ELEMENT-BY-ELEMENT SOLUTION PROCEDURES FOR
NONLINEAR TRANSIENT HEAT CONDUCTION ANALYSIS

Thesis by
James Michael Winget

In Partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy

California Institute of Technology

Pasadena, California

1984
(Submitted August 22, 1983)



#

© 1883
by
James Michael Winget
All Rights Reserved



i

Acknowledgements

I wish to thank my advisor, Professor Thomas J. R. Hughes, for his guidance,

assistance, and encouragement throughout this work.

Two others who also deserve mention are my colleague Itzhak Levit for his active
participation in the early stages of this research and K. C. Park for his many helpful
suggestions during my time at Lockheed.

This research was made possible by financial support from the International Business
Machines Corporation, NASA Langley Research Center (Grant No. NAG-1-259), and
the California Institute of Technology. Computing resources for early software develop-
ment were donated by the Lockheed Corporation. Most important however, was the
strong support, financial and otherwise, of the Sutherlands and the Sproulls, without

which this work might not have been completed.

Special thanks go to my colleague Christine Miller for proofreading the manuscript

and urging me on to the light at the end of the tunnel.

Finally, I wish to express my deepest gratitude to my family, who provided wholehearted

encouragement and support every step of the way.



w

Abstract

Despite continuing advancements in computer technology, there are many problems
of engineering interest that exceed the combined capabilities of today’s numerical al-
gorithms and computational hardware. The resources required by traditional finite ele-
ment algorithms tend to grow geometrically as the “problem size” is increased. Thus,
for the forseeable future, there will be problems of interest which cannot be adequately
modeled using currently available algorithms. For this reason, we have undertaken the
development of algorithms whose resource needs grow only linearly with problem size.
In addition, these new algorithms will fully exploit the “parallel-processing” capability

available in the new generation of multi-processor computers.

The approach taken in the element-by-element solution procedures is to approximate
the global implicit operator by a product of lower order operators. This type of “product”
approximation originated with ADI techniques and was further refined into the “method
of fractional steps.” The current effort involves the use of a more natural operator
split for finite element analysis based on “element operators.” This choice of operator
splitting based on element operators has several advantages. First, it fits easily within
the architecture of current FE programs. Second, it allows the development of “parallel”
algorithms. Finally, the computational expense varies only linearly with the number

of elements.

The particular problems considered arise from nonlinear transient heat conduction.
The nonlinearity enters through both material temperature dependence and radiation

boundary conditions. The latter condition typically introduces a “stiff” component in the



v

resultant matrix ODE’s which precludes the use of explicit solution techniques. Implicit
solution techniques can be prohibitively expensive. Instead, the matrix equations are
solved by combining a modified Newton-Raphson iteration scheme with an element-
by-element preconditioned conjugate gradient subiteration procedure. The resultant

procedure has proven to be both accurate and reliable in the solution of medium-size

problems in this class.



Contents

Page

Chapter 1. Introduction. . . ... .... ... .. ... ... .. ... .. ..., 1
Chapter 2. Derivation of Finite Element Equations for Nonlinear

Transient Heat Conduction. . . . . ... ... ... ................... 5

2.1 Strong Form of the Initial Boundary-Value Problem . . . . .. .......... 5

2.1.1 ProblemDomain . . . . . . . .. . i e e e e e e e e e 5

2.1.2 Material Properties. . . . . . . . .. . . i e e e e e 6

2.1.3 Boundary and Initial Values . . . . . . . . .. .. ... ... . . ... 7

214 The Strong Form . . . . . . . . . i i i i i i it i ettt et et i 8

2.2 Weighted Residual Form of the Initial Boundary-Value Problem . . . . .. ... 9

2.2.1 Solution and Variational Spaces . . . . . . . ... .. ... ... 0 ... 9

222 The Weak Form . . . . . . . . . 0 i it it et e e e e e e e e e e e e 10

2.3 Galerkin Approximation of the Initial Boundary-Value Problem . . . . .. ... 11

2.3.1 Galerkin Spaces of Approximation. . . . . . . .. .. ..ttt 11

232 The Galerkin Form. . . . . . . . . . 0. i i i it i it i et et ea e 11

2.4 Finite Element Matrix Approximation of the Initial Boundary-Value Problem. . 12

2.4.1 Spatial Discretization. . . . . . . . . . . . ... ... e e 12

2.4.2 Approximation SPaces . . . . . . v . et vt e e e e e e e e e 13

2.4.3 The Finite Element Matrix Form . . ... ... ... ... .. .......... 14

2.5 Temporal Algorithm . . . . .. ... ... ... . . i 16

2.5.1 Temporal Discretization . . . .. .. ... ... i i i 16

2.5.2 Generalized Trapezoidal Rule . . . . ... ... ... ... ... ....... 17

2.6 Nonlinear Iterative Algorithms . . . . . .. ... .. .. ... ... ......... 18

26.1 Preliminaries . . . . . . . . . .. i e e e e e e e e e 18

2.6.2 Newton-Raphson Iteration . . . . . . .. ... .. ... .. ..., 19

2.6.3 Symmetric Linearization . . . . . . . . . . . . .. e e e e e 22

2.6.4 Predictor-Corrector Algorithm. . . . . . ... .. .. ... ............ 24



Contents . Contents

w
2.7 Result : The Linear Problem (Ax=Db). . ... .. ... ... ... ... .... 25
Chapter 3. Algorithms for Solving the Linear Problem. .. .. ... ... 27
3.1 Direct Techniques. . . . . .« o ot v i ittt e e e 27
3.1.1 Form of the Matrix Equations . . . . .. ... ... ... ... ... 28
3.1.2 Gaussian Elimination. . . . . . . . . . . . .. Lo 29
38 T S - 2 31
3.2 Iterative Techmiques . . . . . . . .. .. i it ittt i e e 33
321 BasicDefinitions . . . . . . o . 0 e it e e e e e e e e e e e e e 34
3.2.2 Standard Iterative Techniques . . . . . . . . . . . . i i v it ittt vt 35
3.2.2.1 Richardson’s Method. . . . . . .. . . ... .. o 37
3.2.2.2 Jacobi Iteration . . . . . . . . . . i e e e e e e 38
3.2.2.3 Gauss-Seidel Iteration . . . . . .. ... ... .. L L 38
3.2.2.4 Successive Overrelaxation . . . . . . . . .. ... i it 38
3.2.2.5 Symmetric Successive Overrelaxation. . . . .. .. .. ... ... .. ... 39
3.2.2.6 Approximate Factorization . ... ... .. ... .. ... ........ 39
3.2.3 Parabolic Regularization . . . . . .. . .. .. .ot 40
3.2.4 Variational Techniques . . . . . . . . . .. .0 i i i 41
3.2.4.1 Steepest Descent Technique . . . . . . . .. .. ... .. L0 o 41
3.2.4.2 Preconditioned Steepest Descent Technique . . .. ... .......... 42
3.2.4.3 Conjugate Gradient Technique . . ... ... ... ............. 44
3.2.4.4 Preconditioned Conjugate Gradient Technique. . . . . . .. .. ... ... 45
B2 C0Bt . v v vt e e e e e e e e et e e e e e e e e e e e e e e e e 46
Chapter 4. Approximate Factorizations . .. ................... 51
4.1 Form of the Approximate Factors . . . .. ... ........ ... ........ 51
4.2 Two-Component Splitting. . . . .. .. ... ... ... ... ... 53
4.3 Multi-Component Splitting . . . . . .. .. ... .. ... . 54
4.3.1 One-Pass Multi-Component Splitting . . . . . ... ... ... .......... 54
4.3.2 Two-Pass Multi-Component Splitting . . . . . .. .. ... ............ 55
4.3.3 Multi-Pass Multi-Component Splitting . . . . . .. ... ... .......... 56
4.4 Element-by-Element Splits . . . .. .. ..... ... ... ... ... .. .... 57
441 OnePass ELXEL Splitting . . . . . ... .. .. . ... 58
442 Two-Pass ELXEL Splits . . . .. . . .. .. i .. 59
443 Reordered ELXEL Splits . . . . .. .. ... .. i, 60
I 3 SO -3 72 61

440 RemMarKks. . .« v v i v e et et e e e e e e e e e e e e e e e e e e e e 63



Contents - Contents

uiny
4.5 Choice of Parameters. . . . . . . .. .. .. . .. ittt i, 64
4.5.1 Parabolic Regularization Parameters . . . .. ... ... ... .......... 64
4.5.2 Optimum Parameters. . . . . . . .. .. . .. .t 65
453 Sizeof €. . . . i i e e e e e e e e e e e e e e e 65
Chapter 5. Implementational Aspects. . . .. ................... 73
5.1 Subiteration Algorithms. . . . . ... ... ... ... .. ... ... 73
5.1.1 Definitions . . . . v v v i i i et e e et e e e e e e e e e e e e 74
5.1.2 CoBt . & . v i e e e e e e e e e e e e e e e e e e e e e e e e e e e e e 75
52 Convergence Measures . . . . . . ... ...ttt ii ittt ne 83
5.3 Optimal Subiteration Accuracy . . .. ... ...t v vt in ... 87
5.4 Control of Time StepErrors . . . . .. ... ... ... ... .. ... .. ..... 93
54.1 Time Step Error Measure . . . . . . . . . . . . . i i i i ittt ee . 94
5.4.2 Time Step Selection Strategy . . . . .. . .. .. .. ... ... ... ..... 96
5.4.3 Effect of Temporal Discontinuities. . . . . . . . ... ... .. ... ...... 08
5.5 Minimal-Cost Substructuring. . . . . ... ... .... ... ... .. ....... 100
5.5.1 Defimitions . . . . . . . . . i e e e e e e e e e 100
B.5.2 CoBt . o v v vt et e e e e e e e e e e e e e e e e e e e e e e e e e e e 101
5.53 Model Problem . . . . . . . . . . . . e e 103
5.5.4 General Topologies . . . . . . . . . i i i it i i i ettt e e e e 109
5.5.5 Approximate Factorizations . . . . . .. .. ... ... ... ... ... ..., 110
5.6 Effect of ELXEL Algorithms on Choiceof A . . . .. ... ............ 112
5.6.1 Selective Formation-Factorization . . . . . .. .. .. ... ............ 112
5.6.2 Implicit-Explicit Partitioning. . . . . . . . .. .. ... . ... ... .. ..... 113
5.6.3 Adaptive Mesh Refinement. . . . . . .. ... ... ... ... ... ..... 114
5.7 Algorithms for Parallel Computation . . . ... ................... 114
5.7.1 Machine Architecture . . . . . . . . ... .. e 115
5.7.2 Implementation of ELXEL Algorithms . . . . ... ... ... .......... 117
5721 Element Groups . . . . . . . . . . i i e e e e e e e e 117
5.7.2.2 Computational Considerations . . . ... ... ... ............ 119
5.7.2.3 Communication Considerations . . . . .. ... ... ............ 123
5.7.2.4 Effect of Parallel Orderings on ELXEL Errors. . . . . ... ........ 124
Chapter 6. Numerical Results . . ... ........................ 127
6.1 NASA Insulated Structure Test Problem . . . . .. .. ... ............ 127
6.2 Parallel/Sequential Test Problem . .. ........................ 130
63 ArchProblem . . . . .. .. .. ... e 131



Contents . Contents

Chapter 7. Conclusions . . . .. ....... ... ... ... ... ... ... ... 158

References . . . . .. . . i i i e e e e e 161



Plates

Page
Figure 3.1.1. Example of skyline storage fora 9 X 9 matrix.. . . . .. .......... 28
Figure 3.1.2. Three-dimensional model problem with p X ¢ X r regular mesh. . . . . . 33
Table 5.1.1. Storage costs for iterative algorithms.. . . .. .. .. ... .......... 76
Table 5.1.2. Total storage costs for subiteration algorithms. . . . . .. .. .. ... ... 76
Table 5.1.3. CPU costs for iterative algorithms. . . . . ... ... ............. 77
Table 5.1.4. CPU costs for ELXEL algorithms. . . .. ................... 77
Table 5.1.5. Total CPU costs for subiteration algorithms. . ... ... .......... 77

Table 5.1.6. Total storage costs for subiteration algorithms applied to the three-
dimensional p X p X pmodel problem. ... ..................... 78

Table 5.1.7. Total CPU costs for subiteration algorithms applied to the three-dimen-
sional p X p Xpmodel problem. . . .. ........................ 79

Table 5.1.8. Break-even points for the (PCG,;\OPT, (1, R, x)) subiteration algorithm
applied to the three-dimensional p X p X p model problem. . . . ... ... ... 80

Table 5.1.9. Example of storage cost ratio for the (PCG, Aopr, (1, R, m)) subiteration
algorithm applied to the three-dimensional p X p X p model problem.. . . . . . 81

Table 5.1.10. CPU cost ratio for the (PCG, Aopr,(l, R, m)) subiteration algorithm
applied to the three-dimensional p X p X p model problem. . . .. ... ... .. 82

Table 5.1.11. Example of CPU cost ratio for (PCG,AOPT,(I,R,fr)) subiteration
algorithm applied to three-dimensional p X p X p model problem. . . . ... .. 82

T



Plates . Plates
n

Table 5.5.1. Average storage cost per element, S,, forana X 8 X ymesh. . . . . . .. 107

Table 5.5.2. Average product-factor cost per element, Cyy_., for an a X # X Yy mesh. . 109

Figure 5.7.1. Example of typical processor (PR).. . . . .. ................. 116
Figure 5.7.2. Example of zero-dimensional communication topology. . . . .. ... ... 117

Figure 5.7.3. Example of two-dimensional array communication topology with toroidal
closure. . .. ... e e e e e e e e 118

Table 5.7.1. Equivalent element level calculations. . . . .. .. ... ............ 119

Figure 5.7.4. Decomposition of three-dimensional domain into eight groups of brick

elements for parallel processing.. . . . ... ... ... ... ... .. . .. ... .. 122
Table 5.7.2. Communication costs associated with element level calculation. . . . . . . 123
Figure 6.1.1. NASA insulated test problem description.. . . . ... ............ 128

Table 6.1.1. Comparison of APR and ;\opT using (PSD,*,(2, N, n)) subiteration
algorithm . . . . . . . .. e e e e 129

Table 6.1.2. Comparison of PSD and PCG iterative algorithms using Aopr com-

bined with various EL XEL approximate factorizations.. . . .. .......... 129
Figure 6.2.1. Problem description for parallel/sequential test problem.. . . . . .. ... 131
Figure 6.3.1. Arch Problem: Finite element mesh {element numbers). .. ... .. ... 133
Figure 6.3.2. Arch Problem: Finite element mesh (node numbers). . . .. ... ..... 133
Table 6.3.1. Step sizes used in the solution of the Arch problem. . . . .. ... .. ... 135
Table 6.3.2. Summary of costs for solution of the Arch problem. . . .. ... ... ... 135
Figure 6.3.3. Arch Problem Run E: Disjoint element groups.. . . . . ... ........ 137
Figure 6.3.4. Arch Problem Run E: Element order corresponding to disjoint element

group numbers.. . . . .. .. e e e e e e e 137
Figure 6.3.5. Arch Problem Run E: Temperature profiles for selected nodes as a

functionof time.. . . . . . . . . . . i e e e e e 139
Figure 6.3.6. Arch Problem Run E: Temperature contours at ¢ =0.1s. . ... ... .. 139

Figure 6.3.7. Arch Problem Run E: Velocity contoursat t =0.1s. . . .. ... ... .. 140



Plates . Plates
n

Figure 6.3.8. Arch Problem Run E: Unnormalized step errors based on }-step residual. . 140

Figure 6.4.1. Radiation Problem: Finite element mesh (element numbers).. . . . . . .. 143
Figure 6.4.2. Radiation Problem: Finite element mesh (node numbers). . ... .. ... 143
Table 6.4.1. Radiation Problem: Summary of solution costs for runs A-E.. . . .. ... 145

Figure 6.4.3. Radiation Problem Run A: Time-step size as a function of step number. . 146

Figure 6.4.4. Radiation Problem Run A: Normalized step errors as a function of step

number. . . . L e e e e e e e 146
Figure 6.4.5. Radiation Problem Run A: Temperature as a function of time for

selectedmodes. . . . . ... ... e e 147
Figure 6.4.6. Radiation Problem Run A: Velocity as a function of time for selected

DOAES. . . . o e e e e e e e e e e e 147
Figure 6.4.7. Radiation Problem Run B: Temperature contoursat t =1s. . ... ... 149
Figure 6.4.8. Radiation Problem Run B: Velocity contours at t =1s. . ... ... ... 149
Figure 6.4.9. Radiation Problem Run B: Temperature contours at t =2s. . ... ... 150
Figure 6.4.10. Radiation Problem Run B: Velocity contoursat t =2s.. . .. ... ... 150

Figure 6.4.11. Radiation Problem Run D: Time-step size as a function of step number. . 152

Figure 6.4.12. Radiation Problem Run D: Normalized step errors as a function of
stepoumber. . . . . ... e e e e e e e e 152

Figure 6.4.13. Radiation Problem Run D: Temperature as a function of time for
selectedmodes. . . . . ... ... e e 153

Figure 6.4.14. Radiation Problem Run D: Velocity as a function of time for selected

Figure 6.4.15. Radiation Problem Run E: Time-step size as a function of step number. . 155

Figure 6.4.16. Radiation Problem Run E: Normalized step errors as a function of
stepoumber. . . . .. ... e e e e e e e 155

Figure 6.4.17. Radiation Problem Run E: Temperature as a function of time for
selected modes. . . . . . ... ... e e e e e e e 156

Figure 6.4.18. Radiation Problem Run E: Velocity as a function of time for selected



Plates ‘e Plates
nwu

Figure 6.4.19. Radiation Problem Run E: Temperature as a function of step number
forselectedmodes. . . .. .. .. ... .. .. 157

Figure 6.4.20. Radiation Problem Run E: Velocity as a function of step number for
selectednodes. . . . . .. .. ... e 157



Chapter 1

Introduction

The finite element method is a useful technique for obtaining approximate solutions
to many problems of engineering interest. This is accomplished through a multi-level
procedure that combines spatial discretization with an appropriate weighted residual
formulation to yield a set of nonlinear ordinary differential equations. These equations
are then solved using a combination of transient and nonlinear equation solution al-

gorithms, resulting in a linear system of equations that must be solved at each iteration

of every time step.

The particular problems considered arise from nonlinear transient heat conduction.
Two types of nonlinearities are considered. The first is a material temperature depen-
dence which is frequently needed to accurately model problem behavior over the range of
temperatures of engineering interest. The second nonlinearity is introduced by radiation
boundary conditions. The resultant matrix ordinary differential equations are typically
“stiff.” This “stiffiness” precludes the use of “explicit” solution techniques due to severe
restrictions on time step size. Thus, “implicit” methods which entail the storage and

solution of sparse global matrix equations are generally called for.

The size of the resulting matrix equations is governed by the degree of “spatial
complexity” one wishes to resolve. In general, accurately obtaining the “fine-scale”

solution to a “large” problem results in a large equation system. The accurate solution



1. Introduction 9

of many problems of current interest result in systems with more than a quarter of a
million equations. The primary costs associated with the solution of these large problems
lie in the storage and solution of the global matrix equations. As an example, the cost
incurred in the solution of a three-dimensional, nonlinear, transient heat conduction
problem using a regular 63 X 63 X 63 mesh (250,047 equations) is 1 X 10° words of
storage and 2 X 10!2 operations per iteration per step. Translating these costs into more
easily visualized terms, it would require approximately 154 large disk drives to hold
the matrix and an estimated 54 hours of CPU time on a Cray-1 to factor the matrix
and obtain the solution for one iteration (this ignores an estimated 21 days of IO time
needed to read and write the matrix from disk). Clearly, traditional solution techniques
do not offer the performance needed for solving large problems, even when implemented

on today’s “super computers” [Juba 82|, [Noor 82], [Robinson 82].

In an effort to reduce the costs associated with the solution of large transient
heat conduction problems, an element-by-element (EL X EL) algorithm was presented by
Hughes, Levit, and Winget in [Hughes 83a]. In that work, the EL X EL concept was used
to develop a non-iterative, second-order time-accurate, unconditionally stable, transient
algorithm for both linear and nonlinear problems. In the EL XEL method, the global
matrix is never formed but, instead, approximated by a product of element operators,
each of which is processed individually. An important result is that the storage and
solution costs tend to grow only linearly with problem size as compared to the geometric

growth of a globally implicit method.

This work resulted from a synthesis of the finite element method with the ap-
proximate factorization techniques developed for the solution of finite difference equa-
tions. These approximate factorization techniques developed from the spatial-operator
splitting ADI technique presented by Douglas and Rachford in [Douglas 56,62] and the

more general “fractional step” approach taken by Marchuk and Yanenko in [Marchuk

74,75] and [Yanenko 71].

Unlike the aforementioned finite difference techniques, the EL X EL method retains



1. Introducti
ntroduction 3

the generality of the finite element method and, as such, imposes no geometric or
topological restrictions on the problem domain or its spatial discretization. In addition,
the ELXEL method fits naturally within the architecture of current finite element
programs. Perhaps the single most significant feature of the EL X EL method is the ease
with which it may be efficiently implemented on a multi-processor computer. This last
feature can not be over emphasized, since it is clear that the trend in “super computers”

is towards parallel-processing machines.!

Although our initial numerical testing of the ELXEL time integration algorithm
showed promise, later analysis indicated that, under certain circumstances, the accuracy
of the governing implicit method was not attained. Loss of accuracy was traced to spatial
truncation error terms similar to those encountered in some of the classical split-operator

finite difference methods such as the DuFort-Frankel method [Ames 77].

To overcome these accuracy deficiencies, we were led to reformulate the EL XEL
procedure as an iterative linear equation solution procedure [Hughes 83c]. This allowed
the use of standard time-discretization and solution techniques. Thus, the issues of

accuracy and stability are resolved by the choice of time-integration technique.

There are three main ingredients in an EL XEL iterative linear equation solution
algorithm. These are: an iterative driver algorithm, a matrix which approximates the
global implicit matrix and is amenable to EL XEL approximate factorization, and, of
course, the EL X EL approximate factorization scheme itself. Note that the architectural
simplicity and cost reduction of the original EL XEL algorithm are retained in the

iterative solution algorithm.
An outline of the remainder of the thesis follows :

Chapter 2 formulates the finite element equations arising from the solution of

nonlinear transient heat conduction problems. The finite element matrix equations

15 good discussion of the need for parallelism in hardware and software for the solution of large problems
is given in a recent CAL TECH research proposal by Fox and Seitz [Fox 83].



1. Introduction 4

are then temporally discretized and a nonlinear iterative solution algorithm proposed.

Finally, the resultant linear equation system is discussed.

In Chapter 3, we explore the techniques available for solving linear equation sys-
tems. We consider both direct and iterative techniques for solving the linear system. We

also discuss the costs incurred by both of the aforementioned techniques.

Chapter 4 introduces the concept of approximate factorizations. F irst, the simplest
approximate factorization, based on two-component splitting, is defined. Generalization
of this leads to the definition of multi-component splittings. These, in turn, are used to
define a variety of element-by-element approximate factorizations based on both “sum”
and “product” element-level factorizations. Finally, we consider the optimal choice of

the matrix to be approximated and the size of the error in the approximation.

In Chapter 5, we discuss a variety of implementational aspects. We first describe
subiteration algorithms; these are combinations of EL X EL approximate factorizations
and iterative algorithms that we have found successful in the solution of the linear
equation system. Next, the convergence measures used to terminate an iterative scheme
are considered. Based on an analysis of the effect of error in the subiteration loop on the
convergence of the iteration loop, optimal convergence criteria for the subiteration loop
are developed. Next, we consider the use of step-size selection strategies to control the
error in the transient solution. The use of substructuring to reduce computational costs
is considered. Some of the additional benefits of the EL X EL solution algorithms are then
briefly outlined. Finally, the modifications required to implement EL XEL algorithms

on parallel-processor machines are considered.

Chapter 6 contains a discussion of numerical results obtained using EL X EL solution
algorithms. A variety of both linear and nonlinear problems are solved and the EL X EL

algorithms are shown to be especially well suited for solving nonlinear problems.

Finally, in Chapter 7, we present conclusions.



Chapter 2

Derivation of Finite Element Equations for
Nonlinear Transient Heat Conduction

This chapter formulates in detail the finite element equations arising from the
solution of problems in nonlinear transient heat conduction. First, the strong form of the
initial boundary-value problem is defined. This leads to the weighted residual or weak
form of the problem. Next, the Galerkin approximation is introduced which, along with
an assumed spatial discretization, leads to the finite element matrix form of the problem.
The finite element matrix equations are then temporally discretized. The solution of the
resulting nonlinear matrix equations motivates the development of iterative algorithms.

Finally, the linear problem generated by the iterative algorithms is discussed.

§2.1 Strong Form of the Initial Boundary-Value Problem

To define the strong form, we must first define the problem domain, material

properties, and boundary and initial conditions.

2.1.1 Problem Domain

The problem is posed for a body occupying a spatial domain 2, a finite region of

RNVsp | where R is the set of real numbers and Ngp is the number of space dimensions.



2. Derivation of Finite Element Equations 6 2.1. Strong Form of the IB.V.P.

A general point in 2 will be denoted as x = {z;}, { = 1,2,...,Ngp. The boundary

of (1, denoted T', is assumed to be piecewise smooth. At every point on I' there is
a unique outward normal unit vector n = {n;}, ¢ = 1,2,..., Ngp. In addition, T’

can be subdivided into two disjoint subsets, I'y and T'y,. Thus T' admits the following

decomposition :
F=Fg| T}, (2.1.1)

and
O=T,NTs. (2.1.2)

In (2.1.1), the superposed bar represents set closure and in (2.1.2) , @ denotes the empty

set. The time interval under consideration is 0 to T, where T is a given real positive

number.

2.1.2 Material Properties

In order to model a wide variety of nonlinear heat conduction problems, very
few restrictions will be placed on the material composing the body. The material is
inhomogeneous. Therefore the mass density p, specific heat Cy, conductivity K, and
internal heat generation @ may vary throughout the body. Nonlinear temperature
dependence as well as time dependence is allowed in Cy, K, and Q. Finally, K is allowed
to be anisotropic although symmetry is assumed [Carslaw 59]. Thus, the domains and

ranges of the functions defining the material properties are given as follows :

p: Rt ( mass density ), (2.1.3)
Cp:RY X QX ]0,T[—R* (specific heat ), (2.1.4)
K: Rt X 20X ]0,T[+ Sym ( thermal conductivity ), (2.1.5)
Q: Rt X OX10,T[—R (internal heat generation ). (2.1.6)



2. Derivation of Finite Element Equations " 2.1. Strong Form of the LB.V.P.

In the preceding relations, ®* denotes positive real numbers and S'y!'m is the set of all

symmetric positive-definite two-tensors.

2.1.3 Boundary and Initial Values

The boundary conditions defined on T fall into two distinct subsets. The first subset,
I'y of T, contains those points at which a “g-type” or “essential” boundary condition is
applied. This type of boundary condition prescribes a given temperature g which may

depend on both position and time, thus

g:Tyx |0, T[— R ( prescribed temperature ). (2.1.7)
The other subset of I', I', contains those points at which an “h-type” or “natural”
boundary condition is applied. This type of boundary condition applies a heat flux
loading h which may depend on temperature as well as position and time, thus

h:RY X T X 0, T[— RSP ( prescribed heat flux ) . (2.1.8)

Several of the more common forms of the function h are

1. Adiabatic or no-flur boundary condition :

h=o. (2.1.9)

2. Prescribed heat flux boundary condition :
h = hs(x,t), (2.1.10)

where hy is a given function.



2. Derivation of Finite Element Equations 2.1. Strong Form of the ILB.V.P.

3. Convective boundary condition :
h = h(x,t)(T(x,t) — T(x,t)), (2.1.11)

where h. is a given function defining the convection coefficient, and T, is the given

external temperature field.

4. Radiation boundary condition :
h = h.(x, t)(T4(x, t) — THx, 1)), (2.1.12)

where the radiation coefficient, h,, depends on the Stefan-Boltzmann constant as
well as the emissivity and geometric view factors for the surface, and 7, is the given

external temperature field [Siegel 81]. This condition may also be written :
h = k(T,x, ){T(x,t) — T:(x, 1)), (2.1.13)
where k is defined as
k(T,x, t) = he(x, t)(T*(x, t) + T3(x, ))(T(x, t) + Ty(x,1)) . (2.1.14)

Note that two or more of the above forms may be combined to represent a complex

physical flux loading.

Finally, the initial temperature distribution in the body is
Tp: 2 Rt (initial temperature ). (2.1.15)

For physical reasons, Tp need not be continuous.

