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Abstract

We show that for one-dimensional Schrodinger operators with potentials V()
satisfying the decay condition |V (z)| < C(1+ m)”%‘e, the absolutely continuous
spectrum fills the whole positive semi-axis. We also give the description of a set
of zero Lebesgue measure on which the embedded singular part of the spectral
measure may be supported. Under additional conditions on the integrability of
the potential, we show that potentials decaying as C'(1 +$)_%_E also lead to the
absolutely continuous spectrum of the Hamiltonian.

An analog of the short-range Jost functions is introduced for the square inte-
grable potentials. The formula for the projection on the absolutely continuous
component of the spectrum is derived for a certain class of power decaying po-
tentials.

Some further applications of the introduced technique are given. We also

show that similar results hold for Jacobi matrices.
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Introduction

The main theme of the thesis is the study of the spectrum of Schrédinger
operators with decaying potentials. The potential decaying at infinity constitutes
a relatively compact perturbation of the Laplace operator, and hence, the essential
spectrum coincides with the positive semi-axis. It has been known for a long time
that for a short-range potential V' (z), by which we mean the potential satisfying the
decay condition V(z) < C(1+ |z|)~17¢ with some € > 0, the absolutely continuous
spectrum fills the whole positive semi-axis. Moreover, the wave operators exist
and are complete for Schrodinger operators with short range potentials [1], so that
a much stronger dynamical similarity with the free Hamiltonian is present. Apart
from the short-range results, there exist many works devoted to the study of some
special classes of decaying potentials. We will mention only a few of them which
have a closer relation with our work. For one-dimensional Schrodinger operators,
it is generally known that if V(z) belongs to L'(0,00), then the spectrum on the
positive semi-axis is purely absolutely continuous (see, e.g., [37]). The situation is
not so clear for decreasing potentials which are not absolutely integrable. There are
many results on the absolute continuity of the spectrum on the positive semi-axis
(except perhaps for a finite number of resonances in some cases) for certain classes
of decaying potentials, such as potentials of bounded variation [37] or specific
oscillating potentials (see, e.g., [3], [16], [38], [21] for further references). But no
general relations between the rate of decay and spectral properties, apart from the
absolutely integrable class, seem to be known.

The results concerning the spectral properties of Schrédinger operators with
random potentials, however, suggest that there may be a general relation between

the rate of decay of the potential and the preservation of the absolutely continuous



spectrum on Rt = (0,00). Namely, Kotani-Ushiroya [20] show that when ¢(z) =
a(z)F(Yz(w)), where a(x) is a smooth power decaying non-random factor, Y (w)
is a Brownian motion on a compact Riemannian manifold M with the volume
element y, and F': M — R is a non-flattening C'*° function satisfying [,, F'du = 0,
then the question of whether the rate of decay of a(z) is faster or slower than
-3

272 is crucial for the spectral properties of the corresponding random Schrodinger

operator. When a(z) = (1 + |z|)™ with 0 < a < 1, the spectrum on RV is
pure point with probability one; when o > %, then the spectrum on the positive
semi-axis is a.e. purely absolutely continuous. For the exact rate of decay 3:_%, one
may have a mixture of singular continuous and pure point spectrum for different
regions of energy.

The methods of [20] are probabilistic in nature and cannot provide information
on what happens in general for potentials satisfying |V (z)| < C(1+|z[)™, a > 1.
Although the set of potentials leading to purely absolutely continuous spectrum is
“big” in a certain sense [20], examples with eigenvalues on R* show there may be
exceptions. Moreover, if one could find at least one potential satisfying |V (z)| <
C(1+|z|)~, for certain a > 4 and C, which gives rise to purely singular spectrum
on the positive semi-axis, then by general principles of the genericity of singular
continuous spectrum [30], there would exist another “big” (in a topological sense)
set of potentials obeying the same decay condition and yielding purely singular
continuous spectrum on R*. Namely, this set would be a dense G in the space of
all potentials satisfying the power decay estimate |V (z)| < C(1+ |z])~%, equipped
with the L* norm. An analogous situation is exactly the case for a < %, when

the spectrum on the positive semi-axis is dense pure point with probability one by

[20], but, at the same time, by the recent result of Simon [30], there exists a dense



G5 set of potentials leading to purely singular continuous spectrum on R*.

To further illustrate the difficulty of the passage from random to deterministic
results, we note that [20] implies that there exist “many” potentials with power
decay (slower than £7%) yielding dense pure point spectrum on R*. But, never-
theless, there are no deterministic examples of potentials with power decay even
leading to just purely singular spectrum. (To construct an explicit example of a
potential having dense pure point spectrum should be much harder since an arbi-
trarily small change in the boundary condition may change the spectrum to purely
singular continuous [8], [14].) In fact, the only known explicit examples of decaying
potentials yielding purely singular spectrum on R* are due to Pearson [26] and
these potentials exhibit slower than power-rate decay.

It is an interesting problem to determine the critical rate of decay which can
lead to the complete or partial déstruction of the absolutely continuous spectrum
on the positive half-axis, and, correspondingly, to find out which classes of poten-
tials are not strong enough to seriously affect the absolutely continuous spectrum
inherent for the free Hamiltonian. In this work, we focus on the study of the spec-
trum of one-dimensional Schrodinger operators. One of the results we prove says
that all potentials V (z) satisfying |V (z)| < C(14z)~%~¢, with no additional condi-
tions, preserve absolutely continuous spectrum on the positive semi-axis, although,
of course, embedded singular spectrum may appear. This result provides a new
general class of decaying potentials preserving absolutely continuous spectrum of
the free Hamiltonian. It also shows that there is indeed a deterministic analog of
the random potential results, at least in the range of power decay a € (%, 1]. The
main new idea we use in the proof is a combination of a certain ODE asymptotic

technique which has been commonly used for the treatment of oscillating poten-



tials, with some results from harmonic analysis related to the almost everywhere
convergence of Fourier integrals.

Another interesting aspect of the spectral behavior of Schrédinger operators
with decreasing potentials is a phenomena of positive eigenvalues. Eastham-Kalf
[11] show that if V(z) = o() as z — oo, then Hy does not have eigenvalues
above zero. If V(z) = O(2), there are no eigenvalues above a certain constant.
On the other hand, Eastham-McLeod [12], with further developments by Thurlow

[35], show how to construct potentials V(z) of the type V(z) = €@ with C(x)

T4z
converging to infinity as z tends to infinity, such that a prescribed countable set of
isolated points represents embedded positive eigenvalues of Hy . These authors use
the Gel’fand-Levitan approach. Later, Naboko [23] described a construction which
allows for an arbitrary countable set T of rationally independent numbers in (0, o)
(and so possibly a dense set) to find a potential V' (z) satisfying |V (z)| < %% with
C(z) == oo monotonously at an arbitrarily slow given rate, such that the cor-
responding Schrodinger operator has the set T' among its eigenvalues. Recently,
Simon [31] has found a different construction that does away with the rational
independence assumption. The constructions of Naboko and Simon do not give in-
formation about other kinds of spectrum on R* in such a situation. In particular,
it was not clear whether there is any other spectrum but pure point in the case
when the set T of prescribed eigenvalues is dense in R*. This thesis settles the
questions arising from Naboko’s and Simon’s constructions. Moreover, together
with these works, it provides explicit examples of decaying potentials yielding an
arbitrary dense (countable) set of eigenvalues embedded in the absolutely contin-
uous spectrum.

We should also mention that the results for random decaying potentials for



discrete Schrodinger operators (Jacobi matrices) [9] raise parallel questions in the
discrete case. There is also a discrete analog to the continuous case of Naboko’s
construction by Naboko and Yakovlev [24] which allows one to find a potential de-
caying arbitrarily slower than -3;, such that the corresponding discrete Schrodinger
operator has eigenvalues dense in the essential spectrum [—2,2].

The thesis is organized as follows. In Section 1.1 we prove our main result for
power decaying potentials. In Section 1.2 we apply developed techniques to prove
that certain simple conditions on the Fourier transform of a potential from the class
we study ensure the absence of embedded singular spectrum. In Section 1.3 we
prove absolute continuity of the spectrum for certain bump potentials. In Section
1.4 we study asymptotics of the solutions for the complex energies. In Section 1.5
we derive an explicit formula for the projection on the absolutely continuous part
of the spectrum. In Section 1.6 we consider conditionally integrable potentials and
show that a certain condition on the integrability allows one to prove presence of
the absolutely continuous spectrum for the slower rates of decay.

The second part of the thesis is devoted to the study of Jacobi matrices with

slowly decaying potentials.

1. The absolutely continuous spectrum for Schrodinger

operators

1.1. Main results for power decaying potentials

We consider the one-dimensional Schrodinger operator Hy = —dii:—Q +V(x) act-
ing on L?(0, 00). We assume that V(z) is a real-valued locally integrable function

which goes to zero at infinity. It is a well-known fact that if we fix some self-adjoint



boundary condition at zero, the expression Hy has a unique self-adjoint realiza-
tion in L2(0, 00). The essential spectrum of the operator Hy, oess(Hy ), coincides
with the positive semi-axis since the potential vanishing at infinity constitutes a
relatively compact perturbation of the free Hamiltonian. We associate the spectral
measure dp with the operator Hy in a usual way (see, e.g., [7] or [36]).

Let us set up some notation we will need. Suppose the function f(z) belongs

to L%(0,00). Then we denote by ®(f)(k) the Fourier transform of the function f,

O(f)(k) = L? — lim [ exp(ikt)f(t)dt.

N—oo
—N

We also use the notation M*(g) for the following function corresponding to the

function g € LP(R), 1 < p < o0:

M ()a) = sup o [ oo +1) + ol — D) ds

and the notation M™(g) for the set
M*(g) = {z | M*(g)() < oo} .

The function M*(g) is “almost” a maximal function of the function g; in particular,
M™(g) is finite whenever the maximal function of g is finite. By well-known
properties of the maximal function (see, e.g., [29]) we have then that M™(g) is
finite a.e. and therefore the complement of the set M™(g) has measure zero.

Henceforth, we will also assume the potential V(z) to be locally square inte-
grable. We can always allow for stronger, only locally integrable singularities. We
adapt this additional assumption only to simplify the formulation of results and
avoid inessential technicalities.

The main result of this section is the following theorem:



Theorem 1.1.1. Suppose that the potential V(z) satisfies |V (z)| < Caz—1~¢ for
z € (a,00) with some positive constants €,a,C. Then the absolutely continuous
spectrum of the operator Hy fills the whole positive semi-azis, in the sense that the
absolutely continuous component pa. of the spectral measure p satisfies pac(T) > 0
for any measurable set T C (0,00) with |T| > 0 (where | - | = Lebesgue measure).

The singular spectrum on (0,00) may be located only on the complement of the set
1 1
§ = (M (@(V(2)z¥)))* \ {0}

(i.e., quarters of squares of the points from M@V (z)21))), 50 that psing(S) = 0.
Moreover, for every energy A # 0 from the set S, we have two linearly independent
solutions ¢4(x,)), d1(z,\) (=complez conjugation of ¢ (x, X)) of the equation

Hy¢ — Ao = 0 with the following asymptotics as x goes to infinity:
. i e
d4(x,\) = exp (zx/Xas BEWsN O/ V(s) ds) (1 + O(z log:c)) (1)

(which is ezactly the WKB formula).

The asymptotic formula (1) is one time differentiable in x.

