
Space-Time Code Design and Its Applications in

Wireless Networks

Thesis by

Yindi Jing

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2004

(Submitted September 7, 2004)



ii

c© 2004

Yindi Jing

All Rights Reserved



iii

Acknowledgments

I owe a debt of gratitude to many people who have helped me with my graduate study

and research in diverse ways. Without their generosity and assistance, the completion

of this thesis would not have been possible.

First of all, I would like to express my deepest gratitude and appreciation to my

advisor, Professor John C. Doyle, for his excellent guidance and generous support.

He allowed me to initiate my graduate studies at California Institute of Technology,

one of the most elite graduate universities in the world. John has incredible vision

and boundless energy. He is also an endless source of creative ideas. Often times,

I have realized how truly fortunate I am to have such an open-minded advisor who

allowed me to choose my research subject freely.

My greatest and heartfelt thanks must also go to Professor Babak Hassibi, my

associate advisor and mentor, for his constant encouragement, inspiration, and guid-

ance both in completing this thesis and in my professional development. He led me to

the exciting world of wireless communications. He not only always has great insights

but also shows his students how to start from an ultimate vision of the world and

reduce it to a tractable problem. It is hard to imagine having done my Ph.D. without

his help.

I would like to thank the other members of my dissertation committee, Professor

Robert J. McEliece, Professor P. P. Vaidyanathan, Professor Steven Low, and my

other candidacy committee member Professor Michael Aschbacher, for their valuable

time, comments, feedback and interest in this work.

I would like to express my gratitude to my parents Zhaojin Jing and Yufang

Lei for their endless emotional support. I also credit my husband, Xinwei Yu, for



iv

me surviving my last two years of graduate study. It is his unwavering love and

unconditional support that inspire my life and work. I also learned a lot from him.

I am grateful to my officemates of Moore 155C, Radhika Gowaikar and Chaitanya

Rao, for making my graduate school experience both memorable and fun. Chaitanya

also kindly helped me proofread this thesis. I would also like to thank other members

of the wireless communications group, Amir F. Dana, Masoud Sharif, Mihailo Stojnic,

Vijay Gupta, and Haris Vikalo. Great thanks to Maralle Fakhereddin, a summer

intern, who spent a lot of time and energy proofreading this thesis.

Special thanks to my friends Lun Li and Min Tao for their help, support, and

friendship during my darkest time. My lifetime friend Bing Liu deserves special

mention for his support and concern. He is like a family member to me.

I would also like to acknowledge my officemates of Steele 7, Xin Liu and Domi-

tilla del Vecchio, my classmate and former officemate of Steele 135 and Steele 4,

Jiantao Wang, for discussing homework and research problems during my first two

years at Caltech, Jim Endrizzi, the international student advisor of Caltech Inter-

national Students Program office, for helping me with international student issues,

Caltech Chinese Association, and Caltech Badminton Club for entertaining my stay

at Caltech.



v

Abstract

This thesis has two main contributions: the designs of differential/non-differential

unitary space-time codes for multiple-antenna systems and the analysis of the diver-

sity gain when using space-time coding among nodes in wireless networks.

Capacity has long been a bottleneck in wireless communications. Recently, multiple-

antenna techniques have been used in wireless communications to combat the fading

effect, which improves both the channel capacity and performance greatly. A re-

cently proposed method for communicating with multiple antennas over block-fading

channels is unitary space-time modulation, which can achieve the channel capacity

at high SNR. However, it is not clear how to generate well performing unitary space-

time codes that lend themselves to efficient encoding and decoding. In this thesis, the

design of unitary space-time codes using Cayley transform is proposed. The codes

are designed based on an information-theoretic criterion and have a polynomial-time

near-maximum-likelihood decoding algorithm. Simulations suggest that the resulting

codes allow for effective high-rate data transmissions in multiple-antenna commu-

nication systems without knowing the channel. Another well-known transmission

scheme for multiple-antenna systems with unknown channel information at both the

transmitter and the receiver is differential unitary space-time modulation. It can

be regarded as a generalization of DPSK and is suitable for continuous fading. In

differential unitary space-time modulation, fully diverse constellations, i.e., sets of

unitary matrices whose pairwise differences are non-singular, are wanted for their

good pairwise error properties. In this thesis, Lie groups and their representations

are used in solving the design problem. Fully diverse differential unitary space-time

codes for systems with four and three transmit antennas are constructed based on the
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Lie groups Sp(2) and SU(3). The designed codes have high diversity products, lend

themselves to a fast maximum-likelihood decoding algorithm, and simulation results

show that they outperform other existing codes, especially at high SNR.

Then the idea of space-time coding devised for multiple-antenna systems is applied

to communications over wireless networks. In wireless relay networks, the relay nodes

encode the signals they receive from the transmit node into a distributed space-time

code and transmit the encoded signals to the receive node. It is shown in this thesis

that at very high SNR, the diversity gain achieved by this scheme is almost the same

as that of a multiple-antenna system whose number of transmit antennas is the same

as the number of relay nodes in the network, which means that the relay nodes work

as if they can cooperate fully and have full knowledge of the message. However, at

moderate SNR, the diversity gain of the wireless network is inferior to that of the

multiple-antenna system. It is further shown that for a fixed total power consumed

in the network, the optimal power allocation is that the transmitter uses half the

power and the relays share the other half fairly. This result addresses the question of

what performance a relay network can achieve. Both it and its extensions have many

applications to wireless ad hoc and sensory network communications.
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Chapter 1 Introduction to

Multiple-Antenna Communication

Systems

1.1 Introduction

Wireless communications first appeared in 1897, when Guglielmo Marconi demon-

strated radio’s ability to provide contact with ships sailing the English channel.

During the following one hundred years, wireless communications has experienced

remarkable evolution, for example, the appearance of AM and FM communication

systems for radios [Hay01] and the development of the cellular phone system from its

first generation in the 1970s to the third generation, which we are about to use soon

[Cal03, Stu00, Rap02]. The use of wireless communications met its greatest increase

in the last ten years, during which new methods were introduced and new devices

invented. Nowadays, we are surrounded by wireless devices and networks in our ev-

eryday lives: cellular phone, handheld PDA, wireless INTERNET, walkie-talkie, etc.

The ultimate goal of wireless communications is to communicate with anybody from

anywhere at anytime for anything.

In reaching this ultimate goal, the bottleneck lies in the capacity of wireless com-

munication systems, that is, how much information can go through the system. With

the increasing use of diverse wireless facilities, the demand for bandwidth or capacity

becomes more and more urgent, especially for power and complexity limited systems.

This means that we can not increase capacity by simply increasing the transmit

power. Communication systems in use today are predominantly single-antenna sys-
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tems. Because of the multiple-path propagation in wireless channels, the capacity of

a single wireless channel can be very low. Research efforts have focused on ways to

make more efficient use of this limited capacity and have accomplished remarkable

progresses. On the one hand, efficient techniques, such as frequency reuse [Rap02]

and OFDM [BS99], have been invented to increase the bandwidth efficiency; on the

other hand, advances in coding such as turbo codes [BGT93] and low density parity

check codes [Gal62, MN96, McE02] make it feasible to almost reach Shannon capacity

[CT91, McE02], the theoretical upper bound for the capacity of the system. However,

a conclusion that the capacity bottleneck has been broken is still far-fetched.

Other than low Shannon capacity, single-antenna systems suffer another great dis-

advantage: its high error rate. In an additive white Gaussian noise (AWGN) channel,

which models a typical wired channel, the pairwise error probability (PEP), the prob-

ability of mistaking the transmitted signal with another one, decreases exponentially

with the signal-to-noise ratio (SNR), while due to the fading effect, the average PEP

for wireless single-antenna systems only decreases linearly with SNR. Therefore, to

achieve the same performance, a much longer code or much higher transmit power is

needed for single-antenna wireless communication systems.

Given the above disadvantages, single-antenna systems are unpromising candi-

dates to meet the needs of future wireless communications. Therefore, new commu-

nication systems superior in capacity and error rate must be introduced and conse-

quently, new communication theories for these systems are of great importance at the

present time.

Recently, one such new systems, digital communication systems using multiple-

input-multiple-output (MIMO) wireless links, that is, using multiple antennas at

the transmitter and the receiver, has emerged. This is one of the most significant

technical breakthroughs in modern communications. The key feature of a multiple-

antenna system is its ability to turn multiple-path propagation, which is traditionally
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regarded as a disadvantage to wireless communications, into a benefit to the users.

In 1996 and 1999, Foschini and Telatar proved in [Fos96] and [Tel99] that com-

munication systems with multiple antennas have a much higher capacity than single-

antenna systems. They showed that the capacity improvement is almost linear in

the number of transmit antennas or the number of receive antennas, whichever is

smaller. This result indicated the superiority of multiple-antenna systems and ig-

nited great interest in this area. In few years, much work has been done generalizing

and improving their results. On the one hand, for example, instead of assuming that

the channels have rich scattering so that the propagation coefficients between trans-

mit and receive antennas are independent, it was assumed that correlation can exist

between the channels; on the other hand, unrealistic assumptions, such as perfect

channel knowledge at both the transmitter and the receiver are replaced by more re-

alistic assumptions of partial or no channel information at the receiver. Information

theoretic capacity results have been obtained under these and other new assumptions,

for example, [ZT02, SFGK00, CTK02, CFG02].

These results indicate that multiple-antenna systems have much higher Shannon

capacity than single-antenna ones. However, since Shannon capacity can only be

achieved by codes with unbounded complexity and delay, the above results do not

reflect the performance of real transmission systems. For example, in a system with

two transmit antennas, if identical signals are transmitted from both antennas at a

time, a PEP that is inversely proportional to SNR is obtained, which is the same

as that of single-antenna systems although the coding gain is improved. However,

if Alamouti’s scheme [Ala98] is used, a PEP that behaves as SNR−2 is obtained.

Therefore, it is important to develop algorithms that take advantage of the spatial

diversity provided by multiple antennas. Many algorithms with reasonable complex-

ity and performance have been proposed, for example, the diversity techniques and

diversity combining methods (see [Win83, Wit93, Stu00, Rap02, Pro00]). Among
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them, the most successful one is space-time coding.

In space-time coding, the signal processing at the transmitter is done not only in

the time dimension, as what is normally done in many single-antenna communication

systems, but also in the spatial dimension. Redundancy is added coherently to both

dimensions. By doing this, both the data rate and the performance are improved

by many orders of magnitude with no extra cost of spectrum. This is also the main

reason that space-time coding attracts much attention from academic researchers and

industrial engineers alike.

The idea of space-time coding was first proposed by Tarokh, Seshadri and Calder-

bank in [TSC98]. They proved that space-time coding achieves a PEP that is inversely

proportional to SNRMN , where M is the number of transmit antennas and N is the

number of receive antennas. The number MN is called the diversity of the space-

time code. Comparing with the PEP of single-antenna systems, which is inversely

proportional to the SNR, the error rate is reduced dramatically. It is also shown in

[TSC98] that by using space-time coding, some coding gain can be obtained. The

first practical space-time code is proposed by Alamouti in [Ala98], which works for

systems with two transmit antennas. It is also one of the most successful space-time

codes because of its great performance and simple decoding.

The result in [TSC98] is based on the assumption that the receiver has full knowl-

edge of the channel, which is not a realistic assumption for systems with fast-changing

channels. Hochwald and Marzetta studied the much more practical case where no

channel knowledge is available at either the transmitter or the receiver. They first

found a capacity-achieving space-time coding structure in [MH99] and based on this

result, they proposed unitary space-time modulation [HM00]. In [HM00], they also

proved that unitary space-time coding achieves the same diversity, MN , as general

space-time coding.

Based on unitary space-time modulation, a transmission scheme that is better
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tailored for systems with no channel information at both the transmitter and the

receiver is proposed by Hochwald and Sweldens in [HS00] and Hughes in [Hug00a],

which is called differential unitary space-time modulation. Differential unitary space-

time modulation can be regarded as an extension of differential phase-shift keying

(DPSK), a very successful transmission scheme for single-antenna systems.

During the last few years, the technology of multiple antennas and space-time

coding has been improved greatly. There are many papers on the design of differential

and non-differential unitary space-time codes, for example, [TJC99, HH02b, MHH02,

HH02a, JH03e, JH03b, JH04e, GD03, DTB02]. There is also much effort in trying to

improve the coding gain by combining space-time codes with other error-correcting

codes or modulations, for example, [SD01, SG01, LFT01, Ari00, BBH00, FVY01,

GL02, BD01, LB02, JS03]. Today, this area is still under intensive theoretical study.

In this thesis, the design of space-time codes is investigated in order to exploit

the transmit diversity provided by the transmit antennas at the transmitter along

with the applications of space-time coding in wireless networks in order to exploit

the distributed spatial diversity provided by antennas of the distributed nodes in a

network. The thesis has five parts. The first part includes Chapters 1 and 2, in

which a brief but broad introduction of multiple-antenna systems and space-time

coding is provided. Chapter 3 is Part II, which describes the design of unitary space-

time codes using Cayley transform. Part III includes Chapters 4, 5 and 6, where

the design of differential unitary space-time codes based on groups is discussed. In

Chapter 4, concepts and background materials of groups and Lie groups are listed,

along with motivations to the use of groups in differential unitary space-time code

design. Chapters 5 and 6 are on the design of differential unitary space-time codes

for systems with four transmit antennas and three transmit antennas based on the

Lie groups Sp(2) and SU(3), respectively. Part IV is Chapter 7, in which the idea

of space-time coding is used in wireless networks to exploit the distributed diversity
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among the relay nodes. The last part, Chapter 8, is the summary and discussion.

1.2 Multiple-Antenna Communication System Model

Consider a wireless communication system with two users. One is the transmitter

and the other is the receiver. The transmitter has M transmit antennas and the

receiver has N receive antennas as illustrated in Figure 1.1. There exists a wireless

channel between each pair of transmit and receive antennas. The channel between

the m-th transmit antenna and the n-th receive antenna can be represented by the

random propagation coefficient hmn, whose statistics will be discussed later.

h12

h11

h21

h22

hM2 hMN

1Nh

hM1

h2N

wN

x1

x2

xN

w1

w2

s1

s2

sM

. .
 .

. .
 .

T
ransm

itter

R
eceiver

Figure 1.1: Multiple-antenna communication system

To send information to the receiver, at every transmission time, the transmitter

feeds signals s1, · · · , sM to its M antennas respectively. The antennas then send the

signals simultaneously to the receiver. Every receive antenna at the receiver obtains

a signal that is a superposition of the signals from every transmit antenna through

the fading coefficient. The received signal is also corrupted by noise. If we denote

the noise at the n-th receive antenna by wn, the received signal at the n-th receive
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antenna is

xn =
M∑

m=1

hmnsm + wn.

This is true for n = 1, 2, · · · , N . If we define the vector of the trasmitted signal as

s = [s1, s2, · · · , sM ], the vector of the received signal as x = [x1, x2, · · · , xM ], the

vector of noise as w = [w1, w2, · · · , wM ] and the channel matrix as

H =












h11 h12 · · · h1N

h21 h22 · · · h2N

...
...

. . .
...

hM1 hM2 · · · hMN












,

the system equation can be written as

x = sH + w. (1.1)

The total transmit power is P = ss∗ = tr s∗s.

1.3 Rayleigh Flat-Fading Channel

The wireless characteristic of the channel places fundamental limitations on the per-

formance of wireless communication systems. Unlike wired channels that are sta-

tionary and predictable, wireless channels are extremely random and are not easily

analyzed due to the diverse environment, the motion of the transmitter, the receiver,

and the surrounding objects. In this section, characteristics of wireless channels are

discussed and the Rayleigh flat-fading channel model is explained in detail.

In a mobile wireless environment, the surrounding objects, such as buildings, trees,

and houses act as reflectors of electromagnetic waves. Due to these reflections, elec-

tromagnetic waves travel along different paths of varying lengths and therefore have
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various amplitudes and phases. The interaction between these waves causes multiple

fading at the receiver location, and the strength of the waves decreases as the distance

between the transmitter and the receiver increases. Traditionally, propagation model-

ing focuses on two aspects. Propagation models that predict the mean signal strength

for an arbitrary transmitter-receiver separation distance are called large-scale propa-

gation models since they characterize signal strength over large transmitter-receiver

distances. Propagation models that characterize the rapid fluctuations of the received

signal strength over very short travel distances or short time durations are called small

scale or fading models. In this thesis, the focus is on fading models, which are more

suitable for indoor and urban areas.

Small-scale fading is affected by many factors, such as multiple-path propaga-

tion, speed of the transmitter and receiver, speed of surrounding objects, and the

transmission bandwidth of the signal. In this work, narrowband systems are consid-

ered, in which the bandwidth of the transmitted signal is smaller than the channel’s

coherence bandwidth, which is defined as the frequency range over which the chan-

nel fading process is correlated. This type of fading is referred to as flat fading or

frequency nonselective fading.

The Rayleigh distribution is commonly used to describe the statistical time-

varying nature of the received envelope of a flat-fading signal. It is also used to

model fading channels in this thesis. For a typical mobile wireless channel in indoor

or urban areas, we may assume that the direct line-of-sight wave is obstructed and

the receiver obtains only reflected waves from the surrounding objects. When the

number of reflected waves is large, according to central limit theory, two quadrature

components of the received signal are uncorrelated Gaussian random processes with

mean zero and variance σ2. As a result, the envelope of the received signal at any

time instant has a Rayleigh distribution and its phase is uniform between −π and π.
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The probability density function of the Rayleigh distribution is given by

p(r) =







r
σ2 e

− r2

2σ2 r ≥ 0

0 r < 0
.

If the fading coefficients in the multiple-antenna system model given in (1.1) are

normalized by

M∑

m=1

|h2
mn| = M, for i = 1, 2, · · · , N, (1.2)

we have σ2 = 1
2
. Therefore, the fading coefficient hmn has a complex Gaussian

distribution with zero-mean and unit-variance, or equivalently, the real and imaginary

parts of hmn are independent Gaussians with mean zero and variance 1
2
. Note that

with (1.2),

E

∣
∣
∣
∣
∣

M∑

m=1

hmnsn

∣
∣
∣
∣
∣

2

=

M∑

m=1

E |hmn|2|sn|2 =

M∑

m=1

E |sn|2 = P,

which indicates that the normalization in (1.2) makes the received signal power at

every receive antenna equals the total transmit power.

Another widely used channel model is the Ricean model which is suitable for the

case when there is a dominant stationary signal component, such as a line-of-sight

propagation path. The small-scale fading envelope is Ricean, with probability density

function,

p(r) =







r
σ2 e

− r2+A2

2σ2 I0

(
Ar
σ2

)
if r ≥ 0

0 if r < 0
.

The parameter A is always positive and denotes the peak amplitude of the dominant

signal, and I0(·) is the zeroth-order modified Bessel function of the first kind [GR00].

For more information on propagation models, see [Rap02].
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1.4 Capacity Results

As discussed in Section 1.1, communication systems with multiple antennas can

greatly increase capacity, which is one of the main reasons that multiple-antenna

systems are of great interest. This section is about the capacity of multiple-antenna

communication systems with Rayleigh fading channels. Three cases are discussed:

both the transmitter and the receiver know the channel, only the receiver knows the

channel, and neither the transmitter nor the receiver knows the channel. The results

are based on Telatar’s results in [Tel99].

It is obvious that the capacity depends on the transmit power. Therefore, assume

that the power constraint on the transmitted signal is

E tr s∗s ≤ P, or equivalently, E tr ss∗ ≤ P.

In the first case, assume that both the transmitter and receiver know the channel

matrix H. Note that H is deterministic in this case. Consider the singular value

decomposition of H : H = UDV ∗, where U is an M × M unitary matrix, V is

an N × N unitary matrix, and D is an M × N diagonal matrix with non-negative

diagonal entries.1 By defining x̃ = V x, s̃ = sU , and ṽ = V v, the system equation

(1.1) is equivalent to

x̃ = Ds̃ + ṽ.

Since v is circularly symmetric complex Gaussian2 with mean zero and variance IN ,

1An M × N matrix, A, is diagonal if its off-diagonal entries, aij , i 6= j, i = 1, 2, · · · , M, j =
1, 2, · · · , N , are zero.

2A complex vector x ∈ Cn is said to be Gaussian if the real random vector x̂ =

[
xRe

xIm

]

∈ R2n

is Gaussian. x is circularly symmetric if the variance of x̂ has the structure

[
QRe −QIm

QIm QRe

]

for some Hermitian non-negative definite matrix Q ∈ Cn×n. For more on this subject, see [Tel99,
Ede89].
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ṽ is also circularly symmetric complex Gaussian with mean zero and variance IN .

Since the rank of H is min{M,N}, at most min{M,N} of its singular values are

non-zero. Denote the non-zero singular values of H as
√
λi. The system equation can

be written component-wisely to get

x̃i =
√

λis̃i + ñi, for 1 ≤ i ≤ min{M,N}.

Therefore, the channel is decoupled into min{M,N} uncorrelated channels, which

is equivalent to min{M,N} single-antenna systems. It is proved in [Tel99] that the

capacity achieving distribution of s̃i is circularly symmetric Gaussian and the ca-

pacity for the i-th independent channel is log(1 + λiPi), where Pi = E s̃is̃
∗
i is the

power consumed in the i-th independent channel. Therefore, to maximize the mu-

tual information, s̃i should be independent circularly symmetric Gaussian distributed

and the transmit power should be allocated to the equivalent independent channels

optimally. It is also proved in [Tel99] that the power allocation should follow “water-

filling” mechanism. The power for the i-th sub-channel should be E s̃∗i s̃i = (µ−λ−1
i )+,

where µ is chosen such that
∑min{M,N}

i=1 (µ− λ−1
i )+ = P .3 The capacity of the system

is thus

C =

min{M,N}
∑

i=1

log(µλi),

which increases linearly in min{M,N}.

When only the receiver knows the channel, the transmitter cannot perfrom the

“water-filling” adaptive transmission. It is proved in [Tel99] that the channel capacity

is given by

C = log det(IN + (P/M)H∗H),

which is achieved when s is circularly symmetric complex Gaussian with mean zero

3a+ denotes max{o, a}.
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and variance (P/M)IM . When the channel matrix is random according to Rayleigh

distribution, the expected capacity is just

C = E log det(IN + (P/M)H∗H),

where the expectation is over all possible channels.

For a fixed N , by the law of large numbers, limM→∞
1
M
H∗H = IN with probability

1. Thus the capacity behaves, with probability 1, as

N log(1 + P ),

which grows linearly in N , the number of receive antennas. Similarly, for a fixed M ,

limN→∞
1
N
HH∗ = IM with probability 1. Since det(IN + (P/M)H∗H) = det(IM +

(P/M)HH∗), the capacity behaves, with probability 1, as

M log

(

1 +
PN

M

)

,

which increases almost linearly in M , the number of transmit antennas. Therefore,

comparing with the single antenna capacity

log(1 + P ),

the capacity of multiple-antenna systems increases almost linearly in min{M,N}.

Multiple-antenna systems then give significant capacity improvement than single-

antenna systems.

The capacity for the case when neither the transmitter nor the receiver knows the

channel is still an open problem. Zheng and Tse [ZT02] have some results based on

the block-fading channel model, which will be discussed in the next chapter.
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1.5 Diversity

Another prominent advantage of multiple-antenna systems is that they provide better

reliability in transmissions by using diversity techniques without increasing transmit

power or sacrificing bandwidth. The basic idea of diversity is that, if two or more

independent samples of a signal are sent and then fade in an uncorrelated manner,

the probability that all the samples are simultaneously below a given level is much

lower than the probability of any one sample being below that level. Thus, properly

combining various samples greatly reduces the severity of fading and improves relia-

bility of transmission. We give a very simple analysis below. For more details, please

refer to [Rap02, Stu00, VY03].

The system equation for a single-antenna communication system is

x =
√
ρsh+ v,

where h is the Rayleigh flat-fading channel coefficient. ρ is the transmit power. v is the

noise at the receiver, which is Gaussian with zero-mean and unit-variance. s satisfies

the power constraint E |s|2 = 1. Therefore, the SNR at the receiver is ρ|h|2. Since

h is Rayleigh distributed, |h|2 is exponentially distributed with probability density

function

p(x) = e−x, x > 0.

Thus, the probability that the receive SNR is less than a level ε is,

P (ρ|h|2 < ε) = P

(

|h|2 < ε

ρ

)

=

∫ ε
ρ

0

e−xdx = 1 − e−
ε
ρ .

When the transmit power is high (ρ� 1),

P (ρ|h|2 < ε) ≈ ε

ρ
,
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which is inversely proportional to the transmit power. For a multiple-antenna system,

with the same transmit power, the system equation is

x =
√
ρsH + v,

where E ss∗ = 1. Further assume that the elements of s are iid, in which case

E |si|2 = 1/M . Since hij are independent, the expected SNR at the receiver is

ρE sHH∗s∗ = ρ

M∑

i=1

M∑

j=1

N∑

k=1

E sisjhikhjk = ρ

M∑

i=1

E |si|2
N∑

k=1

|hik|2 =
ρ

M

M∑

i=1

N∑

k=1

|hik|2.

The probability that the SNR at the receiver is less than the level ε is then

P

(

ρ

M

M∑

i=1

N∑

k=1

|hik|2 < ε

)

= P

(
M∑

i=1

N∑

k=1

|hik|2 <
εM

ρ

)

< P

(

|h11|2 <
cM

ρ
, · · · , |hMN |2 <

εM

ρ

)

=

M,N
∏

i=1,k=1

P

(

|h|2 < εM

ρ

)

=
(

1 − e−
εM
ρ

)MN

.

When the transmit power is high (ρ� 1),

P

(

ρ

M

M∑

i=1

N∑

k=1

|hik|2 < ε

)

.

(
εM

ρ

)MN

,

which is inversely proportional to ρMN . Therefore, multiple-antenna systems have

much lower error probability than single-antenna systems at high transmit power.

There are a lot of diversity techniques. According to the domain where diver-

sity is introduced, they can be classified into time diversity, frequency diversity and

antenna diversity (space diversity). Time diversity can be achieved by transmitting
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identical messages in different time slots, which results in uncorrelated fading signals

at the receiver. Frequency diversity can be achieved by using different frequencies to

transmit the same message. The issue we are interested in is space diversity, which is

typically implemented using multiple antennas at the transmitter or the receiver or

both. The multiple antennas should be separated physically by a proper distance to

obtain independent fading. Typically a separation of a few wavelengths is enough.

Depending on whether multiple antennas are used for transmission or reception,

space diversity can be classified into two categories: receive diversity and transmit

diversity. To achieve receive diversity, multiple antennas are used at the receiver

to obtain independent copies of the transmitted signals. The replicas are properly

combined to increase the overall receive SNR and mitigate fading. There are many

combining methods, for example, selection combining, switching combining, maxi-

mum ratio combining, and equal gain combining. Transmit diversity is more difficult

to implement than receive diversity due to the need for more signal processing at

both the transmitter and the receiver. In addition, it is generally not easy for the

transmitter to obtain information about the channel, which results in more difficulties

in the system design.

Transmit diversity in multiple-antenna systems can be exploited by a coding

scheme called space-time coding, which is a joint design of error-control coding, mod-

ulation, and transmit diversity. The idea of space-time coding is discussed in the next

chapter.
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Chapter 2 Space-Time Block Codes

2.1 Block-Fading Model

Consider the wireless communication system given in Figure 1.1 in Section 1.2. We

use block-fading model by assuming that the fading coefficients stay unchanged for

T consecutive transmissions, then jump to independent values for another T trans-

missions and so on. This piecewise constant fading process mimics the approximate

coherence interval of a continuously fading process. It is an accurate representation

of many TDMA, frequency-hopping, and block-interleaved systems.

The system equation for a block of T transmissions can be written as

X =

√

ρT

M
SH +W, (2.1)

where

S =









s11 · · · s1M

...
. . .

...

sT1 · · · sTM









, X =









x11 · · · x1M

...
. . .

...

xT1 · · · xTM









,

H =









h11 · · · h1N

...
. . .

