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Abstract

The Schrédinger operator —d?/dz? + g(z) is considered on the real axis. We discuss
the inverse spectral problem where discrete spectrum and the potential on the positive
half-axis determine the potential completely. We do not impose any restrictions on the
growth of the potential but only assume that the operator is bounded from below, has
discrete spectrum, and the potential obeys ¢(—|z|) > ¢(|z|). Under these assertions
we prove that the potential for z > 0 and the spectrum of the problem uniquely
determine the potential on the whole real axis. Also, we study the uniqueness under

slightly different conditions on the potential. The method employed uses Weyl m-

function techniques and asymptotic behavior of the Herglotz functions.
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Chapter 1 Introduction

1.1 Overview

In this thesis we investigate the inverse spectral problem for the Schrédinger operator

2

da?

H= +g() (1.1)

on the whole real line. We study in this work the case of discrete spectrum. Also, we
suppose that the operator is bounded from below. We consider the inverse spectral
problem when the spectrum of H and the potential on the positive half-line determine
the potential everywhere. We demonstrate an example which shows that this fact is
not true, in general. One needs to impose some extra assumptions on the potential.

We prove the uniqueness of the potential under the following a priori bound:
g(—lz|) = q(|=]). (1.2)

We consider the other type of condition on the potential. Namely, we ask the inequal-
ity only for sufficiently large x: ¢(—|z|) > Cq(|x|) for C > 1. This result requires some
additional assumptions on the potential. In particular, the result requires existence
of Weyl’s asymptotics for the number of the eigenvalues.

This work generalizes the result proved by Gesztesy and Simon in [GS]. In addition
to the inequality (1.2), they also require the restrictive condition on the growth of

the potential. We discuss their result in the next section.
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1.2 Inverse problems with partial information on

the potential

In this section we describe known results for the inverse spectral problems with partial

information on the potential.

1.2.1 The case of the interval [0, 1]

In this subsection we state results concerning Schrodinger operators on the interval
[0, 1]. The spectrum of such operators is necessarily discrete.

In 1978, Hochstadt-Lieberman [HL78] proved the following theorem:

Theorem 1.1, Let by € R, hy € RU {0} and assume qi1,q2 € L'((0,1)) to be
real-valued. Consider the Schrédinger operators Hy, Hy in L2((0,1)) given by
d2

0= g2

+qj7 j:]-aza

with the boundary conditions

£(0) + hou(0) =0,
W'(1) + hu(l) = 0.

(1.3)

Let o(H;) = {)\;.} be the (necessarily simple) spectra of Hj,j = 1,2. Suppose that
q1 = ¢ (a.e.) on [0, %] and that A1, = Aoy, for all n. Then ¢ = go (a.e.) on [0,1].

Here, in obvious notation, A1 = oo singles out the Dirichlet boundary condition
u(1) = 0.

We can paraphrase the results by saying “the potential on [0, %] and the eigenvalues
of the operator uniquely determine the potential everywhere.”

For each ¢ > 0, there are simple examples where g1 = ¢ on [0, § — €] and o(Hy)
= o(H,) but q; # g. (See [GS] and also Theorem I’ in the appendix of [Suz86]. We

consider the similar example for the case of the whole real axis in Section 1.3.2.)
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Later refinements of Theorem 1.1 in [Hal80, Suz86] (see also the summary in
[Suz82]) showed that the boundary condition for H; and Hs at = 1 need not be
assumed a priori to be the same, and that if ¢ is continuous, then one only needs
Aln = Agm(n) for all values of n but one. The same boundary condition for H; and
H, at = 0, however, is crucial for Theorem 1.1 to hold (see [Hal80, dRC90]).

Moreover, analogs of Theorem 1.1 for certain Schrédinger operators are considered
in [Kha84] and the interval [0, 3] replaced by different subsets of [0, 1] was studied
in [Jay] (see also [PT87], Ch. 4). Reconstruction techniques for ¢(x) in this context
are discussed in [RS94].

Gesztesy and Simon suggested in [GS] the following generalization of Theorem 1.1

Theorem 1.2. Let H = —a‘% +q in L*((0,1)) with boundary conditions (1.1) and
ho,h1 € R. Suppose g is C*((5 — &,1 + €)) for some k = 0,1,... and for some
e >0. Then g on [0,1], ho, and all the eigenvalues of H except for (k + 1) uniquely
determine hi and q on all of [0, 1].

Remarks. 1. The case k = 0 in Theorem 1.2 is due to Hald [Hal80].
2. In the non-shorthand form of this theorem, we mean that both ¢; and ¢, are
C% near z = 1.
3. One need not know which eigenvalues are missing. Since the eigenvalues asymp-

totically satisfy
1
M = ()2 + 2(h1 — ho) + / o(z)d +o(1) asm — oo, (1.4)
0

given a set of candidates for the spectrum, one can tell how many are missing.
4. For the sake of completeness we mention the precise definition of H in L2((0,1))
for real-valued q € L'((0,1)) and boundary condition parameters hg, h1 € R U {oo}:
d2

H = —— +q,
dx2+q

D(H) = {ge L*(0,1))]g,9' € AC([0,1]); (—g" + qg) € L*((0,1));
g'(0) + hog(0) =0, ¢'(1) + h1g(1) = 0}, (1.5)
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where AC([0, 1]) denotes the set of absolutely continuous functions on [0, 1] and h,, =
oo represents the Dirichlet boundary condition g(zp) = 0 for 2o € {0,1} in (1.5).

Also, in[GS] examples were constructed which show that Theorem 1.2 is optimal
in the sense that if ¢ is only assumed to be C**~! near z = § for some k > 1, then it
is not uniquely determined by ¢ | [0, %] and all the eigenvalues but (k + 1).

Theorem 1.2 works because the condition that ¢ is C?* near z = % gives us partial
information about ¢ on [}, 1]; namely, we know ¢(3),¢'(3), - -.,¢"*®(3) computed on
[%, 1] since we can compute them on [0, %] This suggests that knowing ¢ on more
than [0, -;—] should let one dispense with a finite density bf eigenvalues. That this is

indeed the case is the content of the following theorem, also proved in [GS]:

Theorem 1.3. Let H = ——di’lz?g +¢q in L2((0,1)) with boundary conditions (1.3) a
ho,hi € R. Then q on [0, + §] for some a € (0,1), ho, and a subset S C o(H) of
all the eigenvalues o(H) of H satisfying

#FAeS|IAI M} > (1-a)fH{A€a(H) [ A< Ao} + 5 (1.6)

for all sufficiently large Mg € R, uniquely determine hy and q on all of [0, 1].

Remarks. 1. As a typical example, knowing slightly more than half the eigenvalues
and knowing ¢ on [0, 3] determine ¢ uniquely on all of [0,1]. Theorem 1.3 solves a
new type of inverse spectral problem involving fractions of the set of eigenvalues.

2. As in the case a = 0, we have an extension of the same type as Theorem 1.2.

Explicitly, if ¢ is assumed to be C?* near z = % + %, we only need
HAeSIAS A} Z (A -a)#{rAea(H) [A< A} +§—-(k+1) (17

instead of (1.6).