2.1.4 The Strong Form

The strong form of the I.B.V.P. , based on a generalization of the Fourter Law of

heat conduction [Carslaw 59], [Holman 72], [Isachenko 75], and [Ozisik 80}, is stated as



2. Derivation of Finite Element Equations 9 2.2. Weighted Residual Form of the 1.B.V.P.

follows :

[ Given:p, C,, K, Q, g, h, Ty as in (2.1.3)—(2.1.15) ,
Find :
T:00 X [0,T]—R",
Such that :
(S); oT
pCPW =V.(KVT)+Q on OXx]0,T[, (2.1.16)
T=g¢g on I'yx]0,T][, (2.1.17)
n-(KVT)=h on T, X ]0,T[, (2.1.18)
T(x,0)=To(x) V x€0. (2.1.19)

§2.2 Weighted Residual Form of the Initial Boundary-Value Problem

The “weighted residual” or “weak” form of (S) is generated by a suitable choice of
solution and variational spaces and the application of the divergence theorem [Strang

73], [Mitchell 77].

2.2.1 Solution and Variational Spaces

In order to develop a weak formulation for the LB.V.P. | a trial solution and a

variational space are defined. Let u, v, and w denote temperature-like fields. We define

the trial solution space § as follows :
S={u|lu=g on I,}, (2.2.1)
and the variational space V as

V={w|w=0 on I,}. (2.2.2)



2. Derivation of Finite Element Equations 10 2.2. Weighted Residual Form of the I B.V.P.

Note that § is time-dependent due to its use of the g-type boundary condition while V

1s not time-dependent.

2.2.2 The Weak Form

The weak form of the problem (W) is obtained by multiplying (2.1.16) and (2.1.19)
by w € V, integrating over (2, applying the divergence theorem, and making use of the
boundary conditions (2.1.17) and (2.1.18) to simplify the result. This yields the following
weak form for the LB.V.P.:

r Given: p, Cp, K, @, g, h, Tp as in (2.1.3)—(2.1.15) ,
Find :
u:[0,T]—§,
Such that for every w e V :
M(u; 4, w) + N(u; v, w) = F(u; Q, w) + X(u; b, w) on 10, T, (2.2.3)
(u(x,0) —To,w)=0 on 0. (2.2.4)

The operators M, N, #, ¥, and (-,-) are defined as :

p(x)Cy(v(x, t), x, t)u(x, yw(x) da , (2.2.5)

Vau(x, t) - K(v(x, t),x, t)Vw(x) da , (2.2.6)

h(v(x, t), x, t)w(x)dr , (2.2.8)

/
9]
/
Q
(0:Q,0) = [ Qulx, O)w(x)da, (2.2.7)
0
/
/u(x, thw(x)da . (2.2.9)
Q



2. Derivation of Finite Element Equations 11 2.3. Galerkin Approximation of the IB.V.P.

Remarks:
1. Given suitable smoothness conditions, (S) & (W).

2. M(v;-,-), N(v;-,-), and (-,-) are symmetric bilinear forms.

§2.3 Galerkin Approxirmation of the Initial Boundary-Value Problem

The Galerkin form is derived from the weak form by approximating the variational

and solution spaces with finite subspaces.

2.3.1 Galerkin Spaces of Approximation

The Galerkin approximation uses a finite number of linearly independent functions

to span a subspace V" of the variational space V. We may represent V* as

n
Vi={wh vt =Y Nyx)dy; w"=0 on T,}CV, (2.3.1)
. A=1]
where Ny, A = 1,2,...,n, are n linearly independent functions in V and d4 are

constants. Similarly, the approximation to the trial solution space §% is defined as

Sh={uh|ut=vh+ g8 vheVh ghesicCs. (2.3.2)

2.3.2 The Galerkin Form

The Galerkin approximation of the .B.V.P. may be stated as



2. Derivation of Finite Element Equations 19 2.4. F. E. Approximation of the LB.V.P.

[ Given: p, G, K, Q, g, b, To as in (2.1.3)—(2.1.15)
Find :
wh=ovh+gh: [0, T]— $*,
Such that for every whe Vh:
M(ul; ok wh) + N(uh; o, wh) = Fub; Q, wh) + ¥(uP; h, wh)
— M(u”; ¢", wh) — N(ub; g wh)
on ]0,T][, (2.3.3)
(vP(x,0), w*) = (Tp — ¢"(x,0),v") on Q. (2.3.4)

§2.4 Finite Element Matrix Approximation of the Initial Boundary-Value
Problem

The finite element matrix equations are derived from the Galerkin form by defining
the approximation of the variational and solution spaces based on a given spatial

discretization [Zienkiewicz 77], [Bathe 82], [Akin 82].

2.4.1 Spatial Discretization

To obtain the finite element matrix form of the .B.V.P. , the domain  must be
discretized into disjoint element subdomains 1°, e = 1,2,..., Ngi, where Ny is the

number of elements. Thus

Ng,,

yo=n, (2.4.1)
e=1
and
Ngy
No=0. (2.4.2)
e=1]

I'? is the boundary of an element subdomain °.



2. Derivation of Finite Element Equations 13 2.4. F. E. Approximation of the LB.V.P.

Each element subdomain is defined by an ordered set of nodal points. These element

nodal points belong to the set 5 of nodal points contained in the domain . A subset
of 1, ng, contains those nodal points on the prescribed temperature boundary I'y. The

number of nodes in 5 is Nyp, while the number of nodes in 5 —n, is NEgg.

2.4.2 Approximation Spaces

It is desirable to define a basis for the Galerkin spaces $* and V" which affords
easy computability. For this reason, we choose interpolation functions based at nodal
points which are only “ocally” non-zero (in the elements connected to the given node).

The interpolation functions have the following properties :

(1 X = X4
> 0, x is “ocal”
Na(x) =1 AB€Eny (2.4.3)
0, x=xp, B#A
L 0, x is “non-local”

where x4 and xp are the coordinates of nodes A and B respectively.

This choice of interpolation functions allows us to represent functions in the Galerkin

spaces as:
Px, )= Y Nax [0, T]— VH, (2.4.4)
A€n-ng
and
~~ Y, Na(x)ga(t) :[0,T]— St. (2.4.5)
AEﬂg

Thus, a function in V* or §* may be represented as a time-varying vector d of Ng
Q

components that are the coefficients associated with the shape functions Ny, A € n—n,.



2. Derivation of Finite Element Equations 2.4. F. E. Approximation of the IB.V.P.

14

Note that the time-dependent functions g4 are chosen to be a “good” approximation to

the exact g-type boundary conditions in an appropriate sense.

2.4.3 The Finite Element Matrix Form

The finite element matrix form of the .B.V.P. is

(

Given: p, Cp, K, @, g, h, Tp as in (2.1.3)—(2.1.15) ,

Find :
d:[0,T]— %Nee
(M)
Such that :
M(d, )d + N(d, ) =F(d,t) on ]0,T[, (2.4.6)
d(0) =d°. (2.4.7)

Here d(t) is the vector of nodal temperatures at time ¢, and d° is a “good” approximation

to the exact initial temperature Tp. The capacity matrix M is

NeyL
M(d,¢t) = ej=\l m°(d¢ t), (2.4.8)
where the element capacity matrix is
m°(d* t) = [m:(d° t)], (2.4.9)
with components
meyd, ) = [ Num)p(x)Cplu*,x, O)Ny(x) do (2.4.10)



2. Derivation of Finite Element Equations 15 2.4. F. E. Approximation of the IB.V.P,

The finite element assembly operator A in (2.4.8) is a combination of summation and
a Boolean map which expands the element contribution to global size. The mapping

converts local degrees of freedom to their equivalent global degrees of freedom.

The conductive flux vector N is

Ngp
N(d,¢)= A n%d%¢), (2.4.11)
e=1]
where the element conductive flux vector is

n®(d*, ¢) = {ng(d", ¢)}, (2.4.12)

with components

no(d’, ) = [ BI(K(u",x, O)By(x)df do (2.4.13)
Qe

Finally, the internal heat flux and h-type boundary conditions vector F is

Fd, )= A 11, (2.4.14)

e=1

where the element contribution is given by

f°(d,t) = {fa(d", 8)}, (2.4.15)
with components
r5@,0= [ N x,0da+ [ Nuxh(uh,x,t)dr . (2.4.16)
Qe [‘enrh

In the preceding definitions, the subscripts a,b = 1,2,..., Ngyn, where Nppy is the

number of element nodes. Repeated subscripts denote summation, and the e superscript



2. Derivation of Finite Element Equations 16 2.5. Temporal Algorithm

denotes the element number. Within an element e the temperature field is interpolated

by

NgL
P = Y N(x)ds(t), (2.4.17)

a=1

where the element nodal temperatures d$ are defined as

da(t), if Ais “free”
(2.4.18)

gh(t), if Ais “fized

with A being the global node number corresponding to the a** node of element e. The
vector B, contains the spatial derivatives of the shape functions and is defined as
O N,(x)

By(x) =~ ={Na,,-(x)} i=1,2... Nsp. (2.4.19)

§2.5 Temporal Algorithm

The nonlinear transient heat conduction problem has been reduced to a set of semi-
discrete nonlinear ordinary differential equations. Since no general analytic solution is
possible, the next step is to discretize the dependent variable, time, and choose an

algorithm for the generation of the approximate solution of the differential equations

[Hughes 77].

2.5.1 Temporal Discretization

For the moment we will consider only a simple temporal discretization using con-
stant time steps At = T /Nstgps, where NgTgps is the total number of time steps.

Thus, we will compute an approximate solution to the nonlinear matrix O.D.E.’s at a



2. Derivation of Finite Element Equations X 2.5. Temporal Algorithm

number of discrete time steps. The discrete temperature d,, is an approximation of the

exact solution at the n'* time step, thus
d, ~ d(t,) . (2.5.1)

Similarly, the discrete “velocity” v, (partial derivative of temperature with respect to

time) is an approximation to d at the n** time step, thus
v = d(t,). (2.5.2)
The discrete solution times are given by

tn = nAt . (2.5.3)

2.5.2 Generalized Trapezoidal Rule

The time integration method chosen is the generalized trapezoidal rule. Applying

it to (M) leads to the following time integration scheme :

(

Given: M, N and F as in (2.4.8)—(2.4.16) ,

Find :
d, n€{0,1,...,NsTEPs},
Such that :
(T);

M(dn+17 tn+l)vn+1 + N(dn+17 tn+l) = F(dn+ly tn+l) ) (2-5'4)
dp=4d°, (2.5.5)
doy1 =d, + At{(1—a)v, + av,41}, (2.5.6)
a€f0,1]. (2.5.7)




2. Derivation of Finite Element Equations 2.6. Nonlinear Iterative Algorithms

18

Remarks:

1. The parameter a controls the accuracy and stability of the time integration

method.

2. If o = 0 the method is termed ezplicst. When M is diagonal the equations
uncouple and no matrix solution is required. However, there is a stringent

stability conditior which governs the size of At.
3. If a 5% 0 the method is termed ¢mplicest, and a matrix solution is required.

4. If a €[1/2,1] the method is unconditionally stable and At may be chosen on

the basis of accuracy considerations alone.

5. Solution of the nonlinear equation (2.5.4) requires the use of an iterative

solution technique.

§2.6 Nonlinear Iterative Algorithms

In the preceding section we reduced the solution of a set of nonlinear ordinary
differential equations to the solution of a single nonlinear matrix equation for each time

step. We now consider iterative techniques for solving (2.5.4) .

2.6.1 Preliminaries

The iterative scheme proposed is a variant of Newton-Raphson iteration which
makes use of the continuity of the temporal discretization; it is called the predictor-
corrector method. The first phase of the algorithm uses the previously-computed results
for the temperature and velocity at step n to predict what the temperature will be
at step n + 1. The second phase then does successive corrections until convergence is
achieved. The corrections require the use of the linearized operator to compute solution
increments. A complete linearization of the nonlinear operators would result in a non-

symmetric linear equation system which is undesirable from both a physical and a



2. Derivation of Finite Element Equations 2.6. Nonlinear Iterative Algorithms

19

computational point of view. Instead, we employ a symmetric linearization which uses

values from the previous iterate in selected locations to produce a symmetric equation
system. Since the problem is cast into a residual formulation, the converged solution of

the symmetric linearization is identical to that obtained from the consistent operator.

2.6.2 Newton-Raphson Iteration

Eliminating v, +; between (2.5.4) and (2.5.6) produces the nonlinear matrix equation
f(d,+1)=o0, (2.6.1)

where

1

Ki(dni-l —dy)—(1— a)vn}

1
(dnt1) = M(dns, tuer) 3 f
+ N(dn41,tn+1)

+ F(dn.H, tn+1) . (2.6.2)

Using a Taylor series expansion about the exact solution d,, +1, we may approximate the

function f at a point dﬂl by

F(dnr1) = 1) + TN L @ d)e e
=d 1
Defining the solution increment as
A, = dnyy —a¥,, (2.6.4)
and the tangent operator as
pfd?,) = ofd) (2.6.5)

od d=d$,‘1 .



2. Derivation of Finite Element Equations 2.6. Nonlinear Iterative Algorithms

20

and ignoring the higher-order terms, we may write

pra¥nadf,, = -nal,). (2.6.6)

The solution of (2.6.6) for Adﬂl allows us to compute a better approximation to the

exact solution ,
a5 =df, +adl), . (2.6.7)
Examining the terms in the tangent operator in more detail,

Df(d) = D{M(d, t)v} + DN(4, t) + DF(4, ) . (2.6.8)

The capacitive contribution is

D{M(d, tjv} = DM(d, t)v + M(d, t)Dv , (2.6.9)
where
Ngyg
M(d, t)v = A Dm°(d® t)v¢, (2.6.10)
e==1]

with element contributions

Dme(d°, t)ve = |2Meld50) ol (2.6.11)
ade
and components
Bma de u Xt e
8bde vp = /N (c')u" )Nc(x)Nb(x)vbdQ. (2.6.12)

The consideration of v as a function of d gives

Dv=——. (2.6.13)



2. Derivation of Finite Element Equations 2.6. Nonlinear Iterative Algorithms

21

The contribution to the tangent operator from the convective flux vector N is

Ngp
DN(d, t) = A1 Dn°(d:¢), (2.6.14)
with element contributions
ont(de, t)
Dn°(d*t) = [—-———] 2.6.15
o (2.6.15)

and components

T = | BIOK(x OByx)d
+ / BT (x ‘9K;uh" Y Ny(x)ut da | (2.6.16)

Note that the second term in (2.6.16) is nonsymmetric.

Finally, the contribution to the tangent operator by F, the internal heat flux and

h-type boundary conditions vector, is

Ngi,
DF(d,t) = Al Dfe(d5,t), (2.6.17)
with element contributions
afe(de,t
Dff(d*, t) = [—[%((—ig—’—)] , (2.6.18)
and components
afald’, 8 _ aQ(u", x, )
ad; —ne N,(x) Em; Ny(x)dn
Ah(u® x,t
+ / Na(X)~—(~a;[—h'—)Nb(X) dr. (2619)

I‘enl‘;.



2. Derivation of Finite Element Equations 29 2.6. Nonlinear Iterative Algorithms

2.6.3 Symmetric Linearization

A symmetric linearization approximating the exact tangent operator is now defined.

We will consider approximations to each of the three terms of (2.6.8) .

First, we approximate the capacity contribution by

D{M(d, t)v} ~ ﬁM(d, f. (2.6.20)

This approximation avoids the additional computational expense engendered by the full

DM calculation of (2.6.12) .

The second term, the conductive contribution, is approximated by

Ngy
DN, t) ~ él k{(d¢t), (2.6.21)
with element contributions
k(4% 6) = [Kiyasd, )], (2.6.22)
and components
Kigad®,) = [ BTK(u",x, O)Byx)da (2.6.23)
qe

We only keep the symmetric term of equation (2.6.16) .

Finally, to approximate the third term we make two additional assumptions. The
first is that we can ignore the dependence of the internal heat generation @ on tem-

perature. Thus, in computing the symmetric tangent operator we assume

8Q(uh, x, t)

s =0 (2.6.24)



2. Derivation of Finite Element Equations 2.6. Nonlinear Iterative Algorithms

23

The second assumption is that the contributions to the symmetric tangent operator from

the h-type boundary conditions come only from one of the four types (2.1.9)—(2.1.12).

The contribution of the convective and radiation boundary conditions is

DF@.f)~ A (ke(de,t) + k(" 1)),

ex==]

where the convective element stiffness! is
Ko(d°, ) = [k(ec,,,,,(de, t)] ,

with components

Kya(@, )= [ Nafhalx, HNsx)dr;

re(\Ts
and the radiation element stiffness is
Ke(d’, ) = [k(e,)a,,(de, t)] ,

with components

Kgad®, 0= [ Nor(u,x, ONi(x) dr

Feﬂl‘,.

We can now define the tangent stiffness as

NgL
Kr(d,t) = A k(4% ¢t),

e==1

(2.6.25)

(2.6.26)

(2.6.27)

(2.6.28)

(2.6.29)

(2.6.30)

IWe will use the terms stiffness, mass, and force, instead of conductivity, capacity, and flux, respectively,

when we wish to infer finite element connotations.



2. Derivation of Finite Element Equations 2.6. Nonlinear Iterative Algorithms

24

where
k7(d% t) = ki(d% ¢) + ki(d°, t) + k;(d°, ¢) . (2.6.31)

This leads to the following definition of S, the symmetric linearization of the tangent

operator,
1
S(d,t) = —=M(d,t) +Kr(d, 1), (2.6.32)
where
Df(d) ~ S(d,¢t) . (2.6.33)

2.6.4 Predictor-Corrector Algorithm

The predictor-corrector iterative algorithm to compute the solution for step n + 1

may be defined as:

' Given : d,,, vy,
Compute the predicted values:
i=0, (2.6.34)
4, =dp41 =d, + ALl — a)v, (2.6.35)
v =¥ =o0, (2.6.36)
(I){ then iterate over:

M0 avd), = aFy,, (2.6.37)
Vi) = v+ avh, (2.6.38)
dit) = d, gy +aatvliFD (2.6.39)
t=1+1, (2.6.40)

. until convergence is obtained.



2. Derivation of Finite Element Equations 2.7. Result : The Linear Problem (Ax = b)

25
The effective mass?, M*, is defined as
M* L =M(AD ), ter1) + e AK (@Y, tsr) (2.6.41)

and the out-of-balance force3 or residual force is
AFY, =F@, tasr) = M@, e V01 = N@Dhy, ta) - (2.6.42)

In the above equations, M, N, and F are the nonlinear matrix and vector functions
defined in (2.4.8)—(2.4.16) , and Kr is the tangent stiffness matrix resulting from the
symmetric linearization.

Remarks:

1. For large problems, the cost per iteration in the above scheme is almost solely
governed by the cost of formation and factorization of the linearized operator
M*.

2. If the nonlinearities are “small”, it may be computationally expedient to form

and factor M* only once, at the beginning of the time integration.

3. If the nonlinearities vary slowly, a modified Newton-Raphson scheme in which

M?* is formed and factored every few iterations (or steps) may be appropriate.

4. The definition of the predictor-corrector scheme (I) uses a velocity formulation.

It may be equivalently defined in terms of temperature increments.

§2.7 Result: The Linear Problem (Ax = b)

In the preceding sections we have derived equations representing both the spatial

and temporal discretization of the original nonlinear partial differential equation for

2See footnote on page 23.
3See footnote on page 23.



2. Derivation of Finite Element Equations o6 2.7. Result : The Linear Problem (Ax = b)

heat conduction. Then, an iterative algorithm was presented for the solution of the
resulting nonlinear matrix equations. The algorithm requires the repeated solution of a

linear equation system which has the “generic” representation

Ax=b (2.7.1)

It is important to note that the matrix A is both symmetric and positive-definite.
These properties contribute greatly to the ease with which a solution to (2.7.1) may be
obtained. In the next chapter we discuss ways of obtaining the solution to (2.7.1) by

using both direct and iterative techniques.



Chapter 3

Algorithms for Solving the Linear Problem

This chapter explores the techniques available for thé solution of the linear equation
system which resulted from the application of the finite element method to nonlinear
transient heat conduction problems. The first class of solution techniques considered
are direct techniques. These techniques typically use variations of Gaussian elimsnation
to compute an exact solution. The second class of solution techniques to be studied
are tterative techniques. These techniques produce a sequence of approximate solutions
which, under the right conditions, converge to the exact solution. To fully appreciate the
potential cost savings of iterative techniques, it is necessary to understand the expense

incurred by direct solution techniques.

§3.1 Direct Techniques

The most widely used forms of direct solution techniques are variations of Gaussian
elimination [Fellipa 75), [Jennings 77}, [Kamel 78], [George 81], [Winget 82]. They all
possess the desirable attribute of generating the exact solution within the bounds of
machine accuracy. This deterministic quality, or robustness, is one of the chief reasons

for their popularity.



3. Algorithms for Solving the Linear Problem 08 3.1. Direct Techniques

aj; a2l 0lagl O 0 O O O .
aze az3 az4| 0 |azz{ O O O
az3 a4l 0 lazg| O O O
agy ag5 agg{ 0 0 O
A= ass as6| O |ass] O
Symmetric ase agy agg] O
ar7 aig agg
asg agg
g9 |

Figure 3.1.1 Example of skyline storage for a 9 X 9 matrix.

3.1.1 Form of the Matrix Equations

The matrix generated by the finite element procedure of the last chapter is typically
sparse, because the equations are only locally coupled.! Careful ordering of the nodes,
or optimal reordering of the equations, transforms the matrix to a variable bandwidth
form. To store the matrix efficiently, a profile or skyline storage scheme is commonly

used, see Figure 3.1.1.

The important parameters representing the matrix are Ngg, the number of equa-
tions; b, the mean half-bandwidth; and b, the computational half-bandwidth. The bandwidth

parameters are important for cost computations, and are defined as

(3.1.1)

IThere are only non-zero terms connecting equations with nodes in the same element.



3. Algorithms for Solving the Linear Problem 29 3.1. Direct Techniques

1
e
N EQ !

b= (3.1.2)

where b; is the height of the ¢** column.

3.1.2 Gaussian Elimination

We will consider forms of Gaussian elimination known as triangular decomposstion
techniques. The underlying idea is to factor the matrix A into a product of simpler
terms. There are two important constraints the decomposition must satisfy. First, the
simpler terms must be easier to “invert” than the original matrix. Second, the method
must be compact, that is the decomposition should need no more storage then the

original matrix. Thus, we do not permit fill-tn outside of the original profile.

We define the product decomposition as
A = L.(A)D:(A)Ur(A), (3.1.3)

where the subscript 7 denotes produet. The matrix L is a lower-triangular matrix with

unit diagonal and has the form

1 0 ... 0]
by 1 ...0
L,=| . o] (3.1.4)
[ Iy lp2 ... 1
D, is a diagonal matrix,
Fdip 0 ... O 7
0 do2 ... O
D,=}| . . .1 (3.1.5)




3. Algorithms for Solving the Linear Problem %0 3.1. Direct Techniques

and U, is a upper-triangular matrix with unit diagonal,

[l upg ... U]
01 ce. Uop

Ug=1. ] A (3.1.6)
L0 0 ... 1 .

Equation (3.1.3) represents the Crout factorization.

If A is symmetric, then Lr(A) = UI(A). If the entries of D,(A) are nonnegative,

then
A = L.(A)U,(A), (3.1.7)
where
L.(A) = L.(A)DY*A), (3.1.8)
and
U.(A) = DY?2(A)U,(A) . (3.1.9)

If the matrix A is symmetric positive-definite, then it also admits the Cholesky

decomposition :
A=L.(A)LlA), (3.1.10)

where L, is a lower-triangular matrix defined by (3.1.8) which has the form

(1, 0 ... 0]

- ;21 izz ... 0
L.=| . . .. (3.1.11)

.Inl ln2 e lnn-



3. Algorithms for Solving the Linear Problem 31 3.1. Direct Techniques

A solution, x, of the factorized matrix equations is then obtained by the following

three steps :

L.(A)z=Db ( forward reduction ), (3.1.12)
D.(A)y =2 ( scaling), (3.1.13)
U,(A)x =y ( backsubstitution ). (3.1.14)

For either of the two decompositions it is a two-step process to obtain a solution.
First, it is necessary to factor the matrix A into its product terms. Then, we may solve

for x by a series of reductions of the right-hand-side vector, b.

3.1.3 Cost

There are several important considerations when evaluating the cost of a solution
technique. First, one must consider the amount of storage required by the technique. We
will define the storage unit word as the amount of storage required by one floating-point
number. The amount of storage required by an algorithm is composed of the primary
storage, to hold the terms in the matrix, and the overhead storage, to hold the indexing

or addressing information.

A second and perhaps more often-considered cost, is the computational cost or cost
of CPU . We will restrict ourselves to CPU cost estimates for arithmetic operations. An

operation is defined as one floating-point multiplication plus one addition.

The storage cost associated with the factors of the matrix A is
S‘lr—factor(A) = (b+ 1)Ngg words . (3.1.15)

The 1 X NEgg in (3.1.15) is associated with the overhead cost of indexing the terms in
A. The CPU cost to factor A into its Crout decomposition is

1-2
Cﬂ'—factor(A) = (§b NEQ +-- ) ops . (3.1.16)



3. Algorithms for Solving the Linear Problem 39 3.1. Direct Techniques

Similarly, the CPU cost to solve the factored equations is
Cx—aolve(A) = (2ENEQ + - ) ops . (3.1.17)

We consider only the highest order terms in Cr_ysc10r(A) and Cr_gome(A), since they

dominate the cost for large problems.

For an example of the cost of storage and CPU, consider the three-dimensional
model problem depicted in Figure 3.1.2, which is assumed meshed with linear eight-
node brick elements. The total number of equations is Ngg = pgr. For ease in the
following discussion we will assume p > ¢ > r. Thus, using a standard, near optimal,

node ordering scheme, the bandwidth parameters are
ba~brgr. (3.1.18)
The total storage required to hold the factored matrix is
Sr—factor(A) = pg®r® + pgr words | (3.1.19)

and the factorization and solution costs are

‘ 1
Cﬁ'—detOf‘(A) = §pq3r3 ops , (3.1.20)
Cr—solve(A) = 2pg°r® ops . (3.1.21)

If we consider equal refinement in all three directions, then

p=gq=r, (3.1.22)



3. Algorithms for Solving the Linear Problem 33 3.2. Iterative Techniques

p
Figure 38.1.2 Three-dimensional model problem with p X ¢ X r regular mesh.

Sr—factor(A) = p® + p® words (3.1.24)
Cr-factor(A) = 37 ops, (3.1.25)

and
Cr—sotve(A) = 2p° ops . (3.1.26)

It is important to distinguish between the factorization and solution costs for small to
medium problems since a modified Newton-Raphson nonlinear solution algorithm may
use the same factorization for many iterations. However, as the problem becomes large,

the cost of one factorization exceeds the cost of all the solutions combined.

§3.2 Iterative Techniques

A second class of methods for the solution to the linear problem are sterative
techniques® [Householder 64], [Bakhvalov 77|, [Mitchell 80], [Gill 81], [Hageman 81],

[Vemuri 81]. Iterative techniques have not been widely used in finite element analysis

2We will use the term iterative although in practice the techniques will be applied at a sub-iteration or
inner-iteration level.



3. Algorithms for Solving the Linear Problem 3 3.2. Iterative Techniques

due to their indeterminate nature. Unless a great deal is known about fhe system to be

solved, there is no way to predict a priors the number of iterations required to produce

a solution of the desired accuracy.

3.2.1 Basic Definitions

We first consider linear stationary methods of the first degree. These methods have
the classical form :
Given : x(0),
Iterate over :
x®+1) —Ggx(® + k | (3.2.1)
k=k+1, (3.2.2)
until convergence is achieved.
Where
G =I-B7!A, (3.2.3)
k=B'b. (3.2.4)

They may also be expressed in an equivalent residual form:

4

Given : x(0,

Iterate over:

r®) —=b — Ax®) (3.2.5)

J BAx™®) =r(® (3.2.6)
kD) —y(B) 4 Ax(0) (3.2.7)

k=k+1, (3.2.8)

until convergence is achieved.

\




3. Algorithms for Solving the Linear Problem 35 3.2. Iterative Techniques

The method is of first degree since x(k+1) depends only on x®). Tt is stationary since G
and k are independent of k and linear since G and k are independent of x(¥). In classical
iterative methodology, B is referred to as the splitting matriz. Note that if B = A, the
method converges to the exact solution in one iteration. We will consider only methods

that are symmetrizable. A method is symmetrizable if

3 P, det(P)# 0 such that
PI-G)P~'=PB AP ! €Sim. (3.2.9)

The symmetrizability is guaranteed if A and B are both symmetric and positive-definite.
This is easily shown by choosing P == AY2 or P = B!/2, The convergence rate of an
iterative scheme usually depends on the spectral condition number, k, which is defined

as
k(A)=[AlflA72 . (3-2.10)

For symmetric positive-definite matrices, kK may be expressed in terms of the eigenvalues

of the matrix as

k(A)= %I/I—E%; : (3.2.11)

where m(A) is the smallest eigenvalue of A, and M (A) is the largest.