...

hM1 · · · hMN









, W =









w11 · · · w1N

...
. . .

...

wT1 · · · xTN









.

S is the T×M transmitted signal matrix with stm the signal sent by the m-th transmit
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antenna at time t. The t-th row of S indicates the row vector of the transmitted values

from all the transmitters at time t and the m-th column indicates the transmitted

values of the m-th transmit antenna across the coherence interval. Therefore, the

horizontal axis of S indicates the spatial domain and the vertical axis of S indicates

the temporal domain. This is why S is called a space-time code. In the design of S,

redundancy is added in both the spatial and the temporal domains. H is the M ×N

complex-valued matrix of propagation coefficients which remains constant during the

coherent period T and hmn is the propagation coefficient between the m-th transmit

antenna and the n-th receive antenna. hmn have a zero-mean unit-variance circularly-

symmetric complex Gaussian distribution CN (0, 1) and are independent of each other.

V is the T × N noise matrix with vtn the noise at the n-th receive antenna at time

t. The vtns are iid with CN (0, 1) distribution. X is the T ×N matrix of the received

signal with xtn the received value by the n-th receive antenna at time t. The t-th row

of X indicates the row vector of the received values at all the receivers at time t and

the n-th column indicates the received values of the n-th transmit antenna across the

coherence interval.

If the transmitted signal is further normalized as

1

M

M∑

m=1

E |stm|2 =
1

T
, for t = 1, 2, ..., T, (2.2)

which means that the average expected power over the M transmit antennas is kept

constant for each channel use, the expected received signal power at the n-th receive

antenna and the t-th transmission is as follows.

E
ρT

M

∣
∣
∣
∣
∣

M∑

m=1

stmhmn

∣
∣
∣
∣
∣

2

=
ρT

M

M∑

m=1

E |stm|2E |hmn|2 =
ρT

M

M∑

m=1

E |stm|2 = ρ.
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The expected noise power at the n-th receive antenna and the t-th transmission is

E |wtn|2 = 1.

Therefore ρ represents the expected SNR at every receive antenna.

b

2

RT

...
b

Σ

H (MxN) W (TxN)

X (TxN)
Decoder

Rayleigh flat-fading channel
S (TxM) b

RT

Codebook

(size 2    )

b

b
(    T/M)ρ 1/2

2

1

RT

...
b1

Figure 2.1: Space-time block coding scheme

The space-time coding scheme for multiple-antenna systems can be described by

the diagram in Figure 2.1. For each block of transmissions, the transmitter selects a

T ×M matrix in the codebook according to the bit string [b1, b2, · · · , b2RT ] and feeds

columns of the matrix to its transmit antennas. The receiver decodes the R bits based

on its received signals which are attenuated by fading and corrupted by noise. The

space-time block code design problem is to design the set, C = {S1, S2, · · · , S2RT }, of

2RT transmission matrices in order to obtain low error rate.

2.2 Capacity for Block-Fading Model

In this section, the capacity of multiple-antenna systems using block-fading channel

model is discussed. Note that the results in Section 1.4 are actually included in the

results here since the system model used in Section 1.4 is a special case of the block-

fading model used here with T = 1. As before, three cases are discussed: both the

transmitter and the received know the channel, only the receiver knows the channel,

and neither the transmitter nor the receiver knows the channel. The results are based
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on [Tel99, MH99] and [ZT02].

When both the transmitter and the receiver know the channel, the capacity is the

same using block-fading model or not since in this case, H is deterministic. When

only the receiver has perfect knowledge of the channel, it is proved in [MH99] that

the average capacity per block of T transmissions is

C = T · E log det
(

IN +
ρ

M
H∗H

)

,

where the expectation is over all possible channel realizations. Therefore, the average

capacity per channel use is just

C = E log det
(

IN +
ρ

M
H∗H

)

,

which is the same as the result in Section 1.4. Thus, the capacity increases almost

linearly in min{M,N}.

Now, we discuss the case that neither the transmitter nor the receiver knows the

channel. It is proved in [MH99] that for any coherence interval T and any number

of receive antennas, the capacity with M > T transmit antennas is the same as the

capacity obtained with M = T transmit antennas. That is, according to capacity,

there is no point in having more transmit antennas than the length of the coherence

interval. Therefore, in the following text, we always assume that T ≥M .

The structure of the signal that achieves capacity is also given in [MH99], which

will be stated in Section 2.5. Although the structure of capacity-achieving signal is

given in [MH99], the formula for the capacity is still an open problem. In [ZT02],

the asymptotic capacity of Rayleigh block-fading channels at high SNR is computed.

The capacity formula is given up to the constant term according to SNR. Here is the

main result.

Define G(T,M) as the set of all M dimensional subspaces of CT . Let K =
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min{M,N}. If T ≥ K +N , then at high SNR, the asymptotic optimal scheme is to

use K of the transmit antennas to send signal vectors with constant equal norm. The

resulting capacity in bits per channel use is

C = K

(

1 − K

T

)

log ρ+ ck,n + o(1), (2.3)

where

ck,n =
1

T
log |G(T,M)| +M

(

1 − M

T

)

log
T

πe
+

(

1 − M

T

) N∑

i=N−M+1

E logχ2
2i,

and

|G(T,M)| =
|S(T,M)|
|S(M,M)| =

∏T
i=T−M+1

2πi

(i−1)!
∏M

i=1
2πi

(i−1)!

is the volume of the Grassmann manifold G(T,M). χ2
2i is a chi-square random vari-

able (see [EHP93]) of dimension 2i. Formula (2.3) indicates that the capacity is

linear in min{M,N, T
2
} at high SNR. This capacity expression also has a geometric

interpretation as sphere packing in Grassmann manifold.

In [HM02], the probability density of the received signal when transmitting isotrop-

ically distributed unitary matrices is obtained in closed form, from which capacity

of multiple-antenna systems can be computed. Also, simulated results in [HM02]

show that at high SNR, the mutual information is maximized when M = min{N, T
2
},

whereas at low SNR, the mutual information is maximized by allocating all transmit

power to a single antenna.
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2.3 Performance Analysis of Systems with Known

Channels

When the receiver knows the channel H, it is proved in [TSC98] and [HM00] that the

maximum-likelihood (ML) decoding is

arg max
i=1,2,··· ,L

P (X|Si) = min
i=1,2,··· ,L

∥
∥
∥X −

√

ρT/MSiH
∥
∥
∥

2

F
.

Since the exact symbol error probability and bit error probability are very difficult

to calculate, research efforts focus on the pairwise error probability (PEP) instead in

order to get an idea of the error performance. The PEP of mistaking Si by Sj is the

probability that Sj is decoded at the receiver while Si is transmitted. In [TSC98] and

[HM00], it is proved that the PEP of mistaking Si and Sj, averaged over the channel

distribution, has the following upper bound:

Pe ≤ det −N

[

IM +
ρT

4M
(Si − Sj)

∗(Si − Sj)

]

.

If Si − Sj is full rank, at high SNR (ρ� 1),

Pe . det −N(Si − Sj)
∗(Si − Sj)

(
4M

ρT

)MN

. (2.4)

We can see that the average PEP is inversely proportional to SNRMN . Therefore,

diversity MN is obtained. The coding gain is det N(Si − Sj)
∗(Si − Sj). If Si − Sj is

not full rank, the diversity is rank (Si − Sj)N .

Researchers also have worked on the exact PEP and other upper bounds of PEP,

from which estimations of the bit error probability are made. For more, see [HM00,

ZAS00, UG00, TB02].
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2.4 Training-Based Schemes

In wireless communication systems, for the receiver to learn the channel, training are

needed. Then, data information can be sent, and the ML decoding and performance

analysis follow the discussions in the previous section. This scheme is called training-

based scheme.

Training-based schemes are widely used in multiple-antenna wireless communica-

tions. The idea of training-based schemes is that when the channel changes slowly,

the receiver can learn the channel information by having the transmitter send pilot

signals known to the receiver. Training-based schemes dedicate part of the trans-

mission matrix S to be a known training signal from which H can be learned. In

particular, training-based schemes are composed of two phases: the training phase

and the data-transmission phase. The following discussion is based on [HH03].

The system equation for the training phase is

Xt =

√
ρt

M
StH + Vt,

where St is the Tt ×M complex matrix of training symbols sent over Tt time samples

and known to the receiver, ρt is the SNR during the training phase, Xt is the Tt ×N

complex received matrix, and Vt is the noise matrix. St is normalized as trStS
∗
t =

MTt.

Similarly, the system equation for the data-transmission phase is

Xd =

√
ρd

M
SdH + Vd,

where Sd is the Td ×M complex matrix of data symbols sent over Td = T − Tτ time

samples, ρd is the SNR during the data-transmission phase, Xd is the Td×N complex

received matrix, and Vd is the noise matrix. Sd is normalized as E trSdS
∗
d = MTd.



23

The normalization formula has an expectation because Sd is random and unknown.

Note that ρT = ρdTd + ρtTt.

There are two general methods to estimate the channel: the ML (maximum-

likelihood) and the LMMSE (linear minimum-mean-square-error) estimation whose

channel estimations are given by

Ĥ =

√

M

ρt

(S∗
t St)

−1S∗
tXt and Ĥ =

√

M

ρt

(
M

ρt

TM + S∗
t St

)−1

S∗
tXt,

respectively.

In [HH03], an optimal training scheme that maximizes the lower bound of the

capacity for MMSE estimation is given. There are three parameters to be optimized.

The first one is the training data St. It is proved that the optimal solution is to

choose the training signal as a multiple of a matrix with orthonormal columns. The

second one is the length of the training interval. Setting Tt = M is optimal for any

ρ and T . Finally, the third parameter is the optimal power allocation, which should

satisfy the following,







ρd < ρ < ρt if T > 2M

ρd = ρ = ρt if T = 2M

ρd > ρ > ρt if T < 2M

.

Combining the training-phase equation and the data-transmission-phase equation,

the system equation can be written as






Xτ

Xd




 =

√
ρ






IM

Sd




H +






Vτ

Vd




 . (2.5)
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Therefore, the transmitted signal is

S =
1√
2






IM

Sd




 .

If we further assume that the (T −M) ×M data matrix Sd is unitary, the unitary

complement of S can be easily seen to be

S⊥ =
1√
2






−S∗
d

IT−M




 . (2.6)

If Sd is not unitary, the matrix given in (2.6) is only the orthogonal complement of

S.1 Note that the unitary complement of S may not exist in this case.

There are other training schemes according to other design criterions. For exam-

ple, in [Mar99], it is shown that, under certain conditions, by choosing the number of

transmit antennas to maximize the throughput in a wireless channel, one generally

spends half the coherence interval training.

2.5 Unitary Space-Time Modulation

As discussed in the previous section, training-based scheme allocates part of the trans-

mission interval and power to training, which causes both extra time delay and power

consumption. For systems with multiple transmit and receive antennas, since there

are MN channels in total, to have a reliable estimation of the channels, consider-

ably long training interval is needed. Also, when the channels change fast because of

the movings of the transmitter, the receiver, or surrounding objects, training is not

possible. In this section, a transmission scheme called unitary space-time modulation

1A T × (T − M) matrix Ã is the orthogonal complement of a T × M matrix A if and only if
Ã∗A = 0.
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(USTM) is discussed, which is suitable for trainsmissions in multiple-antenna sys-

tems when the channel is unknown to both the transmitter and the receiver without

training. This scheme was proposed in [HM00].

2.5.1 Transmission Scheme

When the receiver does not know the channel, it is not clear how to design the signal

set and decode. In [MH99], the capacity-achieving signal is given, and the main result

is as follows in Theorem 2.1.

Theorem 2.1 (Structure of capacity-achieving signal). [MH99] A capacity-

achieving random signal matrix for (2.1) may be constructed as a product S = V D,

where V is a T × T isotropically distributed unitary matrix, and D is an independent

T ×M real, nonnegative, diagonal matrix. Furthermore, for either T � M , or high

SNR with T > M , d11 = d22 = · · · = dMM = 1 achieves capacity where dii is the i-th

diagonal entry of D.

An isotropically distributed T × T unitary matrix has a probability density that

is unchanged when the matrix is left or right multiplied by any deterministic unitary

matrix. It is the uniform distribution on the space of unitary matrices. In a natural

way, an isotropically distributed unitary matrix is the T ×T counterpart of a complex

scalar having unit magnitude and uniformly distributed phase. For more on the

isotropic distribution, refer to [MH99] and [Ede89].

Motivated by this theorem, in [HM00], it is proposed to design the transmitted

signal matrix S as S = Φ [IM 0T−M,M ]t with Φ a T × T unitary matrix. That is, S

is designed as the first M columns of a T × T unitary matrix. This is called unitary

space-time modulation, and such an S is called a T × M unitary matrix since its

M columns are orthonormal. In USTM, the transmitted signals are chosen from a

constellation V = {S1, . . . , SL} of L = 2RT (where R is the transmission rate in bits
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per channel use) T ×M unitary matrices.

2.5.2 ML Decoding and Performance Analysis

It is proved in [HM00] that the ML decoding of USTM is

ˆ̀= arg max
`=1,...,L

‖X∗S`‖2
F = arg min

`=1,...,L
‖X∗S⊥

` ‖2
F . (2.7)

With this ML decoding, the PEP of mistaking Si by Sj, averaged over the channel

distribution, has the following Chernoff upper bound

Pe ≤ 1

2

M∏

m=1

[

1

1 + (ρT/M)2(1−d2
m)

4(1+ρT/M)

]N

,

where 1 ≥ d1 ≥ ... ≥ dM ≥ 0 are the singular values of the M ×M matrix S∗
jSi.

The formula shows that the PEP behaves as | det(S∗
jSi)|−2N . Therefore, many design

schemes have focused on finding a constellation that maximizes minj 6=i | det(S∗
jSi)|,

for example, [HMR+00, ARU01, TK02]. Since L can be quite large, this calls into

question the feasibility of computing and using this performance criterion. The large

number of possible signals also rules out the possibility of decoding via an exhaustive

search. To design constellations that are huge, effective, and yet still simple, so that

they can be decoded in real time, some structure needs to be introduced to the signal

set. In Chapter 3, it is shown how Cayley transform can be used for this purpose.

2.6 Differential Unitary Space-Time Modulation

2.6.1 Transmission Scheme

Another way to communicate with unknown channel information is differential uni-

tary space-time modulation, which can be seen as a natural higher-dimensional exten-
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sion of the standard differential phase-shift keying (DPSK) commonly used in signal-

antenna unknown-channel systems (see [HS00, Hug00a]). In differential USTM, the

channel is used in blocks of M transmissions, which implies that the transmitted

signal, S, is an M ×M unitary matrix. The system equation at the τ -th block is

Xτ =
√
ρSτHτ + Vτ , (2.8)

where Sτ is M ×M , Hτ , Xτ , and Vτ are M ×N . Similar to DPSK, the transmitted

signal Sτ at the τ -th block equals the product of a unitary data matrix, Uzτ , zτ ∈

0, ..., L− 1, taken from our signal set C and the previously transmitted matrix, Sτ−1.

In other words,

Sτ = UzτSτ−1 (2.9)

with S0 = IM . To assure that the transmitted signal will not vanish or blow up to

infinity, Uzτ must be unitary. Since the channel is used M times, the corresponding

transmission rate is R = 1
M

log2 L, where L is the cardinality of C. If the propagation

environment keeps approximately constant for 2M consecutive channel uses, that is,

Hτ ≈ Hτ−1, then from the system equation in (2.8),

Xτ =
√
ρUzτSτ−1Hτ−1 + Vτ = Uzτ (Xτ − Vτ−1) + Vτ = UzτXτ + Vτ − UzτVτ−1.

Therefore, the following fundamental differential receiver equation is obtained [HH02a],

Xτ = UzτXτ−1 +W ′
τ , (2.10)

where

W ′
τ = Vτ − UzτVτ−1. (2.11)
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The channel matrix H does not appear in (2.10). This implies that, as long as

the channel is approximately constant for 2M channel uses, differential transmission

permits decoding at the receiver without knowing the channel information.

2.6.2 ML Decoding and Performance Analysis

Since Uzτ is unitary, the additive noise term in (2.11) is statistically independent of Uzτ

and has independent complex Gaussian entries. Therefore, the maximum-likelihood

decoding of zτ can be written as

ẑτ = arg max
l=0,...,L−1

‖Xτ − UlXτ−1‖F . (2.12)

It is shown in [HS00, Hug00a] that, at high SNR, the average PEP of transmitting

Ui and erroneously decoding Uj has the upper bound

Pe .
1

2

(
8

ρ

)MN
1

| det(Ui − Uj)|2N
,

which is inversely proportional to | det(Ui −Uj)|2N . Therefore the quality of the code

is measured by its diversity product defined as

ξC =
1

2
min

0≤i<j≤L
| det(Ui − Uj)|

1
M . (2.13)

From the definition, the diversity product is always non-negative. A code is said to

be fully diverse or have full diversity if its diversity product is not zero. Fully diverse

physically means that the receiver will always decode correctly if there is no noise.

The power 1
M

and the coefficient 1
2

in formula (2.13) are used for normalization.

With this normalization, the diversity product of any set of unitary matrices is be-

tween 0 and 1. From the definition of diversity product, it is easy to see that the set

with the largest diversity product is {IM ,−IM} since it has the minimum number of
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elements with the maximum determinant difference. Since

| det(IM − (−IM ))| = det 2IM = 2M ,

to normalize the diversity product of the set to 1, (2.13) is obtained. The differential

unitary space-time code design problem is thus the following: Let M be the number

of transmitter antennas, and R be the transmission rate. Construct a set C of L =

2MR M ×M unitary matrices such that its diversity product, as defined in (2.13), is

as large as possible.

Many design schemes [HS00, Hug00a, SHHS01, Hug00b, GD03, DTB02] have

focused on finding a constellation C = {U0, ..., UL} of L = 2MR unitary M × M

matrices that maximizes ξC defined in (2.13). Similar to USTM, in general, the

number of unitary M × M matrices in C can be quite large. This huge number

of signals calls into question the feasibility of computing ξC and also rules out the

possibility of decoding via an exhaustive search. To design constellations that are

huge, effective, and yet still simple so that they can be decoded in real time, some

structure should be imposed upon the signal set. In Chapter 4 of this thesis, the idea

of design differential unitary space-time code with group structure is introduced. In

Chapters 5 and 6, our work on the designs of 4 × 4 and 3 × 3 differential unitary

space-time codes based on Lie groups Sp(2) and SU(3) are explained in detail. The

codes proposed not only have great performance at high data rates but also lend

themselves to a fast decoding algorithm using sphere decoding.
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2.7 Alamouti’s 2 × 2 Orthogonal Design and Its

Generalizations

The Alamouti’s scheme [Ala98] is historically the first and the most well-known space-

time code which provides full transmit diversity for systems with two transmit an-

tenna. It is also well-known for its simple structure and fast ML decoding.

h 11

h 1N

h 2N

y x
y x

y x
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Figure 2.2: Transmission of Alamouti’s scheme

The transmission scheme is shown in Figure 2.2. The channel is used in blocks of

two transmissions. During the first transmission period, two signals are transmitted

simultaneously from the two antennas. The first antenna transmits signal x and the

second antenna transmits signal −y∗. During the second transmission period, the first

antenna transmits signal y and the second antenna transmits signal x∗. Therefore,

the transmitted signal matrix S is

S =






x y

−y∗ x∗




 .

It is easy to see that the two columns/rows of S are orthogonal. This design scheme

is also called the 2 × 2 orthogonal design. Further more, with the power constraint

|x|2 + |y|2 = 1, S is actually a unitary matrix with determinant 1. In general, the
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Alamouti’s code can be written as

C =







1
√

|x|2 + |y|2






x y

−y∗ x∗






∣
∣
∣
∣
∣
∣
∣

x ∈ S1, y ∈ S2







,

where S1 and S2 are two sets in C. If S1 = S2 = C, the code is exactly the Lie group

SU(2). To obtain finite codes, S1 and S2 should be chosen as finite sets, and therefore

the codes obtained are finite samplings of the infinite Lie group.

The Alamouti’s scheme not only has the properties of simple structure and full

rate (it’s rate is 1 symbol per channel use), it also has an ML decoding method with

very low complexity. With simple algebra, the ML decoding of Alamouti’s scheme is

equivalent to

arg
x

min

∣
∣
∣
∣
∣
x−

√
1

ρ

N∑

i=1

(x1ih
∗
1i + x∗2ih2i)

∣
∣
∣
∣
∣

and arg
y

min

∣
∣
∣
∣
∣
y −

√
1

ρ

N∑

i=1

(x1ih2i − x∗2ih
∗
1i)

∣
∣
∣
∣
∣
,

which actually shows that the decodings of the two signals x and y can be decou-

pled. Therefore, the complexity of this decoding is very small. This is one of the

most important features of Alamouti’s scheme. For the unknown channel case, this

transmission scheme can also be used in differential USTM, whose decoding is very

similar to the one shown above and thus can be done very fast.

We now turn our attention to the performance of this space-time code. For any

two non-identical signal matrices in the codes,

S1 =






x1 y1

−y∗1 x∗1




 and S2 =






x2 y2

−y∗2 x∗2




 ,
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we have

det(S1 − S2) = det






x1 − y1 x2 − y1

−(x2 − y2)
∗ (x1 − y1)

∗




 = |x1 − x2|2 + |y1 − y2|2,

which is always positive since either x1 6= x2 or y1 6= y2. Therefore, the rank of S1−S2

is 2, which is the number of transmit antennas. Full transmit diversity is obtained.

The diversity product of the code is min(x1,y1)6=(y1,y2) |x1−x2|2 + |y1−y2|2. If xi and yi

are chosen from the P -PSK signal set {1, e2πj 1
P , · · · , e2πj P−1

P }, it is shown in [SHHS01]

that the diversity product of the code is sin(π/P )√
2

.

Because of its great features, much attention has been dedicated to finding meth-

ods to generalize Alamouti’s scheme for higher dimensions. A real orthogonal de-

sign of size n is an n × n orthogonal matrix whose entries are the indeterminants

±x1, · · · ,±xn. The existence problem for real orthogonal designs is known as the

Hurwitz-Radon problem [GS79] and has been solved by Radon. In fact, real orthog-

onal designs exist only for n = 2, 4, 8.

A complex orthogonal design of size n is an n × n unitary matrix whose entries

are the indeterminants ±x1, · · · ,±xn and ±x∗1, · · · ,±x∗n. In [TJC99], Tarokh, Ja-

farkhani and Calderbank proved that complex orthogonal design only exists for the

two-dimensional case, that is, the Alamouti’s scheme is unique. They then general-

ized the complex orthogonal design problem to non-square case also. They proved

the existence of complex orthogonal designs with rate no more than 1
2

and gave a

4 × 3 complex orthogonal design with rate 3
4
. In [WX03], Wang and Xia proved

that the rate of complex orthogonal designs is upper-bounded by 3
4

for systems with

more than two transmit antennas and the rate of generalized orthogonal designs (non-

square case) is upper-bounded by 4
5
. The restricted (generalized) complex orthogonal

design is also discussed in [WX03].
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2.8 Sphere Decoding and Complex Sphere Decod-

ing

To accomplish transmissions in real time, fast decoding algorithm at the receiver is

required. A natural way to decode is exhaustive search, which finds the optimal

decoding signal by searching over all possible signals. However, this algorithm has

a complexity that is exponential in both the transmission rate and the dimension.

Therefore, it may take long time and cannot fulfill the real time requirement especially

when the rate and dimension is high. There are other decoding algorithms, such as

nulling-and-canceling [Fos96], whose complexity is polynomial in rate and dimension,

however, they only provide approximate solutions. In this section, an algorithm

called sphere decoding is introduced which not only provides the exact ML solutions

for many communication systems but also has a polynomial complexity for almost all

rates.

Sphere decoding algorithm was first proposed to find vectors of shortest length in a

given lattice [Poh81], and has been tailored to solve the so-called integer least-square

problem:

min
s∈Zn

‖x −Hs‖2
F ,

where x ∈ Rm×1, H ∈ Rm×n and Zn denotes the m-dimensional integer lattice, i.e.,

s is an n-dimensional vector with integer entries. The geometric interpretation of

the integer least-square problem is this: as the entries of s run over Z, s spans the

“rectangular” n-dimensional lattice. For any H, which we call the lattice-generating

matrix, Hs spans a “skewed” lattice. Therefore, given the skewed lattice and a vector

x, the integer least-square problem is to find the “closest” lattice point (in Euclidean

sense) to x. We can generalize this problem by making s ∈ Sn where S is any discrete
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set.

Many communication decoding problems can be formulated into this problem

with little modification since many digital communication problems have a lattice

formulation [VB93, HH02b, DCB00]. The system equation is often

x = Hs + v,

where s ∈ Rn×1 is the transmit signal, x ∈ Rm×1 is the received signal, H ∈ Rm×n is

the channel matrix and v ∈ Rm×1 is the channel noise. Note that here all the matrix

and vectors are real. The decoding problem is often

min
s∈Sn

‖x −Hs‖2
F . (2.14)

To obtain the exact solution to this problem, as mentioned before, an obvious method

is exhaustive search, which searches over all s ∈ Sn and finds the one with the

minimum ‖x − Hs‖2
F . However, this method is not feasible when the number of

possible signals is infinite. Even when the cardinality of the lattice is finite, the

complexity of exhaustive search is usually very high especially when the cardinality

of the lattice is huge. It often increases exponentially with the number of antennas

and transmission rate. Sphere decoding gives the exact solution to the problem with

a much lower complexity. In [HVa], it is shown that sphere decoding has an average

complexity that is cubic in the transmission rate and number of antennas for almost

all practical SNRs and rates. It is a convenient fast ML decoding algorithm.

The idea of sphere decoding is to search over only lattice points that lie in a certain

sphere of radius d around the given vector x. Clearly, the closest lattice point inside

the sphere is the closest point in the whole lattice. The main problem is how to find

the vectors in the sphere.
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A lattice point Hs is in a sphere of radius d around x if and only if

‖x −Hs‖2
F ≤ d2. (2.15)

Consider the Cholesky or QR factorization of H: H = Q






R

0m−n,n




, where R is

an n × n upper triangular matrix with positive diagonal entries and Q is an m ×m

orthogonal matrix.2 If we decompose Q as [Q1 Q2], where Q1 is the first n columns

of Q, (2.15) is equivalent to

‖Q∗
1x − Rs‖2

F + ‖Q∗
2x‖2

F ≤ d2.

Define d2
n = d2 − ‖Q∗

2x‖2
F and y = Q∗

1x. The sphere becomes
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
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∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

2

F

≤ d2
n, (2.16)

where yi indicates the i-th entry of y. Note that the n-th row of the vector in the

left hand side depends only on sn, the (n − 1)-th row depends only on sn and sn−1,

and so on. Looking at only the n-th row of (2.16), a necessary condition for (2.16) to

hold is (xn − rn,nsn)2 ≤ d2
n which is equivalent to

⌈−dn + xn

rn,n

⌉

≤ sn ≤
⌊
dn + xn

rn,n

⌋

. (2.17)

Therefore, the interval for sn is obtained. For each sn in the interval, define d2
n−1 =

d2
n − (xn − rn,nsn)2. A stronger necessary condition can be found by looking at the

2Here we only discuss the n ≤ m case. The n > m case can be seen in [HVb].
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(n− 1)-th row of (2.16): |xn−1 − rn−1,n−1sn−1 − rn−1,nsn|2 ≤ d2
n−1. Therefore, for each

sn in (2.17), we get an interval for sn−1:

⌈−dn−1 + xn−1 − rn−1,nsn

rn−1,n−1

⌉

≤ sn−1 ≤
⌊
dn−1 + xn−1 − rn−1,nsn

rn−1,n−1

⌋

. (2.18)

Continue with this procedure till the interval of s1 for every possible values of sn, · · · , s2

is obtained. Thus, all possible points in the sphere (2.15) are found. A flow chart of

sphere decoding can be found in [DAML00] and pseudo code can be found in [HVa].

