in the chamber which must contain information about the
characteristics of the modes, i.e., of the corresponding oscillators. That is, with appropriate
analysis of pressure records, one should be able to solve for the damping ratios «,,, and the
natural frequencies w, of the modes excited. Finding those characteristics is an example
of the general process called system identification (system ID), a well-known activity in
several fields. Note that application of system ID requires a model of the system, here a
collection of simple oscillators. Examples of system ID applied to combustors with noise
and combustion instabilities are discussed in the next section.

There are at least two general questions to be addressed in the subject of noise and com-

bustor dynamics:

1) Is noise, meaning any stochastic or random source, capable of causing the organized

oscillatory motions identified as combustion instabilities?

2) What can be learned about the dynamics and stability of a combustor by applying

methods of system identification?

In respect to the first question, the implication is that combustion instabilities are forced
oscillations, a position advocated for many years by Hessler (Hessler 1979, Hessler 1980,
Hessler 1982) and more recently Hessler and Glick (1998). Perhaps the most obvious and
unambiguous way to determine whether oscillations are forced (driven) or are self-excited

(i.e., linear instabilities) is based on examining the transient growth periods.
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In self-excited oscillations the mechanism responsible for the instability is internal to the
system, in our model via the feedback through F,, in equation (4.6). The typical behavior
is sketched in figure 4.1(a) showing the initial exponential growth of amplitude (concave

upward), evolving into a limit cycle due to the action of nonlinear processes.

(a) Self-excited system (b) Driven system

Figure 4.1: Transient growth of driven and self-excited systems

In the case of driven oscillations, the underlying system is dynamically stable and the force
F,, is entirely due to external influences (instead of involving the fluctuations, i.e., @' and
?’). When the external driving starts acting, the amplitude of the oscillation grows as shown
in figure 4.1(b): concave downward. It finally reaches a constant peak amplitude without
the action of nonlinear processes. This holds because as ¢ — oo the amplitude is set by
the condition that the time-averaged power input due to the external force is equal to the
time-averaged rate of energy dissipated within the system. In fact, the condition rate of
energy gain = rate of energy loss is true also in the limit cycle of self-excited oscillations,
but in that case the energy gains and losses are all internal.

The contrast in the transient growths of self-excited and forced oscillations is a fundamental

property central to one of the main points of this chapter: data for the transient growth
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of combustion instabilities in solid propellant rockets have inevitably had the behavior
shown in figure 4.1(a). We are not aware of any data having the form of the sketch in
figure 4.1(b). Therefore, we must conclude that combustion instabilities observed in solid
propellant rockets are the results of true linearly unstable motions. That conclusion means
that there must be internal feedback, a driving force sensitive to the motion itself.

In the following section we examine the question: Can noise alone force significant oscilla-
tions in a linearly stable system? The answer depends on just how stable the system is,
but our results suggest the same conclusion that Strahle (1978) reached many years ago:
No. Thus, it seems that all evidence supports the commonly held view that combustion
instabilities really are a consequence of unstable conditions.

On the other hand, noise sources certainly do influence both qualitative and quantitative as-
pects of the oscillations. Simulations in the next section show the most obvious consequence
of noise in the system is that the pressure during an oscillation is not a clean sinusoid and
hence the peak amplitudes are no longer constant in the motions but are properly described
by a probability distribution, the most probable value being that for the amplitude of the
deterministic limit cycle.

Question 2 stated above has been partly answered. Calculations in the following section
show that much can be learned with system ID if the system is both stable and behaves
linearly. Otherwise, assessing the stability margin, or other characteristics, requires deeper
investigation of the system’s dynamics. In all cases, the matter of uncertainties arising with

processing noisy data must be thoroughly addressed.



78
4.2 Noisy Combustors and System Identification

System identification seems first to have been used in the field of combustor dynamics
by several Russian groups as part of their development of liquid rocket engines, beginning
perhaps as early as the 1950’s but certainly in the 1960’s (Agarkov, Denisov, Dranovsky, Za-
vorokinin, Ivanov, Pikalov and Shibanov 1993). Evidently the approach was used routinely

to assess the stability margins of newly fabricated liquid rocket engines.

4.2.1 Two Methods

In section 4.1 it was shown that the addition of non-acoustic velocity perturbations leads
to a system of equations of the following kind:
fip = (2wn9n —wh + En) M+ (200, + &) T + En
N N

=3 " (Anigniiy + Brigming + Muijniti;) (4.13)
i1 =1

It was mentioned that three distinct kinds of stochastic source terms are present: ‘additive
noise’ — noise as the driving force of an oscillator — as well as ‘multiplicative noise’-random
perturbations of the growth constants «,, and the frequency shifts ,,. The multiplicative
sources cannot a priori be neglected since any disturbances in the combustion chamber
will have an effect on the combustion process as well as the flow field and thus on «,, and
6,. At this time no successful model of the noisy source terms is known so we choose to
approximate them by ‘white noise’.

In the following a linearly stable system consisting of four acoustic modes with stochastic
sources is simulated. Additive and multiplicative noise terms are included in the simulations
and their effect on the resulting pressure oscillations is analyzed. The fundamental mode

of the system considered has a frequency of 900 Hz. Realistic values for the parameters
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have been taken from Jahnke and Culick (1994) and are given in table 4.1. The simulation
generates a pressure trace (here it is assumed that the pressure is recorded at the midpoint

of a closed-closed combustion chamber) similar to the one shown in figure 4.2.

mode 1 2 3 4

an (1/sec) | -b0  -324.8 -583.6 -889.4

On (rad/sec) | 12.9  46.8  -29.3 -131.0

Table 4.1: Parameter values used in the simulations

1 I L 1 1 i 1 1 L
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 04 0.45 0.5
time (s)

Figure 4.2: Typical simulated pressure trace

In laboratory and field experiments such pressure traces are recorded and are often the only
available data. Thus the desire to extract as much information as possible about the system
from it. Hessler and Glick (1998) have proposed using ‘Burg’s Method’ (also known as the
‘Maximum Entropy Method’) to curve-fit the power spectrum of the signal. Some underly-
ing principles of this method are given in appendix B; Figure 4.3 shows its application to
the present case. The method is extremely powerful and allows easy determination of both
frequencies and growth constants from the experimental data. A great advantage of this
method is that no external signal needs to be applied in order to do the system identifica-

tion. The internally generated ‘noise’ — resulting from combustion, flow turbulence, ... —is
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sufficient to drive the system and identify the acoustic structure.
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Figure 4.3: Application of Burg’s method: Power spectrum of pressure signal shown in

Figure 4.2 (top) and its reconstruction using Burg’s method (bottom)

A rather common method used experimentally to test the stability of rocket motors is
to detonate a small explosive inside the combustion chamber — thus introducing a sharp
pressure pulse into the system — and record the decay of that pulse (Harrje and Rearden
1972); see also the example given in the introduction. This approach has been used here
in order to compare the achievable results with the method mentioned above. In this case
the information is extracted by fitting an exponential decay directly to the signal without
making use of the power spectrum. In this method the fitted signal consists of a simple

superposition of modes:

N
= Ae™ cos(wit + ;) (4.14)

=1

S

The parameters A4;, o;, w;, and ¢; are fitted using a least squares method. For all simulations
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reported here, the introduced pulse p’/p had an amplitude of 10%; figure 4.4 shows the

decaying pulse for the same system used previously and the signal fitted to it.

simulated signal

0.1 T T T T T T T T T
0.05 .
0
-0.05 i
-0.1 L 1 L L . . L L L
0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
fitted signal
0.1 T T T T T T T T T
0.05 ]
0
-0.05 4
-0.1 L L . L L L > L L
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Figure 4.4: Fitting an exponential decay: the reconstructed signal is made up of 4 exponen-
tially decaying oscillators where both decay constants and frequencies get fitted by a least

square method to the simulated pressure trace

Both methods are able to detect the frequencies of the modes (and thus the ’s) and the
effective a’s. Note that they detect the effective decay constants, combinations of driving
and damping effects. It is not possible to separate those effects by analyzing the data.

The following sections contain closer examinations of these two diagnostic methods under

various conditions with stochastic sources.

4.2.2  Linear Motions Forced by Additive Noise

In this section both &Y and ¢ are set to zero and only the influence of the additive noise on

the stable linear system is considered.
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Due to the random nature of the equations, the simulation is repeated multiple (50) times
for each data point using different realizations of the white noise. In that way both mean
and standard deviation of the identified parameters can be reported. In the lab such an
averaging could be achieved by repeating the experiment or splitting a longer signal into
smaller parts (assuming that the ‘real’ noise is indeed white, i.e., independent of the prior
signal). However, this is not always possible and thus it is important to get a good idea

about the confidence level associated with the detected parameters.

Noise power for =, | Average p'/p

10! .005%
108 05%
10° 5%

Table 4.2: Relationship between the parameter = and the measurable system output

The random source terms are unknown and are represented in this study by white noise.
The strength of the sources are parameters of the system and are defined by their ‘noise
power’ — the height of the power spectral density of the white noise. This ‘noise power’ is
not a measurable quantity; its range has been chosen so that the output of the system, the
recorded pressure oscillations, has a reasonable amplitude. Table 4.2 shows how the ‘noise
power’ of = relates to the average pressure fluctuation for the system under consideration.
This relation depends on the system as the various source terms need to scale with the
relevant characteristics of the system to have an appreciable effect. Thus equation (4.13)
shows that £V relates to the magnitude of the growth rate of the least stable mode whereas

= scales with the inverse of the growth rate and the inverse of the square of the frequency.
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Note that the forcing in the case considered here is given by Z which, being white noise,
acts at every frequency and in particular at the resonance peak of each mode.

Figures 4.5 and 4.6 show the results of the system identification using Burg’s method and
the method of pulsing respectively. The main concern being the stability of the system, the
results for the growth constants of the various modes are reported in detail along with their
standard deviation in tables 4.3 and 4.4.

The values for decay rates and frequency shifts inferred with Burg’s method are not in-
fluenced by the amplitude of the additive noise sources. This is to be expected since the
system analyzed is purely linear and thus changing the amplitude of the (stochastic) driv-
ing force is only going to affect the amplitude of the final oscillation but does not change
any other characteristics of the system. This can also be seen in figure 4.7 which shows
the amplitudes of the different modal peaks in the power spectrum against the input noise
power. The relation is a linear one and thus the ratio (output power)/(input power) remains
constant, meaning that an increase in noise does not lead to a different qualitative behavior
of the system.