3.2.2 Standard Iterative Techniques

As with direct techniques, we find it convenient to define some standard matrix
decompositions. For iterative techniques, these decompositions are based on the sum

decomposition, which is defined as

A =L,(A) +D,(A) + U,(A), (3.2.12)



3. Algorithms for Solving the Linear Problem 3.2. Iterative Techniques

where the subscript o denotes sum.

The matrix L, is a lower-triangular matrix with zero diagonal and thus has the

form

0 0 ... 07
by 0 ...0
L,=]| . . - (3.2.13)
LIy by ... O
D, is a diagonal matrix,
rdiy 0 ... O 1
0 dy2... 0
D,=]| . . ., (3.2.14)
L0 0 ... dul

and U, is a upper-triangular matrix with zero diagonal,

[0 uy2 ... U, )
0 0 ... u

U, =|. .. (3.2.15)
00 0 J

In analogy with the product decomposition, we may write

A =L,(A)+U,(A), (3.2.16)
where
L.(A) = L,(A) + —21-D0(A) , (3.2.17)



3. Algorithms for Solving the Linear Problem P 3.2. Iterative Techmniques

U,(A) = U, (A) + %DU(A) . (3.2.18)

Further, if A has non-zero diagonals, then D !(A) exists, and we may define the scaled

matrices

~

L,(A) = D;'(A)L,(A) (3.2.19)

and
U,(A) = D;(A)U,(A) . (3.2.20)

If A is symmetric, L,(A) = UT(A), L,(A) = U_ (A) and Lo (A) = U (A)

The decomposition (3.2.16)—(3.2.18) has figured in transient analysis algorithms
developed by Trujillo [Trujillo 77a,77b,77¢] and subsequently discussed by Park [Park

82].

3.2.2.1 Richardson’s Method

The simplest iterative scheme is a variation of the method of Richardson which is

defined by :

G=I-A, (3.2.21)
(Richardson) k =b, (3.2.22)
B=I. (3.2.23)

This scheme is only convergent if A satisfies the very stringent spectral condition

M(A) < 2.



3. Algorithms for Solving the Linear Problem 38 3.2. Iterative Techniques

3.2.2.2 Jacobi Iteration

The next simplest iterative scheme is Jacobs steration, or the method of simul-

taneous corrections, which is defined by :

G =I-D;!(A)A, (3.2.24)
(Jacobi) k =D;}(A)b, (3.2.25)
B =D,(A). (3.2.26)

3.2.2.3 Gauss-Seidel Iteration

The Gauss-Seidel steration technique, or method of successive corrections, is defined

by :
G =—(I1-L,(A)"'0U,(A), (3.2.27)
(Gauss-Seidel) k =(I+L,(A))"'D;'(A)b, (3.2.28)
B =L,(A)+D,(A). (3.2.29)

3.2.2.4 Successive Overrelaxation

The successive overrelazation method (SOR) is defined by :

r G =(I - wLo(A)) (L — )l — wU,(A)), (3.2.30)
(SOR)] k =w(I+ wL,(A))"'D;(A)b, (3.2.31)
B =L,(A) + éDa(A) . (3.2.32)




3. Algorithms for Solving the Linear Problem 39 3.2. Iterative Techniques

The relaxation parameter, w, is a real number chosen to optimize convergence. If w €
]0,2[ and A is symmetric positive-definite then the method always converges. The
optimal convergence rate is usually given by 1 < w < 2. Note that for w = 1, the

method reduces to Gauss-Seidel iteration.

3.2.2.5 Symmetric Successive Overrelaxation

The successive overrelaxation method is not symmetrizable. However, making a
second sweep and reversing the roles of L, and U, results in the symmetric successive

overrelazation method (SSOR) which is symmetrizable.

( G =(1—-wU,(A))"(1 - w)I — wL,(A))
X (I—wLo(A) (1 — w)I — wU,(A)), (3.2.33)
(SSOR) k =w(2 — w)(I+ wUs(A)) "I+ wL,(A))"!D; (A)b, (3.2.34)
B =5 (Lo(A) + ~Do(A)
X DU(A)'I(%D,(A)) +U,(A)). (3.2.35)

As in SOR, the relaxation parameter w is a real number chosen to optimize convergence.

3.2.2.6 Approximate Factorization

In general, the splitting matrix B is any product of terms, each of which is easily
invertible. A measure of the “quality” of the approximation is the condition number
of B"1A. The closer x(B"lA) is to 1 the faster the convergence. The B’s used in the
standard iterative schemes have used sum decompositions to avoid the high cost of
factorization. In the next chapter we explore approximate factorizations suitable for

finite element computation based on both product and sum decompositions.



3. Algorithms for Solving the Linear Problem 3.2. Iterative Techniques

3.2.3 Parabolic Regularization

The parabolic regularization method changes solving the linear equation system
into finding the steady-state solution of an associated pseudo-time-dependent parabolic
problem [Hughes 83a]. The discrete solutions of the pseudo-time-dependent problem

play the role of iterates. In particular, we look for the steady state solution of
Wx+Ax=Db, (3.2.36)

where W 1s a given, positive-definite, diagonal, pseudo-mass matrix and the superposed
dot denotes differentiation with respect to 7, pseudo-time. If A is positive-definite, then
given any initial condition xg, the solution converges to a steady state value, A~!'b. To
obtain this solution, we apply a backward difference time integration scheme to (3.2.36),

resulting in the following iteration algorithm :

G =(W + ATA)"'W (3.2.37)

(PR); k =Ar(W+ A7rA)"'b, (3.2.38)
1

B=_1—(W+ArA). (3.2.39)

Here A7 is a positive real number which governs the convergence rate of the iterative al-
gorithm. In practice, we have found the following choices for W and A7 to be acceptable

when coupled with an approximate factorization :

W =D,(A), (3.2.40)

and

Ar=1. (3.2.41)



3. Algorithms for Solving the Linear Problem 1 3.2. Iterative Techniques

3.2.4 Variational Techniques

We now consider two variational techniques based on gradient methods. These tech-
niques cannot be expressed in classical form since they are neither linear nor stationary.
Both methods convert the problem of solving the linear equation system into the equiv-

alent problem of minimizing a function of Ngg variables.

3.2.4.1 Steepest Descent Technique

The method of steepest descent (SD) is motivated as follows. Consider the quadratic
form

Fix®) = %(x("), Ax¥) — (b, x*)) . (3.2.42)

Solving Ax = b is equivalent to minimizing F(x(*)) with respect to x(¥). The gradient

of F(x¥))is

= —r¥ (3.2.43)
Thus, if the mimumum of F occurs at x(¥),
VF(x®)=0=Ax* —b, (3.2.44)
and
V(VFx®))=A>0. (3.2.45)

If, however, F is not mimimal at x(¥), then the gradient of F(x(¥)) gives the direction
which maximizes the change in F near the point x(¥). Constraining ourselves to move

only along the path of steepest descent defined by the one-dimensional subspace x(¥) +



3. Algorithms for Solving the Linear Problem

3.2. Iterative Techniques

s®)e®) s¥) € R, we minimize F(x® + s®)r*)) with respect to s*). The variable s is

the search parameter. Successive minimizations lead to the iterative algorithm :

(SD)

\

Given : x! ,

0)

Iterate over:

rlt) =b — Ax(¥) |

k) (r(k)y r(k))
_(r(k),Ar(k)) ’

x(6+1) (k) 4 k) pl)

8l

k=k+1,

until convergence is achieved.

3.2.4.2 Preconditioned Steepest Descent Technique

(3.2.46)

(3.2.47)

(3.2.48)
(3.2.49)

The SD method can be generalized to the preconditioned steepest descent (PSD)

method. The PSD technique uses one of the standard iterative algorithms to determine

a descent direction Ax(¥) and then minimizes F(x®) + 8F) Ax(¥)) with respect to s(¥) as

before. This yields the following algorithm

(PSD)J

4

\

Given : x(©),
Iterate over:
rlf) =p — Ax(F) |
BAx®) =¢) |

k) _ ( Ax(k), ,-(k))
~(Ax(8D, AAx(K)’

k=k+1,

until convergence is achieved.

(3.2.50)
(3.2.51)

(3.2.52)

(3.2.53)
(3.2.54)



3. Algorithms for Solving the Linear Problem 18 3.2. Iterative Techniques

Clearly, the SD algorithm is equivalent to using the identity matrix as the preconditioner
for PSD. Note that it is possible to extend the technique to search for a minimum in
several directions simultaneously ( see for example [Levit 82]). However, we have found

the following methods to be more robust.



3. Algorithms for Solving the Linear Problem L 3.2. lterative Techniques

3.2.4.3 Conjugate Gradient Technique

The conjugate gradient (CG) method is a variation of the method of steepest descent
in which the directions of descent, p¥), are constrained to be mutually A-conjugate
[Hestenes 52]. This constraint on the direction vectors yields two desirable properties;
first, the convergence is monotonic, and second, the solution is obtained in at most Ngg
iterations, assuming the computations are performed with infinite precision. The basic

conjugate gradient algorithm is:

Given : x(0),
Initialize :
k=0 (3.2.55)
r® =b — Ax(® | (3.2.56)
p® =r® (3.2.57)
Iterate over :
o) — @) (3.2.58)
<q) (p(¥), Ap(h))
x(E+1) () 4 4Bk (3.2.59)
P+ _p _ Ax(k+D) (3.2.60)
—r(b) _ 4 ApH) (3.2.61)
glk+D) ;;:(:;jﬁl(’g;) (3.2.62)
plk+D) —p(k+1) 4 glk+1) (k) (3.2.63)
E=k+1, (3.2.64)

until convergence is achieved.

\

In practice, this algorithm may fail to converge in Ngq iterations due to an accumulation

of round-off error.



3. Algorithms for Solving the Linear Problem . 3.2. Iterative Techniques

3.2.4.4 Preconditioned Conjugate Gradient Technique

To reduce the accumulation of error and achieve faster convergence, we couple the
conjugate gradient algorithm with one of the standard iterative methods. The first step
1s to precondition the original equation system by the splitting matrix B of the iterative

method chosen. Thus, we solve the equivalent system

B 'Ax=B""b. (3.2.65)

Since we are considering only symmetrizable iterative methods, we may symmetrize the

preconditioned system by the transformation

P(B'A)P~!(Px) =PB™ b, (3.2.66)

which yields the new system

Ax=b, (3.2.67)

where
A=PB AP !, (3.2.68)
% =Px, (3.2.69)

and
b=PB'b. (3.2.70)

Now, applying the conjugate gradient procedure to (3.2.67) , we arrive at the preconditioned

conjugate gradient (PCG) algorithm :



3. Algorithms for Solving the Linear Problem 6 3.2. Iterative Techniques

(

Given : x(0),
Initialize :
k=0, (3.2.71)
r® =b — Ax" (3.2.72)
d® =B~ 11 (3.2.73)
p® =d© (3.2.74)
Iterate over :
(Pca) o) =%¥ : (3.2.75)
x(k+D) —x(k) 4 (K (k) (3.2.76)
rlE+D) —p¥) _ oK) A p(k) (3.2.77)
d(#+1) —pB~1pk+1) (3.2.78)
o
p(k+1) —qk+1) | gk D)) (3.2.80)
k=k+1, (3.2.81)
\ until convergence is achieved.

Note that the CG algorithm is equivalent to one which uses the identity matrix as the

preconditioner for PCQG.

3.2.5 Cost

As with the direct techniques, we consider the costs associated with both storage
and computation. Since most of the algorithms are implemented in the residual form, we
only consider the costs for that form. Since the costs vary widely between the algorithms,

only the general form of the costs is given.



3. Algorithms for Solving the Linear Problem v 3.2. Iterative Techniques

The storage cost of an iterative method in residual form has three components.

The first is the number of vectors of length Ngg needed by the solution algorithm. The
second is the storage of the sparse symmetric positive-definite matrix A and the third

is the storage required to hold the splitting matrix B, typically stored in factored form.

The standard, linear-stationary methods may all be implemented with only three
vectors of storage, while the preconditioned conjugate gradient algorithm requires five.

The storage required by a vector x is denoted S(x) and is defined as

S(x) = Npg words . (3.2.82)

There are many ways of storing the sparse matrix A. In choosing one, it is important
to consider the trade-offs among storage, speed and ease of implementation within the
framework of forming the matrix-vector product Ax. If A is very sparse, as typical
in large finite element problems, it may be advantageous to use a row-column storage
scheme. In a row-column scheme, the non-zero terms of A are stored along with an
indexing vector that defines each term'’s location in A. The amount of storage required
is Spc words, which includes both the primary storage of the non-zero terms and the

overhead storage for addressing. It is
Src(A) = 2 R(A) words, (3.2.83)

where R(A) is the total number of non-zero terms in A.

Another possibility that fits well with the finite element nature of the problem is the
storage of A as a collection of unassembled element contributions. The matrix-vector
product Ax can then be easily computed at the element level and assembled into a
global vector. This scheme entails more storage than the row-column scheme, but has
the distinct advantage of compatibility with traditional finite element data structures

- and architecture. The storage required is

1
SeL(A) = NgL X E(NELEQ + 1)NgLEg words (3.2.84)



3. Algorithms for Solving the Linear Problem 18 3.2. Iterative Techniques

where Ngppg is the number of element equations.

The storage required by B depends on the iterative algorithm. It can range from zero
for the simplest algorithm, Richardson iteration, to S,_s4ctor(A) for the more complex,
like Gauss-Seidel. The storage required by a sum decomposition, Sy_r4ctor, depends on

the storage form chosen, and may only be bounded by

SRC’(A) S Sa—factor(A) S SEL(A) . (3‘2'85)

The computational expense also differs between iterative algorithms. It is computed
on a “per iteration” basis, since the number of iterations is unknown in advance. As

with storage, the costs emanate from three different types of terms.

The first type of term is vector-scalar or vector-vector operations. This includes

multipling a vector by a scalar, vector inner-products, addition of two vectors, etc. The

cost of the these terms is given by

C(x-x) = Ngg ops. (3.2.86)

The second type of term is the matrix-vector product of the form Ax. The cost
of this operation is determined by the storage form chosen for A. If A is stored in

row-column form, the cost is
Crc(Ax) = R(A) ops, (3.2.87)
while the element storage cost is

Cer(Ax) = Ngp X N¥1go ops . (3.2.88)

Finally, there are the costs associated with terms of the form B~!r. In general,

there are two components to this, the possible initial factorization of B and the solution



3. Algorithms for Solving the Linear Problem 0 3.2. Iterative Techniques

of B~!r. For the standard iterative algorithms using sum decompositions, these costs

are in the range
Cofactor(B) = 0 — Ngg ops (3.2.89)
and
Co—solve(B) = 0 — CEL(AX) ops . (3.2.90)

The exact cost is algorithm-dependent. Note the reversal in high-cost roles between the

factor and solve costs.

For the three-dimensional model problem in Figure 3.1.2, the costs are

S(x) = pgr words , (3.2.91)
Src(A) =5 16pgr words , (3.2.92)
SErL(A) = 36(p — 1)(¢ — 1)(r — 1) words , (3.2.93)
C(x -x) = pqr ops, (3.2.94)
Cro(Ax) =~ 8pgr ops, (3.2.95)
and
CeL(Ax) = 64pqr ops . (3.2.96)

To compute the costs for two-dimensional problems, the leading constants must be

changed to reflect the reduced element connectivity.

As before, if we consider equal refinement in all directions,

p=gq=r, (3.2.97)



3. Algorithms for Solving the Linear Problem 50 3.2. Iterative Techniques

S(x) = p® words (3.2.98)
Src(A) ~ 16p° words , (3.2.99)
Ser(A) = 36(p — 1)® words , (3.2.100)
C(x-x) =p® ops, (3.2.101)
Crc(Ax) ~ 8p® ops, (3.2.102)
Cer(Ax) = 64p® ops. (3.2.103)

In the next chapter, we introduce approximate factorizations found to be cost-

effective for the solution of finite element problems.



Chapter 4

Approximate Factorizations

This chapter describes the techniques developed for approximating the matrix A.
These approximations may either be used as the splitting matrix in the definition of an
iterative algorithm or as a preconditioner for any of the standard iterative algorithms
in the last chapter. The convergence rate of the iterative algorithm depends heavily
upon the approximating matrix B. Note that if B = A, all of the iterative algorithms
immediately converge to the exact solution x. First we consider the form of the matrix to
be approximately factored. Next the simplest approximate factorization based on two-
component splitting is defined. Generalization of two-component splitting leads to the
definition of multi-component splits. Next a variety of element-by-element approximate
factorizations are defined. Finally, the choice of parameters governing the accuracy of

the approximate factorizations is considered.

§4.1 Form of the Approximate Factors

For ease in representation and to encompass a wide range of algorithms we employ
the following two-stage approximate factorization of A. The first stage is the reduction
of the matrix A to a form that may be easily factored. Instead of directly approximately

factorizing the matrix A, we will approximately factor a matrix A which is “close” to



4. Approximate Factorizations 4.1. Form of the Approximate Factors

A and has a known form. We consider >
Ax~A, (4.1.1)
where A has the form
A =W2(14+ A)WV/2 (4.1.2)

W is a diagonal, symmetric, positive-definite matrix which should be thought of as a
scaling or normalization matrix. It reduces the terms of A to O(1). The scalar ¢ is a
positive real number that should be thought of as a “small” parameter. The matrix A
is a prescaled approximation to A which has the same sparsity structure as A. Specific

choices of W, ¢ and A are considered later in Section 4.

The second and final stage of the approximate factorization is the definition of the

splitting matrix B as an approximation to the matrix A. Thus, we define
B = W!/2cw!/2 (4.1.3)

where

Cal+éA. (4.1.4)

The matrix C should be easily factored, and it must be possible to store C™! in a
compact form. Further, C~! must be well-behaved. We have found it advantageous for
C to be symmetric positive-definite. However, we do not impose this restriction in the
derivation of the following approximations. We consider definitions of C based on sum-
to-product approximations. A sum-to-product approximation approximates the sum of
a number of terms by the product of scaled terms augmented by the identity. Various

choices for the matrix C are explored in the following sections.



4. Approximate Factorizations £g 4.2. Two-Component Splitting

§4.2 Two-Component Splitting

The simplest of the sum-to-product type approximations is two-component splitting.
This form of approximation is similar to the alternating direction method [Douglas
56,62]. It decomposes the operator into the sum of two simpler operators. Let A be

decomposed as follows:

A=A +A,. (4.2.1)

Then a possible definition of C is

C = (I+€A;)(I+€Ay). (4.2.2)

Expanding terms yields

C=1I+¢6A+ fAA,
=I+eA+0 (62) : (4.2.3)

The last line suggests the nature of the approximation. Computational simplicity is
gained if Ay and Ay are very sparse and are easier to factor than A. Note that if A,
and As do not commute, C will not in general be symmetric even if A is symmetric.
In addition, the ordering of terms in the product approximation influences the error in

the approximation, the e2-term. An alternative definition of the two-component split is

thus

C = (I+ eAz)(I+€Ay). (4.2.4)

Expanding terms yields

C=1+¢A+ 62K2K1
=1+eA+0(). (4.2.5)



4. Approximate Factorizations 4.3. Multi-Component Splitting

54

Note the difference in the € error terms of the two orderings. We explore ways of

symmetrizing the product approximation in the next section.

As an example of a two-component split, consider

A, =L,(A) (4.2.6)
and
A, = U,(A). (4.2.7)
B has the simple form
B = W'/(1+ eL,(&))(1+ €U, (X)) W"/?. (4.2.8)

B is already factored and the factors require no more storage than the factors of A.
Only diagonal scaling, forward reductions, and back substitutions with sparse triangular
arrays are needed to solve equations with B as coefficient matrix. This eliminates the
cost of factorization and obviates the storage penalties due to fill-in. Equation (4.2.8)

represents a symmetrized Gauss-Seidel type approximate factorization.

£4.3 Multi-Component Splitting

Having defined the two-component splitting method, we now consider the generaliza-
tion to multi-component splitting. The operator is approximated by a product formed
of its N components. The “quality” of the approximation depends on the form and

order of the terms in the product.

4.3.1 One-Pass Multi-Component Splitting

We first analyze the simplest of the multi-component splittings, the one-pass multi-



4. Approximate Factorizations - 4.3. Multi-Component Splitting

component splitting. Consider a multi-component sum decomposition of A :

N
A=) A;. (4.3.1)
t==]
Let the matrix C be defined by
N
C=J[(I+6A)). (4.3.2)
i=1

Expanding terms yields

C = (I+€A;)(I+€Ag)...(I+€An)
N-1 N
=1+ €A + ¢ Y (K,- Y KJ~)+O(63)
i=1 J=i+1

=I1+A+0(&). (4.3.3)

Clearly, this is a straight-forward generalization of the two-component splitting. The

ordering of the terms or, equivalently, the definition of the A;’s, affects the exact form

of the error.

4.3.2 Two-Pass Multi-Component Splitting

The generalization of the preceding case has qualitative advantages under certain
circumstances [Marchuk 75]. In particular, we attempt to symmetrize C by using both

forward and backward products of terms. Let C be defined by

N € 1 €
c=Ja+ -2-K,-) II 0+ 5}I,-) : (4.3.4)

=1 1=N



4. Approximate Factorizations 56 4.3. Multi-Component Splitting

Expanding terms yields

C=(I+ %Kl)(l-*- %Kz)...(l-*- %XN)

X (I+ éKN)(I + %xN_l) (I gxl)
_ of Igz 1 g8 2 :
_I+6K+e(2x 4£§1K,)+O(e)
=1+eA+0(c). (4.3.5)

If each A; is symmetric and positive semi-definite, then C is symmetric and positive-
definite. This is easily shown by
T T € € €

X (I+ ng)(H ng_l) ) %KI)X

= xT(1+ -;—X2)(I+ gxs) I+ ng)

X (I+ ng)(H ng_,) I+ gxg)xl

= x_y(T+ SAN)I+ SAN )N -1

= xxXN

>0 V x3o. (4.3.6)

Definitions of two-pass forms based on more general orderings exist, but are not to be

considered here.

4.3.3 Multi-Pass Multi-Component Splitting

Analogous to the generalization from two-component to multi-component, we now

generalize from two-pass to multi-pass. Let the matrix C be defined by

Npass | N ¢

c= I (IHa+

ju=1 li{=1 NPASS

chj(i)) . (4.3.7)



4. Approximate Factorizations - 4.4. Element-by-Element Splits

Expanding terms yields
C=I+eA+0(e), (4.3.8)

where Npags is the number of passes and k;(¢) defines the order of the components
for pass j. Typically, one uses a symmetrized form; thus Npgss is even. Symmetry is

maintained by choosing k;(¢) such that
ki(1) = knpgs—j+1(N — ¢+ 1) . (4.3.9)

For the symmetric case, composed of pairs of simple forward and backward sweeps,

Npass/2?
C =
i=1

N € 1 €
Ma+ A)JT a+ K,-)}. (4.3.10)

t=1 Npass =N Npass

Expanding terms yields
12 1 N 2
C=I+A+|-A"——— Y A |+0(
teAte (2 2Npass ,'; 1)4— (6 )

=I1+eA+0(). (4.3.11)

§4.4 Element-by-Element Splits

The element-by-element (ELXEL) approximate factorization is simply a multi-
component splitting. The components of the matrix are the prescaled finite element

contributions to the global matrix.

We assume

NgL
A=) A,, (4.4.1)



4. Approximate Factorizations - 4.4. Element-by-Element Splits

where A, is the e element contribution to A. To simplify the notation, we use globalized

element arrays A. instead of a combination of the local element array a® and a Boolean
mapping matrix. These globalized element arrays are very sparsel. In practice, however,
all operations are performed by localizing all necessary information for the element
under consideration, performing the operation on the local (element) level, and then

globalizing the result.

The term element is used in the generic sense of a subdomasn model, where an
element could be an individual finite element or a subassembly of elements. Thus, we
allow limited assembly. Various equivalent terminologies have been used to define this
concept, such as substructures and superelements. Subdomain finite element models

inherit the symmetry and definiteness properties of the global array.

4.4.1 One Pass EL XEL Splitting

Substituting the definition of A., given in (4.4.1) , into the general one-pass multi-

component splitting defines C as

Ngy
C= Jl I+eA,). (4.4.2)
e=]

In practice, the result of C~! acting on a vector is computed by peeling off the “inverses”
of successive terms in the product. The effects of these element inverses are actually
computed using one of the standard direct solution techniques which are based on

product factorizations. The Crout-factored form corresponding to (4.4.2) is

N,
C = I La(I+ A)Ds(I+ AU, (I + €A.) . (4.4.3)

e=1

Ifor a four-node two-dimensional heat conduction element, Ke has at most 6 non-zero off-diagonal terms
independent of the number of global equations.



4. Approximate Factorizations 59 4.4. Element-by-Element Splits

If D.(I+€A.) is positive, it is also possible to express (4.4.2) in terms of Cholesky factors

as

Ngy -
C= ][] L:(I+€eA)U,(I+€A,). (4.4.4)

e=1

Note that both (4.4.3) and (4.4.4) are equivalent to (4.4.2) .

To avoid the cost of computing the exact product factors, one may instead ap-

proximate (4.4.2) using a sum factorization for the terms in the product. Thus, we

define

C= IﬁL (1+ €L, (&) )(I + €D, (A.) I+ €Us(Ae)) (4.4.5)
e==1
or
Ngeg - -
C= ]I (T1+eL,(A&))(1+U,(A.)). (4.4.6)
e==1

Note both (4.4.5) and (4.4.6) are approximations to (4.4.2) .

4.4.2 Two-Pass EL XEL Splits

As with multi-component splits, we symmetrize the approximation by using two

passes, a forward sweep, and a backward sweep. Thus, C is defined as

C= N[E[L(I + %KC) ]lI (I+ %KC) . (4.4.7)

e=1 e=Ngy,

The Crout-factored form corresponding to (4.4.7) is

Ner € € €
C= H L (I+ §Xe)D1r(I+ Exe)Uw(I + éxe)
= 1 (4.4.8)

X I LI+ EJDA(I+ AJU(I+ JA),

e=Ng,



4. Approximate Factorizations 4.4. Element-by-Element Splits

60
and the Cholesky-factored form is
Ngr ¢
c= ][ L.(I+ K) (I+§K8)
ex=]

1 (4.4.9)

x I f,,,(1+-;-xe)ﬁ,(1+§xe).

e=Npgy,

Note that both (4.4.8) and (4.4.9) are equivalent to (4.4.7) .

As with the one-pass form of the ELXEL split, it may be advantageous to ap-

proximate the factors of the element arrays with a sum factorization. Thus, we may

define C by

Y (I+ Lo ))(1+ gna(xe))(u gua(xe))

e=1

1 (4.4.10)
x 11 (1+ o)1+ Do) 1+ jU &),
or alternatively
c=Tt (1+ ST (1+ SU,&)
o=t (4.4.11)

Note once again that the sum factorizations (4.4.10) and (4.4.11) are only approximations

to (4.4.7) .

4.4.3 Reordered EL XEL Splits

The ordering of the factors in the EL X EL splits influences how well C approximates

I+ eA. The global product decomposition based on Crout factorization,

I+ €A =Ln(I+ cA)D:(I1+ €A)U,(I+ €A), (4.4.12)



4. Approximate Factorizations 61 4.4. Element-by-Element Splits

suggests that it might be worthwhile to reorder the factors in the EL X EL splits such that

all lower triangular factors precede diagonals which, in turn, precede upper triangular
factors. This results in the following reordered schemes. In reordered one-pass Crout

factorization, C is defined by

c=|Tt L,,(I+6Ke)][hﬁLD,r(I+eKe)}[ i U,,(I+eKe)J. (4.4.13)
e=1 e=1 e=Ngp

When D, (I + €¢A.) is positive, we may also define C corresponding to the reordered

one-pass Cholesky factors as

c:[lﬁLL,(nexe)][ 111 ﬁ,,(1+exe)}. (4.4.14)
e=1 e=Ng|,

Note (4.4.14) and (4.4.13) are not generally identical.