In [RGS97], further generalizations were considered. Let H(hg) be a Schrodinger
operator on [0, 1] with the boundary conditions (1.3). Fix h; € R but think of H (ko)
as a family of operators depending on hy as a parameter. Del Rio, Gesztesy and

Simon proved that the spectrum of one H(hg) and half the spectrum of another
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H(ho) and g on [0, ;] determine g. This extends a classical result of Borg [Bor46] (see
also [Hoc73, Lev49, Lev68, Lev87, LG64, Mal94, Mal97]) that the spectra of H(hg)
for two values of hy determine q. The other interesting result obtained in [RGS97]
is that two-thirds of the spectra of three H(ho) determine g. Both these results are
based on the fact that the m-function is determined by its values on the sufficiently

dense set of points.

1.2.2 Jacobi matrices

Let us now discuss the application of the m-function approach to the Jacobi matrices.

The finite Jacobi matrix is an N by N matrix of the form:

(b s 0 0 - - -
a1b2a20

0 ag bg as

o= (1.8)
anN-—-1
\ .. . .0 ay.; by )
It is useful to consider the b’s and a’s as a single sequence b1,a1,b9,02,... = ¢,
Co,...,Con—_1 that is,
Con—1 = bp, Copn = an, n=12,.... (1.9)

In [Hoc79], Hochstadt proved the following theorem:

Theorem 1.4. Let N € N. Suppose that cyi1,...,can_1 are known, as well as the

eigenvalues \,..., Ay of H. Then cy,...,cn are uniquely determined.

In [GS97b], Gesztesy and Simon use the m-function approach to generalize this

result:

Theorem 1.5. Suppose that 1 < j < N and ¢jq1,- .., can—1 are known, as well as j

of the eigenvalues. Then ci, ..., c; are uniquely determined.
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Remark. One need not know which of the j eigenvalues one has.

Also, in [GS97b], a new approach to the central result of inverse analysis is pre-
sented, that is, the spectral measure uniquely determines the matrix elements. The

proof is based on studying the asymptotic behavior of the m-functions.

1.2.3 The case of the whole real line

It is well known [KM56] that knowledge of the reflection coefficient at positive energies
does not determine the potential V' of a Schrodinger operator —j‘gg— + V such that
V(z) — 0 sufficiently rapidly as |z|] — oo, but that one also needs bound state
energies and associated norming constants. This is most dramatically seen in one-
soliton potentials where R, (\) = 0, A > 0, even though there is a two-parameter
family of such potentials parameterized by the center and width of the soliton.
There has been a series of recent papers [Akt94, Akt96, AKvdM93, BSL95, GW95,
RS94, Sac93] showing that if V is known a.e. on a half-line and vanishes sufficiently
fast as |z|] — oo in the sense that at least its first moment on R exists, then the
norming constants and even the bound state energies are not needed (some of these
papers are limited to the case where V' is assumed to vanish on the right half-line).
In [GS97a], it was shown that this is a special case of a very general and very ele-
mentary phenomenon: It is not required that V has a simple asymptotic as |z] — oc.
Rather, all that is significant is that V' be known a.e. on (0, c0) and the Schrédinger
operator H, associated with —dd—;g +V in L?((0,00)) and any self-adjoint boundary
condition at 0 has some absolutely continuous (a.c.) component in its spectrum.
Also, rather than require detailed manipulation of the machinery of inverse problems
and/or trace formulas, all that is required is a uniqueness result to go from a Weyl
m-function to a potential. In particular, the m-function technique used in the paper
allows one to consider impurity (defect) scattering in (half) crystals, scattering off
potentials with different spatial asymptotics at left and right including asymptotically
periodic potentials, potential steps, and potentials diverging to 400 as £ — —oo. The

central result of this paper is the following theorem:
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Theorem 1.6. Assume that V € Li (R) is real-valued and —-;% + V() is in the

loc
limit point case at +co. Suppose that V is known a.e. on (0,00) and that R ()) is
known a.e. on a set S C Sy of positive Lebesgue measure inside the essential support

S, of ogc(Hy). ThenV is uniquely determined a.e. on (—o0,0) and hence a.e. on R.

More subtle and deep is a comparison problem concerning knowledge of the po-
tential on a half-line where the spectrum is purely discrete rather than having an
absolutely continuous component. In [GS], Gesztesy and Simon considered the in-
verse problem for the Schrédinger operator with discrete spectrum on the whole real

axis. They proved the following theorem:

Theorem 1.7. Suppose that q € L _(R) obeys

loc

for some C e, D >0, and that

Then q on [0,00) and the spectrum of H = —% + ¢ in L*(R) uniquely determine ¢
on all of R.

The proof of this theorem is based on the same idea as the proof of Theorem 1.2,
that is, the Weyl m-functions associated with the positive and negative half-intervals
were studied. The uniqueness of the m-function associated with the negative half-
line (where the potential is unknown) was shown. Then the Marchenko-Borg re-
sult [Mar52, Bor52] guarantees that the potential on the negative half-line is unique’.
The fact of the uniqueness of the m-function was shown using the Phragmén-Lindelof
principle. The first condition of Theorem 1.7 implies that the m-functions of the
problem are meromorphic functions of order less than 1. Using the second condition
and the asymptotics of the m-functions at infinity, it was shown that the difference of
any two m-functions vanishes as z — #ioo. Then, Phragmén-Lindelof principle states
that the difference is zero, that is, under conditions of the theorem, the m-function

is unique.

1'We discuss the definition of m-function and its properties (in particular, the Marchenko-Borg
theorem) in Chapter 2.



1.3 Results

1.3.1 Uniqueness for the potentials of arbitrary growth

The purpose of this research is to extend Theorem 1.7 to a wider class of potentials.
As was noted in the brief discussion of the proof of Theorem 1.7, the condition
on the growth of the potential is technical: For such potentials the corresponding
Weyl m-functions have order less than 1. The last fact is necessary for applying the
Phragmén-Lindel6f principle. The importance of the second condition of Theorem 1.7
is not immediately obvious. In Section 1.3.2, we give an example demonstrating that
this condition is crucial and, in some sense, optimal. Therefore, we consider the

following theorem:

21

Theorem 1.8. Let H = —;1%27 + q(z) be a Schrodinger operator in L*(R) with a

potential q(z) € Li._ such that

loc

(i) H is a bounded-from-below operator with discrete spectrum,
(i) ¢(-=z) = g(x), z=>0.
Then q on [0,00) and the spectrum of H uniquely determine q on all of R.

We do not require any specific conditions on the growth of the potential. The
theorem works for any potential which defines a bounded-from-below operator with
discrete spectrum.

We also consider the slightly different type of conditions on the potential. Instead
of requiring condition (ii), we impose the condition on the counting function of the
eigenvalues for the operators corresponding to the negative and positive half-lines
(Lemma 2.5 and Corollary 2.2). As an application of this result, we prove the following

theorem:

Theorem 1.9. Let H = —Ed;g + g(x) be a Schrodinger operator in L*(R) with a
potential q(z) € Li . such that

loc

(i) H is a bounded-from-below operator with discrete spectrum,
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(i) the potential g admits Weyl asymptotics for the number of the eigenvalues,
(iil) there emists R > 0 and C > 1 such that ¢(—x) > Cq(z), for > R,

(iv) g obeys [, 1)<r peo 9(2) dx/T — 00 as T — 00.
Then q on [0,00) and the spectrum of H uniquely determine q on all of R.