According to table 4.4 the method of pulsing gives more consistent — the standard deviation
between multiple runs is less then 1% - results at low noise levels. At higher noise levels
the variance of the results increases dramatically as the decaying pressure pulse gets rapidly
‘drowned’ by the noise. This effect is especially pronounced for the fast decaying higher
modes and is in sharp contrast to the independence of the identification accuracy using the
power spectrum. Using this latter method, the values of all decay constants can be given

to 20% uncertainty for any noise level.
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Figure 4.5: Using Burg’s method for systems with additive noise (15 mode:

x, 3" mode: +, 4" mode: V)

(b) Frequency shifts

Noise o1 ) a3 0y
10! -52412 | -298+48 | -5714-80 | -898+108
102 -51£16 | -297+39 | -5894117 | -896+188
103 -59414 | -301£42 | -592+71 | -858+137
10* -484+10 | -301£42 | -561+73 | -884+159
10° -96£18 | -309+£52 | -603+84 | -8554145

correct -50 -325 -584 -889

Table 4.3: Additive noise results for a;’s with Burg’s method

0, 2" mode:
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Figure 4.6: Using method of pulsing for systems with additive noise (1% mode:

(b) Frequency shifts

x, 3" mode: +, 4 mode: V)

Noise o o o3 Qg
101 | -50+1 | -3254+1 | -584+2 | -891+3
102 | -5041 | -32541 | -585+2 | -89145
10 | -504+1 | -3254+2 | -58544 | -8944-8
10* | -4942 | -32343 | -584+10 | -891+21
105 | -4746 | -323416 | -592435 | -916--119
108 | 42417 | -327462 | -544465 | -8314+274
correct -50 -325 -584 -889

Table 4.4: Additive noise results for o;’s with method of pulsing

o, 2™ mode:
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Figure 4.7: Peak amplitudes for all modes in the power spectral density vs. input noise

power (15 mode: o, 2”@ mode: x, 3"¢ mode: +, 4" mode: V)

4.2.3 Linear Motions with Multiplicative Noise

The numerical experiments are repeated for multiplicative noise. A certain amount of
additive noise (noise power 10%) is also added to excite the otherwise stable system.

There are two distinct kinds of multiplicative noise; in equation (4.13) they are denoted
by &Y and £, causing respectively stochastic fluctuations of the damping and the frequency.
Both kinds of source terms are analyzed separately. Figures 4.8 and 4.9, as well as tables
4.5 and 4.6, show the effect of random perturbations of the frequency shift on the identified
decay rates of the individual modes using the two different methods. No apparent effect is
noticeable — both the mean value and the uncertainty associated with it remain unaffected
by the noise source. Comparing with the previous section, it can be seen that the observed
scatter is only due to the presence of the additive noise.

At the same time the identification (mean and accuracy) of the modal frequencies (and thus
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Figure 4.8: Using Burg’s method in the presence of multiplicative {-type noise (1% mode:

o, 2™ mode: x, 3"¢ mode: +, 4** mode: V)

Noise aq o) o3 g

10 -57+£14 | -3014:31 | -560+84 | -886+98

102 -51£13 | -307+52 | -576x75 | -903+126
103 -47+11 | -307+38 | -558+78 | -901+117
10* -56416 | -300+£51 | -591488 | -8834150
10° -59+18 | -310+£53 | -598+95 | -914+128
108 -53+15 | -310446 | -564+84 | -905+172

107 -594+19 | -313444 | -591+83 | -887=124

correct -50 -325 -584 -889

Table 4.5: Multiplicative ({—type) noise results for ;’s with Burg’s method
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Figure 4.9: Using the method of pulsing in the presence of multiplicative é&-type noise (1

mode: o, 2" mode: x, 3" mode: +, 4" mode: V)

Noise o Qg o3 Q4

100 | -50+2 | -32346 | -584+9 | -889+35
10?2 | -50+2 | -32545 | -589+£8 | -908+36
10% | -50+2 | -3224-4 | -587+10 | -891+44
10* | -50:3 | -32645 | -589+£8 | -902+37
10% | -4943 | -326+4 | -586-£12 | -895+35
10° | -5042 | -324+4 | -582+15 | -8864-43
107 | -4943 | -327+4 | -583+11 | -877+51

correct -50 -325 -584 -889

Table 4.6: Multiplicative ({-type) noise results for a;’s with method of pulsing
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of the frequency shifts) is independent of this sort of parametric noise. This is due to the
fact that the length of the analyzed pressure trace is much longer than the fundamental
period and therefore the frequency perturbations average out.

The influence of growth rate perturbations is displayed in figures 4.10 and 4.11 and tables
4.7 and 4.8. At low levels the system identification based on Burg’s method gives the
same results for mean detected growth rates, and their uncertainty, as for the other types of
noise. As the noise level grows, however, a shift in the mean values occurs (and thus a wrong
determination of the system parameters!), paired with a spreading uncertainty. Finally, as
the noise power reaches a critical level, the linear system 1D process breaks down.

This type of parametric noise also strongly affects the identification of the system parameters
determined by measuring the decaying pulse in the chamber. It should be noted that even
at the low noise levels where Burg’s method delivered familiar results, the method of pulsing
shows rather large standard deviations (25% for the first mode) of the detected parameters
when compared with low levels of the other kinds of perturbations (where the error was
of the order of 1%). With growing noise level both the shifts of the mean values (growing
identification error) and increasing uncertainty are apparent before the identification process
completely fails.

At this ‘break-down point’ the instantaneous growth rate of the first mode (the least stable
one) has a finite probability of being positive thus changing the qualitative behavior of the
system. As a result the system response undergoes a dramatic change: the pressure signal
now exhibits ‘spontaneous bursts’. This phenomenon is demonstrated in figure 4.12.

The development of this qualitative change can be seen in the power spectrum. Whereas for

both additive noise (figure 4.7) and multiplicative £ type noise (figure 4.13) the amplitude
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Figure 4.10: Using Burg’s method in the presence of multiplicative £—type noise (1% mode:

0, 2" mode: x, 3" mode: +, 4 mode: V)

Table 4.7:

Noise o1 a9 Qa3 (o7}
10 -56£17 | -314+44 | -580+81 | -877£114
50 -42+11 | -320%48 | -B88112 | -9224249
100 -46£20 | -353£82 | -636+£96 | -913+119
150 -48+15 | -453£172 | -701+£146 | -913%173
200 -92+170 | -551£275 | -799+£216 | -991+189
correct -50 -325 -584 -889

Multiplicative (£Y—type) noise results for a;’s with Burg’s method
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Figure 4.11: Using the method of pulsing in the presence of multiplicative £”~type noise

(b) Frequency shifts

(1** mode: o, 2" mode: x, 3"¢ mode: +, 4 mode: V)

Noise 1 %) o3 4
10 -514£13 | -327+£29 | -601x41 -8994+115
20 -49+£12 | -319+34 | -607x67 | -10014+347
50 -414£22 | -4164+274 | -882+542 | -1333%762
100 -52445 | -3544-201 | -8784+502 | -11714+636
correct -50 -325 -584 -889

Table 4.8: Multiplicative ({"—type) noise results for «;’s with method of pulsing




92

A 1 1 1 L 1 1 |
0 0.05 0.1 0.15 0.2 0.25 03 0.35 0.4 0.45 05
time (s)

Figure 4.12: Pressure trace in the presence of multiplicative £~ type noise (and the same

amount of additive noise as in figure 4.2)

ratios for all the modes remain constant, this is not the case when growth rate perturbations
are present. Figure 4.14 clearly shows that this kind of perturbations has its biggest affect
on the first mode; its amplitude grows while the other modes remain at a constant level.

Therefore, the modal composition of the system response changes with the noise level.

4.2.4 System ID Applied to Limit Cycles with Noise

Up to this point only purely linear systems have been considered. These systems were all
stable (an unstable purely linear system is of course unrealistic). To simulate combustion
instabilities, nonlinear systems are used, the linear part of which is unstable. The nonlinear
terms introduced into the system produce limit cycles, i.e., pressure oscillations of a fixed
amplitude. It can be shown (Paparizos and Culick 1989) that in the case of purely longitu-
dinal acoustic modes the second order nonlinearities that need to be retained in equation

(4.13) are given by the following terms:

ﬁn -+ w%nn = (20171 + 5777),)7771 -+ (Zanwn + gn)nn + Ep

- Z{_:l [Cfﬁ)ﬁmm + D&) 77i77nvi:l
i=1
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Figure 4.13: Peak amplitudes for all modes in the power spectral density with multiplicative

£-type noise (1% mode: o, 2" mode: x, 3" mode: +, 4" mode: V)
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Figure 4.14: Peak amplitudes for all modes in the power spectral density with multiplicative

£U—type noise (1°* mode: o, 2"¢ mode: x, 3"® mode: +, 4** mode: V)
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N-n
[C( )7717777,—H + Dgn)'r/ﬂ?nﬁ—z] (4.15)

i=1
For the calculations that follow the first mode is assumed to be unstable by putting a;=>50;
all other values of o, and @, are the same as in table 4.1; figure 4.15 shows a sample trace of

an unstable system in the presence of all three kinds of noise sources. The power spectrum

of the pressure signal together with a fit using Burg’s method is shown in figure 4.16c.
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Figure 4.15: Pressure trace in the limit cycle of an unstable system (all three sources of

noise are present)

Results obtained by applying the same methods as above have no apparent connection to
the (known) parameters. The ‘detected’ parameters have all (both «a;, and 6,,) values close
to zero.

The reason for this is that in a limit cycle the average linear growth constants are indeed
close to zero because the amplitudes converge towards limiting values from both below
(growing) and above (decaying). Thus it is impossible to recover the original linear values
since the limit cycle is a strictly nonlinear phenomenon. Since the modes combine to form a
limit cycle for the pressure oscillation, the frequencies obviously need to become harmonics
of each other which explains the identified frequency shifts. Figure 4.16a shows the pressure

trace in the phase-plane and demonstrates that this is indeed a limit cycle.
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Figure 4.16: Characteristics of the limit cycle in figure 4.15
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The limit cycle is a result of the nonlinear interaction between the different modes; linear
concepts are therefore only useful when a few modes couple to form the limit cycle, while
the other (stable) modes remain essentially uncoupled, obeying the equations of the linear
regime. In such a case Burg’s method does indeed allow the identification of the decay rate
of those uncoupled modes.

Figure 4.16d shows the distribution of pressure maxima and minima in the limit cycle of the
simulated pressure trace displayed in figure 4.15. Because these distributions are a direct
consequence of presence of the stochastic terms (without random sources the distribution
is a delta-function), current research focuses on possible methods of using them to obtain
information about the system.

Analyzing these distributions is similar to applying higher order spectral methods to the
pressure trace. Vasta and Roberts (1998) describe a method using fourth order spectral
quantities to estimate unknown parameters in nonlinear, randomly excited dynamic sys-
tems. In a simulated application to a nonlinear oscillator with both nonlinear damping and
stiffness and with a Gaussian noise excitation, the approach performs fine. We tried apply-
ing the same methods to the problem of combustion instabilities. Initial results showed that
the presence of multiple modes made this approach numerically extremely expensive and
the parameter estimates were not very accurate. A further disadvantage of the method is
that it works only for additive noise; a different or modified analysis needs to be performed
if multiplicative noise is present.

If the nonlinear system consists of only one mode, then the equations are linear in the
parameters (, 0) and the approach described by Lieuwen and Lee (2000) can be taken. In

that method first and second derivatives of the pressure are estimated from the experimental
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data and the values of the parameters are then fitted (by a standard least squares mini-
mization) to the experimental data. As noted by Lieuwen and Lee (2000), this approach
fails when other modes are present (even with very small amplitudes) and the method is

not able to distinguish between linear and nonlinear effects that control the amplitude and

the phase.

4.3 Additional remarks

It has been shown that pressure records, obtained numerically or experimentally, can be
easily processed (e.g., by using MATLAB) to identify certain system parameters.