Similarly, we may define the reordered one-pass sum factorizations as

1

C= jﬁL (1 + eLa(Ke))][AﬁL (1 + eDa(Ke))][ II (I + eU,,(Ke))J : (4.4.15)
e=1 e=1 e=Ngr
Ngp, - 1 .
c=|]] (1+ eLa(Ke))][ I (1+ eUa(Ke))] . (4.4.16)
e=1 e=NgL

Note that in the case of symmetric A, symmetry is preserved by (4.4.13)—(4.4.16);

thus there is little motivation for similarly reordering the two-pass versions.

4.4.4 Cost

In discussing the cost of EL X EL approximate factorizations, we consider only those

costs directly associated with the storage, factorization, and solution of the matrix B.



4. Approximate Factorizations 62 4.4. Element-by-Element Splits

The other costs depend on the particular iterative solution technique coupled with the

approximate factorization and are described in Chapter 3.

The storage cost for the approximate factorization matrix B, given in the form
defined by (4.1.1)—(4.1.4) , is composed of two parts. The first is the storage for the

diagonal scaling matrix W or its square root,
S(W) = S(W'/2) = Ngg words . (4.4.17)

The second is the storage of the matrix C or its element factors,

SEL(C) =SEL—1r—factor(C) = SEL—a—factor(C)
=NgLNELpq words . (4.4.18)

If A is symmetric,

SEL(C) =SEL—1r—factor(C) = SEL—a—factor(C)

NELEQ(NELEQ + 1
=NEgL ol 5 ¢ )words. (4.4.19)

Note that C need not be stored, but may be computed on an element-by-element basis

if storage for the matrix is unavailable.

The cost of computing B~!x also has two parts. The first is the cost associated
with the factorization of B. The factorization of B entails the calculation of the square

root of W and the element factors of C; these are

C /W) = 0(Ngq) ops, (4.4.20)

CEL-o—factor(C) =0 — NgrLNgLEQ OPS (4.4.21)



4. Approximate Factorizations 4.5. Choice of Parameters

64

they can be processed in parallel. The eight groups, however, need to be processed

sequentially. For analogous two-dimensional domains, four-element groups need to be

employed. We discuss this further in the next chapter.

It has been our computational experience that if A is symmetric and positive-
definite, qualitatively faithful approximate factorizations, which preserve these properties,
perform much better then those which do not. Consequently, in the numerical ex-

amples presented herein we employed qualitatively faithful approximate factorizations.

§4.5 Choice of Parameters

The splitting matrix B is defined through the two-stage approximation of the matrix
A given in the first section. In the previous sections, we have considered definitions for
C, the second stage in the approximation of A. We now consider the first stage of

approximation, converting A into A, and the associated definitions of W, ¢, and A.

4.5.1 Parabolic Regularization Parameters

The choice of parameters is motivated by the derivation of the parabolic regulariza-

tion algorithm in the previous chapter. The parameters are defined by
W = D,(A) (4.5.1)
and
A= %W"WAW‘W , (4.5.2)

where the pseudo-time step of the parabolic regularization algorithm, A7, is assumed

equal to 1. Thus the matrix which we approximately factor, A, is

A=D,(A)+A. (4.5.3)



4. Approximate Factorizations 4.5. Choice of Parameters

65

The additional term D,(A) in (4.5.3) is spurious and, as such, reduces the convergence

rate of the iterative scheme employed.

4.5.2 Optimum Parameters

To improve the convergence rate, we suggest alternate definitions for the parameters
governing the first stage of the approximate factorization. As before, we define the

scaling matrix as

W = D,(A). (4.5.4)

However, to remove the spurious term in A we define A as
A— %W“/Z(A —D,(A)W-12_ (4.5.5)

which leads to the optimum value for A,

A=A. (4.5.6)

Matrices of the form A = D,(A) + AtA were introduced in [Hughes 83a]. Nour-
Omid and Parlett [Nour-Omid 82] analytically investigated the effectiveness of matrices
of this type on a simple one-dimensional model problem and concluded that the optimal

value of A7 was oo. This limit is achieved by the definitions (4.5.4) and (4.5.5) .

4.5.3 Size of ¢

The size of the parameter ¢ is as yet unspecified. The approximate factorizations
under consideration have all had error terms of order ¢? and higher. The “quality” of the
approximation is governed by the size of these error terms. Clearly, if the terms in A are

O(1), the approximate operator B approaches the exact operator A as ¢ — 0. We now



4. Approximate Factorizations 4.5. Choice of Parameters

66

determine the value of € which scales the terms in A to be O (1). This scaling is implicit,

unlike that of WY/2 and is never actually performed during numerical computation.
In the following analysis we assume that W and A are specified by (4.5.4) and (4.5.5),
respectively. To simplify the following calculations, we consider the case of a body
composed of an isotropic, homogeneous, linear material that has been uniformly meshed.
Thus, away from the nodes on the boundary, we can assume that all the diagonal (d)

components of the matrix A are approximately equal, so that
Ai~Ay YV i€{1,2,..,Ngg} (nosum). (4.5.7)
Similarly, the magnitudes of the off-diagonal (o) terms are assumed approximately equal,
|Aijl~A, V 55 45€{1,2...,Ngg}. | (4.5.8)

Substitution into (4.5.5) gives :

0, t=17]
|4l =1 14, ., . Y 45€{L,2,..,Ngg}. (4.5.9)
€Ay 17

For the terms in A to be O (1), we define ¢ as

€= —. (4.5.10)

From the positive-definitness of the global operator, we know A; > A,, which implies

e<1. (4.5.11)

Considering the general form of A in more detail, we recall from Chapter 2

A =M +aAtKr, (4.5.12)



4. Approximate Factorizations 4.5. Choice of Parameters

67

where M is the positive-definite symmetric mass matrix, a is a parameter governing the

stability and accuracy of time integration, At is the time step, and K7 is the positive-
semi-definite symmetric tangent stiffness. Reducing the terms in A into their diagonal

and off-diagonal components, we find

Ag= M+ alAtK, (4.5.13)
and
A, =M, + aAlK, . (4.5.14)
Thus, € is given by the ratio
_ M, +aliK,

In certain cases, the results of [Emery 79,82], [Gresho 79] show that a more accurate
solution of the transient equations may be achieved through the use of a lumped mass
matrix. This technique lumps all the mass associated with a given equation on the

diagonal, thus producing a diagonal mass matrix. With a lumped mass matrix, or M, =

0, we find
alAtK,
Looking at the limiting values of € as a function of time-step size, we find
At—0 = ¢—0 (4.5.17)
and
K,
At—so00 = e—2<1. (4.5.18)
Ky

To further compare the diagonal terms in Kt to the off-diagonal terms, it is necessary

to specify the dimensionality and order of interpolation for the problem.



4. Approximate Factorizations 4.5. Choice of Parameters

68

We first consider the mass and stiffness arising from the two-dimensional, linear-

interpolation, four-node, quadrilateral heat conduction element. If we restrict ourselves
to a rectangular mesh aligned with the coordinate axes, the consistent element mass

matrix m°€ is

r4 2 1 27
g 9 9§
w| § & § %
€
= pC,— 9.
M=l L 2 4 2 (4.5.19)
9 9 8 9
2 1 2 4
-9 9 9 9 J
The corresponding lumped version is
1 0 0 0
lwl0 1 0 0
m® = pCp,— (4.5.20)
410 01 0
L0 0 0 14
The element stiffness k° is
[+ + 2 g -2 -2 4
3w ™ 3 Bw — 3] [: ] 3w ™ bl
{ w l w i w l w
Tow 3 twTy “3wte Tw
K=k 3 N 3 ;” ’ o (4.5.21)
w w w w
w6l dwte Tty Tew
l { { l
“swt 6 “sw— s tew s Tty

In (4.5.19)—(4.5.21) , l is the length and w the width of the element. Exact quadrature

was used for the element-level integration.

The size of the diagonal and off-diagonal terms in the assembled global matrices
M and K7 depends on the number and size of the elements contributing to the term.

In computing an upper bound for ¢, a “safe” estimate of the size of the diagonal terms



4. Approximate Factorizations 4.5. Choice of Parameters

69

in the global matrix A is the minimum diagonal term, thus

NeLEQ
Ag= min (ngeat,). (4.5.22)

a=1
For the off-diagonal terms, the safe estimate is the magnitude of the maximum off-

diagonal term, or

NeLEQ
A, = Pgi_)g (nablaZbl) ) (4'5'23)

aptb

where n, is the number of elements contributing to the term A 452 in the global matrix.

For the two-dimensional, four-node, quadrilateral element, n,; is

4 02 1 27
2 4 2 1
[nas) = (4.5.24)
1 2 4 2
L2 1 2 4.

We may compute the safe estimates for the terms in the consistent mass matrix as
4
M;= pCplw§ , (4.5.25)

and

1 1
M, = max{ pCplws—), pCplw% }

= pC’pr% , (4.5.26)

24 and B are the global equation numbers corresponding to the local numbers a and b respectively.



4. Approximate Factorizations "0 4.5. Choice of Parameters

while the safe estimates for the terms of the lumped mass matrix are -

My = pCylw (4.5.27)

and

M,=0. (4.5.28)

Similarly, we compute the safe estimate for the diagonal of the global stiffness as

4 1 w
and for the off-diagonal as
K, = max{2k|—— — 2| K=+ 2, 2k =L+ 2 4.5.30
o= maxt2hlg, ~ah e T e gy el (4.5.50)

If we further assume that the element aspect ratio satisfies

2w <1< Vew, (4.5.31)
V2

then we may let

Ko=k( ! E)

st el (4.5.32)

Having computed the diagonal and off-diagonal terms in M and K, we now compute
¢ for consistent mass as

pClw} + aAtk}(L + v
e=—1—) f(';’ ':) , (4.5.33)
pColwd + aAtk}(L + )



4. Approximate Factorizations 4.5. Choice of Parameters

11

which has the limiting behavior

(4.5.34)

N

At—0 = ¢—

and

. (4.5.35)

Q0 | et

At — 00 = €¢—

Similarly, the € for lumped mass is

aAtkl(L +4)
€= , (4.5.36)
pCplw + aAtk%(;v’— + %)

which has the limiting behavior

At—0 = €¢—0 (4.5.37)

and

At—> 00 = €— % . (4.5.38)

A similar analysis for the one-dimensional, linear-interpolation, two-node “rod”

element of length ! with unit area and lumped mass yields

¢ — aAtk
~ pCyl + 20Atk’

(4.5.39)

which has the limiting behavior

At—0 = e¢—0 (4.5.40)

and

1
At - 00 = ¢— g (4.5.41)



4. Approximate Factorizations , 4.5. Choice of Parameters

72

For a three-dimensional, linear-interpolation, eight-node “brick” element with edge

length [ and lumped mass we find

= oAtk (4.5.42)
— pCyB + BaAtk’ s
which has the limiting behavior
At—0 = e—0 (4.5.43)
and
1
At 500 = €— — (4.5.44)

16

The size of € measures the error in the approximate factorization. From the above
analysis, we see that in all cases ¢ < 1/2. For lumped mass, the actual value of ¢ may

be even less if small time steps are used.



Chapter )

Implementational Aspects

This chapter explores a variety of implementational topics. It first describes sub-
iteration algorithms; these are combinations of EL X EL approximate factorizations and
iterative algorithms that we have found successful in the solution of the linear equa-
tion system arising from the nonlinear iterative solution scheme. Next, the convergence
measures used to terminate an iterative scheme are considered. Based on an analysis of
the effect of error in the subiteration loop on the convergence of the iteration loop,
optimal convergence criteria for the subiteration loop are developed. This leads to
an investigation of the control of error in the time integration algorithm. Next, the
use of substructuring to reduce computational costs is considered. Some of the addi-
tional benefits of the EL XEL solution algorithms are then briefly outlined. Finally, the

modifications required to implement EL X EL algorithms on parallel processor machines

are considered.

§5.1 Subiteration Algorithms

In Chapter 3, we described a number of iterative algorithms for the solution of
linear equation systems and in Chapter 4, we developed EL X EL approximate factoriza-
tions. We now consider combinations of these algorithms for solving the linear equa-

tion system arising in the nonlinear iterative solution algorithm. We call the composite



5. Implementational Aspects 5.1. Subiteration Algorithms

T4

schemes subiteration or snner-steration algorithms, since they are iterative algorithms

used “below” or “inside” the nonlinear iteration level [Hageman 81] [Wachpress 66].
We assume that the A matrix is symmetric positive-definite, although most of what is

presented in this and in the following sections may be generalized to the nonsymmetric

case.

5.1.1 Definitions

A subiteration scheme is defined by the triplet (7, .:\, E), where I is an iterative
algorithm, A is the matrix approximated by the EL XEL factorization, and FE is an
EL XEL approximate factorization algorithm. We limit our discussion to the following

iterative algorithms :
1. Preconditioned Richardson’s method (PRF),
2. Preconditioned steepest descent (PSD),
3. Preconditioned conjugate gradient (PCG).
The choice of A may be either:

1. Parabolic Regularization (APR),

A=A+D,(A); (5.1.1)

2. Optimal (AOPT)y

A=A. (5.1.2)
Finally, the EL XEL approximate factorization FE' is itself defined in terms of the
triplet (n, O, F), where n is the number of passes; O is the ordering, natural (N), or

reordered (R); and F is the symmetric factorization. F' may be



5. Implementational Aspects 5.1. Subiteration Algorithms

15
1. Crout (7):
NeL
C = ][] La(I+ eAe)Dx(I+ A )LI(I + €A,), (5.1.3)
e=1
2. Cholesky (r):
Ngp _ T
C= ] L:(I+A.)L,(I+¢A,), (5.1.4)
e==]
3. Symmetric Gauss-Seidel (o) :
Ney - T
c=11(1+ eLa(Ke))(I+ eL,(Ae)). (5.1.5)
e=1]

A subiteration algorithm composed of a preconditioned steepest descent iterative
algorithm applied to a reordered one-pass Cholesky factorization based on the optimal

A is thus specified by (PSD, AOPT, (1, R, 7).

5.1.2 Cost

Having defined the components of a subiteration algorithm, we are now prepared to
compute the total storage and CPU costs associated with the algorithm. The total cost

is the sum of the costs of the specified iterative scheme and the EL X EL approximate
factorization.
The storage costs for the iterative algorithms considered with element-level storage

for the A matrix are given in Table 5.1.1. Although these costs could be reduced by

using a sparse matrix storage technique, the savings to be gained are outweighed by



5. Implementational Aspects "6 5.1. Subiteration Algorithms

Algorithm Storage Cost (words)
PRF %NELNELEQ(NELEQ + 1)+ 2Ngg
PSD %NELNELEQ(NELEQ + 1) + 4NEgg
PCG %NELNELEQ(NELEQ + 1)+ 7NEg

Table 5.1.1 Storage costs for iterative algorithms.

Algorithm Storage Cost (words)

(PRF,*,*) | NELNELEQ(NELEQ + 1)+ 4NEg

(PSD,*,*) | NgLNgLEQ(NELEQ +1) +6NEQ

(PCG,*,*) | NeLNELEQ(NELEQ + 1) + 9NEQ
*(independent of this argument)

Table 5.1.2 Total storage costs for subiteration algorithms.

the simplicity of the element-level implementation. The storage cost for all the EL X EL

algorithms under consideration is
1
SEL—factor(B) = §NELNELEQ(NELEQ + 1)+ Ngg words . (5.1.6)

The total storage cost for the subiterative algorithms is independent of the exact type

of EL XEL factorization used. The totals are given in Table 5.1.2.

As indicated in the discussion of the costs of iterative algorithms in Chapter 3,
the CPU cost is composed of two parts, an initial or factorization cost and a cost
associated with each iteration. The CPU costs for the iterative algorithms considered
are given in Table 5.1.3. The CPU costs for the EL XEL approximate factorizations
under consideration are given in Table 5.1.4. Combining the CPU costs of the iterative

and EL X EL algorithms results in the total CPU costs of the algorithm. These are shown
in Table 5.1.5.

To get a feeling for the costs of a subiteration algorithm, reconsider the three-



5. Implementational Aspects 5.1. Subiteration Algorithms

71
Algorithm | Initial Cost (ops) | Cost per Iteration (ops)
PRF 0 NgiN %;LEQ
PSD 0 NerN%reg + 3Ngg
PCG 0 NELN%LEQ + 5NEg

Table 5.1.8 CPU costs for iterative algorithms.

Algorithm Initial Cost (ops) Cost per Iteration (ops)
(1,R,0) ~ NeLNELEQ NerLN%rpg + 2NEgQ
(1,R,7) | §NELNELEQ(NELEQ — 1)(NELEQ +4) | NeLN%1£Q + 2NEQ
(1,R,7) | §NeLNELeQ(NeLeQ —)(NELEQ +4) | NeLN%Erpg + 2NEQ
(2, N,7) | §NELNELEQ(NELEQ — 1)(NELEQ +4) | 2NELN%15Q +2NEQ

Table 5.1.4 CPU costs for EL XEL algorithms.
Algorithm Initial Cost (ops) Cost per Iteration (ops)
(PRF,*,(2, N, 7)) | §NerNeLEQ(NELEQ — V)(NELEQ +4) | 3NELNE1EQ + 2NEQ

PSD,* (1,R,o NELNELEQ 2NELN%§LEQ+2NEQ

{
(PSD,* (1,R, « %NELNELEQ(NELEQ - l)(NELEQ + 4) 2NELN%‘;LEQ + 5NEgg
(PSD,* (1,R,m NELNELEQ(NELEQ — 1)(NELEQ +4) | 2NELN ELEQ + 5NEQ

(PCG,*, NEerLNELEQ 2NELNELEg + TNEQ

(PCG,*(1,R, 7)) | $NeLNELEQ(NELEQ — )(NELEQ +4) | 2NELN} 50 + TNEQ

(1, R, a))
(1, R, 7))
(1, R, m))
(PSD,*,(2, N, 7)) | §NeLNELEQ(NELEQ — 1)(NELEQ +4) | 3NELN%E1£Q + 5NEQ
(1, R,0))
(1, R, )
(1, R, )

(PCG,*(1,R, 7)) | §NELNELEQ(NELEQ — W/(NELEQ +4) | 2NELN%1£Q + TNEQ

(PCG,*,(2, N,m)) | §NELNELEQ(NELEQ —1)(NELEQ +4) | 3NELN%1£Q + TNEQ

*(independent of this argument)

Table 5.1.5 Total CPU costs for subiteration algorithms.

dimensional model problem with p X ¢ X r regular mesh given in Chapter 3. Further,

assume that p = ¢ = r, and that the elements are eight-node bricks. Thus, the number




5. Implementational Aspects 5.1. Subiteration Algorithms

18
Algorithm | Storage Cost (words)
(PRF,* * 72(p — 1) + 3p3
(PSD,* * 72(p — 1)% + 5p°
(PCG, *,*) 72(p — 1) + 8p®
“direct” p’+p

*(independent of this argument)

Table 5.1.6
Total storage costs for subiteration algorithms applied to the three-
dimensional p X p X p model problem.

of elements is
Ner=(p— l)3 , (5.1.7)

the number of global equations is

Ngg=7p®, (5.1.8)
and the number of element equations is

Nergpg = 8. (5.1.9)

The total storage costs for the subiterative algorithms applied to the model problem
are given in Table 5.1.6. The CPU costs for the subiteration algorithms applied to the
model problem are given in Table 5.1.7. Note, in particular, that the cost per iteration of
the subiterative algorithm is actually higher than the initial cost of factorization. This
suggests that for some nonlinear problems it may be advantageous to use a full Newton-
Raphson iteration scheme. One would assume that faster iteration-level convergence

would be obtained even though there would be the additional expense of more element

stiffness formations.



5. Implementational Aspects 5.1. Subiteration Algorithms

19

Algorithm Initial Cost (ops) | Cost per Iteration (ops)
(PRF,* (2, N, 7)) 112(p — 1) 192(p — 1) + 2p°
(PSD,* (1, R, ) 8(p—1)° 128(p — 1) + 2p°
(PSD,* (1, R, 7)) 112(p — 1)3 128(p — 1) + 5p°
(PSD,*,(1, R, 7)) 112(p —1)3 128(p — 1)3 + 5p°
(PSD,* (2, N, 7)) 112(p — 1)® 192(p — 1)® + 5p°
(PCG,*,(1,R,0)) 8(p —1)° 128(p — 1)* + 7p°
(PCG,*,(1,R, 7)) 112(p — 1)3 128(p — 1) + 7p°
(PCG,*,(1,R, 7)) 112(p — 1) 128(p — 1) + 7p®
(PCG,*,(2, N, )) 112(p — 1) 192(p — 1)% + 7p8

“direct” 10 2p>(t)

*(independent of this argument)
((only one iteration required)

Table 5.1.7
Total CPU costs for subiteration algorithms applied to the three-
dimensional p X p X p model problem.

Finally, comparing the costs for a given subiteration algorithm to those of direct
solution techniques, we can compute a break-even potnt beyond which the subiteration
algorithm is more efficient. The break-even points for the model problem, solved using
the (PCG,AOPT, (1, R, w)) subiteration algorithm, are listed in Table 5.1.8. Note that
although the break-even point for “solution” may be larger than that for “factorization”

for large problems, p > 1, the direct factorization cost will dominate.

We can make a more meaningful comparison if we assume an average number of
nonlinear iterations per factorization, a, and compare the combined costs of both fac-
torization and solution for direct and subiterative techniques. For full Newton-Raphson
iteration, o = 1, while for modified Newton-Raphson, a typical value is @ = 10. Finally,
for a linear time-dependent problem, &« = Ng7gps, where Ngrgps is the number of

time steps and therefore the total number of solutions.



5. Implementational Aspects 5.1. Subiteration Algorithms

80
Cost Component | Break-Even Point
Storage p 27
Factor CPU p>3
Solve CPU p > 8Vilh)

(T)(i is the number of iterations)

Table 5.1.8

Break-even points for the (PCG, Aopr, (1, R, 7)) subiteration algorithm
applied to the three-dimensional p X p X p model problem.

In comparing the overall costs between direct and subiterative techniques, it is
useful to define a cost ratio C as

subiteration cost
direct solution cost ’

(5.1.10)

where the costs may be associated with storage or CPU. We restrict our discussion
to the (PCG,AOPT, (1, R, 7)) subiteration algorithm applied to the three-dimensional
p X p X p model problem. The storage cost ratio is

72(p — 1)% + 8p° 2
Cs = =0 : 5.1.11
S p5 + p3 (p ) ( )

An example of the storage savings for the EL XEL solution algorithm applied to the
model problem is given in Table 5.1.9.

The CPU cost ratio is

%[112(;; - 1)3] + 6[128(11 -1P3 4+ 7P3]

ir] e .

Co =

’

where ¢ is the number of iterations required for the subiteration scheme to converge.

Unfortunately, ¢ is a problem-dependent parameter, and no a priori estimate is available.



5. Implementational Aspects 5.1. Subiteration Algorithms

81
S(Direct) (words) | S(ELXEL) (words) Cs
4 1.09 X 10° 2.46 X 103 2.30
10 1.01 X 10° 6.05 X 10* 0.60
25 9.78 X 108 1.12 X 108 0.11
50 3.13 X 108 9.47 X 108 3.03 X 1072
100 1.00 x 10'° 7.79 X 107 7.79 X 1073
250 9.77 X 10" 1.24 X 10° 1.27 X 1073
1000 1.00 X 10'° 7.98 X 10'° 7.98 X 107°
Table 5.1.9

Example of storage cost ratio for the (PCG, ;\opT, (1, R, r)) subitera-
tion algorithm applied to the three-dimensional p X p X p model
problem.

A worst-case estimate based on theoretical considerations yields ¢ < Ngg = s,
however, experience indicates 1 & Ngg is typical. We may assume ¢ = O (p) for many
cases based on the worst-case information propagation time between elements, which is
m = /3p for the model problem. Further research is necessary to confirm
this estimate. The parameter ¢ is also problem-dependent, and may be weakly related
to problem size. Thus, to continue with the CPU cost ratio calculation, it is necessary
to consider the dependence of o and ¢ on p. The results of substituting a« = O (p") for
k =0,1,2,3 and i = O(p’) for j = 0,1,2,3 into (5.1.12) are given in Table 5.1.10.
Any entry of size O(p‘l) or smaller indicates that the EL X EL subiteration algorithm
has the potential for CPU cost savings as the problem size p increases. In particular, the
upper left-hand quadrant of the table indicates that there are substantial savings to be
gained in the solution of strongly nonlinear problems using a full or modified Newton-
Raphson method coupled with a quickly convergent subiteration scheme. Examples of

CPU cost ratios for the model problem are given in Table 5.1.11.

In addition, even when the CPU cost ratio is O(1), the storage cost ratio remains



5. Implementational Aspects 5.1. Subiteration Algorithms

82
t=0(1) | i=O0(p) t=0(p2) i=0(p3)
a=0(1) | O (p") O (p'3) O (p_2) Y (P—I)
a= o) | oG | o) | o) | o
a = O(pz) O(p_z) O(P—l) Oo(1) O (p)
a= O(p3) O(p’z) 0(17_1) o(1) O(p)
Table 5.1.10

CPU cost ratio for the (PCG, ;\opr, (1, R, 7)) subiteration algorithm
applied to the three-dimensional p X p X p model problem.

C(Direct) (ops) | C(ELXEL)! (ops) Col Col (i =p)

4 1.02 x 10* 3.90 X 103(s + 1) 0.38(f + 1) 1.80

10 5.20 X 108 1.00 X 10%(i +1) | 1.93 X 10~23(i 4+ 1) 0.21
25 3.07 x 10° 1.88 X 10%(1+1) | 612X 10743 +1) | 1.58 X 10~2
50 3.91 x 101 1.59 X 107(i +1) | 4.07 X 1075%(i+1) | 2.07 X 1073
100 5.00 X 103 131 X 108 +1) | 2.62x107%:+1) | 2.64 X 1074
250 3.05 X 1018 2.09 X 10%(:+1) | 6.83 X 1078(i+1) | 1.71 X 107°
1000 | 5.00 X 10%° 1.35 X 10M(: +1) | 2.69 X 1071%(: +1) | 2.69 X 1077

(T)(upper bound on)
(i)(computed exactly)

Table 5.1.11

Example of CPU cost ratio for (PCG, AOPT,(I, R, 7)) subiteration
algorithm applied to three-dimensional p X p X p model problem.

0] (p‘z). As the problem size is increased, we reach a point where we can no longer afford
to store the factorized global matrix and the EL X EL solution algorithm is attractive.
We consider further the notion of convergence for subiteration schemes, and also the

value for ¢, in the next two sections.



5. Implementational Aspects 5.2. Convergence Measures

&3

§5.2 Convergence Measures

This section develops and assesses measures of convergence for both iteration and
subiteration schemes [Dahlquist 74], [Bathe 80]. We use the convergence measures to
control the termination of the iterative/subiterative scheme employed. We would like
an accurate measure of the “closeness” of the current iterative solution to the unknown

exact solution. Consider the sequence

x; i=12,..., (5.2.1)

where
X; = X;-1 + Ax;, (5.2.2)

and
X0 =0. (5.2.3)

We assume that the sequence converges to the exact solution x. However, we can only
compute a finite number of terms in the sequence and would like to assess the accuracy

of the term x;. For this pupose, we introduce two notions of accuracy, or error measures.

They are:

i. Absolute error

lIx —x|| < €ass (5.2.4)

ii. Relative error

b PR (5.2.5)



5. Implementational Aspects 5.2. Convergence Measures

84

We consider only the second error measure, as it leads to the ordinary accuracy measure

of “N digits accurate.”

To compute a bound on the error of the term x;, we first consider the convergence

rate of the sequence. We use the traditional measure of the rate of convergence, and

define

o Aaxd .
¢ = 1A% 1] t=23,.... (5.2.6)

In the following analysis, we assume that the sequence converges monotonically and

that the convergence rate satisfies
1>2¢2¢>-2¢20. (5.2.7)

Although (5.2.7) may be violated in practice, such a violation is easily detected, and

as such poses no threat to the use of the following calculations in the assessment of

solution accuracy.
Assuming that the sequence x; converges to the exact solution x, we write
X=X, +AX;41 + AX; 42+ - . (5.2.8)
Rearranging terms,

X —X; = AXj4) + AXj42+ - -, (5.2.9)

and applying the triangle inequality leads to the following upper bound on the absolute

error :

lIx —xif| < |Axs41]] + | A%i42][ + - - (5.2.10)

The definition of ¢; and (5.2.7) allows computation of an upper bound on ||Ax;,;]| as

[|A%;41]|
Ax; = ———NAX;
” t+l” ” ﬁxi” ” ”

= git1||AX,]]
< gflAxy|, (5.2.11)



5. Implementational Aspects 5.2. Convergence Measures

85

Similarly, an upper bound on||x;42|| is

||Ax;+2|] < ‘Ii+1”Axi+1”
< gis14:|Ax,]|
< @llax], (5.2.12)

or more generally
A% el < gfllAx] . (5.2.13)

Substituting (5.2.13) into (5.2.10) allows computation of an upper bound on the absolute

error based on known quantities at iteration ¢,

Ix — x| < (g + 47+ g2 +---)||Axy|
q:
< ——{lAax;ll . 5.2.14
= llaxi (5.2.14)

If we assume that |[x;]| is a good approximation to ||x||, a reasonable relative error

measure e; is

I —xif] _IIx—xll o ¢ [lAx] _

= = <erce , 5.2.15
I Wl S Tog ) &SN an (5.2.15)

where the third term in (5.2.15) is easily computed during the calculation of the sequence

of solution vectors.