The last condition of the theorem is not very restrictive. In particular, it holds

for any potential of the polynomial growth.

1.3.2 Example of non-uniqueness

In this section, we consider an example when violation of the second condition of
Theorem 1.8 leads to the non-uniqueness of the potential. Examples of such a type

were considered in [GS].

Fix some € > 0. Let ¢(x) be any function with the following properties:

1. ¢(z) = q(—e — z) for z > 0,

2. g(z) # q(—e — z) for z € (—¢,0).

3. g defines a bounded-from-below Schrodinger operator with discrete spectrum.

Define the potential g.(z) = g(—e — z) which is a reflection of ¢ with respect to
the point —e/2. Then two Schrodinger operators H; and H, with the potentials ¢
and g, respectively, have the same spectrum since they are unitarily equivalent:
H, = U ' HyU, where (Uf)(z) = f(—& — z) for any f € La(R). Obviously, U is a
unitary operator on Ly(R).

By construction, the potentials ¢ and ¢, coincide on the positive half-line. The
first condition of Theorem 1.8 is satisfied for both ¢ and ¢,. But the theorem does
not hold: g(z) # g,(z) on the negative half-axis. Note that ¢(|z|) and ¢q(—|z[) have
the same asymptotics at infinity; actually, ¢(—|z|) is just “slightly” less than ¢(|z|)
(meaning that it is the same function but shifted to the left by an arbitrarily small

¢). This example shows the importance of the second condition of the theorem.
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1.3.3 Brief discussion of the approach to the proof

In this research work, we use the Weyl m-function approach which was used by
Gesztesy and Simon in [GS, GS97a, GS97b]. In Chapter 2 we define the Weyl m-
function and discuss its properties. Here we just briefly sketch the arguments. Instead
of proving the uniqueness of the potential on the negative half-line we study the
question of the uniqueness of the Weyl m-function associated with —oco. We assume
that there exist two distinct potentials ¢ o(z) for < 0. For each potential, there
exists the unique Weyl m-function my o_(z), my # mq. We study the difference of

these functions:
Am(z) = my(z) — ma(z).

Our goal is to prove that, under the conditions of Theorem 1.8, Am must be zero. We
show that Am is a meromorphic function with zeros and poles on the real axis. The
second condition of Theorem 1.8 implies that Am has more zeros than poles on any
interval (—oo, A]. This fact and the properties of the m-functions reduce Theorem 1.8

to the following theorem:
Theorem 1.10. Let f be a meromorphic function on C. Assume that

(i) f has some zeros and all poles in the interval [a,00), a > —oo.
(ii) f has the representation:

ag
— < oQ.
Vi

f(z):C+Zak( 1 —l), ar € R, vy € [a,00), Z

— Vi — % Vk 0
(1.10)
(iii) f(z) = 0 as z — oo, Rz < 0.

(iv) f has at least as many zeros as poles on any interval [a, X) for all sufficiently

large .

Then f must be a zero.
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Remarks. 1. The assumption that only some zeros of f lie on the interval [a,o0]
comes from the fact that Am vanishes on the spectrum of the Schrédinger operator.
These are the zeros we deal with in the last condition. It could happen that Am may
have some extra zeros which are not related to the spectrum.

2. Only the last condition of Theorem 1.10 depends on the estimate on the poten-
tial (condition (ii) of Theorem 1.8). All the other conditions follow from the proper-
ties of the m-functions of the bounded-from-below operators with discrete spectrum.
There could be some other condition on the potential that leads to the same bound
on the number of zeros and poles in condition (iv). In such cases, Theorem 1.10
also implies the uniqueness of the potential. We discuss this issue in more detail in
Section 2.4 of Chapter 2.

In Chapter 3 we discuss the asymptotic properties of the function represented by

the series of simple fractions:

= gy ag
f(Z) = Z ’ Z —| < Q.
o1 2 Ve veA0 ) K
We show that such functions obey
2w )
/ In* [f(re®)| d0 = ofr). (1.11)
0

For this result, a, v € C. Also, we prove the same asymptotics for the functions
represented as the Borel transforms of signed measures.

In Chapter 4 we use the Jensen formula to obtain the bound on the counting
function of zeros and poles of the functions represented by (1.10). The arguments in
this chapter depend on the asymptotic formula (1.11). The bound on the counting
function allows us to prove that under the conditions of Theorem 1.10, the function
may have at most one extra root. For functions which are differences of Herglotz
functions, this extra root must be real.

In Chapter 5 we construct an explicit representation formula for the functions

with the properties (i), (ii), and (iv) of Theorem 1.10. This formula is similar to
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the Weierstrass product formula but it does not have any restriction on the order of
the function. Theorem 1.10 immediately follows from Corollary 5.1 which establishes

the contradiction between the representation formula (5.1) and the decaying property

(iii) of Theorem 1.10.
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Chapter 2 Weyl m-function

2.1 Definitions

In this section we briefly discuss the Weyl m-function for the Schrodinger operator
on the half-line [0, o). This function, closely related to the spectral measure of the
operator, is a very powerful tool in spectral analysis. To define the m-function, we

consider two independent solutions, # and ¢, of the differential equation:

(\_@ + q(x)) u(z, 2) = zu(z, 2) (2.1)
with the boundary conditions at zero:

0(0,2) =1 $(0,2) =0

. (2.2)
9,0(0,2) =0 | 0,9(0,2) =1

Weyl proved that the following alternative always holds: For any z, Sz > 0, either
any solution of the differential equation (2.1) belongs to L»([0,00)) or there exists a
unique up to normalization constant L4 ([0, c0)) solution. Due to Weyl’s construction,
the former case is called the limit circle and the latter is called the limit point case.
In the limit point case, the operator defined by the equation (2.1) and a boundary
condition at zero is self-adjoint. (For the limit circle case, we must also introduce a
boundary condition at infinity.)

Let v(x, z) be an Ly solution of the differential equation (2.1) of the form:
¥(z,2) = 0(z, 2) + m(z) §(z, 2). (2.3)

In the limit point case, m(z) is uniquely determined by this formula since ¢ and ¢

form the basis of the solutions of (2.1). In the limit circle case, we also require that
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1) obeys a boundary condition at infinity. The Weyl m-function is defined as the
coefficient m(z) in the formula (2.3). From the boundary conditions (2.2) it follows
that m(z) = 9,9(0, z). Equivalently, we can consider the L solution ¥(z, z) with an

arbitrary normalization and define the m-function as follows:

Definition 2.1. Let 9(z, z) be an Ly solution of the differential equation (2.1) on
[0, 00). The Weyl m-function is defined by the formula:
o w(0, z
m(z) = _1;%5,7)2 (2.4)
Let us consider the properties of the m-function. Since the equation (2.1) analyti-
cally depends on the spectral parameter z, the solution ¥(z, z) and its z-derivative are
analytic functions of the spectral parameter z, 3z > 0. It follows that the m-function
is a meromorphic function. Moreover, poles of the m-function are the eigenvalues
of the Dirichlet problem on [0, 00). Indeed, (0, z) vanishes at the poles of the m-
function. It means that 1(x, z) is the eigenfunction of the Dirichlet problem for all
poles of m(z). Similarly, all zeros of m(z) are the eigenvalues of the Neumann prob-
lem. Note that all zeros and poles of the m-function must lie on the real line since
they are the eigenvalues of a self-adjoint operator. Therefore, m(z) is analytic on the
upper half-plane.
The other important property of the m-function is that it maps the open complex
upper half-plane into itself. This property follows from the Weyl construction for

m(z). Therefore, the m-function belongs to a class of Herglotz functions.