The stable system used in this study can be identified quite robustly by methods based on
the power spectra; the method chosen here is the 'maximum entropy method’ as proposed
by Hessler. The internal noise sources provide sufficient driving to extract the relevant linear
characteristics of the system. Burg’s method is actually preferable to a method based on
introducing a pulse and measuring the decay rates directly, especially in the presence of
strong multiplicative noise because it is more robust. That is, it remains applicable to
higher noise levels and the standard variation of the measured parameters is constant over
a wide range of noise levels. This robustness, however, comes at the price of a higher
‘uncertainty’ at lower noise levels thus requiring multiple measurements to obtain reliable
values of the system parameters. Whereas the standard deviation to be expected in the
measurements done by fitting a decaying pulse varies with the strength of the stochastic
noise terms (which remain unknown!), it is rather constant (but large, at about 25% for
the first — most important — mode) in all cases when Burg’s method is used. Thus results

obtained from single measurements during motor firings cannot be expected to be very
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accurate.

The results obtained for the particular system analyzed can be somewhat generalized by
studying a few more cases. The parameters (growth rates and fundamental frequency) used,
supposed to illustrate extreme cases, have been arbitrarily chosen. It has been shown above
that by using Burg’s method constant mean values and standard deviations are found over
a wide range of noise levels. In table 4.9 those values are reported for the various systems
examined; in these case studies the noise levels have been adapted (see above) such that

the output of the systems covers the same range (p'/p between .005% and 5%).

actual system identified parameters

w1 Q] 8% a3 (07] o (0%) a3 (671

900 | -50 | -325 | -584 | -889 || -52+13 | -305446 | -580+£81 | -880+141
900 | -50 | -50 | -50 | -5O || -524+13 | -51412 | -52+13 | -53+13
900 | -5 | -325 | -584 | -889 |[ -10+6 | -305+46 | -580+81 | -880+141
900 | -5 | -50 | -50 | -50 (| -11£6 -524+14 | -55+15 | -54+13
o0 | -50 | -325 | -5684 | -889 || -484+12 [ -122424 | -123+24 | -125+25

50 | -5 | -50 | -50 | -50 -5%1 -484+5 -00£7 -91%8

Table 4.9: Results of parameter identification for various different systems

A general pattern seems to be evident from table 4.9: at high frequencies it is difficult to
detect small decay rates whereas at low frequencies the fast decay rates are impossible to
identify. The reason for the latter is easily seen: fast decay rates mean broad peaks in
the power spectrum — at low frequencies consecutive modes are close enough together that

those peaks overlap, making it impossible to detect their ‘width’. In practice such a case
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is easily detected by a quick glance at the power spectrum. In case of a high fundamental
frequency a wide power spectrum (large frequency range) needs to be fitted; this explains
a greater uncertainty in fitting the narrow peaks associated with small decay rates. From
the results it is also apparent that it doesn’t matter whether the a’s are similar or vastly
different in value.

These cases confirm that for realistic systems the system parameters can be detected by
studying a noisy signal; however, the accuracy of the measurement may not be sufficient
for practical purposes. The usefulness of the method cannot be determined without further
study. Note that the Russian procedure cited at the beginning of this chapter was based on
using certain statistical properties of pressure records and did not rely simply on the results
of system identification.

The values of the decay rates obtained by any kind of identification process are net values;
the values for the gain (growth of the oscillation) due to the combustion process or other
sources cannot be inferred without identifying all the losses. Hence the values of the growth
constants are particular to a given motor and probably have limited value; there is no
apparent way of inferring general behavior of rules without extensive tests (motor size,
configuration,. . .).

It has been shown that the stochastic sources will sustain small amplitude oscillations;
however, they do not produce a qualitative change in the power spectrum of the signal
in stable systems (with the exception of extraordinary large perturbations of the linear
growth rate). There is no evidence that noise alone is capable of forcing true combustion
instabilities.

The range of model noise levels used in this study allows identification of decaying pressure



100

pulses with relatively small errors. This corresponds to experience with motor firings. Thus
the values chosen for ‘noise power’ seem to be realistic and there is no need to extend their
range. These noise levels produce extremely small amplitudes of acoustic oscillations, in
agreement with the conclusion reached by Strahle (1978). It must be concluded therefore
that noise cannot be a basic mechanism for organized oscillations in the combustion cham-
ber. Experimentally observed combustion instabilities thus must be viewed (and analyzed)
as true self-excited motions.

For an unstable system none of the methods provides any useful information for growth /decay
rates and frequency shifts, because the limit cycle is a purely nonlinear phenomenon: linear
concepts such as growth constants therefore become meaningless. In this case a different
strategy based on nonlinear concepts needs to be designed. That should be the subject of
future research.

On the basis of our simulations reported here, we conclude that the form of system identifi-
cation suggested by Hessler and his colleagues has limited value for practical purposes. We
cannot state at this time whether or not further work in this direction will lead to useful
practical methods. For example, some advantage might be taken of earlier Russian proce-
dures developed for liquid propellant rockets. Because of the inability to perform repeated
tests with a single motor, the problem treated here is quite different for solid propellant
rockets.

Nevertheless, in the general context of understanding the dynamics of combustion systems,
investigations of the behavior with stochastic sources form an integral part of the funda-

mental theory.
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Chapter 5

Control with Noise

Even before the development of models including combustor dynamics and feedback con-
trol, experimental application of feedback control of combustion instabilities was success-
fully tested on small systems (mainly using loudspeakers as actuators). Those laboratory
demonstrations report examples in which the amplitudes of limit cycles in linearly unsta-
ble combustors have been significantly reduced, sometimes even to vanishingly small values
(Poinsot, Bourienne, Candel and Esposito 1987, Gulati and Mani 1992). In most cases, the
‘practical’ controller was a simple proportional feedback or a variation of a PID controller.
One might wonder why that simple approach works or, conversely, ask why we need more
sophisticated control methods. From a general viewpoint, experiments show that an un-
stable combustion chamber is a system exhibiting a linear instability (rapidly) growing to
a limit cycle (defined by the non-linearities) that typically shows a marked predominant
frequency. In terms of dynamical systems, the combustor is characterized by two unstable
complex-conjugate poles and then a series of stable poles with relatively large damping.
Provided that the combustor is observable and controllable, for this kind of system, a pro-

portional feedback or a PID controller can be successfully tuned to obtain a stable feedback
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loop (Franklin, Powell and Emami-Naeini 1995).

Regarding the issue of controllability (and observability) of the system, for the purpose of
this argument, we will say that controllability has been proved in practice by the success
of the experiments cited. A detailed analysis of this point would allow optimization of the
position of actuators and sensors, but that is out of the scope of the present discussion. The
need for more sophisticated control methods derives mainly from two aspects: first one might
want to impose performance specifications on the controller, for example on the maximum
control action, or on the noise or disturbance rejection. Second, combustion systems show a
high degree of uncertainty and variability (Lieuwen and Zinn 2000), and a controller ‘tuned’
on a particular operating point does not guarantee a reliable performance. Third, we have
shown in the previous chapter how stochastic sources are necessarily present in the system
and that their presence prohibits an exact identification of system parameters. Modern
control design methods allow for the introduction of this kind of consideration during the
synthesis of the controller.

All the considerations above and the design method presented in the following section
are based on a linear model of the combustor. On the other hand, the real system is
manifestly nonlinear: the main indication of that is the fact that the pressure oscillations
in the combustion chamber rapidly reach a limit cycle. A complete understanding of the
dynamics of the combustor would allow tracing the source of the nonlinear behavior observed
in the experiments (limit cycles, hysteresis (Isella et al. 1997, Lieuwen and Zinn 2000)) to its
origin: nonlinear gasdynamics or nonlinear combustion. In that case nonlinearities in the
system could be exploited by an ‘ad hoc’ form of (nonlinear) control to overcome the main

limitations of linear control: requirement of a relatively high control effort and actuation
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frequency at the same frequency of the instability. An example of this is given in chapter
3 where the hysteresis of the Rijke tube was exploited to augment the stability range of
the system. However, since such a complete model is not available, we decided to limit
the analysis to the linear case. Note that the linear part of the model of the combustion
chamber presented in chapter 2 is actually a linearization of the full model around the
operating point. Since the main purpose here is to keep the system ‘stable’, i.e., as close as
possible to the linearized equilibrium point, the linear model and simulation is a valid and
realistic approximation to the real case, provided that the nonlinearities do not give rise to
a subcritical bifurcation (Wang 2000). Note that nonlinearities have the effect of limiting
the amplitude of the oscillations: hence the linear model is in this sense a ‘conservative’
approach to the problem (for example, in terms of required control action, we will find an
upper limit).

In short, within the present approach, nonlinearities can actually be neglected, except as a
formal vehicle for rigorously introducing noise sources (see chapter 4). As a consequence,
we will not be able to capture the effects of any instability mechanism different from the
linear growth and phase shifting included in the model presented above. On the other hand,
the present approach allows for a clear distinction of the effects of uncertainties, intrinsic
noise sources, external noise sources, and unmodeled dynamics. The issue of time-delay,
another interesting complication in control applications, is treated by Seywert, Isella and

Culick (2000) and Isella (2001).
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5.1 System Definition

As derived in chapter 2 the following system of equations describes the dynamics of the

combustion chamber:

)8

Tin + w72177n = — [Dnlf]l + Enlnl]

l

(& (870 +Eni ()m:] + En (t) (5.1)

12 ]

+
i=1

Here we have retained only the linear terms in the acoustic amplitudes (compare with
(4.12)). Since we are going to design a controller to eliminate the pressure oscillations
(i.e., drive all acoustic amplitudes to zero), this is equivalent to linearizing the nonlinear
system around the unstable equilibrium point. Note that the linear terms include all linear
processes, including linear combustion dynamics. The linear combustion part has in this
formulation been lumped together with the linear gasdynamics into the coefficients F,,; and
Dy in fact, it is the linear combustion that makes the system unstable to begin with.
As noted by Wang (2000), this is a valid approximation as long as the system presents a
supercritical bifurcation at the point of instability. Note also that while the higher order
acoustic terms have been neglected, the nonlinear dynamics due to the vorticity and entropy
waves are included in the noise terms £, £, and Z. The combustor is linearly stable if and
only if all modes are linearly stable.

For control applications it is advantageous to reformulate this set of equations in state-
space form with state £ = [1 ... 70071 . . - o) T, control input u, and output y = p'/p. The

following definitions are needed:
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a 0
p - %
g wn (Iactuator)/Eg
C = hbl (msensor) s ¢N(xsensor)] (52)

With this notation, equation (5.1) — without the noise terms — becomes equivalent to

& = Az + Bu
y = Cz (5.3)
Chiefly because of the direct connection between the spatially averaged equations and the

form (5.3) favored by the controls community, the procedure leading to equations (2.16) and

(5.1) is used almost universally for current work in feedback control of combustor dynamics.

5.2 Robustness

The controller strategy proposed in this section is based on results described in Chou, Chen
and Chao (1998) and Biswas (1998). It allows treating parametric uncertainties in the
modeling and system identification process; multiplicative noise, in this case intrinsic to the
system, arising from vorticity and entropy waves; and residual dynamics neglected in the

control design in order to achieve a low order controller in a unified way.

5.2.1 Parameter Uncertainty
Consider the following system (Chou et al. 1998):
T(t) = [Ac+ AA(W)]zc(t) + Az, (B)

+[Be + AB.(t)]u(t)

Er(t) = Areme(t) + Avao(t) + Bou(t)



106

y = [C.+ AC()]ze + Crzy (5.4)

In this description the system has been split into two parts: the controlled dynamics (state
) which will be used in the design of the controller and the residual dynamics (state Zr)
which are neglected in that design. The reasoning behind this splitting is that we want
to achieve a controller that is as simple as possible. This desire leads to a need for a low
order model of the system; the controlled dynamics describe that low order system (which
at the minimum needs to include all unstable modes) whereas the residual modes describe
those parts of the original system that the designer chooses to disregard (the higher acoustic
modes which are strongly attenuated in the combustion chamber). In principle this residual
system is infinite dimensional since it stems from the pressure expansion (2.15) but as above
we will truncate it to N modes.