The main idea behind the proof is a combination of the following three ingre-
dients: |

(i) The recent studies on the connection between asymptotic behavior of so-
lutions of the Schrédinger equation and spectral properties, which allow one to
conclude the absolute continuity of the spectrum on a certain set from the bound-
edness of all solutions corresponding to the energies from this set;

(ii) The methods of studying the asymptotics of solutions, namely the “Z + Q”
transformation technique introduced by Harris and Lutz [15] and later used by

many authors for treating Schrédinger operators with oscillating potentials;



(iii) The results from the theory of Fourier integrals; in particular, the question
of a.e. convergence of the partial integral [~ exp(ikt)f(t) dt to the Fourier trans-
form of f under certain conditions and an estimation of the rate of convergence.

As a preparation for the proof, we need several lemmas. The first lemma allows
us to reduce the proof of Theorem 1.1.1 to the study of generalized eigenfunction
asymptotics.

Lemma 1.1.2. Suppose that for every A from the set B, all solutions of the
equation Hyd — A¢ = 0 are bounded. Then on the set B, the spectral measure p of
the operator Hy is purely absolutely continuous in the following sense:

(1) pac(A) > 0 for any A C B with |A| > 0,

(11) psing(B) = 0

Proof. For a large class of potentials, including those we consider here, this
lemma follows from the Gilbert and Pearson subordinacy theory [13], as shown by
Stolz [34]. Also, in a recent paper, Jitomirskaya and Last [17] obtained a rather
transparent proof of more general results. For a direct simple proof of the lemma,
we refer to a paper of Simon [32]. O

The complement of the set S in the statement of Theorem 1.1.1 has Lebesgue
measure zero (which of course follows from the fact that the complement of the
set M*(®(z1 V(z))) has measure zero). Therefore, we see that (assuming Lemma
1.1.2) for the proof of Theorem 1.1.1, it suffices to prove the stated asymptotics of
generalized eigenfunctions for the energies from the set .S.

The second lemma we need deals with certain properties of the Fourier integral.



Lemma 1.1.3. Consider the function f(z) € L*(R). Then for every ko €
MT(D(f)), we have

N

/ f(x)exp(ikox) dz = O(log N).

-N

Before giving the proof, let us point out the relation between the question we
study and one of the subtle problems of harmonic analysis. The Fourier transform
of the square integrable function f(z) is usually defined as a limit in L?norm as
N — oo of the functions (Y f(z)exp(—ikxz)dz. The question of whether these
integrals converge to the Fourier transform of f in an ordinary sense for almost all
values of k is, roughly speaking, equivalent to Lusin’s hypothesis that the Fourier
series of square integrable functions converges almost everywhere, resolved posi-
tively by Carleson [5] in 1966. All that our simple lemma says is that we have
an estimate from above on the speed of divergence of partial integrals, but for a
rather explicitly described set of values of the parameter £ of full measure. In
the next section, which tre.ats certain non-power decaying potentials, we will need

more refined results on the a.e. convergence of Fourier integrals.

Proof of Lemma 1.1.3. The proof uses the Parseval equality:

[ @) explikor)dz = = / _n_]]:_r_;i_];_@ "
- 7 / [ vk (®(f) (ko — k) + ®(f) (ko + k)) dk.

We split the last integral into three parts and estimate them separately:

< d4r sin Nk

(@(f) (ko — k) + D(f)(ko + ) dk

Nk
/Sln “ f “LQ(—oo,oo)y

L2(1,00)

1
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and so this part is bounded when N — oo;

/ = (®(f) (ko — k) + ®(f) (ko + k)) dk| <

k

0

|@(f) (ko + k) + B(f) (ko — k) ldk+/—l@(f (ko + k) + ®(f) (ko — k)| dE.

In the last expression the first summand is bounded by M*(®(f))(ko), while in

l/\
O\ZIH

the second we perform integration by parts:

It

(f) (ko + k) + 2(f) (ko — k)| dk = / [O(F) (ko + k) + @(F) (ko — B d +

?vl»—*

1 k
1
+/ﬁ/“1’ (ko + ) + @(F) (ko — )| dtdk <

< M*(®(f)) (ko) + /%M*(@ ))(ko) dk = O(log N). O

To begin with the proof of the theorem, we rewrite equation Hy ¢ — Ap = 0 as

a system of first-order equations:

w'(z) = w(z), (2)
V(i)—A 0
where w and ¢ are clearly related by w(z) = ") We perform two trans-
. ¢'(z)

formations with the system (2), the first of which is the variation of the parameter

formula,
wiey = | P o) ®)
() dy(x)
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where it is convenient for our purpose to choose ¥1(z) = exp(ivAz), Po(z) =

exp(—iv/Az). Substituting (3) into (2), we get for y(z):

i -V(x) —V(z) exp(—2ivAx)
"(x) = (z). 4
! 2vA V() exp(2iv/Ax) V(z) ! W
We can also write this system as
y =D+ Wy, (5)

where D stays for the diagonal part of the system and W for the non-diagonal part
which we would like to consider as a perturbation. The matrices D and W have

the form
D(z) O 0 W)

0 D(z) W(z) 0
with D(x) = —Q—foV(x) and W(z) = —ﬁV(m) exp(—2iv/Az) in our case.

The main approach to the study of the asymptotics of solutions for systems
similar to (5) is to attempt to find some transformation which will reduce the
off-diagonal terms so that they will become absolutely integrable and then try
to apply Levinson’s theorem [7] on the L!-perturbations of the systems of linear
differential equations. It was discovered by Harris and Lutz [15] that when W (z)
is a conditionally integrable fuﬁction, the following simple transformation of the

system (5) works in some cases. We let
y(z) = (I + Q)2(a), (6)

where I is an identity matrix, while Q satisfies @' = W, that is,

0 q(z)
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with g(z) = — [>° W(z) dz. In this case, g(z) === 0 so that for large enough = the
transformation (6) is non-singular and preserves the asymptotics of the solutions.

For the new variable z(x) we have:
Z=T+Q) YD+DQ+WQ)z,

which after calculation leads to

D 0 Wq+2|q|°D 29D —¢@W
7= +(1-lgH™ “ z. (7)

0 D 2¢D — ¢*W  2|q|?D +qW

Since g(z) decays at infinity, there is hope that ¢(z)D(z) and ¢(z)*W (z) may be
both absolutely integrable, even if initially W (zx) was not.

We now return to a particular case of the system (5) we consider. Our W (z)
is equal to —ﬁV(x) exp(—2ivAz), depending not only on z but also on the en-
ergy ), and we are seeking to‘deﬁne q(z, ) = ﬁ 12V (s) exp(—2iv/As). The next
technical lemma shows that under our assumption on the decay of the potential,
we can do it and, in fact, rather successfully for every energy A which belongs to

the set S in the statement of Theorem 1.1.1.

Lemma 1.1.4. Suppose that the potential V (z) satisfies |V (z)| < Cz~17¢ forz €

);

oSy

(a,00) with some positive constants C,a,e. Then for every k € M*(2(V(z)z

the integral [° exp(—iks) V(s)ds converges and moreover,
/exp(—iks)V(s) ds = O(z~% log z)

as r — OQ.

Proof. Note that V(m)xi is square integrable and therefore by Lemma 1.1.3, for
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every k € M (®(V(z)z1)) we have as 7 — 00,
/V(s)si exp(—iks)ds = O(log z)
0

(we change ik in Lemma 1.1.3 to —ik, but since V is real, it does not change the

set S). Writing V(s) = (V(s)s?lf> s~1 and integrating by parts we get

/V )exp(—iks)d —%/V 57 exp(—tks) ds+
0 0

Z

The first summand clearly behaves at infinity like O(sc”% log ), while the second

t
.94 exp(—tks) dsdt.

b&lU‘
\

NH

0

is absolutely convergent, since

< Cit i logt (8)

t
‘%/V 51 exp(—iks) ds
0

by Lemma 1.1.3 for all £ > 2 with some constant C;. The integral over (0, 2) is finite
since V(z) € LY°°. Therefore, the integral [§ V(s)exp(—iks)ds is conditionally

convergent and its “tail” is equal to

o0

/V(s) exp(—iks)d %/ 54 exp(—iks) ds+
z 0

which we can estimate for z large enough using Lemma 1.3 and (8):

¢
s)s% exp(—iks) dsdt,

~—
<

NH

0

/V(s) exp(—iks) ds| <

< Cyzilogz + C / t~%logtdt = O(z"ilogz). O



14

Now we note that the condition A € S is equivalent to 2¢/X € MT(®(V (z)z1))
by the definition of the set S. Therefore, for every A € S there is a number a)
such that for any z > a, the function q(z, \) is less than 3. Applying the “J + Q”
transformation for x > ay for each A € S, we get a system (7) for z > ay. The
shift on the finite distance from the origin certainly does not affect asymptotics
since the evolution, corresponding to such a shift, is just multiplication by some
constant (for each A) matrix. Lemma 1.1.4 allows us to see that the non-diagonal
part and, in fact, the whole second summand of the matrix in the system (7) is
now absolutely integrable. Indeed, every element of this matrix is equal to the
product of some bounded‘ function and the function V(z)gq(z, ), the latter being
absolutely integrable and moreover, by our assumption on V' and Lemma 1.1.4,
satisfying |V (z)q(z, A)] < Ca(A)z~ 1 ¢logz for every A € S with the constant C;
depending on A. We can now apply Levinson’s theorem, but in our situation we do
not need the whole Vpower of this result. Rewriting the system (7) for every A € S

o) = | —V(z) 0
2 )

+ R(z, A) | 2(z)

with V(2) real and ||R(z,\)|| € L' with [;°||R(s,\)||ds = O(z~“logz), we can,
in a standard way, transfer this system into the system of integral equations, apply
the Gronwall lemma, and prove (see [28] for the details) that for each A € S there
exist solutions z1(A, z), Z1(A, z) with the asymptotics

2 (A z) = exp (—ﬁ O/ V(g;)dx> (1+ O(z~<log z)).
Applying now transformations (6) and (3) to obtain the asymptotics of the solution

and its derivative of the initial problem, we conclude the proof of Theorem 1.1.1.

Remarks. 1. With very little effort, the introduced method yields results for
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the whole-line (or, more generally, two singular point) problem for the Schrédinger
operator Hy with potential V € Lblc satisfying |V (z)] < C(1 + Ix])_%“ﬁ for |z
large enough. The substitution of Lemma 1.1.2 for the whole line can be easily
recovered from the remark in [32] and says that on the set S, U S_, where S,
and S_ are the sets of energies for which all solutions are bounded as x approaches
correspondingly plus or minus infinity, the spectrum is purely absolutely continuous
of multiplicity two (in the sense of Lemma 1.1.2). Of course, Lemmas 1.1.3 and
1.1.4 can be used for studying the asymptotics of solutions at —oo as well as at
+00. What we get in this case is that the whole positive half-axis is filled by the
absolutely continuous spectrum of multiplicity two and the singular spectrum may
only be supported on the complement of Sy US_. Moreover, it is a known fact [18]
that the multiplicity of the singular spectrum may only be one for the whole-line
Sturm-Liou\;ille operators.

2. One may apply the proven results to the study of the absolutely continu-
ous spectrum of Schrodinger operators with spherically symmetric potentials in R",
satisfying |V (r)| < COr—%—¢. In a standard way, one decomposes the Schrédinger op-
erator Hy into a direct sum of one-dimensional operators Hy; = ——%—I— (fa(Dr—2+
V(r)) acting on different moment subspaces (see, e.g., [27]). It is easy to see that
the set S; of energies for which all solutions of the equation Hy,;¢— A¢ are bounded
in fact will be independent of [, since the term f,(I)r—2 decays fast at infinity. Cor-
respondingly, the singular spectrum of Hy on RT may only be supported on the
complement of the set S.

