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Abstract

This paper looks at the effect of a uniform magnetic field on the trace
of the heat kernel for a Schrodinger operator with a well type potential. Using
weighted Sobolev space techniques and noticing the geuge invariance of the
perturbation, I show that the magnetic field first appears at a higher term in
the small time asymptotic expansion of the trace of the heat kernel than might

be naively expected.
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Notation

x or y will usually refer to position space coordinates.

£ will usually refer to momentum space coordinates.
- 2 = 9 L= —iBy. = —id,
81 = ael ) axl == 8x1 3 DJ 13}(1 N DEJ 13J .

(s )
: 1
1

3; ! for a multi index o, and similarly for D% .,

| A3

1

(curl A)IJ

aiAJ- —_ ain is the exterior derivative.
. —1 —1
f ~g if both f g and g f are bounded.
1
<->=0+1 P
B(x,6) = <x>K + <¢>
¥: the Schwartz space, C<>° functions of rapid decrease.
?’: the space of distributions, the dual space to C°0°(IR").
L, th , |
H™: the x " Sobolev space with norm | - H# .
Su: the class of symbols of order 4 .
OPSM : the operators corresponding to symbols in Sﬂ .
m log &

O = . s in H
M- lim I Hm log ® the norm in



Introduction.

Recently there has been much interest in asymptotic expansions for
eigenvalue distribution functions, the heat kernel and the wave equation. The
index theorem relating spectral quantities with geometric quantities from the
underlying manifold has aroused this interest. This paper examines the effects
a uniform magnetic field will have on the trace of the heat kernel. I start with
operators of the form —A + V acting on L*R"), where the potential V has
polynomial growth at infinity and is bounded below so that the heat kernel of

the operator is indeed trace class.

Instead of the magnetic field directly perturbing the equation, the

magnetic vector potential, A, enters and one has
H(A) = (—iV + AP + V,

where the curl of - A is the magnetic field. Although there has been a
tremendous amount of work on various properties of Schrodinger equations, the
magnetic field case has often been excluded. Leinfelder (9) determined the
essential spectrum of a broad class of magnetic potentials and has a
comprehensive reference list of some previous work in this area. The
additional complications introduced by the magnetic field lead to separate
considerations of many cases, see for example (4), (8), and (10). For the more
general case of a Yang-Mills potential, Schrader and Taylor (12) proved that
there is a complete asymptotic expansion for the trace of the heat kernel in

the parameter %.

The magnetic field in dimensions other than three is typically defined as
a 2-form or a skew-symmetric matrix. The curl or the exterior derivative is
thus 8kAE —_ aeAk for the (k,8) entry in the matrix form. I will use the matrix

form of notation for the magnetic field B, denoted by B*. For the uniform

magnetic field, the standard choice for A(x) is ——% B*x; however, A is not

uniquely determined. Leinfelder (9) proved several results that clarify this
4

situation. He showed that if A € L , V - A € L and V ¢ L’
Zoc foc loc

then H(A) is essentially self-adjoint on C%°(1R"). He also proved for two

functions A, A’ € L * with V- A, ¥V - A’ € L,* , related by a distribution
Loc goc

N € 9 with A’ = A 4+ VA then H(A) is unitarily equivalent to H(A’) by
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e”‘ H(A)e_i)‘ = H(A’). This is called a gauge change and one easily sees
curl A = curl A’ . Leinfelder also verified that the Coulomb gauge condition,

V - A = 0, can always be satisfied by some gauge change.

For the potentials considered in this paper, these results follow from the
diamagnetic inequalities. Simon in (13), (14) showed that, for a large class of

potentials and vector potentials, that for t > 0
—tH(A _
jle "t )“p,q < lle tH(O)“p,q for all p,q,

where these are the operator norms from Lp to Lq . For convenience, H will

refer to H(A) and HO to H(0) in the remainder of this thesis.

The motivation for this work originates with the simple case of a two-

dimensional harmonic oscillator. In this case the eigenvalues are explicitly

known in both the perturbed and unperturbed cases. For HO = —A + [x?,
the eigenvalues. are at 2(n -+ 1) with multiplicities of n + 1. For the
perturbed case, H = —A 4 iB*x - V + %{B*xlz + |x[?, and the eigenvalues
1 1
are at 2(1 + 5 B*-B™? (n+1) + &5(B™-B™?) for £&€(—n, —n +2,..,n —2m),
n & Z+ .
Computing the trace of the heat kernel for these yields as t | 0 tr e“tH
2 —tH —tHy
= 0(t*°), and tr e — tr e = 0(1). In this simple example,

however, the t-' term is not present in either asymptotic expansion. The
question arose as to whether or not the perturbation first arising in the second
0
t

term, , was a general phenominon. [ show that it is such and that it is

related to the gauge invariance of the magnetic vector potential.

For simplicity, 1 consider only those potentials with uniform polynomial
growth in all directions. They must also be bounded below. In Section 6 there

are some remarks about further extensions.

Let k > 1 and % C R" a compact set be such that V satisfies the

following:

(1.1a) there is a C > 0 s.t.



c—1x1K < vx) < CixiK for x € R"\ % .

V € C™R™ for some m24+k—i—1 (m=o if k=1) and m >n(l +%) .

(1.1b)
n
(1.1¢) For each multi-index «, with o] = 3 lo;] < m, there is a
i==1
Co > 0 8.t D% V(x)| < CoixlZX .
Theorem 1. For V satisfying (1.1), and all = > 0 then as tl0

—tH 3_on L
tH 0) _ 0[t2 50+ s] )

tr(e — e

If one also requires that V has a homogeneous decomposition, theorem 1

can be extended. Namely, suppose there is a finite set of Vj(x) € C®(R™ with

the property that for

xandpr]Rn\SG,(pElR+,xEan)

(1.2)
Vj(px) = pj VJ-(X) and
V = > V(x).
o< <2k
Note: j need not be an integer in (1.2); however, in the usual examples j is

taken to be an integer.