The uncertain parameters of the controlled system are assumed to be bounded (| | denotes

the modulus matrix):

IAA:(t)] < QW
|AB.(t)] < QP

|AC(t)] < Q) (5.5)

QM. QB) and Q© are nonnegative constant matrices that describe the highly structured
uncertainty of the parameters.

Now consider a controller based on a Kalman filter (used to reconstruct the state from
the measured output, i.e., the pressure signal from the sensor) with estimator gain L and

feedback gain K:

Zo(t) = Acde(t) + Bou(t) + Liy(t) — Codin(t)]
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u(t) = —Kiut) (5.6)

Then the controlled nominal closed-loop system is described by H, and its interaction with
the residual system is governed by H., and H,. (note that H,, and H,, have been changed

to allow for the presence of A, and A,. when compared to Chou et al. (1998)).

( A.—B.K —-B.K
H, =
0 A.— LC,
( Acr
Hcr =
LC’r - Acr
H.. = [A.—B,K - B,K| (5.7)

In this work we just quote the theorem proven by Chou et al. (1998). The proof is rather
elaborate and uses several lemmas from controls theory; the reader is referred to the cited
reference for details. To state the final result, which relates the closed-loop stability of the
system to the uncertainties in the nominal parameters, we first need to give a few definitions.

Define the matrices G, and G, as follows:

G,

Y

[sup |9 (juw)! |
Ge = [sup ¢ (jw)|] (5.8)

Where w > 0 and gl.(,:) and gi(,? are the tkth elements of (jwI — A,)™1, respectively (jwl —

H_.). Also define the uncertainty matrix U as

QW + QK| QK|
U= (5.9)
QW + QWK+ |LIQ©) Q@) K|
According to Chou et al. (1998) (with the trivial extension to include A, and Are), the

closed-loop system will be stable if the matrices H, and A, are stable matrices and the
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following inequality
plGU + G¢ |Hy| Gy |Hpe| ] < 1 (5.10)

is satisfied (here p[ ] denotes the spectral radius).

5.2.2 Multiplicative Noise
Now consider the system below (Biswas 1998):

i(t) = [A+ D)) + B+ P @B)u(t)

y = [Cot W)z (5.11)

Here €4 ¢B)and £(© are random time functions. Lacking precise information about their
nature (as in many practical applications and consistent with the assumptions in chapter
4), they are assumed to be described by Gaussian white noise processes with zero mean and
can be characterized through the quantities 244 2BB) =(AB) and 2(CC) where (E[ ]

denotes the expected value)

N
=Y = L Ee 065 0] 1<i<n
=1
=(BB) _ ij[ B ey 1<i,j <N,
ij k:1 ki kj 1,7 S Ny
v .
4B - S g B
F=1 1<j< N,
=(00) _ ng[ ey 1<i,j<N, (5.12)
iJ = ki kj = "J =y

As before a controller with estimator gain L and feedback gain K is considered.
Following the approach taken by Biswas (1998), we consider the process {V(¢),t > 0}
defined by

V() = slleOll + 356) - 20 (5.13)
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Using Ito’s lemma (Jksendal 1998) we can write down an expression for dV which we can
then integrate over (0,%) and take the expectation. We get (see Biswas (1998) for further
details):

t
EV(t)] = E[V(0)] + / ([x T—z|,Hlz & — $JT> df (5.14)
0
Here H is the expected closed-loop matrix and is defined as

Hyy Hyo
g (5.15)

Hy Hy
where Hy = A+ BK +5A44) L =(4B) g

+(E(AB)K>T + KT=BB)
+LT=CO],
Hi; = BK+EUBK 4 kT=BB) g
Hyy — (E(AB)K)T+KTE(BB)K

Hyy = A-LC+ KT=BB K
Now, choose K and L so that
(¢, HC) < =Kl Re(y)) > 0 (5.16)

Then we have

E[V(t)] < E[V(0)]e 21 (5.17)

Therefore, we conclude that the closed-loop system is exponentially mean square stable if

there exist K and L such that the matrix H is negative definite.
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5.2.3 Controller Design

We can combine both approaches (i.e., account for bounded parameter uncertainty and
random Gaussian noise perturbations) by including the Z-terms in equation (5.15) in the
uncertainty of the closed-loop matrix H, in equation (5.8). Thus by redefining the uncer-

tainty matrix U,

Un Ups
U - (5.18)

U Us
where U = QW + Q(B)|K| 1 E(A4) E(AB)]K'

+HEWKNT + |K|TEEB) K|
+|LTECO) )
U= QPK|+EUPIK| 4+ | K|T2PP)|K|
Un = QW+ QWIK|+|LIQW
HEAPKT + K TP k)
U = QWK+ |K[FEBD) ||
and fulfilling equation (5.10), robust stability can still be guaranteed.
Up to this point we have derived conditions that L and K need to fulfill without specifying
how to design them. Note that the controller is to be designed for the nominal, undisturbed

plant; we can then check equation (5.10) to make sure it is also effective on the perturbed
system - or we can use that equation to see how much noise or parameter variation our
controller can handle.

The design of the controller depends of course on the performance we wish to achieve. Any
method can be used: Biswas (1998) uses a pole-placement technique, and here we follow

Chou et al. (1998) in using a standard LQG method.
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LQG is advantageous because it allows for the inclusion of additive system noise (£ (w)) as

well as sensor noise (£ (y)). Thus the complete system we try to control is given by:

o(t) = [Ac+ AAe(t) + EDD))zo(t) + Agrn(t)
+[Be + AB.(t) + B )]u(t) + @
B (t) = Apeze(t) + Arzr(t) + Bru(t)

y = [C.+ AC(t) + 9 @)z + Crz, + €W (5.19)
In using this method we minimize the performance index J given by
J = / [mg(t)Qxc(t) + pcuT(t)Ru(t)} dt (5.20)
0

In this case p, is the design parameter that will be changed to fulfill condition (5.10). Since
we want to reduce the pressure oscillations at a specific location z,, it is natural to choose

(@ such that 27Qz, represents our best estimate of p’ at this point

[ 1
@b% (zp) 0 0

Q=p"-| o . 0 and R=1 (5.21)

0 0 1/}]2\7(3%)

L -

5.3 Numerical Example

In the following we will briefly demonstrate the described design procedures on a particular
example. The example has been chosen solely because it has been used previously in the
literature (Haddad, Leonessa, Corrado and Kapila 1997, Culick and Yang 1992, Yang, Sinha
and Fung 1992). The methods used are obviously much more general and can be applied
to any linearized (combustion) system — as mentioned previously, all processes, including

combustion, have been linearized and are embedded in the model parameters.
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The numerical example used is the same one as given in Haddad et al. (1997). The com-
bustion chamber is assumed to be cylindrical of length L and only longitudinal modes are
considered. The chamber is closed on the upstream end and has a nozzle at the downstream
end which acts as an acoustically closed boundary. The sensor detecting the instability is
a microphone located at x5 whereas the actuator used to control the pressure oscillations
is a loudspeaker located at z,. The internal dynamics of the loudspeaker are modeled as a
second order system and included in the state-space formulation, i.e., they form an integral
part of A, in equation (5.19) through augmentation of the state z.. In this way the actuator
dynamics are accounted for in the design of the controller. In this example the actuator
(and sensor) are treated as perfectly known systems; within the framework described here
it is straightforward to include uncertainties or noise in those systems too. Note that the
model of the actuator as a ‘loudspeaker’, a second order system with a high gain, is actually
more general than it seems. If we wanted to represent an injector, the same model would
still apply, with a longer time delay, and some difference in the numerical value of the pa-
rameters, but substantially the same structure, i.e., second order dynamics and very high
gain (Neumeier, Nabi, Arbel, Vertzberger and Zinn 1997, Isella 2001).

The linearized model of the combustion chamber is characterized through the parameters
E,; and D,,; which are given (after non-dimensionalization of time by %&) in table 5.1 for the
first 4 longitudinal modes — the parameters are originally taken from Yang et al. (1992) and
are typical for solid propellant rockets. In this design study we only consider uncertainty
in the parameters F,; and D,; and noise in those terms given in equation (5.1). In other
words there is no noise or uncertainty in the sensing or actuation process and the stochastic

sources act (as described by the model) as random perturbations of E,; and D,;. Thus we
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Dy [n=1|n=2n=3|n=4 E, n=1{n=2[n=3|n=4
=11 -.01 007 | -.001 | .007 [=1] -.005 | -.005 | .0025 | .0016
=2 .01 1 .007 | -.001 =21 -.0025 | -.015 01 01
=31 -01 01 75 .008 {=31] -.005 .0 -.02 .02
=4 02 | -.005 01 1.5 =4 01 02 02 ] -.025

Table 5.1: Combustion chamber parameters

put (keeping the notation of the previous section)

QP =0 QO =9

EAB) g BB g =0 _q (5.22)

Furthermore we assume that all stochastic sources (due to the vorticity and entropy modes
in the chamber) are uncorrelated and have the same variance o2, Finally we assume that
the parameter uncertainties can all be described by a single variable e. These assumptions

are only made to simplify the expressions as we can now write:

0 0

[El Dl
=44 — N.o?.1 (5.23)

A controller was designed using an LQG technique by taking only 1 mode (the unstable
first mode) into consideration. It is assumed that the complete system is given by 4 modes
and thus the remaining 3 modes are considered to give the residual dynamics. Basing the
controller on a minimal set of modes is desired as it reduces the order of the controller and
thus allows for easier implementation.

Figure 5.1 shows the response of the reduced and complete system to the controller (turned
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Figure 5.1: System response to controller action

on at £ = 100). As expected the presence of the extra modes (not considered in the design)
in the full system reduces the performance of the controller (slower decay).

Figure 5.2 shows the guaranteed stability limits (in terms of € and o) of the controller. The
solid line is the limit predicted by equation (5.10) for the truncated system where only 1
mode is used in the simulation. In other words: this is the stability limit in terms of e
and o that we obtain if we consider the controlled system (based on which the controller
was designed) only, ignoring any effects of the residual modes. The other lines describe the
stability region as more modes are added in the simulation, i.e., as the system approaches
the ‘complete’ system. We see that the stability region shrinks as additional modes are
introduced into the simulation while the same controller (based on 1 mode) is retained.
Since in the example given here we assume that the complete dynamics are described by
4 modes, stability for the ‘complete’ system with this controller is guaranteed only in the
dark shaded region in the lower left corner of the plot. In this extreme case (where we

considered only one mode to base the controller on) the area changes are drastic, but as
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Figure 5.2: Guaranteed stability limits for closed-loop system in ¢ — € plane (noise variance

and uncertainty) depending on number of residual modes considered

the neglected modes become more heavily damped their influence grows smaller (as can be
seen by the lines moving closer together). If more modes were to be added, the stability
limits would converge to form the final region (in the ¢ — € plane) in which the low-order
controller is still guaranteed to be effective.