3. In fact, Theorem 1.1.1 is more than a deterministic analog of the Kotani-
Ushiroya theorem in the power range o € (%, 1]. Indeed, one can check that from the

assumption [, F'dp = 0 in their random model, it follows that the a.e. potential
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is conditionally integrable and satisfies
/V (t,w)dt < C(w)(1+ |z])™?

for every 8 < a — % with probability one. Assuming conditional integrability of
V and certain power-decay estimate on the “tail” of the potential, we can extend
our result about the presence of the absolutely continuous spectrum on potentials

2

satisfying only |V (z)| < Cz737¢ We treat this case in Section 1.6.

As a byproduct of the computations we performed, let us formulate the follow-
ing proposition, which is in fact a slight variation of Theorem 2.1 from Harris and
Lutz [15]:

Proposition 1.1.5. Suppose that for given energy X > 0, the function

Viw) [~ exp(-2ivV M)V (1) dt

is well-defined and belongs to L(0,00). Then there exist two linearly independent

solutions ¢y, ¢ of the equation Hyd — A = 0 with the following asymptotics as

r— 00 .

¢a(z) = exp (i\/Xx— m/V(s) ds) X

x<1+o<j

In particular, all solutions are bounded.

V(s)/V( ) exp(—2ivV/At) dt

8

d)) |
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1.2. A criterion for the absence of embedded singular spectrum

Based on the technique introduced in the proof of our main theorem, we now
prove the result showing that certain conditions on the Fourier transform of poten-
tials decaying faster than z~17¢ are sufficient to ensure the absence of the singular

component of the spectrum on the positive semi-axis.

Theorem 1.2.1. Suppose the potential V() satisfies |V (z)| < Cz 5 for all
z > a and the Fourier transform ®(ziV (z))(k) belongs to LP'° for some p > L.
Then the spectrum of the operator Hy on the positive semi-azis is purely absolutely
continuous, and for every energy A € (0,00) there ezist two solutions ¢y, @, with

the asymptotics as x — 00,

Pa(z) = exp (z\/—x———/V s)ds) <1+O( e ))

It is clear that we can concentrate on proving the stated asymptotics for every

X in the positive half-axis. A modification of Lemma 1.1.3 is needed:

Lemma 1.2.2. Suppose that the Fourier transform ®(f)(k) of the function f(x) €

L? belongs to LP'°°, p > 2. Then for every value of k,
N
/ f(x) exp(ikz) dz = O(N#).
-N

Proof. As in the proof of Lemma 1.3 making use of the Parseval equality, we get

/f( ) exp(tkz) d /SmNt Pk —t) +0(F)(k+1))dt.

Again, the integral from 1 to oo is bounded uniformly in N by the product of

L2-norms of the functions under the integral. The remaining part we split into two
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integrals and estimate them using Holder’s inequality:

/SmNt (k— 1)+ ®(f)(k+ 1)) dt| <

< /1(1/t)p’dt ’ (71@ l”dt);:O(N%),

N

where p’ is a conjugate exponent for p : p' = 5%. The second integral is estimated

in a similar way:

/SmNt (k—t)+@(f)(k+1))dt <
0
71\7 1p kt+ %
<\ [aa k [ wowra| =owh. o

- Proof of Theorem 1.2.1. The same calculation which we performed proving
Lemma 1.1.4 (integration by parts) shows that under the conditions of Theorem

1.2.1 for every positive A, we have
a(@,3) = [ V(@) exp(=iva) do = Ofa~33)

as ¢ — o0o. This implies that for all energies, the function V(x)g(x, \) is absolutely

integrable and moreover satisfies the estimate for large enough z,
V(@)a(z, V)] < CN)a™ "7,

By Proposition 1.1.5, the proof is complete. O

Remark. It is easy to modify the proof of Lemma 1.2.2 and Theorem 1.2.1 to
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obtain a local criterion for the absence of singular spectrum. That is, if V' satisfies
the conditions of Theorem 1.2.1 and ®(x1V (z))(k) belongs to LP(a,b), b > a > 0,
then the spectrum of the operator Hy is purely absolutely continuous in the energy

interval (943, %)

We note that the conditions stated in the theorem are rather precise. For
example, in the celebrated Wigner-von Neumann example (historically the first
example of the decaying potential having positive eigenvalue embedded in the ab-
solutely continuous spectrum), the asymptotic behavior of the potential at infinity
is V(z) = —g%ﬂ +O(z7?%) (see, e.g., [28]) so that ¢ = 1, while the singularity of
the Fourier transform of 27V (z) is easily seen to be of the order (k — 2)~1 which
belongs to LP!°° with p < 4. It is an open question whether one can replace the
condition ®(z1V(z)) € L', p > 1 with the simpler one ®(z1V(z)) € L so

that the last theorem still remains true.

1.3. Non-power decreasing potentials

In this section we apply the method described in the preceding section to a
wider class of potentials. This class will include, in particular, certain potentials
of the bump type, which are “mostly” zero but have bumps decaying at infinity.

Let us introduce the class of potentials we will treat.

Definition. We say that the potential V(z) € L®(0,00) belongs to the class

P_o(0, 00) if there exists a potential V' (z) € L*(0, 0o) satisfying |V (z)| < Cx~ for

oo

z large enough and a countable collection of disjoint intervals in (0, 00) {(a;,b;)};2, ,
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b; < ajy1 Vj, such that

0, z € (an, by)

V(z) = n .
V(CE - ng(bj - aj))? x € (bman+1)

Roughly, the potential V(z) is obtained from V(z) by inserting a countable
number of intervals on which V(z) vanishes; while on the rest of the axis, it is V()
shifted on the distance which is equal to the sum of the lengths of the intervals
inserted so far. Of course, V(z) € P_, need not decay faster than any power at
infinity. However, if we “compress” f/(x) by collapsing all intervals on which it
vanishes, we get a potential which is bounded by Cz~* for large z.

The following theorem holds for potentials from the class P_ 3
Theorem 1.3.1. Suppose V(z) € P_s_e; € > 0. Then the absolutely continuous
part of the spectral measure fills the whole positive semi-axis, in the sense that
pac(T) > 0 for any measurable set T C (0,00) with |T| > 0. For almost every

energy A € (0,00), there exist two solutions ¢y, @, with the asymptotics as x — oo,

oa(z) = exp (m/Xa: - KZ/——)\— 0/ V(s) ds) (14 0(1)).

Proposition 1.1.5 implies that to prove the stated result, we need only to show
that the function R(t) = V(z) [2° V(¢) exp(—2iv/At) dt is well-defined and belongs
to L1(0, 00) for a.e. A € R*. To proceed with the proof, we need some further facts
from the theory of Fourier integrals.

The following result is due to Zygmund [39].

Theorem (Zygmund). If f € LP(—00,00), where 1 < p < 2, then the integral

F(F)(kN) = —=

\2

f(z) exp(—ikz) dz

=
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converges as N — 00, in an ordinary sense for almost every value of k.

This will serve us as an analog of Lemma 1.1.3. However, it is a more sophisti-
cated result by itself. One of the consequences is that we do not have an explicit
description of the exceptional set on which convergence fails (and correspondingly,
where the singular spectrum may be supported). For future reference, let us denote
by A(f) the set of full measure for which the integral F'(f)(k, N) does converge.

The main idea now is the same as before: to perform in some “clever” way

integration by parts to get estimates on the tail
G(z,\) = / V(1) exp(—2iv/xt) dt

for a.e. \. Of course, there is no longer any hope that g(x, A) will, in general, decay
even as some power for potentials we now consider. However, the special structure

of the potentials allows us to overcome this problem.

Proof of Theorem 1.3.1. Let us factorize V (z) = Vi(2)Va(z) in the following
way: if V(z) = V(z, {(a;, b;) ;:;o), then

07 T e (any bn)

Vi(z) = n 3 n
<.’L‘ - Zl(bj — aj)> |% (ZE - Z (bj - aj)> , T E (bn, an+1)
J:
and .
n— —q

B ( E a] > an; bn)
Va(z) = = ~1
< 2 (b - a’])> ’ <S (bn: an+1)
Therefore, Vi(z) is obtained from the function z1V(z) in the same way as V(z)

is obtained from V' (z), while the quotient VJ(% Va(x) is a continuous piecewise
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3_

differentiable non-increasing function. Since |V(z)| < Cz~%7¢ for large enough
x, we have that :c%V(ac), and therefore also V() belong to L27¢(0,c0). Then by
Zygmund’s theorem, for all A from the set ;(A(F (Vi(2))))? (quarters of the squares
of the points from the set A(F(V;(z)))) of full measure in the positive semi-axis,
the limit im0 i Vi(t) exp(—2iv/At) dt exists, so that we can consider for these
) the conditionally convergent integral [*° V4 (t) exp(—2iv/At) dt. Let us integrate

by parts the expression

g(z,\) = 7‘71(t)‘7z(t)exp(—2iﬁt)dt:

= V() 70\71@) exp(—2ivV/\t) dt + ‘7172'(15) 70171(3) exp(—2iv/\s) dsdt.

T

For the values of X that we consider, the value of the integral [*° V;(t) exp(2iv/)t) dt
goes to zero at infinity and therefore is bounded by some constant C' (depending
on A) for all values of . Hence, we can estimate the right-hand side in the last
equation by

oo

e, (vz(x) +/|V2’(t)|dt> < 20V3(x),

T

since V,(z) is a non-increasing positive continuous piecewise differentiable function.

Thus, we get that for a.e. A,

< IV (2)Va(2)]-

V(x) 7V(t) exp(2iV/At) dt

To conclude the proof, we notice that the function V(2)V,(z) is absolutely in-
tegrable by the way we constructed the functions V(z) and V,(z); the L'-norm of
their product is equal to the L!-norm of the function =1V (z). On the intervals
(an, bn), where Vy(z) is defined to be constant, V(z) vanishes; and on the intervals

where V(z) is equal to shifted V(z), Va(z) is just shifted 1.0
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One of the situations to which Theorem 1.3.1 applies is when we have a sequence
of repeating bumps of the same shape but with decreasing magnitude. Fix U(z) €
L>(0,a) and let

Zgn (x — an), Gn — Gp-1 > G.

For potentials of this type, Pearson [26] has shown that if one chooses the dis-
tances between bumps to be big enough, then if 3%, g2 = oo, the correspond-
ing Schrodinger operator has purely singular continuous spectrum on R*. Other-
wise, there was essentially nothing known about the possible spectral behavior for
Schrodinger operators with bump potentials which are not absolutely integrable
and not power decaying. From the last theorem it follows that if |g,| < Cn—i

the absolutely continuous spectrum remains on the positive semi-axis, no matter

how U(x) looks and which distances between bumps we take.