The selection of the search radius in sphere decoding is crucial to the complexity.

If the radius is too large, there are too many points in the sphere, and the complexity

is high. If the selected radius is too small, it is very probable that there exists no

point in the sphere. In [VB93], it is proposed to use the covering radius of the

lattice. The covering radius is defined as the radius of the spheres centered at the

lattice points that cover the whole space in the most economical way. However,

the calculation of the covering radius is normally difficult. In [HVa], the authors

proposed to choose the initial radius such that the probability of having the correct

point in the sphere is 0.9, then increase the radius gradually if there is no point in

the sphere. In our simulations, we use this method. Other radius-choosing methods

can be found in [DCB00, DAML00]. There are also publications on methods that

can further reduce the complexity of sphere decoding, interested readers can refer to

[GH03, AVZ02, Art04b, Art04a] .

The sphere decoding algorithm described above applies to real systems when s

is chosen from a real lattice. Therefore, the algorithm can be applied to complex

systems when the system equation can be rewritten as linear equations of unknowns

with twice the dimension by separating the real and imaginary parts of x, H and s.

Fortunately, this is true for many space-time coding systems ([HH02b, HH02a]). In

particular, real sphere decoding is used in the decoding of our Cayley unitary space-
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time codes in Chapter 3, the Sp(2) differential unitary space-time codes in Chapter

5, and also the distributed space-time codes in Chapter 7.

Based on real sphere decoding, Hochwald generalized it to the complex case which

is more convenient to be applied in wireless communication systems using PSK signals

[HtB03]. The main idea is as follows.

The procedure follows all the steps of real sphere decoding. First, use the Cholesky

factorization H = QR where Q is an m×m unitary matrix and R is an upper triangle

matrix with positive diagonal entries. Note that generally the off-diagonal entries of

R are complex, and x, H, s are all complex. The search sphere is the same as in (2.16).

As mentioned before, by looking at the last entry of the vector in the left hand side

of (2.16), a necessary condition is |yn − rn,nsn|2 ≤ r2 or equivalently,

|sn − yn/rn,n|2 ≤ r2/r2
n,n.

This inequality limits the search to points of the constellation contained in a complex

disk of radius r/rn,n centered at yn/rn,n. These points are easily found when the

constellation forms a complex circle (as in PSK).

Let sn = rce
2πjθn , where rc is a positive constant and θn ∈ {0, 2π/P, · · · , 2π(P −

1)/P}. That is, sn is a P -PSK signal. Denote yn/rn,n as r̂ce
2πjθ̂n and define d2

n =

r2/r2
n,n. Then the condition becomes

r2
c + r̂2

c − 2rcr̂c cos(θn − θ̂n) ≤ r2/r2
n,n, (2.19)

which yields

cos(θn − θ̂n) ≥ 1

2rcr̂c

(r2
c + r̂2

c − r2/r2
n,n).

If the right-hand side of the above is greater than 1, the search disk does not contain

any point of the PSK constellation. If the value is less than −1, then the search disk
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includes the entire constellation. Otherwise, the range of the possible angle for sn is

⌈

θ̂n − P

2π
cos−1

(r2
c + r̂2

c − r2/r2
n,n)

2rcr̂c

⌉

≤ θn ≤
⌊

θ̂n +
P

2π
cos−1

(r2
c + r̂2

c − r2/r2
n,n)

2rcr̂c

⌋

.(2.20)

rc

rc
n

Re

Im

d

Figure 2.3: Interval searching in complex sphere decoding

This can be easily seen in Figure 2.3. The sphere given in (2.19) is the area

bounded by the dashed circle. The values that sn can take spread on the solid circle

uniformally. Note that

1

2rcr̂c

(r2
c + r̂2

c − r2/r2
n,n) > 1 ⇔ |rc − r̂c| > d⇔ rc > r̂c + d or r̂c > rc + d.

If rc > r̂c + d, then the dashed circle is inside the solid circle. If r̂c > rc + d, the two

circles are disjoint. Therefore, if either happens, there is no possible sn in the sphere

given in (2.19). If 1
2rcr̂c

(r2
c + r̂2

c − r2/r2
n,n) < −1, then the solid circle is contained in

the dashed circle, which means that all the PSK signals are in the sphere. Otherwise,

the solid circle has an arc that is contained in the sphere, and possible angles are

given by (2.20).
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Therefore, an interval for sn’s angle, or equivalently, the set of values that sn can

take on is obtained. For any chosen sn in the set, the set of possible values of sn−1

can be found by similar analysis. By continuing with this procedure till the set of

possible values of s1 is found, all points in the complex disk are obtained.

2.9 Discussion

The results in Sections 2.2-2.6 are based on the assumption that the fading coeffi-

cients between pairs of transmit and receiver antennas are frequency non-selective

and independent of each other. In this section, situations in which these assumptions

are not valid are discussed.

In practice, channels may be correlated especially when the antennas are not suffi-

ciently separated. The correlated fading models are proposed in [ECS+98, SFGK00].

The effects of fading correlation and channel degeneration (known as the keyhole

effect) on the MIMO channel capacity have been addressed in [SFGK00, CTK02,

CFG02], in which it is shown that channel correlation and degeneration actually de-

grade the capacity of multiple-antenna systems. Channel correlation can be mitigated

using precoding, equalization and other schemes. For more on these issues, refer to

[ZG03, KS04, SS03, HS02a, PL03].

In wideband systems,3 transmitted signals experience frequency-selective fadings,

which causes inter-symbol interference (ISI). It is proved in [GL00] that the cod-

ing gain of the system is reduced, and it is reported that at high SNR, there ex-

ists an irreducible error rate floor. A conventional way to mitigate ISI is to use

an equalizer at the receiver ([CC99, AD01]). Equalizers mitigate ISI and convert

frequency-selective channels to flat-fading channels. Then, space-time codes designed

for flat-fading channels can be applied ([LGZM01]). However, this approach results

3If the transmitted signal bandwidth is greater than the channel coherence bandwidth, the com-
munication system is called a wideband system.
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in high complexity at the receiver. An alternative approach is to use orthogonal

frequency division multiplexing (OFDM) modulation. The idea of OFDM can be

found in [BS99]. In OFDM, the entire channel is divided into many narrow parallel

sub-channels with orthogonal frequencies. In every sub-channel, the fading can be

regarded as frequency non-selective. There are many papers on space-time coded

OFDM, for example [ATNS98, LW00, LSA98, BGP00].

Space-time coding is also combined with error-correcting schemes to improve cod-

ing gain. Space-time trellis codes were first proposed by Tarokh in [TSC98], and

after that, they have been widely exploited ([TC01, CYV01, JS03]). The combi-

nation of space-time coding with trellis-coded modulation has also been widely an-

alyzed ([BBH00, FVY01, BD01, GL02, TC01, JS03]). Other research investigated

the combinations of space-time coding with convolutional codes and turbo codes

([Ari00, SG01, SD01, LFT01, LLC02]). The combinations of these schemes increases

the performance of the system, however, the decoding complexity is very high and

the performance analysis is very difficult.

2.10 Contributions of This Thesis

Contributions of this thesis are mainly on the design of space-time codes for multiple-

antenna systems and their implementation in wireless networks. It can be divided

into three parts.

In part one, unitary space-time codes are designed for systems with no channel

information at both the transmitter and the receiver using Cayley transform. Cay-

ley transform provides an one-to-one mapping from the space of (skew) Hermitian

matrices to the space of unitary matrices. Based on the linearity of the space of

Hermitian matrices, the transmitted data is first broken into sub-streams α1, · · · , αQ,

then linearly encoded into the T × T Hermitian-matrix space. Then a set of T × T
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unitary matrices is obtained by applying Cayley transform to the encoded Hermi-

tian matrices. We show that by appropriate constraints on the Hermitian matrices

and ignoring the data dependence of the additive noises, α1, · · · , αQ appears linearly

at the receiver. Therefore, linear decoding algorithms such as sphere decoding and

nulling-and-canceling can be used with polynomial complexity. Our Cayley codes

have a similar structure as training-based schemes under transformations.

Cayley codes do not require channel knowledge at either the transmitter or the

receiver, are simple to encode and decode, and can be applied to any combination of

transmit and receive antennas. They are designed with a probabilistic criterion: they

maximize the expected log-determinant of differences between matrix pairs.

The recipe for designing Cayley unitary space-time codes for any combination of

transmit and receive antennas and coherence intervals is given, and also simulation ex-

amples are presented, which compare our Cayley codes with optimized training-based

space-time codes and uncoded training-based schemes for different system settings.

Our simulation results are preliminary. They indicate that Cayley codes generated

with this recipe only slightly underperform optimized training-based schemes using

orthogonal designs and/or linear dispersion codes. However, they are clearly superior

to uncoded training-based space-time schemes. Further optimization on basis ma-

trices of Cayley codes is necessary for a complete comparison of Cayley codes with

training-based schemes.

The second part of our contributions is the design of unitary space-time codes

based on Lie groups for the differential transmission scheme. The work can be re-

garded as extensions of [HK00]. In Chapter 5, we work on the symplectic group

Sp(n) which has dimension n(2n + 1) and rank n. We first give a parameterization

of Sp(n) and then design differential unitary space-time codes which are subsets of

Sp(2) by sampling the parameters appropriately. Necessary and sufficient conditions

for full diversity of the codes are given. The designed constellations are suitable for
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systems with four transmit antennas and any number of receive antennas. The spe-

cial symplectic structure of the codes lends themselves to linear-algebraic decoding,

such as sphere decoding. Simulation results show that they have better performance

than the 2 × 2 and 4 × 4 complex orthogonal designs, group-based diagonal codes,

and differential Cayley codes at high SNR. Although they slightly underperform the

k1,1,−1 finite-group code and the carefully designed non-group code, they do not need

exhaustive search (of exponentially growing size) required by such code and therefore

are far superior in term of decoding complexity.

In Chapter 6, we keep working on the idea of differential unitary space-time code

design based on Lie groups with rank 2 and analyze the special unitary Lie group

SU(3), which has dimension 8 and rank 2. The group is not fixed-point-free, but

we describe a method to design fully-diverse codes which are subsets of the group.

Furthermore, motivated by the structure of the SU(3) codes, we propose a simpler

code called the AB code. Both codes are suitable for systems with three transmit

antennas. Necessary conditions for full diversity of both codes are given and our

conjecture is that they are also sufficient conditions. The codes have simple formulas

from which their diversity products can be calculated in a fast way. A fast maximum-

likelihood decoding algorithm for AB codes based on complex sphere decoding is

given, by which decoding can be done with a complexity that is polynomial in the

rate and dimension. Simulation results show that SU(3) codes and AB codes perform

as well as finite group-based codes at low rates. At high rates, performance of SU(3)

and AB codes is much better than that of finite group-based codes and about the same

as that of the carefully designed non-group codes. The AB codes are, in addition,

far superior in terms of decoding complexity as exhaustive search (of exponentially

growing size) is required in decoding finite group-based and non-group codes. Our

work on Sp(2) and SU(3) show the promise of studying constellations inspired by

group-theoretical considerations.
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The last contribution is on the application of space-time codes in wireless net-

works, or what we call the distributed space-time coding. We propose the use of linear

dispersion space-time codes in wireless relay networks with a two-step strategy. We

assume that the transmitter and relay nodes do not know the channel realizations

but only their statistical distribution. ML decoding and average PEP at the receiver

are analyzed. The main result is that diversity, min{T,R}
(

1 − log log P
log P

)

, is obtained,

where R is the number of relay nodes and P is the average total power consumed in

the network. This result indicates that when T ≥ R and the average total transmit

power is high, relay networks achieve almost the same diversity as multiple-antenna

systems with R transmit antennas. This result is also supported by simulations. We

further show that with R = T , the leading order term in the PEP of wireless re-

lay networks behaves as 1
2

1
|det(Si−Sj)|2

(
8 log P

P

)R
, which compared to 1

2
1

|det(Si−Sj)|2
(

4
P

)R
,

the PEP of multiple-antenna systems, shows the loss of performance due to the facts

that space-time codes relay networks are implemented distributively and the relay

nodes have no knowledge of the transmitted symbols. We also observe that the high

SNR coding gain, | det(Si − Sj)|−2, of relay networks is the same as what arises in

multiple-antenna systems. The same is true at low SNR where a trace condition

comes up.
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Chapter 3 Cayley Unitary Space-Time

Codes

3.1 Introduction

As discussed in Chapters 1 and 2, multiple transmit and/or receive antennas promise

high data rates on wireless channels with multi-path fading [Fos96, Tel99]. Many

proposed schemes that achieve these high rates require the propagation environment

or channel to be known to the receiver (see, e.g., [Fos96, Ala98, TSC98, HH02b]

and the references therein). In practice, knowledge of the channel is often obtained

via training: known signals are periodically transmitted for the receiver to learn the

channel, and the channel parameters are tracked in between the transmission of the

training signals. However, it is not always feasible or advantageous to use training-

based schemes, especially when many antennas are used or either end of the link is

moving so fast that the channel is changing very rapidly [Mar99, HH03].

Hence, there is much interest in space-time transmission schemes that do not re-

quire either the transmitter or receiver to know the channel. Information-theoretic

calculations with a multi-antenna channel that changes in a block-fading manner first

appeared in [MH99]. Based on these calculations, USTM was proposed in [HM00], in

which the transmitted signals form a unitary matrix. Further information-theoretic

calculations in [ZT02] and [HM02] show that, at high SNR, USTM schemes are ca-

pable of achieving full channel capacity. Furthermore, in [HMH01], it is shown that

all these can be done over a single coherence interval, provided the coherence interval

and number of transmit antennas are sufficiently large—a phenomenon referred to as
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autocoding.

While all these are well recognized, it is not clear how to design a constellation of

non-square USTM matrices, that deliver on the above information-theoretic results

and lend themselves to efficient encoding and decoding. The first technique to design

USTM constellations was proposed in [HMR+00], which, while allowing for efficient

decoding, was later shown in [MHH02] to have poor performance, especially at high

rates. The constellation proposed in [MHH02], on the other hand, while, theoretically

having good performance, has to date no tractable decoding algorithm. Recently, a

USTM design method based on the exponential map has been proposed in [GKB02].

In USTM, the first M columns of the T ×T unitary matrices are chosen to be the

transmitted signal. Therefore, let us first look at the space of T ×T unitary matrices

which is referred as the Stiefel manifold. It is well-known that this manifold is highly

non-linear and non-convex. Note that an arbitrary complex T × T matrix has 2T 2

real parameters, but for a unitary one, there are T constraints to force each column

to have unit norm and another 2× T (T−1)
2

constraints to make the T columns pairwise

orthogonal. Therefore, the Stiefel manifold has dimension 2T 2−T −2× T (T−1)
2

= T 2.

Similarly, the space of T×M unitary matrices has dimension 2TM−M−2×M(M−1)
2

=

2TM −M2.

To design codes of unitary matrices, we need first a parameterization of the space

of unitary matrices. There are some parameterization methods in existence but all

of them suffer from disadvantages for use in unitary space-time code design. We now

briefly discuss these. The discussion is based on [HH02a].

The first parameterization method is by Givens rotations. A unitary matrix Φ

can be written as the product

Φ = G1G2 · · ·GT (T−1)/2DGT (T+1)/2 · · ·GT (T−1),
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where D is a diagonal unitary matrix and Gis are Givens (or planar) rotations, one

for each of the T (T−1)
2

two-dimensional hyperplanes [HJ91]. It is conceivable that one

can encode the data onto the angles of rotations and also the diagonal phases of D.

But it is not a practical method since neither is the parameterization one-to-one (for

example, one can re-order Givens rotations) nor does systematic decoding appears to

be possible.

Another method is to parameterize with Householder reflections. A unitary matrix

Φ can be written as the product Φ = DH1H2 · · ·HT , where D is a diagonal matrix

and

Hi = IM − 2
h(i)h(i)∗

‖h(i)‖2
F

, h(i) =

[

0 · · · 0 1 h
(i)
i+1 · · · h

(i)
M

]

are Householder matrices [GL96]. This method is also not encouraging to us because

we do not know how to encode and decode data onto Householder matrices in any

efficient manner.

And also, unitary matrices can be parameterized with the matrix exponential

Φ = eiA. When A is T × T Hermitian, Φ is unitary. The exponential map also has

the difficulty of not being one-to-one. This can be overcome by imposing constraints

0 6 A < 2πI, but the constraints are not linear although convex. We do not know

how to sample the space of A to obtain a constellation of Φ. Moreover, the map

cannot easily be inverted at the receiver for T > 1. Nonetheless, a method based on

the exponential map has been proposed in [GKB02].

In this chapter, design of USTM constellations using Cayley transform is proposed.

This can be regarded as an extension, to the non-square case, of the earlier work on

Cayley codes for differential USTM [HH02a]. As will be shown later, this extension is

far from trivial. Nonetheless, the codes designed here inherit many of the properties

of Cayley differential codes. In particular, they:

1. are very simple to encode: the data is broken into substreams used to parame-
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terize the unitary matrices,

2. can be used for systems with any number of transmit and receive antennas,

3. can be decoded in a variety of ways including simple polynomial-time linear-

algebraic techniques such as successive nulling-and-cancelling (V-BLAST [GFVW99,

Has99]) or sphere decoding [FP85, DCB00],

4. satisfy a probabilistic criterion: they maximize an expected distance between

matrix pairs,

The work in this chapter has been published in IEEE Transactions on Signal

Processing Special Issue on MIMO Communications [JH03e], the Proceeding of 2002

IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP’02)

[HJ02a], and the Proceeding of 2002 IEEE International Symposium on Information

Theory (ISIT’02) [HJ02b].

3.2 Cayley Transform

Cayley transform was proposed in [HH02a] to design codes for differential unitary

space-time modulation whereby both good performance and simple encoding and

decoding are obtained.

The Cayley transform of a complex T × T matrix Y is defined to be

Φ = (I + Y )−1(I − Y ),

where Y is assumed to have no eigenvalue at −1 so that the inverse exists. Let A be

a T × T Hermitian matrix and consider the Cayley transform of the skew-Hermitian

matrix Y = iA:

Φ = (I + iA)−1(I − iA). (3.1)
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First note that since iA is skew-Hermitian, it has no eigenvalue at −1 because all its

eigenvalues are strictly imaginary. That means that (I + iA)−1 always exists. From

definition, Cayley transform is the generalization of the scalar transform

v =
1 − ia

1 + ia
,

which maps the real line to the unit circle. Notice that no finite point on the real line

can be mapped to the point,−1, on the unit circle.

The most prominent advantage of Cayley transform is that it maps the compli-

cated space of unitary matrices to the space of Hermitian matrices, which is linear.

It can be easily proved that

ΦΦ∗ = (I + iA)−1(I − iA)[(I + iA)−1(I − iA)]∗

= (I + iA)−1(I − iA)(I + iA)(I − iA)−1

= I.

The second equation is true because I − iA, I + iA, (I − iA)−1 and (I + iA)−1 all

commute. Similarly, Φ∗Φ = I can also be proved. Therefore, similar to the matrix

exponential, Cayley transform maps the complicated Stiefel manifold of unitary ma-

trices to the space of Hermitian matrices. Hermitian matrices are easy to characterize

since they form a linear vector space over the reals. Therefore, easy encoding and

decoding can be obtained.

From (3.1) it can be proved easily that

iA = (I + Φ)−1(I − Φ)

provided that (I + Φ)−1 exists. This shows that Cayley transform and its inverse

transform coincide. Thus, Cayley transform is one-to-one. It is not an onto map



49

because those unitary matrices with eigenvalues at −1 have no inverse images. Recall

that the space of Hermitian or skew-Hermitian matrices has dimension T 2 which

matches that of Stiefel manifold.

We have shown that a matrix with no eigenvalues at −1 is unitary if and only

if its Cayley transform is skew-Hermitian. Compared with other parameterizations

of unitary matrices, the parameterization with Cayley transform is one-to-one and

easily invertible.

And also, it is proved in [HH02a] that a set of unitary matrices is fully diverse if

and only if the set of their Hermitian inverse Cayley transforms is fully diverse. This

suggests that a set of unitary matrices with promising performance can be obtained

from a well-designed set of Hermitian matrices by Cayley transform.

In [HH02a], Cayley transform has been used in the design of M×M unitary space-

time codes for differential modulation. The idea is to design a good set of Hermitian

matrices and use their Cayley transform as the signal matrices. In this chapter we

generalize this idea to the non-square case. It can be seen in the following sections

that the generalization is far from trivial since the non-squareness of the matrices

causes a lot of problems in the code design.

3.3 The Idea of Cayley Unitary Space-Time Codes

Because Cayley transform maps the nonlinear Stiefel manifold to the linear space

(over the reals) of Hermitian matrices (and vice-versa), it is convenient and most

straightforward to encode data linearly onto Hermitian matrices and then apply Cay-

ley transform to get unitary matrices.

We call a set of T ×M unitary matrices a Cayley unitary space-time code if any
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element in the set can be written as

S = (IT + iA)−1(IT − iA)






IM

0




 (3.2)

with the Hermitian matrix A given by

A =

Q
∑

q=1

αqAq, (3.3)

where α1, α2, ..., αQ are real scalars (chosen from a set A with r possible values) and

A1, A2, ..., AQ are fixed T × T complex Hermitian matrices.

The code is completely determined by the set of matrices {A1, A2, ..., AQ}, which

can be thought of as Hermitian basis matrices. Each individual codeword, on the

other hand, is determined by our choice of the scalars α1, α2, ..., αQ whose values are

in the set Ar (the subscript ’r’ represents the cardinality of the set). Since each of

the Q real coefficients may take on r possible values and the code occupies T channel

uses, the transmission rate is R = (Q/T ) log2 r. We defer the discussions on how to

design Aq’s, Q, and the set Ar to the later part of this chapter and concentrate on

how to decode α1, α2, ..., αQ at the receiver first.

3.4 A Fast Decoding Algorithm

Similar to differential Cayley codes, our Cayley unitary space-time codes also have

the good property of linear decoding, which means that the receiver can be made to

form a system of linear equations in the real scalars α1, α2, ..., αQ. First, it is useful

to see what our codes and their ML decoding look like.
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Partition the T × T matrix A as






A11 A12

A21 A22




 ,

where A11 is an M ×M matrix and A22 is a (T −M)× (T −M) matrix. For A being

Hermitian, A11 and A22 must both be Hermitian and also A21 = A∗
12.

Observe that

Φ

= (I + iA)−1(I − iA)

= (I + iA)−1[2I − (I + iA)]

= 2(I + iA)−1 − I

= 2






IM + iA11 iA12

iA∗
12 IT−M + iA22






−1

− I

=






2[I − (I + iA11)
−1A12∆

−1
2 A∗

12](I + iA11)
−1 − I −2i(I + iA11)

−1A12∆
−1
2

−2i∆−1
2 A∗

12(I + iA11)
−1 2∆−1

2 − I






where ∆2 = I + iA22 + A∗
12(I + iA11)

−1A12 is the Schur complement of I + iA11 in

I + A.

Therefore, from (3.2),

S =






2[I − (I + iA11)
−1A12∆

−1
2 A∗

12](I + iA11)
−1 − I

−2i∆−1
2 A∗

12(I + iA11)
−1




 , (3.4)
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which is composed by the first M columns of Φ, and

S⊥ =






−2i(I + iA11)
−1A12∆

−1
2

2∆−1
2 − I






is the unitary complement of S. In fact, it can be algebraically verified that both S

and S⊥ are unitary.

By partitioning the received signal matrix X into an M × N block X1 and a

(T −M) ×N block X2 as X =






X1

X2




, the second form of the ML decoder in (2.7)

reduces to

arg min
{αq}

∥
∥[−2iX∗

1 (I + iA11)
−1A12 +X∗

2 (2 − ∆2)]∆
−1
2

∥
∥

2

F
. (3.5)

The reason for choosing the second form of the ML decoding, as opposed to the first

one, is that we prefer to minimize, rather than maximize the Frobenius norm. In

fact, we shall presently see in the following that a simple approximation leads us

to a quadratic minimization problem, which can be solved conveniently via sphere

decoding.

It is easy to see that the decoding formula given in (3.5) is not quadratic in entries

of A, which indicates that it is not quadratic in αqs since A is linear in αqs. Therefore,

the system equation at the receiver is not linear. The formula looks intractable

because it has matrix inverses as well as the Schur complement ∆2. Adopting the

approach of [HH02a] by ignoring the covariance of the additive noise term ∆−1
2 , we

obtain

arg min
{αq}

∥
∥2X∗

2 −X∗
2∆2 − 2iX∗

1 (I + iA11)
−1A12

∥
∥2

F
, (3.6)

which, however, is still not quadratic in entries of A. Therefore, to simplify the
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formula, more constraints should be imposed on the Hermitian matrix A. That is,

our A matrix should have a more handy structure. Fortunately, observe that the

number of degrees of freedom in a T × T Hermitian matrix is T 2, but the number of

degrees of freedom in a T ×M unitary matrix S is only 2TM −M 2 = T 2− (T −M)2.

There are (T −M)2 more degrees of freedom in A than needed. So let us exploit this.

Indeed, if we let

(I + iA11)
−1A12 = B (3.7)

for some fixed M × (T −M) matrix B, by which 2M(T −M) degrees of freedom are

lost 1. Then,

A12 = (I + iA11)B (3.8)

and

∆2 = I +B∗B − iB∗A11B + iA22. (3.9)

Some algebra shows that the above decoding formula (3.6) reduces to

α̂lin = arg min
{αq}

‖X∗
2 −X∗

2B
∗B − 2iX∗

1B + iX∗
2B

∗A11B − iX∗
2A22‖2

F , (3.10)

which is now quadratic in entries of A. Fast decoding methods such as sphere decod-

ing and nulling-and-canceling can be used which have polynomial complexity as in

BLAST [Fos96].

We call (3.10) the “linearized” decoding because it is equivalent to the decoding

1With this condition, the number of degrees of freedom in A is T 2−2TM +2M2, which is greater
than 2TM − M2, the number of degrees of freedom in an arbitrary T × M unitary matrix, when
T ≥ 3M .



54

of a system whose system equation is linear in the unknowns αqs. For a wide range

of rates and SNR, (3.10) can be solved exactly in roughly O(Q3) computations us-

ing sphere decoding [FP85, DCB00]. Furthermore, simulation results show that the

penalty for using (3.10) instead of the exact ML decoding is small, especially when

weighed against the complexity of the exact ML decoding. To facilitate the presenta-

tion of the sphere decoding algorithm, the equivalent channel model in matrices are

shown in the following subsection.

3.4.1 Equivalent Model

From (3.8), A12 = A∗
21 is fully determined by A11. Therefore, the degrees of freedoms

in A are all in matrices A11 and A22. The encoding formula (3.3) of A can thus be

modified to the following encoding formulas of A11 and A22:

A11 =

Q
∑

q=1

αqA11,q and A22 =

Q
∑

q=1

αqA22,q, (3.11)

where Q is the number of possible A11,qs and A22,qs, α1, α2, ...αQ are real scalars chosen

from the set Ar, and A11,1, A11,2, ..., A11,Q and A22,1, A22,2, ..., A22,Q are fixed M ×M

and (T −M) × (T −M) complex Hermitian matrices.2 The matrix A is therefore

constructed as

A =






A11 (I + iA11)B

B∗(I − iA11) A22






=






∑Q
q=1 αqA11,q (I + i

∑Q
q=1 αqA11,q)B

B∗(I − i
∑Q

q=1 αqA11,q)
∑Q

q=1 αqA22,q






2Actually, in our design , A11 and A22 can have different numbers of degrees of freedom, Q1 and
Q2, and the coefficients of the two basis sets can have non-identical sample spaces. That is, we can
have A11 =

∑Q1

p=1 αpA11,p, A22 =
∑Q2

q=1 βqA22,q where αi ∈ Ar1
and βi ∈ Ar2

. However, to simplify
the design problem, here we just set Q1 = Q2 and r1 = r2.
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=

Q
∑

q=1

αq






A11,q iA11,qB

−iB∗A11,q A22,q




+






0 B

B∗ 0




 .