Similar plots are shown in figure 5.3. Just as in figure 5.2 only the first mode of the system
is controlled. The left plot assumes that there are no uncertainties in the parameters (i.e.
¢ = 0) and shows the guaranteed stability limits in terms of the two different multiplicative
noises o (02 = E(£€)) and o¥ ((0¥)? = E(€¥¢")) - refer to equation (5.1) and note that
§ and £ are one-dimensional in this example. The second plot (figure 5.3b) assumes that
no noise sources are present (¢ = 0) and investigates the stability limits in terms of the

uncertainty in the parameters E,; and Dy;. Again, since we consider only 1 mode for the
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Figure 5.3: Guaranteed stability limits for closed-loop system when either ¢ = 0 or o = 0,

depending on number of residual modes considered
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controlled system, this uncertainty is entirely described by two values: eg (for E,;) and €p
(for Dy;). As in figure 5.2 the guaranteed stability region in both instances shrinks when
more and more of the ignored dynamics are taken into account.

Figure 5.4 illustrates the effect the (stable) residual system can have in the presence of
noise. The same controller (based only on the unstable first mode) is used in all three cases.
In case A (low noise) the controller is able to stabilize the full system (all 4 modes included
in the simulation); however, at a higher noise level (case B) the pressure oscillations do
not decay to zero. Note that this noise level is well within the stability limits as predicted
with the truncated (1 mode) system and thus underlines the importance of the neglected
dynamics. If the simulation is performed with the reduced system, the instability does

indeed decay as anticipated (case C).

5.4 Summary

We have shown how uncertainties, noise, unmodeled dynamics and time-delay can be in-
cluded in the controller design for combustion instabilities.

A clear distinction has been made between the uncertainty and the noise. This is necessary
as the parameter uncertainty can be bounded; e.g., in practical applications we might know
that in the operating range of interest the various parameters are located within certain
numerical bands. In contrast, true noise sources can in general not be bounded, and thus
do not fit in the common control frameworks; they are characterized by their mean values,
which we include in the system parameters and by their variation.

Explicit consideration of the neglected modes allows studying their influence on the con-

troller robustness. This is especially important since in most experimental implementations
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Figure 5.4: Time simulations of various cases as defined in figure 5.2
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to date the controller has been designed by taking only the unstable mode(s) into account.
In the example given here only the first mode is unstable and it is in fact possible to sta-
bilize the system by solely controlling this one mode. Note that the controller is designed
to accommodate large uncertainties (or noise) since we anticipate that the residual modes
will affect the dominant first mode. This is the way unmodeled dynamics are traditionally
handled: by including them in the uncertainties of the system. The framework presented
here shows how much of that uncertainty can be attributed to the neglected modes. In the
example given, the damping of the ignored modes (notably the second one) is rather small
and thus we see that the actual parameter uncertainty e (or noise intensity o) that the con-
troller can tolerate declines dramatically as additional modes are considered. Therefore, we
conclude that the residual dynamics dominate the uncertainty unless the neglected modes
are highly damped.

Future work in this area should include testing of the concepts on an experimental combus-
tor; and system identification to define better models of real actuators, in particular injectors
and fuel low modulators. More analysis is also needed to characterize (and eventually take
advantage of ) nonlinearities naturally present in combustion chambers. That these nonlin-
earities can indeed be successfully exploited to achieve control has been demonstrated in

chapter 3.3.2.



120

Chapter 6

Concluding Remarks

In this work we have attempted to discuss several issues that arise in the context of control
of combustion instabilities.

The general analytical framework most commonly used in the literature was explained
and compared to a different approach developed at Georgia Tech. We have pointed out
that any results obtained with low-order models need to be carefully evaluated within the
limits of the underlying assumptions and simplifications. The difficulties arise due to the
spatial averaging and subsequent truncation of the modal expansion. Therefore, we suggest
to simplify the system of partial differential equations as much as possible, eliminating
all dependent variables, before applying any Galerkin-type projections to finally arrive at
ordinary differential equations. It is equally important to carefully define the order in the
small quantities to which the expansions (and thus the system of ODE’s) is valid. In the
case of combustion instabilities there are two independent parameters which determine the
order of validity: the magnitude u of the mean flow which characterizes the strength of the
combustion and the magnitude e of the velocity fluctuations in the combustion chamber

which measures the importance of the instability.
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This analytical framework has been applied to a Rijke tube. The formulation presented here
is particularly attractive since the coefficients of the differential equations are expressed in
terms of transfer functions of the heat source. Thus we can easily introduce various heat
sources (flames, heaters, ...) as long as we know how they react to incoming pressure or
velocity waves. Conversely we can study the influence of changes in those transfer functions
on the overall dynamical behavior of the Rijke tube system.

We have shown that transfer functions found in the literature can account for the sudden
appearance of large amplitude pressure oscillations. This phenomenon is also observed in
experiments. However, we were not able to explain the experimental fact of a hysteresis
with our model. The most likely reason for this is that while the model includes nonlinear
gasdynamics, the description of the heat source by means of transfer functions is purely
linear. Thus any nonlinear effects (e.g., the amplitude of the limit cycle) are either purely
gasdynamical or result from the interaction of the heat source with the flow field. Further-
more, we have only retained terms up to the second order in the fluctuating quantities and
higher order terms might introduce additional dynamical behavior. Another explanation
for the observed hysteresis could be the simple fact that some of the underlying model
parameters change once the system becomes unstable and only return to their initial value
after the system has returned to its original state.

Even though the nonlinear behavior is currently not completely understood, we have demon-
strated how we can take advantage of certain nonlinear features (e.g., hysteresis) in designing
a control law that expands the stability region of the system. Further studies in this di-
rection could quantify the savings (in term of control effort) that the exploitation of the

nonlinear features can achieve. An obvious advantage of the control strategy presented
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here for the Rijke burner (the same strategy has also been successfully implemented on a
dumb combustor (Isella et al. 1997)) is the fact that the control action can take place at
frequencies much lower than the frequency of the underlying instability - this facilitates
the implementation of active control schemes in industrial systems where high frequency
actuators seem impractical.

We did analyze some of the nonlinearities by introducing ‘noise’ into the system. We showed
how the presence of vorticity waves leads necessarily to the appearance of three distinct
disturbance fields. Therefore, we included multiplicative as well as additive noise into our
simulations, We also argued that those three terms capture all possible first order effects
of any disturbance attacking the system. We have shown the quantitative and qualitative
differences in the pressure oscillations that result from the presence of these stochastic
sources. We conclude that if a sufficient level of true internal noise is present (i.e., if it is
not drowned by measurement noise from the instruments used to record the pressure trace)
then linear stability margins can be inferred with reasonable accuracy from the results
of single experimental runs. This could conceivably even be done online thus detecting
changes in the stability characteristics during operation of the system. This monitoring
could provide an early warning as to when the operating limits are reached and preventive
actions (additional fuel injection, increase of damping, ...) could be taken to stop the
pressure oscillations from growing to critical levels. While these margins are an important
quantity to know, single runs do not give any information about the nonlinear stability of
the system (‘triggering’).

Combining all of the above we realize that any control law that wants to have a chance of

being able to suppress pressure oscillations needs to be robust to internal disturbances as
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well as changes in the parameter values. Furthermore, only low-order control laws are viable
in industrial applications and thus the system needs to be truncated (simplified) before the
controller is designed. We have derived an analytical expression that guarantees the linear

stability of the closed-loop system given all of those problems.

Directions of Future Work

As mentioned before a thorough understanding of the nonlinear behavior of various com-
bustion systems might lead to a more eflicient and better design of control algorithms.

In order to get this understanding experiments and analytical models giving the response
of different heat sources to incoming pressure and velocity waves would be necessary. By
different heat sources we mean laminar flames, wrinkled flamelets and turbulent flames,
since those appear in the industrial applications.

A physically based model, as opposed to white noise, of the stochastic sources (vorticity
waves, entropy waves, and others) would also be of considerable interest. This could lead
to a better understanding of the pressure amplitude distributions which would help in
predicting occurrences of triggering and in identifying system parameters through analyzing

the recorded pressure traces.
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Appendix A

Bifurcations

We provide here a short introduction, by no means complete, to bifurcations and limit-
cycles, intended primarily to explain various terms used in this work. The reader is referred

to the literature (Strogatz 1996, Wiggins 1996) for further details.

Simple Example

As an example to illustrate the various types of bifurcations that we encounter in the
context of our studies of combustion instabilities, we consider a two-dimensional system in
polar coordinates (r, ¢) with uncoupled radial and angular dynamics. For simplicity we also
assume that gb = 1, providing a constant angular speed. For a particular choice of radial

potential, the radial dynamics of this simple example are described by:
P = ar— Bré —r° (A1)

A limit-cycle is defined as an isolated closed trajectory in the state-space (in this example
a circle in the r — ¢ plane), meaning that neighboring trajectories either spiral towards or

away from the limit cycle. If all neighboring trajectories approach the limit cycle, it is stable
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(attracting); otherwise it is unstable (repelling) or semi-stable (this case is exceptional and

we don’t consider it here).

Supercritical Hopf Bifurcation
We put 8 = 1 in equation (A.1) and let « be the free parameter (« is the linear growth

rate in this example). Figure A.1 plots equation (A.1) in the phase plane for two different
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Figure A.1: Supercritical Hopf bifurcation
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o’s and shows the solution to 7 = 0 as a function of « (stable solutions are plotted with a
solid line and unstable solutions are represented by a dotted line).

Note the qualitative change that happens as a crosses 0. If o < 0, the origin (r = 0) is
stable, i.e., if the system starts out at any value of r it will spiral towards the origin (as
indicated by the arrows in the figure). However, with a > 0, the origin becomes unstable
and r tends toward a finite value, producing a limit cycle. The limit cycle appears and starts
to grow as the origin changes stability; such a behavior is characteristic for a supercritical

Hopf bifurcation.

Subcritical Hopf Bifurcation

Now we change  to —1 in equation (A.1). Figure A.2 plots the modified equation (A.1) in
the phase plane as « crosses 0.

As before, the origin loses its stability as « changes from negative to positive. But contrary
to the behavior found above, even while the origin is stable there exist two other solutions
to 7 = 0, giving rise to a stable and an unstable limit cycle. We ignore the stable limit cycle
for the moment. As « approaches 0 from below the unstable limit-cycle gets continuously
smaller, shrinking the region of attraction of the origin (all trajectories that will eventually
converge towards the origin). Finally, when the origin becomes unstable, the unstable limit
cycle disappears completely. Such a behavior, where an unstable limit cycle closes in on the
origin is called a subcritical Hopf bifurcation.

Note that whereas a small disturbance would collapse back to the origin for o = —e, it
will jump towards the finite amplitude limit cycle for oo = €. This limit cycle is peculiar to
this example and need not be present for a subcritical Hopf bifurcation to occur (i.e., the

trajectories could grow without bound). But obviously if, as in our case, 7 is to represent
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the amplitude of the pressure oscillation, such an unrestrained growth is unrealistic.
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Figure A.2: Subcritical Hopf bifurcation

Nevertheless, if a subcritical Hopf bifurcation is present, a ‘catastrophic’ event occurs as the
parameter crosses the stability limit: suddenly a large amplitude oscillation arises (or the
motion of the system blows up). For this reason a system featuring dynamics corresponding

to a subcritical bifurcation is hard to predict and control: small changes in the operating
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condition can lead to a very different behavior of the system.