1.4. Generalized Jost functions

In this section we are studying the asymptotics of solutions of the Schrodinger
equation
g2
(-—d—g-:E—FV( )) = \u (9)
with decaying potentials for the complex values of energy. Using the results we
derive here, in the following section we obtain more information about the abso-
lutely continuous spectrum on R* for a certain class of potentials which decrease
fast enough (but not short-range in the usual sense of this term). In particular,
we obtain an explicit formula for the projection on the absolutely continuous part
of the spectrum.
The solutions for the complex energies, which we investigate here, carry in

principle all information needed for the study of the spectrum for the general square
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integrable potentials, with no further conditions on the decay. The subtle point is
tracing the limiting behavior of certain functions as the energy approaches the real
axis and we are able to perform this analysis only under additional assumptions.
Let us denote by C* the upper half-plane of the complex plane, not including the
real axis. Let us also fix the branch of the square root function VA so that S\ > 0
for every A € C*.
The main theorem we prove in this section is the following:

Theorem 1.4.1. Suppose that V(x) € L*(0,00). Then for every value of the
spectral parameter X € C™, there is a solution ¢ (x, A) of the equation (9) satisfying

the following asymptotics:

dr(z,A) = exp (z\/Xx — #({V(s) ds) <1 + WO(HVHL?(%,OO))):
e = WRep (3 = 353 [V ) (14 OV lcgon) )

(10)

1
ISV

The O is uniform in X after taking into account the factor Moreover, for

any fized z, ¢4 (x, ) and ¢! (z,\) are analytic in C*.

Let us breifly explain why we are interested in the solution ¢ (x, A). Suppose
that we want to study the spectrum of the Schrodinger operator Hy given by
the left-hand side of (9) together with the Dirichlet boundary condition at zero.
Because of our choice of the branch of v/, we can check that ¢, (z,A) belongs
to L2 for every A € C*. Indeed, it is easy to see that the integral term under
exponent in the expression (10) for ¢, (z, \) cannot “spoil” the negative real part
of the iv Az term if V € L2

Let us denote by 8(z, \) and x(z, \) solutions of equation (9) satisfying '(0) =

1, 6(0) = 0, and x'(0) = 0, x(0) = 1. By one of the equivalent definitions of the
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Weyl m-function corresponding to the Dirichlet boundary condition at zero (see

e.g., [36], [33]), we have that
¢+(2,2) = h(x(z,)) + m(N)0(z,N))

and

¢z, A) = h(X'(z,A) + m(Nb'(z, 1)),

where h is some constant, which may depend on .

This allows us to compute m(\):

m() = 260N (11)

B ¢—|—(O7 }‘)

Hence, if we have sufficient information about the function ¢ (x, A), we can study
m(\). The relation between the Weyl function m()) and the spectral measure is
well-known (see, e.g., [36], [33]) and will be discussed in more detail in Section 1.5.
In particular, if we can compute the limits of ¢ (0,\) and ¢,(0, ) on the real
axis, we may be able to determine the spectrum of Hy, and also to derive some
additional information, such as a rather explicit eigenfunction expansion. This
program is carried out in Section 1.5.

The proof of the theorem relies on the complex version of the Harris-Lutz
method. A similar technique has been applied by Ben-Artzi and Devinatz [4],
Devinatz and Rejto [10], and White [38] to the study of the absolutely continuous
spectrum of Schrédinger operators with some particular oscillating potentials.

First, we prove the existence of the solution with the stated asymptotics and
then we show its analyticity. Since the “boundary conditions” for ¢.(z, ) are
given by the asymptotics at infinity, proving analyticity involves more work than

the standard (see, e.g., [36]) proof of the analyticity of solutions with the given
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boundary condition at some finite point. The proof is similar to a usual proof of
the analyticity of Jost functions for absolutely integrable potentials (see, e.g., [6])
but is more technical.

For the complex energies, it is convenient to modify slightly the transformations
we used to derive real-energy asymptotics in Section 1.1. As before, we rewrite

equation (9) as a system:

0 1
u = u (12)
V—-X0
where u = ( u,> Let
1 1
U = Y, (13)
—ivA iV
then
—5xV —iVA - g5V

We note that the transformation (13) is quite natural since it diagonalizes the

matrix < ° (1) ) . Write the system (14) as
-
y=(F+D+W)y,

where F is a diagonal matrix with constant TFiv/\ entries, D is a diagonal matrix

with the entries :i:Q’WV, and W is the off-diagonal part. As before, we aim at

finding another transformation which will help us reduce the off-diagonal part.

0 q2

Putting y = (Z + Q)z, with Q = < ) , we obtain

g1 O

(IT+ Q) +Qz2=(F+FQ+D+W+DQ+ WQ)z,
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and after a simple calculation,
= (F+D)+(IT+Q)(FQ-QF+W~-Q +DQ - QD +WQ))z. (15)

In order to be able to study the asymptotics of the system (15) with the aid of

the Levinson-type technique, we should choose @ so that:
FQ-QF +W - @Q =0, (16)

DQ — 9D + WQ e L'Y((0,00)), (17)

7 + Q is non-singular for z large enough uniformly in A € U, = {A\|SA > € > 0}.
(18)
The last condition is needed for proving analyticity of the function ¢4 (z, A).
From the condition (16) it is easy to derive differential equations for the ele-
ments g2, go1 of the matrix Q:
l
2vA
7
2v/2

Solving these equations, we obtain one-parametric (for each A) families of func-

do(z, N) = =2V Aqua(z, \) + V(z),

Gy (2, 0) = 2V Agar(z, \) — Vi(z).

tions which may serve as g;;, 1,7 = 1,2,

qi2(z, A) = exp(— 22\/—1’)( 2\/__

exp( 22\/_75 W(t)d ), (19)

x

g1 (3, )) = exp(2ivAx) (C’g()x) - 5% exp(—2iV )V (1) dt) : (20)

Since we have to meet condition (17), we should choose C; and Cy so that g;;

is decaying at infinity. This forces us to put Ci(A) = 0.
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In the choice of Cy(\) we have some degree of freedom, which will be essential
in the next section when we consider limits on the real axis. For now, to simplify
computations, we also let Ca(\) = 0.

Lemma 1.4.2. Suppose that V(z) € L?(0,00). Then for every X\ € C*, the

functions qi2(z, A) and g (x, A) satisfy:

120, M 22y < Wuw)umm,@, (21)

1
lq12(y, Mz (z,00) < G

<||V(y)||L2(-§—,oo) + eXP(—%\/Xm)”VHLZ(O,oo)) ,
(23)

IV ()l 22(z,00)» (22)
1
|IQ21(y: >‘)“L°°(z,oo) < W

1
1921 (Y, Ml 22(z.00) < INAYEN (V@) 2000 + exp(=SVADIV 220,09 -
(24)

Proof. The functions g;; look like not normalized averages of a certain type of the
function V. Therefore, it is not at all suprising that one may basically estimate the
LP-norms of these functions by the L? norms of V| but that this estimate diverges
as v\ goes to zero. Let us first consider gio. In all computations, we will omit
the unessential \/— factor in front of the expressions for g;;.

exp(—2ivVAy) /exp 20V M)V (t) dt

Y

llq12(y7)‘)“L°°(:t,oo) = sup
y>z

= sup /exp(Ziﬁs)V(s + y)ds

>
yzx 0

1
< =7V l2@,00)-
< siaviEIV e

We used the Holder inequality in the third step. For the L?%-norm estimate, we

1
2\ 3
)g

have:

e o]

lg2(y, Mlz2@ny) = (/dy

T

oo

/exp(Zi\/Xt)V(t + y)dt

0
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1
o0 00 3 oo
< / dt ( / dy|V(t + y)exp(zz'\/Xt)P) < / dt e VM|V || pa(n00) =
0 z 0
1

Here in the second step we applied the Minkowski inequality. Estimates for g9; are

similar but slightly more technical.

Let us split the integral for g (z, A) into two parts:

xr

g (2, \) = exp(2iv/2x) / exp(—2iV M)V (1) dt =

0

= exp(2iVAz) (/2 exp(—2ivV )V (t) dt + /mexp(—Qz'\/Xt)V(t) dt) :

The L*®-norms of both summands are estimated by the Holder inequality. For the

first one we have

<

1exp(2i\/X:U)/zexp(—Zi\/_)\_t)V(t) di

<

< exp(—SVAz) /%exp <2Z\/X <§ - t)) V(t)dt

— -V ax) |V o0)-
G/ PSRVl

For the second we obtain

x

exp(Qiﬁx)/exp(—Zi\/Xt)V(t) dt

z
2

z . A 2 3 )
< (/ GXp(-—4\S"\/X(£C — t)) dt) (%/ |V(t)l dt) < m“‘/”[g(%,w).

The L2-norm of the first summand is estimated as follows:

<

Wiy

1
2 2
00

/

z

dy =

/2 exp(2ivV A\ (y — t))V (t) dt
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I

Y
/exp 2%V A2)V (y — 2) dz

¥
2

[l

( | exp(—4SVA2)V (y — 2)|? dy> <
max(ac z)

(ST

exp(—=SVA2) [V (9] z2(0.0)-

mf

Here we applied the Minkowski inequality in the second step. Similarly, for the

.

2\ 3

second summand we write:

=

-

z

< Zodz( 70 |exp(2iVA2)V (y — z)]zdy> =

max(2z,z)

/ exp(2iVA(y — )V (t) dt

<

o
€T

/exp(Zi\/—)—\z)V(y — 2)dz

N

5 - 1
: 1
= /exp(—2%\/Xz) ( / V(y — 2)|? dy) dz < 2%\/X|}V”L2(%,oo)-

0 (22,)
We applied the Minkowski inequality in the second step, while in the last inequal-

ity we took into account the fact that on the region over which we perform the
integration we have y — z < 7. This completes the proof of Lemma 1.4.2. U
Now we are in a position to prove the result given in Theorem 1.4.1. The proof
of the asymptotic behavior for the function ¢, (z, \) follows the general pattern of
treatment of the ODE systems with L'-perturbations (see, e.g., [7]). We can write

the system (15) for z in the following form:

Sz N) = VAt aaV () ° +R@ ) | 2,0, (25)

0 iviz — 2V (2)
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where

SR < gm [ IVOllas (W, Nl dy < grm

(HV|I%2(%,00) ++ exp(—'%\/}‘_x)nvnﬁ(%,oo)”V”LQ(O,oo)) = Wé‘g—;\jO(“VHLz(%,oo))-
(26)

Let us denote the diagonal matrix in (25) (which is equal to F + D in the old
notation) by F(z).
The usual iteration method for finding the solutions may be applied to (25). In

particular, one of the solutions, which we denote z(z, A), is represented as follows:

x B 0 0
zi(x, A) = exp (/ F(t) dt) + > (=1)"gn(z, N), (27)
0 1 n=1
where g,(z, ) is equal to
i _fﬁ(sl)dsl e 7T - fn ]}(Sn)dSn tfnf:(sn)dsn 0
/e : R(tl,)\)/... / g o R(tn, Ne? dt1...dtn.
x t1 tn—1 1
Note that
°°tf2f”<>d tfﬁ() 0 Vit V(s
- 52)as2 82)dso i/ Aty — =+ V(s)ds
/ e i R(ts, \)ed dty = e o f(t,N), (28)
1 1
where
N < [ IR, dt (29)
t

° ) is multiplied by a

This representation follows from the fact that the vector (
1

fast decaying element exp(iv/ My — -2—\1'/—? 82V (sy) dsy), and if we take exp(iv/At; —

2:'5 f3* V(s3) ds2) out of the integral in (28), all the elements of the matrix under

the integral sign are still majorized by the elements of the matrix R. By induction,

we can show that the n'® summand in the series for z, (z,\) may be represented



32

as
gz, ) = exp (iﬁx - 2&X 0/ V(s) ds) Fulz, N, (30)
with
(FIRe, Niat)”
[l )| € A (31)
This gives us a solution z4(z, \) with the following asymptotics for large x:
zy(x,)\) = exp (m/xx— -Z—ZﬁO/V(S) dS) 1 + O (! IR, Ml dt)
(32)

Transforming back to the initial system (12), we get a solution ¢ (x, A) with the
required asymptotics.

