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SUMMARY

Calculations have been carried out in order to determine the

rate of evaporation of a liquid droplet surrounded by hot zases.

The present study represents an extension of earlier work by

Penner on evaporation rates for isothermal droplets, Thus, allow=
ance was made for temperature gradients within the droplet (a) by
considering a droplet composed of an isothermal core and an
isothermal shell and (b) by utilizing the actual temperature profile
in the droplet as established as the result of a heat balance
between thermal conduction within the droplet, convective heat
transfer to the droplet, and cooling produced by evaporation at the
droplet surface.

The results obtained for the shell model of the evaporating
droplet were found to be in satisfactory azreement with the known
data for evaporation of isothermal droplets, independently of the
thickness chosen for the isothermal shells. On the other hand,
the laborious conduction solution led to somewhat different results.
The origin of the detailed deviations is not clear at this time and
requires additional study.
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SYMBOLS

time in seconds
distance from center of drop to any point in cm.
radius of droplet, function of T and ¢, cnm,

~ thickness of isothermal shell, cm,

temperature, function of N endt, %
temperature of the droplet at time zero, %
droplet surface temperature, o
temperature of the hot gas, %K

(2, - 1)

6000°K

mags pate of evaporation per unit area, function of T,
gn/em® sec

density of liquid, em/cm®

rate of heat transfer to the entire droplet, cel/sec
coefficient of heat conduction in the liquid, cal/em-sec-CK
thermal conductivity of hot gas, cal/cm see %%

surface coefficient of heat tramsfer, cal/cm® sec 'K
specific heat per unit mass, cal/em k

latent heat of evaporation, cal/gm

quantity evaluated at time equal zereo

1L /emr, a nondimensional parameter

x/{ mr, °K-1
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SYMBOLS (Continued)

M'la/b, a nondimensional parameter
E AT, a nondimensional parameter
r/T,

n/m,

n/,



I. INRTROIUCTION

The rate of evaporation of droplets in hot gases is of obvious
importence in heterogeneous combustion in rocket motors. If the
vaporization rate is known, then the lifetime of droplets can be
computed as a function of original size and motor conditions. Inm-
formation of this sort is of interest in connection with the rational
design of liquid~fuel injection systems,

The purpdse of this thesgis is to extend earlier work on evaporw-
ation rates of isothermel droplets in rocket engines (Reference 1).
Penner treated the evaporation rate of & liquid droplet in a gas at
constant temperature. Although the droplet temperature changed with
time, 1t was assumed that the droplet remained isothermal during
evaporation, i.e., that the thermal conduction coefficilents of
evaporating liquid droplets were, for all practical purposes, infinite.

We have considered two models for evaporating droplets, These
are (a) the shell model of the eveporating droplet in which the
droplet is divided into two parts, an inner core and an outer
spherical shell. The inner sphere was assumed to be isothermal and
to remain at the original temperature of the evaporating liquid; the
outer shell was also assumed 0 be isothermal but its temperature
was determined by making an appropriate heat balance equation., The
thickness of the spherical shell was treated as a variable mmater
and it was found that results substantially equivalent to those
obtained for isothermal droplets are derived, independently of the
thickness of the spherical shell.



-2~

The second temperature profile (b) was obtained from heat
transfer equations set up by Tsien. The resulting model of the
evaporating droplet will be referred to hereafter as the conduction
model.

Of the pvaporating droplets treated previously(l) by assuming
isothermal con‘ditlona during evaporation, we have chosen for
study with d.ifferaut temperature profiles, an aniline droplet with
initial rédins equal to 5 x 10'3 cn. 7The initial temperature was
set equal to 300 °K. Radiant heat transfer to the droplet was

neglected since it is lknown to be small in rocket motors(l).
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I7. THE SHELL MODEL OF THE EVAPORATING DROFLET

A. Outline of Theory
The concept of an isothermal droplet during evaporation in

combustion chambers represents a reasonable first approximation. In
practice one would expect that temperature gradients are set up |
during the life of the droplet. If the thermal conductivity is
sufficiently small, then it is clear that steep temperature gradients
may be set up near the surface of the droplet. However, the surface
‘temperature is not necessarily higher than for an isothermal droplet
because it is determined by a2 heat balance involving cooling by
evaporation.