Definition 2.2. The class of functions analytic on the upper half-plane that maps

the open upper half-plane into itself is called a class of Herglotz functions.

Herglotz functions can be fully characterized by the following representation for-

mula:

Proposition 2.1. Let f(z) be a Herglotz function. Then there exist a positive mea-
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sure

/R g"’f)l <0 (2.5)

and real constants A, B, B > 0 such that

f(z) :A—I-Bz+/]R <t_i—z — tzj—1> du(t). (2.6)

Remark. For meromorphic Herglotz functions, the representation formula can be writ-

ten as a sum over the set of poles {52 ,:

= 1 1
f(z):A—l-Bz—!—kz:;ak <,uk—z_ﬁ>’ (2.7)

where ay, are positive, y; are real, and

S %< (2.8)

There is an important relation between the m-function and the measure ;. Namely,
the measure y is a spectral measure of the corresponding Schrodinger operator. In
particular, it implies that the support of i belongs to the spectrum of the operator
and m(z) can be analytically continued across any interval on the real axis free from
the spectrum. In particular, if the Schrodinger operator has discrete spectrum, the
m-function is a meromorphic function.

The next result deals with the asymptotic behavior of the m-function. We consider
asymptotics in an angular region on the complex plane where m(z) is an analytic

function, that is, in any sector
Sap = {z|la < argz < B} (2.9)

which does not contain the support of the measure u. The following result was ob-

tained by Everitt [Eve72]:



16
Proposition 2.2. Let m(z) be an analytic function in Sa.g, 0 < o < B < . Then the

m-function m(z) of the Schridinger operator has the following asymptotic behavior:
m(z) =ivz+o(l), 2 € Sap. (2.10)

Remark. Actually, Everitt studied the Neumann m-function my(z) = 1/m(z) and he

proved that

m(z) = ——= + 0 (I—i\) . 2€Sap (2.11)

Trivially, (2.11) and (2.10) are equivalent.

Since the leading term of the asymptotic does not depend on the potential, we

have the following corollary:
Corollary 2.1. Let H, and H; be two Schrédinger operators. Then, for any 0 < 0 <
m the corresponding m-functions obey:

lim my (re) — my(re®) = 0. (2.12)

7—00

Proof. For 0 < § < m both m; and my have the asymptotics (2.10). Since the leading
terms of these asymptotics do not depend on the potential, the difference vanishes at

infinity. |
We finish this section with the following result:

Proposition 2.3. The m-function uniquely determines the potential almost every-

where on [0, 00).

This fact was independently proven by Marchenko [Mar52] and Borg [Bor52] (see
also [GL51, Sim]). In the next section, we use this result to reduce the main theorem

to the question of the uniqueness of the m-function.
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2.2 The m-functions for the whole real line

In this section we define the m-functions for the bounded-from-below Schrodinger
operator on the whole real line. Also, by the end of this section we assume that the
operator has discrete spectrum.

Bounded-from-below Schrodinger operators are always of a limit point case at both
+00. This fact was originally proven by Hartman [Har48]. Gesztesy gave a simple
proof of this fact in [Ges93]. Therefore, the m-functions are well-defined without any

boundary condtion at infinty.

Definition 2.3. Let 9. (z,z) and ¥_(z, z) be Ls solutions of the differential equa-
tion (2.1) on [0,00) and (—o0, 0], respectively. The Weyl m-functions m.(z) are

defined by the formulas:

(o) = 20002

0z (0, 2)
NOER (2.13)

C9-(0,2)

The m_(z) function has all the same properties stated in the previous section.
We defined it with a minus sign to make it a Herglotz function.

Note that the m . function is determined by the potential only for positive z since
we need to construct the solution 1, only on the positive half-line. Similarly, m_ is
determined by the potential on the negative half-line. By the Marchenko-Borg result
(Proposition 2.3), the inverse statement is also true, that is, the m_ function uniquely
determines the potential on the negative half-line. Therefore, Theorem 1.8 can be
proven by showing that the m_ function is unique. That is, we assume that under the
conditions of Theorem 1.8, there exist two distinct potentials ¢1 2(x), 2 < 0. Then the
corresponding m-functions m;_ and my_ are also distinct. We study the diffcrence

my—(z) — mg_(z). Define
Am(z) = my_(z) — mqg_(2). (2.14)

Our goal is to show that Am(z) must be zero.

Since the operator has discrete spectrum, the m-functions are meromorphic func-
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tions. As mentioned in the previous section, the poles of the m_(z) function are the
eigenvalues of the Dirichlet problem on the negative half-line and they lie on the real
axis.

There is an important relation between my and m_. Namely, we have
my (M) = —m—(Ax) (2.15)

for any eigenvalue ). It follows from the fact that in the limit point case, there exists
a unique (up to normalization) solution of the differential equation —8%u + qu = zu
which is L? at infinity. Therefore, the eigenfunction ug(z) must coincide (up to
normalization) with both wu,(z, ;) and u_(z, \x). Also, note that m_(z) has poles
at eigenvalues in the Dirichlet problem and zeros at eigenvalues in the Neumann

problem.

2.3 Summary

The central result of this work is the following theorem:

Theorem 2.1. Let f(z) be a meromorphic function of the form (2.7) without linear

term:

f(z)=0+iak( ! —i) (2.16)

< oo0. (2.17)

Let {\i}2, be some zeros of f(2), 0 < A < Apy1. Assume that there exist B > 0

such that for any r > R,

e | M <7} = - | e < 1} (2.18)
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for any k. Also, assume there exists 0 € (m/2,m) such that
f(re®) =0, r— co. (2.19)

Then f(z) = 0.

Chapters 3-5 are devoted to proving this theorem. Note that all the conditions
but (2.18) hold for the difference of m-functions, assuming only that corresponding
operators have bounded-from-below discrete spectrum. In the next section we discuss

some assuraptions on the potential which guarantee the bound between zeros and

poles (2.18).

2.4 Bound on the potential and the relation be-
tween zeros and poles of the m-function m_(z)

Let {\x}22, be the spectrum of the operator H and let n(r, H) denote the number of
the eigenvalues of the operator H which are less than r. Also, let {2}, denote the
spectrum of the Dirichlet problem on the negative half-axis. The estimate g(—|z|) >

q(|z|) on the potential implies the following relation between these spectra [GS]:

Lemma 2.4. Suppose the potential q(x) defines the operator H bounded from below.
Assume that H has discrete spectrum and q(—|z|) > q(|z|). Then Aoy < pf for
k=1,2,3,....