Now we turn to proving analyticity of the ¢ (z, A) and ¢/, (x, ). Consider an
open set U, = {\|S\ > ¢} in C*. First, we will prove that ¢, (z, ) and ¢/ (z, )
are analytic in U, for every ¢ > 0 if we choose z to be large enough (may be
dependent on €). To prove this fact for certain z, it suffices to show the analyticity
of z.(z,\) and Z + Q(z,A) in U.. The analyticity of the matrix T + Q(z, ) is
obvious from the expressions (19), (20) (where we let C; 2 = 0) for the elements of
Q. To show the analyticity of z, (x, A), we need the following standard lemma:
Lemma 1.4.3. Let f(z,)) be a measurable function of (x,A) on S x U, where
U is an open set in a complex plane and S is a metric space with measure dj.
Suppose that f(xz, ) is an analytic function in U for every fived x € S and that
Is|f(z,N)|dp < C for every X. Then [q f(z,\) du(x) is analytic in U.

Proof. The proof of this lemma may be found, for example, in [29]. O

Now consider the expression for the n't term g,(z,)) in the series (19) for
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zi{z, A):
1 tn tn
7 —fﬁ(sl)dsl ? ° - f F(sn)dsn fﬁ(sn)dsn 0
/e - R(tl,)\)/... / et R(tn, \eo dt;...dt,.
x t1 tne: 1

(33)
All functions which stay in the expression above are analytic in A in U, for z
large enough. Indeed, this is obviously true for the terms involving F, while
the entries of R are the products of the elements of @, (Z + Q)~!, D, and W.
All these elements are easily seen to be analytic in U, for x large enough. For
the elements of (Z + Q)71 it follows from the estimates (22), (23). Using (27),
(28), (29), and Lemma 1.4.3, together with the uniform in U estimate (26) on
the [>°||R(t, \)|| dt, we see that after every integration in (33) we get an analytic
function. Hence, g,(x,\) is analytic. The analyticity of z,(z, A) follows, since the
series (27) converges uniformly in U, by (30) and (31).

Therefore, we showed analyticity of ¢/, (z, \) and ¢, (z, A) in U, for every posi-
tive € if z is large enough. Now let v1(z, A) and y2(x, A) be solutions of the equation
Hyu — Au = 0 which satisfy v1(z,\) = 0, v{(z,\) = 1, 7oz, A) = 1, 15(z, A) = 0.
v1(y, A) and 72(y, A) are analytic for every fixed y by the standard estimate on the

finite interval. We can expand ¢, in a basis given by solutions 71 o:

oy, N) = & (@, )y, A) + or(z, Ny, A) (34)

and
¢+(y) )‘) = QS{‘_(.%‘, )‘)'Yl (ya )‘) + ¢+($7 )‘)72(3/7 )‘) (35)

This shows analyticity of ¢/, (y,A) and ¢4 (y, A) in U, for every y < z as well, as
far as we know that, for some z, ¢, (2, A) and ¢, (z,)) are analytic there. This

completes the proof of Theorem 1.4.1. O
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In conclusion, we make one obvious but important remark. In the proof of
Lemma 1.4.2 we assumed that C3(\) = 0 in the expression (20) for the function
qi2(z, \). But certainly all the estimates in the proof of Lemma 1.4.2 can be carried
out for fixed A € C for an arbitrary choice of Cy. Indeed, C5 is a coefficient in front
of the exponentially decaying term and hence, by triangle inequality, we are just
acquiring an exponentially decaying term on the right-hand side of the estimate.
Therefore, all of the formulas (26)—(31) remain valid if we use in them the function
g21 with some other choice of Cy. Since the function ¢, (x, A) is a unique solution
of the equation (9) with the asymptotics (10), every choice of go; leads eventually
to the same function ¢ (z, A). This gives us certain freedom in representing this

solution, which will be useful in the next section.

1.5. Formula for the projection on the absolutely continuous spectrum

In this section we are going to use the functions ¢, (z,A) to derive an explicit
formula for a projection on the absolutely continuous spectrum. This formula
may serve as a basis for further study of the subtler properties of the spectrum.
While giving more information about the structure of the absolutely continuous
spectrum, the methods we apply here fail to fully recover the best power of decay
which we were able to treat in the Section 1.1.

To begin with, we set up some notation and state an auxiliary lemma, which
is a straightforward generalization of Lemma 1.1.4.

Let potential V(x) satisfy the decay condition |V (z)| < C(z + 1)77~¢, where
B > % and ¢ is an arbitrary positive number. Then we denote by Sg(V') the set of
energies,

s(V) = = (MH(@(=*1V(2))))" \ {0}.

=] =
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We remark that Sg(V) is clearly a set of full measure.
We have the following extension of Lemma 1.1.4:

Lemma 1.5.1. For every energy Ao € Sg(V'), we have

£) exp(—2iy/Aot) dt

Proof. The proof essentially repeats the argument given in the proof of Lemma

< C(\)z Ptz loga.

1.1.3. We have

tﬂ“ Tt

exp(1 exp <

<

x ﬂ+2/exp \/_t tﬁ_' dt| +
+ (.;_ _ﬂ> /t—ﬂ—%/exp(i\/;\;s)(\/(s)sﬂ_'lf)dsdt
z 0

which by Lemma 1.1.3 is estimated by

)

1 1 1
Ci(No)logzz™t2 + ([5’ - 5) < C(Mg)z P 2 logx. O

/ Ci(Xo) logt t=7-% dt

The first fact we need to establish in order to derive the formula for P, is the
existence of the appropriate limits of ¢ (z, A) and its derivative as A tends to the

real axis.

Theorem 1.5.2. Suppose that potential V satisfies the decay condition |V (z)| <
C(l+x) ¢, wherew = @ and ¢ is positive. Then for every Ao € S,(V) and
s0 a.e., ¢ (x, N) and ¢/ (x, \) converge to ¢, (x, Xo) and ¢! (x, Ao) correspondingly
as A € Ct tends to \g in a non-tangential direction.

Remark. We note that the existence of the function ¢ (z, \g) for Ag € S,(V) is a

direct consequence of Theorem 1.1.1 since w > 2 and S, (V) belongs to the set S
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from the statement of Theorem 1.1.1.

To proceed with the proof, we first note that the formula for the solution

zy(z,\), given by (27) for the complex energies, is also valid a.e. for real energies

if the potential satisfies a power decay estimate with exponent 3 > %. Namely,

using Lemma 1.5.1, one can see that the formula (27) for the solution z(x, Ao)

with the asymptotics (32) remains valid for the energies Ag € Sg(V), if we take

oo

q12(, Xo) = ?L—mexp /exp 21\/_1&

T

and
[o¢]

01(3,20) = 5 \/___exp (2iy/ 20 / ) [ exp(—2iy/Aat) dt. (36)

T

This corresponds to the choice Co(\) = [5° exp(—2i+/Agt)V (¢) dt. Then, by Lemma
1.5.1, 12 and g9 are well-defined and are dominated by C(Ao)(1 + m)—ﬁ+% log z.
This allows us to perform the Z + Q transformation and then to iterate in the
system (25), proving the existence of the function z.(z, \o) given by the formula
(27) and satisfying (32). The solution z(z, Ag) of the system (15) for A\g € Sg(V)
corresponds to a solution ¢, (z, \g) of the Schrédinger equation with asymptotics
(1).

We will show that, under the conditions of Theorem 1.5.2, for every A\g € Sg(V),
the solution z,(x,\) converges to the solution z;(z,Ag) as A tends to Ay non-
tangentially in C*. The convergence of ¢, (z,A) and ¢, (z,A) to ¢;(z, o) and
¢’ (z, Ao) will follow from an explicit connection of these functions with zi(z, A)
and z,(z, \g). Moreover, it suffices to prove the convergence of ¢ (z, \) and ¢, (x, A)
to ¢4 (z, \o) and ¢/, (z, Ao) for x large enough. The convergence for any z would

then follow by the formulas (34), (35).
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Fix Ao € S3(V). We are going to use the freedom we had so far in choosing

the function go1(z, A). Let

gz, \) = \/_exp(Qm/_—a: (/exp 22\/_75 dt—/exp(—2i\/Xt)V(t) dt) :

0

Thus, go1(x, A) is designed so that when A — Xg, we expect go1(z, \) to converge
t0 go1(z, Ao) given by (29). We remark that f5° exp(—2iv/ o)V (t) dt is well-defined
by Lemma 1.5.1.

Fix an angle W()\o) with vertex at Ay, symmetric with respect to the line
R = ), with the radial measure less than w. We are going to prove that z, (z, )
given by (27) converges to z,(x, \o) (given by the same formula (27) with A = Xo)
as A tends to Ao inside W (\o). In order to prove the convergence of z;(x,A), it
suffices to show that:

A) R(z,\) — R(z, \o) for every z as A — )Xo inside W (Xp);
B) |R(z,N)|| < T(z) with [°|T(y)|dy < oo for every A from Ws(Xg) =
W (Xo) N Ns, where N is a small enough circular neighorhood of Ag.

If (A) and (B) hold, we would use the Lebesgue dominated convergence theorem
to conclude that the n'® term in the series (27) for z,(z, A) converges to the n'®
term of the series for zy(z, o). Also, since the series (27) is easily seen to be
uniformly convergent in Ws(\o) by condition (B) and (30), (31), it would follow
that z,(z, \) converges to 2z (z, Ag) as A tends to Ag in Ws(Ao).

Therefore, we reduced the proof of Theorem 1.5.2 to the proof of (A) and (B).

Furthermore, by (15) and (16), we have that
R(z,)) = (T + 9)7(DPQ — QD + WQ).

Therefore, conditions (A), (B) are equivalent to the following statments about

the functions g¢;;:
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(A) gi;(z, \) converges to g;;(x, Ao) for every = as X tends to Ag in W(Xo);

(B) |V(z)gi;(z,\)| < T(Xo,z) with [§°T (X, z)dz < oo for every A € Ws(Xo).
Indeed, all other functions appearing in R(z, \) have explicit dependence on A and
obvious limits as A goes to the real axis. Condition (B) turns out to be harder
to satisfy. The main problem why we cannot recover the weaker power condition
8> % in Theorem 1.5.2 is in establishing (B) for the function g¢o;. Otherwise, all
estimates would work for 8 > 3. The validity of (A) and (B) under the assumptions
of Theorem 1.5.2 is verified in Lemmas 1.5.3 and 1.5.5. We first treat the simpler

case of qqs.

Lemma 1.5.3 Suppose that V(z) satisfies |V(z)] < C(1 +z)™P~¢, 8 > 1. Then
for every Ao € Ss(V), we have that gi12(z, X) — qi2(x, Ao) for every x as A tends
to Ao in Wy, and

lq12(, A)| < C(No, W)x_m% log z

for all A € Ws.

Proof. Consider

/ exp(2iVA(t — 2))V (t) dt — / exp(2i/Mo(t — Z))V (1) dt =

_ 7<exp (22'(\//\70 - \/X)(t—x)> - 1) exp(2iy/ Dot — z))V (1) dt =
- _7exp(2¢\/ig(t—x))x/(t> dt (exp (zi(\/i' -~ \/X)(t~:):)> - 1) o+

+ 721‘(5—- VA) exp <2@(\/)\_ — V)t - :c)> <7exp(2i\/)\70(s —z))V(s) ds) dt.