As a first approximation to a2 droplet with temperature gradients
it was assumed that an evaporating droplet could be represented by an
isothermal core surrounded by an isothermal shell. It was further
sssumed that no heat was transferred from the shell to the inner
sphere and that the shell thickness was constant during evaporation.
The shell thickness & (cm) was set equal to 25%, 1%, and ;001¢ of
the original droplet radius.

In general the surface temperature will be determined by an
energy balance between heat input into the droplet and absorption of
energzy by evaporation or by thermal conduction to the core of the
spherical droplet,

The rate of heat transfer Q (cal/sec) to a sphere of radius

r (em) is



Q= #7n*h AT (1)

where A\ T (°K) represents the temperature difference between the
gases surrounding the liquid droplet and the surface temperature of
the 1liquid droplet, and h (eal/cm® sec °K) is the over-all coefficient
of heat transfer to a liquid droplet evaluated at the mean film
temperature T, = T, -i-_;_(!t.'g - ml). where Tg (°k) is the temperature of
the hot gases and Ty (°k) is the temperature of the surface of the
liquid.

For the simplified evaporation model employed for the present

studies, all of the energy input occurs into a shell of volume

N - E
V=472"3 - 97 [ riqa

=(97/3)[ N3~ (n-€)?]

(2)
ST/ - (1= Sn)? ]
From equation (2) it is seen that for
0 <<
(2a)

Ve ya®e
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and, for £ =1 (isothermal droplet)
V= (47r/3/03 (2b)

It is apparent from equations (1) and (2) that if heat trensport
to the spherical droplet were the only important physical procees,
then the tempe?ature El in the isothermal shell of thickmess &
would rise at a rate

L) shar/mtio- eI

where f (gm/cc) and ¢ (cal/gm) represent, respectively, the
density and heat capacity of the liguid in the isothermal shell, JFor

& <</

equation (3) becomes

&), = hAT [epe (38)

and for £/J;, =1 (isothermal droplet)

ol
dt Jo = jhAT/./ch

We assume that £ remains constant as the droplet radins JL

(3v)

decreases during evaporation, Hence the rate of decrease of volume

by evaporation of the isothermal shell of thickness £ is

- dV
A6 = YAt (—dr/dE) e
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The rate of absorption of heat during evaporation Q, (cal/sec)

is evidently

Qe = (-c(\//o(t)((D/) (5)

where j (cal/em) equels the heat of evaporation of the liguid in
the shell of thickness & . Since the total heat capacity of the
shell 1s |

Vee
the rate of decrease of temperature in the shell, if only evapoiﬁtion

occurred is

AT/t Ve = (3N /cn)(~dr/elt) (6)

The model of the evaporating droplet adopted in the present
discussion requires allowance for another heat sink. Thus the
assumption that & is constant means that the inner surface of the
isothermal shell must travel in the direction of the center of the
sphere sufficiently rapidly to maintain £ constant. This travel
of the inner surface of the outer shell means that some mass will be
introdnced from the colder core of the droplet into the outer shell.
Since the shell must remain isothemmal, heat must be added to this
new mass to bring it up to the temperature of the shell., The

surface area

YT (L-€)"
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moves inward with a velocity (-dr/dt). Hence the energy absorbed
per unit time in order to keep £ constant and to keep the shell

isothermal is
y zrm-e)’(-mmwpe (T~ 7o)