Saddle-Node Bifurcation

With # = —1 another type of bifurcation occurs at o = .25. Tt is responsible for the two
limit cycles mentioned above. This type of bifurcation where ‘out of nowhere’ limit cycles

appear is called a saddle-node bifurcation. Figure A.3 illustrates this behavior.
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Figure A.3: Saddle-node bifurcation
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In the study of combustion instabilities such a saddle-node bifurcation always appears in
conjunction with a subcritical Hopf bifurcation; together both explain the phenomena of
‘triggering’ and hysteresis. Triggering occurs if; after the saddle-node bifurcation, a distur-
bance is larger then the unstable limit cycle and thus continues to grow towards the finite
amplitude limit cycle (refer to figure A.2a); note that disturbances smaller than the ampli-
tude of the unstable limit cycle just decay towards the origin. Hysteresis occurs because
while the origin loses its stability at @ = 0 and large amplitude oscillations arise at that
value, we cannot simply turn off those oscillations by bringing o < 0 — instead we need to

decrease « to its value at the saddle-node bifurcation before the oscillations disappear.

More Modes

The restriction to essentially one dimension in the previous example (all dynamics are in
r) gives the wrong impression that higher powers of r (e.g., up to 5" power) are needed to
explain triggering. In combustion instabilities several modes participate in the dynamics,
which are described by coupled differential equations. The following example of two coupled
equations demonstrates that complicated dynamics do not require these high powers.

As before we consider the system in polar coordinates; assume that radial and angular
dynamics are uncoupled; and put $1 = const and ¢2 = const. Thus we have two modes
oscillating at a constant frequency and their amplitudes r; and ro are governed by the

following system of equations:

ri=o1r1 + r% — 71Ty — r%
(A.2)

s 2 2

To=—r9 — 715 +rir2 + 77

a1, the linear growth rate of the first oscillator, is the parameter in this example. The

second oscillator is linearly stable (ap = —1). The amplitudes r; and ry are plotted as a
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function of a; in figure A.4 - showing a subcritical Hopf bifurcation and the possibility for

triggering.
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Figure A.4: Bifurcation diagram for 2 modes example

The complete equations describing combustion instabilities are obviously more complicated
(see chapter 2 for details) and their possible dynamical behavior is the subject of current
research. Ananthkrishnan (2000a) and Ananthkrishnan (2000b) gives an interesting dis-
cussion of the qualitative dynamics of longitudinal acoustic modes in a uniform cylindrical

combustion chamber.
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Appendix B

Burg’s Method

Burg’s method is one of many used in Digital Signal Processing to estimate power spectrums
and thus can be found in most textbooks (Haddad and Parsons 1991). The method is rather
elaborate and only a few brief remarks are given here.

Burg’s method has the advantage of yielding a high frequency resolution, being always
stable and computationally efficient. The method is associated with ‘maximum entropy
spectrum estimation’. This is based on extrapolating a known segment of autocorrelation
values 1742(0), 7g5(1), ..., 722(p) of a sequence z(n) to indices for which the autocorrelation
values are not known. Once the complete autocorrelation function is known, the power

spectrum S(f) can be computed by

1 i

W

n=—oo

S(f) P (n) e~ 27 /T (B.1)

Here W is one half the sampling frequency and 7' = 1/f; is the spacing between samples.
Given the first values of the sequence 7., there is an infinite number of possible extrap-
olations that will yield a valid power spectrum. The maximum entropy method enforces

the condition that no new information is added to the underlying sequence, i.e., the fewest
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possible assumptions about the signal outside the available data are made. This is done by
maximizing the ’entropy’.
Entropy is a measure of uncertainty about any set of events. The entropy H(z) of a
continuous random variable with probability density function f(z) is defined in information
theory as

“+o0

H(w) =~ [ f@) log f(z) ds (B2

—00

Between the power spectrum S(f) and the average entropy per sample point the following

relation can be demonstrated:
1 w
H(z) = InV27e + / In S(f) df (B.3)
—-W

Maximizing the entropy under the constraint that S(f) gives the known autocorrelations

yields the solution:

S(f) = r (B.4)

P .
1+ Y age@2nfk
k=1

To evaluate the parameters Burg’s method makes use of the similarity of the equations
satisfied by the ay and those for linear predictors. This parallel leads to the constraint that
the parameters satisfy the Levinson-Durbin recursion, which can be solved very efficiently.
This similarity also shows that the maximum entropy method models the signal as the
output of an autoregressive process.

Once the a’s are known, frequencies and decay rates of the various modes are obtained by
looking at the imaginary and real part of the roots of 1+ 3 ag2*.

A critical part of the method is the determination of the order p. This order is not known
a priori - a low order will not give enough frequency information whereas too big an order

might lead to ‘line splitting” making identification of the modes impossible. We have chosen
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to follow Hessler’s (Hessler and Glick 1998) recommendation stating that to identify N
modes an approximate order of 4N + 1 should be chosen. Our experience shows that this
order works fine as long as the sampling frequency of the signal is not too high compared
with the highest mode.

Since Burg’s method is one of the standard methods in Digital Signal Processing, it is
included in most commercially available software packages. In this work we have made use

of the Signal Processing Toolbox, an extension of MATLAB.
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Appendix C

Review of Work on Dynamics and Control of Combustion

Instabilities at the Massachusetts Institute of Technology

At the Jet Propulsion Center we have made an effort to review the work of other research
groups on the subject of control of combustion instabilities. The report on the research
done at the Massachusetts Institute of Technology is included here in this appendix. Other
reviews in this ongoing effort describe the work at Cambridge University, included in (Poncia

1998), and at the Georgia Institute of Technology, included in (Isella 2001).

C.1 Introduction

In 1995 a group at MIT started a concerted effort in the subject of controlling combustion
instabilities. The investigations by the group led by A.M. Annaswamy and A.F. Ghoniem
have resulted in a number of publications that are reviewed in this document (as far as they
are available).

While their activity started by developing a kinematic model for a laminar premixed flame,
the main interest of the MIT group is the application of modern control techniques to

combustion instabilities.
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The approach taken by the MIT group is outlined in their first publication (Annaswamy
and Ghoniem 1995). It discusses the general needs and requirements for active control and
presents a survey of the field before going on to describe their model and some attempts at
control (see below).

Since all the publications follow the same structure (description of the model including the
flame response followed by control application example) and are quite repetitive, the various
papers are broken up in this summary and the outline given by Annaswamy and Ghoniem

(1995) is closely followed.

C.2 The Model Equations

C.2.1 Acoustic Model

The model of combustion instabilities in the MIT study is based on the ‘classical’ approach
of deriving a wave equation for the pressure perturbation that is then expanded into the
acoustic mode shapes of the combustor (p’ = ﬁzij\il n; ()i (x)). The longitudinal acoustic
modes are assumed to be the dominant ones and thus the whole modeling is done in one
dimension only. This leads to a second order differential equation for each mode retained:
N
i+ wing + > digti = b;Q" + by @’ (C.1)
j=1
In this equation the terms involving the coefficients bas;, cari, and d;; result from the presence
of the mean flow and a mean heat release in the chamber. The earlier MIT publications
neglect the mean flow (effectively putting these coefficients to 0). Starting with Annaswamy,
El Rifai, Fleifil, Hathout and Ghoniem (1998) these effects are properly accounted for.

The right-hand side of equation (C.1) requires a model for the heat release ). As we will
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see below, the proposed model makes use of the perturbed velocity at the flame u’f Using
the linearized momentum equation we get (where the coefficients cjy; are again due to the

mean flow):

N
U'{f = Z 01771 + CMz'r]z (02)

C.2.2 Heat Release / Flame Response

The combustion process in the chamber is modeled by a laminar premixed flame. The
model (used in all of their work) is developed by Fleifil, Annaswamy, Ghoneim and Ghoniem
(1996). A simple expression for the fluctuating heat release due to flow oscillations in the
chamber is derived.

The following assumptions are made:

e The flame is modeled as a thin axisymmetric interface (cylindrical combustion cham-

ber) that separates the reactants from the products.

e The flame propagates at constant speed, the laminar flame speed S, in the direction

normal to its surface.

Neglect expansion and vorticity generation across the flame.

The flame is insensitive to pressure perturbations.

A further approximation about the curvature of the flame is made but Fleifil et al. (1996)
show that while this approximation simplifies the equations substantially it has a negligible
effect on the final expression for the heat release fluctuation (see equation (C.4) below).

With those assumptions the ‘G-equation’ (used previously by various other authors in the

combustion literature) describing the flame surface is valid. G is a scalar function that
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changes sign at the flame front and its evolution is governed by:

%—f— 4@ VG = Su|VG| =0 (C.3)

This equation is linearized and, assuming a velocity perturbation that’s harmonic in time,
can be directly integrated using the Laplace transform to obtain an expression for the
instantaneous flame surface area. Assuming furthermore that the total heat release rate Q
is directly proportional to this area (which implies that p is constant), the result can be
formulated in the familiar (n-7) model: Q'(t) = nu/;(t — 7). Both interaction index n and
time delay 7 are functions of the ‘lame Stroudhal number’ G = wR/S,, (R is the radius of
the chamber); see figure C.1. It should be noticed that 7 is independent of the amplitude

uy of the velocity perturbation.
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Figure C.1: Flame model in n-7 framework

The calculations were done for two different cases: one assuming a uniform velocity per-
turbation along the radius of the duct, the second (corresponding to the figure) assuming
a perturbed pipe flow profile. The results are very similar which leads to the conclusion
that the acoustic velocity field can be approximated for practical purposes by a uniform

perturbation.
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The (n-7) description can be readily converted in a transfer function framework by writing
Q' = H(jw)u’;. The H derived through the intermediate step with n and 7 can be nicely
approximated by a first order model (see figure C.2). Thus the following differential equation

can be used to relate the unsteady heat release rate to the velocity perturbation:

dqy’

/ !
—— + 01Q = Pouy (C.4)
dt
o 0
-10,
Sk
-20
= -10F
©) <30
o)
_g -15¢+ <0
2 &
%20 w0
p g
= -60
25} a
-70,
.30 3 -ac
e e ; ;| o 10° 10° 1:)‘ 10?
Nondimensional frequency G Nondimensional frequency G

Figure C.2: Flame model in transfer-function framework

In (Annaswamy, Fleifil, Hathout and Ghoniem 1997) equation (C.4) is obtained analytically
and a better expression for the coefficients 81 and B, (relating them to the flame parame-
ters) is derived by recognizing that the effect of high frequencies on the flame dynamics is
negligible and thus «’ can be taken to vary slowly with time.

The differential relation (C.4) is at the heart of the MIT model and distinguishes it from
other works in combustion control. It is obviously only an approximation but it seems to do
a good job as it leads to instabilities in the correct modes when compared to experiments.
It is however only a linear model and as such cannot explain the limit-cycles observed in

the experiments (since it is combined with a linear model of the acoustics of the chamber).
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An attempt to correct this deficiency is done by Rumsey, Fleifil, Annaswamy, Hathout and

Ghoniem (1998a) where the equation C.4 is modified to

ey
dt

+ 6:1Q" = Baf (ul) (C.5)
The non-linear function f is introduced ad hoc into (C.5). Rumsey et al. (1998a) identifies
two mechanisms that lead to limit-cycle behavior: a change of phase between v/ and @’ or
a change in gain between those two quantities.