In the above calculation we used the fact that A\g € Ss(V) and Lemma 1.5.1,

which implies that all integrals are well-defined. Now note that the first term in
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the sum is identically zero, while the second is estimated by

sup /exp(2i\//\_os)V(s) ds

>

2lVA — VXl oo
< TV stlzlg t/exp(ZZ\/A—os)V(s) ds| .

Lemma 1.5.1 implies that

exp SVt — z)) dt <

exp(2i\//\—os)V(s)ds < C(Xg)z™PF

sup
t>x

We also note that 2=l i uniformly bounded in W (o). Hence we can let

SV
Co, W) = fggl—\/-—g—”\/—@ + C (M),

and the above estimates give us the second statement of the lemma. To prove the

first statement, we note that

o0

/exp (Zix/X(t — x)) V(t)dt — 7exp (2@'\//\—0(75 - m)) V(t)dt

<

A
<|f <exp 2Vt — 7)) — exp(2i\/)\_0(t——x))> V(£) dt| + 2C(ho, W) A0+ 3,

For every € > 0, we can pick A so that the second term on the right-hand side is

less than §. Next, we can take A close enough to Ag, so that the first summand is
also smaller than §. There is no problem since we now have integration over the
final interval (x, A) and V is locally integrable. O

We next show that similar statements hold for go1(x, ). However, since the
integral in the expression for go; is taken over the finite interval, which grows as
x — 00, the convergence question becomes simple, while the uniform boundedness

is not trivial. First, we need an auxiliary statement.
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Lemma 1.5.4. Suppose that 1 > o > % Let A(a) be a small enough positive

number such that aA=**! < 2(1—a). Then

zCl

a/ exp(—a(z —t))dt = exp(—az)(exp(az® — 1)) < C ot (37)
0
holds with some constant C uniformly in 0 <a < A.

Proof. Consider first the case z < 1. Then exp(az®) — 1 < Ciaz® with the

constant C; uniform in a, since az® < A'~%. Therefore,
exp(—az)(exp(az®) — 1) < Craz® < Cyz*™!

forallaif z <

Q=

Now note that for every fixed a, (37) definitely holds with some constant C.
Indeed, when z = 0, the left-hand side of (37) is zero and when z tends to infinity,
the left-hand side is definitely majorized by the right-hand side. To show that (37)
holds with some constant C uniformly in a means to show that there exists C such
that the function h(z,a) = exp(—ax)(exp(az® — 1)) — Cz*~! is negative for all z,
a. Since for every fixed a, (37) holds when z is small or large with every C' > 0,
and h(z,a) is continuously differentiable in z in (0, 00) for every a, it suffices to
show that with a proper choice of C, for every a, h(x) is negative at all points z
where h'(z) = 0. By the above, we can also assume z > <. Now, h/(z) = 0 means
that

aexp(—az)(1 — exp(az®)(1 — az®)) — Cla — 1)z*~2 = 0.

Hence, since |1 — az®!| # 0 because az®™! < aA~*+! < 1 we have

—C(a—1)z*?% + aexp(—azx)
aexp(—az)(l — az*1)

exp(az®) =

Substituting this into the expression for h(z), we get

~C(a =122 + aaz® ' exp(—az)
a(l — aze1)

— Cz*

h(z) =
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But
Cla—1z*2| _ 2(1-
(=1 _ 2w,
a(l — az>-1) a+1
since z > 1 and
a—1 1—ea 1 1
1 — ez >1 - ad 21~§(1——a)=—2—(1+a).
If 3 < a < 1, we have 2%%"1 < 2. Also,
az® ! exp(—ar) 200, 4 C’xa_l
1 — qzo! T 1+« - 3 ’

if we choose C large enough. Since x was an arbitrary point of extremum, the
lemma is proven. O

We are ready to make our final step in the proof of Theorem 1.5.2, an estimate
oI go1:
Lemma 1.5.5. Suppose that potential V(x) satisfies |V (z)] < C(1 + z)~P~¢.
Consider Ao € Sg(V'). We can pick & small enough so that:

1. gz, \) — qu(z, Ao) for every  as A — g in W(Xg) and

2. |goi(z, A\)] < C(Xo)z™"logz for every X € Wis(Xo), where v = g—;—%
Proof. We remind that up to an irrelevant coefficient, the function g9 (z, ) is
given by

g1 (z, \) = exp(2iVAz) (7exp(2i\/)\>0t)V(t) dt — /mexp(2i\/):t)V(t) dt) :

0

Therefore, go1(z, A) converges to ge1(x, Ag) as A tends to Ag for every fixed value of
z simply by the Lebesgue dominated convergence theorem, since exp(2iv/A(z —t))
converges to exp(2iv/Ao(z — t)).

To prove the second statement of the lemma, we note that

?iVe / e“Qi‘/’GtV(t) dt

x

T

e%/xz/e_Qi‘/)GtV(t)(e_%(\/X_m)t —1)dt|.

0

|go1(z, A)| < +
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The first summand on the right-hand side is well behaved because of Lemma 1.5.1

and sincey < (0 — % Next, we integrate by parts to estimate the second summand,

exp(2iﬁx)/exp(—2i\/—);t) <exp(—2i(\/x - \//\_o)t) - 1) V(t)dt =

exp(2iv ) <(- /Ooexp(—2i\/-/\_0t)V(t) dt) <1 — exp(=2i(v> — \/A—O)t> 2+
+ / \/—_—\/_ exp( %(V\ - \/— )/exp \/;\;S)V(S) dsdt).

The ﬁrst summand is again well-behaved, while the second we split into two parts
which we estimate separately:

2(VA — yhg)e2VA / ¢~ 2(VA-Vo)t / e~ 2VABY (5) dsdt| <

0 t

\/—— \/—_ 21\/—:1:/ —24( \/_—\/—_)t/ —2i\/XEsV(S) dsdt| +

t

2(\/X— \/—)\—0)621‘5‘”/e_2i(‘/x*‘/)‘_°)t/e“2imsV(s) dsdt| .
0

t

For the first part, we have an estimate

2i(VA - f(/exp( 23VX(@ - 1) )

VA=V
S TS

For the second part, we have an estimate

22\/_ \/7/exp :zc—~t )dt

0

)[Vie - VA 5

by Lemma 1.5.4. Indeed, K—ﬁu is uniformly bounded in W(Xy) and we just

o0

/exp 22 08)V(s)ds

t

sup <

t>x>

C(ro)z™*®Dlogz < C(Xo, W)z~ log z.

o0

/exp VAes)V(s) ds| <

t

sup

< 2041 (M)

exp Q\S\/_.’E) (exp( \/an)_l) < C(No)z i

have to apply Lemma 1.5.4 with a = 23V, If we want to optimize the power
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decay estimate on go1, we choose aw so that 1 —a = a8 — %) and hence o = ﬁ—%—
This gives the result we claimed in the statement of the lemma. O

To complete the proof of Theorem 1.5.2, we notice that we need to ensure that
our uniform in X decay estimate on go; allows us to estimate the L'-norm of R(z, A).
This is equivalent to estimating the L*-norm of go; (z, \)V (). To successfully apply
Lemma 1.5.4, we need to have 3 + —gj:—;% > 1. This leads to the inequality 5% +
g — 1 > 0, which together with G > -é— implies that we need to pick § > 1/—%—_—1.
This is exactly what we required in the statement of Theorem 1.5.2. O

Our final goal in this section is to derive a rather explicit representation for the
projection on the absolutely continuous part of the spectrum of the operator Hy .
We will prove the following
Theorem 1.5.6. Suppose that potential V(z) satisfies the decay condition |V (z)| <
C(l+ x) ¢ (where w = 3@) Let v, s be measurable bounded functions with

compact support in R*. Then we have the following formula for the absolutely

continuous part of the spectral projection P,. on the segment I = (a,b):

\/E oo [e.e]
(PulDyr,s) = = [ dk [ do [ dyplo Py @), (39)
Ja 0 0

where ( , ) denotes the usual scalar product in Ls(0,00) and (x, k?) are the “scat-
tered waves”
¢+ (0? )‘)

Y(z, ) = ¢y (z, M) — m%(%)\)-

Remarks. 1. From the general theory of the spectral representation of self-adjoint
differential operators of the second order (see, e.g., [7]), it follows almost immedi-
atiely that (38) holds with some measure m(k)dk in the place of dk. The non-trivial

part in (38) is that we are able to compute m(k) explicitly.
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2. The functions we have in the formula (38) are defined only almost every-
where. The exact meaning of (38) is that the integral is taken over (y/a,v/b) N S,
where S is a measurable set of full measure for which the functions v (x, k?) are
well-defined. For the rest of the section, we will neglect this harmless (for the abso-
lutely continuous spectrum) ambiguity and write integrals over the whole segment

I

Proof. We begin the proof of the theorem by recalling briefly the well-known
properties of the Weyl m-function and, in particular, its connection with the spec-
tral properties of Hy. Recall that we consider a Schrodinger operator Hy defined
by (9) and Dirichlet boundary condition at zero. As before, let 8(z, A), x(z, A) be
solutions of the equation (9) satisfying at zero '(0) = 1, 8(0) = 0 and x’(0) = 0,
x(0) = 1. It is a standard simple fact [6], [36] that the functions 6(z, A), x(z, A)
possess the following properties:

1) 6, x are continuous jointly in z, A.

2) 0, x are analytic in A in the whole complex plane for every fixed .

3) 0, x are real when ) is real.
The third property is an obvious consequence of the fact that V' is real-valued. The
first two properties are easy to obtain considering the integral equations which 6,
x satisfy.

The Weyl m-function, corresponding to the Dirichlet boundary condition at

zero, (see, e.g., [36], [33]) may be defined for every A € C* by the condition that
(2, X) + M8, X) = oy (, ) = £, 3) € L2(0,00). (39)

Under very general conditions on the potential (known as “limit-point case”), the

relation (39) defines m()) uniquely as an analytic function in C* function with a
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positive imaginary part. In particular, bounded potentials lead to the limit-point
case. We refer to [36], [27] for more information and further references. Since m(\)
is an analytic function in C* with a positive imaginary part, it is well-known (see,

e.g., [2]) that there exists a positive measure dp such that the integral [ A—’;%l is

finite and
(Az 4+ 1)dp(N)
2)(A2+1)

m(z) = C’z+B+/ (40)

The measure p()\), appearing here, is called the spectral measure of the correspond-
ing Schrodinger operator. The reason for this will be clear in a moment. Now we
are going to derive a formula for an action of the projection on the absolutely
continuous part of the spectrum in the usual way, integrating the resolvent over
the contour in a complex plane encompassing part of the real axis in which we are
interested. The following lemma is well-known. We provide a sketch of the proof
for completeness.

Lemma 1.5.7. Let F(z) be an entire function in C and let m(z) be given by (40).
Fiz a segment (a,b) in R and let Bs be a rectangular contour consisting of two

horizontal segments (a 16, b+ 18) and two vertical segments connecting the points

a6 and b+ 6. Then

lim [ m(2)F(z)dz = %(F(a)p(a) + F(b)p(b)) +/dp()\)F()\). (41)

6—0

Bs a
Proof.
_ dp YAz + 1)
‘151_1’)% m(z)F(z)dz = hm/sz / Y1) =
Bs Bg R

—5-)0/)\2 l/d

by the Cauchy formula and a simple calculation for the points a, b lying on the

- / FO dp(A ( (a)F(a) + p(b)F (b)),

contour. U
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Note that we actually did not assume in the proof that dp(\) was positive
(which is true in (40)).
Basically by definition, we have the following formula for the action of the

spectral projection on the interval (a,b), P((a,b)):

b
(P((a,b))r,s) = [ d(Er,s),

where F), is a spectral family of orthonormal projections corresponding to an op-
erator. Denote by R()\) the resolvent of this operator at point A. We also have

(R(:)r,s) = | i%%fz.