In order to correct for this heat sink, we may say that of the
total heat Q transferred to the droplet in unit time, only the

amnount

Q= 4TA*hAT ~ 41 (-3 (~cla/dt)pe (T:7To) (1a)

is effective in producing evaporation and heating the outer isothermal
shell,
If equation (la) is used in place of equation (1), equations (3)

to (3b) become, respectively, for O < E/1 £/
(IT/dt)e = 3NAT/A[1- (1~ ¢a)’Tpe

301 ) (A d s NT TRl - (- S2] (g

for €/t << |

(b T/dt)e = hAT /epe = (-dn/dt (T-To)/E (32)

and for €/ =/

(AT /elt)e = 3 h AT (8b)
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For simplicity we consider the case in which heat transfer

between the isothermel shells may be neglected. In this case

AT/dt = (AT/dt e + (dT/dt e

represents the rate of chenge of temperature in the isothermal shell
with time. Using equations (3) to (3b) and (6) to (6b) we obtain

the results

AT/dt = § 3/2L1- (1= TH{ (AT /c p)

~( 1= CRY (a6 )(T~To) - (A/e)(-dnlelty} ()
for g/ << |

AT/t = (hAT/g pe)=C-dalt) Mo + (T.-To)/e] (7a)

end for g/ =1

dT/dt = 3bAT/npe - (38/en)(-dar/edt) (7v)

In order to carry out approximate calculations for the rate of
chenge of temperature Ty and droplet radius r with time, we may
assume that =dr/dt is given by the Knudsen equation with am evapo e~
tion coefficient X which we shall assume to be independent of

temperature.* Thas

——— - O ore e H S

* The assumption that OC is independent of T; can be dropped by
using recently developed theoretical methods for the calculation
of X . The theoretical lower limit for h is k/r in a stagnent
medium unless the spheres have diameters which are of the same
order of magnitude as the mean free path in the fluld. Compare,
for example, Ref, 1.
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~ o /dt = (dP/P)(m/urm-)'/‘ 8)

vwhere p is the saturated vapor pressure of the liquid at the
temperature Ty and R is the molar gas conetant. The pairs of
equations (7), (7a) or (7b) together with equation (8) can be solved
by a simple iterative procedure.
Bepresentaﬁive numerical velues for aniline are the following:
¢ = 0.58 cal/gn °K; r° = 5 x 1075 cm; h= k/r = 4,30 x 10" /r
cal/cmz sec oK: A 7= (3000 - ) ks f = 1.02 gn/ec; P = 129 cal/em;
-dr/at = sntilog,, (7.08 - 2600/%)); T, = 300 °k; e = 1650 °K.
Tor isothermal evaporation of emiline droplets equation (7b)

becomes

AT -
S = 2380310 3 (3000-T)0* _ (v30/4)(-d1/dt) (20)

Plots showing .‘21 and r as a function of time if the initisal radius is

3

5x10°, 1 x102 or 5 x 10~2 cm have been given in Figs. 1 to 3

of Ref, l.
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B Somma. ‘of jalculations ‘

Since the pair of equations (7) and (8) could not be integrated
readily to obtain T = !1 as an explicit function of time, an
iteration procedure was used. First a value was assumed for the
ratio € [r. Then T was set equal to T, or 300 K. Equations (7)
and (8) were used to get the first definite value for 4Ty /dt. Then
an increment of time A t was assumed. The new temperature T; was
then equated to To + ALt(aT/dt). With this new value of T, dr/ds
was computed and hence a new value of the radius. It was now
possible to compute 2 second value for d?/ds. The entire process
was repeated until the original radius had decreased by 50%.

The results of the computations are ploti;ed for three values of

E/r in the attached Figure 1.