A stronger and potentially more accurate error measure can be computed given
a lower bound on |[|x||. If the sequence is “quickly” convergent, an appropriate lower

bound can be found. Recall
X =Xx; + AX;4) + AX;4o + - -. (5.2.16)

Rearranging terms,

X— Ax;41 — AXjpo — - =X, . (5.2.17)



5. Implementational Aspects 5.2. Convergence Measures

86
Applying the triangle inequality,
x|l + laxiall + | x|+ 2 IIxl, (5.2.18)
and again rearranging terms,
lIxll = lix:ll = |A%ip1l] = [[A%;2]]- - - (5.2.19)
yields the lower bound
Il > fheill = 2 llaxi] (5.2.20)

Using (5.2.20) in the denominator of (5.2.5) yields the following more accurate error

measure g; :

lIx — x| lIx — x|
el = lial| — (25 laxi|

g llaxi]
= Il — 25 11Ax|]

1
S = €; S € XJ €REL - (5221)
=g ixd 1
¢ [AX;

Note that in practice the lower bound for ||x|| given in (5.2.20) is useful only if the

right-hand-side of (5.2.20) is positive. This is easily verified during actual computation.

The convergence measures ¢; and & may be applied at the iteration level to the
velocity vector v, the out-of-balance force vector AF, and the incremental rate of work
vIAF. In practice, separate error tolerances are specified for each of these terms, and
the solution is considered to have converged when all error bounds have been met.
Similarly, at the subiteration level they may be applied to the solution vector x, the
residual vector r, and subiteration “work” xTr. We further explore the use of these error
measures in the determination of optimal subiteration convergence criteria in the next

section.



5. Implementational Aspects 27 5.3. Optimal Subiteration Accuracy

§5.3 Optimal Subiteration Accuracy

In the previous section, we developed measures of convergence that resulted in
computationally useful criteria for the termination of iterative schemes. In this section,
we develop a scheme to optimize the choice of parameters governing the subiteration
convergence criteria based on knowledge of the iteration convergence rate. We attempt
to compute a useful upper bound for the acceptable error at the subiteration level such
that the subiteration error will not adversely affect the iteration level convergence rate
and error. This allows us to minimize the amount of “work” performed in obtaining the

subiteration solution without increasing the amount of work required at the iteration

level.

Since we are dealing with a well-behaved, positive-definite, symmetric matrix, the
convergence rates and error measures of v, AF, and vIAF in the iteration loop are
essentially equivalent. Using the notion of equivalent norms, we have the relationships

among the convergence rates

9:(AF) = c19i(v) (5.3.1)
and
¢:(vTAF) = c24,(v)q:(AF) (5.3.2)
and among the error measures
ei(AF) = cze;(v) (5.3.3)
ei(vI AF) =~ cqe(v)e;(AF) . (5.3.4)

Here ¢;(z) is the convergence rate of z at iteration ¢, e;(z) is the error measure of
at iteration ¢, and the ¢;’s are constants. These relationships have been verified by our

computational experience. The importance of this equivalence is that it allows an a



5. Implementational Aspects 88 5.3. Optimal Subiteration Accuracy

priori estimation of the convergence rate for v and vZAF based on the convergence
rate of AF, ¢;(AF), which is computable prior to the solution of the linear equation
system. Thus, we know ahead of time that if we solve the linear equation system exactly,

we will pick up approximately — log;o(¢;(AF)) significant digits in iteration 1.

As an example, consider a problem in which the nonlinear iterative convergence
rate is ¢;(AF) = 0.1, i.e. 1 digit per iteration. It makes little sense to solve the linear
equation system to 10-digit accuracy. In fact, if the equation system is well-behaved,
there seems little point in solving the equation system to more than 1-digit accuracy,

for any additional digits will be lost in the error at the nonlinear iteration level.

This notion may be formalized by analyzing the effect of error at the subiteration
level on convergence rate and error at the iteration level. Assume that we have exactly
solved the iterative linear equation system through iteration ¢ — 1. Thus, we have
calculated v;_;, Av,;_;, etc. At this point, we can exactly solve once more for Av; and

v;, which have a convergence rate g; of

|Av,]||
& = qi(v) = ——— 5.3.5
TAvil (5:3.5)
and error e; of
¢ |lAv|
e; = e)v) = . 5.3.6
=)= T (5:3.6)

Now let us consider the effect on the iteration-level convergence rate and error if we
instead use an approximate solution Av; to the linear equation system which results in
our perturbed or approximate ¢** iterate v;. We assume that our approximate solution
Av; satisfies the subiteration error criteria

|Av; — Avy| _
”Aﬁ,” < €5(3) » (5.3.7)

where eg(;) is the parameter governing the convergence of the subiteration scheme during
iteration ¢. Then the convergence rate for the approximate solution v; is

- Al

= 5.3.8
%= Nave] (5.3.8)



5. Implementational Aspects 89 5.3. Optimal Subiteration Accuracy

and the associated error is

. 2; |lav|
= o —o . 5.3.9
Pol—gq; ||l (5.3.9)

We would like to have upper bounds for ¢; and e; in terms of their exact counterparts

¢; and e; and the subiteration error criterion eg(;).

The first step in obtaining these relationships is the determination of a useful upper

bound on ||Av;||. Rearranging terms in (5.3.7) yields
es@llavil] > [|Av; — Avy]| . (5.3.10)

Squaring both sides and using the Schwartz inequality yields

exollAvill® > llav; — Avy?
> lAv;|? + ||Av||? — 2Av; - Av;
> ||Av]? + |AV|7 — 2l Av || AV
> (lavy|| — lav])?; (6.3.11)

thus

esllavil > |(l1avil| - [lavi|)] - (6.3.12)

Further evaluation requires the consideration of two cases, ||Av;|| > ||Av{|| and ||Av;|| <

[|AV;||. In the latter case, (5.3.12) becomes
es@llAvil| > [Javi - [lAvi]] . (5.3.13)
Rearranging terms in (5.3.13) yields

lAv;]| > (1 —egp)llAvy, (5.3.14)



5. Implementational Aspects 5.3. Optimal Subiteration Accuracy

90
which gives the upper bound on ||Av;||
1 -
—lavi]| > flavi]] . (5.3.15)
1-— es(s)

Note that (5.3.15) is also trivially satisfied in the former case if eg(;) < 1, a reasonable
assumption. Thus (5.3.15) provides a useful upper bound on ||Av,||. Substituting (5.3.15)
into (5.3.8) yields the upper bound on g¢;,

B <

Pl 1 5.3.16
T esmq ( )

Thus we have determined an upper bound on the convergence rate of the perturbed
iterative solution as a function of the accuracy with which the linear equation system

was solved.
To compute an upper bound on the error in the approximate solution &;, we must

first compute a lower bound on ||v;|| in terms of ||v;||. This is accomplished by first

taking the definition of v;, adding and subtracting the exact solution increment Av;,

and applying the triangle inequality to obtain

Ivill = lIvi-1 + A¥|
= ||vi—1 + Av; + AV; — Av;|
= [lvi +(Av; — Av)||
2 vill = lav; — Av]|. (5.3.17)

Factoring out ||v;|| and using the upper bound for ||Av; — Av;]| given by the definition
of eg(;) in (5.3.7) , we obtain the bound

lAv]

[ivill

Ivill > (1 —es( vl - (5.3.18)



5. Implementational Aspects 01 5.3. Optimal Subiteration Accuracy

Having computed upper bounds for ||[Av,|| and ¢; and a lower bound for ||v;||, we can

now compute an upper bound on e; as

1 ] 1 .
P LT T=esgy 1AVill 310
€ > 1— 1 . AV, : ( e )
T=esp % (1 — e Il
Rearranging terms and using the definition of e;, we obtain
2
- 1 1—g¢; 1
qg(le') & __¢;. (5.3.20)
RO TR B Y 34

If we assume eg(;) is a small parameter in (5.3.16) and (5.3.20) , then a bound on

the convergence rate of the perturbed iterative solution ¢; is
7: < [1 +esi+0 (e?s(i))]qz' ) (5.3.21)

and a bound on the error ¢; is

3 ¢ 1AV]|
- < |1 2
“—[+‘+1—w+nwl

)65(,') + O(C%({))]e; . (5.3.22)

For a quickly convergent sequence, ¢; < 1, the previous analysis indicates that the
same order of accuracy in the approximate or perturbed solution can be maintained
by choosing eg;y = O(g;). This choice leads to the following upper bounds for the

convergence rate and error in the perturbed solution ;
3 <q:+0(qF), (5.3.23)

and

& < [14+0(q)e . (5.3.24)



5. Implementational Aspects 02 5.3. Optimal Subiteration Accuracy

Thus if ¢; < 1 and we choose eg(;) = O (¢;), we maintain the same order of convergence

rate and error as that of the exact solution. Note that small errors in the iterative
solution caused by approximating the solution of the linear equation system do not
accumulate but are corrected for in the nonlinear solution algorithm by the use of the

true residual.

The preceding analysis leads to the following three rules governing the choice of

subiteration error criteria :

1. If the nonlinear iteration-level convergence rate is slow, say ¢; &~ 1, then
compute the subiteration-level solution with enough accuracy, say es) =
0.1 (1 digit accuracy), to eliminate any contribution to divergence at the

nonlinear iteration level.

2. If the nonlinear iteration-level convergence rate is fast, say ¢; < 0.1, then
compute the subiteration-level solution with enough accuracy, say esi) =
O(g;) =~ }g¢;, to maintain the same convergence rate and error at the

nonlinear iteration level.

3. At no time should the subiteration error criteria be substantially “tighter”

than the equivalent nonlinear iterative level error criteria.

In practice, we have found it advantageous to choose convergence criteria for the

subiteration terms x, r, and xTr as follows :

es(i)(x) = max{min{ ey, f1g:(AF) }, me(v) } , (5.3.25)

es(i)(r) = max{ min{ ag, f2¢:(AF) }, 72¢(AF) } , (5.3.26)
and

es((xTr) = max{min{ (as, fsg(AF) )2, 1ae(vT AF) } (5.3.27)



5. Implementational Aspects 03 5.4. Control of Time Step Errors

where the o;’s are used to implement rule one, the f;¢;’s to implement rule two, and

the 4;’s to implement rule three. Typical values are a; = 0.1, 8; = 0.5 and ~v; = 0.9.

There are two exceptions to the preceding analysis. The first occurs during the
first iteration of a new time step. For ¢ = 1, there is no available convergence rate for
AF; thus the bounds as given cannot be computed. There are two easily implemented
remedies for this first exception. One is the assignment of a fixed error criterion for the
subiteration level on the first iteration, for example let ¢;(AF) = 0.1. Alternatively, if
the time step and nonlinearities are slowly varying, then the convergence rate of the
second iteration from the previous time step is probably a good estimate and we can
let it = g2(n-1)-

The second exception occurs when solving linear problems. For a linear problem,
we have a priori knowledge that the iterative solution will converge in one iteration to
the exact solution, if the linear equation system is solved exactly. Thus the subiteration

error criterion eg(y) should be chosen to satisfy the time-stepping-level error criterion.

The preceding criteria minimize the computational expense of solving of the linear
equation system arising in the nonlinear iterative solution loop. Note that, in principle,
these same estimates could be applied to direct solution algorithms. However, at present,
no hardware is available to perform efficiently the variable-precision arithmetic required

for computation of the direct solution at other then full machine accuracy.

§5.4 Control of Time Step Errors

In the preceding sections we have developed termination criteria for the nonlinear
iteration and linear subiteration loops. In this section we consider the measure and
control of errors at the time step level. The error in the discrete time solution vectors, d,
and vy, is a function of the time step, At, used to obtain them. Clearly we would like to
minimize this error, but at the same time keep At as large as possible to avoid excessive

“work” in obtaining the solution for a given time interval. To accomplish this we need



5. Implementational Aspects 5.4. Control of Time Step Errors

04

an error measure for the discrete time solution vectors and a relationship between these

errors and the size of Af. Clearly the nonlinear iteration and linear subiteration error

tolerances should be compatable with the accuracy required at the time step level.

Ideally, we would like an a priors estimate of the solution error as a function of At
This would allow the computation of a sufficiently small At to assure the satisfaction of
the solution error criteria [Taylor 75, [Park 79}, [Underwood 79]. Unfortunately a priors

estimates are usually only valid for linear problems.

The approach that we use, and one that is valid for nonlinear problems [Narasimhan
77], [Hibbitt 79], is an a posteriors estimation of the solution error. In this approach
a step size is assumed and a prospective solution computed. Then using the newly
computed solution an a postertors estimate is made of the error in the step. If the error
1s unacceptable the new solution is “thrown out” and we “backup” to the previous step
and try again with a reduced step size. If the solution error is acceptable, we accept the
new solution and proceed with the time integration. Note that a “very small” solution
error indicates that the step size should be increased to reduce the amount of “work”

required to integrate the time interval under consideration.

Thus the algorithm for controlling the time step error has two parts. First, the a
posteriort error estimate for the newly computed solution. Second, an algorithm that
uses this error measure to accept or reject the solution and modify the time step
accordingly. We now consider the error measures, a step selection strategy, and the

effect of temporal discontinuities.

5.4.1 Time Step Error Measure

Many error measures for the discrete solution are possible. Two important at-
tributes of the error measure chosen are that it accurately estimate the likelyhood of
“true” error in the solution and that it be cheaply computable. The solution errors

typically have two components: the first is due to the temporal discretization, and the



5. Implementational Aspects 95 5.4. Control of Time Step Errors

second is due to changing nonlinearities over the step. Both of these should be accounted

for in the error measure chosen.

Perhaps the simplest error measure is based on the notion of percentage change
in value over a time step. Considering some solution component z, we define the error
(percentage change) in z, eg(z) as

__ |difference in z over the step|

_ ) 5.4.
() |average of z over the step| .
Applying this error measure to the velocity vector
Ng
eg(v) = max eg;(v;)
N v — Un(i
— mlga)?( I n+1() "(‘)I (5.4.2)

=1 3(|vup109] + [va@)])
As an example of the use of this error measure we could limit the changes in velocity
to 1% by specifying that eq(v) < 0.01 must be satisfied. Similar error measures may
be defined for d, F, vTF, etc. Although these measures are physically appealing they

do not accurately estimate the influence of changing nonlinearities on solution error.

To overcome this weakness, and to obtain a more accurate estimate of solution
error, we introduce solution error measures based on %-step residuals. Given an accepted
solution d,,, v, at time ¢, and the “proposed” new solution d, 41, V41 at time £,,41 we

compute the residual at step n + % and use it to estimate the error at step n + 1.

The %-step solution values are based on a “consistent” interpolation of the solutions
for the n and n + 1 steps. By consistent we mean that the velocity is defined over the

step using a linear interpolation as
Vn+1' = (1 - T)Vn + TVn+l 0 S T S 1 y (5.4.8)
and the temperature is defined as the trapezoidal integration of the velocity, yielding

dpir =d, + 7AH{1 —a)v, + TAtav,,, 0<7<1. (5.4.4)



5. Implementational Aspects 06 5.4. Control of Time Step Errors

Given dp4, and vy, it is then possible to define the out-of-balance force at time ¢,

as
AFn.+r == F(dn+r, tﬂ+1‘) - M(dn-i-r, tn+r)vn+-r - N(dn+r’ tn+f) 0 S T S 1. (5-4-5)

Note that AF, = AF, 41 = o by definition. If the point-wise out-of-balance force is
small throughout the step (i.e. 0 < 7 < 1) then it is reasonable to assume that the
consistently interpolated solution dj4r, Vnyr is accurate and thus that the final step
values dy4y, Vp41 are themselves accurate. The effect of the out-of-balance force on
the solution may be estimated by considering the point-wise error in the velocity vector

given by
A;',H.f = M_l(dn+f,vn+f)AFn+f 0 S T g 1. (546)

We now define the relative point-wise error measure for velocity over the step as

-~ A~n T
e(AVpsr) = ———””vv;; “” 0<r<1. (5.4.7)
n
or more conservatively as
~ N Av i
e(AVpyr) = may A%+ 0<7r<1. (5.4.8)

=1 {(|vn109)] + lvngy)l)

Note that (5.4.8) avoids the possible masking of local component error that is pos-
sible using (5.4.7). Similar error measures may be defined for AF,,, and v,{‘_HAF,,H.
Although we would like to know the maxima of these errors over the step, we find it

computationally expedient to use the values computed at the }-step (i.e. 7 = 1).

5.4.2 Time Step Selection Strategy

The first step in defining the time step selection strategy is the normalization of

the step error measures with respect to the user specified error tolerance. We define the



5. Implementational Aspects o7 5.4. Control of Time Step Errors

normalized step errors as

C(A{'n-{-%)
== (5.4.9)
v
. C(AF'H_%)
o= (5.4.10)
C(A{'n+%AFn+l)
ey = eur , (5411)

where €,, €7, and ¢, are user specified error tolerances. We define the maximum

normalized error, &,,z, as
€maz = Max{e,,&,¢} . (5.4.12)

Thus as long as &, < 1 the solution satisfies the user specified error tolerance.

Our selection of At as a function of &, 1s based on the following two rules: (i) at
no time should a time step be accepted if €,,,, > 1, and (ii) the step size At should be

increased until &4, = O(1). These rules are embodied in the following algorithm.

1. If 2.z > 1 then the solution is unacceptable. Replace At by uAt, p < 1,

reset the step growth rate v to vy, and restart the time integration at the

previous step.

2. If 2504 < Zmaz < 1 then the solution is acceptable. Proceed with the time

integration using the current Af.

3. If 2pnar < €04 for N successive steps then the solution is “overly” ac-

curate. Replace At by vAt, v > 1, and proceed with the time integration.



5. Implementational Aspects 08 5.4. Control of Time Step Errors

4. If M successive step 3’s have occurred then the step size growth rate v is

not large enough. Replace v by nv and At by nAt, > 1, and proceed

with the time integration.

5. The computed step size should always be within user specified bounds,
Atpin < At < Alypgz. If At is reduced below Af,,;, the user should be
informed, and the integration should proceed with At = A¢,,;,.

Note that the algorithm will generate an accurate solution for any value of u less
than one if the lower bound At,,;, is not encountered. The purpose of step 4 is to provide
a variable step size growth rate which allows At to be increased at a fast enough rate
to raise gpy,q, to O (1) for even the fastest decaying exponential. The cost effectiveness of
the algorithm depends on the subtle interplay between increasing and decreasing step
sizes. In general it is advisable to decrease the step size quickly to reduce the number
of “restarts” needed to find a small enough size. The step size should only be increased
slowly, however, to avoid accidently exceeding the desired error level. In practice we
have found the values g = 0.5, €504 = 0.25, N =2, v =125, M = 3,and n = 1.1

to perform well.

5.4.3 Effect of Temporal Discontinuities

We now briefly consider the effects of temporal discontinuity on the error measures,
and thus the time step selection strategy. The definitions of the preceding error measures
presupposed the temporal continuity of the solution vectors. The temporal continuity
of the solution vectors is in turn dependent on the continuity of the parameters defining
the problem. These parameters may be classified as material constants, prescribed
temperature boundary conditions, heat flux boundary conditions, and external heat
sources. In fact, a temporal discontinuity in any of the aforementioned parameters will
in general induce a discontinuity in the out-of-balance force which will in turn cause the

velocities to be temporally discontinuous. Note that these discontinuities are physically



5. Implementational Aspects 09 5.4. Control of Time Step Errors

“legitimate” and thus are due serious consideration in the implementation of automatic

step selection strategies.

Neither of the error measures previously introduced can properly account for these
discontinuities. In fact, botk of the error measures defined generate a “large” fixed error
for a time step encompassing a discontinuity, even when the step size is reduced to
zero. This suggests using measures based on solution temperatures, which are always
continuous, in place of the previous measures based on velocity and force. However, we
would then lose the measure of error due to changing nonlinearities. Thus measures

based strictly on temperature are not satisfactory.

Instead we consider two alternative solutions. The first is to allow the step selection
strategy to unsuccessfully try smaller and smaller time steps before finally selecting the
user specified lower limit At,,;,. At this point a step is taken using Af,,;, and the
resultant “error” is ignored. Note that this error is not a “true” error in the solution,
but an artifact of the continuous nature of the error measures coupled with the solution
discontinuity being “spread” over a finite step A¢,,;,. The time integration then proceeds
normally. If the location of the discontinuity in time is not known beforehand, this

strategy is the best that we can do.

We now consider a second solution which avoids the unnecessary work entailed in
reducing At by trial and error at a known discontinuity. If the user knows of a significant

temporal discontinuity at time ¢{p, then the following three part scheme should be used.

1. Integrate to just before the discontinuity, ¢, = ¢},

2. Solve for the exact solution at the discontinuity as follows :



5. Implementational Aspects 100 5.5. Minimal-Cost Substructuring

(

Let

thy1 =1p, (5.4.13)
J doy1 =d, . (5.4.14)
Solve for v, 41 using

M(dn+1, tas1)Voet = F(dns1, tn1) = N(dns1, tngt) - (5.4.15)

3. Continue with normal time integration.

Note that step two is equivalent to integrating a step as At — 0.

§56.5 Minimal-Cost Substructuring

In this section, we consider ways of combining “basic” elements into substructures
to minimize the storage and CPU costs.
The goals of substructuring are :
1. Minimize:
» Storage cost
» Factorization CPU cost
» Solution CPU cost
» Total CPU cost
» Error in EL XEL approximate factorization

2. Maximize : “implicitness”

5.5.1 Definitions

To achieve the aforementioned goals, we define substructures as subassembles of

the basic elements in the problem. The matrix contribution for substructure E, iE, is



5. Implementational Aspects io1 5.5. Minimal-Cost Substructuring

defined

A= A 8, E=12,...,Nss, (5.5.1)
eElp

where A is the “local” assembly operator for the equations in the substructure, &g is
the set of element numbers in substructure F, a¢ is the basic element matrix for element
e, and Nggs is the number of substructures. We will assume that an element may only

belong to one substructure, thus

Nss
U fe=&6={1,2,...,Ng1} (5.5.2)
FE==1
and
¢e, €, =9, E1#E, E ,E2€{1,2,...,Nss}. (5.5.3)

There are two limiting cases: The first is the basic EL XEL algorithm with one element
per substructure; thus ég = { £’} and Ngs = Ngy. The second is the fully-implicit,
or global, algorithm with £ = £ and Ngg = 1.

5.5.2 Cost

We now consider the costs associated with substructuring. In the following analysis,
we ignore the “constant” costs and consider only the “element definition”-dependent
costs. These are associated with the matrix C in the EL X EL approximate factorization.
The storage costs for an EL XEL approximate factorization using substructures for
elements is

Nss

S(C)= 3. S&p), (5.5.4)
E=1



5. Implementational Aspects 102 5.5. Minimal-Cost Substructuring

where S(AE) is the storage cost for substructure i};. This substructure storage cost is
S(XE) = BENEQ(E) words , (5.5.5)

where bg is the mean half-bandwidth for substructure E, and NEgg(E) is the number of

equations in substructure E. Recall from Chapter 3 that the mean half-bandwidth is

1 NegE)
be

= bea s (5.5.6)
Negwy & 79

where bgy;) is the half-bandwidth for row ¢ in substructure E. The total storage cost is

then

Nss
S(C) = E BENEQ(E) words . (557)
E=1

Note that this is also the cost of storing the matrix A at the substructure level.

The factorization cost is

Nss ~
Cfactor(c) = E Cfactor(KE) . (558)
E=1

The factorization cost for substructure E, assuming product factors, is
- 1-2
Cr—tactor(AE) ~ SbENEQ(E) OPS - (5.5.9)

With the computational mean half-bandwidth I;E defined as

5 [ L ] (5:5.10)
E = E0 ] 5.5.10
Neewy = V)



5. Implementational Aspects 5.5. Minimal-Cost Substructuring

103
the total factorization cost is
1 Nss .9
Cr—tactor(C Z beNEQE) OPS - (5.5.11)
E=l

Similarly, the solution costs (cost per iteration) are

Cootve(AE) = 2bENEQ(E) oPS (5.5.12)
and
Nss
Cootve(C) =2 3 bENgpqE) ops . (5.5.13)
E=1

Note that the solution costs are proportional to the storage costs and that the cost of
forming the matrix vector product Ax is equal to the solution cost if the matrix A is

stored at the substructure level.

The error in the EL X EL approximate factorization is minimized by reducing the
interaction of the matrices contributing to terms ¢ and higher in the product expansion.
The absolute minimum error occurs when Ngg = 1 (i.e. fully implicit); this suggests

minimizing Ngg will reduce the error.

Maximizing the “implicitness” again suggests minimizing the number of substruc-
tures, since subassemblies of adjacent elements are more implicit than individual ele-
ments. The approximate operator’s implicitness is one of the factors governing the rate
of information propagation through the mesh. The more implicit the operator, the faster
the transfer of information through the mesh. Thus fewer iterations may be required to

obtain convergence.

5.5.3 Model Problem

We now consider the decomposition into substructures of a three-dimensional model

problem with p X ¢ X r regular mesh. Without loss of generality we assume p > ¢ >



5. Implementational Aspects 5.5. Minimal-Cost Substructuring

104
r > 2. We restrict decompositions to those producing “congruent” substructures. Two

substructures are congruent if they have identical element topology or nodal intercon-
nectivity. Congruent substructures have identical costs for storage, factorization, and

solution. The total storage cost is computed as

S(C) = NssS(Ag)

S(Ax)
NEeLE)

— Ng1SJAE), (5.5.14)

= Ngy,

where Npyg) is the number of elements per substructure and S.(AE) is the average
storage cost per element for an array with the topology of i};. Since the number of
elements Ngy is constant for a given problem, minimization of S.(Ag) with respect to

the topology of iE gives the minimum total storage cost S(C).

We further restrict our attention to congruent substructures composed of one or

more disjoint! @ X 8 X 7 regular meshes. Without loss of generality we assume
a>pf>y2>2. (5.5.15)

The half-bandwidth for standard nodal ordering b;{(a,3,7), 1 <t < afy, is

bi(a) ﬂ’ ’7) =bi(j,k,l)(a’ ﬂv ’7)

1, <~
+
0, =
7, k<p
+
0, =p
87, I<a
+ (5.5.16)
07 j=a7

1Two meshes are disjoint if they contain no common degrees-of-freedom.



5. Implementational Aspects 105 5.5. Minimal-Cost Substructuring

where the indexing function ¢(j, k, ) is

IA
IA

1<y
1<k
1<

(5, k) =1+~k—1)+ 8- 1)

IA
IA

a
B8 (5.5.17)
1 ~.

IA

The previous equalities allow computation of the mean half-bandwidth b(a, 3,7) as

1 o b.oa
=— 3 Y Y by - (5.5.18)

Substituting (5.5.16) into (5.5.18) and simplifying, we find the mean half-bandwidth for
an a X X v mesh as

Ba, B,7) =——| (@ = D{(B = 1)(7= 1)(B7 +7+2)

afy
+(B=DBy+r+ )+ (v=1)(Brv+2)+(B7+1)}
+{(B-1)(v—-1)(v+2)
+(B-Dr+D+(= 1@+ |, (5.5.19)

and, similarly, the computational mean half-bandwidth as

b, .7 ={ 5= (0= D18 = D = 187 + 7+ 2

+ (B=1)(B1+ 7+ VP + (v~ 1B+ 2 + (87 + 1)}
+{B- -1+ 27

1
2

+(B-1D)+1)2+(v=-1)2)?%+ (1)2} D ) (5.5.20)



5. Implementational Aspects 106 5.5. Minimal-Cost Substructuring

The average storage for an element in an o X # X 7 mesh is

ba, B, v)aB~

(a—1)(B—-1(H—-1) words . (5.5.21)

Sela, B,7) =

Expanding terms,

Se(a, B,7) ={(ﬂ7 +9+2)+ g‘i‘i(ﬂ” +7+1)

1 1
g A G P )

+ ;i_f{('” 2)+ ;;i—i(“/+ 1)

+—2 4 :
g—-1 (B-1)(v—1)

} words . (5.5.22)

To minimize S,(a, 3,7) for a > 8 > v 2> 2, a, B,y integers, we first compute Se(a, 8,7)
for O(a) > O(B) 2 O(7) = O(1), which yields

Se(a, B,7) ={0(B7) +O(B)+ O (7)+ O (1)}
+0(a") O +0(1)}. (5.5.23)

This result suggests that the absolute minimum occurs for small 8 and ~ but large a.
The values for S.(a,3,7) for 6 > 8 > v > 2 are listed in Table 5.5.1. We see that the
choice & X 2 X 2 minimizes S.(«, 8, 7).