Theorem 2. If V satisfies also (1.2) then as t!i0

—tH * K — L £ 204D
tr(e“tH — e O) =§——lB—CO t2 G+ —{—O[to 21+k]
P
where &y =3 — 21_1( max({j : VJ- # 0, j < 2k} U {2k—1})

n-1
co = YIS ) rang 4 Ly Is"'l __do

and
4k V(o)
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9

Remark. It is known that (1.2) is sufficient to show that fir{e
Lt
O[t 21 “)], (see Helffer and Robert (7)), and 1 also show in Section 3 that (1.1)
—tH LI
implies tr(e 0) = o[t 21 s].

Section 2 has a brief outline of weighted pseudodifferential operators
and weighted Sobolev spaces as developed by Beals (2) to set up notation. To
actually compute the integral kernels and traces, | combine two technigques for
estimating the asymptotics with gauge changes. In Section 3, I use these
weighted Sobolev spaces, semigroup and operator norm estimates in a canonical
order calculus similar to that developed by B. Simon in (3). Combining these
operator norm estimates with repeated applications of Duhamel’s principle and

the appropriate gauge transformations leads to the proof of theorem 1.

The more powerful technique, which requires more explicit knowledge of
the potential, is that of weighted pseudodifferential operators. Having the
canonical order calculus, however, greatly reduces the terms necessary to
evaluate for my result. Sections 4 and 5 deal with the remaining symbol

computations.

For the symbol computations, I use transport equations similar to the
standard method such as that in (15). An alternative choice is to use the
explicit symbol construction already done by Robert (11) for Hg , and to use

—tH
the inverse Mellin transform as in (5) or (7) to get the expansion of e 0 .

The proof of theorem 2 is completed in Section 5.
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§2. Weighted Sobolev Spaces and Pseudodifferential Operators.

As 1 am interested in operators with growing potentials, such as
—A + ix[zk , this section provides background to the theory of weighted
pseudodiffereritial operators and weighted Sobolev spaces. The type of weights
that will be used here originated from many sources; however, the notation I
use mostly follows that of Beals’ (2), who consolidated the notation. More

details can be found in Beals’ paper.
In the usual pseudodifferential operator case, a symbol a satisfies for

some m an estimate of the form

;a‘;} fo alxp)| < Cagll + g™l

Indeed, for the constant coefficient differential operator, this type of estimate

clearly holds where £ is the symbol of D.

However, the potentials with polynomial growth are excluded from the

k

symbol class. Changing the weight (1 + |£)) to <x>" 4+ <&> allows a larger

class of symbols to be considered. In particular, condition (1.1) implies that

¢? + V satisfies an estimate of the form

for |B| < m.

Throughout the remainder of this thesis, the weight ® will be

<x>k 4 <£> with k determined by the growth of the potential V.

Beals used two weight functions in his more general situation. For
¥ and P in C(lRm), there are positive constants C, ¢, §, so that the following

hold:
1) ¥ < C;
Q) ¥Y > c;

(3 ¢ < Wx,8) Wy,M ! < Cande < Px8) Ply,N™ ' < C
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if |x —yl<e(x,€) and | — 7| < c¥(x,£)
(4) R(x,0) < C<x>°, where R = ¥p " ;

' 1
(5) ¢ < Rx® Ry;D™ < Cif f — 71 < cRx,0 T2 and

1
2 .

x — y| < cR(x,8% Rly,m

These weight functions then generalize the symbol classes to functions a
€ C™®(R?M), satisfying the following for all o, 8 :

8% D al < Cpg &t ¥ P! @.1)

for some order function \. Although the order functions can be generalized,

the common ones are A\ = k, log ¥ + k, log ¥ , for k, and k, € R. The

k .

symbol class corresponding to the order A\ is denoted S\If ”
1

From the above estimates, it is clear that equivalent weight functions,
i, ¥ ~ ¥ agnd ¥ ~ ¥ , generate the same symbol classes as ¥ ¥, and the

similar terms are bounded, affecting only the constants in the above estimates.

As 1 do not need the full generality of DBeals” weighted DO
(pseudodifferential operator) calculus, [ take » = 1 and ¥ = ® and use the

order functions r log @. This clearly satisfies the hypotheses. Thus,

a &8 A , which will be denoted as S>‘ in the remainder of this paper, implies

D,:

o B Ay, — ol . . . .
BE DX al < Caﬁe o . The theorems in this section, unless otherwise
explicitly stated, apply to the general case S (p}\ .

9

From the symbols, the operators are defined in the same way as in the
usual ¥DO case. For the symbol a(x,), one associates the operator a(x,D)

defined on ¥ by

(ax,Dx) — @0 " [ * € atxe) o) at . (2.2)
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As a € S>‘ and u € f, this integral converges absolutely, and it can be shown
that the integral is in ¥. Further proposition 3.11 of Beals states that the
mapping defined by a(x,D) is a continuous mapping from ¥ to f. This mapping
can be extended to a mapping from * to #*. 1 will denote the space of

operators with symbols in S}‘ by OPSA .

Beals showed ((2) proposition 3.12) that there is a bijection between such
operators and their symbols, and so there is a seminorm that can be placed on
the operator space OPSK . This seminorm is defined by the constants CaB

arising from the symbol estimates (2.1). And so OPS>‘ is a Frechet space.

The main computational use of pseudodifferential operators arises from
the use of symbol composition and adjoint theorems. The rules of composition
are the same as for the ordinary pseudodifferential operators, as the following

theorem shows {Beals (2) theorems 4.1 and 4.6).

Theorem 2.3.
@ If A — a(x,D) € OPS¥ , and B — b(x,D) € OPS®, then AB € OPS**™
and the symbol a o b of AB has the asymptotic expansion
aob~z—1—8aaDab;

& a! ¢ X

that is,
aob— 3 LatapryeghtuMled
el <M ol "¢ X

(b} A* restricted to f is in OPS¥ and has symbol a# with asymptotic
expansion

# 1 o po =
a gagasta.

Another useful fact is (Beals” (2) theorem 5.1) that if A € OPS>‘ where A\

= 0, then A : L? — L? continuously.
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The weighted Sobolev spaces are defined with the help of the weighted

pseudodifferential operators. The weighted Sobolev space H)\ is defined by
H — spanfAu : u € L2 and A € OPS™M, (2.4)

Endowing H)‘ with the finest topology so that the mapping A : L® — H)‘ is
continuous for any A € ops M , the following can be proved (see Beals (2)

theorem 6.1).