Three different variations of f are analyzed (the phase change is associated with the sign
change of f; the first example does present a small gain change too; however, Rumsey et
al. (1998a) argue that the phase change is the dominant mechanism here):

kiu o Jul <ug

e phase change: f(u) = ciu — cou® or f(u) =
(k1 +ko)ug —kou @ u<wu,

v |ul <wug
e gain change: f(u) =

ug U < lUg

e gain and phase change: f(u) = ——ﬁ—LH J:: 5117)

Physical explanations for the three variations are given as follows:

e The phase change could be due to the fact that at small velocity amplitudes the heat
release is dominated by propagation whereas at higher velocity levels the heat release
is dominated by convection (no further details on this are given by Rumsey et al.

(1998a)).
e The gain change could be due to a ‘saturation’ effect in the heat release.

e The third functional form arises if the nonlinearity is attributed to the mixing effects

at the injection nozzle and the time-delay to convection.
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The linear model is further refined by Fleifil, Hathout, Annaswamy and Ghonier (2000). In
that paper equation (C.4) is once again verified using a more detailed analysis. In particular
the implicit assumption that the density p is constant is removed and a dependence of the
heat release on the equivalence ratio ¢ is introduced. The following form replacing (C.4) is

obtained:

dO’ , B_ o p/ ’ q's/ W
= =A;=q|—+ = —tAy——+ A, — C.6
= HwpQ = A= AR ¢@f¢+ o7 (C.6)

C.2.3 Coupling / Stability

The combustor dynamics are described by equations (C.1), (C.2) and (C.4) which together
describe the coupling between the chamber acoustics and the flame dynamics.

It should be noted that the heat release model introduces a linear coupling between the
modes, even in the case without mean flow. The formal appearance of the coupling terms
arrives through the introduction of the velocity perturbation at the flame, equation (C.2)
into the heat release expression on the right-hand side of equation (C.1). This coupling is
thoroughly discussed by Annaswamy et al. (1997) and Hathout et al. (1998).

From the equations given above the stability of the modes (positive or negative damping)
can be assessed. This obviously depends on the location of the flame. Annaswamy et al.
(1997) show that this model reproduces stability results obtained experimentally by Lang,
Poinsot and Candel (1987).

As mentioned, the coupling between the modes is due (in the absence of mean flow and mean
heat release) entirely to the heat release fluctuations. This effect is analyzed for the 2-mode
case under a simplified flame model: (¥ ~ «'. This simplification is appropriate at acoustic
frequencies since, according to equation (C.4), the heat release lags the velocity fluctuation

by m/2 at those frequencies. Incidentally this also shows that the internal dynamics of
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the flame are almost irrelevant in determining the stability of the system, at least given
this model. It is shown that the stability/instability characteristics, i.e., growth rates and
resonance frequencies, of the system are only slightly affected by this linear coupling (in
fact they are of second order in the coupling parameters).

While the coupling thus introduced does not majorly change any characteristics of the
uncontrolled system and thus could be neglected to calculate stability limits of combustion
chambers, it does affect the zeros of the system transfer function in a direct way. This has

an effect on the controller design (see below).

C.3 Control Effort

In order to do control, sensor(s) and actuator(s) need to be added to the combustor. For
the bulk of their work, the MIT group chooses a microphone (located at z5) as sensor and
a loudspeaker (located at z,) as actuator. The most recent publications use secondary fuel
modulation for the actuating process; no specific dynamics are attributed to the injection

process besides adding a time lag to the system (see below).

Premixed air + fuel
| flameholder

Products

— —_—

z Ty g

microphone

loudspeaker

Figure C.3: System used to derive model

The addition of the loudspeaker modifies equations (C.1) and (C.2) slightly, acting as a
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source of mass and energy. To account for this +b.v, is added to the RHS of (C.1) and
+kaparvg is added to the RHS of (C.2). Here v, is the velocity of the loudspeaker diaphragm
and k.o = 0 if 2, > z; and unity otherwise (i.e., it describes the relative position of actuator
and flame).

Finally the diaphragm itself presents some dynamics as it responds to an input voltage u,

across the loudspeaker. These dynamics are modeled by a second order system:
MyZe + biZe + kg = kiug (C.7)
Combining all the equations, the complete model can be written in operator form as:
P =W(s)G(s)ug (C.8)

W (s) is of order 2N 41 (/N: number of modes retained) and includes the effects of acoustic
modes, flame dynamics, and all coupling effects therein. Gj(s) denotes the actuator dy-
namics of (C.7). The complex poles of W(s) correspond to the acoustic modes and the real
pole of W(s) corresponds to the flame dynamics. The complex zeros of W (s) represent the
coupling between the modes and the real zero stems again from the flame dynamics.

The general approach to the control problem is outlined by Annaswamy and Ghoniem
(1995) (at this early point of their studies the dynamics of the actuator were still ignored,
thus putting G;(s)=1).

In case of a single mode analysis a simple first order phase-lead controller can be used to
stabilize the system. It is recognized that this is primarily due to the fact that W{(s) is
minimum phase, a fact which might not hold in the presence of multiple modes.
Therefore, a 2-modes case is also analyzed. If the parameters are chosen appropriately

(W1 < Wiero < wa) the phase angles at the two acoustic frequencies can be almost 180° apart.
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Thus the phase variations of the controller G.(s) need to be shaped appropriately and a
higher order compensator is needed. Strategies suggested by Annaswamy and Ghoniem
(1995) are pole-placement, LQR and, in case the operating conditions change, an adaptive
controller.

Annaswamy and Ghoniem (1995) then successfully test this general approach on two sim-
ulated experiments: a Rijke tube and a premixed combustor rig.

Rumsey, Fleifil, Annaswamy, Hathout and Ghoniem (1998b) present a nice overview of the
evolving effort at MIT and shows how they started designing controllers with the simple
linear model and then built a bench top combustor rig to test the controllers in a labo-
ratory environment. Figure C.4 shows a diagram of the test facility and figure C.5 shows
the experimental response of the system, obtained when applying three different kinds of

controllers: proportional control, a phase-lead controller and an LQG controller.
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Figure C.4: Schematic of combustor rig

C.3.1 The Need to Model the Linear Coupling

In Annaswamy et al. (1997), the focus is on the effect that the linear mode coupling induced

by the flame model has on the controller design. Note that in this study the actuator has
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Figure C.5: Results obtained with (from left to right): proportional control, phase-lead

control, and LQG control

no dynamics; this assumption has no effect on the conclusions drawn.

Whereas the change of poles of the system due to the coupling is of second order in the
coupling parameters, the change in the zeros of the system is of first order in those coupling
parameters. Furthermore, the zeros depend directly on the sensor location zs and the
actuator location z,. Depending on the combination of flame location, zs and z,, the
system can be non-minimum phase and the zero frequency can be close to a resonance
frequency. This result has repercussions on the control design as it introduces extra phase
shifts between the control signal and the pressure signal.

To demonstrate the effect the coupling has, a numerical simulation (using two modes) is
performed for two different combinations of actuator/sensor location (labeled A/B and
A/C respectively). See figure C.6 for a pole/zero map of the transfer functions W, of both
systems (note that the A/C configuration is non-minimum phase). The point of the paper
is to show that it is not enough to know the damping and the frequency of each mode but
that the coupling between the modes needs to be considered when the controller is designed.
Therefore, poles/zeros of the models of both configurations are also shown for the case in
which the coupling terms are simply ignored, giving the transfer functions W,,.

Designing a simple phase-lead controller and an LQR. controller for both configurations,
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A/C Configuration, We(s)
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and uncoupled (dashed) model

whose design is based on the coupled (solid)
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they show that a design based on the uncoupled model (i.e., on W,,) might not be effective
in case the system is non-minimum phase; see figure C.7. The reason is of course the
extra phase shift introduced by the left-hand plane zeros which are not accounted for in the
design.

Fleifil, Hathout, Annaswamy and Ghoniem (1998) analyze the two mode case once again,
with a single sensor and single loudspeaker as actuator. It is shown that in case of an
end-mounted loudspeaker there is no ‘antiresonance damping’ (i.e., the zeros are on the
imaginary axis) and thus the effect of linear coupling is negligible. In the case of a side-
mounted speaker, the linear coupling between the modes as well as actuator/sensor location
affect the system and can make it non-minimum phase.

Hathout, Fleifil, Rumsey, Annaswamy and Ghoniem (1997) also include a discussion of
the ‘zero dynamics’ showing that collocation of sensor and actuator does not guarantee a
minimum phase transfer function, and that even when sensor and actuator are in separate
locations the zeros can be stable. The properties of the zeros must therefore be considered

separately for each case.

C.3.2 The Need to Model All Frequencies Correctly

Fleifil et al. (1998) attempt to explain the results of some experiments (Lang et al. 1987, Gu-
lati and Mani 1992) which reported that the dominant acoustic instability can be suppressed
by active control, but that secondary peaks at different frequencies which were not excited
in the uncontrolled combustor appear.

This effect is particular to the controlled problem and can be explained by splitting the
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acoustic field inside the chamber into three contributions:

p/ = plh + p:iirect =+ pfindirect (09>

In this decomposition pj is the component of the pressure due to the homogeneous part
of the heat release (i.e., the part of the heat release that would be present without the
actuator); ply,.... is the contribution of the actuator on the acoustic pressure, and pj,, j;.cq; i
the effect on the pressure of the change in the heat release due to the action of the actuator.
P, and ply;.... govern the phase lag between control input and control output in the acoustic
frequency range whereas pj,, ;... introduces an extra phase lag at frequencies comparable
to the flame characteristic frequency which is lower than the acoustic frequency. It is the
combination of these different phase lags which is responsible for unexpected behavior if the
controller is designed with only the unstable acoustic mode in mind (instead of considering
the entire frequency range).

Examples are given for an end-mounted and side-mounted loudspeaker where the parameters
for the numerical simulations have been chosen to replicate the experiments of Gulati and
Lang respectively. Results of the simulations are shown in figure C.8 and are in qualitative
agreement with the experiments.

For each case the exact reason for the appearance of the secondary peaks is given, i.e., the
contributions of each of the three pressure components and their interplay with the controller
are analyzed. Note that these peaks can occur even though, as in the end-mounted case,
Dlirect 18 z€r0; that is, the actuator is not directly contributing to this mode.

It is noteworthy that the actuator in the model used by Fleifil et al. (1998) does not
present any internal dynamics and therefore does not introduce any extra resonances in the

system. This deficiency is remedied by Hathout et al. (1998) where this analysis of the
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Figure C.8: Simulation results of experiments reported by Gulati (left) and Lang (right)

mutual influences of the combustor dynamics and the controller is repeated in more detail.
Furthermore, Hathout et al. (1998) argue (and show) that the appearance of secondary
peaks can be avoided if an LQR approach is used to design the controller. The reason for
the effectiveness of the LQR design is that by construction the control input is minimized
over the whole frequency range as opposed to just the unstable frequency. Hathout et al.
(1998) compare the LQR controller with a phase-shift controller in both time and frequency
domain and show that the LQR design can indeed successfully suppress the secondary peaks

in the experimental setup of both Gulati and Mani (1992) and Lang et al. (1987).

C.3.3 The Need for Robust Control

Annaswamy et al. (1998) do a sensitivity analysis of the system to parameter variation (such
as effective combustor length, laminar burning velocity, mean flow speed and mean heat
addition). The effects of these parameters on unstable frequency and growth rate are shown
for a numerical example; more important than the change in these observable quantities,

however, is their effect on the overall transfer function relating pressure and control input.
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For the combustor considered by Annaswamy et al. (1998), the perturbed transfer function

is shown in figure C.9.
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Figure C.9: Gain-phase characteristics for nominal and perturbed parameter values

Using the nominal transfer function, a model fixed phase-lead controller is designed. This
controller achieved satisfactory performance even when some of the parameters were per-
turbed up to 60%. However, perturbing the effective length or the combustor zeros by 20%
resulted in an unstable response. The reason is that both of those perturbations introduce
significant phase variations in the vicinity of the unstable frequency.