Therefore, the linearized ML decoding (3.10) can be written as

arg min
{αq}

∥
∥
∥
∥
∥
X∗

2 −X∗
2B

∗B − 2iX∗
1B + i

Q
∑

q=1

αqX
∗
2B

∗A11,qB − i

Q
∑

q=1

αqX
∗
2A22,q

∥
∥
∥
∥
∥

2

F

. (3.12)

Define

C = X∗
2 −X∗

2B
∗B − 2iX∗

1B, and Jq = −iX∗
2B

∗A11,qB + iX∗
2A22,q (3.13)

for q = 1, 2, ..., Q. By decomposing the complex matrices C and Jq into their real and

imaginary parts, the decoding formula (3.12) can be further rewritten as

arg min
{αq}

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥






CR

CI




−






J1,R · · · JQ,R

J1,I · · · JQ,I














α1IT−M

...

αQIT−M









∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

2

F

,

where CR, CI are the real and imaginary parts of C and Ji,R, Ji,I are the real and

imaginary parts of Ji. Also, denoting by CR,j, CI,j, Ji,R,j, Ji,I,j the j-th columns of

CR, CI, Ji,R, Ji,I for j = 1, 2, ..., (T −M), and writing matrices in the above formula

column by column, the formula can be further simplified to

arg min
{αq}

‖R −Hα‖2
F , (3.14)

where R is the 2N(T−M)-dimensional column vector
[
Ct

R,1 Ct
I,1 · · · Ct

R,T−M Ct
I,T−M

]t

and H is the 2N(T −M) ×Q) matrix
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













J1,R,1 J2,R,1 · · · JQ,R,1

J1,I,1 J2,I,1 · · · JQ,I,1

...
...

. . .
...

J1,R,T−M J2,R,T−M · · · JQ,R,T−M

J1,I,T−M J2,I,T−M · · · JQ,I,T−M















. (3.15)

α = [α1, · · · , αQ]t is the vector of unknowns. Therefore, we obtain the equivalent

channel model

R = Hα + W, (3.16)

where W is the equivalent noise matrix. α appears to pass through an equivalent

channel H and is corrupted by additive noise.3 The equivalent channel, H given in

(3.15), is known to the receiver because it is a function of A11,1, A11,2, · · · , A11,Q,

A22,1, A22,2, · · · , A22,Q, X1, and X2.

Therefore, the decoding is equivalent to decoding of a simple linear system, which

can be done using known techniques such as successive nulling-and-canceling, effi-

cient square-root implementation, and sphere decoding. Efficient implementations

of nulling-and-canceling generally require O(Q3) computations. Sphere decoding can

be regarded as a generalization of nulling-and-canceling where at each step, rather

than making a hard decision on the corresponding αqs, one considers all αqs that lie

within a sphere of a certain radius. Sphere decoding has the important advantage

over nulling-and-canceling that it computes the exact solution. Its worst case behavior

is exponential in Q, but its average behavior is comparable to nulling-and-canceling.

When the number of transmit antennas and the rate are small, exact ML decoding

3In general, the covariance of the noise is dependent on the transmitted signal. However, in
ignoring ∆−1

2 in (3.6), we have ignored this signal dependence.
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using exhaustive search is possible. However, a search over all possible α1, ..., αQ may

be impractical for large T and R. Fortunately, the performance penalty for the lin-

earized Ml decoding given in (3.10) is small, especially weighed against the complexity

of exact ML decoding using exhaustive search.

3.4.2 Number of Independent Equations

Nulling-and-canceling explicitly requires that the number of equations be at least as

large as the number of unknowns. Sphere decoding does not have this hard constraint,

but it benefits from more equations because the computational complexity grows

exponentially in the difference between the number of unknowns and the number

of independent equations. To keep the complexity of sphere decoding algorithm

polynomial, it is important that the number of linear equations resulting from (3.10)

be at least as large as the number of unknowns. (3.16) suggests that there are

2N(T−M) real equations and Q real unknowns. Hence we may impose the constraint

Q ≤ 2N(T −M).

This argument assumes that the matrix H has full column rank. There is, at first

glance, no reason to assume otherwise but it turns out to be false. Due to the

Hermitian constraint on A, not all the 2M(T −M) equations are independent. A

careful analysis yields the following result.

Theorem 3.1 (Rank of H). The matrix given in (3.15) generally has rank

rank(H) =







min (2N(T −M) −N 2, Q) if T −M ≥ N

min ((T −M)2, Q) if T −M < N
. (3.17)

Proof: First assume that T −M ≥ N . The rank of H is the dimension of the
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range space of c in the equation c = Ha as a varies. Equivalently, the rank of H

is the dimension of the range space of the N × (T −M) complex matrix C in the

equation C = iX∗
2 (A22 − B∗A11B) when A11 and A22 vary. Because A11 and A22

are not arbitrary matrices, the range space of C cannot have all the 2(T − M)N

dimensions as it appears. Now let’s study the number of constraints added on the

range space of C as A11 and A22 can only be Hermitian matrices. Since

[C(iX2)]
∗ = −iX∗

2 (A22 − B∗A11B)(−i)X2

= iX∗
2 (A22 − B∗A11B)(iX2)

= C(iX2),

the N×N matrix C(iX2) is Hermitian. This enforces N 2 linear constraints on entries

of C. Therefore, only at most 2(T−M)N−N 2 entries of all the 2(T−M)N entries are

free. Since H is 2(T −M)N×Q, the rank of H is at most min (2(T −M)N −N 2, Q).

Now assume that T − M < N . We know that the N × N matrix C(iX2) is

Hermitian but has rank T −M < N now instead of full rank. Therefore, entries of

the lower right [N − (T −M)] × [N − (T −M)] Hermitian sub-matrix of C(iX2) are

uniquely determined by its other entries. Therefore, the number of constraints yielded

by equation C(iX2) = (C(iX2))
∗ is N2 − (N − (T −M))2 = 2N(T −M)− (T −M)2.

Thus, there are at most 2N(T −M)− (2N(T −M)− (T −M)2) = (T −M)2 degrees

of freedom in C. The rank of H is at most min((T −M)2, Q).

We have essentially proved an upper bound on the rank. Our argument so far

has not relied on any specific sets for A11 and A22. When A11 = 0, we are reduced

to studying iX∗
2A22, which is the same setting as that of differential USTM [HH02a].

In Theorem 1 of [HH02a], it is argued that for a generic choice of the basis matrices

A22,1, · · · , A22,Q, the rank of H attains the upper bound. Therefore the same holds

here, and H attains the upper bound.
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Theorem 3.1 shows that even though there are 2N(T −M) equations in (3.16),

not all of them are independent. To have at least as many equations as unknowns,

The following constraint

Q ≤







2N(T −M) −N 2 if T −M ≥ N

(T −M)2 if T −M < N

is needed, or equivalently,

Q ≤ min(T −M,N) max(2(T −M) −N, T −M). (3.18)

3.5 A Geometric Property

With the choice (3.7) or equivalently (3.8), the first block of the transmitted matrix

S in (3.4) can be simplified as

2[I − (I + iA11)
−1A12∆

−1
2 A∗

12](I + iA11)
−1 − I

= [2I − 2B∆−1
2 B∗(I − iA11) − (I + iA11)](I + iA11)

−1

= [(I − iA11) − 2B∆−1
2 B∗(I − iA11)](I + iA11)

−1

= [I − 2B∆−1
2 B∗](I − iA11)(I + iA11)

−1.

The second block of S equals −2i∆−1
2 B∗(I − iA11)(I + iA11)

−1. Since (I − iA11) and

(I + iA11)
−1 commute,

S =






I − 2B∆−1
2 B∗

−2i∆−1
2 B∗




 (I + iA11)

−1(I − iA11).
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Our Cayley unitary space-time code and its unitary complement can be written as

S =






I −iB

0 I











IM

−2i∆−1
2 B∗




U1 and S⊥ =






−2iB∆−1
2

2∆−1
2 − IT−M




 , (3.19)

where

∆2 = I +B∗B − i

Q
∑

q=1

αqB
∗A11,qB + i

Q
∑

q=1

αqA22,q (3.20)

and U1 = (I + iA11)
−1(I − iA11) is an M ×M unitary matrix since it is the Cayley

transform of the Hermitian matrix A11.

The code in (3.19) is completely determined by matrices A11,1, A11,2, ..., A11,Q and

A22,1, A22,2, ..., A22,Q, which can be thought of as Hermitian basis matrices. Each

individual codeword, on the other hand, is determined by our choice of the scalars

α1, α2, ..., αQ chosen from the set Ar. Since there are Q basis matrices for A11 and

A22, and the code occupies T channel uses, the transmission rate is

R =
Q

T
log2 r. (3.21)

Since the channel matrix H is unknown and if it is left multiplied by an M ×M

unitary matrix, its distribution remains unchanged, we can combine U1 with the chan-

nel matrix H to get H ′ = U1H. If we left multiply X,S and V by






IM −iB

0 IT−M






−1

=






IM iB

0 IT−M




 to get X ′, S ′ and V ′, the system equation (2.1) can be rewritten as

X ′ =

√

ρT

M






IM

−2i∆−1
2 B∗




H

′ + V ′.
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We can see that this is very similar to the equation of training-based schemes (2.5).

The only difference is in the noises. In (2.5), entries of the noise are independent white

Gaussian noise with zero-mean and unit-variance. Here, entries of V ′ are no longer

independent with unit-variance, although they still have zero-mean. The dependence

of the noises is beneficial to the performance since more information can be obtained.

The following theorem about the structure of S⊥ is needed later in the optimization

of the basis matrices.

Theorem 3.2 (Difference of unitary complements of the transmitted sig-

nal). The difference of the unitary complements S⊥ and Ŝ⊥ of the transmitted signals

S and Ŝ can be written as

S⊥ − Ŝ⊥ = 2






−iB

I




∆−1

2 (∆̂2 − ∆2)∆̂
−1
2 , (3.22)

where ∆2 and ∆̂2 are the corresponding Schur complements.

Proof: From (3.19),

S⊥ =






−2iB∆−1
2

2∆−1
2 − I




 =






−2iB

2I − ∆2




∆−1

2

and

S⊥ =






−2i∆−1
1 A12(I + iA22)

−1

2∆−1
2 − I




 =






∆−1
1 0

0 ∆−1
2











−2iA12(I + iA22)
−1

2I − ∆2




 .

From algebra, it is easy to get ∆−1
1 A12(I + jA22)

−1 = (I + jA11)
−1A12∆

−1
2 . From
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(3.7), ∆−1
1 A12(I + jA22)

−1 = B∆−1
2 , and thus, ∆1B = A12(I + jA22)

−1∆2. Therefore,

S⊥ − Ŝ⊥

=






∆−1
1 0

0 ∆−1
2
















−2iA12(I + iA22)
−1

2I − ∆2




 ∆̂2 −






∆1 0

0 ∆2











−2iB

2I − ∆̂2









 ∆̂−1

2

=






∆−1
1 0

0 ∆−1
2











−2iA12(I + iA22)
−1∆̂2 + 2i∆1B

2∆̂2 − ∆2∆̂2 − 2∆2 + ∆2∆̂2




 ∆̂−1

2

=






∆−1
1 0

0 ∆−1
2











2iA12(I + iA22)
−1∆2 − 2iA12(I + iA22)

−1∆̂2

2(∆̂2 − ∆2)




 ∆̂−1

2

=






−2i∆−1
1 A12(I + iA22)

−1 0

0 2∆−1
2











∆̂2 − ∆2

∆̂2 − ∆2




 ∆̂−1

2

=






−2iB∆−1
2

2∆−1
2




 (∆̂2 − ∆2)∆̂

−1
2

= 2






−iB

I




∆−1

2 (∆̂2 − ∆2)∆̂
−1
2

Another way to look at Theorem 3.2 is to note that

S⊥ =






0

−I




 + 2






−iB

I




∆−1

2 . (3.23)

Without the unitary constraint, this is an affine space since all the data is encoded

in ∆−1
2 . So, in general, the space of S⊥ is the intersection of the linear affine space in

(3.23) and the Stiefel manifold S⊥∗S⊥ = I. We can see from (3.22) or (3.23) that the

dimension of the range space of S⊥ − S ′⊥ (equivalently the dimension of the affine

space) is T−M . It is interesting to compare this with that of training-based schemes,
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which from (2.6), gives

S⊥ − Ŝ⊥ =
1√
2






−(S∗
d − Ŝ∗

d)

0




 . (3.24)

Note now that the dimension of the affine space is min(M,T −M) which is smaller

than T −M when T > 2M . So, the affine space of S⊥ of Cayley codes has a higher

dimension than that of training-based schemes when T > 2M .

3.6 Design of Cayley Unitary Space-Time Codes

Although the idea of Cayley unitary space-time codes has been introduced in (3.19),

we have not yet specified Q, nor have we explained how to choose the discrete

set Ar from which αqs are drawn, or the design of the Hermitian basis matrices

{A11,1, A11,2, ..., A11,Q} and {A22,1, A22,2, ..., A22,Q}. We now discuss these issues.

3.6.1 Design of Q

To make the constellation as rich as possible, we should make the number of degrees

of freedom Q as large as possible. Therefore, as a general practice, we find it useful

to take Q as its upper bound in (3.18). That is,

Q = min(T −M,N) max(2(T −M) −N, T −M). (3.25)

We are left with how to design the discrete set Ar and how to choose {A11,1, A11,2,

· · · , A11,Q} and {A22,1, A22,2, · · · , A22,Q}.
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3.6.2 Design of Ar

As mentioned in Section 2.5, at high SNR, to achieve capacity in the sense of maxi-

mizing mutual information between X and S, Φ = (I+iA)−1(I−iA) should assemble

samples from an isotropic random distribution. Since our data modulates the A ma-

trix (or equivalently A11 and A22), we need to find the distribution on A that yields

an isotropically distributed Φ.

As proved in [HH02a], the unitary matrix Φ is isotropically distributed if and only

if the Hermitian matrix A has the matrix Cauchy distribution

p(A) =
2T 2−T (T − 1)! · · ·1!

πT (T+1)/2

1

det(I + A2)T
,

which is the matrix generalization of the familiar scalar Cauchy distribution

p(a) =
1

π(1 + a2)
.

For the one-dimensional case, an isotropic-distributed scalar v can be written as

v = eiθ, where θ is uniform over [0, 2π). So, a = −i 1−eiθ

1+eiθ = − tan(θ/2) is Cauchy.

When there is only one transmit antenna (M = 1) and the coherence interval is just

one (T = 1), the transmitted signals are scalars. There is no need to partition the

matrix A. Therefore (3.3) is used instead of (3.11). We want our code constellation

A =
∑Q

q=1 αqAq to resemble samples from a Cauchy random matrix distribution.

Since there is only one degree of freedom in a scalar, it is obvious that Q = 1.

Without loss of generality, setting A1 = 1, we get

v =
1 − iα1

1 + iα1

, and α1 = −i1 − v

1 + v
.

To have a code with rate R = (Q/T ) log2 r at T = M = 1, A should have r = 2R

points. Standard DPSK puts these points uniformly around the unit circle at angular
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intervals of 2π/r with the first point at π/r. For a point of angle θ on the unit circle,

the corresponding value for α1 is

α1 = −i1 − v

1 + v
= − tan(θ/2). (3.26)

For example, for r = 2, we have the set of points on unit circle V = {eiπ/2, e−iπ/2}.

From (3.26), the set of values for α1 is A2 = {−1, 1}. For the case of r = 4, we can

get by simple calculation that A4 = {−2.4142,−0.4142, 0.4142, 2.4142}. It can be

seen that the points rapidly spread themselves out as r increases, which reflects the

heavy tail of the Cauchy distribution.

We denote Ar to be the image of (3.26) applied to the set {π/r, 3π/r, 5π/r, ..., (2r−

1)π/r}. When r → ∞, the fraction of points in the set less than some value x is given

by the cumulative Cauchy distribution. Therefore, the set Ar can be regarded as an

r-point discretization of a scalar Cauchy random variable.

For the systems with multiple transmit antennas and higher coherence intervals,

no direct method is shown about how to choose A. In that case, we also choose our

set A to be the set given above. Thus, αqs are chosen as discretized scalar Cauchy

random variables for any T and M . But to get rate R, from (3.21), we need

rQ = 2RT . (3.27)

3.6.3 Design of A11,1, A11,2, ...A11,Q, A22,1, A22,2, ...A22,Q

To complete the code construction, it is crucial that the two sets of bases {A11,1, A11,2,

· · · , A11,Q} and {A22,1, A22,2, · · · , A22,Q} are chosen appropriately, and we present a

criterion in this subsection.

If the rates being considered are reasonably small, the diversity product criterion

min
l 6=l′

| det(Φl−Φl′)
∗(Φl−Φl′)| is tractable. At high rates, however, it is not practical to
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pursue the full diversity criterion. There are two reasons for this: first, the criterion

becomes intractable because of the number of matrices involved and second, the

performance of the constellation may not be governed so much by its worst-case

pairwise | det(Φl−Φl′)
∗(Φl−Φl′)|, but rather by how well the matrices are distributed

throughout the space of unitary matrices.

Similar to the differential Cayley code design in [HH02a], for given Ar and the

sets of basis matrices {A11,1, A11,2, ...A11,Q} and {A22,1, A22,2, ...A22,Q}, we define a

distance criterion for the resulting constellation of matrices V to be

ξ(V) =
1

T −M
E log det(S⊥ − S ′⊥)∗(S⊥ − S ′⊥), (3.28)

where S is given by (3.19) and (3.20) and S ′ is given by the same formulas except

that the αqs in (3.20) are replace by α′
qs. The expectation is over all possible αqs and

α′
qs chosen uniformly from Ar such that (α1, ..., αQ) 6= (α′

1, ..., α
′
Q). Remember that

S⊥ denotes the T × (T −M) unitary complement matrix of the T ×M matrix S.

Let us first look at the difference between this criterion with that in [HH02a]. Here,

we use S⊥ and S ′⊥ instead of S and S ′ themselves because the unitary complement

instead of the transmitted signal itself is used in the linearized ML decoding. This

criterion cannot be directly related to the diversity product as in the case of [HH02a],

but still, from the structure, it is a measure of the expected “distance” between

matrices S⊥ and S ′⊥. Thus, maximizing ξ(V) should be connected with lowering

average pairwise error probability. Hopefully, optimizing the expected “distance”

between the unitary complements S⊥ and S ′⊥ instead of that between the unitary

signals S and S ′ themselves will obtain a better performance. And also, since the

constraints (3.7) is imposed to simplify ∆2, which turns out to simplify S⊥ as well,

the calculation of our criterion is much easier than the calculation of the one used in

[HH02a], which maximizes the expected “distance” between the unitary matrices Φ
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and Φ′. Therefore, the optimization problem is proposed to be

arg max
{A11,q ,A22,q},B

ξ(V). (3.29)

By (3.22), we can rewrite the optimization as a function of A11, A22 and get the

simplified formula,

max
{A11,q1},{A22,q2},B

E log det[B∗(A11 − A′
11)B − (A22 − A′

22)]
2

−E log det ∆2
2 − E log det ∆′2

2 , (3.30)

where

∆2 = I +B∗B − iB∗A11B + iA22,

∆′
2 = I +B∗B − iB∗A′

11B + iA′
22

and

A11 =

Q
∑

q=1

αqA11,q, A22 =

Q
∑

q=1

αqA22,q,

A′
11 =

Q
∑

q=1

α′
qA11,q, A′

22 =

Q
∑

q=1

α′
qA22,q.

When r is large, the discrete sets from which αqs, α
′
qs are chosen from (Ar) can

be replaced with independent scalar Cauchy distributions. And by noticing that the

sum of two independent Cauchy random variables is scaled-Cauchy, our criterion can

be simplified to

max
{A11,q ,A22,q},B

E log det(B∗A11B − A22)
2 − 2E log det ∆2

2. (3.31)
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3.6.4 Frobenius Norm of the Basis Matrices

Entries of A11,qs and A22,qs in (3.30) are unconstrained other than that they must be

Hermitian matrices. However, we found that it is beneficial to constrain the Frobenius

norm of all the matrices in {A11,q} to be the same, which we denote by γ1. This is

similarly the case for the matrices {A22,q}, whose Frobenius norm we denote by γ2.

In fact, in our experience it is very important, for both the criterion function (3.30)

and the ultimate constellation performance, that the correct Frobenius norms of the

basis matrices be chosen. The gradients of the Frobenius norms γ1 and γ2 are given in

Section 3.9.2 and the gradient-ascent method is used for the optimization. The matrix

B is choosen as γ3[IM , 0M×(T−2M)] with γ3 close to 1 for the following two reasons.

Firstly, the optimization of B is too complicated to be done by the gradient-ascent

method. Secondly, as long as B is full rank, simulation shows that the Frobenius

norm of B and B itself do not have significant effects on the performance. This has

been shown to perform well.

3.6.5 Design Summary

We now summarize the design method for Cayley unitary space-time codes with M

transmit antennas and N receive antennas, and target rate R.

1. ChooseQ ≤ min(T−M,N) max(2(T−M)−N, T−M). Although this inequality

is a soft limit for sphere decoding, we choose our Q that obeys the inequality

to keep the decoding complexity polynomial.

2. Choose r that satisfies rQ = 2RT . We always choose r to be a power of 2 to

simplify the bit allocation and use a standard Gray-code assignment of bits to

the symbols in the set Ar.

3. Let Ar be the r-point discretization of the scalar Cauchy distribution obtained
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as the image of the function α = − tan(θ/2) applied to the set {π/r, 3π/r,

5π/r, · · · , (2r − 1)π/r}.

4. Choose {A11,q} and {A22,q} that solves the optimization problem (3.30). A

gradient-ascent method can be used. The computation of the gradients of the

criterion in (3.30) is presented in Section 3.9.1. At the end of each iteration,

gradient-ascent is used to optimize the Frobenius norms of the basis matrices

A11,1, A11,2, · · · , A11,Q and A22,1, A22,2, · · · , A22,Q. The computation of the gra-

dients is given in Section 3.9.2. Note first that the solution to (3.30) is highly

non-unique. Another solution can be obtained by simply reordering A11,qs and

A22,qs. And also, since the criterion function is neither linear nor convex in

the design variables A11,q and A22,q, there is no guarantee of obtaining a global

maximum. However, since the code design is performed off-line and only once,

we can use more sophisticated optimization techniques to get a better solution.

Simulation results show that the codes obtained by this method have good per-

formance. The number of receive antennas N does not appear explicitly in

the criterion (3.30), but it depends on N through the choice of Q. Hence, the

optimal codes, for a given M , are different for different N .

3.7 Simulation Results

In this section, we give examples of Cayley unitary space-time codes and the simulated

performance of the codes for various number of antennas and rates. The fading

coefficient between every transmit-and-receive antenna pair is modeled independently

as a complex Gaussian variable with zero-mean and unit-variance and is kept constant

for T channel uses. At each time, a zero-mean, unit-variance complex Gaussian

noise is added to the received signal at every receive antenna. Two error events

are demonstrated including block errors, which correspond to errors in decoding the
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T × M matrices S1, ..., SL, and bit errors, which correspond to errors in decoding

α1, ..., αQ. The bits are allocated to each αq by a Gray code and therefore, a block

error may correspond to only a few bit errors. We first give an example to compare

the performance of the linearized ML, which is given by (3.10) with that of the true

ML, then performance comparisons of our codes with training-based methods are

given.

3.7.1 Linearized ML vs. ML

In communications and code designs, the decoding complexity is an important issue.

In our problem, when the transmission rate is high, for example, R = 3 and T =

6,M = 3, for one coherence interval, the true ML decoding involves a search over

2RT = 218 = 262, 144 6× 3 matrices, which is not practical. This is why we linearize

the ML decoding to use the sphere decoding algorithm.

But we need to know what is the penalty of using (3.10) instead of the true ML.

Here an example is given for the case of a two transmit, one receive antenna system

with coherence interval of four channel uses operating at rate R = 1.5 with Q = 3

and r = 2. The number of signal matrices is 2RT = 64, for which the true ML is

feasible. The resulting bit error rate and block error rate curves for the linearized ML

are the line with circles and line with stars in Figure 3.1. The resulting bit error rate

and block error rate curves for the the true ML are the solid line and the dashed line

in the figure. We can see from Figure 3.1 that the performance loss for the linearized

ML decoding is almost neglectable but the computational complexity is saved greatly

by using the linearized ML decoding which is implemented by sphere decoding.
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Figure 3.1: T = 4,M = 2, N = 1, R = 1.5: BER and BLER of the linearized ML
given by (3.10) compared with the true ML
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3.7.2 Cayley Unitary Space-Time Codes vs. Training-Based

Codes

In this subsection a few examples of Cayley codes for various multiple-antenna com-

munication systems are given and their performance are compared with that of

training-based codes.

As discussed in Chapter 2, a commonly used scheme for unknown channel multiple-

antenna communication systems is to obtain the channel information via training. It

is important and meaningful to compare our code with that of training-based codes.

Training-based schemes and the optimal way to do training are discussed in Section

2.4 . In our simulations of training-based schemes, the LMMSE estimation is used.

We set the training period Tτ as M and the training signal matrix Sτ as ρτ IM ,

which are optimal. For simplicity, we use equal-training-and-data-power by setting

ρd = ρτ =
√
M , which is optimal if T = 2M . In most of the following simulations,

different space-time codes are used in the data transmission phase for different system

settings. Sphere decoding is used in decoding all the Cayley codes and the decoding

of the training-based codes is always ML, but the algorithm varies according to the

codes used.

Example of T = 4,M = 2, N = 2

The first example is for the case of two transmit and two receive antennas with

coherence interval T = 4. For training-based schemes, half of the coherence interval

is used for training. For the data transmission phase, we consider two different space-

time codes. The first one is the well-known orthogonal design in which the transmitted

data matrix has the following structure:

Sd =






a b

−b̄ ā




 .
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By choosing a and b from the signal set of 16-QAM equally likely, the rate of the

training-based code is 2 bits per channel use. The same as Cayley codes, bits are

allocated to each entry by Gray code. The second one is the LD code proposed in

[HH02b]:

Sd =
4∑

q=1

(αqAq + iβqBq), with αq, βq ∈ {− 1√
2
,

1√
2
},

where

A1 = B1 =
1√
2






1 0

0 1




 , A2 = B2 = 1√

2






0 1

1 0




 ,

A3 = B3 =
1√
2






1 0

0 −1




 , A4 = B4 = 1√

2






0 1

−1 0




 .

Clearly, the rate of the training-based LD code is also 2. For the Cayley code, from

(3.25), we choose Q = 4. To attain rate 2, r = 4 from (3.27). The Cayley code was

obtained by finding a local maximum to (3.31).

The performance curves are shown in Figure 3.2. The dashed line and dashed line

with plus signs indicate the BER and BLER of the Cayley code at rate 2, respectively.

The solid line and solid line with plus signs indicate the BER and BLER of the

training-based orthogonal design at rate 2 respectively and the dash-dotted line and

dash-dotted line with plus sighs show the BER and BLER of the training-based

LD code at rate 2 respectively. We can see from the figure that the Cayley code

underperforms the optimal training-based codes by 3− 4dB. However, our results are

preliminary and it is conceivable that better performance may be obtained by further

optimization of (3.30) or (3.31).
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Figure 3.2: T = 4,M = 2, N = 2, R = 2: BER and BLER of the Cayley code
compared with the training-based orthogonal design and the training-based LD code
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Example of T = 5,M = 2, N = 1

For the training-based scheme of this setting, 2 channel uses of each coherence interval

are allocated to training. Therefore, in the data transmission phase, bits are encoded

into a 3 × 2 data matrix Sd. Since we are not aware of any 3 × 2 space-time code,

we employ an uncoded transmission scheme, where each element of Sd is chosen

independently from a BPSK constellation, resulting in rate 6/5. This allows us to

compare the Cayley codes with the the uncoded training-based scheme. Two Cayley

codes are analyzed here: the Cayley code at rate 1 with Q = 5, r = 2 and the Cayley

code at rate 2 with Q = 5, r = 4.