Theorem 2.5. For A\, £ € O(®d),

(a) H0 = L? topologically,

(b) ¥ C I—I)\ C g* devnsely and continuously,
© HN* = H-,

(d) if A € OPSM then A : HM—H‘ — H>‘ continuously, and
(e) there is an A € oPS* so that A : H NHA BN is a topological
isomorphism and in particular H>‘ has the topology of L? .

With (e) of the above theorem, one can extend the norm of L? to give a

natural norm to H>‘ for any A. The norm is defined by IIuH)\ = ||JAul| for u

L2 ]
€ H)‘, with the operator A given by part (e) of the above theorem. The

difficulty, of course, is in finding an appropriate operator A. The next

proposition gives a practical way to determine a norm.

Proposition 2.6 (proposition 6.17 of Beals (2)). Suppose a, , a3,..., 8r € s and
ziaiiz ~ Suppose A € 0(P) and ce>‘ < e < co™ e>‘ for some m > 0 and
¢, C > 0. Let A; =a;(x,D). Then u EH'“ iff u EHA and each A, u €L? . There

is an admissible norm in H” defined by HuHZ = Hull; + 2lA; ull® .



In particular, this proposition allows easy verification of several

equivalent norms.

For the Sobolev spaces with weights r log ®, [ first choose symbols

kir —lal) . 27 log ®

ag{x,§) = <x> ¢ . Then having > laalzr ~ , and taking

lol<r
A = 0, one gets

G = 2 oK e
lai<r
As flull < H<x>kr ufl, another equivalent norm is
k(r —lal) ~ot
iy g 0 = 2 l<x> D™ ull
lal<r

which [ will denote [Jullly . This is similar to the usual Sobolev norm. Use

interpolation for non-integer values of r.

Among other norms for these weighted spaces, one final set of norms will

be useful in this paper.

Proposition 2.7 If V satisfies (1.1) for m, then for 0 < s < m and

o/ e

—u < spec(—A -+ V), for each |r{ < m there is a ¢ > 0 so that

e lully ys < I(—A + V + @52ullp < cliull 4s (2.8)

forall u € H(r+s)log (D‘

Also, since k > 1, one can prove a similar proposition for the operator
with a constant magnetic field. In particular, since B¥* x - D € oPS?® log @ ,
one has that (—iV — 1B*0? + V + %% ~ (—a + xPX + 12 for

2
0 <s < m.
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Proof. First note that (1.1) implies that for 0 < s < m there is a ¢’ > 0 so
that

)= —A+x X152 u)l < (—A+V+uull
< o (—a+xPX1)52 .

A D*(—A + ixl2k 4+1)82 for jo| < m, and all

‘Zk

And similar relations hold for <x>

B . Thus, one need only verify (2.8) for V = |x as the Sobolev norms involve

taking at most m derivatives. To establish this, one considers the symbols

|2k k(m ——lal)ea.

bo(x,£) = ag(xf) o ol(—A+ix + I)S/Z), where ag(x,£) =<x>

Expanding out the terms b, shows that

S el ~ ez(r+s)log (0] ‘
lal <

From the spectral theorem, one has [ujl < H(-—A—{—i)r:lzk—+-1)5/2 ufl for s > 0.

Combining this with proposition 2.6, one obtains the norm

— ”uHZ + Z H<X>k(r——lod) Da(—A-HXFk +1)S/2 u“2 ,

i 2
Hu”(r +s)log ® ol <r

which is equivalent to the norm

2 = [(—A 2k | 1)s/2 k(r —lahpoe _ A 2k | 1872 2
l!uii(r+s)log® (—Aa+x|""+1) uiH;ch;r}kp (—A+Ix["" 4107 % ull

which in turn is equivalent to

Il 4 gptog @ = I—A+xIE+DY? ulie .

And so (2.8) follows. W]
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§3. A weighted canonical order calculus and some global results.

In this section I use operator techniques and weighted Sobolev space
norms to get leading order behavior of various integral kernels. Combining
these results with Duhamel’s expansion, | am able to get some estimates on the
significance of terms in this expansion. Gauge changes will also allow
identification of many vanishing terms. As these weights have growth in x, I

am able to get global results with these techniques.

The following is a generalization of the canonical order calculus
developed in (3). The parameter Xq will be used for gauge changes and t > O

corresponds to the semigroup parameter for the heat kernel.

Definition 3.1. A family of operators

{Aq XO} on L%R™ has weighted canonical order (m, , m,) € R? with respect to
® if

(a) A 19 o g*
t,xo

(b) for all k > &, there exists c(k,£) > 0 s.t. for 0 <t <1

k—2¢

2

e m;— m2
lilAt,XO ufll, < cli,oit <xp> llulllp -

If V does not satisfy (1.1) for m =o0, I will need a more restricted type

of calculus and so will add the requirements k —& < m, k] < m, [£] < m.

For m sufficiently large, namely, m > 4 + kil and m > n(l -+ %] , this will

give sufficient control to prove theorem 1.

Note that for operators depending on the single parameter t, one can set
Xg = 0 and obtain similar estimates. In particular, if there is no parameter Xy

specified, | mean the family of operators that is constant for varying Xq and

has m, = O as the second coefficient in the weighted canonical order.

The motivation for this definition arises from analogs to the following

proposition and lemma 3.3.
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—tH
Proposition 3.2. Let V satisfy (1.1) and Hy; = —A 4 V. Then ¢ 0 has

w.c.o. {weighted canonical order) (0,0) with respect to ¢ = <x>K 4+ <£>.

Proof. This follows from proposition 2.7 and the spectral theorem. Using the
fact that HI(HO +u)S/2 ulll, is equivalent to ||| umr +s when —pu <« inf spec HO s
one has

—tH
0y

—tH
e O ulls+r < CerliHg+u¥? e ll

—tH
< CorlHg+w¥% e il

where the operator norm is from gr log @ to itself. The isometry established

r log @

by theorem 2.5 (e) implies that the operator norm from H to itself is the

same as the operator norm from LZ? to itself. Thus, the spectral theorem can be

used to estimate the operator norm.