To accommodate such a variation, a self-tuning phase lead compensator is designed. This
adaptive controller has actually a similar structure as the fixed controller except that a
varying gain ko(¢) is added.

The complete controller has the following form (v and a are adaptive parameters that
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determine the speed of the adaptation):

Ug = ko(t)X+kon (ClO)

k.o = —-’)’kple (C.ll)
s+ 2z,

X = k—— C.12
3+pcp ( )
1

Xp = X (C.13)

Results obtained with this controller are shown in figure C.10 along with the time variation
of the tuning gain ky. Note that once convergence is achieved, ky = 0, this controller

becomes indeed a fixed phase lead controller.
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Figure C.10: Performance of self-tuning controller vs. fixed controller

Annaswamy et al. (1998) also compares this adaptation method to the LMS algorithm. In
that algorithm @ is fed back (instead of p’ for the self-tuner) and the filtered signal X is
constructed in a different way (in the equation X; = W(s)X;, W(s) is determined by the
combustor model at a chosen stable or unstable operating point). These differences result

in numerical instabilities which lead to failure of the LMS controller.
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C.3.4 No Need to Consider Nonlinearities?

Rumsey et al. (1998a) add the nonlinearities described in equation (C.5) to the system
and show that these lead to limit-cycle behavior. They also show that a describing func-
tion analysis can be performed in order to estimate the limiting amplitude of the pressure
amplitudes.

An LQG controller was designed based on the linear model (with two modes). The simula-
tions demonstrate that this controller performs fine even with the nonlinearities present. If
the nonlinear system is recast in a different form (by writing f(u) = v —g(u)), the resulting
closed-loop system can be described by figure C.11. The following theorem is proven: if
(i) Wy is strictly positive real and (i) g(z)x > 0 for all x # 0 and g(0) = 0, then the
closed-loop system is asymptotically stable. Thus if the combustion process satisfies these

conditions, a linear controller is sufficient. In practice this may not be easily verifiable.

We(s)

a(-)

Figure C.11: Nonlinear feedback system

Hathout et al. (1997) use an optimal control strategy based on a state estimator to design
an LQG controller. The design of the controller is based on the linear 2-modes model of
a bench top combustor rig. The controller thus obtained controls the simplified transfer
function model (obviously, since it was designed for this specific case) as well as the full

PDE system (where no model decomposition has been done). This shows the validity of the
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model and the robustness of the controller. Furthermore, this controller is also applied to
the actual experiment and shown to perform in a satisfactory manner (see figure C.5, right).
The bench top combustor exhibited limit-cycle behavior thus indicating the nonlinearity did
not affect the performance of the linear design and the robustness of the design. The same
result was also reported by Rumsey et al. (1998b) for other controllers (see figure C.5, left

and center).

C.3.5 Time Delay

Fleifil et al. (2000) analyze the bulk mode of a combustor. They assume that the pressure
oscillations lead to equivalence ratio fluctuations at the nozzle exit which are then convected
to the flame. This creates a time delay 7, in the system and the equation needed to describe

this phenomenon is given by:

d2p/
o Iy (t—7.) +w?p =0 (C.14)

This equation leads to stability bands (see figure C.12, 7,. is the acoustic mode time scale);

the time delay needs to lie within certain values for the system to be stable.

/% o

1

A\
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Figure C.12: Stability bands (shaded area is unstable)

If now an external modulation of the equivalence ratio is considered as control actuation

C . . . . . . dd’,
(by secondary fuel injection), equation (C.14) is modified by replacing the RHS with v,

Therefore, as the system is unstable in some bands of frequency given the time delay 7, the
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easiest way to control is to change the resonance frequency. This is achieved successfully

by using an integral controller:

/
% = —k.p/ (C.15)

Niculescu, Annaswamy, Hathout and Ghoniem (2000) provide very detailed guidelines to
cope with time-delay in generic second and third order systems. The analyzed system is
described by either of the following two equations where 7 represents a discrete (lump)

delay and k, k1, ko are parameters:

§% 4 2pwos +wi + ke T = 0 (C.16)

s(s* + 2pwos + W) + (k1s + ko)e™™™ = 0 (C.17)

Niculescu et al. (2000) give explicit analytical expressions that the parameters (p,wq, k)
need to satisfy for the system to be (un)stable independent of the value of 7. They then
proceed to explore delay-dependent properties: switches from stability to instability and
reversals of those switches. Once again explicit expressions for the values of parameters and
conditions on when a single or more switches/reversals occur are given. These conditions

provide guidelines for control designs; unfortunately, no applications are described in the

paper.

C.3.6 Can Open-Loop Control Work?

Prasanth, Annaswamy, Hathout and Ghoniem (2000) discuss the merits of open-loop con-
trol. Obviously, such a control scheme would be easier to implement on a real system than a
closed-loop scheme and thus deserves to be carefully considered. Open-loop strategies have
been successful in experimental devices, e.g., by using low frequency pulsing of secondary

fuel.
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Prasanth et al. (2000) argue that the general class of models that describe a combustion
instability are of the following form (the values of the parameters &, w, k1, kg, 7 depends on
the mechanism responsible for the instability - Prasanth et al. (2000) derives this equation
for a case with both convective delay between the supply of fuel and its burning at the

flame location, and a propagation delay of the flame surface into the reactants flow):
i + 260w + (w? — k1)n + kon(t —7) = 0 (C.18)

Since the most promising control action is injection of secondary fuel, they focus on a control
strategy that switches with a period T' and pulse width 0 < W, < 1 between equivalence

ratios ¢, i.e.,

¢1 : nT§t<nT+WpT
plt) = (C.19)
P2 nT+WpT§t<(n+1)T

Note that all the parameters depend on the value of the equivalence ratio and that, given
a desired operating condition of ¢,,, there need to exist possible operating points ¢; <
oy < P2 With ¢g = Wy + (1 — W, )@e. Prasanth et al. (2000) use the small gain theorem
from control theory to derive a linear matrix inequality (LMI) that the system needs to
fulfill in order to be asymptotically stable and then apply that condition to the cases of
stable-stable (both operating points ¢; and ¢9 are stable) and stable-unstable (one of the
operating points is unstable) switching. For the first case they show that one needs to switch
sufficiently slowly so that any transients induced by the switching die down. For the second
case the fraction of time spent at the unstable operating point is relevant to the overall
stability and not all ¢4, can be achieved; an iterative algorithm to find the appropriate W,
and T is given.

Prasanth et al. (2000) argue that this approach with the LMI can also be applied for non-

ideal (i.e., not instantaneous) switching or in the presence of a hysteresis in the combustor



155

dynamics.

To show that such an open-loop strategy works, numerical simulations are done with pa-
rameter values suitable to simulate the experiment done by Richards, Janus, Robey, Cowell
and Rawlins (1999). The simulations are shown in figure C.13 (a noise vector w has been
added to the system dynamics to represent disturbances) and seem to match with the ex-
perimental results. The average operating point ¢, is unstable in both cases, the switching

frequency between ¢, and ¢, is indicated at the top of the plots.
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Figure C.13: Simulations of open-loop equivalence ratio switching between two stable points

(left) and a stable and an unstable operating point (right)

C.4 Comments

It is obvious that the main focus of the MIT group is the application of control. Their model
of combustion instabilities is not novel at all (contrary to what they claim) and has been
used to a much larger extent by other researchers. In fact, only a one-dimensional analysis
is used; presumably the work can be extended to incorporate tangential or radial modes
by a more general application of the method of spatial averaging (as done for instance by

Culick or Zinn). It should also be noted that only linear gasdynamics are used and thus any
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behavior produced by nonlinear gasdynamics (such as limit-cycles) cannot be captured.
The flame response is the most distinguishing feature of their model when compared to
other works in the combustion instability control literature, with the notable exception of
Dowling who has used the same heat release dynamics, based on the MIT work. While
the governing differential equation has been derived under severe restrictions, it seems to
be applicable to all the applications given. However, the applications are very limited in
scope (basically they are Rijke tubes) and the bench top combustor used at MIT has been
constructed in such a way as to fit the model!

Up to the work by Fleifil et al. (2000) the premixed flame is held in place by a perforated
plate and is supposed to be rather flat. In Fleifil et al. (2000) equation (C.6) is derived for
an extended flame but in that paper no flame dynamics are used (!) as the heat release
rate does not respond to acoustic fluctuations at the flame but rather to equivalence ratio
variation at the fuel nozzle. Assuming that the fuel nozzle in the feed system is choked, the
instantaneous equivalence ratio is related to v’ via ¢ = ¢ [1 —u//a]. This paper is therefore
different from the rest of the work (the flame dynamics are replaced by a time delay) and
might indicate a new direction of their research.

The linear flame model described by equation (C.4) when used in conjunction with the
chamber acoustics compares well with experiments in predicting the correct unstable fre-
quencies. Note that even though the linear coupling introduced through the heat release
is stressed in the MIT work, the fact that their model predicts the unstable modes is not
by itself an indication that they got the model right since the effect of this coupling on the
uncontrolled system is negligible.

The analysis of the influence of time delay seems very limited at this point. While their
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approach (Niculescu et al. 2000) does indeed provide explicit limits on the system parame-
ters, the expressions given are only valid for low-order systems and are restricted to a one
mode analysis. It is doubtful that such an analysis can be done for a more complex (and
thus realistic) system.

The various controllers designed in the MIT work are all based on a 2-modes model. The
‘trick’ to write the complete system in an input-output framework and use a transfer function
allows them to explain various problems occurring when applying control. This approach is
very simple, and classical control concepts (gain & phase margin) can easily be applied in
this way. Moreover, the effect of changes in actuator/sensor location can be readily assessed.
Except for the self-tuning controller, the controllers used (proportional, integral, phase-lead,
LQG) are not very sophisticated. But even the adaptive controller varies only one single
parameter in order to adapt to a perturbed plant (i.e., accommodate model uncertainties).
Nevertheless, all of these controllers, which have been designed for a low-order linear model,
perform successfully on the real bench top combustor.

The analysis of open-loop control schemes gives a way to determine a suitable frequency
and pulse width for using a pulsed secondary fuel source. The conclusions drawn are
rather obvious (especially for the stable-stable switching), but nevertheless a framework
to analyze this type of control actions is provided. It should be noted, however, that the
numerical simulations reported (figure C.13) are misleading inasmuch as they are only linear
simulations. The apparent presence of a limit cycle is only due to the forcing by the added
noise term; the average operating point is in fact (marginally) unstable. No simulations
including nonlinearities are given: thus the claim that this analysis can be used in the

presence of hysteresis is not really proven. Furthermore, the discussion is based on a single
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mode, lumped-parameter model which might be too restrictive for actual systems.

The MIT work is obviously far from finished and some of the subjects (time-delay, nonlinear-
ities) have barely been touched. However, the published papers show a steady progression
in their effort and the ongoing work at MIT seems to become more elaborate. Note that
the papers cited in this review reference other papers or conference presentations by the
MIT group. These other sources have either not been published or are verbatim copies of

the works reviewed here and are therefore not included in this report.
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