10 15 20 25 30 35

10−4

10−3

10−2

10−1

100

SNR

T=5 M=2 N=1

B
E

R
/B

LE
R

−− BER of training with R=6/5
−−+ BLER of training with R=6/5

−+ BLER of Cayley codes with R=1
− BER of Cayley codes with R=1

−. BER of Cayley codes with R=2
−.+ BLER of Cayley codes with R=2

Figure 3.3: T = 5,M = 2, N = 1: BER and BLER of the Cayley codes compared
with the uncoded training-based scheme

The performance curves are shown in Figure 3.3. The solid line and solid line with

plus signs indicate the BER and BLER of the Cayley code at rate 1, respectively,

the dash-dotted line and dash-dotted line with plus signs show the BER and BLER
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of the Cayley code at rate 2, respectively, and the dashed line and dashed line with

plus signs shows the BER and BLER of the training-based scheme, which has a rate

of 6/5. Exhaustive search is used in decoding the training-based scheme and sphere

decoding is applied to decode the Cayley codes.

We can see that our Cayley code at rate 1 has lower BER and BLER than the

training-based scheme at rate 6/5 at any SNR. And, even at a rate which is 4/5

higher, 2 compared with 6/5, the performance of the Cayley code is comparable to

that of the training-based scheme when the SNR is as high as 35dB.

Example of T = 7,M = 3, N = 1

For this system setting, three channel uses of each coherence interval are allocated

to training. In the data transmission phase of the training-based scheme, we use the

optimized LD code given in [HH02b]:

Sd =












α1 + α3 + i
[

β2+β3√
2

+ β4

]
α2−α4√

2
− i
[

β1√
2

+ β2−β3

2

]

0

−α2+α4√
2

− i
[

β1√
2

+ β2−β3

2

]

α1 − iβ2+β3√
2

−α2+α4√
2

+ i
[

β1√
2
− β2−β3

2

]

0 α2+α4√
2

+ i
[

β1√
2
− β2−β3

2

]

α1 − α3 + i
[

β2+β3√
2

− β4

]

α2−α4√
2

+ i
[

β1√
2

+ β2−β3

2

]

−α3 + iβ4 −α2+α4√
2

+ i
[

β1√
2
− β2−β3

2

]












.

By setting αi, βi as BPSK, we obtain a LD code at rate 8/7. For the Cayley code, we

choose Q = 7 and r = 2 and the rate of the code is 1.

The performance curves are shown in Figure 3.4. The solid line and solid line

with plus signs indicate the BER and BLER of the Cayley code at rate 1 respectively

and the dashed line and dashed line with plus signs show the BER and BLER of

the training-based LD code, which has a rate of 8/7. Sphere decoding is applied in

the decoding of both codes. From the figure we can see that the performance of the

Cayley code is close to the performance of the training-based LD code. Therefore,

at a rate 1/7 lower, the Cayley code is comparable with the training-based LD code.
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with the training-based LD code
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Again, our results are preliminary and further optimization of (3.30) or (3.31) may

yield improved performance.

3.8 Conclusion

Cayley unitary space-time codes are proposed in this chapter. The codes do not

require channel knowledge at either the transmitter or the receiver, are simple to

encode and decode, and apply to systems with any combination of transmit and

receive antennas. They are designed with a probabilistic criterion: they maximize the

expected log-determinant of the difference between matrix pairs. Cayley transform is

used to construct the codes because it maps the nonlinear Stiefel manifold of unitary

matrices to the linear space of Hermitian matrices. The transmitted data is broken

into sub-streams α1, ..., αQ, then linearly encoded in the Cayley transform domain.

We showed that by constraining A12 = (I+ iA11)B and ignoring the data dependence

of the additive noise, α1, ..., αQ appear linearly at the receiver. Therefore, linear

decoding algorithms such as sphere decoding and nulling-and-canceling can be used

whose complexity is polynomial in the rate and dimension. Our code has a similar

structure to training-based schemes after transformations.

The recipe for designing Cayley unitary space-time codes for any combination of

transmit/receive antennas and coherence intervals is given and also, simulation exam-

ples are shown to compare our Cayley codes with optimized training-based space-time

codes and uncoded training-based schemes for different system settings. Our simula-

tion results are preliminary, but indicate that the Cayley codes generated with this

recipe only slightly underperform optimized training-based schemes using orthogonal

designs and LD codes. However, they are clearly superior to uncoded training-based

space-time schemes. Further optimization of the Cayley code basis matrices (in (3.30)

or (3.31)) is necessary for a complete comparison of the performance with training-
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based schemes.

3.9 Appendices

3.9.1 Gradient of Criterion (3.30)

In the simulations, the maximization of the design criterion function (3.30) is per-

formed using a simple gradient-ascent method. In this section, we compute the gra-

dient of (3.30) that is required in this method.

We are interested in the gradient with respect to the matrices A11,1, ..., A11,Q and

A22,1, ..., A22,Q of the design function (3.30), which is equivalent to

max
{A11,q ,A22,q},B

E log det[B∗(A11 − A′
11)B − (A22 − A′

22)]
2 − 2E log det ∆2

2. (3.32)

To compute the gradient of a real function f(Aq) with respect to the entries of the

Hermitian matrix Aq, we use the formulas

[
∂f(Aq)

∂<Aq

]

j,k

= min
δ→0

1

δ
[f(Aq + δ(eje

t
k + eke

t
j)) − f(Aq)], j 6= k, (3.33)

[
∂f(Aq)

∂=Aq

]

j,k

= min
δ→0

1

δ
[f(Aq + iδ(eje

t
k − eke

t
j)) − f(Aq)], j 6= k, (3.34)

[
∂f(Aq)

∂Aq

]

j,j

= min
δ→0

1

δ
[f(Aq + δeje

t
j) − f(Aq)], (3.35)

where ej is the unit column vector of the same dimension of columns of Aq which has

a one in the j-th entry and zeros elsewhere. That is, while calculating the gradient

with respect to A11,q, ej should have dimension M and for the gradient with respect

to A22,q, the dimension should be T −M instead.

First, note that A11 − A′
11 =

Q∑

q=1

A11,qaq where aq = αq − α′
q and similarly, A22 −

A′
22 =

Q∑

q=1

A22,qaq. Therefore, to apply (3.33) to the first term of (3.32) with respect



80

to A11,q, let H = B∗(A11 − A′
11)B − (A22 − A′

22). Therefore,

log det[B∗(A11 − A′
11)B − (A22 − A′

22) +B∗(eje
t
k + eke

t
j)Bδaq]

2

= log det{H2 + [HB∗(eje
t
k + eke

t
j)B +B∗(eje

t
k + eke

t
j)BH]δaq + o(δ2)I}

= log detH2 + log det{I +H−2[HB∗(eje
t
k + eke

t
j)B +B∗(eje

t
k + eke

t
j)BH]δaq + o(δ2)I}

= log detH2 + tr {H−2[HB∗(eje
t
k + eke

t
j)B +B∗(eje

t
k + eke

t
j)BH]δaq} + o(δ2)

= log detH2 + tr {H−1B∗(eje
t
k + eke

t
j)B +H−2B∗(eje

t
k + eke

t
j)BHδaq} + o(δ2)

= log detH2 + tr {BH−1B∗(eje
t
k + eke

t
j) +BH−1B∗(eje

t
k + eke

t
j)δaq} + o(δ2)

= log detH2 + (2{BH−1B∗}k,j + 2{BH−1B∗}j,k)aq + o(δ2)

= log detH2 + 4<{BH−1B∗}j,kaq + o(δ2),

where {A}i,j indicates the (i, j)-th entry of matrix A and <{A}i,j indicates the real

part of the (i, j)-th entry of matrix A. We use trAB = trBA and the last equality

follows because BH−1B∗ is Hermitian. We may now apply (3.33) to obtain

[
∂ log det[B∗(A11 − A′

11)B − (A22 − A′
22)]

2

∂<A11,q

]

j,k

= 4E<{BH−1B∗}j,kaq, j 6= k.

The gradient with respect to the imaginary components of A11,q can be obtained

in a similar way as the following

[
∂ log det[B∗(A11 − A′

11)B − (A22 − A′
22)]

2

∂=A11,q

]

j,k

= 4E={BH−1B∗}j,kaq, j 6= k,

where ={A}i,j indicates the imaginary part of the (i, j)-th entry of matrix A. And

the gradient with respect to the diagonal elements is

[
∂ log det[B∗(A11 − A′

11)B − (A22 − A′
22)]

2

∂A11,q

]

j,j

= 2E {BH−1B∗}j,jaq.
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Similarly, we get the gradient with respect to A22,q,

[
∂ log det[B∗(A11 − A′

11)B − (A22 − A′
22)]

2

∂<A22,q

]

j,k

= −4E<H−1
j,k aq, j 6= k,

[
∂ log det[B∗(A11 − A′

11)B − (A22 − A′
22)]

2

∂=A22,q

]

j,k

= −4E=H−1
j,k aq, j 6= k,

[
∂ log det[B∗(A11 − A′

11)B − (A22 − A′
22)]

2

∂A22,q

]

j,j

= −2EH−1
j,j aq.

For the second term, by using the same method, the following results are obtained

[
∂ log det ∆2

2

∂<A11,q

]

j,k

= 2E<(D +D∗ + E + E∗)j,kαq, j 6= k,

[
∂ log det ∆2

2

∂=A11,q

]

j,k

= 2E=(D +D∗ + E + E∗)j,kαq, j 6= k,

[
∂ log det ∆2

2

∂A11,q

]

j,j

= 2E (D + E)j,jαq,

[
∂ log det ∆2

2

∂<A22,q

]

j,k

= 2E<(F + F ∗ +G+G∗)j,kαq, j 6= k,

[
∂ log det ∆2

2

∂=A22,q

]

j,k

= 2E=(F + F ∗ +G+G∗)j,kαq, j 6= k,

[
∂ log det ∆2

2

∂A22,q

]

j,j

= 2E (F +G)j,jαa,

where

D = iB∆−2
2 (I + iA22)B

∗,

E = iB∆−2
2 B∗(I − iA11)BB

∗,

F = ∆−2
2 A22,

G = iB∗(I + iA11)B∆−2
2 ,

and all the expectations are over all possible α1, ..., αQ.
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3.9.2 Gradient of Frobenius Norms of the Basis Sets

Let γ1 be a multiplicative factor that we use to multiple every A11,q and γ2 a multi-

plicative factor that we use to multiple every A22,q. Thus, γ1 and γ2 are the Frobenius

norms of matrices in {A11,q} and {A22,q}. We solve for the optimal γ1, γ2 > 0 by max-

imizing the criterion function in (3.30), which is

ξ(γ1, γ2) = E log det[γ1B
∗(A11 − A′

11)B − γ2(A22 − A′
22)]

2 − 2E log det ∆2
2,

where

∆2 = I +B∗B − iγ1B
∗

Q
∑

q=1

αqA11,qB + iγ2

Q1∑

q=1

αqA22,q.

As in the optimization of A11,q, A22,q, gradient-ascent method is used. To compute

the gradient of a real function f(x1, x2) with respect to x1 and x2, we use the formulas

∂f(x1, x2)

∂x1
= lim

δ→0

1

δ
[f(x1 + δ, x2) − f(x1, x2)],

∂f(x1, x2)

∂x2
= lim

δ→0

1

δ
[f(x1, x2 + δ) − f(x1, x2)].

And the results are

∂ξ(γ1, γ2)

∂γ1

= −2E tr {f−1[2γ1B
∗A11BB

∗A11B + iB∗(BB∗A11 − A11BB
∗)B

−γ2(A22B
∗A11B + A11BA22B

∗)]} + E tr [g−1(2γ1B
∗(A11 − A′

11)BB
∗(A11 − A′

11)B

−γ2((A22 − A′
22)B

∗(A11 − A′
11)B + (A11 − A′

11)B(A22 − A′
22)B

∗))]
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and

∂ξ(γ1, γ2)

∂γ2

= −2E tr [f−1(2γ1A
2
22 − i(B∗BA22 + A22BB

∗) − γ1(A22B
∗A11B + A11BA22B

∗))]

E tr [g−1(2γ2A
2
22 − γ1((A22 − A′

22)B
∗(A11 − A′

11)B + (A11 − A′
11)B(A22 − A′

22)B
∗))].

Simulation shows that good performance is obtained when γ1 and γ2 are not too

far away from unity.
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Chapter 4 Groups and Representation

Theory

4.1 Advantages of Group Structure

Another interesting space-time codes design scheme is the group codes proposed orig-

inally in [SHHS01, Hug00b, HK00], in which the set of matrices, which are space-time

codes, forms a group. The motivation of group-based codes is as the following.

As discussed in Section 2.6, the space-time code design problem for differential

unitary space-time modulation, which is well-tailored for the unknown-channel case,

is: given the number of transmitter antennas M and the transmission rate R, find a

set C of L = 2MR M ×M unitary matrices, such that the diversity product

ξC =
1

2
min

Si 6=Si′∈C
| det(Si − Si′)|

1
M (4.1)

is as large as possible. This design problem is very difficult to solve because of the

following reasons. First, it is easy to see that the objective function of the code

design problem, given in (4.1), is not convex. Second, the constraint space, which

is the space of unitary matrices, is also non-convex. Furthermore, when our desired

rate of transmission R is not very low, the constellation size L = 2MR can be huge,

which make the problem even more difficult according to computation complexity. For

example, if there are four transmit antennas and we want to transmit at a rate of four

bits per channel use, we need to find a set of L = 216 = 65, 536 unitary matrices whose

minimum value of the determinants of the pairwise difference matrices is maximized.

Therefore, it appears that there is no efficient algorithm with tractable computational
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complexity to find the exact solution to this problem. To simplify the design problem,

it is necessary to introduce some structure to the constellation set C. Group structure

turns our to be a very good one.

Definition 4.1 (Group). [DF99] A group is an ordered pair (G, ?), where G is a

set and ? is a binary operation on G satisfying the following axioms.

1. (a ? b) ? c = a ? (b ? c), for all a, b, c ∈ G, i.e., ? is associative.

2. There exists an element e in G, called the identity of G, such that for all a ∈ G,

a ? e = e ? a = a.

3. For each a ∈ G, there exists an element a−1 of G, called an inverse of a, such

that a ? a−1 = a−1 ? a = e.

Normally, the binary operation is called multiplication. In brief, a group is a set

of elements that is closed under both multiplication and inversion.

The order of a finite set is simply the number of elements in it. A subset H ⊂ G

is a subgroup if it is closed under the group multiplication and h−1 ∈ H for all h ∈ H.

Example 1. The set of integers Z, rational numbers Q, real numbers R, and

complex numbers C are all groups under the operation + with e = 0 and a−1 = −a.

Example 2. GLn(C), the set of all invertible n×n matrices with entries in C, is

a group under the operation of matrix multiplication with e = In and a−1 the inverse

matrix of a. Note that the matrix multiplication operation is not commutative, that

is, ab = ba is not true in general.

Example 3. U(n), the set of all unitary n × n matrices, is a group under the

operation of matrix multiplication with e = In and a−1 the inverse matrix of a. It is

a subgroup of the group GLn(C).

Now we are going to discuss the advantages of group structure in the space-time

code design problem. In general, for two arbitrary elements A and B in a set, C, with
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cardinality L, | det(A−B)| takes on L(L− 1)/2 distinct values if A 6= B. Therefore,

when L is large, diversity product of the set may be quite small. If C forms a group,

for any two matrices A and B in the set, there exists a matrix C ∈ C such that

C = A−1B. Therefore,

| det(A−B)| = | detA|| det(IM − A−1B)| = | det(IM − A−1B)| = | det(IM − C)|,

which takes on at most L − 1 distinct values as IM 6= C if A 6= B. Therefore, the

chance of having a large diversity product is greatly increased. Another advantage is

that the calculations of both the diversity product and the transmission matrix are

greatly simplified. From the above formula, it can be easily seen that the complexity

of calculating the diversity product is reduced dramatically. In general, to calculate

the diversity product of a set with L elements, L(L − 1)/2 calculations of matrix

determinants are needed, which is quadratic in L. However, if the set forms a group, it

has been shown that only L−1 calculations of matrix determinants are needed, which

is linear in L. For the calculation of the transmission signal matrix, generally, the

multiplication of two M ×M matrices is needed. If the set C is a group, the product

is also in the group, which means that every transmission matrix is an element of

C. Therefore, explicit matrix multiplication can be replaced by simpler group table-

lookup. Finally, note that det(I − C) = 0 if and only if C has a unit eigenvalue.

Another important advantage of group structure is that if the set forms a group,

its full diversity has a practical meaning: its non-identity elements have no unit

eigenvalue, which gives a possible method to design fully diverse codes.

There are a lot of well-known group-based codes. Two examples are given in the

following.
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Example 1. Cyclic group-based codes. [Hug00b] [SHHS01]

S = {IM , S, S2, · · · , SL−1},

where

S =












1 0 · · · 0

0 e2πj
l1
L · · · 0

...
...

. . .
...

0 0 · · · e2πj
lM−1

L












with l1, · · · , lM−1 ∈ [0, L− 1]. The code is called cyclic code since any element in the

set is a power of S and SL = IM . It is easy to check that S forms a group.

Example 2. Alamouti’s orthogonal design. [Ala98]

S =







1
√

|x|2 + |y|2






x y

−y∗ x∗






∣
∣
∣
∣
∣
∣
∣

x, y ∈ C







.

It is easy to check that S forms a group. Actually it is the Lie group SU(2): the set of

2× 2 unitary matrix with unit determinant. This group has infinitly many elements.

To get a finite constellation, x and y can be chosen from some finite sets S1 and S2,

for example PSK or QAM signals1.

4.2 Introduction to Groups and Representations

Before getting into more details about the design of space-time group codes, some

group theory and representation theory are reviewed in this section that are needed

later.

1By these choices, the resulted sets might not form a group anymore.
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Definition 4.2. A subgroup H of G is a normal subgroup if

ghg−1 ∈ H for all g ∈ G, h ∈ H.

Definition 4.3. If G is a group, the center of G is the set of elements in G that

commutes with all other elements of G.

Since group is an abstract concept, normally representation theory is used to map

abstract groups to subsets of matrices.

Definition 4.4. Let (G, ?) and (H, �) be groups. A map φ : G → H is a group

homomorphism if

φ(x ? y) = φ(x) � φ(y) for all x, y ∈ G.

Definition 4.5. Let G be a group. F be a field and V a vector space over F .2

1. A linear representation of G is any homomorphism from G to GL(V ). The

degree of the representation is the dimension of V .

2. A matrix representation of G is any homomorphism from G into GLn(C).

3. A linear or matrix representation is faithful if it is injective.

Definition 4.6. Two matrix representations φ and ψ of G are equivalent if there

is a fixed invertible matrix P such that

Pφ(g)P−1 = ψ(g) for all g ∈ G.

Definition 4.7. The direct sum φ⊕ψ of two representations φ, ψ of G with degrees

2For definitions of field and vector space, repfer to [DF99].
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d1 and d2 respectively is the degree d1 + d2 representation of G such that

(φ⊕ ψ)(g) =






φ(g) 0

0 ψ(g)




 for all g ∈ G.

Definition 4.8. A matrix representation is called reducible if it is equivalent to a

direct sum of two (or more) representations. Otherwise, it is called irreducible.

As discussed in the previous section, if our signal set has a group structure under

matrix multiplication, its diversity product can be simplified to

ξC =
1

2
min

I 6=V ∈C
| det(I − V )| 1

M .

If we insist on a fully diverse constellation, which means that ξC 6= 0, then from the

above equalities, the eigenvalues of all non-identity elements in the constellation must

be different from one. This leads to the following definition.

Definition 4.9 (Fix-point-free group). [HK00] A group G is called fixed-point-

free (fpf) if and only if it has a faithful representation as unitary matrices with

the property that the representation of each non-unit element of the group has no

eigenvalue at unity.

Note that the above definition does not require that in every representation of the

group, non-unit elements have no eigenvalue at unity, but rather that there exists one

representation with this propriety. This is because any non-faithful representation

of a group cannot be fpf. The reason that fpf groups have been defined as those for

which the representation of each non-unit element in the group, rather than each non-

identity matrix in the representation, has no eigenvalue at unity is that had we not

done so, all groups would have been fpf if all elements in the groups are represented

as the identity matrix. For more information on groups, see [DF99] and [Hun74].
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4.3 Constellations Based on Finite Fixed-Point-

Free Groups

To get space-time codes with good performance, fpf groups have been widely investi-

gated. Shokrollahi, Hassibi, Hochwald and Sweldens classified all finite fpf groups in

their magnificent paper [SHHS01] based on Zassenhaus’s work [Zas36] in 1936. There

are only six types of finite fpf groups as given in the following. Before giving the big

theorem, we first introduce a definition.

Definition 4.10. Given a pair of integers (m, r), define n as the smallest positive

integer such that rn = 1 mod m. Define t = m/ gcd(r − 1, m). The pair (m, r) is

called admissible if gcd(n, t) = 1.

Theorem 4.1 (Classification of finite fixed-point-free groups). [SHHS01] A

finite group is fixed-point-free if and only if it is isomorphic to one of the following

six types of abstract groups.

1.

Gm,r =
〈
σ, τ |σm = 1, τn = σt, στ = σr

〉
,

where (m, r) is admissible. The order of Gm,r is mn.

2.

Dm,r,l =
〈
σ, τ, γ|σm = 1, τn = σt, στ = σr, σγ = σl, τ γ = τ l, γ2 = τnr0/2

〉
,

where nr0 is even, (m, r) is admissible, l2 = 1 mod m, l = 1 mod n, and

l = −1 mod s with s the highest power of 2 divising mn. The order of Dm,r,l

is 2mn.
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3.

Em,r =
〈

σ, τ, µ, γ|σm = 1, τn = σt, στ = σr, µσm/t

= µ,

γσm/t

= γ, µ4 = 1, µ2 = γ2, µγ = µ−1, µτ = γ, γτ = µγ
〉

,

where (m, r) is admissible, mn is odd, and nr0 is divisible by 3. The order of

Em,r is 8mn.

4.

Fm,r,l =
〈

σ, τ, µ, γ, ν|σm = 1, τn = σt, στ = σr, µσm/t

= µ, γσm/t

= γ,

µτ = γ, γτ = µγ, µ4 = 1, µ2 = γ2, µγ = µ−1, ν2 = µ2, σν = σl,

τ ν = τ l, µν = γ−1, γν = µ−1
〉
,

where (m, r) is admissible, mn is odd, r is divisible by 3, n is not divisible by

3, l2 = 1 mod m, l = 1 mod n, and l = −1 mod 3. The order of Fm,r,l is

16mn.

5.

Jm,r = SL2(F5) ×Gm,r

where (m, r) is admissible, gcd(mn, 120) = 1. SL2(F5) is the group of 2 × 2

matrices with elements in the finite Galois field [GS79] F5 and determinant 1.

It can also be defined as the following abstract group,

SL2(F5) =
〈
µ, γ|µ2 = γ3 = (µγ)5, µ4 = 1

〉
.

The order of Jm,r is 120mn.



92

6.

Km,n,l = 〈Jm,r, ν〉

with relations

ν2 = µ2, µν = (µγ)7(γµ)2γ(γµ)2, γν = γ, σν = σl, τ ν = τ l,

where µ, γ are as in Jm,r, l
2 = 1 mod m, and l = 1 mod n. The order of

Km,r,l is 240mn.

Some unitary representations of these abstract groups are also given in [SHHS01].

Constellations based on representations of these finite fpf groups give space-time codes

with amazingly good performances at low to moderate rates, for example, SL2(F5)

, which works for systems with two transmit antennas at rate 3.45. In that paper,

the authors also give non-group constellations which are generalizations of some finite

groups and products of group representations.

4.4 Introduction to Lie Groups and Lie Algebras

As shown in [SHHS01], these finite fpf groups are few and far between. There are

only six types of them and unitary representations of them have dimension and rate

constraints. Although very good constellations are obtained for low to moderate

rates, no good constellations are obtained for very high rates from these finite groups.

This motivates the search for infinite fpf groups, in particular, their most interesting

case, Lie groups.

Definition 4.11 (Lie group). [BtD95] A Lie group is a differential manifold which

is also a group such that the group multiplication and inversion maps are differential.
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The above definition gives us the main reason for studying Lie groups. Since

Lie groups have an underlying manifold strcuture, finite constellations, which are

subsets of infinite Lie groups, can be obtained by sampling the underlying continuous

manifold appropriately.

Definition 4.12 (Lie algebra). [SW86] A Lie algebra g is a vector space over a

field F on which a product [, ], called the Lie bracket, is defined, which satisfies

1. X,Y ∈ g implies [X,Y ] ∈ g,

2. [X,αY + βZ] = α[X,Y ] + β[X,Z] for α, β ∈ F and X,Y,Z ∈ g,

3. [X,Y ] = −[Y,X],

4. [X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0.

It turns out that there is a close connection between Lie groups and Lie algebras.

Theorem 4.2 (Connection between Lie group and Lie algebra). [SW86] Let

G be a Lie group of matrices. Then g, the set of tangent vectors to all curves in

G at the identity, is a Lie algebra. Let g be a linear algebra generated by the basis

g1, · · · , gn, then g(θ) = eθ1g1+···+θngn is a local Lie group for small enough θ.

Therefore, to obtain many, if not most, of its properties, one can study the Lie

algebra, rather than the Lie group itself. Lie algebras are easier to be analyzed

because they are vector spaces with good properties.

Example 1. GL(n,C) is the Lie group of non-singular n× n complex matrices.

Its Lie algebra is the space of n× n complex matrices.

Example 2. SL(n,C) is the Lie group of unit-determinant non-singular n × n

complex matrices. Its Lie algebra is the space of n× n traceless matrices.

Example 3. U(n) is the Lie group of n × n complex unitary matrices. Its Lie

algebra is the space of n× n skew-Hermitian matrices.
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Example 4. SU(n) is the Lie group of unit-determinant n× n unitary matrices.

Its Lie algebra is the space of n× n traceless, skew-Hermitian matrices.

Definition 4.13. A Lie sub-algebra h ⊂ g is an ideal if it satisfies the condition

[X, Y ] ∈ h for all X ∈ h, Y ∈ g.

Definition 4.14. A Lie algebra g is simple if dim g > 1 and it contains no nontrivial

ideals. Or equivalently, the Lie group G of the Lie algebra has no nontrivial normal

Lie subgroups.

Definition 4.15. Define the series {Dkg} inductively by

D1g = [g, g]

and

Dkg = [Dk−1g,Dk−1g].

g is solvable if Dkg = 0 for some k.

Definition 4.16. A Lie algebra g is semi-simple if g has no nonzero solvable ideals.

The rank of a Lie algebra g equals the maximum number of commuting basis ele-

ments it has or the dimension of a maximum Abelian subgroup3 of the correspondence

Lie group G.

It is proved in [SHHS01] that any representation of a finite group is equivalent to

a representation using only unitary matrices. However, this is not true for infinite

groups and Lie groups.

Theorem 4.3 (Lie groups with unitary representations). [HK00] A Lie group

has a representation as unitary matrices if and only of its Lie algebra is a compact

3If for any two elements f and g in a group G, f ? g = g ? f , G is an Abelian group.
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semi-simple Lie algebra or the direct sum of u(1) and a compact semi-simple Lie

algebra.

For more on the definition of semi-simple and simple Lie algebras, see [HK00,

BtD95, Ser92].

4.5 Rank 2 Compact Simple Lie Groups

To design differential unitary space-time codes with good performance, two conditions

must be satisfied: the unitarity and the full diversity. For unitarity, from Theorem

4.3, to get unitary constellations, we should look at compact, semi-simple Lie groups.

Since any semi-simple Lie group can be decomposed as a direct sum of simple Lie

groups, for simplicity, we look at compact, simple Lie groups.

For full diversity, we want to design constellations with positive diversity product,

or in other words, constellations whose non-identity elements have no unit eigenvalues.