—tH
IHy+w¥? e Ol sup  x+wS? e T

x2inf spec HO

g Ct —’S/2

where C depends upon |—u — inf spec HOI and s. Thus,

e % ully g < C - Coyr t ™5 lhull . o

Proposition 2.7 can be extended to apply for H = (—iV + A + V, as
remarked previously since k > 1, thus a similar argument shows e_tH has

w.c.o. (0,0).

To estimate integral kernels, it is useful to know the norm of &y in

various weighted Sobolev spaces. In particular, a simple extension of the
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standard proof (see for example Adams (1)) for the usual Sobolev space norm

yields:
Lemma 3.3. Foru € , = > 0,

kn 1
26T

ux)] = |<6x , u>| < C( <x>

e ull
204 +e)

Proof. Let Sg be the unit ball centered at x, and let r € (0,1). Let (0,0) denote

x in Sx , and similarly for (s,8). Then

By > = ux) = u00) = ule®) — [ W at.
o}

Thus,

1
)l < ) + | Ivut,e) dt .
0

Multiplying by the volume eilement and integrating over Sy , one has:

kM1 4i4-e
vol Sx - Ju < [[ (<y>? et dy)V? .
Sx

([ <y» G0+
Sx

1
+ j j Vu(t,8)] dt r" ! w(d) drdd ,
Sy ©

n—i

where r w(8) drdd is the volume element. In the first term [ have used

Holders inequality. Integrating over r in the second term and other

simplifications gives:

kn 1
e

= ko g1
vol Sy - (u(x)] < fl<x>*  F 2t

uff - <x> o C,(vol SX)1/2

+ 1 )Vu(y)l——dz—m )
Sx Ix —vyl
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—.kn i
where C, = (2) S0t > sup (

<y>] ——(1 + + g
Ix —yi<l

<X>

Using Holder’s inequality with the dual indices p and p’, one has:

ol n.l
k3¢ €) Bt
Jl IV(Y)!—“—_I < H<X> k+ Dul S, <X> k2(k+81 .
S yl p’ X
X
1/p'
d
‘ C2 . [J‘ }:n-ll '] ?
Sx Ix—yl P
—gd e
where C, = (2

If I choose p’ > 2, the above integral converges for n > 2 and then p < 2.

Using the fact that Sy is bounded, I have || - “p,Sx > | - HZ,SX >y
-1 _xno 41
Thus, lu(x)] < Cy(vol Sg) ? <x> 2(1+*+S)H< >2(1+ o ull,
-1 kn 1 kn 1
_kal 4 kn 1
+ C—————————3(v°1nsx) <> 2% T Vcx>2k TV pyy,
where
170"
C3 = c2 ¢ I dy ’
S (n-1)p
0 Iyl

B kn(l + 8)
And noting <x> ( + e < <xX>

lex> 2 KT Tl 4 fl<x> Dull,)

Gl < c:<x>_%n”’k+s)[ K+t e) 9l o)

kn 1
< Crex> kT

Ml sy -
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This last step can be seen by looking at proposition 2.6 and noting that if one

n 1 kn 1
k(—(1+—+8)—J‘ ~(1+-+a]
2 k 2 k and

adds further operators of the form <x> : D‘] to <x>

kn 1
¢ 48 . -
<x>2 K D, one also gets an admissible norm. And as all admissible norms

must be equivalent, the conclusion follows. 0

With the norm of the delta function in the weighted Sobolev space norms
and the operator estimates from the weighted canonical order, the following

holds:

Lemma 3.4. If {At,xo} has w.c.o. (m; , m,), then the integral kernels of At,xo ,

Ky (x,y), satisfy for all e > 0
t,kO v
2D+ —m e
lim t2 ¢ * K (X 5 X)) dxq = 0.
i I Ka,, 0> %0 4%

Proof. Using lemma 3.3, one has

IKA (X,y), = }<6X N At,XO 6y>'

t.xg

knel 2 1
— —LCEHE—1 =)
<ecgt s+m <x0>m2(<x><y>) 2T K
considering At Xq : HS log & H_S log @ . Taking x = y = Xg and
integrating over R" , the integral converges whenever s > -2’3(1 —+ i) + -2m—lf .0

If {At XO) is independent of Xq » note that lemma 3.4 implies
]

[t-g(l 'H;) “'2—5 +m;— S]

tr(At,xo) = 0 for any £ > 0,as t { 0.
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—tH —tH
In order to estimate the w.c.o. of e — e , I need the following

expansion, which is derived by repeated application of Duhamel’s principle.

r log @

Proposition 3.5 (Proposition 12.49 (3)). Let X, Y be operators in OPS for

some r > 0, with X and X + Y self-adjoint and bounded below.

Let bn = J‘ e ( S1 sn)X Ye 81X . Ye SnX d‘s1 Cee dsn
sizo
Zs;St
__(t_sl__..,._sn)x

and rp be defined similarly except that in e , replace X with

e n j
HX+Y) _ —tX _ S (=1 bJ.—}—(——l)n_H r,yq foralln € IN.

j=1

X+Y. Then e

Another similarly useful relation is

Proposition 3.6 (proposition 12.51 (3)). Let X, Y € OPSr log @ with X bounded
below. Then
t
Ve—tX) — [ ¢ty xj e =X gs.
0]

Proof of 3.5. It is enough to prove that the expansion is valid when applied to

1
functions ¥ € ¥, as ¥ is densely and continuously mapped into Hr og @ .

Let Uy = elt(X+Y) e—itx . Clearly, Ut ¥ € § and

ivye 1t y ¢ g,
By the fundamental theorem of calculus,

. ) t
MXAY) —itX Io 56‘_3 Ug ¥ ds
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. . : t .
or e—1t(X+Y) b — e itX y _ -e~1t(X+Y) J' ielS()‘H—Y) ve—iSX 4 4s
0

t - ,
_J‘ e——l(t-S)(X+Y) Ye—-—lSX v ids.
0

Analytically extending, one has

t
e_t(X+Y) w _ e—tX w — _J' e—(t—S)(X+Y) Ye—SX w dS.
0

As X and X + Y are bounded below, this extension exists.
Repeating this procedure proves the proposition. g

The proof for proposition 3.6 is similar, using instead
Ut _ eitX Ye—itX .