Since the substructures are composed of disjoint @ X A X ~ meshes, we find
Se(iE) = S.(a, B,7). Thus, the minimum total storage is realized by subdividing the
mesh into quasi-one-dimensional substructures composed of “chains” of brick elements.
The longer the chain, the less the cost per element. The minimum storage for the p X ¢ X r

mesh is thus

S(C) = NgrS.(p,2,2). (5.5.24)



5. Implementational Aspects

5.5. Minimal-Cost Substructuring

107
aX X~y | Sea,B,7) (words) Se(a, B,7)/Se(2,2,2)
2%X2X2 26.00 + 10.00 1
aX2X2 | 26.00+10.00/(a—1) | 0.7222 +0.2778/(a — 1)
aX3X2 | 2650+8500/(a—1) | 0.7361+0.2361/(a — 1)
aX3X3 | 2850+8250/(a—1) | 0.7917 + 0.2292/(a — 1)
aX4X2 | 29.33+8.000/(a—1) | 0.8148 + 0.2222/(a — 1)
aX4X3 | 31.83+7.833/(a—1) | 0.8843 + 0.2176/(a — 1)
aX4X4 | 3689+8444/(a—1) | 1.025+0.2346/(c — 1)
aX5X2 | 3275+7.750/(a — 1) | 0.9097 + 0.2153/(c — 1)
aX5X3 | 35.75+7.625/(a—1) | 0.9931 +0.2118/(c — 1)
aX5%X4 | 41.58+8250/(a—1) | 1.155+ 0.2292/(a — 1)
aX5X5 | 48.13+9.063/(a—1) | 1.33740.2517/(a — 1)
aX6X2 | 3640+7.600/(a —1) | 1011+ 0.2111/(a — 1)
aX6X3 | 39.90+7500/(a—1) | 1.108+ 0.2083/(a — 1)
aX6X4 | 4653+8133/(a—1) | 1.293+0.2259/(a — 1)
aX6X5 | 53.95+8950/(a—1) | 1.499 + 0.2486/(a — 1)
aX6X6 | 61.68+9.840/(a—1) | 1713+ 0.2733/(a — 1)

Table 5.5.1
Average storage cost per element, S, for an @ X # X 7 mesh.

The ratio of storage for this p X 2 X 2 substructuring to the storage for the basic

elements is

Se(p,2,2) 13 5
_53(2,-2, 2) —_ '1§ + l—8p‘ ’ (55.25)
which tends to 13/18 as p tends to infinity. It is thus possible to save up to 28% on

storage for the elements with p X 2 X 2 substructuring.

Similar cost calculations may be performed for the factor and solve costs. The

average product-factor cost per element Crs_.(a, 8,7) is



5. Implementational Aspects 108 5.5. Minimal-Cost Substructuring

1 b(a, 8,708
2a- - 1)-1 P (5-5.26)

fo—e(a, B, '7) =

or

Cog-dda ) =3B+ 742 4 it 4 1

1 1
+ﬂ—:—1(ﬂ7+ 2)2 + T 1)(ﬂ7+ 1)2}
+%ai1 (7+2)2+7—}i(7+1)2
4 1
+ﬂ— T+ G l)(fy—l)} ops . (5.5.27)

Thus Crr_c(a,3,7) is also minimal for large o and small 8 and 4. The values for
Crj—ela,B,7) for 6 > B > ~ > 2 are listed in Table 5.5.2. We see that the choice
a X 2 X 2 also minimizes the number of operations per element required to factor an

a X 3 X ~ mesh. The minimum factorization cost for the p X ¢ X r mesh is thus
C‘rr—factor(c) = NELC,,f_e(p, 2, 2) ops . (5.5.28)

This represents a maximum cost reduction of 15% relative to the basic element fac-
torization. Recall that the CPU cost for solution is proportional to the storage cost and
therefore is also minimized by p X 2 X 2 substructuring. This is likewise true for the

matrix vector product Ax.

This analysis shows that minimal cost substructuring reduces the problem from
(p — 1)(¢ — 1)(r — 1) basic elements to (g — 1)(r — 1) substructures with mesh topology
p X 2 X 2. Using the notion of disjoint element groups, discussed in the section on
parallel algorithms, we may further combine disjoint p X 2 X 2 meshes to reduce the

total number of substructures to four.



5. Implementational Aspects

5.5. Minimal-Cost Substructuring

109
aX fBXv| Crr-da,B,7)(0ps) | Crr-ela, B,7)/Crr-c(2,2,2)
2X2X2 87.00 + 15.00 1
aX2X2 | 87.00+1500/(a—1) | 0.8529 + 0.1471/(a — 1)
aX3X2 | 1188+13.75/(a —1) 1.164 + 0.1348/(a — 1)
aX3X3 | 183.0+17.63/(a—1) 1.794 + 0.1728/(a — 1)
aX4X2 | 1627 +13.33/(a—1) 1.595 + 0.1307 /(a — 1)
a X 4X3 | 255.3+17.25/(a — 1) 2.502 + 0.1691/(c — 1)
a X 4X4 | 385.6+22.89/(a—1) 3.780 4 0.2244/(a — 1)
aX5X2 | 2156+13.13/(a—1) 2.114 + 0.1287/(a — 1)
aX5X3 | 342.4+17.06/(a — 1) 3.357 4+ 0.1673/(a — 1)
aX5X4 | 521.0+2271/(a—1) 5.108 + 0.2226/(a — 1)
aX5X5 | 7444 +29.53/(a — 1) 7.298 + 0.2895/(a — 1)
a X 6X2 | 277.0+ 13.00/(a — 1) 2.716 + 0.1275/(a — 1)
a X 6X3 | 443.5+16.95/(a — 1) 4.349 + 0.1662/(a — 1)
aX6X4 | 6786+ 22.60/(a—1) 6.653 + 0.2216/(a — 1)
aX6X5 | 972.9+29.42/(a — 1) 9.538 + 0.2885 /(a — 1)
aX6X6 | 1325.+37.32/(a—1) 12.99 + 0.3659/(a — 1)
Table 5.5.2
Average product-factor cost per element, C,r_., for an o X 8 X 7
mesh.

5.5.4 General Topologies

The preceding analysis assumed a regular mesh. Note, however, that the topology
and not the geometry is important in the decomposition into substructures. There is a
large class of problems with regular topology but irregular geometry. For large problems,
the finite element mesh is usually generated automatically and thus has “zonal” topologi-
cal regularity. Although the generalization to non-regular topology is non-trivial, the
analysis suggests that “chains” of elements in the topologically longest direction produce

minimal cost substructures. Irregular regions of the mesh left as individual elements will



5. Implementational Aspects 110 5.5. Minimal-Cost Substructuring

incur no cost penalty with respect to the basic EL X EL algorithms.

These schemes are easily simplified to the two-dimensional case. The result is
“strips” of quadrilateral elements in the p or ¢ directions. If the mesh is regular it can be
decomposed into two substructures composed of alternate strips. Thus, substructuring

results in a two-component splitting of the operator.

5.5.5 Approximate Factorizations

We now consider approximate factorizations based on substructures. Clearly, all of
the EL X EL approximate factorizations are applicable. For example, a reordered, one-
pass, Crout EL X EL approximate factorization based on substructures in the p-direction

is

N ;) [V o) || & g )
Cc=|IT L.a+ A IT Do+ Ap)l TI LIa+eAr)|,  (5.5.29)

where N(S”Bg i1s the number of substructures resulting from the partial assembly in the
p-direction and f&;) are the associated operators. An undesirable feature of (5.5.29) is
bias in the p-direction, since the implicitness of the iE) operators is greatest in the
p-direction. In fact, information may be transferred across the mesh in the p-direction
in just one solution, while requiring up to g or r solutions for the ¢ and r directions,

respectively.

To remove this bias, we propose using three sets of orthogonal “overlapping”

substructures as in the following symmetrized three-pass alternating direction EL XEL

approximate factorization :



5. Implementational Aspects 5.5. Minimal-Cost Substructuring

111
[ N (P) TN A7)
S5 ~ ss ~ Ss ~(r
c=|If LW(I+§Kg)) [ L1+ gx‘g’) I[ LI+ gxﬁg’)
_E=1 FE=1 _E=l
B2 - () IV ~ (o) I[vE r
x| T D+ S&0)| I D1+ A T o1+ &)
E=1 3 [[E=1 3 J[E=1 3
[ 1 @[ 2 — (r 1 -
x| I LI+ gKE) I Lia+ gxﬁg)) I LTa+ §Kg)) . (5.5.30)
| E=N{) ] E=N{) E=N{)

~(9) . .
where the A are the operators (2 X ¢ X 2 for example) resulting from substructuring
C e ~ (r)
to improve the g-direction implicitness, and the Ay are the operators (2X2Xrfor
example) resulting from substructuring to improve the r-direction implicitness. Thus

each of the basic elements is used three times, once in each direction.

When coupled with an iterative scheme, the total cost of this three-pass subiteration
algorithm is approximately 1% times the cost of a typical one-pass EL X EL approximate
factorization, or approximately twice the cost of a one-pass substructure approximate
factorization. However, it has the important advantage of propagating information
throughout the entire mesh in one iteration. This suggests that the number of iterations

required for convergence of the subiteration scheme may be reduced to O (1).

An additional advantage of substructuring is the reduced amount of scatter/gather?
required during the iterative loop. For the basic one-pass EL X EL approximate factoriza-
tion applied to a three-dimensional problem, each nodal value is accessed eight times
during an element level solution. The one-pass substructure approximate factorization

reduces this number to four.

2Scatter/ gather is a term coined for the movement of data from global vectors to temporary local vectors
for processing, and back again.



5. Implementational Aspects 118 5.6. Effect of EL X EL on Choice of A

§5.6 Effect of EL X EL Algorithms on Choice of A

In most of the current finite element programs, the algorithms and parameters
governing the generation of the global operator A are specified a priors and remain
fixed throughout the program execution. This is due largely to the constraints imposed
by direct solution techniques. In a direct solution technique, large amounts of contiguous
memory must be allocated for the factorized form of A. Modifying the overall structure?
or size of A may be difficult. In addition, the factorization cost, incurred by modification

of even a small part of A, is enormous for large problems.

The subiteration solution algorithms based on EL XEL approximate factorizations
alleviate many of these constraints. They may be implemented with a simple but flexible
data structure that easily allows structural modification. In addition, the ability to

refactor independently any part of A is inherent in the algorithm.

This flexibility has many implications for the algorithms used to generate A. We
now consider several ideas for modifying the form of A to reduce the cost of solving
problems. The potential savings in nonlinear transient analysis procedures incorporating

these ideas is clearly significant.

5.6.1 Selective Formation-Factorization

The most common method employed for the solution of nonlinear equations is a
modified Newton-Raphson iteration procedure. This scheme entails the formation and
factorization of the matrix A whenever the inaccuracy of the previously computed A
begins to degrade convergence. The cost associated with the formation and factorization

can be quite substantial. It dominates the problem-solution cost for large problems, as

was shown previously.

3Structure denotes the topology or interconnectivity of the global equation system.



5. Implementational Aspects 118 5.6. Effect of EL X EL on Choice of A

The EL XEL approximate factorization can reduce this cost in one of two ways.

First, if the inaccuracy in A due to nonlinearities is “global”, the entire operator may be
reformed and factored at a much lower cost than that of a direct technique. Second, if
the change in A is “local”, for example due to a nonlinear radiation boundary condition
or local material nonlinearity, then only those elements whose stiffnesses have changed

significantly need be reformed and factored.

This, along with the cost analysis of the EL XEL approximate factorization sub-
iteration algorithms performed previously, suggests that the nonlinear solution algorithm
should use full Newton-Raphson iteration coupled with element-level selective refor-
mation-factorization based on change in stiffness. Such a scheme would yield faster

iteration-level convergence at a lower overall cost.

5.6.2 Implicit-Explicit Partitioning

The smplicit-ezplicit finite element concept [Hughes 78a,78b,79,81,82a] has a very
simple and clean implementation within EL XEL approximate factorizations. The stan-
dard implementation partitions the elements into two groups, implicit elements which
contribute both mass and stiffness to the global operator A, and explicit elements which
only contribute a diagonal mass matrix to A. In the EL XEL approximate factorization,
the diagonal terms in A are accounted for in the scaling matrix W. W will contain
the entire contribution to A from the explicit elements, and their corresponding A.'s
will be identically zero. This means that the explicit elements may be omitted from the
formula for C, and thus ignored in the unwinding of the element-array products during

the solution of B !r.

In nonlinear problems, this opens the way to time-adaptive implicit-explicit element
partitions that would be impractical using direct solution techniques. In calculating the
element contribution to the out-of-balance force, AF, a check is made to determine if

the critical time step for the element is exceeded by the global time step. If it is not



5. Implementational Aspects 114 5.7. Algorithms for Parallel Computation

exceeded, the element may be treated explicitly, and a flag is set to indicate that this

element’s contribution to C may be ignored. Thus, we can reduce the cost per iteration

at the subiteration level by reducing the number of elements that need to be used in

the “solution.”

5.6.3 Adaptive Mesh Refinement

Another benefit worth mentioning is the ease of implementation of adaptive mesh
refinement schemes within the framework of EL X EL approximate factorizations. Adap-
tive mesh refinement techniques employ a measure of solution error due to spatial
discretization to selectively refine portions of the finite element mesh [Carey 81]. This
refinement entails the addition of global degrees-of-freedom and a restructuring of the
element connectivity. This, in turn, causes changes in the structure and size of the matrix
A. Even a small local mesh refinement means complete reformation and factorization

of A when using a direct solution technique.

The EL X EL algorithm, on the other hand, allows easy and natural implementation
of adaptive mesh refinement. The elements in the region to be refined are simply removed
from the list of elements for the problem and the new elements appended. Thus, only
local modifications are required. The only formation/factorization performed is for the
new elements. In addition, the natural “tree” type data structure proposed for adaptive

mesh refinement may now be readily and efficiently utilized without the burden of global

factorization costs.

§5.7 Algorithms for Parallel Computation

As mentioned in Chapter 4, the computations involved in an EL X EL approximate
factorization are parallelizable. In this section, we consider modifications to the basic
EL XEL algorithm which allow efficient use of a parallel-processing system. In contrast

to EL X EL algorithms, direct solution algorithms based on product factorizations are



5. Implementational Aspects 115 5.7. Algorithms for Parallel Computation

not easily implemented on a parallel-processing system due to their inherent serial

nature. Although new methods of product factorizations have been developed to allow
parallelization [Evans 82], they are full matrix techniques and thus unsuited to large

finite element problems.

5.7.1 Machine Architecture

Before describing the implementation of EL X EL algorithms on a parallel-processing
system, we must define the characteristics of the machine architecture [Hockney 81].
The architecture of parallel-processing systems varies greatly, and is a major factor

in the development of efficient, parallel, numerical algorithms.

The single most important characteristic is Np, the number of processors. The
number of processors determines the upper bound on the speed-up factor, Sy, the
number of times faster an algorithm runs on a multi-processor machine than on a single
processor. The speed-up factor depends on the machine architecture, the problem, and

the algorithm. It is defined as

SNp(N) = %v‘—(% < Np, (5.7.1)

where N is a measure of the problem size, Tj(/N) is the time required to solve the
problem using 1 processor with the “best” serial algorithm, and Ty .(N) is the time
required to solve the problem using Np processors and a parallelized algorithm. The
measure of problem size NV is typically the number of global equations Ngg or the
number of elements Ngr. The normalized version of the speed-up factor is the effictency

ratio,

Sne(N) (5.7.2)

ENP(N)= —]’VT >

The next important characteristic of parallel-processing systems is the degree of

autonomy of the individual processors. In a SIMD (Single Instruction Multiple Data)



5. Implementational Aspects 116 5.7. Algorithms for Parallel Computation

PROCESSOR
CU + ALU’s

COMMUNICATION
INTERFACE

LOCAL
MEMORY

Figure 5.7.1 Example of typical processor (PR).

machine, all processors execute the same instruction in lock step. Thus, all processors
run the identical program using different pieces of data. Examples of SIMD machines
are the Cray-1, STAR, Illiac IV, Cyber 203/205, etc. A slight generalization of SIMD
architecture allows processors to conditionally ignore the next several instructions in the
stream, thus allowing a limited branching ability. A second, more general architecture
exists in the MIMD (Multiple Instruction Multiple Data) machine. In these machines,
the processors are autonomous. Each processor executes its own individual program
with its own data. Examples of MIMD machines are the SMS 201 and C.mmp. In the
implementation of EL XEL algorithms, we require that each processor have its own
local memory. Thus, we will not consider the vector or pipeline computers such as the
STAR, Cray-1, etc., but only the truly parallel computers like the Illiac IV, SMS 201,
etc. A typical processor (PR) consists of several components: a control unit (CU), one

or more arithmetic logic units (ALU’s), a communication interface, and local memory.

An example is given in Figure 5.7.1.

A final important characteristic is the communiecation topology. This is the topology

of the bus network joining the processors to each other and to main memory.

The simplest communication topology is one bus. Only one processor may use the



5. Implementational Aspects 117 5.7. Algorithms for Parallel Computation

MPR MAIN BUS

PR, PR, cee PR,

Figure 5.7.2 Example of zero-dimensional communication topology.

bus at a time. We refer to this topology as zero-dimensional topology, as the proces-
sors may only communicate through one point, the main bus. It has the advantage of
having no local complexity and so it is easy to build. However, the limited communica-
tion facility may lead to communication bottlenecks. An example of zero-dimensional

topology is shown in Figure 5.7.2.

At the other extreme is a topology where each processor is connected to every
other processor and main memory through private busses. This scheme entails global

complexity, requires O(N%) private busses, and has proven impractical for large Np.

A practical topology, and one that offers significant computational advantage, is an
array topology. In this architecture, a processor is only allowed to communicate directly
with other processors in a restricted neighborhood. There is a constant local complexity
independent of the number of processors. We further classify the array topology by its
dimensionality. An example of a two-dimensional array topology is shown in Figure

5.7.3.

5.7.2 Implementation of EL XEL Algorithms

We pnow explore the implementation of the EL XEL approximate factorization

solution algorithm on a variety of machine architectures.

5.7.2.1 Element Groups

We first define the notion of a disjoint element group. A disjoint element group &;



5. Implementational Aspects 118 5.7. Algorithms for Parallel Computation

I l l

PRy PRys — - e PRy, —
— PRy PRes —---— PRon —
—| PRm PRy —---— PRun [—
Figure 5.7.8
Example of two-dimensional array communication topology with toroidal

closure.

is a subset of the set of all elements £ with the property that no two elements in &;
may share a common global equation. We henceforth use the term element group to
unambiguously mean a disjoint element group. The set of all elements is decomposed

into a number of element groups such that

Neg
Ué&=€={12,...,Ng}, (5.7.3)
i=1
ENE=9 V i#j54i5€{L2,...,Ngg}, (5.7.4)
and
DDy =0 V e #ee,e2€é V i€{1,2,...,Neg}, (5.7.5)

where Ng¢ is the number of element groups and D, is the set of all global equation

numbers associated with element e.



5. Implementational Aspects 5.7. Algorithms for Parallel Computation

119
For Each | Global Level Element Level
iter* form A form a®
iter* factor B factor (I° + €a®)
iter form F form f°
subiter form Ax form a®x®
subiter | solve B™lr | solve (I® + ea®)~!r®

*(less often for modified Newton)

Table 5.7.1 Equivalent element level calculations.

5.7.2.2 Computational Considerations

Given a subdivision of the elements into element groups, there is a class of calcula-
tions that is easily parallelizable. This class is the element-level calculations for the
elements within an element group. These calculations may be carried out in parallel
after the necessary global values have been transferred to the processor’s local memory.
Synchrontzation is required only between element groups when the results of the element
calculation needs to be transferred to main memory. The need for synchronization below
the element group level is eliminated. Examples of calculations that are parallelizable

at the element level for both iteration and subiteration loops are given in Table 5.7.1.

The simplest division satisfying (5.7.3)—{(5.7.5) assigns one element per group, or
& = {1} with Ngg = Ngi. This choice reduces the parallel algorithm to serial

calculation.

If we assume that Ngr > Np, valid for the forseeable future, then an integer
multiple of Np elements is needed in each group to achieve maximum efficiency. If
the number of elements in a group ¢ is N(&;), the time to process group 1, ignoring

communication time, is

Tp (N (&) = [fj—v(—f;?]n(k) . (5.7.6)



5. Implementational Aspects 190 5.7. Algorithms for Parallel Computation

Here k is the size of the element calculation and [z] is the smallest integer greater than

or equal to z. The total time is

Res[N(&:
TNP(ICNEL) = Z [TVulTl(k) , (5.7.7)
1==1 p
which yields a speed-up factor of
N,
SNP(ICNEL) = 7\7% . (5.7.8)

N¢ is the total number of cycles of element level calculation,

Ngg N(é‘-)]
N¢ = > 1. 5.7.9
¢ :gl[ Np (79)
Finally, the efficiency ratio is
N,
Eno(kNgL) = NPIJ;\Z;C : (5.7.10)

Clearly, the speed-up factor and efficiency ratio are maximized by choosing &; to

minimize N¢. N¢ is minimal when

[N]&f)]zﬂj\(ff) vV i€{L2,...,Ngg}, (5.7.11)

or N¢ = Ngr/Np, Sn.(kNEgL) = Np, and EN,(kNgL) = 1.

One approach to minimizing N¢ is to minimize the number of element groups Ngg¢,
thus reducing the number of possible unfilled cycles. By minimizing Ngg, we are assured

of being within Ngg cycles of the absolute minimum. This gives the worst-case estimate



5. Implementational Aspects 191 5.7. Algorithms for Parallel Computation

for N¢

__ NgL
No = 7=+ Neo . (5.7.12)

With this worst-case estimate for N, the total calculation time is

Tivp (kNp1) = (322 + Na )Tk (5.7.13)
the speed-up factor is
Snp(kNEL) = i—%_;—%gg ) (5.7.14)
and the efficiency ratio is
SNp(kNgL) = _ . (5.7.15)

NgagN
1+—‘ﬁ;—‘EEL

All are very close to their optimal values if Ngj, 3> Np and Ngg = O(1).

For a general mesh, an absolute lower bound on Ngg may be computed after
examining the restrictions that (5.7.5) places on group partitioning. This equation
requires that “no group shall contain two elements contributing to the same global

equation.” An absolute lower bound on Ng¢ is thus

N,
Neg > grqx%% Ceg» (5.7.16)

where C., is the number of elements contributing to equation eg.

For the regular three-dimensional “brick-like” domain shown in Figure 5.7.4, the
lower bound Ngg > 8 may be satisfied identically, and the elements may be divided
among the eight groups as indicated. For the analogous, regular, two-dimensional, “rec-
tangular-like” domain, four element groups need be employed, while for one-dimensional

“bar-like” domains, only two groups are required.



5. Implementational Aspects 199 5.7. Algorithms for Parallel Computation

N

[y AN T XY
&N

7|8 7|8
5/6|5]|6
l7({8|7]s
5|6|5|6
< I I S I N I O Y ¢
121112
3|1 4| 3] 4
1|2 1] 2
Figure 5.7.4

Decomposition of three-dimensional domain into eight groups of brick
elements for parallel processing.

For a general mesh, a simple algorithm generating an a priori estimate of the
minimum NEg is as yet unknown. However, we have determined a recursive exhaustive-
search algorithm which takes time O (Ngy) in the best case and O(N %L) in the worst
case to sort the elements into groups. Fortunately, the decomposition into element
groups need only be done in the pre-processing stage of problem solution, and is similar
in cost to the equation-reordering schemes commonly used to reduce the cost of direct
solution techniques. It should also be mentioned that all of the ideas governing the
choice of A mentioned in the last section, selective formation-factorization, etc., admit

easy and natural parallel-processor implementation.



5. Implementational Aspects 5.7. Algorithms for Parallel Computation

123
For Each | Global Level Localize Element Level Globalize
iter* form A d, v —dfve form a° Aa—A
iter* factor B factor (I° + €a®)
iter form F d,v—dve form f* Af-F
subiter form Ax X — x° form a®x® Aaxe—r
subiter solve B~Ir r—r° solve (I¢ + ea®)~!re r’ —x

*(less often for modified Newton)

Table 5.7.2 Communication costs assoclated with element level calculation.
5.7.2.3 Communication Considerations

In the preceding analysis of the efficiency of the parallelized EL XEL algorithms,
we were concerned only with the computational cost and associated speed-up of cal-
culations at the element level. We did not concern ourselves with the communication
costs associated with localization of data before element calculation and globalization of
data after element calculation. We now consider the communication costs, those costs

associated with the overhead incurred by interference in accessing shared resources.

It is instructive to add communication considerations to Table 5.7.1. The result is
shown in Table 5.7.2. There are clearly potential communication bottlenecks generated
by the localization/globalization of nodal data values at both the iteration and subitera-
tion levels. We now consider the causes and possible solutions to these communication

bottlenecks for two parallel-processor communication topologies.

The first topology considered is the zero-dimensional or main bus topology. For this
topology, the communication bottlenecks can be quite severe. The simplest approach to
the localization of data is broadcasting the necessary components of the global vector
on the main bus and allowing each processor to pick up the values it requires. Similarly,
the globalization may be performed by granting each processor ownership of the bus

for the transference of its updated global values. The difficulty with this approach is



5. Implementational Aspects 124 5.7. Algorithms for Parallel Computation

that each localization/globalization requires O(Np) bus accesses during which many

processors may be idle. A more sophisticated approach assigns elements to processors
based on the locality of data. Given enough local memory, a processor may retain
selected global values for use in succeeding element calculations. This approach may
reduce the communication bottlenecks incurred in the simpler approach by a factor of
Nge. However, to get a real improvement, we must tailor the communication topology

to that required by the algorithm.

The second topology, and by far the more interesting, is that of an n-dimensional
array. If we assume that n is equal to or greater than the dimensionality of the problem,
we may map the elements of the problem onto the processors of the system in such a way
that spatially adjacent elements are mapped to processors sharing local communication.
The information transfer previously performed by a globalization/localization sequence
may now be accomplished using only local interprocessor communication. This reduces

the communication time to O (1) access cycles and eliminates a major communication

bottleneck.

5.7.2.4 Effect of Parallel Orderings on EL XEL Errors

One of the surprising benefits of the parallel ordering schemes is the additional
insight into the error terms in the EL X EL approximate factorizations. For the general
one-pass ELLXEL approximate factorization, the exact form of the error terms elude
explicit description. This is due both to the number of elements and the interaction of the
A, matrices being as yet unknown. However, by reordering the elements in accordance
with a specified parallel scheme, we may transform the EL XEL factorization into an
equivalent multi-component factorization with Ngg components. This transformation

is accomplished by defining

A=Y A, i€{1,2,...,Nee} (5.7.17)
€Sy



5. Implementational Aspects 195 5.7. Algorithms for Parallel Computation

and poting that
A A, =0, e,e€€, (€{1,2,..,Ngg}. (5.7.18)

The i,- may be thought of as a form of superelement which contains the assembled
contributions for those elements in &;. Making use of (5.7.18) in the definition of one-

pass EL X EL approximate factorizations, we find

Neyt Neg
]Jl I+ A, = 11 [ Ha+ eKe)]

1=1 |e€&;
Ngg

= [a+e T &)

t=1 ec&;

Nga ~

= [ @+ €Ay, (5.7.19)

i=1
where p(e) is the mapping into parallel order. Thus, for a regular two-dimensional
mesh with Ngg = 4, the problem is reduced to a multi-component split using four

superelements. We find

AﬁL(I + €Ay ) =(1+ €Ar)(I+ Ag)(I+ eAs)(I+ €Ay)

e=1

=I+ A
+ KAy + Ky + Ky) + Ko(Rs + Ky) + Koy
+ fs[ilizis + i1i2k4 + i1i3i4 + i2k3k4]

+ e*[ﬁ,izxsi&.} : (5.7.20)

By assuming a parallel ordering, we can therefore compute an explicit representation of
the error in the EL X EL approximate factorization which is independent of the number

of elements and contains terms only up through ¢VEG,



5. Implementational Aspects 126 5.7. Algorithms for Parallel Computation

Although we have not, as yet, used this explicit form of the error to improve the

approximation, we hope through the use of successive corrections [Yanenko 71] to achieve
a more accurate expansion. In addition, this analysis suggests the use of hexagonal

elements to tile regular two-dimensional regions. Regular hexagonal tiling results in

N
Ngg > m’il% Cog=3; (5.7.21)
eq=

thus, only three element groups are required. This would eliminate K, and the € error

term completely.