It is proved in [HK00] that the only fpf infinite Lie groups are U(1), the group

of unit-modulus scalars, and SU(2), the group of unit-determinant 2 × 2 unitary

matrices. As discussed at the end of [HK00], due to their dimensions, constellations

based on these two Lie groups are constrained to systems with one and two transmit

antennas. (Codes constructed based on higher-dimensional representations of SU(2)

can be found in [Sho00].) To obtain constellations that work for systems with more

than two transmit antennas, we relax the fpf condition, which is equivalent to non-

identity elements have no unit eigenvalues, and consider Lie groups whose non-identity

elements have no more than k > 0 unit eigenvalues (k = 0 corresponds to fpf groups).

Since constellations of finite size are obtained by sampling the Lie group’s underlying

manifold. When k is small, there is a good chance that, by sampling appropriately,

fully diverse subsets can be obtained.

It follows from the exponential map relating Lie groups with Lie algebras that
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a matrix element of a Lie group has unit-eigenvalues if and only if the correspond-

ing matrix element (the logarithm of the element) in the corresponding Lie algebra

(tangent space at identity) has zero-eigenvalues and vice versa. Thus classifying Lie

groups whose non-identity elements have no more than k eigenvalues at 1 is the same

as classifying Lie algebras whose non-zero elements have no more than k eigenvalues

at zero. Unfortunately, there does not appear to be a straightforward way of analyz-

ing the number of zero-eigenvalues of a matrix element of a Lie algebra. However, it

turns out that the number of zero-eigenvalues of a matrix element of a Lie algebra

can be related to the rank of its Lie algebra.

Lemma 4.1. If a Lie algebra g of M ×M matrices has rank r, it has at least one

non-zero element with r − 1 eigenvalues at zero.

Proof: Assume that b1, · · · , br are the commuting basis elements of the Lie al-

gebra g. Since they commute, there exists a matrix T such that b1, · · · , br can be

diagonalized simultaneously. That is, there exists an M ×M invertible matrix T ,

such that bi = TDiT
−1 where Di = diag (bi1, · · · , biM). Therefore, it is possible to

design scalars α1, · · · , αr such that
∑r

i=1 αiDi is a diagonal matrix with the first r−1

diagonal elements being zero. The matrix b =
∑r

i=1 αibi = T (
∑r

i=1 αiDi)T
−1, which

is also an element in the Lie algebra, therefore, has r − 1 eigenvalues at zero.

Therefore, instead of exploring Lie groups whose non-identity elements have no

more than k unit eigenvalues, we work on the compact simple Lie groups whose rank

is no more than k+1, and obtain a finite subset of it as our constellation by sampling

its underlying manifold. As discussed before, for full diversity, we should begin with

Lie groups with rank 2.

Combining the two conditions, unitarity and full diversity, a beginning point is to

look at simple, compact Lie groups of rank 2. The following table is a complete list of

simple, simply connected, compact Lie groups [Sim94]. In the table, Z(G) indicates

the center of the group G. There are three groups with rank 2: the Lie group of unit-
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Group Dimension Z(G) Cartan Name Rank
SU(n);n ≥ 2 n2 − 1 Zn An−1 n− 1
Sp(n);n ≥ 2 n(2n+ 1) Z2 Cn n

Spin(2n + 1);n ≥ 3 n(2n+ 1) Z2 Bn n
Spin(2n);n ≥ 4 n(2n− 1) Z4 (n odd) Dn n

Z2 × Z2 (n even)
E6 78 Z3 E6 6
E7 133 Z2 E7 7
E8 248 0 E8 8
F4 52 0 F4 4
G2 14 0 G2 2

Table 4.1: The simple, simply-connected, compact Lie groups

determinant 3×3 unitary matrices, SU(3), the Lie group of 4×4 unitary, symplectic

matrices, Sp(2), and one of the five celebrated exceptional Lie groups of E. Cartan,

G2. Sp(2) is analyzed in the next chapter and SU(3) is analyzed in the chapter after.

G2 has dimension 14, and its simplest matrix representation is 7-dimensional, which

is very difficult to be parameterized.
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Chapter 5 Differential Unitary

Space-Time Codes Based on Sp(2)

5.1 Abstract

As discussed in Section 4.5, Sp(n) is a Lie group with rank n. In this chapter, the

focus is on Sp(2), which, as will be seen later, can be regarded as a generalization

of SU(2), which results in Alamouti’s scheme. Differential unitary space-time codes

suitable for systems with four transmit antennas are designed based on this Lie group.

The codes are fully diverse and their structure lends themselves to polynomial-time

ML decoding via sphere decoding. Simulation results show that they have better

performance than 2 × 2 and 4 × 4 orthogonal designs, Cayley differential codes, and

some finite-group-based codes at high SNR. It is also shown that they are comparable

to the carefully designed product-of-groups code.

This chapter is organized as follows. In Section 5.2, the Lie group Sp(n) is dis-

cussed and a parameterization method of it is given. Based on the parameterization,

in Section 5.3, differential unitary space-time codes that are subsets of Sp(2) are de-

signed. The full diversity of the codes is proved in Section 5.4. In Section 5.5, Sp(2)

codes with higher rates are proposed. It is shown in Section 5.6 that the codes have

a fast ML decoding algorithm using sphere decoding. Finally, in Section 5.7 the per-

formance of the Sp(2) code is compared with that of other existing codes including

Alamouti’s orthogonal design, the 4 × 4 complex orthogonal design, Cayley differen-

tial unitary space-time codes, and finite-group-based codes. Section 5.8 provides the

conclusion. Section 5.9 includes some of the technical proofs.
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The work in this chapter has been published in the Proceeding of the Thirty-Sixth

Asilomar Conference on Signals, Systems, and Computers (Asilomar’02) [JH02], the

Proceeding of 2003 IEEE International Conference on Acoustics, Speech, and Signal

Processing (ICASSP’03) [JH03a], and the Proceeding of 2003 IEEE International

Symposium on Information Theory (ISIT’03) [JH03c]. The journal paper [JH03b] is

accepted in IEEE Transactions on Information Theory.

5.2 The Symplectic Group and Its Parameteriza-

tion

Definition 5.1 (Symplectic group). [Sim94] Sp(n), the n-th order symptectic

group, is the set of complex 2n× 2n matrices S obeying

1. unitary condition: S∗S = SS∗ = I2n,

2. symplectic condition: StJ2nS = J2n,

where J2n =






0 In

−In 0




.

Sp(n) has dimension n(2n + 1) and rank n. As mentioned before, we are most

interested in the lowest rank case, which is also the simplest case of n = 2. Also

note that Sp(1) = SU(2), and SU(2) constitutes the orthogonal design of Alamouti

[Ala98]. The symplectic group Sp(2) can be regarded as a generalization of the

orthogonal design. Even though Lemma 4.1 claims that there exists an element of

Sp(2) with at least one unit eigenvalue, it can be shown that a non-identity element

of Sp(2) can have up to 2 unit eigenvalues.

Lemma 5.1. The multiplicity of the unit eigenvalue of any matrix in Sp(2) is even.
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Proof: Assume S is a matrix in Sp(2) and x is an eigenvector of S with eigenvalue

1. Then we have Sx = x. From the symplectic condition S tJS = J , S∗JS̄ = J . Since

S is unitary, JS̄ = SJ . Therefore, SJx̄ = JS̄x̄ = JSx = Jx̄, which means that Jx̄

is also an eigenvector of S with eigenvalue 1. We now argue that x 6= Jx̄. Assume

x = Jx̄. Partition x as [x1, x2]
t, where x1 and x2 are 2-dimensional vectors. We have






x1

x2




 =






0 I2

−I2 0











x̄1

x̄2




⇒







x1 = x̄2

x2 = −x̄1

⇒







x1 = 0

x2 = 0
,

from which we get x = 0. This contradicts the assumption that x is an eigenvec-

tor. Therefore, x 6= Jx̄, which means that the number of eigenvectors for any unit

eigenvalue is even. Thus, the multiplicity of the unit eigenvalue is even.

From Lemma 5.1, if a matrix in Sp(2) has a unit eigenvalue then its multiplicity

must be 2 or 4. 4 unit eigenvalues means that the matrix is I4. Therefore, a non-

identity element of Sp(2) can have 0 or 2 unit eigenvalues.

From Condition 1 of Definition 5.1, (St)−1 = S̄, where S̄ is the conjugate of S, so

condition 2 becomes

JS = S̄J. (5.1)

If the matrix S is further partitioned into a 2× 2 block matrix of n× n sub-matrices




A B

C D




, from (5.1), C = B̄ and D = Ā. Therefore, any matrices in Sp(n) have

the form






A B

−B̄ Ā




 , (5.2)

which is similar to Alamouti’s two-dimensional orthogonal design [Ala98], but here
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instead of complex scalars, A and B are n by n complex matrices.1 The group, Sp(n),

can thus be identified as the subgroup of unitary matrices with generalized orthogonal

design form. To get a more detailed structure of the Lie group, let us look at the

conditions imposed on A and B for S to be unitary. From SS∗ = I2n or S∗S = I2n,







AA∗ +BB∗ = In

BAt = ABt
or







A∗A+BtB̄ = In

A∗B = BtĀ
. (5.3)

Lemma 5.2. For any n× n complex matrices A and B that satisfy (5.3), there exist

unitary matrices U and V such that A = UΣAV and B = UΣB V̄ , where ΣA and ΣB

are diagonal matrices whose diagonal elements are singular values of A and B.

To proof this lemma, two intermediate lemmas are needed.

Lemma 5.3. Let D1 and D2 be n×n diagonal matrices with non-increasing diagonal

entries. If UD1U
∗ = D2 for some unitary matrix U , then D1 = D2 = D and U is a

block diagonal matrix whose block sizes equal the number of times that the diagonal

elements of D are repeated.

Proof: Denote the i-th diagonal element of D1 and D2 as d
(1)
ii and d

(2)
ii , respec-

tively. Since UD1U
∗ is a similarity transformation, which preserves the eigenvalues,

the set of eigenvalues of D1 is the same as the set of eigenvalues of D2, or in other

words, d
(1)
ii = d

(2)
jj for some j. Notice that d

(1)
ii s and d

(2)
ii s are ordered non-increasingly.

Therefore, d
(1)
ii = d

(2)
ii for i = 1, 2, ..., n, that is, D1 = D2 = D. Now write D as

diag{d1IP1, · · · , dqIPq}, where Pi is the number of times the element di appears in D

for i = 1, · · · , q. It is obvious that U can be written as diag{U1, · · · , Uq} where the

size of Ui is Pq for i = 1, · · · , q.
1Note that the structure in (5.2) is akin to the quasi-orthogonal space-time block codes in [TBH00,

Jaf01]. The crucial difference, however, is that in our paper, we shall insist that (5.2) be a unitary
matrix. This leads to further conditions on A and B, which are described below, and do not appear
in quasi-orthogonal space-time block codes.
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Lemma 5.4. If UD2 = D2U for any n× n positive semi-definite diagonal matrix D

and any n× n matrix U , then UD = DU .

Proof: By looking at the (i, j)-th entries of UD2 and D2U , uijd
2
jj = d2

iiuij. If

d2
ii 6= d2

jj, uij = 0 is obtained, and therefore uijdjj = diiuij. If d2
ii = d2

jj, since

D is a positive semi-definite matrix, dii is non-negative, therefore, dii = djj and so

uijdjj = diiuij is obtained. Therefore, UD = DU .

Now Lemma 5.2 is ready to be proved.

Proof of Lemma 5.2: Suppose A = UAΣAV
∗
A and B = UBΣBV

∗
B are the singular

value decompositions of A and B with the non-negative diagonal elements of ΣA non-

decreasingly ordered and the non-negative diagonal elements of ΣB non-increasingly

ordered. From the equation AA∗+BB∗ = In in (5.3), the following series of equations

can be obtained.

UAΣAV
∗
AVAΣAU

∗
A + UBΣBV

∗
BVBΣBU

∗
B = In

⇒ UAΣ2
AU

∗
A + UBΣ2

BU
∗
B = In

⇒ Σ2
A + (U∗

AUB)Σ2
B(U∗

AUB)∗ = In

⇒ (U∗
AUB)Σ2

B(U∗
AUB)∗ = In − Σ2

A.

Since UA and UB are unitary, U ∗
AUB is also unitary. Now since the diagonal entries

of Σ2
B and In − Σ2

A are non-increasingly ordered, from Lemma 5.3,

Σ2
B = In − Σ2

A. (5.4)

Define UD = U∗
AUB. Therefore UB = UAUD and

UD(In − Σ2
A) = (In − Σ2

A)UD ⇔ UDΣ2
A = Σ2

AUD.
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Since ΣA is a positive semi-definite matrix, from Lemma 5.4, UDΣA = ΣAUD and

therefore U∗
DΣA = ΣAU

∗
D. Further define U1 = UB = UAUD. Then,

A = UAΣAV
∗
A = UAUDU

∗
DΣAV

∗
A = UAUDΣA(VAUD)∗ = U1ΣAV

′∗
A ,

where V ′
A is defined as V ′

A = VAUD. Since U1 = UB, B = U1ΣBV
∗
B, Thus A and B

have the same left singular vectors.

We now focus on the right singular vectors. From the equation A∗A +BtB̄ = In

in (5.3), the following series of equations can be obtained.

V ′
AΣAU

∗
1U1ΣAV

′∗
A + V̄BΣBU

t
1Ū1ΣBV

t
B = In

⇒ V ′
AΣ2

AV
′∗
A + V̄BΣ2

BV
t
B = In

⇒ Σ2
A + (V ′∗

A V̄B)Σ2
B(V ′∗

A V̄B)∗ = In

⇒ (V ′∗
A V̄B)Σ2

B(V ′∗
A V̄B)∗ = In − Σ2

A.

Therefore, In − Σ2
A = Σ2

B and (V ′∗
A V̄B)Σ2

B = Σ2
B(V ′∗

A V̄B) by using Lemma 5.3. Define

VD = V ′∗
A V̄B, which is obviously a unitary matrix. Therefore V̄B = V ′

AVD, VDΣ2
B =

Σ2
BVD, and VDΣ2

A = Σ2
AVD, from which VDΣB = ΣBVD and VDΣA = ΣAVD can be

obtained by using Lemma 5.4. Now according to Lemma 5.3, VD can be written

as diag{V1, · · · , Vq} with each Vi being a unitary matrix. Since Vi is unitary, there

exists a Hermitian matrix Gi such that Vi = ejGi. Because Gi is Hermitian, so is

Gi/2. Therefore, the matrix ejGi/2, which is the square root of Vi, is also a unitary

matrix and ejG/2ΣA = ΣAe
jG/2, ejG/2ΣB = ΣBe

jG/2 can be obtained, where G/2 =

diag{G1/2, · · · , Gq/2}. Therefore ejG/2 is the square root of VD. Thus, A and B can
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be written as

A = U1ΣAVDV
∗
1 = U1ΣAe

jGV ∗
1 = U1e

jG/2ΣAe
jG/2V ∗

1 = (U1e
jG/2)ΣA(V1e

−jG/2)∗,

B = U1ΣBV
t
1 = (U1e

jG/2)ΣB(V1e
−jG/2)t,

where V1 is defined as V1 = V̄B = V ′
AVD. Therefore, A = UΣAV

∗ and Y = UΣBV
t

for some unitary matrices U = U1e
jG/2 and V = V1e

−jG/2 or equivalently, A = UΣAV

and Y = UΣB V̄ if U and V are defined as U = U1e
jG/2and V = (V1e

−jG/2)∗.

Lemma 5.2 indicates that A and B can be diagonalized by the same pair of unitary

matrices. This leads to the following parameterization theorem of Sp(n).

Theorem 5.1 (Parameterization of Sp(n)). A matrix S belongs to Sp(n) if and

only if it can be written as

S =






UΣAV UΣB V̄

−ŪΣBV ŪΣAV̄




 , (5.5)

where ΣA = diag(cos θ1, · · · cos θn),ΣB = diag(sin θ1, · · · , sin θn) for some θ1, · · · , θn ∈

[0, π/2] and U and V are n× n unitary matrices.

Proof: Lemma 5.2 and formula (5.2) imply that any matrix in Sp(2) can be

written as the form in (5.5). Conversely, for any matrix S with the form of (5.5), it

is easy to verify the unitary and symplectic conditions in Definition 5.1.

Now let us look at the dimension of S. It is known that an n× n unitary matrix

has dimension 2n2 − n − 2 × n(n−1)
2

= n2. Therefore, there are all together 2n2

degrees of freedom in the unitary matrices U and V . Together with the n real angles

θi, the dimension of S is therefore n(2n + 1), which is exactly the same as that of

Sp(n). But from the discussion above, an extra condition is imposed on the matrix

S: the diagonal elements of ΣA and ΣB are non-negative and non-increasingly/non-

decreasingly ordered. This might cause the dimension of S to be less than matrices
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in Sp(2) at first glance. However, the order and signs of the diagonal elements of ΣA

and ΣB can be changed by right multiplying U and left multiplying V with two types

of matrices: permutation matrices and diagonal matrices with diagonal elements 1

and −1.2 Therefore, the constraint does not result in dimension reduction. Based on

Theorem 5.1, matrices in Sp(n) can be parameterized by elements of U, V and the

real angles θis. Therefore, we can obtain finite subsets (samplings) of the infinite Lie

group Sp(n) by sampling these parameters.

5.3 Design of Sp(2) Codes

Let us now focus on the case of n = 2. The goal is to find fully diverse subsets

of Sp(2). For simplicity, first let ΣA = ΣB = 1√
2
I2, by which 2 degrees of freedom

are neglected. To get a finite subset of unitary matrices from the infinite Lie group,

further choose U and V as orthogonal designs with entries of U chosen from the set of

P -PSK signals: {1, ej 2π
P , · · · , ej 2π(P−1)

P } and entries of V chosen from the set of Q-PSK

signals shifted by an angle θ: {ejθ, ej( 2π
Q

+θ), · · · , ej(
2π(Q−1)

Q
+θ)} [Hug00b, Ala98]. The

following code is obtained.

CP,Q,θ =







1√
2






UV UV̄

−ŪV Ū V̄






∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

U = 1√
2






ej 2πk
P ej 2πl

P

−e−j 2πl
P e−j 2πk

P




 ,

V = 1√
2






ej( 2πm
Q

+θ) ej( 2πn
Q

+θ)

−e−j( 2πn
Q

+θ) e−j( 2πm
Q

+θ)




 ,

0 ≤ k, l < P, 0 ≤ m,n < Q







, (5.6)

where P and Q are positive integers. θ ∈ [0, 2π) is an angle to be chosen later. There

are P 2 possible U matrices and Q2 possible V matrices. Since the channel is used in

2Definition of permutation matrices can be found in [Art99]. It is easy to see that both types of
matrices are unitary, therefore, the unitarity of U and V keeps unchanged.
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blocks of four transmissions, the rate of the code is therefore

1

2
(log2 P + log2Q). (5.7)

It is easy to see that any transmission matrix in the code can be identified by the

4-tuple (k, l,m, n). The angle θ, an extra degree of freedom added to increase the

diversity product, is used in the proof of the full diversity of the code. However,

simulation results indicate that the code is always fully-diverse no matter what value

θ takes.

A similar code as follows can also be considered.

C ′
P,Q,θ =







1√
2






UV UV̄

−ŪV Ū V̄






∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

U = 1√
2






ej 2πk
P ej 2πl

Q

−e−j 2πl
Q e−j 2πk

P




 ,

V = 1√
2






ej( 2πm
P

+θ) ej( 2πn
Q

+θ)

−e−j( 2πn
Q

+θ) e−j( 2πm
P

+θ)




 ,

0 ≤ k,m < P, 0 ≤ l, n < Q







.

The rate of the code is the same as that of CP,Q,θ and its full diversity can be proved

similarly. Here, however, the focus is on the code given in (5.6).

5.4 Full Diversity of Sp(2) Codes

In differential unitary space-time code design for multiple-antenna systems, the most

widely used criterion is the full diversity of the code since as discussed in Section

2.6, the diversity product is directly related to the pairwise error probability of the

systems. This issue is discussed in this section.

To calculate the diversity product of the code CP,Q,θ given in (5.6), first choose
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any 2 transmission matrices S1 and S2 in CP,Q,θ where

S1 =
1√
2






U1V1 U1V̄1

−Ū1V1 Ū1V̄1




 and S2 =

1√
2






U2V2 U2V̄2

−Ū2V2 Ū2V̄2




 (5.8)

and

Ui =
1√
2






ej
2πki

P ej
2πli

P

−e−j
2πli

P e−j
2πki

P




 and Vi =

1√
2






ej(
2πmi

Q
+θ) ej(

2πni
Q

+θ)

−e−j(
2πni

Q
+θ) e−j(

2πmi
Q

+θ)




 . (5.9)

ki, li ∈ [0, P ) and mi, ni ∈ [0, Q) are integers for i = 1, 2. Before calculating the

determinant of the difference of the two matrices, some well-known facts about 2× 2

orthogonal design [Ala98] are first stated as follows.

Lemma 5.5. For any non-zero 2 × 2 matrix

M =






a b

−b̄ ā




 ,

1. detM = |a|2 + |b|2,

2. M∗M = MM∗ = (detM)I2,

3. detM = 0 if and only if M = 022,

4. M−1 = M∗

det M
and M̄−1 = Mt

det M
.

Proof: Straightforward algebra.

This lemma shows that the determinant of any non-zero matrix with an orthogonal

design structure is real and positive.

Define

O1 = U1V1 − U2V2 and O2 = U1V̄1 − U2V̄2. (5.10)
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Therefore,

det (S1 − S2)

=
1√
2

det






U1V1 − U2V2 U1V̄1 − U2V̄2

−(Ū1V1 − Ū2V2) Ū1V̄1 − Ū2V̄2






=
1√
2

det






O1 O2

−Ō2 Ō1






=
1√
2

detO1 det(Ō1 + Ō2O
−1
1 O2) (5.11)

if O1 is invertible. Since U1, U2, V1 and V2 are all orthogonal designs and it is

easy to prove that the addition, multiplication, and conjugate operations preserve

this property, O1 and O2 are also have the orthogonal design structure. By taking

advantage of this, when detO1 6= 0 and detO2 6= 0, the determinant of the difference

can be calculated to be

det (S1 − S2)

=
1√
2

detO1 det

(

Ō1 +
Ō2O

∗
1O2

detO1

)

=
1√
2

detO1 det

(
Ō1O

∗
2O2

detO2

+
Ō2O

∗
1O2

detO1

)

=
1√
2

detO1 det

(
Ō1O

∗
2

detO2
+

Ō2O
∗
1

detO1

)

detO2

=
1√
2

det

(√
detO1 detO2

detO2
Ō1O

∗
2 +

√
detO1 detO2

detO1
Ō2O

∗
1

)

=
1√
2

det

(

aŌ1O
∗
2 +

1

a
(Ō1O

∗
2)

t

)

=
1√
2

det




a






α β

−β̄ ᾱ




 +

1

a






α β

−β̄ ᾱ






t




=
1√
2

(∣
∣
∣
∣
aα +

1

a
α

∣
∣
∣
∣

2

+

∣
∣
∣
∣
aβ − 1

a
β̄

∣
∣
∣
∣

2
)
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=
1√
2
|α|2

(

a +
1

a

)2

+
1

2

∣
∣
∣
∣
aβ − β̄

a

∣
∣
∣
∣

2

, (5.12)

where a =
√

det O1

det O2
is a positive number and (α, β) is the first row of Ō1O

∗
2.

Lemma 5.6. For any S1 and S2 given in (5.8) and (5.9) where S1 6= S2, det (S1 − S2) =

0 if and only if O1 = ±JŌ2, or equivalently







e2jθw+ = x+

e2jθy+ = z+
, or







e2jθw− = x−

e2jθy− = z−
, (5.13)

where







w+ = e2πj(
k1
P

+
m1
Q

) − e2πj(
k2
P

+
m2
Q

) + e2πj(
l1
P

+
m1
Q

) − e2πj(
l2
P

+
m2
Q

)

x+ = −e2πj(
k1
P

−n1
Q

) + e2πj(
k2
P

−n2
Q

) + e2πj(
l1
P
−n1

Q
) − e2πj(

l2
P
−n2

Q
)

y+ = e2πj(
k1
P

+
n1
Q

) − e2πj(
k2
P

+
n2
Q

) + e2πj(
l1
P

+
n1
Q

) − e2πj(
l2
P

+
n2
Q

)

z+ = e2πj(
k1
P

−m1
Q

) − e2πj(
k2
P

−m2
Q

) − e2πj(
l1
P
−m1

Q
) + e2πj(

l2
P
−m2

Q
)

(5.14)

and







w− = e2πj(
k1
P

+
m1
Q

) − e2πj(
k2
P

+
m2
Q

) − e2πj(
l1
P

+
m1
Q

) + e2πj(
l2
P

+
m2
Q

)

x− = e2πj(
k1
P

−n1
Q

) − e2πj(
k2
P

−n2
Q

) + e2πj(
l1
P
−n1

Q
) − e2πj(

l2
P
−n2

Q
)

y− = e2πj(
k1
P

+
n1
Q

) − e2πj(
k2
P

+
n2
Q

) − e2πj(
l1
P

+
n1
Q

) + e2πj(
l2
P

+
n2
Q

)

z− = −e2πj(
k1
P

−m1
Q

) + e2πj(
k2
P

−m2
Q

) − e2πj(
l1
P
−m1

Q
) + e2πj(

l2
P
−m2

Q
)

. (5.15)

Proof: See Section 5.9.1.

Here is the main theorem.

Theorem 5.2 (Condition for full diversity). There exists a θ such that the code

in (5.6) is fully diverse if and only if P and Q are relatively prime.
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This theorem provides both the sufficient and the necessary condition for the code

set to be fully diverse. Before proving this theorem, a few lemmas are given first which

are needed in the proof of the theorem.

Lemma 5.7. For any four points on the unit circle that add up (as complex numbers)

to zero, it is always true that two of them add up to zero. (Clearly, the other two

must also have a summation of zero.)

Proof: See Section 5.9.2.

Lemma 5.8. If P and Q are relatively prime, then for any non-identical pairs,

(k1, l1, m1, n1) and (k2, l2, m2, n2), where k1, l1, k2, l2 ∈ [0, P ) and m1, n1, m2, n2 ∈

[0, Q) are integers, w+, x+, y+, z+, as defined in (5.14), cannot be zero simulta-

neously. Also w−, x−, y−, z−, as defined in (5.15), cannot be zero simultaneously.

Proof: See Section 5.9.3.

Now it is ready to prove Theorem 5.2.