Needing to compute the w.c.o. of terms from these expansions, we use

the following:

Proposition 3.7 (propositions 12.47 and 12.50 (3)).

(a) If Ay Xq has w.c.0o. (m; ,m,) and T a fixed operator satisfies for some
b
b >0,

WTullh, < COMhaill 4y,

11w

for all k, then TAt,xo and At,xo T have w.c.o. (my — 2, mp) .

6),

(b) If A for j = 0, 1, ..., £ are operators with w.c.o.’s {m(f), m(g)], and
t,xo
m(f) > —1 for all j, then
— (0) 1 8
Bt,XO =5J;0 At"‘sl“‘SZ ,XO S; ’xo Ase ’XO dS1 dSe

Fest
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converges and has w.c.o.

4 ; g ;
€+ n®, & a9,
j=0 j=0

Proof. Part (a) is a direct result of expanding with operator norms.

For part (b) more care is needed to choose the correct operator norms.
Let sg = t —§ — - — Sp - First decompose the integral into integrals over

regions Rj , where in RJ- s < Sj for D € i € £. In the region Rj , one has

)

; 1 %))
1 ¢ m?y my —3(k—p) >m
”ASO ’XO A(Sl)’xo . A( ) ) 1 2

sgox Pl < C[I s s <xg> Zllelp

by bounding the Asﬁ)' for i £ j as maps from either Hk log ¢ to itself. As(_J)

i,xo bhXg

is bounded by its mapping of H” log @ , ik log @

Now, using the fact that t > s, > f—%‘l on Rj , each integral can be

J

bounded above by

" " D1k —p) E+§m”’—5(k——p)

' m —z(k — Sy 732

f .H_simidsl‘--dsg'tl 2T T ;

0 i
provided m(f > — 1 for each i s j. Combining the results for each Rj
completes the proof. 8]

log @ ilog @

Remark. The weights have been defined so that £ € S and x € S .

Thus, the estimates HIDWHJ- < chKolHj + and llxell < chKomj 4 are easy

to verify.

The machinery to prove theorem 1 has now been set up. Before

—tH
computing any terms with Duhamel’s expansion for e"'tH — e 0 , first, let’s
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look more closely at H. For the magnetic field B*, I replace —A in HO with
(—iV + A)? where A, the magnetic vector potential, also satisfies V. - A = 0
‘and curl A = B™ (the exterior derivative is the curl). This does not uniquely
determine A, and so ! am left with some free parameters to determine by

convenience. In particular, taking A = A = —~,l B*(x —x.) is a valid choice
X0 2 0

for any Xq € R" . Thus, I am led to

on = —A — B*(x——xo) D + ‘%IB"‘(x—xo)l2 + V

for any fixed xg . So I will use Duhamel’s expansion with X = Hj, and Yxo =
_B*(x—xo) - D + %IB*(X—-XO)IZ . Further, as the on’s are related by a

i 3ot
1(B*x,x) He —5(B7xq x)

gauge transformation, one has that e = HXO for H the

operator with X = 0; and as these are unitarily equivalent by a multiplicative

—tH

=t
operator, the diagonal of the kernel of e and e "0 are the same. And so

one has

—tH

—tH
t =t 0 — K _ ’ d i
re re I . tHxO(XO Xg) dxg

Noticing that (YXO ulxg) = 0 for any u € f leads me to use the

following:

—tH
—tH 0
tr(e — e ) = I K(e “tHXO__e—tHo)(XO 1Xg) dxg -

Using the collected facts about the weighted Sobolev norms and the weighted

canonical order calculus, one finds that only the first 4 -+ 1?5:—_1 terms are

needed from proposition 3.5 to verify theorems 1 or 2.
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In particular, one has to evaluate the kernel of

et g ey —s H
bJ' = I e (t—s, s)Ho Yg. e ° 0 ds; --- ds
s3>0 0
J

Esist
je= 1

fa=

J' .

These terms are not computable directly as the Yxo’s are interlaced with the
—tH
e 0 terms. With the help of proposition 3.6, we commute the Yxo’s to the

left. This leaves formulas such as

bxy = —Yxg © [ e

0 si>0

ZsiSt

—tH
0t _

Again, bringing the interlaced terms to the left, one finds from proposition 3.7‘
that at most, second-order commutators are needed. More precisely the terms

that lead to critical behavior are:

—tH, tJ

: 4

Yio e

. _tH _
J 0 t2 . 3
[Yxo ,» Hgl YXO e G for j <2+ =1
. _tH .
2 d 0t . 1
. _tH ,
J 0 tJ*’3 . 1
[[Yxo s HO]’HO] Yxo e (_—j +3)'f0r J £ k——-‘_l . (3.8)

Remark. Some commutator terms need to be factored with one factor

—sH
considered acting on the e 0 term before it and the other after it to satisfy

the hypotheses for proposition 3.7 b. However, as taking the commutator
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——-sHO

introduces extra factors of e , and | need only to apply proposition 3.4 to,

at most, terms with third-order commutators, no further problems arise.

—tH _n__
Lemma 3.9. V € C™; then the integral kernel of e 0 is in C™ tz—pe for
e > 0 separately in each space variable.
—tHO ——tHO
Proof. The integral kernel is <6y , © §y> = <e 6y y 6x>. To show

continuity properties, | use ordinary Sobolev spaces on bounded subsets (2

of R". AsV € C™ , D% V € LARQ) for || < m, and so V € HMQ).

—tH
It is well known that e 0 takes LAR™ into L®(R™ (see theorem B.11
» | .2 ~tH0 . n —tHO n
of (14)). For f € L% g = e fEL°°(IR)andH0e f € LR" by
the semigroup property. As V € C™ Vg € L(Q). Thus, —Ag € L=(Q) and
min(z,m) —e

by Weyl's lemma, g € H%2). To proceed, one notices Vg € H (2) for

+2.
all = > 0, and thus, g € Hm e (€2). This holds for all {2 bounded and all

~ —tH —(m+2-%) —5—¢’
f € L%. Thus, e 0 € OPS aF , and so as 6y € H ? ),
—tHy m-2¢”’
e 0y € H (2). The Sobolev embedding theorem then gives

—tH +o 0. —tH
e OSXECm22 SOfora1180>0. So I have <fy , e 06x>isin

n
m+z—z;— g,

C 2 with respect to x for fixed y. The symmetry also gives

<e 6y N

6y> = <by , e 0 §x> is in C™ w.r.t. y for fixed x. 0

To complete the proof of theorem 1, integrals of the form

I K -, (Xg s Xp) d%y need to be evaluated for various Tyx . . With lemma
R Txee ° 0

*g
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3.9 and Fubini’s theorem, an interchange of integrals produces

K s = ] s
xoe-tHO (x,y) TXO Ke_tHo (x,y)

where TXO acts on the x coordinate of K “thg This holds provided TXO does
e
not involve taking too many derivatives and is the reason m is as defined in
(1.1).
As TXO is explicitly known, it is easy to identify many vanishing terms.