Chapter 6

Numerical Results

In this chapter, we discuss the numerical results obtained using the EL XEL sub-
iteration technique in the solution of nonlinear transient heat conduction analysis. Unless
otherwise noted, all results compare favorably with solutions obtained using a fully im-

plicit direct solution technique.

§6.1 NASA Insulated Structure Test Problem

The first problem we consider is the NASA insulated test problem. The problem
description is illustrated in Figure 6.1.1. The problem is posed on an L-shaped region;
the horizontal bar is metal while the vertical bar is insulation. Although the materials
are linear, obtaining a complete transient solution is non-trivial. The difficulty lies
in the “stiffness” of the problem. The diffusivity ratio between the two materials is
approximately 50. Thus the solution components have two important time scales. First
is the fast conduction of heat through the metal. Then, at a rate 50 times slower, the
insulation responds to what it sees as a changed boundary condition. Using an explicit
integration algorithm on this problem, one would be forced to choose a time step less
than or equal to the critical time step for the smallest metallic element. To obtain the
complete transient solution, from initial condition to steady state, would then require

several hundred time steps. Instead, using the EL XEL approximation to the implicit



6. Numerical Results 198 6.1. NASA Insulated Structure Test Problem

X2

o=0
_ S Material properties:
| N \ Insulator Metal
\ k (conductivity)  1.57x10-¢  0.002
\\ e, 8.11x10-4  0.02
s\\\ Time step data:
Step
The T 11| 12 numbers At AUAty Y
1-10 0.02 .9765 2
11-20 0.20 9,765 2
21-30 2.00 97.65 1z
31-40 20.0 976.5 1

41-50 200.0 9,765.0 1

-y insulati Error tolerance = 0.001 iIb!|
/ Homogeneous Neumann boundary conditions
(9 ©/2n=0)are specified on all surfaces where ©

is not prescribed.

TR 77
AN AL D

7/1e

©
4

s

/Metal

- © =100 cos 4mxy,
7 8 , %\Do
) ; —
.

|—'/|a+‘lm‘]|* {16 % 7ie } X

Figure 6.1.1

NASA insulated test problem description.

operator, we start the integration at the critical time step, but increase it by a factor

of 10 after every 10 steps, requiring only 50 steps to reach steady state.

A number of comparisons of the various techniques proposed were made for this
problem. In Table 6.1.1 subiteration algorithms using Agpr, A = A, are seen to
converge faster than those using App, A = D,(A) + A. In addition, the steady-state
residual potential energy, measured by log;o(—F;), attains a smaller value when using

AopT. This and other calculations have indicated that AOPT is the superior choice. It



6. Numerical Results 6.1. NASA Insulated Structure Test Problem

129
Avg Subiter. per Step
Algorithm loglo(——Pf)(ﬂ steps 1-20 | steps 21-50
(PSD, Apg, (2, N, ) ~13.0 6.00 109
(PSD,Aopr,(2, N, 7)) —15.4 5.03 10¢)

()(The more negative log,o(—Py) the closer the solution is to steady state)

()(Failed to converge in 10 iterations)

Table 6.1.1
Comparison of Apg and Agpr using (PSD, *, (2, N, 7)) subiteration
algorithm
Avg Subiter. per Step
Algorithm logw(—Pf)(” steps 1-20 | steps 21-50
(PSD, Aopr, (1, R,5)) —13.4 5.41 10
(PSD,Aopr, (2, N, ) —15.4 5.03 10
(PSD, Aopr, (1, R, 7)) ~15.8 3.95 109
(PSD, Aopr, (1, R, ) —15.1 3.95 104)
(PCG, Aopr, (1, R,5)) —25.3 3.95 9.0
(PCG, Aopr, (2, N, 7)) —95.3 3.50 8.3
(PCG, Aopr, (1, R, 7)) —25.3 3.45 7.9
(PCG, Aopr, (1, R, 7)) —25.3 2.95 8.0

(1)(The more negative logyo(—Ps) the closer the solution is to steady state)

()(Failed to converge in 10 iterations)

Table 6.1.2

Comparison of PSD and PCG iterative algorithms using Appr com-
bined with various EL X EL approximate factorizations.

is used in the comparisons shown in Table 6.1.2.

The first observation which may be made here is that the PCG algorithm is more

effective than the PSD algorithm. Thus, our current preference in symmetric positive-



6. Numerical Results 130 6.2. Parallel/Sequential Test Problem

definite cases is the PCG method. The EL XEL factorizations ranked from best to

worst are: (1, R, 7}, (1, R, 7, (2, N, 7), (1, R, ). Nevertheless, it must be kept in mind
that the overall computational efficiency may alter this ordering. For example, although
the symmetrized Gauss-Seidel was slowest to converge, it does not require element

factorization, which is an advantage.

A final point is that convergence is typically slower during the larger time step
sequences (i.e. steps 21-50) than the smaller step sequences (i.e. 1-20). There appear to be
two reasons for this. Firstly, for the larger time steps, the solution closely approximates
the steady state. Thus, the initial residual is fairly small, resulting in a more stringent
convergence criteria. (In fact, even the “non-converged” solutions possessed adequate
accuracy from a practical standpoint.) Secondly, the conditioning of the element factors
deteriorates for larger steps as indicated by the analysis of the error in approximate

factorizations performed in Chapter 4.

§6.2 Parallel/Sequential Test Problem

The problem description is given in Figure 6.2.1. The purpose of this problem is to
compare convergence characteristics for “natural” element orderings, which necessitate
sequential processing, with orderings that lend themselves to parallel computations. The

comparisons are all performed with the (PCG, ;\op;r, (1, R, }) subiteration algorithm.

Over the thirty time steps, the sequential ordering averaged 2.53 iterations per step
to attain convergence, whereas the parallel ordering averaged 3.47 iterations. Despite
the fact that the parallel ordering is slower, which might be anticipated, the fact that
it is reasonably fast is extremely encouraging. For the 256 element mesh shown, a 64-
processor computer could attain speeds 64 times faster than a single processor. This
more than compensates for the somewhat slower convergence of the parallel ordering.

The gains in larger problems are potentially even more spectacular.



6. Numerical Results 181 6.3. Arch Problem

(241
1
31413[4]/314]314
112|121 {2[1]2
3[4]3]4a|3[4a|3]|a
112f112(1}(21]2
3({4131413}413(4
112(1]2|1}]2|1]2
. N L4 32 Element group 3[4]3]413]4]3])4
numbers 1j2 16 numbers, typical 112]%]2f1j2)1]2 _!_
Natural element ordering Decomposition into four element
for sequential computation groups for parallel computation
Initial condition: ©=0 Time step data:
Boundary condition: ©=1,t>0 Step
Material properties: k=1,pcy=1 numbers AUA‘cm—’
1-10 1
11-20 10
21-30 100
Figure 6.2.1

Problem description for parallel/sequential test problem.

§6.3 Arch Problem

The next problem we consider is the arch problem. This problem has been previously
investigated by several researchers [Bruch 74], [Bell 76], [Trujillo 77b,82]. Although

we solved both linear and nonlinear versions of this problem, only the results for

the nonlinear version are presented.

A distinctive feature of this problem are the two re-entrant corners. Near sharp

corners, there may be singularities in the solution which cause the spatial derivatives of

the solution to become unbounded.

The material properties are: constant density and specific heat,

k
p=10—3 (6.3.1)



6. Numerical Results 182 6.3. Arch Problem

and

W.s
Cp =103 » (6.3.2)

and a nonlinear isotropic thermal conductivity,

T w
k= (1 + 1000°K) m-°K"’ (6.3.3)

The boundary conditions are: prescribed temperature on the leftmost edge,
T=1000°K on z=0m, {>0, (6.3.4)
prescribed temperature on the rightmost edge,
T=0K on z=1m, t>0, (6.3.5)

and insulation on all other boundaries,

n-(KVT) = olvn; t>0. (6.3.6)

The initial temperature distribution was taken to be

T(z,y, t*) = 1o3erfc( )K , (6.3.7)

VI

which is the short-time linear solution at time t* for a plane semi-infinite medium. In

our analysis, we assumed x = 1 m?/s and t* = 0.0005s in the calculation of our initial
conditions.

The discretized spatial domain is shown in Figures 6.3.1 and 6.3.2. The time domain

of interest is 0 > ¢ > 0.1s .



6. Numerical Results

6.3. Arch Problem

X Coordinate

Figure 6.8.2

133
0.656
110 20]30{40(50)60]66|72] 7884 |90 a6 ]102]108]118]128{138{148]158]16¢
0428+ o Lo loalsa]aalse]ss! 71 |77]83]8a]es 101 107] 17 {127137] a7 |157] 167
{8 |18]ze]s8|ag]s8|6al70]|76]82[88]a4{100]106]116]126]136]146]156]166
V71w )27]37147]57|63)60|75| 81 )87 |9z] 0a|105|115]125]135]1a5]1s5]185
2 L6 [16]26]36]46]56(62[68[74[80[86 92|08 104|114 |124]134]144]154] 162
~.§ oad s e f2s]ss|es]ss|er[er]73]7sas [or o7 o313 fiza]izsfes]isares
S 414 |2a]34]aa]54 12 [122[132]1e2]152 {162
S T3 laf2s]s3]43]s3 111 |121]131] 141 151] 161
12 |2]22]32]42]52 110 {120{130[140]150]160
i inlalsa|als 109 119 [120]139[149 159
—-2.805%107% =
!
L I —
0.0 0.25 0.5 0.75 1.0
X Coordinate
Figure 6.3.1
Arch Problem: Finite element mesh (element numbers).
0.656
T 22 33 4c 55 66 77 84 51 98 105 112 119 126 137 148 159 170 181 192|203
Yo 121 1372 |43 |54 |65 176 {83 |90 [a7 |10a|m |us |i25]136]147 158160 180]191 | 202
0428419 |20 |31 {42 |53 |64 |75 |82 |89 96 l103}110 [117 [124]135]146 157 168|179 190 [ 201
18 |19 |30 |41 Is2 |63 |74 |a |88 |95 {1021109| 116 |123]134]145 156|167 |78 |185] 200
17 18 |29 {40 |91 [62 |73 |80 87 [94 |101 1108|115 22 |133]1a4 155 {166 177 |188] 199
£ {6 17 128 [39 |50 |61 [72 179 186 |93 |100]107[na 121 |132}1a3 154|165 {176 187|198
ig oo 5 L6 127 {38 149 {60 |71 |78 {85 |92 {9 [106[u3 |i20}131}u2]153 64|75 | 186 107
§ e _bis [26 |57 Jag |50 [70 130] 141|152 163 {174 | 185|196
> 3 {1a 125 {36 47 |58 |ee . 129140 }151 162|173} 184 ] 105
T2 f13 [24 |35 |46 |57 68 128]139)150 |61 |172 |183]194
T Dz |23 134 |45 |56 |67 127 138149 ]160]171 [182]193
~2.805%107%
]
T
0.0 0.25 0.5 0.75 1.0

Arch Problem: Finite element mesh (node numbers).



6. Numerical Results 184 6.3. Arch Problem

This problem was first used to test and verify the error measures developed for

the nonlinear iteration and linear subiteration levels. These tests confirmed the strong
relationship among the convergence rates and errors in v, AF, and vI AF. This allowed
the development and implementation of the optimal subiteration error criteria discussed

in Chapter 5.

The final analysis of the problem consisted of a series of five computer runs made
to assess the effectiveness of the optimal subiteration error control. All runs used an
iteration error tolerance of 10~7 and the (PCG, AOPT, (1, R, 7)) subiteration algorithm.

The five runs are defined as follows :
A. Subiteration error tolerance equal to iteration convergence rate, §; = 1.
B. Fixed at one subiteration per iteration regardless of error, 3; = co.

C. Subiteration error tolerance equal to one one-hundredth of the iteration

convergence rate, #; = 0.01.

D. Subiteration error tolerance equal to the iteration convergence rate, §; =
1, and a bail-out option implemented for quickly convergent subiteration

solutions.
E. Same as Run D but with a parallel ordering.

The time-step sizes used are listed in Table 6.3.1 and a summary of the costs of

the five runs is given in Table 6.3.2.

Comparison of Runs A, B, and C indicates that the choice of 3; = 1 is justified.
Run B, which used a larger subiteration error tolerance than Run A, required fewer
total subiterations but 94% more iterations to compensate for the reduced subiteration
accuracy. On the other hand, Run C, with a smaller subiteration error tolerance than
Run A, required 50% more subiterations without reducing the number of iterations or

improving the solution accuracy.



6. Numerical Results

6.3. Arch Problem

135

Steps At
1—10 | 0.0005
11 — 15 | 0.001
16 — 20 | 0.002
21 —- 25 | 0.004
26 — 31 0.01

Table 6.9.1

Step sizes used in the solution of the Arch problem.

Subiter. Total | Total | Avg Subiter
Run | error tol. Iter. | Subiter. per Iter.

A B; =1 142 354 2.49

B | B;=o0) | 276 276 1.00

C | B;=001| 142 | 528 3.72

D | g;=1® | 142 328 2.31

E | gj=1% | 142 331 2.33
(1)(Fixed one subiter per iter)
(8)(With bail-out procedure)

Table 6.3.2

Summary of costs for solution of the Arch problem.

In runs D and E, a “bail-out” option was added to the subiteration loop which

allowed the subiteration loop to exit early based on reduction of the norm of the residual.

This further reduced the total number of subiterations required to 328 without adversely

affecting the iteration level accuracy as shown by Run D.

In Run E, the elements were subdivided into disjoint-element groups as shown

in Figure 6.3.3 and ordered to simulate solution on a parallel processor as shown in

Figure 6.3.4. This resulted in less than a one percent increase in the total number of



6. Numerical Results 136 6.3. Arch Problem

subiterations required over the natural ordering used in Run D. Note that a speedup-

factor of up to 42 is possible for this problem on a suitable parallel processing machine.



6. N ical Result 6.3.
umerical Results 187 Arch Problem

0.702
al3la|3]ajslals|alsfals|ajafjala]|s|3lals
0.451]
tqafsfaft 222221 laf1{2]1]2
1 4134343143043 |a|31413|4|3]4[3}41]3
1 thzabebeftzitlat ootz ]2)1]2
Q
- b [afslalajalslalz|ajafals|ats]als]als|a]s
c
5 izt ]2z vf2trpafr|2)f2]tfziiiz]1]z
o 0.2+
S alzlaflsfals al3laf3lals
© 1 f2]fz2]1]2 tlali]2]1]2
>_
: alzbals|afs 4l3)als|a]s
] 1l2)t]zft]2 1211 ]2(1]2
~5.086%1072
—0'302 LN AL S SR S S M TN AN S AL A AL R AL AL B SAL A B B S SR S A I LANNS BN SENS SEED Sh sumn Sumn S
~5.0¢107% 0.225 0.5 0.775 1.05
X Coordinate
Figure 6.39.8
Arch Problem Run E: Disjoint element groups.
0.702
1310 89 [136] 94 | 141 99 | 144102 [147 [1OS[150[108 153§ 111|158 | 116 | 163 | 121 [168] 126
0.4511
S5 |47 1052|1557 | 18160 21[63{24 6627169327437 179|42]84
) 13¢[ 88 |135f 93 (140198 |M43[101]146]304 | 149|107 [152[ 11O {157 | 115 j162]120({167 }125
B 4 461 9 51| 56|17 159206223 652668 3173|3678 41|83
"qc'g ] 1291 B7 [134] 92 |138[ 97 (1421001145 |103[ 148106 | 151109156 | 114 161119 [166{124
'_g 3§45 8 |50 p 1315516 }5BY 19 {61 }22[64)25|67|30172}35)77|40]82
Pt 0.2+
8 78| 86 133} 91 [13R] a6 1651131160 118 (1651123
f') T 2144 7 49 2 o4 291 71| 34| 76139 81
o
L 127) 85132790 f137( 85 154 | 112 [159{ 117 164 [ 122
] 1 43} 6 | 481 11 |53 28170133175 |38}|80
-5.086%10"%
-0'302 ™TT 7|2 ™7 TT"T ' LANNLENL B S R B B RN R B R M AN B S ' T T =
-5.0410 0.225 0.5 0.775 1.05

X Coordinate

Figure 6.9.4

Arch Problem Run E: Element order corresponding to disjoint element
group numbers.



6. Numerical Results 188 6.3. Arch Problem

The solutions at the time-step level for all runs were identical (fo seven digits).
The temperature profiles as a function of time for selected nodes are shown in Figure
6.3.5. The temperature and velocity contours at { = 0.1s are shown in Figures 6.3.6
and 6.3.7. Finally, the unnormalized step error measures based on j-step residuals are
shown in Figure 6.3.8. Note that between two and three significant digits are maintained
except at the steps where the step size is doubled. This motivated the development and
implementation of the automatic step-selection strategy used in the solution of the next

problem.



6. Numerical Results 189 6.3. Arch Problem

1200. Marker Legend

= Node 19

Node 67
Node 71

Node 102
Node 127
Node 131
Node 189

0T+ *xO
W niy

800.0

Nodal Temperatures

0.0

v

. ; . i Sl S SanGRRER

0.0 2.0%107* 4.04107° 6.0%1072 8.0107?
Time

Figure 6.3.5
Arch Problem Run E: Temperature profiles for selected nodes as a
function of time.

0.656 Contour Values

] 7 T T
- xI [*Y) [as]
0.4284 o
| o
? o @
—_ T w (=]
\ [ P g

z
0.2
v
- \
=
. 1’ !
{1 \
{

~-2.805¢1077

1}
[+5]

-4

9]

EE
OZIMXCTIHTIMOOWD>

(U T L T O (O T TR T VIR T
[&]
N
w
je]

A
W

Lo
-

Y Coordinate

‘0'256 - LA A N M LA B T
0.0 0.25 0.5 0.75 1.0
X Coordinate

LM S0 S Bt S S U A M B e S

Figure 6.8.6

Arch Problem Run E: Temperature contours at { = 0.1s.



6.3. Arch Problem

140

0.0

6. Numerical Results

25.0 30.0 35.0

20.0

Step Number
Figure 6.3.8

5.0 10.0 5.0

0.0

”
K T
2 00000 &
[SraY=Taei=1=To) g >
. ooofeQ ? Set
5 56aSc0030938 TS
2 000CSRSR0NORD 5205
£ cRaRENBECRERS f308
S nuun gy 20
ADOAWLOT __SHx X >0
n
I — = ~
U']/ — ] -
T <
3 a
T T I
9 -4 -~
e —— >
—— T - ]
e -2 4
A g o
N 3
-
l/w m [
/ o N/. S ”
T RN X
[N N L
L n D .nlb.
l\\\r\ "o 5 (%) (]
¢ & 3
] °c 3 = i
e x ¥
h' .. 8
L T <
L] =
L g /
m\\ ¥ [Q R
I
o
I m
—y
o
[}
&
-
M

0.0

0.656
0.428
-0.256

S3JNSDBW 10443 4O OO

-2.805%107"

8jpUIPIOOY 4

-8.0

Arch Problem Run E: Unnormalized step errors based on i-step residual.



6. Numerical Results 141 6.4. Thermal Radiation Problem

§6.4 Thermal Radiation Problem

The final problem we consider is a thermal radiation problem. Radiation boun-
dary conditions play a very important role in the thermal analysis of space structures
[Adelman 82], [Gong 82], [Haftka 82], [Ko 82|, [Ried 82]. As a model for problems in
this class, we consider a square plate with a nonlinear radiation boundary condition
and a significantly nonlinear thermal conductivity. To further increase the problem

“difficulty”, the radiation boundary condition is discontinuous with respect to time.

The problem spatial domain 1s a square region defined by :

0<7z,y<1m. (6.4.1)

The time range of interest is ¢t € [0, 2s].

The material properties are: constant density and specific heat,

kg
p= 1.0;11—3 (6.4.2)
and
W-.s
C, = 50.0 kg K’ (6.4.3)

strongly nonlinear isotropic thermal conductivity,

T \ W
k_2(1+51000°K)m_°K, (6.4.4)

and a constant heat generation per unit volume,

Q= 2500% : (6.4.5)

The problem has several different types of boundary conditions. There is a prescribed

temperature on the lower edge,

T=0°K on y=0m, t>0, (6.4.6)



6. Numerical Results 142 6.4. Thermal Radiation Problem

insulation on the upper edge,
w
n-(KVT)=OE on y=1m, t>0, (6.4.7)
a prescribed constant heat flux on the right edge,
W
n-(KVT)= lOOOE on z=1m, t>0, (6.4.8)
and a radiation boundary condition on the left edge
n- (KVT)=h(T*-~T% on z=0m, t>0. (6.4.9)
The radiation coefficient is
w
=1. 0 —— 4.
hy =10 X 1 KT (6.4.10)

and the radiation temperature 7, is a step function in time defined as

0°K t<1
T, = (6.4.11)

1500°K  ¢>1.

The initial condition is T = 0°K.

The discretized spatial domain is shown in Figures 6.4.1 and 6.4.1.



6. Numerical Results 6.4. Thermal Radiation Problem

1.2
57 |58 |59 |60 61|62 63|64
0.6 49 | 50 | 51§52 |53 54|55/ 56
h 41 42 43 44 45 45 47 48
° 33| 34| 35| 36|37 ]38 39|40
:C:_J J
= 25 | 26 | 27 | 28|20 |30 31| 22
o 0.4+
o]
8 | 7|8 |s |z20f20]22] 25|24
>
h 9 10 1t 12 13 14 15 16
] 1i2)z2]4|s|e6]7]|s
0.0
_0‘4 llllllll LD (AL B S T ] T T T T T L T T
-0.377 6.15*1072 0.5 0.938 1.38

X Coor;dinafe

Figure 6.4.1

Radiation Problem: Finite element mesh (element numbers).

1.2

73 74 785 76 77 78 79 80 81

64 |65 66 |67 |68 169 |70 |71 72

0.8+ 55 56 57 158 |59 |60 |61 62 63

46 47 48 149 |50 |51 52 53 |54

37 38 |39 {40 (41 42 43 |44 45

28 |28 30 |31 32 133 |34 |35 {36

Y Coordinate
o
>
1

0.0+

T T Y RLANL AN A S S S S B s St S s e e | SEARLSNE S Sat e 2 s s

-0.377 6.1541072 0.5 0.938 1.38
X Coordinate

Figure 6.4.2

Radiation Problem: Finite element mesh (node numbers).



6. Numerical Results 6.4. Thermal Radiation Problem

144

We now discuss a series of five computer runs used to evaluate the effectiveness

of the EL XEL approximate factorizations on problems with radiation boundary con-
ditions. These runs also demonstrate the effectiveness of the time-stepping selection
strategy for use in controlling step errors. All runs used both a step and iteration error
tolerance of 1072 and the {(PCG, AOPT,(I, R, 7)) subiteration algorithm. The subitera-
tion error tolerance was computed using 8; = 1 coupled with the bail-out procedure.

The five runs are defined as follows :
A. Fully automatic selection of At for the time interval 0 > ¢t > 2s.

B. Two-interval time integration. First, the solution was obtained for the
time interval 0 > t > 1s. Then, the velocity was recomputed at ¢t = 1%
using the increased radiation temperature. Finally, the integration was

continued normally until ¢ = 2s.

C. Same as Run B but the second interval was extended to ¢ = 50s (steady
state).

D. A high-frequency prescribed nodal heat source was added to the center
node (node 41):

t
FE(t) = 1000sin’ ('o%é) w. (6.4.12)

E. Same as Run B but with the radiation coefficient A, increased by a factor

of 100 and the second time interval extended to ¢ = 10s (steady state).
A summary of the costs of the five runs is given in Table 6.4.1.

The time-step size as a function of step number for Run A is shown in Figure 6.4.3.
Note the sudden decrease in step size at step 24 (t = 1s) as the auto-time-stepping
scheme attempts to reduce the normalized step errors shown in Figure 6.4.4. The
continuous nature of the temperature is shown in Figure 6.4.5, while the discontinuity

in velocity for a node on the radiation boundary is shown in Figure 6.4.6.



6. Numerical Results

6.4. Thermal Radiation Problem

145
Max Total | AvgIter | Avg Subiter
Run | time (s) | Steps | per Step per Iter.
A 2 53 2.00 1.15
B 2 39 2.00 1.21
C 50 141 2.00 2.84
D 2 101 2.00 1.00
E 10 106 2.00 1.78
Table 6.4.1

Radiation Problem: Summary of solution costs for runs A-E.



6. Numerical Results

6.4. Thermal Radiation Problem

0.25
0.24
0.15
o ]
D J
(&)
0.1
5.0*107%
0.0
——— T — ] —
0.0 7.5 15.0 22.5 30.0 37.5 45.0 52.5  60.0

Step Number

Figure 6.4.3

Radiation Problem Run A: Time-step size as a function of step number.

4.0

2.0

o
o
L

LOG of Normalized Error Measures

Marker Legend
Velocity
Force
Energy

-~<
wnn

-2.0 '
Pu,
N
6 / 'y
, ¥ ‘e
Sy ¥k L
'té' A: £e
—4.0 = fé 1 f{
o '
o : Fe
jed ' 4
. F
H KLl
~6.0 L ’
] td
-8.0
L B e e e N ERSAn m e e T ——
0.0 7.5 15.0 22.5 30.0 37.5 45.0 52.5 60.0

Step Number

Figure 6.4.4

Radiation Problem Run A: Normalized step errors as a function of

step number.



6. Numerical Results 147 6.4. Thermal Radiation Problem

600.0
Marker Legend

Node 37
Node 39
Node 4°
Node 43
Node 45
Node 77

Ta 4+ *x0
o

Nodal Temperatures

2.4

Figure 6.4.5
Radiation Problem Run A: Temperature as a function of time for
selected nodes.

2230. arker Legend

M

= Node 37
= Node 39
= Node 41
= Node 43
= Node 45
= HNode 77

TO 4 *x 0

Nodal Velocities

2.4

Time

Figure 6.4.6
Radiation Problem Run A: Velocity as a function of time for selected
nodes.



6. Numerical Results 148 6.4. Thermal Radiation Problem

In Run B, the number of steps needed to obtain the solution was reduced to 39.
Fewer steps were required since the time step did not need to be reduced nearly as much
with the discontinuity in velocity accounted for exactly. The temperature and velocity
contours at { = 1s are shown in Figures 6.4.7 and 6.4.8, and at { = 25 in Figures 6.4.9
and 6.4.10.



6.4. Thermal Radiation Problem

6. Numerical Results 149
1.2 Contour values
A= 00
B=75
C= 150
D= 225
£ = 300
F =375
G = 45.0
H= 525
0.8 I = 60.0

J = 675
K = 75.0
L = 825
M= 90.0
N = 907,5
0 = 105.0

2 P = 125

o Q= 120.0

£ R = 1275

T 044 S = 1350

s % T = 1425

o

O

>

0.0
_0'4 ||||||||| T ' T rrrrr- | A rrr v rrrrr
-0.377 6.15*107° 0.5 0.938 1.38

X Coordinate

Figure 6.4.7

Radiation Problem Run B: Temperature contours at ¢ = 1s.

12 ontour Values

0.0

o
o

0.8

HUOHMBBHEINBUHHOIOH BN &

VO VOZEr X" IOTMMTOD>
OO NNNDCTUT B P (AP 2 =
LOCOUNOTOCONC DO IO
COOOLVOLOLOOOH0CO

Y Coordinate
o
o~
1

0.0

-0.4

........

......... B B e e e oo e e e et
-0.377 6.15¢10 7 0.5 0.938 1.38

X Coor-dinofe

Figure 6.4.8

Radiation Problem Run B: Velocity contours at ¢t = 1s.



6. Numerical Results 150 6.4. Thermal Radiation Problem

1.2 Contour Values

0.8

LI L T T T TR T TR R T T I T [T
~
~
w
o

HNVOVOZIMRCTIOTMOOD»

Y Coordinate
o
S
]

0.0

-0.4

T
-0.377 6.15%10 77 0.5 0.938 1.38
X Coordinate

Figure 6.4.9

Radiation Problem Run B: Temperature contours at ¢ = 2s.