Proof. First, note that H is a rank two perturbation® of the orthogonal sum of the
Dirichlet operators on the positive and negative half-axes H” @& HP. Therefore, the
spectrum of HP must be discrete. Let us consider the operator Hy = —9% + ¢(—|z|).
By the same argument, its spectrum is also discrete. Let {8x}%>; denote the set of
its eigenvalues. If ug(x) is any eigenfunction of Hj, then wui(—x) must also be the

eigenfunction corresponding to the same eigenvalue. Since H; has a simple spectrum,

1 Actually, the difference of the resolvents is one-dimensional. It is not important for this lemma
but we use this fact in Lemma, 2.5.
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these functions must be equal (up to a sign): wug(z) = Zug(—z). Therefore, any
eigenfunction of H, on the negative half-axis is either a Dirichlet or a Neumann
eigenfunction. Then by the Dirichlet-Neumann alternation, it follows that Ba, = up.

On the other hand, by the assumption H; > H, so B > A. O

We already defined the function Am(z) by (2.14). The set of poles {ui}i>; of
Am(z) consists of poles {uf}}52, of m;_ and poles {13382, of my_ though some
cancellations may happen. Also, Am()\;) = 0 for any eigenvalue A; of H. In general,
it may happen that Am(z) has some other zeros. (We prove in Chapter 4 that f(z)
has at most one zero besides {A;}%;.) Lemma 2.4 implies Ay < g, that is, in the
disk of any radius r, the function Am(z) has at least the same number of zeros as
the number of poles. Note that any possible cancellation of poles would only improve
the estimate. Therefore, the condition (ii) of Theorem 1.8 implies the bound (2.18)
which implies that Theorem 1.8 follows from Theorem 2.1.

Let us discuss the slightly different conditions on the potential. Let H D (resp.
HP) denote the Schrédinger operator on the positive (resp. negative) half-axis with

a Dirichlet boundary condition at zero.

Lemma 2.5. Suppose that there ezists R > 0 such that n(r, HP) > n(r, H?) +1 for
r > R. Then n(r, H) > 2n(r, HP) for r > R, that is, the condition (2.18) holds.

Proof. First, let us compare the numbers of the eigenvalues n(r, H) and n(r, H Do

HP). Note that
n(r, H® ® H?) = n(r, HP) + n(r, H?).
The conclusion of the lemma follows from the estimate
n(r, H? ® HY) < n(r,H) + L. (2.20)

The operator H is a rank two perturbation of HP@H?. It turns out that the difference

of the resolvents is the rank one operator, which implies the inequality (2.20). We
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can write the explicit formulas for the corresponding Green functions:

(H _ Z)‘l(fli,y) _ _Qp—(mln(frzfz;;)j_ﬂl’r—éin(f)((wa y)a Z)’ (2'21)
(HP @ Hf —2) Yz,y) = Y_(min(z, y), 2)0(max(x,y), 2)Xz<o,y<0(T,y) (2.22)

+ 7,b+(max(:c, y)a z)@(mm(az, y)7 z)X.’z>0,y>0(x: y)’

where x4(x,y) = 1 if (z,y) € A and zero otherwise. Computing the difference of the

resolvents, we obtain:

(HP? @ HP — 2)™Hz,y) — (H — 2) "' (z,y) = n?_f?;)zfg’_z()z), (2.23)

where

h(z,2) = $-(3, 2)Xa<o(x) + Y1 (2, 2)Xe>0(2). (2.24)

This formula implies that the difference of the resolvents is the rank one operator. [
The corollary of this result deals with the behavior of the potentials only at infinity.

Corollary 2.2. Assume that there ezxist Ry > 0 and R_ < 0 such that for Dirich-
let operators HE,_ on the interval [Ry,00) and Hf on the interval [—oco, R_], the

counting functions obey

n(r, H112)+) B n('r, ng——)

7 = g(r) — oo. (2.25)

Then the condition (2.18) holds.

Proof. The number of the eigenvalues of the Schrédinger operator Hj,p (with any
boundary condtions) on the finite interval [a, b] has asymptotic n(r, Hs) = O(V/T).

Using this fact, we can estimate

n(r,HY) = n(r,H2,) +O(/7), (2.26)

n(r, HP) n(r, HE ) + O(V/r). (2.27)

1
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These asymptotics imply
n(r, H2) —n(r, H?) = \/r (g(r) + C).

Since g(r) — oo there exist R such that g(r) + C > 1, which implies the condition of
Lemma 2.5. ad

The application of this result is Theorem 1.9. We assume that ¢ admits the Weyl

asymptotics for the number of eigenvalues. Let us denote

9+(z) = q(x) (2.28)
¢-(z) = q(-2) | (2.29)

for z > 0. Then the Weyl asymptotics are given by the formula:
n(r, Hy) = / =@ dz (1 + o(1)). (2.30)
gx(z)<r

Using this explicit formula, we check the condition (2.25). Let us fix R and C' > 1
such that ¢, (z) < Cq_(x) for z > R (the condition (iii) of Theorem 1.9). Then we

have the estimate (up to lower order terms):

—n(r T (2) — 0. () v
n(r, Hy) (rH-) 2 G+ /q_(z)<r,z>R m"‘ r— ¢4 (z) ’

Cc-1
> Ci/r+ / q—(z) dz, (2.31)
' \/’F g—(z)<r,z>R

where C is a constant from the condition (iii) of Theorem 1.9 and Cy+/7 is the bound
for the integrals over the finite region where the estimate (iii) does not hold. Note

that g(r) tends to infinity by the condition (iv) of Theorem 1.9.
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Chapter 3 Asymptotic properties of the

Borel transforms

3.1 Overview

In this section we study the asymptotic behavior of functions represented by the series
of simple fractions and Borel transforms of signed measures. The results for the first
case can be found in the book [GO70]. Using similar techniques, these results are
extended for the second case.

We consider two classes of functions:

Definition 3.1. Denote the class of meromorphic functions represented by the series

of simple fractions as HS:

oo
ag

feHS f:i ., au€C, Y
k=1

Z —
- Vi k=1, U0

ag

Vg

<oo.  (3.1)

Definition 3.2. Denote the class of functions represented by the Cauchy integral

with the signed measure p on R as HC"

e HC « f(z)= /R ‘i“_(tz, R%<oo. (32)

The goal of this chapter is to prove the following theorem:

Theorem 3.1. Let f € HS or f € HC. Then

/0 ﬁanr |f(re®)|do = o(1), r— 0 (3.3)
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and also for anyp, 0 <p <1
27 ]
/ |f(re®)|Pdf = o(1), 7 — co. (3.4)
0
Remark. The function In™ z is a positive part of the logarithm:

1 if Inz > 0,
It — nz if Inz (3.5)
0 otherwise.