In particular, the commutator terms are:

[Yx, » Hol = —i(B*(x—xg)) - VV + 5 B* - B*
+2i B¥V - V + B*x—xp) - B*V
and
[[Yx, » Hol » Hyl = —iB*(x—xp) - V(AV) + 2iB*VV - ¥
+ B¥(x—xg) - B*VV + 2B*V . B*V .
2z 2
Note that as B* is skew-symmetric, B*V . V is Bij[—a—— — e ], which

Bxiax j axiax j

vanishes on smooth functions. Computing, one sees that the first non-trivial

term, i.e., the term not obviously vanishing with the lowest weighted canonical

order, is 2iB*VV . V K —tHg - which has w.c.o.
e
3 — % , 0) and so I(B*VV - VK _tHO)(x,x) dx
e

(EHDY

forall ¢ > 0ast!l 0 by lemma 3.4. Thus theorem 1 follows.
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§4. The pseudodifferential operator for the heat kernel.

There are two possible ways to proceed from this point. As Robert (11)

already has explicit symbol computations for Hg , for Re z < 0, 1 could

—tH
use the inverse Mellin transform to get asymptotics for tr TXOe 0 in the

—tHy

same manner as Helffer and Robert (7) did for tr e The Mellin

transform takes et to I(s)t S, and thus the inverse Mellin transform allows
_tHO z
one to compute tr Txoe from tr Txo H0 , provided the integrals converge

absolutely so that the order of integrations can be interchanged.

However, it is also possible to compute the symbol for the heat kernel,

—tH
e 0 , directly, in a similar manner as that of Schrader and Taylor (12). This

is the method I will use. One assumes that there is a symbol for the heat
kernel and one computes the transport equation from the relations such a

symbol must satisfy.

Next one needs to solve this transport equation. The vstandard technique
is to guess a first approximation and then to iterate by successive applications
to the transport equations; thus, one obtains a formal series solution. The
hope is that these approximations are better and better in the sense that they
lie in more and more negative symbol classes, In particular, one wants the
successive expansions to differ from the actual symbol for the heat kernel by
symbols in these progressively smaller symbol classes. That is the difference
of the formal expansion, and the symbol for the heat kernel is in
S™® = S—j log @

J
functions with compact support. As a final introductory remark, ~ will be

This symbol class in particular contains smooth

used in this section to mean that the symbols are equivalent up to symbols in
S—-—OO
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To compute the symbol for the heat kernel, one needs the transport

equation. This is the equation satisfied by such a symbol. Suppose one has a

» —tHO iX'£ -~
symbol a , which satisfies (e fix) = I e a(t,x,£) f(¢) d¢ for any f € .

—tH

As HO is the generator for the semigroup e 0 , one has
3 —tHy
[é{ + HO] e = 0. This implies the following transport equation:

da ~

5t + o(HO) o a 0. 4.1)
One next assumes a ~ 25 a; with a; € S_J/k log @ Let

J

3 v
_éat_o = —(22+V2k)a0 with initial condition aO(O;x,E) == 1, This choice is taken

as this leads to symbols whose trace can be easily computed. The alternative

. Oag 2 ,
choice 3 = —{£ +V)a0 leads to evaluating Ie

not computable in detail.

—tV dx, which in general is

—t(E" +Vad _  —tAlx€)

Thus, ao(t;x,E) = e (4.4)
defining A. This choice of initial conditions implies aj(O;x,E) = 0 for all other
—0-H
i's, as e 0 _ I.
To continue by induction, let

da

= = 4V das + XV, e

ot 2k’ 0<j 2k—q “j—q

+ 2if - Vaj_k — A 85,k

Define by QJ» the latter quantities, so

q>0



g == e . .
Thus, = AaJ + QJ

t —s)A(x,6)

. t
or aJ-(t,x,E) = IO e Qj(s,x,E) ds.

Remark. This choice of a recursion relation is to easily allow a proof that

each a, € S.—J/k log ® .

i In particular, I want to control the additional powers

of € and x by related powers of t.

Thus, one has:

Lemma 4.6. For j,

aj(t,X,E) = t‘)/zk bJ(t’x,E) e‘—t/\(X,E) ,
- 1/2k X _E_
where bj(t,x,E) = bj(t EE w, )
1
for w = 3], N = tx),

12k

and Fj is smooth in all arguments and a polynomial in t , W, and 77.

Proof. For j = 0, it is clearly true with bO = ]. One proceeds by induction.

J
o Em i X £ —tA(x,€)
Let QJ t Q,](t’ le s IE' y Wy T’) e .
Then, using (4.5), one has
- 2k ig .
G; =t [ Z Voq®jqt™ +206 Vo, ¢
g>0
~ Sk ~ i-2k
. 2k
—2itg UV, B, tF —AB,_ %
-2k -2k

~ T 2 5 T pladid
+ 2t vvzk . VbJ__zk t2k - t ]vvzkl bJ_2k tQk
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J-2k

Tt AV bj——'zk tQk]

2k-q

=T tF Vv, b +21t2£ Lk

3 —~ ~ ~

2 2w T

172k

One sees that 5j is smooth (except at 0) and is a polynomial in t , W ,and 77

, as the Ve’s are radially homogeneous of degree £.