1.2
Contour Values

Soamo
SLeLo0,
[elelel=)

0.8

TrReTIDTMOOE>
(LU L R VR O T N T T IR TR TR T}
3
jo)

&
OA.
oY=l leisl=Ta)

Y Coordinate
o
£
1

0.0+

........ L ENEAAREAL LA R S ey Bt e s s T T T

A T
-0.377 6.15410°° 0.5 0.938 1.38
X Coordinate

Figure 6.4.10

Radiation Problem Run B: Velocity contours at ¢ = 2s.



6. Numerical Results 151 6.4. Thermal Radiation Problem

Run C was used to study the behavior of the subiteration and auto-time-stepping
schemes when integrating to steady state. The time step was automatically increased to
a maximum value of 0.53s. This value is approximately 15 times the critical time step

for the problem.

In Run D, the addition of a high-frequency heat source forced the auto-time-
stepping scheme to repeatedly vary the step size, as shown in Figure 6.4.11, due to the
periodic increase in the normalized step errors shown in Figure 6.4.12. The temperatures

and velocities as a function of time are shown in Figures 6.4.13 and 6.4.14.



6.4. Thermal Radiation Problem

152

6. Numerical Results

5|8
@ o
] $Z =
m L s>
= AR
R Y]
o
= E pai
[=¥ F_—
o <
S @ pid
P& — o
0 -
3 =]
Q ]
p— .
— m Lm -
= &
=
Sy
o o]
@ 3
. by
- Mw 1. m
I
o £~
— LS 3 & &
O -y @
w. Lo 5] 3
~ = &
2> g =
o & ﬁ o
o lw.
D L
g
Q
- [~ =
o~ m ~
QD
pa— B
S
o s
_______ R ——S - 2 43
T T D T | S T
D b b b It Q ! e ! P 2
= o = = o c a - © o ° ° s
= & % b b S SSINSDSP J0UIF PIZIDULION
~ 2} o~ - P .hlu. "
+ DY <
~
&

Step Number
Figure 6.4.12

Radiation Problem Run D: Normalized step errors as a function of

step number.



6. Numerical Results 158 6.4. Thermal Radiation Problem

600.0

arker Legend
Node 37
Node 39
Node 4:
Node 43
Node 45
Node 77

Wwomwann T

Ta + sx 0O

Nodal Temperatures

2.4

Figure 6.4.18

Radiation Problem Run D: Temperature as a function of time for
selected nodes.

2250.
arker Legend
Node 37
Node 398
Node 41
Node 43
Node 45
Node 77

i g

Ta+ *x o0

Nodal Velocities

_7500 T T T T T T T T T T T T T ¥ T L T
0.0 0.4 0.8 1.2 1.6 2.0 2.4
Time

Figure 6.4.14
Radiation Problem Run D: Velocity as a function of time for selected
nodes.




6. Numerical Results 154 6.4. Thermal Radiation Problem

Finally, in Run E, the increased radiation coefficient caused significantly slower

growth of the step size. The effect of the radiation discontinuity is most dramatic in
steps 23 through 40, where the step size remains small due to large normalized step
errors as shown in Figures 6.4.15 and 6.4.16. The temperature and velocity as functions
of time are shown in Figures 6.4.17 and 6.4.18. Note the magnitude of the velocity
discontinuity. For clarification, plots of temperature and velocity vs step number are
shown in Figures 6.4.19 and 6.4.20. In obtaining the steady-state solution, the step size
was automatically increased to a maximum value of 0.3s which is 71 times the critical

time step.



6. Numerical Results

155

6.4. Thermal Radiation Problem

0.375

0.3

0.225+

Delta t

0.154

7.541077

0.0

T T 7
0.0 40.0 60.0

T

Step Number

Figure 6.4.15

T
100.0 120.0

Radiation Problem Run E: Time-step size as a function of step number.

0.8

Normalized Error Measures
o
-
1

o.o_J o1zt

0.0

eevomemmro®

“.‘ﬂ-

L6t
: |2

Marker Legend
Velocity
[orce
Energy

7 —T T
60.0 80.0

Step Nmeer

Figure 6.4.16

—T T
100.0 120.0

Radiation Problem Run E: Normalized step errors as a function of

step number.



6. Numerical Results 156 6.4. Thermal Radiation Problem

1600.

Marker Legend
Node 37
Node 39
Node 4
Node 43
Node 45
Node 77

e nn

oo+ *xo

Nodal Temperatures

e T T T * T T T Y T T T T T T T T T T
0.0 2.0 4.0 6.0 8.0 10.0 12.0
Time

Figure 6.4.17
Radiation Problem Run E: Temperature as a function of time for
selected nodes.

" o
2.0"10 ] Marker Legend
o = Node 37
x = Node 39
* = Node 41
+ = Node 43
a = Node 45
5 b = Node 77
1.5410°
& 1000°
0
o°
®
>
is} ]
-8 A
- 5.0%10"~

_5'0’10A T T T T T T T T T T T Y T T v
0.0 2.0 4.0 6.0 8.0 10.0 12.0
Time

Figure 6.4.18
Radiation Problem Run E: Velocity as a function of time for selected
nodes.




6. Numerical Results 6.4. Thermal Radiation Problem

1600.
Marker Legend
o = Node 37
x = Node 39
* = Node 41
+ = MNode 43
a = Node 45
b = Node 77
1200.
n
[0}
j.
2
o
j.
©
&800.0
(7]
-
B
e
[o]
=z
400.0
0.0 fumuutey ‘.. )
T :

——r————— e
0.0 20.0 40.0 60.0 80.0 100.0 120.0
Step Number

Figure 6.4.19
Radiation Problem Run E: Temperature as a function of step number
for selected nodes.

2.010°
i Marker Legend 3
o = Node 37
J x = Node 39
1 * = Node 4
+ = Node 43 |4
E a = Node 45
54100 b = Hode 77
e e
& 1.0010"
©
9
®
>
Ie] ]
3 y
- 5.0%10"4
0.0
-5.0710"
T—— T T T -

—y— — T —
0.0 20.0 40.0 60.0 80.0 100.0 120.0
Step Number

Figure 6.4.20
Radiation Problem Run E: Velocity as a function of step number for
selected nodes.



Chapter 7

Conclusions

This work has focused on the development of low-cost techniques for solving the
linear equation systems arising from the application of the finite element method to

problems in nonlinear transient heat conduction.

These problems are typically stiff due to both the wide range of material properties
used in engineering applications and the use of radiation boundary conditions. Thus, an
unconditionally stable implicit time integration scheme is required. The direct solution
techniques normally used to solve the resultant matrix equations were shown to be
impractical as the size of the problem increases. To alleviate these cost constraints,
element-by-element subiteration algorithms have been presented. These techniques have

been designed to retain the accuracy and stability of the global implicit operator.

The subiteration algorithms we have developed are based on element-by-element
preconditioning of standard iteration algorithms. These techniques offer significant cost
reductions over traditional direct solution techniques. In particular, we have shown that
the solution costs for both storage and CPU grow only linearly with problem size for
the EL XEL algorithms presented. This contrasts with the geometric growth entailed
by direct solution techniques. In addition, the EL X EL algorithms fit naturally within

the architecture of current finite element programs.



7. Conclusions
onclusio 159

We have tested a variety of subiteration algorithms. The iteration .techniques used
in the tests included Richardson’s method, parabolic regularization, the steepest descent
technique, and the conjugate gradient technique. These iterative methods were coupled
with EL X EL preconditioning using one and two-pass, natural and reordered, EL X EL
approximate factorizations based on Crout, Cholesky, and sum decompositions. Also
evaluated were two choices for the matrix to be approximated. Our results indicate that
the one-pass, reordered, Crout EL X EL factorization, applied to the optimal definition
of A and coupled with a preconditioned conjugate gradient iteration algorithm, is

particularly effective for solving symmetric positive-definite matrix systems.

Convergence studies have verified the analysis of error in the approximate fac-
torization performed in Chapter 4. The error analysis indicates that the error in the
approximation approaches a constant value as the time step is increased. This is verified
by convergence studies, in which the number of subiterations required for convergence

approaches a small constant as the time step is increased.

We have demonstrated that the EL X EL solution technique is very effective in solv-
ing problems with both material nonlinearities and radiation boundary conditions. This
effectiveness is due in part to the coupling developed between the nonlinear iteration
level and the linear subiteration level. The usefulness of the algorithm for computing
optimal subiteration error criteria is confirmed by the reduced amount of “work” per-

formed at the subiteration-level.

The algorithms are further enhanced by the development of a time-step size selec-
tion strategy. This strategy automatically maintains the desired solution accuracy by
adjusting the time-step size to account for nonlinearities and temporal discretization
errors. Its effectiveness was clearly demonstrated by its ability to accurately integrate

over a discontinuous radiation boundary condition.

Several other features of EL XEL algorithms have been discussed, including the

ease with which selective formation/factorization may be performed, the concept of



7. Conclusions

160

time-adaptive implicit-explicit algorithms, and the considerable potential of EL XEL
adaptive mesh refinement. Also discussed was the notion of minimal cost substructuring,

which led to the idea of an alternating direction EL X EL approximate factorization.

Finally, we have developed an EL XEL algorithm suitable for use on multi-processor
computers. The simulations of parallel computations performed on the test problems
indicate that there is very little penalty incurred by the use of parallel orderings.
This result is very exciting, particularly since it seems clear that the future of large

calculations on super computers lies in parallelizable algorithms.



References

[Adelman 82
Howard M. Adelman, Raphael T. Haftka, and James C. Robinson,
“Some Aspects of Algorithm Performance and Modeling in Transient Thermal
Analysis of Structures,” Computational Aspects of Heat Transfer in Structures,
NASA Conference Publication 2216, (1982).

[Akin 82]
J. E. Akin, Application and Implementation of Finite Element
Methods, Academic Press, New York, (1982).

[Ames 77]
W. F. Ames, Numerscal Methods for Partial Differential Equations, second

edition, Academic Press, New York, (1977).

[Bakhvalov 77]
N. S. Bakhvalov, Numerical Methods, Mir Publishers, Moscow, (1977).

[Bathe 80]
Klaus-Jiirgen Bathe and Arthur P. Cimento, “Some Practical Procedures
for the Solution of Nonlinear Finite Element Equations,” Computer Methods in
Applied Mechanics and Engineering, Vol. 22, pp 59-85, (1980).

[Bathe 82]
Klaus-Jiirgen Bathe, Finite Element Procedures in Engineering Analysis,

Prentice-Hall Inc., New Jersey, (1982).

[Bell 76]
Graham E. Bell and John Crank, “A Simple Finite-Difference Modification
for Improving Accuracy Near a Corner in Heat flow Problems,” International
Journal for Numerical Methods in Engineering, Vol. 10, pp 827-832 (1976).

[Belytschko 83]
T. Belytschko and W. K. Liu, “On Reduced Matrix Inversion for Operator

Splitting Methods,” preprint, (1983).



References 162

[Bruch 74]
John C. Bruch and George Zyvoloski, “Transient Two-Dimensional Heat

Conduction Problems Solved by the Finite Element Method,” International
Journal for Numerical Methods in Engsneering, Vol. 8, pp 481-494 (1974).

[Carey 81]
Graham F. Carey and David L. Humphrey, “Mesh Refinement and Iterative
Solution Methods for Finite Element Computations,” International Journal for
Numerical Methods in Engineering, Vol. 17, pp 1717-1734 (1981).

[Carslaw 59]
H.S. Carslaw and J.C. Jaeger, Conduction of Heal tn Solids,
Oxford University Press, Oxford, (1959).

[Dahlquist 74]
Germund Dahlquist and Ake Bjorck, Numerical Methods, Prentice-Hall Inc.,
New Jersey, (1874).

[Douglas 56]
J. Douglas and H. H. Rachford, “On the Numerical Solution
of Heat Conduction Problems in Two and Three Space Variables,”
Trans. Amer. Math. Soc., Vol. 82, pp 421-439, (1956).

[Douglas 62]
J. Douglas, “Alternating Direction Methods for Three Space Variables,”

Numer. Math., Vol. 4, pp 41-63, (1962).

[Emery 79]
A. F. Emery, K. Sugihara, and A. T. Jones, “A Comparison of Some of the
Thermal Characteristics of Finite Element and Finite Difference Calculations of
Transient Problems,” Numerical Heat Transfer, Vol. 2, pp 97-113, (1979).

[Emery 82]
A. F. Emery and H. R. Mortazvi, “A Comparison of Finite Difference and
Finite Element Methods for Heat Transfer Calculations,” Computational Aspects
of Heat Transfer in Structures, NASA Conference Publication 2216, (1982).

[Evans 82
David J. Evans, Parallel Processing Systems, Cambridge University Press,

Cambridge, (1982).

[Fellipa 75]
Carlos A. Felippa, “Solution of Linear Equations with Skyline-

Stored Symmetric Matrix,” Computers & Structures, Vol. 5, pp 13-29, (1975).



References

163

[Fox 83]
Geoffrey C. Fox and Charles L. Seitz, “Concurrent Processing and the
Decomposition of Problems,” Research Proposal Submitted to the Department
of Energy, CALT-681004.

[George 81]
Alan George and Joseph W. Liu, Computer Solution of Large Sparse Positive
Definite Systems, Prentice-Hall Inc., New Jersey, (1981).

[Gill 81)
Philip E. Gill, Walter Murray and Margaret H. Wright,
Practical Optimization, Academic Press, New York, (1981).

[Gong 82]
Leslie Gong, Robert D. Quinn, and William L. Ko, “Reentry Heating
Analysis of Space Shuttle with Comparision of Flight Data,” Computational
Aspects of Heat Transfer in Structures, NASA Conference Publication 2216,

(1982).

[Gresho 79]
P. M. Gresho and R. L. Lee, “Don’t Suppress the Wiggles — They’re Telling
You Something!,” Finste Element Methods for Convection Dominated Flows,
T. J. R. Hughes (ed.), Amd Vol. 34, ASME, New York, (1979).

[Haftka 82]
Raphael T. Haftka, and M. Hassan Kadivar, “Algorithmic Aspects of
Transient Heat Transfer Problems in Structures,” Computational Aspects of Heat
Transfer sn Structures, NASA Conference Publication 2216, (1982).

[Hageman 81|
Louis A. Hageman and David M. Young, Applied Iterative
Methods, Academic Press, New York, (1981).

[Hestenes 52]
M. R. Hestenes and E. Steifel, “Methods of Conjugate Gradients for Solving
Linear Systems,” Journal of Research of National Bureau of Standards, Vol. 49,
No. 6, pp 409-436, December 1952.

[Hibbitt 79]
H. D. Hibbitt and B. I. Karlsson, “Analysis of Pipe Whip,” ASME Paper
No. 79-PVP-122, presented at the Pressure Vessels and Piping Conference, San
Francisco, California, June 25-29, 1979.

[Hockney 81]
R. W. Hockney and C. R. Jesshope, Parallel Computers, Adam Hilger Ltd,

Bristol, (1981).



References 164

[Holman 72]
J. P. Holman, Heat Transfer, McGraw-Hill Book Company, New York, ( 1972).

[Householder 84]
Alston S. Householder, The Theory of Matrices in Numerical Analysis, Dover
Publications Inc., New York, (1964).

[Hughes 77]
Thomas J.R. Hughes, “Stability of One-Step Methods in Transient Nonlinear
Heat Conduction,” Presented at the International Conference on Structural
Mechanics in Reactor Technology, San Francisco, California, August 1977.

[Hughes 78a]
Thomas J.R. Hughes and W. K. Lui, “Implicit-Explicit Finite
Element Techniques in Transient Analysis: Stability Theory,” Journal
of Applied Mechanies, Vol. 45, pp 371-374, (1978).

[Hughes 78b]
Thomas J.R. Hughes and W. K. Lui, “Implicit-Explicit Finite Element
Techniques in Transient Analysis: Implementation and Numerical Examples,”
Journal of Applied Mechanics, Vol. 45, pp 375-378, (1978).

[Hughes 79]
Thomas J.R. Hughes, K. S. Pister and R. L. Taylor,
“Implicit-Explicit Finite Elements and Nonlinear Transient Analysis,” Computer
Methods in Applied Mechanics and Engineering, Vols. 17/18, pp 159-182, (1979).

[Hughes 81]
Thomas J.R. Hughes and R. A. Stephenson, “Convergence
of Implicit-Explicit Finite Element Algorithms in Nonlinear Transient Analysis,”
International Journal of Engineering Science, Vol. 19, pp 295-302, (1981).

[Hughes 82a]
Thomas J.R. Hughes, “Implicit-Explicit Finite Element Techniques
for Symmetric and Non-symmetric Systems,” Recent Advances sin
Non-linear Computational Mechanscs, Pineridge Press, Swansea, UK., (1982).

[Hughes 82b]
Thomas J.R. Hughes, James Winget, and Itzhak Levit, “Element-by-
Element Solution Procedures for Nonlinear Structural Analysis,” Proc. of the
NASA Lewis Workshop, April 19-20, 1982.

[Hughes 83a]
Thomas J.R. Hughes, Itzhak Levit, and James Winget,
“Implicit, Unconditionally Stable, Element-by-Element Algorithms for
Heat Conduction Analysis,” Journal of the Engineering Mechanies
Division, ASCE, Vol. 109, No. 2, pp 576-585 (1983).



References 165

[Hughes 83b]
Thomas J.R. Hughes, Itzhak Levit, and James Winget,

“An Element-by-Element Solution Algorithm for Problems of Structural
and Solid Mechanics,” Computer Methods in Applied Mechanics and
Engineering, Vol. 36, No. 2, pp 241-254 (1983).

[Hughes 83¢]
Thomas J.R. Hughes, James Winget, Itzhak Levit, and
Tayfun Tezduyar, “New Alternating Direction Procedures in Finite
Element Analysis Based Upon EBE Approximate Factorizations,”
pp 75-109 in Proc. of Symposium on Recent Developments in Computer Methods
for Nonlinear Solid and Structural Mechanies eds. S. Atluri and N. Perrone,
ASME meeting, University of Houston, Houston, Texas, June 20-22, 1983.

[Isachenko 75]
V.P. Isachenko, V.A. Osipova and A.S. Sukomel, Heat Transfer,

Mir Publishers, Moscow, (1975).

[Jennings 77]
Alan Jennings, Matriz Computation for Engineers and Scientssts, John Wiley

& Sons, New York, (1977).

[Juba 82]
Susan M. Juba and Peter E. Fogerson, “Development of a CRAY 1 Version

of the SINDA Program,” Computational Aspects of Heat Transfer tn Structures,
NASA Conference Publication 2216, (1982).

[Kamel 78]
H. A. Kamel and M. W. McCabe, “Direct Numerical Solution of Large Sets

of Simultaneous Equations,” Computers & Structures, Vol. 9, pp 113-123, (1978).

[Ko 82]
William L. Ko, Robert D. Quinn, Leslie Gong, Lawrence
S. Schuster, and David Gonzales, “Reentry Heat Transfer Analysis
of the Space Shuttle Orbiter,” Computational Aspects of Heat Transfer
tn Structures, NASA Conference Publication 2216, (1982).

[Levit 82]
Itzhak Levit, “A General Solution Strategy for Large Scale Static
and Dynamic Nonlinear Finite Element Problems Employing the
Element-by-Element Factorization Concept,” PhD Thesis, California
Institute of Technology, Pasadena, California, (1982).



References 166

[Liu 82]
Wing Kam Liu, “Development of Mixed Time Partition Procedures
for Thermal Analysis of Structures,” Computational Aspects of Heat

Transfer sn Structures, NASA Conference Publication 2216, (1982).

[Marchuk 74]
G. I. Marchuk, Numerical Methods in Weather Predicition, Academic Press,

New York and London, (1974).

[Marchuk 75]
G. I. Marchuk, Methods of Numerical Mathematics, Springer—Verlag, New

York, (1975).

[Mitchell 77]
A. R. Mitchell and R. Wait, The Finite Element Method in Partial Differential

Equations, John Wiley & Sons, New York, (1977).

[Mitchell 80]
A. R. Mitchell and D. F. Griffiths, The Finite Difference Method sn Partial
Differential Equations, John Wiley & Sons, New York, (1980).

[Narasimhan 77]
T. N. Narasihan, S. P. Neuman, and A. L. Edwards,
“Mixed Explicit-Implicit Iterative Finite Element Scheme for Diffusion-
Type Problems: II. Solution Strategy and Examples,” International
Journal for Numerical Methods in Engsneering, Vol. 11, pp 325-344 (1977).

[Noor 82]
Ahmed K. Noor, “Survey of Computer Programs for Heat Transfer
Analysis,” Computational Aspects of Heat Transfer in Structures,
NASA Conference Publication 2216, (1982).

[Nour-Omid 82]
B. Nour-Omid and B. N. Parlett, “Element Preconditioning,”
Report PAM-103, Center for Pure and Applied Mathematics, University
of California, Berkeley, October 1982.

[Ozisik 80]
M. Necati (")zigik, Heat Conduction, John Wiley & Sons, New York, (1980).

[Park 79]
K. C. Park and P. G. Underwood, “A Variable-Step Central
Difference Method for Structural Analysis—Part I. Theoretical Aspects,”
ASME Paper, presented at the Pressure Vessels and Piping Conference,
San Francisco, California, June 25-29, 1979.



References 167

[Park 82]
K. C. Park, “Semi-Implicit Transient Analysis Procedure for Structural
Dynamics Analysis,” International Journal for Numerical Methods in
Engineering, Vol. 18, pp 604-622, (1982).

[Ried 82
Robert C. Ried, Winston D. Goodrich, Chien P. Li, Carl D. Scott,
Stephen M. Derry, and Robert J. Maraia, “Space Shuttle Orbiter Entry
Heating and TPS Response: STS-1 Predictions and Flight Data,” Computational
Aspects of Heat Transfer in Structures, NASA Conference Publication 2216,
(1982).

[Robinson 82]
J. C. Robinson, K. M. Riley, and R. T. Haftka, “Evaluation of the SPAR
Thermal Analyzer on the CYBER-203 Computer,” Computational Aspects of
Heat Transfer in Structures, NASA Conference Publication 2216, (1982).

[Siegel 81]
Robert Siegel and John R. Howell, Thermal Radiation Heat Transfer,
McGraw-Hill, New York, (1981).

[Strang 73]
Gilbert Strang and George J. Fix, An Analysis of the Finite Element Method,

Prentice-Hall Inc., New Jersey, (1973).

[Taylor 75
Robert L. Taylor, ““HEAT*, A Finite Element Computer Program for Heat-
Conduction Analysis,” Report 75-1, Prepared for: Civil Engineering Laboratory,
Naval Construction Battalion Center, Port Hueneme, California, May 1975.

[Trujillo 77a]
D. M. Trujillo, “An Unconditionally Stable, Explicit Algorithm
for Finite Element Heat Conduction Analysis,” Journal of Nuclear
Engineering and Design, Vol. 41, pp 175-180, (1977).

[Trujillo 77b]
D. M. Trujillo and H. R. Busby, “Finite Element Nonlinear Heat Transfer
Analysis using a Stable Explicit Method,” Journal of Nuclear Engineering and
Design, Vol. 44, pp 227-233, (1977).

[Trujillo 77¢]
D. M. Trujillo, “An Unconditionally Stable, Explicit Algorithm for Structural
Dynamics,” International Jouranl for Numerieal Methods in Engineering, Vol.

11, pp 1579-1592, (1977).



References

168

[Trujillo 82]
D. M. Trujillo and H. R. Busby, “Investigation of Highly Accurate Integration
Formulae for Transient Heat Conduction Analysis Using the Conjugate Gradient
Method,” International Journal for Numerical Methods in Engineering, Vol. 18,
pp 99-109, (1982).

[Underwood 79]
P. G. Underwood and K. C. Park, “A Variable-Step Central
Difference Method for Structural Analysis-Part II: Implementation
and Performance Evaluation,” ASME Paper, presented at the Pressure
Vessels and Piping Conference, San Francisco, California, June 25-29, 1979.

[Vemuri 81]
V. Vemuri and Walter J. Karplus, Digital Computer Treatment of Partial
Differential Equations, Prentice-Hall Inc., New Jersey, (1981).

[Wachpress 66]
E. L. Wachpress, lterative Solution of Ellsptic Systems and Applications to the
Neutron Diffusion Equations of Reactor Physics, Prentice-Hall Inc., New Jersey,

(1966).

[Winget 82]
James M. Winget and Thomas J. R. Hughes, “A Profile
Solver for Specially Structured Symmetric-Unsymmetric Equation Systems,”

Advances in Engineering Software, Vol. 4 No. 2, pp 64-67, (1982).

[Yanenko 71]
N. N. Yanenko, The Method of Fractional Steps, Springer—Verlag, New York-

Heidelberg-Berlin, (1971).

[Zienkiewicz 77]
O. C. Zienkiewicz, The Finite Element Method, McGraw-Hill Book Company,

London, (1977).



1-step residuals 95
accuracy 83

adaptive mesh refinement 114
[Adelman 82] 141
Adiabatic 7

[Akin 82] 12

alternating direction 53
[Ames 77] 3

array topology 117
[Bakhvalov 77} 33

[Bathe 80] 83

[Bathe 82] 12

[Bell 76] 131

[Belytschko 83] 63
break-even point 79
[Bruch 74] 131

[Carey 81] 114

[Carslaw 59] 6

[Carslaw 59] 8

Cholesky decomposition 30
communication topology 116
compact 29

computational cost 31

computational half-bandwidth 28

congruent 104
conjugate gradient 44

Convective 8
convergence 24
corrections 18

cost ratio 80

cost 31

CPU 31

Crout factorization 30
[Dahlquist 74] 83
direct techniques 27
disjoint element group 117
[Douglas 56,62] 2
[Douglas 56,62 53
effective mass 25
efficiency ratio 115
element group 118
element 58
element-by-element 57
[Emery 79,82] 67
error measures 83
[Evans 82] 115
explicit 18

factor 31

[Fellipa 75] 27

fill-in 29

fixed 16
floating-point 31

Index



Index

Index

Fourier Law 8

[Fox 83] 3

free 16

Gaussian elimination 27
Gauss-Seidel iteration 38
[George 81] 27

(Gill 81] 33

[Gong 82] 141

gradient methods 41
[Gresho 79] 67

[Haftka 82] 141
[Hageman 81} 33
[Hageman 81] 74
[Hestenes 52] 44
[Hibbitt 79] 94
[Hockney 81] 115
[Holman 72} 8
[Householder 64| 33
[Hughes 77} 16

[Hughes 78a,78b,79,81,82a] 113

[Hughes 83a] 2
[Hughes 83a] 40, 65
[Hughes 83¢c] 3
implicit 18
implicit-explicit 113
inner-iteration 74
[Isachenko 75] 8
iterative techniques 27
iterative techniques 33
Jacobi iteration 38
{Jenning 77] 27

[Juba 82] 2

[Kamel 78] 27

[Ko 82] 141

[Levit 82] 43

170

linear stationary methods of the first degree 34
linearized 18

local 13

locally 13

lumped mass 67

[Marchuk 74,75] 2

[Marchuk 75] 55

mean half-bandwidth 28
MIMD 116

[Mitchell 77] 9

[Mitcheli 80] 33

modified Newton-Raphson 25
multi-component splitting 54
|[Narasimhan 77} 94

no-flux 7

non-local 13

[Noor 82} 2

{Nour-Omid 82] 65

one-pass 54

operation 31

out-of-balance force 25
overhead storage 31

[Ozisik 80] 8

parabolic regularization 40
[Park 79} 94

[Park 82] 37

pipeline 116

precondition 45
preconditioned conjugate gradient 45
preconditioned steepest descent 42
predict 18
predictor-corrector 18
primary storage 31

product decomposition 29
product 29



Index

Index

profile 28

Radiation 8

rate of convergence 84
reordered 61
residual force 25
residual form 34
Richardson 37

[Ried 82] 141
[Robinson 82] 2
row-column 47
search parameter 42
shape functions 13
[Siegel 81] 8

SIMD 115

skyline storage 28
solve 31

spectral condition number 35
speed-up factor 115
splitting matrix 35
steepest descent 41
stiffness 23

storage 31

[Strang 73] 9
subdomain model 58
subiteration 74
substructures 58

substructures 100

successive overrelaxation method 38

sum decomposition 35
sum 36
sum-to-product 52
superelements 58

symmetric linearization 19

symmetric successive overrelaxation method 39

symmetrizable 35

Synchronization 119
[Taylor 75] 94

triangular decomposition 29
[Trujillo 77a,77b,77¢] 37
[Trujillo 77b,82] 131
two-component splitting 53
[Underwood 79] 94
variable bandwidth 28
vector 116

vectors 47

velocity formulation 25
velocity 17

[Vemuri 81] 33

[Wachpress 66] 74

[Winget 82 27

word 31

[Yanenko 71] 2

[Yanenko 71} 126
zero-dimensional 117

[Zienkiewicz 77] 12