3.2 Lemma

To prove Theorem 3.1 of this chapter, we need the following lemma:

either RF(2) or SF(2) has the same sign for any z € D, then for any p, 0 <p <1,

the following inequality holds

/ " wr(0) do < 2 |F ()P
0 u - COS%E ’

where

uw(@) = liminf |F(z)|.
z — Re®

lz| <R

Proof. Assume that RF(z) > 0 for z < R. Since F(z) does not have zeros in D, we
may fix the branch of arg F'(2) such that | arg F'(z)| < 7/2 for |z| < R. The function

F?(z) = |F(2)[” exp(iparg F(2))
is analytic in D. It implies that %(F(z))? is a harmonic function there. Since

R(F(2)" = |F(2)]F cos(parg F(2)) > |F(2)[F cos -,
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then
/ TP < —L [ REre)Pdo = —ZR(F(0))7
0 ~ cosmp/2 Jy ~ cosmp/2 ’
which implies that
/ TP i < =2 |FO)
0 ~ cosmp/2 '
The result follows from Fatou’s lemma as r — R. ([
3.3 Proof of Theorem 3.1
Let us now prove the theorem. The formula (3.3) follows from the formula (3.4) and
the inequality
L1
In"a < Z—Qa”, a >0, (3.6)

so we only need to prove (3.4).

First, we consider the case f € HC, that is, f is given by the Cauchy integral of
some signed measure. It is enough to prove the theorem for positive measures, since
any signed measure can be represented as the difference of two positive measures.

Also, we use the fact that for p < 1,
la + b|P < |al? + |b]P. (3.7)

In addition, we may assume that the support of the measure . does not contain zero
since any measure can be split into the measure compactly supported around zero
and the measure which is zero in some neigborhood of zero. The Cauchy integral
corresponding to the first measure is o(1/z) at infinity, so it suffices to study the

second measure.
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Let us fix some R > 0. We split the integral for f(z) into two parts:

B _ [ a0, [
/Rz_t—AKRZ_t_'—A:[sz_t' (3:8)

We estimate these integrals separately. For |t| > R we can apply Lemma 3.1 to

the function:

Fi(z) = /| dp(?) (3.9)

This function obeys RF; < 0 if |2| < R. It immediately gives us

2T + p p
/ / ) gy < 21 / WO _ oy, (3.10)
0 >r 2 — 1 cosp/2 |Jy>r t
To estimate the integral over |t| < R, we note that for |z| = R
1 R
dut|: / dut‘. 3.11)
J o] = | [ (

Applying the lemma to the function

R R
) = [ g )

which obeys RFy(z) > 0 for |z| < R, we obtain

2 R p 27
[l -
0 _rRZ—1 0

or |1 (F

—_— = du(t

cos mp/2 ‘R/_R wt)

The last integral tends to zero. For example, for the interval [0, R] we have:

R vR R
L[ s [T [0

The same asymptotic holds for the interval [—R, 0]. This estimate finishes the proof

p

R
Rdu(t)|”

—~R R2—tz

p
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for the case f € HC.
Now consider the case f € HS. Let

Op = argur, ar = ax + 15k (3.12)

Let us fix R > 0 and write f(z) as a sum of eight terms

! O ( ALe— 0k " ! O3 Are— 0k
(& € . [N €

ak " ! ﬂk n
——+ S+ > . >

1%
k<R |wI<R |he|<R

n" !
DD
|Uk|>R lIJHSR

= Gl(Z) 4+ 4 Gg(Z),

where the sums Y’ go over terms with positive values of R(Axe™?), S(Are™), ag, Be
and sums Y " go over negative ones. Each of the terms Gj,... , G4 can be estimated
in the same way as Fi(z). The terms Gs,...,Gg can be estimated using the same

trick (3.11). This remark finishes the proof.
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Chapter 4 Jensen formula and zeros of

Am(z)

4.1 Notation and overview of results

In this chapter, we study the functions represented by a series of simple fractions. Our
goal is to prove some bounds on the number of zeros minus the number of poles of such
functions. In the first half of the chapter, we prove some general facts which we apply
in the last section to the functions with properties (2.16, 2.17, 2.18) of Theorem 2.1.
We prove that under these conditions, the function may have at most one extra zero.
Since all zeros and poles lie on the real line, we are able to parameterize them by the
integral of the counting function. Using this fact, in the next chapter, we prove the
representation formula (5.1).

We start this section with a few definitions:

Definition 4.1. Denote the class of meromorphic functions represented by the reg-

ularized series of simple fractions as H.S':

1 ¢ ay ag
feHS' <« f 0+k§(z_yk+yk), (4.1)
[e¢]
ax, v € C, Z g% < 0.
k=1, vp#0 Vi

Let us introduce the counting functions for zeros and poles of meromorphic func-

tions.
Definition 4.2. Let f be a meromorphic function. Denote

e n(r, f), the number of poles of [ in the closed disk of radius r counting multi-

plicity,
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e na(r, f) = n(r,1/f) — n(r, f), the number of zeros minus the number of poles

of f in the disk of radius r.
We also define the integrated counting functions.

Definition 4.3. Let f be a meromorphic function. Denote

N f) = /0 "ol /) ;”(O’f ) dt +n(0, f)lnr, (4.2)

Na(r,f) = N(r,1/f) = N(r, f). (4.3)
The last object, which we introduce, controls the behavior of a meromorphic
function at infinity averaged over the argument:
Definition 4.4. Let f be a meromorphic function. Denote

s(r, f) — / Tt |f (re®)| df, (4.4)
0

T or
where In" f is a positive part of the logarithm (3.5).
The goal of this chapter is to prove the following proposition:

Proposition 4.1. Let f € HS'. Then f obeys
Na(r, f) <Tnr +of1). (4.5)

In the next section we discuss the Jensen formula and show that Proposition 4.1 is
equivalent to decaying of the function s(r, f) for any f € HS. This decaying property
was proven in Chapter 3. In the last section we consider a few important corollaries

for the function with properties (2.16, 2.17, 2.18) of Theorem 2.1.
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4.2 Jensen formula

For any holomorphic function h(z), h(0) # 0, one has the Jensen formula [Lev64]:

R, 2m .
A @ymﬁ:%A In |h(r €?)| 40 — In |R(0)], (4.6)

where n(t,1/h) is the number of zeros of h(z) (Definition 4.2). A similar formula
holds for any meromorphic function f, f # 0,00. One can write it as a ratio of two
holomorphic functions f = g/h and apply the Jensen formula to the numerator and

denominator:

A7Mffdt-—/ﬁmu@enw In |£(0)], @)

where na (t, f) is the number of zeros minus the number of poles of f (Definition 4.2).
The formula can be generalized further to include the case when f(0) is a zero or a
pole. Consider f(z) = f(z) 2" such that f(0) # 0, cc. Applying the Jensen formula

to f and using Definition 4.3 for N (r, f), one obtains

Na(r, f) = —21;/0 7Tlnlf(reie')] df — In |c,|, (4.8)
where
s 70
= f(0) = —;1(,—) (4.9)

is the first non-zero coefficient in the Taylor series expansion of f(z) at zero.

Let us introduce the normalized function f :
f(z) = f(2)/ecn. (4.10)

Using Definition 4.4 we can rewrite the right-hand side of the Jensen formula as

a difference s(r, f) — s(r, 1/f). Finally, we obtain the following form of the Jensen
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formula:

Na(r, f) +s(r, 1/f) = s(r, f). (4.11)

Note that s(r, f) is non-negative by the definition of In™. Therefore, the Jensen

formula (4.11) implies the inequality:

A,

NA(Taf) SS("'af)' (412)

Now, Proposition 4.1 follows from the following lemma.:

Lemma 4.2. Let a function f € HS*. Then
s(r, f) <lInr+o(1). (4.13)

Proof. We represent f(z) in the form

10 =2(S+ [ g ) = 2

Since we can apply Theorem 3.1 to the function fi(z), we easily obtain

s(r, ) < s(r, f1) + s(r,z) = Inr + o(1), (4.14)

where 7 = |z|. O

Remark. If f € HS instead of HS!, we have the sharper bound
Na(r, f) = o(1). (4.15)

This bound immediately follows from (4.12) and Theorem 3.1.
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4.3 Applications of the bound on counting func-

tion Np

In this section, we consider the meromorphic functions with a given subset of zeros

S.