Ce _Discussion of Results
The smaller the value of £ /r chosen, the faster the shell

temperature rises (Figure 1). However, the higher the temperature,
the faster the evaporat_ion rate., Therefore, although the temperature
rigses faster initially in the thinner shells, a pseudo-steady state
temperature T = T, is apparently reached at a slightly lower
temperature than for an isothermally evaporating droplet. In general,
reference to Figure 1 shows that the results obtained from the shell
model are consist'ent with those obtained for the isothermal case.
Hence it may be justified to conclude that calculation of evaporation

rates, based on the isothermal approximation, are reasonable,



III. CONDUCTION MODEL OF THE EVAPORATING DROPLET

As Outline of Theory
Although the shell model is = closer approach to a realistic

description of an evaporating droplet than is the isothermel drop~-
let, it is of obvious interest to consider a model with reasonable
temperature grsfdients. This problem was set up by Tsien and its
solution is discussed in the following paragraphs.

This model of the evaporating droplet, which will be referred
to as the eonduction model, involves a temperature distribution

within the droplet which is approximated by a parabolic curve.

B, __ Summary of Calculations
The differential equation for the heat conduction is

AL 3 (p2dl)=cpdT (1)
Nz an ( ( an ? ot
We shall not try to solve the equation exactly. We shall assume

T to be given by the following fom

T, 6)= AR)+ 7B + n¥Ct) (2)

where A(t), B(t) 2nd C(t) are unknown functions of %, to be
determined by the following three conditions

a) Bquation (1) to be satisfied in the mean,

AL %,—l('z‘g—,g)o{;zzcefoﬁza %ET"“L (3)
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b) Equation (1) to be satisfied at the center

12: (o) for all t.

c) At R = r, the heat balance is satisfied.”

" This equation is

2T
WAT = Im + A (9’1)n=/b

It can be gotten from our work done on the shell model using the
shell model equation (7a)

oT %‘%zt .y %){é + (T-T)/¢]

The rate of heat loss from the spherical shell to the colder core is

. _ 2
4T (2-8)° A (dr/ahb)n:m_e)

This term must replace our shell model term for heat absorbed dy the
incoming mess as its temperature is raised from T, to Tj. Our new
conduction model neglecting the tem for heating iiquid. from B, to T,
can be expressed, for £ /r <<1, as

N

st ~LHIT(A- 8)2?\/'/(-*63(‘)%/&)&-5 & pee 3

Therefore equation (7a) for the shell model becomes for the conduction
model

?T _ haT _/ d /
3t pce eﬁ))[féé]
which can 2180 be written as

hAT 9T A o7 -/ dua
— = v - + N = —
pe € ot gc o Ve
If we now let £ approach zero we get the final form for condition ¢

hAT = _I/m + A 2T
o4



-13-
Equation (3) gives

AL2B)+4r3C ()] = cg[éﬂ'(t) + ¥ "B %) +%/z"'c'(t)] (4)

where the primes mean differentiation with respect to the argument
of the fimcti_on.

The condition b gives
625t = c A1) ()
The condition ¢ gives
h(Ta=T) =fm(TY+ AL 2 BCEY + 423 C.(4)] (6)
T, is given by equation (2) as
T (t) = R +5 B 1 AYC (1) (7)
And the equation for rate of evaporation is:

m(T)=—pdn/dt (8)

The equations (4) to {8) are five equations for the five
unimowns A(t), B(t), C(t), r(t), and Ty ().
Now (4) end (5) give:

B'(B) = 20 RCLE) _  satc'(d) ®
Ce 7
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Differentiating equation (7) and then eliminating A'(t) by

equation (5):
dT (2»41»4-6)\}5(,\%) + A2 B(t)
dt dt ¢ p

+m3% Cet) +27C(t) (10)

Equations (6), (8), (9), and (10) are now four eguations for
four unknowns, B(t), C(t), T (%), and r(t).