Thus - j —=9 g ds

t 4
- I Sgk QJ(S) e'—(t—s)A e*‘—SA dS
0

. . 4
1:,}/zk(t—‘l/zk I:) 2K lﬁj ds] e—tA )

. t
w2k —j/2k 2%

As 54’ is a polynomial in t 53‘ ds is also such; and

0
so the lemma holds. (8]
I still need to show that the aj’s are in S_“’/k log @ , to prove this note
that there is a C > 0, so that A(x,£) > C(<x>k + <¢>)* . Thus terms such as
w? e_tA and nJ e_lCA are bounded.

Proposition 4.7. a; = S_‘J/k log @ , for any t < T uniformly, for any fixed T.
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Proof. Using Lemma 4.6,

ol = 13/2K e T < 2k o —th/z

~

as bj is a polynomial in w and 7 and the other variables are over compact

domains. Again, using the fact that A > C®? , we have
tJ/Zk o —tA/2 <C, (D—~J/k .
—3/k log ®

A similar argument works for all derivatives of a; ,.and thus a; €S

uniformly for t < T. 0

Now to see that these symbols are a good approximation to the heat

[4
kernel, let A, = a. and W, be the corresponding operator. It remains to
£ o ! 1/
—tHO

show that e — WE are in progressively smaller classes as £ tends to

infinity.

H
At t = 0 by construction, e 0 _ WZ(O) = 0 for each £. Further,

(2 +Hy) Wyt =D, eI¥ € Fe) ax

for f €%, where DE =§) Vzk—q 3 +
£-q<i<b
+ Z ZIE-VaJ— z Aaj.
b-k<j<t b-ov< i<l
(—g—&—z) log ®
So DZ €S , by proposition 4.7.

‘ J4
(—=+42) log @
It remains to show that ofe 0 _ Ap € S <t g

, which

completes the proof of the asymptotic symbol expansion for the heat kernel.

Proposition 4.8. Let v(t,x) satisfy [6% -+ HO] v = g(t,x) with initial condition
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v(0,x) = h(x). Then Sltp livilg < Cililhlllg + C, St%p e(t, - lls -

Proof. Duhamel’s principle implies

.ﬂtHO t
v(t,x) = e hix) + I e g(s,x) ds.
0

Thus, by proposition 3.2,

sxzp fivils < Cilihllls + C; Stip eglls -

—tH
And so I have a symbol expansion for e 0 .
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§5. Asymptotic Estimates.

In this section the proof of theorem 2 will be completed. Recall from

section 3 that it remains to evaluate I K ~tHq (xo ,XO) dxo for wvarious
*g
. () 12 * *
operators Ty . In particular, let T = = B" -B and
0 Xq 4
(2.4) B t3+.i

X (7 B¥* * . 1 j
X — @Em B VYoVt 2B* V - B*V)2i B¥(x—xq) - V + 7 B¥x—xg))" .

These are the terms that do not trivially vanish in the commutators.

Using the explicit symbols for the heat kernel constructed in Section 4,
these integrals can be evaluated explicitly. Some symmetry arguments show
that there are more vanishing terms, but more importantly, the explicit
constants can be determined. These perturbation terms are much easier to

—tH

evaluate than constructing the symbol for the heat kernel for e and then

computing the trace of the difference between the symbols.
The following proposition insures that the above integrals exist.
Proposition 5.1 (Robert, proposition 3.2 (11)). Let u« be an order function for @

and N be a non-negative integer. Suppose that 4 > N log ® and that

1—8

I[<E> * oN e—-'u']2 d¢ = 0(1) on compact sets of x for 0 < = < 1. Let

T ¢ oPS~** . Then

(1) T is an integral operator with kernel KT(X,Y) € C(R™ x R™.
Moreover for all |a] < N, I8} < N, D?{‘ Dg KT(x,y) is continuous

and satisfies
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o B <
D% Dy Kpy)i < TRCTNCD) ”T”H‘"“—‘H“

for all a (x,y) € R®" and

—1/2

Py x) = P g2N o —2 dEJ

R"
(2 If w_r&‘ € L%RM), then T is a nuclear operator and

Tr T = _[ KT(x,x) dx.
RN

In particular, this shows that T is trace class when

(—3G +3—=) log @

A
T € OPS = OPS 0 for any = > 0. Further, for a class of

1
operators Zx0 , one has I KZ (xO s XO) dxo < oo if [wNZ (xo)] € L%, that
XO ] XO

A
is, if ZXO € OPS O and if there is a positive constant M so that

HZXOHH—__‘)\O_,HXO < M independent of x .

Remark. I do not need to worry about using an asymptotic expansion for the

S( —% +2) log ®

N
symbol of the heat kernel. For if d = a — Z a;, d € , for

j=1
N large, and as d{0,x, ¢ = 0, one can find uniform constants so that
B M-
B Dl dl < ct™ ™M @l for M > 2nand m < —M + ¥ — 2. This implies

tr d = O(t™), and taking N sufficiently large implies that the results are not

affected.
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Lemma 5.2
* pk 2—2(1+41)
K o (X, Xg) dxy = BBT ¢ T2 T
IIR“ Tilo)e tHg 70 0 0 4 0
2n—3G+1)
+oft 0 7T tio,
n—1
where Cn = volS ) I’(E(l-f-l)) I —do
0 n
4k 2 k gn—1 (Vzk(a)) 72k
-3 _ 1 S ~ _
and BO = 3 T max({j : v = 0, j < 2k} U {k}U {2k —1}.
Proof. As TXO is a constant, one needs to evaluate I aJ-(t , X, £) dxdg.
R2D
For j = 0, one has
—t(g*+V
.[ . (£°+V,(x) dxde

R2n

_ I e_tgz i . _[ e_tvz.((x) dx

If Vzk is homogeneous over all of R™ one has

k
—tn? —tV_, ()r?
= vol(S"™h I n—1!e t7 dn - _[ e 2k 1~ dr do
R+ R+><Sn—1

where 77 = [§|, r = |x|, and o are the angle variables from x.

However, (1.2) requires only homogeneity outside a compact set 3. Thus

assuming ¥ is contained in BR , the ball centered at 0 with radius R, one has

2
[agdxds = vols® ™) [ " e ap
R+



-32-

[ [ —tVzk(Eﬁ)txl)?“] ix
BR

AV,
I e 2df)r o 1drdo} .