Lemma 1.5.7 implies that

(P((a,b))r,s) = (Isi_r}%( (R(A)r, sy d\ — A(r,s,a,b), (42)

Bs

where A(r,s,a,b) stays for the first term on the right-hand side of (41) coming
from integration along the vertical segments of Bs; which may be distinct from
zero only if the measure d(E,r, s) (and hence the spectral measure) gives non-zero
weight to the points a or b.

It is well-known (and easy to check directly) that the following expression gives

a kernel of the Green’s function G for the operator Hy:
G(LL‘]_, T2, >‘) = 9($<7 )\)f($>7 /\)

(here z. is the smallest and z- is the largest of x;, 2. Consider a segment I =
(a,b) C R* and a corresponding family of contours Bs. Let (), s(x) be bounded
functions of compact support in R™. By R(\) we now mean the resolvent of the

operator Hy at the point A. We have

I
%%%!(R(z)r, s)ydz =
&
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= —hm dz /dazr ( )7f(y,z)§(y) dy-}-f(x,z)/me(y,z)E(y) dy) .

Using the fact that f(x,2) = x(z,2) +m(z)8(z, ), analyticity in z of the functions
X, 6 and properties of r, s we obtain

I 1
%%1_{% (R(z)r,s)dz-rm%% dzm(z /da:@a:z /0 Y, 2
Bs
The summand which does not contain the function m(z) drops out after integration

because of its analyticity. Similarly, the function F'(z) defined by

= [ dsb(w, 2)r() [ 6y, 2)5(v) dy

is analytic by Lemma 1.4.3. Hence, by Lemma 1.5.7 and the representation (40),
we get

—Llim (R(A)r, s)dA = /dp /Qx)\ /Qy, y) dydx + A(r, s, a,b),

271 6—0
where A(a, b,r,s) is the term which comes from integration over the vertical seg-
ments of the contours, which is non-zero only if measure p gives positive weight to

at least one of the points a, b. Comparing with (42), we get

(P((a,0))ry5) = [ dp(N) [ 6@ Nr(z) [ (s, N5() dyda.

By the well-known properties of the Borel transforms, we have that dpac(\) =
Im(X\ + 10) d); see, for example, [33]. Hence, for the action of the absolutely

continuous part of the spectral projection we have
(Poc((a,b))r, s) /Jm (A +40) d)\/ z, A)r /9 y, A)3(y) dydz. (43)

Now we express all functions in the formula (43) in terms of the generalized

Jost functions for the real parameter, ¢, (x, ). We claim that a.e. A,

0.0) = 5 (BN 6@ ) - QN EN ) (40
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Indeed, the function on the right-hand side clearly solves (9), it vanishes at zero,
and its derivative is equal to 1 at zero since the Wronskian of the functions ¢, ¢
is equal to 2iv/\ by looking at the asymptotics at infinity. Also, by the discussion
in the beginning of the previous section which led to the formula (11), we have

that

¢I+(O7 >‘)

¢+(0,2)

for all A € C*. On the other hand, Theorem 1.5.6 ensures that if V satisfies the

m(\) =

power decay condition with the exponent § > w = ﬂ_%?—l, we have that ¢ (0,\) —
$+(0,X0) and ¢ (0,X) — ¢/ (0,\g) for every Ay € S,(V), as A tends to Ay in
any non-tangential direction. Hence, m(\g + 10) = —‘tm for every Mg € S, (V)
such that ¢ (0, Ao), ¢/,(0, Ao) are not simultaneously 0 or co. But these values are
finite for every Ay € S,(V) by the representation (1) (and local integrability of

potential) and they are never simultaneously zero because in this case we would

have ¢, (z, \) = 0. Therefore, for every Ao € S,(V) (and so a.e.) we have,

1 [64(0,20) #.(0, %) — ¢4(0,2) 10, 20)| _ VAo
Sle 0 =5 60,307 = B0
(45)
Let us denote by ¥(x, Ag) the “scattered wave”
_ _ 94(0,0) ——=
’l/}(x,)\) - ¢+(.’E,)\) md)-%-(x’)‘)a (46>

defined for every \g € S,,(V). Substituting (44), (45), and (46) into (43), we get

(Eaulbrs) = 2 [ 05 o e [ an O a2 a)st) =

o [k [ do [ dywiz, Ryl r@)sw),
VI
exactly as claimed in Theorem 1.5.6. We remark that the formula we derived is the

usual and most convenient representation used for P, in the scattering theory for
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one-dimensional Schrédinger equation. It is well-known for the case of V € L! and

was commonly used in problems of inverse scattering theory (see, e.g., [6], [25]).
1.6. Integrable potentials

In this section we prove
Theorem 1.6.1. Suppose that potential V satisfies |V(z)] < Ciz73~¢ and is
conditionally integrable with | [2°V (t) dt| < Cyz™? for some positive §. Then the
absolutely continuous component of the spectral measure of the operator Hy fills

the whole R™.

We continue to use the notation Sg(V'), which we introduced in the previous
section, for the set %(/\/l“L(<I>(acﬁ‘%V(as)))2 \ {0} corresponding to a potential de-
caying at the power rate z7#~,

Proof. To make the argument simpler, it is convenient to alter slightly the Z + Q
transformation we applied to the system (4):
J(z) = _2—\2/7 —V(a:.) -V(x) exp(——Zi\/_)\_x) o2,

V() exp(2iv/Az) V(x)
Now we let

y(@) = (1~ |g*) AT + Q)2(a),
where @ and ¢ = ¢q(x, A) are the same as before. As we did earlier in Section 1.1,
we will always assume that since we are interested in the asymptotics, we perform
the 7 + Q transformation “far enough” so that |gq| < 1 for the 2 we consider. A

calculation leads us to the following system for z(z):

D 0 S(Wq) + 2|q|*D 2gD — W
7 = | +(- lg|*)~1 (Wa) +2ldl z.

0 D 2¢D — W —3(Wq) + 2|q|*D
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Here, as in the first section, D denotes —ﬁV(m) and W stands for the function
—#XV(LB) exp(—2iv/Az). By Lemma 1.5.1, on the set 5z(V) of the full measure
we have the estimate |g(z, )| < C’()\)x‘% log z. Hence, for all energies \ € S_g_(V),

the function ¢2(z, \)V () is absolutely integrable and

/ ” Pa, WV (@) de < Oz log z.

The advantage of the new transformation is that the diagonal terms, which do not
belong to L', are now purely imaginary (and hence lead to bounded solutions).
We can rewrite the system in the following way:

D+ i(Wq—wg) 2gD

2 = - + R(z) | =, (47)
2¢D ~3(Wq-Wqg)

where all entries of the matrix R are from L'. The only dangerous terms are the
off-diagonal terms in the matrix. The main idea now is to iterate the 7 4+ Q
transformation, improving the rate of decay of the off-diagonal terms. To apply
this procedure, we need first of all to ensure that gD = XV (z) [;° exp(—2iv/\s) ds

is an a.e. A integrable function. For any A € Sz (V), we have:

/V 7‘/ s) exp(—2ivAs) d (/V dt) (70 V(s) exp(—2iv/\s) ds) +
+ <7V(t) dt) (701/(5) exp(—2iv/2s) ds) - / ( 71/ ds) exp(—2iv/Xt) dt

Therefore, it is easy to see that for the energies A which lie in the intersection
of Sz (V(z)) and Sz5(V(x) [V (t)dt) we have (recall that by our assumption
|2 V() dt] < Cra™)

< C(N)z"5 % log .

70\/(15) TV(S) exp(—2iv/\s) dsdt
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Applying the modified Z + Q; transformation,

z=(T+ Qq1)z with Q; = ,
g 0

where g1 = 25 [2° V(t) [° V(s) exp(2iks) dsdt, we get (after a computation similar

to the one leading from the system (4) to (18)),

2= D+3(Wa=Wg) b + Ri(z) | 1. (48)
2. D D—3(Wq-Wg)
Here R4 is a matrix with entries from L!. The off-diagonal terms in the system
(19) have a rate of decay |g1(z, M)V ()] < C(\)z"§ ¥ logz for a.e. .
To complete the proof, we need to apply the Z + Q transformation several
times. The following lemma shows that under the assumptions of the theorem, we

can do this, and it also determines the number of necessary iterations and the set

of full measure for which we can derive the asymptotics of solutions.

Lemma 1.6.2. Under the assumptions of Theorem 1.6.1, the function
Falt,\) = V(t) / V(ty) / V(ts)... / V(tng1) exp(=2iv/ M) dbnst
t1 to tn
is integrable for every A € S, = M=o Sj, where

S5 = Szyjs (V(tl) ( 7‘/(752) dt2) )

and moreover,

< Cp=e "8 log x.

/ Fults, ) dty

Proof. The proof is by induction. We have already checked that for n = 1, the
statement is true. For the sake of simplicity, we assume integrability of f,(¢,\)

and give an a priori estimate for the tail integral. Of course, one can easily prove
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integrability by essentially the same (but a longer) computation. Now, integrating

by parts, we find that

o0

/ Falts, N) dty = (?V(tl) dt1> (ffn_l(tl,)\) dtl) —

_ ffn—l(tl,)\) ( 7OV(t2)dt2) dt,.

According to the induction hypothesis and our assumption on V, the first summand
on the right-hand side is bounded by C ()\):z:‘%‘"5 log  for every A € S,_;. In the
second summand we perform integration by parts, integrating V'(t1) [2° V (t5) dto.

As a result we get

2 o

- 7 Fa1(t1, N) 701/(752) dtydt, = -—% (fV(tl) dtl) / fa—a(t1, A) dt1+

t1

[oe] oo 2
+—;- / ( / V(tg)dt2> Faalts, A) dt.

T

As before, the first term decays as Cz—5—m6 log z for every A € S,_,. We continue
to integrate by parts the second term, integrating V(t;)(/2° V (¢2)dt2)?; we again
get a sum of two terms, the first of which (off-integral) is well-behaved while the
second is again integrated by parts. We perform such a procedure n times and in

the end, summarizing the result of the whole calculation, we find that

n

0 _1)" o0 0o n
/ £t N dty = g \) + & ') / V(t) ( / V(tg)dt2> exp(2iv/ 0 ) di,
T ’ T i1
where g(z, \) satisfies the decay condition
9, V)] < C(N)a™# " logx

for any A\ € S,_;. The last term obviously satisfies the same estimate for every

A € S,. Hence, as claimed, [° f,(t,\) < C(N)z~8 ™ logz for every A € S,. O
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The proven lemma justifies the iteration of the 7 + Q transformation, since on
the n'® iteration, to obtain ¢, we need to integrate g,_;D which, up to irrelevant
energy dependent constants, is exactly f,, from the statement of the lemma. After

the n*? iteration, we arrive at a system

D+ (Wq—-Wgq 2g,D
Z = (W ) . _q_ + Rn(x) | 21,
2,D D - 3(Wq—W79)

~

where the matrix R,, has absolutely integrable entries. Also by the second state-
ment of the lemma, |g,(z, \)V(z)| < C’()\)x"%_”‘s logz for every A € S, and is
therefore absolutely integrable as soon as n > gz. Therefore, for the energies from
the set Sy, of full measure, m = [51-5-} + 1 iterations are enough to bring the sys-
tem to the form where we can apply Levinson’s theorem (or, as was noticed in
Section 1.1, just use more straightforward integral equation techniques, bearing in
mind that our unperturbed eigenfunctions are bounded). We also note that for
every A € Sp,, transforming back, we get the solutions ¢, (x) and m with the
asymptotics

oa(z) =

:(exp(i\/X:L‘— . 7 dt+—/V 731n2\/~t—5)) ()dsdt))x

t

X (1 + O(z*log m)) )

where p = min(e, m§ — ¢). The solutions ¢»(z) and ¢»(z) are bounded and clearly

linearly independent. This completes the proof of the theorem. O
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2. Jacobi matrices
2.1. Main result for power decaying potentials

Now we prove the analogs of the results of Sections 1.1, 1.2, and 1.3 for Jacobi
matrices. We consider the self-adjoint operator h, on I*(Z,) (with Z, = {1,2,...})

given by
hyu(n) =u(n+1)+u(n — 1) + v(n)u(n),
(49)
u(0) =0,

where v(n) is a real-valued, tending to zero at infinity sequence. All the theorems
we have proven for Schrodinger operators have their analogs for Jacobi matrices.
Of course, we need to replace the positive semi-axis by the segment (—2,2), the
interior of the essential spectrum of the free discrete Schrodinger operator. Since
we consider only decaying potentials, the essential spectrum is the same for h,. The
way the argument goes in the Jacobi matrices case is very close to the continuous

analog. We will still use the notation ®(f)(k), but now for the Fourier transform

of the I?- sequence f(n):

N

S(f)(k) =1 — lim > exp(ikl)f(l).