Proof of Theorem 5.2: The proof has two steps. First, we prove the suffi-

ciency of the condition, that is, assuming P and Q are relatively prime, we show

that there exists a θ such that the code is fully-diverse. If P and Q are relatively

prime, by Lemma 5.8, for any non-identical pair of signal matrices (k1, l1, m1, n1) and

(k2, l2, m2, n2), w
+, x+, y+, z+ cannot be zero simultaneously. (For definitions of w+,

x+, y+, z+, see (5.14)). Define

θ+
k1,l1,m1,n1,k2,l2,m2,n2

=







1
2
Arg ( x+

w+ ) mod 2π if w+ 6= 0

−1
2
Arg (w+

x+ ) mod 2π if w+ = 0, x+ 6= 0

1
2
Arg ( z+

y+ ) mod 2π if w+ = x+ = 0, y+ 6= 0

−1
2
Arg (y+

z+ ) mod 2π if w+ = x+ = y+ = 0, z+ 6= 0

,
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which is the same as

θ+
k1,l1,m1,n1,k2,l2,m2,n2

=







1
2
Arg ( x+

w+ ) mod 2π if w+ 6= 0

0 if w+ = 0, x+ 6= 0

1
2
Arg ( z+

y+ ) mod 2π if w+ = x+ = 0, y+ 6= 0

0 if w+ = x+ = y+ = 0, z+ 6= 0

.(5.16)

Arg c indicates the argument of the complex number c. Also, by Lemma 5.8, w−, x−, y−, z−

cannot be zero simultaneously. (For definitions of w−, x−, y−, z−, see (5.15)). Define

θ−k1,l1,m1,n1,k2,l2,m2,n2
=







1
2
Arg ( x−

w− ) mod 2π if w− 6= 0

−1
2
Arg (w−

x− ) mod 2π if w− = 0, x− 6= 0

1
2
Arg ( z−

y− ) mod 2π if w− = x− = 0, y− 6= 0

−1
2
Arg (y−

z−
) mod 2π if w− = x− = y− = 0, z− 6= 0

,

which is the same as

θ−k1,l1,m1,n1,k2,l2,m2,n2
=







1
2
Arg ( x−

w− ) mod 2π if w− 6= 0

0 if w− = 0, x− 6= 0

1
2
Arg ( z−

y− ) mod 2π if w− = x− = 0, y− 6= 0

0 if w− = x− = y− = 0, z− 6= 0

.(5.17)

By choosing

θ /∈
{
θ+

k1,l1,m1,n1,k2,l2,m2,n2
,

∣
∣
∣
∣
|w+| = |x+|, |y+| = |z+|, 0 ≤ k1, l1, k2, l2 < P, 0 ≤ m1, n1, m2, n2 < Q}

(5.18)
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and

θ /∈
{
θ−k1,l1,m1,n1,k2,l2,m2,n2

,
∣
∣
∣
∣
||w−| = |x−|, |y−| = |z−|, 0 ≤ k1, l1, k2, l2 < P, 0 ≤ m1, n1, m2, n2 < Q} ,

(5.19)

(5.13) cannot be true at the same time. Therefore, by Lemma 5.6, det(S1 − S2) 6= 0,

which means that the code is fully diverse. An angle in [0, 2π) that satisfies (5.18)

can always be found since the two sets at the right-hand side of (5.18) and (5.19) are

finite. This proves the sufficiency of the condition (P and Q are relatively prime) in

Theorem 5.2.

In the second step, we prove the necessity of the condition, that is, assuming that

P and Q are not relatively prime, we show that there exist two signals in the code

such that the determinant of the difference of the two is zero for any θ. Assume

that the greatest common divisor of P and Q is G > 1, then there exist positive

integers P ′ and Q′ such that P = P ′G and Q = Q′G. Consider the following two

signal matrices S1 and S2 as given in (5.8) and (5.9) with k2 = k1 − P ′, l2 = l1 − P ′,

m2 = m1 +Q′, n2 = n1 +Q′, k1 = l1, and k2 = l2. Assume that k1, l1 ∈ [P ′, P ), and

m1, n1 ∈ [0, Q − Q′). Since P > P ′and Q > Q′, we can always choose k1, l1, m1, n1

that satisfy the conditions. It is easy to verify that w+ = x+ = y+ = z+ = 0, which

means that the first set of equations in (5.13) is true for any angle θ. Therefore,

O1 = JŌ2, and from Lemma 5.6, we have det(S1 − S2) = 0, that is, the signal set in

(5.6) is not fully-diverse.

Remark: Note that we have actually proved that the codes in (5.6) are fully

diverse for almost any θ except for a measure zero set. However, this is a sufficient

condition and may be not necessary. The diversity products of many codes for θ from

0 to 2π with step size 0.001 are calculated by simulation. Two of these are shown in

the following. Simulation results show that the codes are fully diverse for all θ.

The following two plots show the diversity products of two Sp(2) codes at different
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Figure 5.2: Diversity product of the P = 11, Q = 7 Sp(2) code
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θ. Figure 5.1 shows the diversity product of the Sp(2) code with P = 7 and Q = 3

and Figure 5.2 shows the diversity product of the Sp(2) code with P = 11 and Q = 7.

Since the angles of the elements in the V matrix of (5.6) are chosen from Q-PSK

signals shifted by an angle θ, it is enough to set the changing region of θ as [0, 2π/Q)

instead of [0, 2π). It can be seen from the two plots that the Sp(2) code with P = 7

and Q = 3 gets its highest diversity product, 0.1870, at θ = 0.0419 and the Sp(2)

code with P = 7 and Q = 3 gets its highest diversity product, 0.0937, at θ = 0.

Although the codes are fully diverse at any θ.

5.5 Sp(2) Codes of Higher Rates

In section 5.4, Sp(2) codes are designed with the 2 degrees of freedom in ΣA and ΣB

unused. For higher rate code design, one of the two degrees of freedom can be added

in by letting

ΣA = cos γiI2 and ΣB = sin γiI2,

where γi ∈ Γ for some real set Γ. The code can be constructed as follows.

CP,Q,θ,Γ =










cos γiUV sin γiUV̄

− sin γiŪV cos γiŪ V̄





∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

U = 1√
2




ej 2πk

P ej 2πl
P

−e−j 2πl
P e−j 2πk

P



 ,

V = 1√
2




ej( 2πm

Q
+θ) ej( 2πn

Q
+θ)

−e−j( 2πn
Q

+θ) e−j( 2πm
Q

+θ)



 ,

0 ≤ k, l < P, 0 ≤ m, n < Q, γi ∈ Γ







, (5.20)

where P and Q are positive integers and θ ∈ [0, 2π) is a constant to be chosen later.

It can be easily seen that any signal matrix in the code can be identified by the 5-tuple

(k, l,m, n, γi). The code proposed in (5.6) is a special case of this code, which can be

obtained by setting Γ = {π
4
}. Since the set has altogether P 2Q2|Γ| matrices and the
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channel is used in blocks of four transmissions, the rate of the code is

1

2
(log2 P + log2Q) +

1

4
log2 |Γ|, (5.21)

where |Γ| indicates the cardinality of the set Γ. A conclusion similar to Theorem 5.2

about the full diversity of the code can be stated as follows.

Theorem 5.3 (Condition for full diversity). If P and Q are relatively prime with

P odd and the set Γ satisfies the following conditions,

1. Γ ⊂ (0, π
2
),

2. For any γ ∈ Γ,

tan γ 6= ±
sin π( l

P
+ m

Q
)

sin π( k
P

+ m
Q

)
, (5.22)

where k, l ∈ (−P, P ), m ∈ (−Q,Q) are integers and (k,m) 6= (0, 0),

3. For any two different γi, γj ∈ Γ,

sin 2γi

sin 2γj
6= cos 2π s

P

cos 2π l
P

, (5.23)

where s, l ∈ [0, P ) are integers,

then there exists θ such that the signal set in (5.20) is fully-diverse.

Proof: First we need to show that the right-hand side formula of (5.22) is well

defined, that is, sin π( k
P

+ m
Q

) 6= 0 for any integers k ∈ (−P, P ), m ∈ (−Q,Q), and

(k,m) 6= (0, 0). This can be proved by contradiction. Assume that sin π( k
P

+ m
Q

) = 0.

Therefore, π( k
P

+ m
Q

) = lπ, which is equivalent to k
P

+ m
Q

= l, for some integer l. Since

P and Q are relatively prime, P |k and Q|m. Since k ∈ (−P, P ) and m ∈ (−Q,Q),

k = 0 and m = 0. This contradicts the condition that (k,m) 6= (0, 0). We now prove
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that the right-hand side formula of (5.23) is well defined, that is, cos 2π l
P
6= 0 for any

l ∈ [0, P ). Again, this can be proved by contradiction. Assume that cos 2π l
P

= 0.

Therefore, 2π l
P

= rπ + π
2
, that is, l

P
= 2r+1

4
for some integer r. Since 2r + 1 is odd,

4|P and this contradicts the condition that P is odd.

Now we prove this theorem. Assume that P and Q are relatively prime, P is odd

and the set Γ ⊂ (0, π
2
) satisfies conditions (5.22) and (5.23). We want to show that

there exists a θ such that the code is fully diverse. It is equivalent to show that for

any non-identical pair of signals Si and Sj of the code, det(Si − Sj) 6= 0. Without

loss of generality, assume

Si =






cos γiUiVi sin γiUiV̄i

− sin γiŪiVi cos γiŪiV̄i




 and Sj =






cos γiUjVj sin γiUjV̄j

− sin γiŪjVj cos γiŪjV̄j




 , (5.24)

where Ui, Vi are 2 × 2 unitary matrices given by (5.9) and Uj, Vj are the two 2 × 2

matrices in (5.9) by replacing i by j. The two signals being different indicates that

the two 5-tuples, (ki, li, mi, ni, γi) and (kj, lj, mj, nj, γj), are not identical. From the

proof of Lemma 5.6, det(Si − Sj) is zero if and only if O′
1 = ±JŌ′

2, where O′
1 and O′

2

are defined as

O′
1 = cos γiUiVi − cos γjUjVj and O′

2 = sin γiUiV̄i − sin γjUjV̄j. (5.25)

By using (5.25) and (5.9), similar to the argument in the proof of Lemma 5.6, O′
1 =

±JŌ′
2 can be equivalently written as







e2jθ(cos γie
2πj(

ki
P

+
mi
Q

) − cos γje
2πj(

kj
P

+
mj
Q

) ± sin γie
2πj(

li
P

+
mi
Q

) ∓ sin γje
2πj(

lj
P

+
mj
Q

)
)

= ∓ sin γie
2πj(

ki
P
−ni

Q
) ± sin γje

2πj(
kj
P
−nj

Q
) + cos γie

2πj(
li
P
−ni

Q
) − cos γje

2πj(
lj
P
−nj

Q
)

or

e2jθ(cos γie
2πj(

ki
P

+
ni
Q

) − cos γje
2πj(

kj
P

+
nj
Q

) ± sin γie
2πj(

li
P

+
ni
Q

) ∓ sin γje
2πj(

lj
P

+
nj
Q

))

= ± sin γie
2πj(

ki
P
−mi

Q
) ∓ sin γje

2πj(
kj
P
−mj

Q
) − cos γie

2πj(
li
P
−mi

Q
)
+ cos γje

2πj(
lj
P
−mj

Q
)

(5.26)
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Define







w̃+ = cos γie
2πj(

ki
P

+
mi
Q

) − cos γje
2πj(

kj
P

+
mj
Q

) + sin γie
2πj(

li
P

+
mi
Q

) − sin γje
2πj(

lj
P

+
mj
Q

)

x̃+ = − sin γie
2πj(

ki
P
−ni

Q
) + sin γje

2πj(
kj
P
−nj

Q
) + cos γie

2πj(
li
P
−ni

Q
) − cos γje

2πj(
lj
P
−nj

Q
)

ỹ+ = cos γie
2πj(

ki
P

+
ni
Q

) − cos γje
2πj(

kj
P

+
nj
Q

) + sin γie
2πj(

li
P

+
ni
Q

) − sin γje
2πj(

lj
P

+
nj
Q

)

z̃+ = + sin γie
2πj(

ki
P
−mi

Q
) − sin γje

2πj(
kj
P
−mj

Q
) − cos γie

2πj(
li
P
−mi

Q
) + cos γje

2πj(
lj
P
−mj

Q
)

(5.27)

and







w̃− = cos γie
2πj(

ki
P

+
mi
Q

) − cos γje
2πj(

kj
P

+
mj
Q

) − sin γie
2πj(

li
P

+
mi
Q

) + sin γje
2πj(

lj
P

+
mj
Q

)

x̃− = + sin γie
2πj(

ki
P
−ni

Q
) − sin γje

2πj(
kj
P
−nj

Q
) + cos γie

2πj(
li
P
−ni

Q
) − cos γje

2πj(
lj
P
−nj

Q
)

ỹ− = cos γie
2πj(

ki
P

+
ni
Q

) − cos γje
2πj(

kj
P

+
nj
Q

) − sin γie
2πj(

li
P

+
ni
Q

) + sin γje
2πj(

lj
P

+
nj
Q

)

z̃− = − sin γie
2πj(

ki
P
−mi

Q
) + sin γje

2πj(
kj
P
−mj

Q
) − cos γie

2πj(
li
P
−mi

Q
) + cos γje

2πj(
lj
P
−mj

Q
)

.(5.28)

(5.26) is thus equivalent to,







e2jθw̃+ = x̃+

e2jθỹ+ = z̃+
or







e2jθw̃− = x̃−

e2jθỹ− = z̃−
. (5.29)

Now we need the following lemma.

Lemma 5.9. For any non-identical pairs (ki, li, mi, ni, γi) and (kj, lj, mj, nj, γj), where

ki, li, kj, lj ∈ [0, P ), mi, ni, mj, nj ∈ [0, Q) are integers and γi, γj ∈ Γ, if P and Q are

relatively prime with P odd and if the set Γ ⊂ (0, π
2
) satisfies conditions (5.22) and

(5.23), then w̃+, x̃+, ỹ+, z̃+ (as defined in (5.27)) cannot be zero simultaneously.

Also w̃−, x̃−, ỹ−, z̃− (as defined in (5.28)) cannot be zero simultaneously.

Proof: See Section 5.9.4.

The proof is very similar to the proof of Theorem 5.2. By Lemma 5.9, w̃+, x̃+,
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ỹ+, z̃+ cannot be zero simultaneously. Define

θ̃+
k1,l1,m1,n1,k2,l2,m2,n2

=







1
2
Arg ( x̃+

w̃+ ) mod 2π if w̃+ 6= 0

−1
2
Arg ( w̃+

x̃+ ) mod 2π if w̃+ = 0, x̃+ 6= 0

1
2
Arg ( z̃+

ỹ+ ) mod 2π if w̃+ = x̃+ = 0, ỹ+ 6= 0

−1
2
Arg ( ỹ+

z̃+ ) mod 2π if w̃+ = x̃+ = ỹ+ = 0, z̃+ 6= 0

,

which is the same as

θ̃+
k1,l1,m1,n1,k2,l2,m2,n2

=







1
2
Arg ( x̃+

w̃+ ) mod 2π if w̃+ 6= 0

0 if w̃+ = 0, x̃+ 6= 0

1
2
Arg ( z̃+

ỹ+ ) mod 2π if w̃+ = x̃+ = 0, ỹ+ 6= 0

0 if w̃+ = x̃+ = ỹ+ = 0, z̃+ 6= 0

.

Also from Lemma 5.9, w̃−, x̃−, ỹ−, z̃− cannot be zeros simultaneously. Define

θ̃−k1,l1,m1,n1,k2,l2,m2,n2
=







1
2
Arg ( x̃−

w̃− ) mod 2π if w̃− 6= 0

−1
2
Arg ( w̃−

x̃− ) mod 2π if w̃− = 0, x̃− 6= 0

1
2
Arg ( z̃−

ỹ− ) mod 2π if w̃− = x̃− = 0, ỹ− 6= 0

−1
2
Arg ( ỹ−

z̃−
) mod 2π if w̃− = x̃− = ỹ− = 0, z̃− 6= 0

,

which is the same as

θ̃−k1,l1,m1,n1,k2,l2,m2,n2
=







−1
2
Arg ( x̃−

w̃− ) mod 2π if w̃− 6= 0

0 if w̃− = 0, x̃− 6= 0

−1
2
Arg ( z̃−

ỹ− ) mod 2π if w̃− = x̃− = 0, ỹ− 6= 0

0 if w̃− = x̃− = ỹ− = 0, z̃− 6= 0

.
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By choosing

θ /∈
{

θ̃+
k1,l1,m1,n1,k2,l2,m2,n2∣
∣
∣
∣
|w̃+| = |x̃+|, |ỹ+| = |z̃+|, 0 ≤ k1, l1, k2, l2 < P, 0 ≤ m1, n1, m2, n2 < Q

}(5.30)

and

θ /∈
{

θ̃−k1,l1,m1,n1,k2,l2,m2,n2∣
∣
∣
∣
|w̃−| = |x̃−|, |ỹ−| = |z̃−|, 0 ≤ k1, l1, k2, l2 < P, 0 ≤ m1, n1, m2, n2 < Q

} ,(5.31)

(5.29) cannot be true. Therefore det(Si − Sj) 6= 0, which means that the code is

fully-diverse. An angle in [0, 2π) that satisfies both (5.30) and (5.31) can always be

found since the two sets at the right-hand side of (5.30) and (5.31) are finite.

5.6 Decoding of Sp(2) Codes

One of the most prominent properties of our Sp(2) codes is that it is a generalization

of the orthogonal design. In this section, it is shown how this property can be used

to get linear-algebraic decoding, which means that the receiver can be made to form

a system of linear equations in the unknowns.

5.6.1 Formulation

The ML decoding for differential USTM is given in (2.12), which, in our system, can

be written as

arg max
l=0,...,L−1

‖Xτ − VlXτ−1‖2
F

= arg max
i,j

∥
∥
∥
∥
∥
∥
∥

Xτ −
1√
2






Ui 0

0 Ūi











I2 I2

−I2 I2











Vj 0

0 V̄j




Xτ−1

∥
∥
∥
∥
∥
∥
∥

2

F
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= arg max
i,j

∥
∥
∥
∥
∥
∥
∥






U∗
i 0

0 U t
i




Xτ −

1√
2






Vj V̄j

−Vj V̄j




Xτ−1

∥
∥
∥
∥
∥
∥
∥

2

F

.

By writing the matrices in the norm column by column, we get

arg max
i,j

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥





















U∗
i 0

0 U t
i




X

(τ)
1

...





U∗
i 0

0 U t
i




X

(τ)
N
















− 1√
2





















Vj V̄j

−Vj V̄j




X

(τ−1)
1

...





Vj V̄j

−Vj V̄j




X

(τ−1)
N
















∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

2

F

,

where X
(τ)
i denotes the i-th column of Xτ and X

(τ−1)
i denotes the i-th column of

Xτ−1. It is obvious that X
(τ)
i and X

(τ−1)
i are 4×1 column vectors. We further denote

the (i, j)-th entry of Xτ as x
(τ)
ij and denote the (i, j)-th entry of Xτ as x

(τ−1)
ij for

i = 1, 2, 3, 4 and j = 1, 2, · · · , N . The ML decoding is equivalent to

arg max
i,j

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥





















U∗
i

[

x
(τ)
11 , x

(τ)
21

]t

U t
j

[

x
(τ)
31 , x

(τ)
41

]t






...





U∗
i

[

x
(τ)
N1, x

(τ)
N2

]t

U t
j

[

x
(τ)
N3, x

(τ)
N4

]t





















− 1√
2





















Vj

[

x
(τ−1)
11 , x

(τ−1)
21

]t
+ V̄j

[

x
(τ−1)
31 , x

(τ−1)
41

]t

−Vj

[

x
(τ−1)
11 , x

(τ−1)
21

]t
+ V̄j

[

x
(τ−1)
31 , x

(τ−1)
41

]t






...





Vj

[

x
(τ−1)
1N , x

(τ−1)
2N

]t
+ V̄j

[

x
(τ−1)
3N , x

(τ−1)
4N

]t

−Vj

[

x
(τ−1)
1N , x

(τ−1)
2N

]t
+ V̄j

[

x
(τ−1)
3N , x

(τ−1)
4N

]t





















∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

2

F

.

From the design of the code, we know that the matrices Ui, Vj and their conjugates

and transposes are all orthogonal designs. For any orthogonal design M =






a b

−b̄ ā





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and any two-dimensional vector X = [x1, x2]
t, MX can be written equivalently as






<x1 =x1 −<x2 =x2

<x2 −=x2 <x1 =x1

















<a

=a

<b

=b












+ i






=x1 −<x1 −=x2 −<x2

=x2 <x2 =x1 −<x1

















<a

=a

<b

=b












,

where <x indicates the real part of x and =x indicates the imaginary part of x. It can

be seen that the roles of M and X are interchanged. Therefore, by careful calculation,

the ML decoding of Sp(2) codes can be shown to be equivalent to

arg max
0≤k,l<P,0≤m,n<Q

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥





















A1(X
(τ)
1 ) −C1(X

(τ−1)
1 )

B1(X
(τ)
1 ) −D1(X

(τ−1)
1 )






· · ·





AN(X
(τ)
N ) −CN (X

(τ−1)
N )

BN (X
(τ)
N ) −DN (X

(τ−1)
N )













































cos 2πk
P

sin 2πk
P

cos 2πl
P

sin 2πl
P

cos(2πm
Q

+ θ)

sin(2πm
Q

+ θ)

cos(2πn
Q

+ θ)

sin(2πn
Q

+ θ)

























∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

2

F

,(5.32)

where

Ai(X
(τ)
i ) =

1√
2












<x(τ)
i1 =x(τ)

i1 −<x(τ)
i2 =x(τ)

i2

<x(τ)
i2 −=x(τ)

i2 <x(τ)
i1 =x(τ)

i1

<x(τ)
i3 −=x(τ)

i3 −<x(τ)
i4 −=x(τ)

i4

<x(τ)
i4 =x(τ)

i4 <x(τ)
i3 −=x(τ)

i3












, (5.33)
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Bi(X
(τ)
i ) =

1√
2












=x(τ)
i1 −<x(τ)

i1 −=x(τ)
i2 −<x(τ)

i2

=x(τ)
i2 <x(τ)

i2 =x(τ)
i1 −<x(τ)

i1

=x(τ)
i3 <x(τ)

i3 −=x(τ)
i4 <x(τ)

i4

=x(τ)
i4 −<x(τ)

i4 =x(τ)
i3 <x(τ)

i3












, (5.34)

Ci(X
(τ−1)
i ) = 1

2












<(x
(τ−1)
i1 + x

(τ−1)
i3 ) =(−x(τ−1)

i1 + x
(τ−1)
i3 )

<(x
(τ−1)
i2 + x

(τ−1)
i4 ) =(x

(τ−1)
i2 − x

(τ−1)
i4 )

<(−x(τ−1)
i1 + x

(τ−1)
i3 ) =(x

(τ−1)
i1 + x

(τ−1)
i3 )

<(−x(τ−1)
i2 + x

(τ−1)
i4 ) =(−x(τ−1)

i2 − x
(τ−1)
i4 )

<(x
(τ−1)
i2 + x

(τ−1)
i4 ) =(−x(τ−1)

i2 − x
(τ−1)
i4 )

<(−x(τ−1)
i1 − x

(τ−1)
i3 ) =(−x(τ−1)

i1 + x
(τ−1)
i3 )

<(−x(τ−1)
i2 + x

(τ−1)
i4 ) =(x

(τ−1)
i2 − x

(τ−1)
i4 )

<(x
(τ−1)
i1 − x

(τ−1)
i3 ) =(x

(τ−1)
i1 + x

(τ−1)
i3 )












, (5.35)

Di(X
(τ−1)
i ) = 1

2












=(x
(τ−1)
i1 + x

(τ−1)
i3 ) <(x

(τ−1)
i1 − x

(τ−1)
i3 )

=(x
(τ−1)
i2 + x

(τ−1)
i4 ) <(−x(τ−1)

i2 + x
(τ−1)
i4 )

=(−x(τ−1)
i1 + x

(τ−1)
i3 ) <(−x(τ−1)

i1 − x
(τ−1)
i3 )

=(−x(τ−1)
i2 + x

(τ−1)
i4 ) <(x

(τ−1)
i2 + x

(τ−1)
i4 )

=(x
(τ−1)
i2 + x

(τ−1)
i4 ) <(x

(τ−1)
i2 − x

(τ−1)
i4 )

=(−x(τ−1)
i1 − x

(τ−1)
i3 ) <(x

(τ−1)
i1 − x

(τ−1)
i3 )

=(−x(τ−1)
i2 + x

(τ−1)
i4 ) <(−x(τ−1)

i2 − x
(τ−1)
i4 )

=(x
(τ−1)
i1 − x

(τ−1)
i3 ) <(−x(τ−1)

i1 − x
(τ−1)
i3 )












, (5.36)

and
[

cos 2πk
P
, sin 2πk

P
, cos 2πl

P
, sin 2πl

P
, cos(2πm

Q
+ θ), sin(2πm

Q
+ θ), cos(2πn

Q
+ θ), sin(2πn

Q
+ θ)

]t

is the vector of unknowns. Notice that Bi(X
(τ)
i ) can also be constructed as Ai(−jX (τ)

i ).

It can be seen that formula (5.32) is quadratic in sines and cosines of the unknowns.
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Thus, it is possible to use fast decoding algorithms such as sphere decoding to achieve

the exact ML solution in polynomial time.

In this paragraph, the sphere decoding for codes given in (5.20) is discussed. For

each of the angle γi, a sphere decoding is applied and one signal is gained. In doing

the sphere decoding for each γi, matrices Ai,Bi for i = 1, 2, · · · , N are the same as

those in (5.33) and (5.34), but the Ci and Di matrices should be modified to

Ci =












<(cos γix
(τ−1)
i1 + sin γix

(τ−1)
i3 ) =(− cos γix

(τ−1)
i1 + sin γix

(τ−1)
i3 )

<(cos γix
(τ−1)
i2 + sin γix

(τ−1)
i4 ) =(cos γix

(τ−1)
i2 − sin γix

(τ−1)
i4 )

<(− cos γix
(τ−1)
i1 + sin γix

(τ−1)
i3 ) =(cos γix

(τ−1)
i1 + sin γix

(τ−1)
i3 )

<(− cos γix
(τ−1)
i2 + sin γix

(τ−1)
i4 ) =(− cos γix

(τ−1)
i2 − sin γix

(τ−1)
i4 )

<(cos γix
(τ−1)
i2 + sin γix

(τ−1)
i4 ) =(− cos γix

(τ−1)
i2 − sin γix

(τ−1)
i4 )

<(− cos γix
(τ−1)
i1 − sin γix

(τ−1)
i3 ) =(− cos γix

(τ−1)
i1 + sin γix

(τ−1)
i3 )

<(− cos γix
(τ−1)
i2 + sin γix

(τ−1)
i4 ) =(cos γix

(τ−1)
i2 − sin γix

(τ−1)
i4 )

<(cos γix
(τ−1)
i1 − sin γix

(τ−1)
i3 ) =(cos γix

(τ−1)
i1 + sin γix

(τ−1)
i3 )












(5.37)

and

Di =












=(cos γix
(τ−1)
i1 + sin γix

(τ−1)
i3 ) <(cos γix

(τ−1)
i1 − sin γix

(τ−1)
i3 )

=(cos γix
(τ−1)
i2 + sin γix

(τ−1)
i4 ) <(− cos γix

(τ−1)
i2 + sin γix

(τ−1)
i4 )

=(− cos γix
(τ−1)
i1 + sin γix

(τ−1)
i3 ) <(− cos γix

(τ−1)
i1 − sin γix

(τ−1)
i3 )

=(− cos γix
(τ−1)
i2 + sin γix

(τ−1)
i4 ) <(cos γix

(τ−1)
i2 + sin γix

(τ−1)
i4 )

=(cos γix
(τ−1)
i2 + sin γix

(τ−1)
i4 ) <(cos γix

(τ−1)
i2 − sin γix

(τ−1)
i4 )

=(− cos γix
(τ−1)
i1 − sin γix

(τ−1)
i3 ) <(cos γix

(τ−1)
i1 − sin γix

(τ−1)
i3 )

=(− cos γix
(τ−1)
i2 + sin γix

(τ−1)
i4 ) <(− cos γix

(τ−1)
i2 − sin γix

(τ−1)
i4 )

=(cos γix
(τ−1)
i1 − sin γix

(τ−1)
i3 ) <(− cos γix

(τ−1)
i1 − sin γix

(τ−1)
i3 )












. (5.38)

For each transmission, |Γ| sphere decoding is used and therefore |Γ| signal matrices

are obtained in total. ML decoding given in (5.32) is then used to get the optimal
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one. The complexity of this decoding algorithm is |Γ| times the original one, but it

is still cubic polynomial in the transmission rate and dimension.

5.6.2 Remarks on Sphere Decoding

Below are some remarks on the implementation of sphere decoding in our systems.