Definition 4.5. For a given meromorphic function f and some subset of zeros S of
f, define the counting function n3(r, f) as the number of zeros of f belonging to
subset S in the disk of radius r minus the number of poles of f in the disk of radius

Tr.

The following corollary of Proposition 4.1 states that functions of the class HS!

cannot have more zeros than poles in the following sense:

Corollary 4.1. Let f € HS'. Assume that S is some subset of zeros of f. Suppose
that there exist R > 0 such that n3(r, f) > 0 for any r > R. Then f may have at

most one extra zero besides the set S.

Proof. By the assumption of the corollary, n (r, f) > 0 for any r > R. Let (1, € S
be extra roots of f(z), ¢; # (,. Define

ro = max(R, |Gi, |Cal)-

Then for r > 7o we have that na(r, f) > 2. It implies the following estimate for

Na(r, f), 7> ro:

Na(r, f) zc+/ -”A(tﬂdtz(}ﬁzlm

70

for some constants C, Cy. This estimate contradicts the bound (4.5) for Na(r, f). So

we have proven that f(z) may have at most one extra root. (|

Remarks. 1. For the functions f in the class H.S, the remark at the end of the previous

section implies that all zeros of f are in S. Indeed, if { is a zero of f, ( € S, we have
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na(r, f) > 1, 7 > |¢|. However, Na(r, f) = o(1) which implies that the integral of
na(t, f)/t converges. This contradiction proves the statement.

9. If all coefficients in the simple fraction representation of a function f € HS*
are real, then all complex roots come in conjugate pairs. In such a case, the extra
root of Corollary 4.1 must be real. In particular, this is a case for functions given
by the differences of Herglotz functions. We will use this remark for constructing the

analog of the product formula for such functions.

Corollary 4.2. Let f € HS'. Assume that S is some subset of zeros of f. Suppose
that n3 (r, f) > 0 for any r. Then S is the set of all zeros of f.

Proof. Assuming that f({) = 0,¢ € S, we define the function

9(z) = =0

which is a meromorphic function with exactly the same poles as f(z). By the assertion
of the corollary, we have na(r, g) > 0. On the other hand, the function s(r, g) goes to
zero because s(r, g) < s(r, f1) + s(r, z/(z — ¢)). The function f; = f/z was defined in
Lemma 4.2. The first term of the inequality vanishes by Theorem 3.1. For the second

z 1
?—7\20(2)

uniformly in arg z. Therefore, we obtain Na(r,g) < s(r, g) — 0. But Na(r,g) is the

term we have that

In*

integral of a positive function and it cannot tend to zero. It proves that S is the set

of all roots of f(z). L

The last fact we prove in this chapter gives the bound for an integral of the

logarithm of a function f € HS* with na > 0.

Lemma 4.3. Let f € HS'. Assume that there exists R > 0 such that na(r, f) > 0



34
for any r > R. Then

2w
i/ In|f(re”)|| d6 < 2Inr+C (4.16)
2m 0

for some C > 0.

Proof. Note that the left-hand side of the expression (4.16) is bounded by the sum
s(r, f) + s(r,1/f). Since na(r, f) > 0 for all r > R, the Jensen formula (4.8) implies

s(r,1/f) < s(r, ) + C,

where

r\

R /4
nal, J)

I

Therefore, the bound (4.13) implies the lemma. O

C =

|
dt'.
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Chapter 5 Integral representation of the

functions in HS!

5.1 Overview

In this chapter, we obtain the integral representation for the functions in the class
HS" with positive zeros and poles (see Definition 4.1 for the class H.S'). Namely, we

prove the following theorem:

Theorem 5.1. Let f € HS'. Assume that all zeros and poles of the function f are
positive. Also, assume that there exists R > 0 such that na(r, f) > 0 for r > R.
Then

f(z) = f(0)exp(I(z, [)), (5.1)
where I(z, f) is defined for z ¢ Rt by the formula

(2, f) = /O ” z—t?(’%?;—) dt. (5.2)

First, let us discuss the important corollary of this result:

Corollary 5.1. Let f € HS'. Assume that all zeros and poles of f belong to the
interval [A,00), A € R and there ezists R > 0 such that for any r > R, the function f

has at least as many zeros as poles in the disk of radius r. Then for any 6 € (/2,37 /2)
lim |f(re®)| > 0.
700

Proof of Corollary 5.1. Denote z = re®. Let us introduce the function f(z) = f(z +
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A+e¢),e>0. Then

lim |7(2)] = Jim |£(2))

On the other hand, all zeros and poles of f belong to R*. Note that for Rz < 0, the

real part of the kernel of the integral I(z, f) is positive:

z  ri4+i(—R2)
z—t (t—Rz2)2 + 322

R > 0. (5.3)

Applying Theorem 5.1, we can estimate In | f(2)| for Rz < 0:

/ érez"“f dt>/ ﬁreZ”“f /R”A(t’f)dw—
0

z—t z—t t

We use the fact that na(r, f) is non-negative for » > R so the integral over the set
[R, 00) is positive. The last integral converges because the support of na(r, f) is in
the interval [¢, 00) so there is no singularity at zero. Since In f(re®) is bounded from

below as r — 0o, the function f(re®) is bounded away from zero as r — oo. O

Let us make a few remarks about Theorem 5.1.

Remarks. 1. Since all zeros and poles of f are positive, the function na(r, f) = 0 in
some neighborhood of zero. Therefore, the integral (5.2) does not have a singularity
at zero.

2. In the case of functions of subexponential type, the formula (5.1) can be
derived from the Weierstrass product formula (so that the product formula does not
require correcting exponential factors). Similar arguments can be applied to Herglotz
functions of finite order. Zeros and poles of Herglotz functions interlace each other.
Tt implies that for such functions na(r, f) is bounded. Therefore, the integral (5.2)
converges. Theorem 5.1 shows that the representation formula (5.1) is more general.

Let us prove the convergence of the integral (5.2) for functions in HS'. The result

follows from the lemma.:

Lemma 5.1. Let f(z) € HS'. Assume that zeros and poles of f are positive. Then
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for any € > 0, the counting function na(r, ) obeys

*® nA(t’ f)
/a 100 g < oo, (5.4)
where
a = inf suppna(r, f). (5.5)

Proof. Note that a > 0 since all zeros and poles of f are positive. Divide the interval
[a,00) = [a, 2K]U (U2 i [2F, 28*1]) , where K is the ceiling of log, a (minimal possible
integer which is larger than log, a). Let us consider the integral over the segment

[2k, 2k*+1] for some k. Using Theorem 4.1, we obtain:

2k+1 2k+1 k+1
na(t, f) 1 / na(t, f) In2 +C —k
< — di < = € .
/2k i7e dt < 7 /. ; < e 27%((k+1)In2+ C)

It implies the convergence of the integral (5.4)

/ na(t, f) dt < Cy +ln2z 27k (k4 Cy) < o0.