N—>oo —
All other notations introduced in the preceding sections of the paper also remain

valid. Let us begin by stating our main theorem for Jacobi matrices:

Theorem 2.1.1. Suppose that v(n) satisfies [v(n)] < Cn=1=¢ for some positive
constants C,e. Then the absolutely continuous component p,. of the spectral mea-
sure p of the operator h, fills the whole segment (—2,2) in the sense that pa.(T) > 0
for any measurable set T C (—2,2) with positive Lebesque measure. The singular

component of the spectral measure may be supported only on the complement of the
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set S = ZCOS(%M“L(@(n%v(n))) N (—=2,2) (values of energy such that 2arccos of
half their value belongs to the set MT(®(n1V (n)); we fiz the range of the arccos to
be [0, 7). Moreover, for every A\ € S there exist two linearly independent solutions
Yn(n), ¥ (n) with the following asymptotics as n — oco:

n

: 1 _1
Pa(n) = exp <zkn +tyar ;W) (1+0O(n"1logn)),

where k = arccos 1.

The strategy of the proof is the same as in the Schrodinger operator case. The
analogs of the three lemmas we used heavily are as follows:
Lemma 2.1.2. Assume that for every \ from the set B, all solutions of the
equation hy,¢ — A¢ are bounded. Then on the set B, the spectral measure p of the
operator h, is purely absolutely continuous in the following sense:

(i) pac(A) > 0 for any A C B with |A]| > 0,

(ll)psmg(B) = 0

Proof. This lemma follows from the subordinacy theory for infinite matrices de-
veloped by Khan and Pearson [19]. Recently, Jitomirskaya and Last proved more
general results for Jacobi matrices [17]. The reference for a simple direct proof of

the lemma is the paper of Simon [32]. O

Lemma 2.1.3. Consider the function f(n) € I2(Z). Then for every value ko which

belongs to the set MT(®(f)), we have

>~ f(z)exp(ikol) = O(log N).

l=—N
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Proof. The Parseval equality in this case yields

N _ i/ﬂsin(N-I-l/Z)(kO—k) B(0) (k) dk

> f() exp(ikol) = sin £(ko — k)

l=—N —

1 sin(N +1/2)(k
_ __/Sm( = L2 () (ko + k) + B(v) (ko — K)) dk.
0
The final expression may be estimated exactly as in the proof of Lemma 1.1.3. O
Lemma 2.1.4. Suppose that the sequence v(n) satisfies |v(n)| < Cn=17¢ with

some positive constants C,e. Then for every value of k from the set M*(v(n)n3),

the series Y.i2, exp(—ikl)v(l) converges and, moreover,
Zexp —ikl)v(l) = O(n"% logn)

as n — oQ.

Proof. Summation by parts gives

Zexp —ikl)v =t (—ikl)(v(l)l%f)—l—

-
[©]
ba
T

n-1

+> (1" i l+1‘i Zexp —ikj)v(5)j %)

I=1

and applying Lemma 2.1.3, we obtain that for the values of k € M*(v(n)ni), the

sum converges as n — 0o. For the speed of convergence we have an estimate:

<|n 4Zexp —ikl)(v(1)I%)

=1

Z exp(—ikl) f +

n—1

e

M»-.

!
l—l—l_% Zexp —ikj)u(4)j%)

<
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<C <n_% logn + Zl_% log l) = O(n"% logn). O

l=n

In the discrete case, the solution 1 of the formal equation h,y = Ay satisfies

the recursion relation

P(n+1) _ A=v(n) -1 P(n) | (50)

b(n) 1 0 b(n—1)
Let k = arccos 3 for A € (—2,2). Applying to the system (50) a discrete analog

of the variation of the parameters formula,

P(n+1) _ exp(ik(n +1)) exp(—ik(n+ 1)) An R
w(n) exp(ikn) exp(—ikn) B,
we get for new variables the finite difference system
Ant1 B 10 iw(n) 1 exp(—2ikn) A,
By N 01 2sink | _ exp(2ikn) -1 B,
(52)

Now we are in a position to apply the discrete analog of the Harris-Lutz tech-
nique to study the asymptotics of the solutions of the system (52). For every
A € (—2,2) such that 2k = 2arccos £\ belongs to M+ (®(niv(n))), by Lemma

2.1.4 we can define

Q(ny k) - 7;

> v(l) exp(—2ikl),

o0
2sink =

and moreover, q(n, k) behaves as O(n~1 logn) as n goes to infinity. The discrete

I + @ transformation will be

An 1 q(n, k) Ch
B, g(n, k) 1 D,
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This transformation is non-singular as far as n is large enough and so we can
reconstruct the asymptotics of our generalized eigenfunctions from the asymptotics

of the variables Cy,, Dy. Substitution of (53) into the system (52) yields

C, 1+ ——wv(n 0 C,
L + Rln ) e

D1 0 1 é-s—fn—,;v(n) D,

Direct computation shows that every element of the matrix R(n, k) is a product of
numbers, which are uniformly bounded in n for each k € %M*(@(n%v(n))), and
q(n, k)v(n) or g(n+ 1, k)v(n). Hence by Lemma 2.1.4 and our assumptions on the
potential v, we have ||R(n, k()\))|| = O(n~'"¢logn) at infinity for every X from the
set S in the statement of Theorem 2.1.1. We can further simplify (54) by applying

the transformation

Cp | exp (2smk srto(l )) 0 E, (55)
D, 0 exp( pey D U( )) F,
For E, F variables we have
En - n
T = (14 R, b)) , (56)
Fn+1 Fn

where [ is an identity matrix and R(n, k) satisfies the same norm decaying condi-
tions as R(n, k). One can also directly check by looking at the transformations we
performed with the initial system (50) that the determinant of the matrix R(n, k)
is equal to ﬁ%. A simple argument, carried out in Lemma 2.1.5 immedi-

ately below, shows that there exists a solution of (56) with the asymptotics at

infinity

=

1 1
= + O(n"1logn)
0

&
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The application of transformations (55), (53), (51) allows us to compute the asymp-

totics of the generalized eigenfunction 1, and therefore concludes the proof. O

Lemma 2.1.5. Suppose we have a recursive relation

E, - E,
T = (14 Rw)) (57)
Fn+1 Fn

and the matriz R(n) satisfies {||R(n)||}2>, € IY(Z,). Moreover, suppose that de-
terminants of the matrices T17, (I + R(l)) are bounded away from zero. Then there

exists a solution H, of (56) such that

ZHR )

as n — oQ.

Proof. A standard argument shows that the product [T}, (I + R(l)) converges as
n goes to infinity under the conditions of the lemma to a matrix we will denote

Roo =152, (I+ R(l)). The condition on the determinants of finite products ensures
1

that R is invertible. Pick the vector H; = R} (
0

) . Then for n large enough

so that 352, [|R(1)]] < 1, we have

1
H, —

<I—ﬁ(I+R )(lzﬁlIJrR >

l=n

} <

S RO N
< TEE e ROl = O 1RO ©

Let us specifically stress one consequence of the calculations we performed and

formulate
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Proposition 2.1.6. For discrete Schrodinger operators similar to the continu-
ous ones, in order to prove that for a certain energy A € (—2,2), all solutions of
the equation hyy — A\ = 0 are bounded, it is enough to show that the sequences
q(n, k)v(n) and q(n + 1,k)v(n) (where k = arccos 3) belong to I*(Z,.).

2.2. Other applications

Similarly to the Schrodinger operators case, Proposition 2.1.6 leads to the fol-
lowing theorem, which provides conditions under which the singular component
of the spectral measure of the operator h, on (—2,2) is void. It is an analog of
Theorem 1.1.6:

Theorem 2.1.7.  Suppose that |v(n)| < Cn~1 and the Fourier transform
®(niv(n))(k) belongs to LP(0,2x) with p > L. Then the spectrum of the operator h,,
on the segment (—2,2) is purely absolutely continuous. Moreover, for every value
of X € (—=2,2) there exist two solutions 1 and ¥, of the equation hyp — M\ = 0
with the following asymptotics as n — oo:

Py = exp (zlm+ . klin;v ) (1+0( _E+%)),

where k = arccos %)\.
Proof. The proof is completely analogous to the proof of Theorem 1.1.5. One
only needs to replace integration by parts with Abel’s transformation (summation

by parts). O

Finally, we discuss Jacobi matrices with non-power decaying potentials. The
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class of potentials we treat is again potentials which are “mostly” zero and become
power decaying after “compression.”
Namely, we say that a potential 9(n) belongs to the class D, if there exists

—Q

a potential v(n), verifying v(n) < Cn~%, and two sequences of positive integers

{a;}32, and {b;}2, satisfying b;_1 < a; < b; for all 4, such that

0, a < n<b
o(n) = !
v(n — Zl(bj —aj), h<n<a
j=

We have the following theorem:
Theorem 2.1.8. Let potential v(n) belong to D_s_,. Then the absolutely con-
tinuous spectrum of the operator h, fills the whole segment [—2,2] in the sense
that for any measurable set T C [—2,2] with positive Lebesque measure, we have
pac(T) > 0. Moreover, for a.e. A € (—=2,2) there exist two linearly independent
solutions ¥y, ¥y with the following asymptotics as n — o0o:

)(1+O (n™*%)),

n

-

1=1
where k = arccos %)\.

For the proof of this theorem we need an analog of Zygmund’s result for the
case of the Fourier series instead of the Fourier integral. We refer to the work of

Menchoff [22] for the following result:

Theorem (Menchoff). Suppose {¢n(x)}52, is an orthonormal system of func-

tions on the interval (a,b) and the sequence {c,}52, belongs to IP(Z) 0 < p < 2.
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Then the series

IZ: Cn(bn(z)

converges, in the ordinary sense, for almost every x € (a,b).

In particular, taking ¢, (z) = exp(inz) and (a,b) = (0, 27), we obtain an analog

of Zygmund’s theorem.

Proof of Theorem 2.1.8. Given Menchoff’s theorem, the proof essentially re-

peats the argument we gave to prove Theorem 1.3.1 in Section 1.3. O
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