Bquation (6) can be written as:

»16(7 -T) jm(T)
! = 0O(t) +

Differentiating equation (11),

-4 O(/L(Tg TY-h T pmin) ofr

VL A 2ZAL” of6 A" At
— Am(T) oAT = RE) tHrdr C(p)+ 247 CCE) (12)
2r4 ot of 6

Using equation (9)

".:@., (T& T) - _/_ﬁ_ % ! )eé/u AmT) ar,

= (202 4 4n Lo\ (¢t 2 (¢
(CP o(t) (t) +92°C(¢) (13)

7
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Equation (10) cen be written as

<
~

I

=(2dr CA
'(chet —(3 )13(é)+86£)+4ﬂ 7 CEB+ATC(t) (14)

o

L
AF db

Using equation (9)

1 dTn

LodF (2, -% )B(ﬁ)w‘(ce +GE 0w + “76“) (15)
Using equation (11)

LdT _ /2 dr 4 62 __»@___ Am (1)

ST Gl T cp” ){ 27\4”(7—6'”— 2An }

. 2- !
~(andd f;é‘) :zccw+(2“+4ﬂ E)Ces) + gﬁ—f—@

(ré—m—«f’mm} + “ Cct) + At 07(t) (26)

"‘ {Z at 2 13

Now equations (8), (13) and (16) are three equations for three

unknowns 6(t), T, (t) and r(t).
We must now eliminate C(t) remembering that T;(t) is a fanction

of t.
Equation (16) can be written as:

a)

(1-3-T) ~Im(1) } JQ%Q)]

Cle)y=c¢ dT;
)—E[n; "gE 2A4?

dt 7; {27%
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Equation (13) can be written as:

A _dT , Am(t) o
clety=L- ?UL3 (7;7 T) =204 &b 2”;;1 d;z, ’%ﬁ%—)j‘g
o (18)
202 d/u
‘(C(J + 4 )CCHJ[%LJ
Combining equation (18) into (17) we get:
Ciey= ¢4 [ 1 dT
- SP 7202 2n* At
Tl e v 2‘%’)
oL_ )(%(T T‘ /-m(?‘,)
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Ceey =9/ 1 \N\T1 B+Lem' (T N\ dT
7 ﬂ-ﬁ‘%)[lﬂ"(w 73 H

¢

22\/7,

(g Lam(T) - 2 /z(T*y’T))

— 32, ,/g(r -T) — Kam (T
CP Q_)\/z" 2xn? )]

C(t) = ——-—L———— aA+ B4 am’(T)) AT,
%/L ﬂhﬂ/%)[ﬂ,( A %m())a-(—é

+ (84 mer) - 1.4 (T4-T)) &
At

‘z;;—"(/é (73—1‘.) - m(’m)]

C(t) = _ 41‘ ﬂ1(93+,@+//om’(r,>)i7'.
32087 @5 15U dt
ce At

+ (8Lamn) 74 (T -T)n I
¢ Lt

~,26_7§A (,&(TQ—T,)—/meCT,))} \(20)
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Differentiating equation (20) we get:

c) = - /252/1, 9(/,, ot da?
317\‘/“ szam (dt}

cr

-8/\/45‘ii/0)[/1,z (9A4 B~+Lam'(T) AT,
at* At

+(§Lemin)- 714 (1a~r,))/b dr 2721(,,@ (1g=Te) —//z,m(r,))}

+ | }
2 ZJL(Q/\'L»’Q’ +lamm) dr 6(7"
( 3%‘%—4“ - “/“'s'éﬁ")[ ) & 7t
rarfm (”d/”c”‘ + Wl m”(T) alT,)
dt Ji

+ 2 m (TYT 4 (92 +R) A>T +(X/unm)
dAt* elt?

_7£(T3-77))(§_3)7' + (8L mcTi)- 7£(‘{:7—T,>)/( f‘:

+ {Mm(r.)om +8Lam (T)AT & 7K AT, } g
At At At At

+ 2708 AT, | 23 AIMLT) 4 272 Lam AT oT,

prb Y

cp At cp cp At

(21)



Combining equations (17) and (18) we get:

Ceey=§ 779" ) .
5 /-“(GK)(Z-—‘L" +WLM)}[(ILW(TJ 4% T))ﬁ%

“(j,{,m(‘n)+,£)/¢ _g_'_ I(.?_Df\+£//t,00}( ) AEA dT

“[rdg + 29[ A(7y-7) —/,,,mm])}{;l{ﬂa} (22)