1+
e k=K
O

In the next section, we show that exp(I(z, f)) is a meromorphic function with
exactly the same zeros and poles as f(z). Therefore, the ratio is the exponent of the

analytic function ¢(z) which implies the formula:

f(z) = exp (I(z, f) + 6(2)) - (5.6)

In the last section, we compare the asymptotics of the logarithms of both sides of
the equation (5.6) at infinity. We study the asymptotical behavior of I(z, f). On the
other hand, the bound on the counting function na allows us control In f(z). Finally,

using these asymptotics we show that the function ¢ must be a constant.
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5.2 Zeros and poles of exp [(z)

The purpose of this section is to prove the following lemma:

Lemma 5.2. Assume that f(z) is a meromorphic function on the entire complex
plane, whose zeros and poles lie on the positive half-azis and the integral (5.4) con-
verges. Then exp(I(z, f)) is a meromorphic function. It has exactly the same zeros

and poles as f(z) so f(z)exp(—1(z, f)) is an entire function without zeros.

Proof. By Lemma 5.1, the integral I(z, f) converges absolutely and uniformly on
every compact set K such that K N suppna(r, f) = 0. Therefore, this integral is an
analytic function on K so that exp(I(z, f) is also an analytic function on K.

Let us fix some R > 0 and divide the integral I(z, f) into two parts:

I(z,f)z/a %dt—%/Q:Z—t?(zf(_—t%dt:h(z,f%rh(z,f). (5.7)

By the previous remark, the integral I5(z, f) defines a holomorphic function in the
disk |z| < R. We study the integral [1(z, f). Integrating by parts, we can rewrite it
as follows:

[Petfa [Tu(-3) den (1= g)menn. 63

Note that na(z, f) = 0 for x < a so the substitution at zero vanishes. The integral
with respect to the measure dna(t, f) is equivalent to the sum over the jumps of

na(t, f) that are zeros and poles of f. Now consider the exponent of I(z, f):

I(nH= 1] (1—%) I] (1—&)_1&@, (5.9)

~ f(w) =0, C flu) =0,
I,

Akt Kt
Akl < 2R lpx] < 2R

where ¥(z) is a holomorphic function in the disk |z2| < R. Therefore, the function
exp I(z, f) has the same zeros and poles in the disk |z| < R as the function f. Since

R is an arbitrary number, the lemma is proven. a
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5.3 Asymptotic behavior of I(z, f)

Lemma 5.2 in the previous section implies that the function f can be represented as

f(z) = exp(I(2, f) + ¢(2))

with some entire function ¢(z). The next step is to show that ¢(z) must be a constant.

Let us express the real part of ¢:
Ro(2) = RI(z, f) —In|f(2)]. (5.10)

Averaging over the ring R/2 < |z| < R, we obtain:

1 , 1
- <

3/4r R /§<|z|<Rl§R¢(Z)|dZ = 3/4rR?
1

3/4n I /§<|z|<R In|f(2)]| dz.

/ RIz, f)| &= (5.11)
Ejzl<r

Lemma 4.3 implies the logarithmic bound on the last integral. The goal of this

section is to obtain the asymptotics for the average of |RI(z, f)l:
Lemma 5.3. For any € > 0, the integral I(z, f) obeys

= (2, )| P2 = of ). (5.12)

R? Jrja<izi<r
Remark. Note that I(z, f) is a singular integral with a Cauchy kernel 1/(t — z).
Therefore, it is easier to estimate the two-dimensional average of I(z, f) over the ring

R/2 < |z| < R rather than the one-dimensional average over the argument ¢ (as in

Lemma 4.3).

Proof. We estimate I(z, f) by the sum of two integrals over the sets [0,212] and
[2R, 00, where R > |z|:

2R o0
(=, 1) g/o %—A-_(tt—{) dt+/2R %;’;A—ftl@ d. (5.13)
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First, let us estimate the second integral. For |z] < R < t/2, the denominator of this

integral is bounded from below:

t2
tlz —t| > —.
-t 2t

Let us fix arbitrary € € (0, 1). Using Lemma 5.1 this integral can be estimated by R*:

R tlz—1 p te - tiFe t1+e

tf .
= 2(2R)1 E/ZR nAtEJr it = o).

Finally, we average the expression (5.14) over the ring R/2 < |2| < R:

1 [ < lzfnalt, f) ., :
S PIEAV ) g d?2 = o(R 5.15
3/4m R? Z)el<R /2R tz —t| (). ( )

Now we consider the integral over the set [0,2R)] in the formula (5.13). Averaging

over the ring and changing the order of integration, we obtain:

2R t, 2R
3/47TR R<|ZI<R t|Z—t| 0 t
2
1 / |z| d*z i@
3/AT Jicpi< 12| —t/R
Let us consider the inside integral on the right-hand side of (5.16):

Fu) = — / e, (5.17)

3/47r 1<]zl<1 lzl —u

Since the singularity 1/(|z| — u) is integrable with respect to d2z, the integral (5.17)

converges for every u. Also, F' is a decreasing function of u:
u >uy = Flug) < F(ug).

Therefore, the function F(u) is uniformly bounded: F'(u) < C for any u. Then the
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whole expression (5.16) is bounded by:

Rz nalt, f)
dtd?z < CIn2R + o(1). 5.18
3/47TR /<|zl<R/ Ctle—t] M (5.18)

The estimates (5.15), (5.18) imply the asymptotics (5.12). The lemma is proven. [l

Lemmas 5.3, 4.3, and the formula (5.11) imply the following asymptotics for the

real part of the function ¢:

1

R? Jrja<izi<r

|Re(2)| d*2 = o(RE). (5.19)
On the other hand, ¢ is an analytic function. The following lemma shows that, under
the condition (5.19), the function ¢ must be a constant.

Lemma 5.4. If, for some € < 1, the entire function ¢(z) obeys

1

— Ro(2)| d*z = o( R®),
B o peimen 9(2)| (F°)

then ¢(z) must be a constant.

Proof. Any entire function ¢(z) has the Taylor series expansion

o0
= . (5.20)
k=0
For every r > 0, the coefficients ax, k > 0 are given by the Cauchy formula

a —1— M dz = 1 %_gb(z_) dz. 5.21
k y{ ) (5.21)

B et YT g et 1
21 Jp=r 27t i Ji =y 2FT

The last equality in (5.21) follows from the fact:

2 40, k>0

jei=r
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Integrating |ax| over the interval R/2 < r < R, we obtain

1 R i?Rng(Z)l C 2., e—k
o < g [ f DR el < e [ Raa)] de = (R,
5 |z|=r 5 <|z|<R
It follows that a; = 0 for any k # 0 so ¢(z) is a constant. O

Equation (2.16), Lemma 5.3, and Lemma 5.4 imply that f(z) = Cexp(I(z, f)).
Since I(0, f) = 0 we have C = f(0). This finishes the proof of Theorem 5.1.
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