R* xs™"

Note that the integral over BR is bounded independent of t. Integrating this,

using
[ o] m
f x" e—(rx) dx = 1n+1 I‘(n:‘;l) withn + 1, r, m > 0, from (5),
0 mr
l(sn-l) _n
one has ‘f ay dxdf = —YOn2 2 I'[’l[l—}-lnf —da—é-; + O[t 2] .
0 n/2(1+l) 2 k — %
TR ST (V (oD

This gives the leading behavior and determines CO . It remains to verify that

[teo --—%(1 —f—i)] )

all of the remaining terms are at least O

- — (€% 4V _ (X))
Recall from lemma 4.6 that a; = tJ/Zk b. e 2k

j j , where bj is

, a8

40+
2 polynomial in /7K , £/ ||, and 2], [ a (x) dxdg — oft% 2" V)

—1s2k —1
/ or t

. /2
each extra factor of [x| or | €] introduces an extra t s however,

these are cancelled by the pairing of t“zk with x| and t'/? with | £¢| . Thus
242 —320 +1)
multiplying _[aj(x,E) dxd¢ by t° produces terms of order O[t ™z “]

Among terms other than ag which has already been considered, the one with the

lowest order in t is a(eo——z)zk .
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(2§} .
For the TXO similar arguments are needed; however, the symbols for

(2,4)
TXJ contain elements which vanish when integrated over €. Indeed, these
0]

terms are expected to vanish for the more general case without homogeneous
decomposition. However, a proof just using operator norms is not powerful
enough to identify these terms, and although there are techniques to allow for

non-smoothness of symbols in the x variable, these lead to additional

(2,4)
complications. The symbol for TXO is

(-}_%' (—2B*VV . ¢ — 2B*t - B*®) o

(—B*(x—xg) = € + 3B*x—x)") 0---0 (—B¥(x—xg) - € + %IB*(x—xgifl)
e j copies

(2,3)
The terms for TXO o ay which do not have (x — XO) remaining are

t30 4 ok K * | .
G 2i B¥YV - V(iB (x—xo)~V(-~- (=B x—xq) - (E—lV)aE)-'-) (5.3)
j—1 copies
and
t3+J i * - * 3 * —— . > e — * o . _.—. . e
GIDi 4i B™: - B V(lg (x ‘xro) ( J( BT(x—xg) - (€—iViay)---) (5.4)
j—1 copies
and
k’th position
Y o p*y . B*V {2 T (iB*(x —xg) - V(u-(:B*(x—xO)'(E—i?D :

G+ 14R<i
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jth position
., S

(B*(x —xg) - V(- (ZB¥(x—xg) - E—iV)ap)-)

+ (8% —xg) - T GB —xf ae)w)} . (5.5

j—1 copies

Using these symbol expansion, one obtains:

Lemma $5.6.
3,1, 00.Y
I Otz 2" 27 k) for j >1
K 2.0 (XO ,XO) dXO = { in 1 in 1
R? T, e c, 2 ¢ oY) por j =0,

where 80 is as in lemma 5.2 and C, is defined in the proof.

Proof. From (5.3)-(5.5) one can read off the [x| or || powers in the terms
composed with ap - Any x derivatives of ap will just increase the t power by

12K £or that term.

(5.3) has a VV and a £ remaining for j > 1, which reduces the t power by

k=1 1 {t3+i~(§—ﬁi+§%—%ﬁ +§)]_

3% - Thus, these terms are O

- 3 -
2

[

When j= 0, the term becomes g[ —2 B*VYV . Eae(x,s]d[l—%——iV]ae] . On the

behavior. [ show that these

[t§+§1‘k“‘3(1 +§)]

surface, this appears to cause O
terms, in fact, vanish.

The feature that causes many of these terms to vanish is an integration
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over all angles of functions independent of angular change. In

particular, ae(x,é) for £ < k are independent of the angular variable I_EE—I . For
t

a, , this is clear, and for £ < k, b, = t_e/z" f \% (x)se/zk"l ds. Thus,

0 £ 0 2k —4€

the integral over the ¢ angular coordinates of I B*VV . ¢ ae(x,i) d[il = 0.

i€l
C, = _% J' B*szk - (€(=2i€ - Vag)—iVay) dxdt ,
. * M
or C; = —ri vols" @421 | B VVadg) wBValaho
12k 2 K Fee2g
S (Vzk(a))Zk

B*VV,(0)-w(DV, (o) -w)dwdo

1
1 n-1

XS (Vo) 7k

i n n 1
+ gx TG+D TG +2 ) [ N

In conclusion, (5.4) and (5.5) add just |¢|? terms, which vanish, and so the
result holds. |}

To complete the proof of theorem 2, one combines lemmas 5.2 and 5.6 to

obtain

—tH N o K _n 1
tr(e‘tH — e 0] - BB ¢ t2 L+ (5.7

; 0 + O[teo ——*g(l '{"é)]

s

+ oft’ + 230 +§)]

— 3 _ 1 PR ; _
where lZO =3 T max({j : v # 0, j < 2k} U 2k—1}.
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§6. Some Further Remarks.

For potentials without the same polynomial growth in all directions,
similar theorems will hold. However, the growth of the potential in directions

not parallel to the magnetic field must be at least gquadratic in the distance;

—tH
—tH and tr e 0 will differ. A further

—tHy,

otherwise, the leading orders of tr e

requirement is that H0 must have a discrete spectrum and e must be trace

class. The only change necessary for these results is to use a new weight

n 1 ,
=1+ x,zk‘ + |12, where V~3 x?k‘ .

i=1 j=11

In theorem 1, one sees the weakness of the operator norm method, as the
more precise pseudodifferential computations show that the term B*VV . ¥
does' not contribute a leading term. The pseudodifferential operator
computations imply that for a broad class of potentials, one should expect two
orders in t faster decay in the perturbed term with a magnetic field

perturbation.

The gauge invariant techniques in this paper will also extend to the non-
uniform magnetic field case. These techniques imply that [2A - D + A . A, HO]

and higher order commutators will determine the behavior of the asymptotics.

For the compact manifold case, the weighted Sobolev spaces need not be
used; however, the gauge invariance will play a similar role. This gauge
invariance should allow the canonical order techniques to be applied to compute
the perturbative effect of a magnetic field on the asymptotics for the trace of

etA or similar operators on a compact manifold.
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