From equations (21) and (22) we have eliminated C(t) and C!'(t):

<
779 (lrm~ 28 AT) da
J—L(?_; 20N Ly s At

9 ¢cp e

——(fxam’+/é’)/c3%7? 712( 4/w€/b[ )(/zzm(f

“[x 4z + 3 }[/@AT /MJ)}{W =



— { z | 2 2,3
(F5) (mm) (2212 s
) o ~ %% cp At

—HO A2 (a(/b _ Fansdn )[41(92 +»£+//bm’)§!iﬁ
ol &

+ ($Sam~TBAT) 2 dA _ 2720 (LAT -4 m)

dt €p
+ : 29N +R +2 o 7,
3:Cz "_g)\ﬂaM){z L * AM)TT
4

+ A mdr o + A ham” 9(7‘ 2
da o) Fa (7)+£#ﬂxzm)c;7(t_7l‘

+ (smmwﬁm)(%)l t (§ham- 7487 )n L2
o2

+(84lmer 84
44 + /me07' +7ﬁ.cﬂ )/1,

+2 _7_,1@; dT + 23 adm dr + 230 dam' o T,
Ce  olt cE At cp .;59] (23
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We now express ( in terms of -m/ :.Z%". We also exprese

B’E"m terms of T, , %% . end 'c'ﬁi‘ o We then divide

equation (23) through by (dr[dt)s in the following manner:
Fronm equation (8)

=-p &L J ==Ll da

dt 7 % m At

Also:

L -drYy =709 - 2600 /T,
07’°( dt) '
#n (-d_/.b) =2.303(7.09-2600/7,)

dt

-6000/T, _ -
dr _ _a e z—ae b/T
dat
16.35

where %a¥ = ¢

¥ = 6000 K

- b/ ..

dr - —ab T aT
dt> T At

- b o2 dT

T.2 &t ot
= b, (d2) 4T
-r;z Cet &eJL
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Making these substitutions in equation (23) we get:

L) L sz )(”/\ ra) (fam-2 R8T )~ (lam'+R) 2 LT,

2A8

dn - ;ok){sgﬂ)( AN T [n ][KAT”’MMJ)}

128 A3 'qu/L gAAS b AT,
( 5 A AL )[Ja('ma wm,)aer,

+ N (FLam=-7RAT) + 22X (R AT - ,P/wm)]

t272

cm

+9 M“(ﬂ m)[za( N +h +oam’)y dT g 2 hm' AT
Cm dn PR

m?ﬂm"(%)‘ (me%mﬁ)( joT }42%’:3)
S A

+(8ham -1RAT)(1+1b AT)+?1/cm—r 8ln*m'dT.
T.| AN d/L

+ 74 dT, —55_7_3(«@0( + dm +1/cde)J O (z4)

dn cem EDZ
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Farther simpliﬁeation cen be made in this basic equation which
we nmust solve, by using the following considerations.

For the particular problem with which we are working, it is
found that ,\ equals k both numerically and dimensionally. Hemce
we can interchange ﬁ. end k at any point from here on.

The following symbols and notations have alsc proven te be useful.

, -b/T;
777=0.Q6’
! _ - /T
m =d :.d_ e b !
d T, otT.(ae )
-b/T,
cato e = bm
-’-;7. -r-"z.

Define:

= A [Alo
m [ moe
= T, /T

W
L]
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Rearranging and simplifying

(zzch%z")(,wo){ﬂ,m (-26) —In* mA (1+F) dT;
cﬂ/L

D./L

+ ((+5D) 2> A dT Y3 [t-SDJ[G-}](,?JLh’I))}

+ (=128 A AR T Y VAR 32\?’;6 dT)[Jz}(‘?)H,&

+4n m) AT + A4a*m (§-76) + 274D ham (G~1)]

dn
.l.g}\/Ls'(‘/D'H)[Q/L(Qh ‘4’1%.‘1‘1/7‘"”)3(7-'
| AN
t AFIm'dT L 43 '
I Lm" (d’T 2 4 (/Lme +Ah A%

+ﬂ29?\)(%{%z} +é:0j +14m{¥‘76)(1+/(,b 0”—}

+ §dam + §42°m' AT 1 7R el
o A

-274
:é?m //éd?T +Am + Lam’ 507"):} =0
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Dividing throﬁgh vy (L+4D) (BA Jlf,?b Mme ) we get:
To

28D’ T foam(1-26) - 4amb (14 E) AT,
/Lbjbmb T’z &?JL

+ (1 ~Dso)‘(/w\ ZI. Lam (!-30)(@~1))}

+/ 1 )_/ea("ToD_éid"To
1+40

(9
SNCLA Mo Ao lbMs /101/%7‘ ,,(7,..)[ (A

+.K +ﬂﬂ6) AT 4 Aa*m (8-16) +27.4 Diam (6]
T.*/ da

c
+ A To [ZJL(‘?7\+%+/J_L_F_7»;5)0_(’_T} + 44 mb o
Ao dbme A

2
+1/L37n( 6___;_1qu) c.Uc)z +(1A3'mb +9Aa%
. dr T3

+,£/L")(_%z{ ZL}J}Z-% «d_z_',r«) +ﬂ/z.m(8~76)(l+&é. aLT,)

dr* T2 dnr

Fham+Thatmb AT, + 7R dT
T.2 dn dn

—2.7D/z(£§l' +Am +Lamb 0(77)] o
T'z
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Regrouping and letting A = 4  and dividing by Sam

a’To (/L_:A + 16 A27) 47T,
Jtodbmo T* Lam dr*

O BRYEY G T )(/oe th ) e +°To (b
L ‘leq)
[(44-40) /l°1’."“T'z ﬂz)/b Ao dbmo {JL ( T, ¥

(AR

T1:- le 14m &Jb

+ [ 280a%To {—JLB(HF).;- (=502, /-1 \=o®h
,/lﬂjb mo Tﬂz D-/em (I+HD) j/l(,moT.")'

( N (8-76) +21 ao(e~,)) iL(_t___)( - 164¥To D

{+4b Ae24 b Me

¥
ﬂozjbmb T Mo VbmMmo T, 2 T.2

+8ab + 2024 4782 _ 270 A + b )) dT;
T2 am  Fam am  T* dn

+28 Do(sTo( (1-26) 4+ (1=50) (~)(1-30)(6-1)
Nof b Mo O

+ [ 1 — 16 DTe _ 54T )( : -
- /eX OTe _ A l(8-16) 4272 0(6& t))
('*“‘0)( N lbmo  alpbmoe

5
+d " To ({8-7@) +$’—27D) —0
Ao b mo



-

Simplifying farther: i.e. multiplying by LA m o>
x& 8

—(1riw0r) diC o7 T2 (28 (1- T ysh)
da* L bt TF b

(:+qo)(0‘7', + e E)NSTL [ '5% ( -l e

+ (J_—brfy F) *(ﬁ:»)(i"){ g-76 +210D (z;-/))

+ IOF+1) -1 [/€D+S) +/ 1 4 (8-76)
1+ 40 o ok &

+27F _ 270D (F+l>)] fa~
« e d ok

+ 28D ¢ To( (1-28) — (:—so)(:—:«o)(é—z))
e ; D ‘

+( /50+5)(—rll‘o.)( £-76 +:uo(@-:))
] 4+ 4D A* b

+0'T°{g ¢ +¢ - 2.70)




=28=

Finally -
a” {[20 Cr10r)(40) 4 (20207 (5)?
I-HaF (H“ID) 0—‘:."'

L f..'[—-qu DF—-—55D +S5F~F~76 +19

+( ! )(_2706 +1D~1600F +76 -50F —13Y
1 +4D

2
+.059 ") yapD*(1-G) +/68DG—-223D
dl

—356 +44 - (J6D15)(§-76 +37 D (6-1))
C1+4D) H

In order to¢ solve this equation by iteration we need the

following values for time equal zero. These values were taken from

(1)

Pennerts peper = with the exception of A (2).

-4

k 4,3 x 10~ cal/em sec °r

A = 4.3x 10.4 cal/em see °K
¢ = 0.63 cal/em %K



129 cal/gm

f =

© = 1.02 gm/ee

r, = 5x107°

T, = 300 °k

m, = 3000 °K

my, = 0.0263 gu/cx’ sec

od = one

0 = one

@ = 8.5 (1635 =20/ ) _
D = 8/x@ =28

F = 0.5 o"z/cx g =0.5

¢ = 1000-0 )/ K@ =90

We still need one more initial condition before we can begin
the iterative procedurs.

¥We now make the assumption that at time equal zero, our droplet
is i1sothermal and hence from equation (2) we see that C(t) is also

equal to zero. Hence we can set equation (20) equal to zero:

= ] )
’ ( 32 A*aY mn"dﬂ»){ﬂz(q" +A& +Lam(r) cﬂ?
¢ dt

(gj/l. m(T,)“7»£AT)/zo(J& 272 X(/gAT //Lm)] (28)



~30-

0= l (q)m."+ Anty OA3mbY dT
322%5, gaA% T.> ] dr

cmn

+ FhaZm - TRATA + 212 (RAT -4 m)]

cmAn

o=/_1_ l
(8)\/&5‘)(14- %ﬁ)[(%ﬂ + Aa*+ 0n3 mb) oT

(

Cmna

+80°M-1RATA + 2121 («KAT—,&m)]

ﬁ)t-o /QAT(']“‘Z‘Z,,Z\L j.a.m(ﬁ* 17"

dn

(

Qan + A + In>mb
le-

%)t_o = RAT(7-270) ~ Aam(8~27D)
ATo (9] +.& + -e./_c_rn_b)
T,

This term is en initial condition for our equation.

(29)

(20)

(&)

(32)



~31l=

{ﬂ)tzo = ,Q AT(7‘27D)'//3010700(S3(8—2.7D)
°‘T°(‘??t + R+ Nromoct 3 b/ >To>)

But at t = o

A=Q =0 =1; D= 8; = ,033; F= .5 G =90

Thus:

di } i
(ﬂ)tm: (5x10 ‘*)(3000—300)(7—270)— %/g_ﬂ D)
300 (/Oxs'x/O'“ +R/F)

- .35(1-270) - R (g 27p)
1.5 + 300 A/F

sx10”?
/.5 + 300 xs5x106"Y/5

= —-2%2 -+ 3./5
/.5 +3

= —/55

Cur iterative procedure will make use of the Taylor expansion
theorem wherety 1f A X is a small quentity compared to of , then



“Z D
T(d+AA) =T (X)) + ALK T (%) + (Ax)* 0 "(&)
: 2

In like manner

T (A+Ad) =T (k) + Aol 6 " ()

We can thus proceed as in the shéll nodel case by solving for
O~ W and o ! using the given values for time equal zero and from
this new value ‘of 0 ¥ we can find all the necessary values at
O + AT 8o as to repeat the process until A has
reached the value of 0.5 or less,
The results have been plotted on Figure 1 along with the other

curves.

C. Discussion of Results
The results of calculations based on the conduction model

indicate that a time of about .0040 sec is required for the radius
to decrease to 50% of its original size (f‘igure 1). The surface
temperature is seen td be consistently below the value found for
both isothermal droplets and droplets represented by two isothemmal
shells. The points calculated give a monontone (Figure 1). Since
the numericel work for the conduction model was checked repeatedly,
the data given in Figure 1 should be considered as & valid solution

for the problem under discussion.
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