1. The main idea of sphere decoding is disucssed in Section 2.8. The choice of the

searching radius is very crucial to the speed of the algorithm. Here, the radius

is initialized as a small value and then increase it gradually based on the noise

level [HV02]. The searching radius
√
C is initialized in such a way that the

probability that the correct signal is in the sphere is 0.9, that is,

P (‖v‖F <
√
C) = 0.9. (5.39)

If no point is found in this sphere, the searching radius is then raised such

that the probability is increased to 0.99 and so on. Using this algorithm, the

probability that a point can be found during the first search is high. The noise

of the system is given in (2.11). Since Wτ , Wτ−1 and the transmitted unitary

matrix Vzτ are independent, it is easy to prove that the noise has mean zero

and variance 2NI4. Each component of the 4 × N -dimensional noise vector

has mean zero and variance 2. Therefore the random variable v = ‖W ′
τ‖2

F has

Gamma distribution with mean 4N . The value of C that satisfies (5.39) can be

easily calculated.

2. From (5.32), it can be seen that the unknowns are in forms of sines and

cosines. Notice that for any α 6= β ∈ [0, 2π), sinα = sin β if and only

if β = (2k + 1)π − α for some integer k. When P,Q are odd, it can be

seen that π cannot be in the set ΘP = {2πk
P
|k = 0, 1, 2, ..., P − 1}, which is

the set of all possible angles of Ui’s entries, and π + θ cannot be in the set
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ΘQ = {2πk
Q

+ θ|k = 0, 1, 2, ..., P − 1}, which is the set of all possible angles of

Vi’s entries. Therefore, the map fP : ΘP → {sin x|x ∈ ΘP} by fP (θ) = sin θ

and the map fQ : ΘQ → {sin x|x ∈ ΘQ} by fQ(θ) = sin θ are one-to-one and

onto. The independent unknowns k, l,m, n can thus be replaced equivalently

by their sines: sin 2πk
P
, sin 2πl

P
, sin(2πm

Q
+ θ), sin(2πn

Q
+ θ).

3. Notice that there are only four independent unknowns but eight components in

the unknown vector in (5.32). We combine the 2i-th component (with the form

of cos x) and the (2i+1)-th component (with the form of sin x) for i = 1, 2, 3, 4.

From previous discussions we know that for any value in the set {sin x|x ∈ ΘP}

or {sin x|x ∈ ΘQ}, there is only one possible value in ΘP or ΘQ whose sine equals

the value. Therefore, there is only one possible value of the cosine. In other

words, for any possible value of the 2i-th component, there is one unique value

for the (2i+1)-th component. Therefore, it is natural to combine the 2i-th and

the (2i+1)-th components. To simplify the programming, while considering the

searching range of each unknown variable, we skip the 2i-th component and only

consider the (2i+ 1)-th one. For example, instead of analyzing all the possible

values of sin 2πn
Q

(the 8th component) satisfying q88 sin2 2πn
Q

+q77(cos 2πn
Q

+S8)
2 ≤

C, all the possible values of sin 2πn
Q

satisfying q88 sin2 2πn
Q

≤ C are considered

[DAML00]. It may seem that more points than needed is searched, but actually

the extra points will be eliminated in the next step of the sphere decoding

algorithm.

4. Complex sphere decoding can also be used here to obtain ML results, which ac-

tually is simplier than the real sphere decoding. However, in all the simulations,

real sphere decoding is used.
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5.7 Simulation Results

In this section, examples of Sp(2) codes and also the simulated performance of the

codes at different rates are given. The fading coefficient between every transmit-and-

receive-antenna pair is modeled independently as a complex Gaussian variable with

zero-mean and unit-variance and keeps constant for 2M channel uses. At each channel

use, zero-mean, unit-variance complex Gaussian noise is added to each received signal.

The block error rate (BLER), which corresponds to errors in decoding the 4 × 4

transmitted matrices, is demonstrated as the error event of interest. The performance

of the Sp(2) codes is also compared with that of some group-based codes [SHHS01],

the differential Cayley codes [HH02a], the 2×2 Alamouti’s complex orthogonal designs

[Ala98] of the form

C(z1, z2) =






z1 z2

−z∗2 z∗1




 , (5.40)

and the 4 × 4 complex orthogonal design

C(z1, z2, z3) =












z1 z2 z3 0

−z∗2 z∗1 0 −z3

−z∗3 0 z∗1 z2

0 z∗3 −z∗2 z2












(5.41)

proposed in [TH02].
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Figure 5.3: Comparison of the rate 1.95 Sp(2) code with the rate 1.75 differential
Cayley code, the rate 2, 2 × 2 complex orthogonal design, and the rate 1.94, 4 × 4
complex orthogonal design with N = 1 receive antennas
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5.7.1 Sp(2) Code vs. Cayley Code and Complex Orthogonal

Designs

The first example is the Sp(2) code with P = 5, Q = 3, θ = 0, that is, entries of the

U matrix of the code are chosen from the 5-PSK signal set {1, ej 2π
5 , ej 4π

5 , ej 6π
5 , ej 8π

5 },

and entries of the V matrix are chosen from the 3-PSK signal set {1, ej 2π
3 , ej 4π

3 }.

Therefore by (5.7), the rate of the code is 1.95. It is compared with 3 code: the

rate 2, 2 × 2 complex orthogonal design given by (5.40), where z1, z2 are chosen

from the 4-PSK signal set {1, ej 2π
4 , ej 4π

4 , ej 6π
4 }; a rate 1.75 differential Cayley code

with parameters Q = 7, r = 2 [HH02a]; and also the rate 1.94, 4 × 4 complex or-

thogonal design given by (5.41), where z1, z2, z3 are chosen from the 6-PSK signal set

{1, ej 2π
6 , ej 4π

6 , ej 6π
6 , ej 8π

6 , ej 10π
6 }. The number of receive antennas is 1. The performance

curves are shown in Figure 5.3. The solid line indicates the BLER of the Sp(2) code.

The lines with circles indicates the BLER of the differential Cayley code. The line

with plus signs and the dashed line show the BLER of the 2 × 2 and 4 × 4 complex

orthogonal designs, respectively. From the plot, it can be seen that the Sp(2) code

has the lowest BLER at high SNR. For example, at a BLER of 10−3, the Sp(2) code

is 2dB better than the differential Cayley code, even though the Cayley code has a

lower rate, 1dB better than the 4×4 complex orthogonal design, and 4dB better than

the 2 × 2 complex orthogonal design.

5.7.2 Sp(2) Code vs. Finite-Group Constellations

In this subsection, the same Sp(2) code is compared with a group-based diagonal

code and the K1,1,−1 code both at rate 1.98 [SHHS01]. The K1,1,−1 code is in one of

the 6 types of the finite fixed-point-free groups given in [SHHS01]. The number of

receive antennas is 1. In Figure 5.4, the solid line indicates the BLER of the Sp(2)

code and the line with circles and plus signs show the BLER of the K1,1,−1 code and
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Figure 5.4: Comparison of the rate 1.95 Sp(2) code with the rate 1.98 group-based
K1,1,−1 code and a rate 1.98 group-based diagonal code with N = 1 receive antennas
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the diagonal code, respectively. The plot indicates that the Sp(2) code is better than

the diagonal code but worse than K1,1,−1 code according to the BLER. For example,

at a BLER of 10−3, the Sp(2) code is 2dB better than the diagonal code, but 1.5dB

worse than K1,1,−1 group code. However, decoding K1,1,−1 code requires an exhaustive

search over the entire constellation.

5.7.3 Sp(2) Codes vs. Complex Orthogonal Designs

15 20 25 30
10−6

10−5

10−4

10−3

10−2

10−1

100
Sp(2) code VS Orthogonal design

SNR

B
LE

R

P=11, Q=7, R=3.13 Sp(2) code
R=3 2−d orthogonal design
R=3 4−d orthogonal design

Figure 5.5: Comparison of the rate 3.13 Sp(2) code with the rate 3, 2 × 2 and 4 × 4
complex orthogonal designs with N = 1 receive antenna

The comparison of the Sp(2) codes with complex orthogonal designs at rate ap-

proximately 3 and 4 is shown in Figures 5.5 and 5.6. In Figure 5.5, the solid line

indicates the BLER of the Sp(2) code of P = 11, Q = 7, θ = 0. The line with circles

shows the BLER of the 2×2 complex orthogonal design (5.40) with z1, z2 chosen from

8-PSK. The dashed line indicates the BLER of the rate 3, 4 × 4 complex orthogonal
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Figure 5.6: Comparison of the rate 3.99 Sp(2) code with the rate 4, 2 × 2 and rate
3.99, 4 × 4 complex orthogonal designs with N = 1 receive antenna

design (5.41) with z1, z2, z3 chosen from 16-PSK. Therefore, the rate of the Sp(2) code

is 3.13 and the rate of the 2×2 and 4×4 orthogonal designs is 3. Similarly, in Figure

5.6, the solid line indicates the BLER of the Sp(2) code of P = 23, Q = 11, θ = 0.

The line with circles shows the BLER of the 2 × 2 complex orthogonal design (5.40)

with z1, z2 chosen from 16-PSK and the dashed line indicates the BLER of the 4 × 4

complex orthogonal design (5.41) with z1, z2, z3 chosen from 40-PSK. Therefore, the

rate of the Sp(2) code is 3.99 and the rates of the 2× 2 and 4× 4 complex orthogonal

designs are 4 and 3.99. The number of receive antennas is 1. It can be seen from the

two figures that the Sp(2) codes are better than the 4×4 complex orthogonal designs

for all the SNRs and are better than the 2 × 2 complex orthogonal designs at high

SNR.
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5.7.4 Performance of Sp(2) Codes at Higher Rates

In this subsection, simulated performances of the Sp(2) codes at higher rates, as given

in (5.20), are shown for different Γ and are compared with the corresponding original

codes given in (5.6), whose Γ is {π
4
}.

The first example is the Sp(2) code with P = 11, Q = 7, θ = 0,Γ = {π
8
, π

4
, 3π

8
} +

0.012 and Γ = { π
12
, π

6
, π

4
, π

3
, 5π

12
}+0.02. A small value is added to the set that is uniform

on (0, π
2
) to make the resulting Γ set satisfy conditions (5.22) and (5.23), that is, to

guarantee the full diversity of the code. According to (5.21), the rates of the codes

are 3.5296 and 3.7139. In Figure 5.7, the dashed line and the line with plus signs

indicate the BLER of the Sp(2) codes that are just mentioned, which we call the new

codes, and the solid line shows the BLER of the P = 11, Q = 7, θ = 0 Sp(2) code

with Γ = {π
4
} and rate 3.1334, which we call the original code. The figure shows that

the new codes are about only 1dB and 2dB worse than the original one with rates

0.3962 and 0.5805 higher. The BLER of the rate 4 non-group code given in [SHHS01],

which has the structure of product-of-groups, is also shown in the figure by the line

with circles. It can be seen that performance of the new code is very close to that of

the non-group code with rate 0.4704 lower. The result is actually encouraging since

the design of the non-group is very difficult and its decoding needs exhaustive search

over 216 = 65, 536 possible signal matrices.

The second example is the P = 9, Q = 5, θ = 0.0377,Γ = { π
12
, π

6
, π

4
, π

3
, 5π

12
} + 0.016

Sp(2) code. The rate of the code is therefore 3.3264 by formula (5.21). In Figure 5.8,

the dashed line indicates the BLER of the rate 3.3264 Sp(2) code we just mention,

which we call the new code, and the solid line shows the BLER of the P = 9, Q =

5, θ = 0.0377 Sp(2) with Γ = {π
4
} and rate 2.7459, which we call the original code.

The figure shows that the new code is only about 2dB worse than the original one with

rate 0.5805 higher. Also, the BLER of the rate 4 non-group code given in [HH02a]

is shown in the figure by the line with circles. It can be seen that the new code is
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Figure 5.7: Comparison of P = 11, Q = 7, θ = 0 Sp(2) codes of Γ = { π
4
}, R = 3.1334,

Γ = {π
8
, π

4
, 3π

8
}+ 0.012, R = 3.5296, and Γ = { π

12
, π

6
, π

4
, π

3
, 5π

12
}+ 0.02, R = 3.7139 with

the non-group code

1dB better than the non-group code with rate 0.6736 lower. As mentioned before,

the result is actually encouraging since the design of the non-group is very difficult

and its decoding needs exhaustive search over 216 = 65, 536 possible signal matrices.

5.8 Conclusion

In this chapter, the symplectic group Sp(n), which has dimension n(2n + 1) and

rank n, are analyzed and differential USTM codes based on Sp(2) are designed. The

group, Sp(2), is not fpf, but a method to design fully-diverse codes which are subsets

of the group are proposed. The constellations designed are suitable for systems with

four transmit antennas and any number of receive antennas. The special symplectic

structure of the codes lend themselves to decoding by linear-algebraic techniques,
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4
}, R =

2.7459 and Γ = { π
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} + 0.016, R = 3.3264 with the non-group code

such as sphere decoding. Simulation results show that they have better performance

than the 2× 2 and 4× 4 complex orthogonal designs, a group-based diagonal code as

well as differential Cayley codes at high SNR. Although they slightly underperform

the k1,1,−1 finite-group code and the carefully designed non-group code, they do not

need the exhaustive search (of exponentially growing size) required for such codes

and therefore are far superior in term of decoding complexity. Our work shows the

promise of studying constellations inspired by group-theoretic considerations.
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5.9 Appendices

5.9.1 Proof of Lemma 5.6

Proof: First assume that the determinant is zero and prove that O1 = ±JŌ2. As-

sume det (S1 − S2) = 0. If detO1 = 0, from Lemma 5.5, O1 = 022. Therefore

det (S1 − S2) =
1√
2

det






0 O2

−Ō2 0




 = det2O2 = 0.

Thus, O2 = 022 by Lemma 5.5. This indicates that S1 = S2, which contradicts

S1 6= S2. And the same is true for the case of detO2 = 022. Therefore, detO1 6= 0

and detO2 6= 0. From (5.12), det (S1 − S2) is always non-negative and equals 0 if and

only if |α|2(a+ 1
a
)2 = 0 and |aβ− β̄

a
|2 = 0. Since (a+ 1

a
)2 ≥ 2, the determinant equals

zero if and only if α = 0 and aβ = β̄
a
, which can be written as a2β = β̄. By looking

at the norm of each side of the equation, we get a2 = 1. Since a is positive, a = 1 and

thus β = β̄, which means that β is real. Therefore, Ō1O
∗
2 =






0 β

−β 0




 with real β,

which indicates that

Ō1 =
β

detO2
JO2,

or equivalently,

O1 =
β

detO2
JŌ2

since O−1
2 =

O∗
2

det O2
by Lemma 5.5. Since a = 1 we have detO1 = detO2. Therefore,

the following equations can be obtained.

detO2 = detO1 = det(
β

detO2

JŌ2) =

(
β

detO2

)2

detO2 =

(
β

detO2

)2

detO2.
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Therefore,

β

detO2

= ±1.

Thus, O1 = ±JŌ2.

Now assume that O1 = ±JŌ2 and prove that det(S1−S2) = 0. First, assume that

O1 is invertible. If O1 = ±JŌ2, we have O−1
1 = (±JŌ2)

−1 = ±Ō−1
2 J̄−1 = ∓Ō−1

2 J .

From (5.11),

det (S1 − S2)

=
1√
2

detO1 det(±JO2 ∓ Ō2Ō
−1
2 JO2)

=
1√
2

detO1 det(±JO2 ∓ JO2)

= 0.

Secondly, assume that O1 is not invertible, that is detO1 = 0. From Lemma 5.5,

O1 = 022. Therefore, from O1 = ±JŌ2, O2 = 022. Thus, S1 − S2 = 044 and

det(S1 − S2) = 0.

Now what left to be proved is that O1 = ±JŌ2 is equivalent to (5.13). By (5.10),

it is equivalent to

U1V1 − U2V2 = ±J(Ū1V1 − Ū2V2),

and thus,

(U1 ∓ JŪ1)V1 = (U2 ∓ JŪ2)V2.
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Using (5.9), the following series of equations can be obtained.

1

2











e2πj
k1
P e2πj
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P

−e−2πj
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P e−2πj
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∓
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


0 1
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
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
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It is easy to see that the equation is equivalent to (5.13).

5.9.2 Proof of Lemma 5.7

Proof: Assume ejθ1 + ejθ2 + ejθ3 + ejθ4 = 0, then the following series of equations are
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true.

ej
θ1+θ2

2

(

ej
θ1−θ2

2 + e−j
θ1−θ2

2

)

+ ej
θ3+θ4

2

(

ej
θ3−θ4

2 + e−j
θ3−θ4

2

)

= 0

⇒ 2 cos

(
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2

)
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2 = −2 cos
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2

)
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2
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,

for some integers k and l. Without loss of generality, only the first case is considered

here. By adding the two equations,







θ1 = θ3 + (2k + 2l + 1)π

θ2 = θ4 + (−2k + 2l + 1)π
⇒







ejθ1 + ejθ3 = 0

ejθ2 + ejθ4 = 0

when plus sign is applied, or







θ1 = θ4 + (2k + 2l + 1)π

θ2 = θ3 + (−2k + 2l + 1)π
⇒







ejθ1 + ejθ4 = 0

ejθ2 + ejθ3 = 0

when minus sign is applied.

P2P3

P4

P5P6

P1

O

Figure 5.9: Figure for Lemma 5.7

This lemma can also be proved easily in a geometric way. As in Figure 5.9,
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P1, P2, P3, P4 are the four points on the unit circle that add up to zero, and O is the

center of the unit circle, which is the origin. Without loss of generality, assume P2 is

the point that is closest to P1. Since the four points add up to zero,
−→
OP 5, which is the

summation of
−−→
OP1 and

−→
OP 2, and

−→
OP 6, which is the summation of

−→
OP 3 and

−→
OP 4, are

on the same line with inverse directions and have the same length. Since OP1 = OP3,

P1P5 = OP2 = OP4 = P3P6, 4OP1P5 = 4OP3P6. Therefore, ∠P1OP5 = ∠P3OP6.

Thus,
−→
OP 1 and

−→
OP 3 are on the same line with inverse directions and have the same

length, which means that
−→
OP 1 +

−→
OP 3 = 0.

5.9.3 Proof of Lemma 5.8

Proof: Here, we only prove that w+, x+, y+, z+ as defined in (5.14) cannot be zero

simultaneously. The proof of the other part (w−, x−, y−, z− as defined in (5.15) cannot

be zero simultaneously) is very similar to it. It can be proved by contradiction.

Assume that P and Q are relatively prime and there exist integers k1, l1, k2, l2 in

[0, P − 1] and m1, n1, m2, n2 in [0, Q − 1] such that w+ = x+ = y+ = z+ = 0. Since

x+ = 0, by Lemma 5.7,







e2πj(
k1
P

−n1
Q

) = e2πj(
l1
P
−n1

Q
)

e2πj(
k2
P

−n2
Q

) = e2πj(
l2
P
−n2

Q
)
,







e2πj(
k1
P

−n1
Q

) = e2πj(
k2
P

−n2
Q

)

e2πj(
l1
P
−n1

Q
) = e2πj(

l2
P
−n2

Q
)

,

or







e2πj(
k1
P

−n1
Q

) = −e2πj(
l2
P
−n2

Q
)

e2πj(
k2
P

−n2
Q

) = −e2πj(
l1
P
−n1

Q
)
.

Without loss of generality and to simplify the proof, only the first case is discussed
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here. From the first set of equations, there exist integers i1 and i2 such that







2π(k1

P
− n1

Q
) = 2π( l1

P
− n1

Q
) + 2πi1

2π(k2

P
− n2

Q
) = 2π( l2

P
− n2

Q
) + 2πi2

,

and therefore







k1−l1
P

= i1

k2−l2
P

= i2

. (5.42)

Since k1, l1, l1, l2 ∈ [0, P ), k1 − l1, k2 − l2 ∈ (−P, P ). Therefore, i1 = i2 = 0, from

which k1 = l1 and k2 = l2 are obtained. Using this result and w+ = 0, 2e2πj(
k1
P

+
m1
Q

) =

2e2πj(
k2
P

+
m2
Q

) can be obtained, from which k1

P
+ m1

Q
= k2

P
+ m2

Q
+i is true for some integer

i. The equation is equivalent to k1−k2

P
= i − m1−m2

Q
. Since P and Q are relatively

prime, P |(k1 − k2) and Q|(m1 − m2). Since k1, k2 ∈ [0, P ) and m1, m2 ∈ [0, Q),

k1 − k2 ∈ (−P, P ) and m1 −m2 ∈ (−Q,Q). Therefore, k1 − k2 = 0 and m1 −m2 = 0

which, combined with (5.42), means that k1 = k2 = l1 = l2 and m1 = m2. From

y+ = 0 and e2πj
k1
P 6= 0, 2e2πj

n1
Q = 2e2πj

n2
Q can be achieved, which, similarly, leads to

n1

Q
= n1

Q
+ i and therefore n1 − n2 = iQ, for some integer i. Since n1, n2 ∈ [0, Q),

n1 − n2 ∈ (−Q,Q). Therefore, i = 0, that is n1 = n2. Therefore, (k1, l1, m1, n1) =

(k2, l2, m2, n2), which contradicts the condition of the lemma.

5.9.4 Proof of Lemma 5.9

Proof: This lemma is porved by contradiction. We only prove that w̃+, x̃+, ỹ+, z̃+

cannot be zeros simultaneously here since proving that w̃−, x̃−, ỹ−, z̃− cannot be zeros

simultaneously is very similar.
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Assume w̃+ = x̃+ = ỹ+ = z̃+ = 0. From the definition of w̃+, x̃+, ỹ+, z̃+ in (5.27),

e
2πi

mi
Q

(

cos γie
2πi

ki
P + sin γie

2πi
li
P

)

= e
2πi

mj
Q

(

cos γje
2πi

kj
P + sin γje

2πi
lj
P

)

(5.43)

e
−2πi

ni
Q

(

sinγie
2πi

ki
P − cos γie

2πi
li
P

)

= e
−2πi

nj
Q

(

sin γje
2πi

kj
P − cos γje

2πi
lj
P

)

(5.44)

e
2πi

ni
Q

(

cos γie
2πi

ki
P + sin γie

2πi
li
P

)

= e
2πi

nj
Q

(

cos γje
2πi

kj
P + sinγje

2πi
lj
P

)

(5.45)

e
−2πi

mi
Q

(

sinγie
2πi

ki
P − cos γie

2πi
li
P

)

= e
−2πi

mj
Q

(

sin γje
2πi

kj
P − cos γje

2πi
lj
P

)

(5.46)

The square of the norm of the left hand side of (5.43) equals

∣
∣
∣cos γie

2πi
ki
P + sin γie

2πi
li
P

∣
∣
∣

2

= (cos γi cos 2π
ki

P
+ sin γi cos 2π

li
P

)2 + (cos γi sin 2π
ki

P
+ sin γi sin 2π

li
P

)2

= cos2 γi cos2 2π
ki

P
+ sin2 γi cos2 2π

li
P

+ 2 cos γi cos 2π
ki

P
sin γi cos 2π

li
P

+

cos2 γi sin
2 2π

ki

P
+ sin2 γi sin

2 2π
li
P

+ 2 cos γi sin 2π
ki

P
sin γi sin 2π

li
P

= cos2 2π
ki

P
+ sin2 2π

ki

P
+ 2 cos γi sin γi(cos 2π

ki

P
cos 2π

li
P

+ sin 2π
ki

P
sin 2π

li
P

)

= 1 + sin 2γi cos 2π
ki − li
P

.

Similarly, the square of the norm of the right hand side of (5.43) is equal to

1 + sin 2γj cos 2π
kj − lj
P

.

Comparing the norms of both side of (5.43),

1 + sin 2γi cos 2π
ki − li
P

= 1 + sin 2γj cos 2π
kj − lj
P

,

which is equivalent to

sin 2γi cos 2π
ki − li
P

= sin 2γj cos 2π
kj − lj
P

. (5.47)
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Define r = |ki−li| and s = |kj−lj|. Since ki, li, kj, lj ∈ [0, P ), ki−li, kj−lj ∈ (−P, P ).

Therefore, r, s ∈ [0, P ), cos 2π r
P

= cos 2π ki−li
P

and cos 2π s
P

= cos 2π
kj−lj

P
. Thus,

sin 2γi cos 2π
r

P
= sin 2γj cos 2π

s

P
.

Since Γ ⊂ (0, π
0
), sin γ 6= 0 and cos γ 6= 0 for any γ ∈ Γ. Therefore, when γi 6= γj,

this contradicts (5.22). Therefore, when γi 6= γj and (5.22) is satisfied, w̃+, x̃+, ỹ+, z̃+

cannot be zero simultaneously.

Now look at the case of γi = γj. From (5.43),

cos γi

(

e2πj( ki
P

+
mi
Q ) − e

2πj
“

kj
P

+
mj
Q

”

)

= − sin γi

(

e2πj( li
P

+
mi
Q ) − e

2πj
“

lj
P

+
mj
Q

”

)

and

2j cos γi sin 2π

(
ki − kj

2P
+
mi −mj

2Q

)

e
2πj

“

ki+kj
2P

+
mi+mj

Q

”

= −2 sin γi sin 2π

(
li − lj
2P

+
mi −mj

2Q

)

e
2πj

“

li+lj
2P

+
mi+mj

2Q

”

.

Therefore,

cos γi sin 2π

(
ki − kj

2P
+
mi −mj

2Q

)

= ± sin γi sin 2π

(
li − lj
2P

+
mi −mj

2Q

)

. (5.48)

From (5.23),

cos γi sin 2π

(
ki − kj

2P
+
mi −mj

2Q

)

6= ± sin γi sin 2π

(
li − lj
2P

+
mi −mj

2Q

)

,

where ki − kj, li − lj ∈ (−P, P ), mi − mj ∈ (−Q,Q), and (ki − kj, mi − mj) 6=

(0, 0). Therefore, for (5.48) to be true, ki − kj = 0 and mi − mj = 0. Thus,

sin 2π(
ki−kj

2P
+

mi−mj

2Q
) = 0. Since sin γi 6= 0, sin 2π(

li−lj
2P

+
mi−mj

2Q
) = sin π

li−lj
2P

= 0.
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Therefore, li − lj = 0. So we get







ki = kj

li = lj

mi = mj

.

Similarly, from (5.44), we have

sin γi

(

e2πj(ki
P
−ni

Q ) − e
2πj

“

kj
P
−nj

Q

”

)

= cos γi

(

e2πj( li
P
−ni

Q ) − e
2πj

“

lj
P
−nj

Q

”

)

and

2i sin γi sin 2π

(
ki − kj

2P
− ni − nj

2Q

)

e
2πj

“

ki+kj
2P

−ni+nj
Q

”

= 2j cos γi sin 2π

(
li − lj
2P

− ni − nj

2Q

)

e
2πj

“

li+lj
2P

−ni+nj
2Q

”

.

Therefore,

sin γi sin 2π

(
ki − kj

2P
− ni − nj

2Q

)

= ± cos γi sin 2π

(
li − lj
2P

− ni − nj

2Q

)

. (5.49)

By a similar argument,







ki = kj

li = lj

ni = nj

.

Therefore, (ki, li, mi, ni, γi) = (kj, lj, mj, nj, γj), and this contradicts the condition

that they are different.
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Chapter 6 Differential Unitary

Space-Time Codes Based on SU(3)

6.1 Abstract

In this chapter, the special unitary Lie group SU(3) is discussed. Based on the

structure of matrices in SU(3), two methods to design constellations of 3× 3 unitary

matrices are proposed. One of the methods gives codes that are subsets of SU(3).

The other codes are derived from the SU(3) code by a simple modification, which

are called AB codes. Simple formulas are derived by which diversity products of

the codes can be calculated in a fast way. Necessary conditions for full-diversity of

the codes are also proved. Our conjecture is that they are also sufficient conditions.

Simulation results given in Section 6.6 show that the codes have better performances

than the group-based codes [SHHS01] especially at high rates and are as good as

the elaborately-designed non-group codes [SHHS01]. Another exceptional feature of

AB codes is that they have a fast maximum-likelihood decoding algorithm based on

complex sphere decoding.

The work in this chapter has been published in the Proceeding of the Thirty-

Seventh Asilomar Conference on Signals, Systems, and Computers (Asilomar’03)

[JH03d] and the Proceeding of 2004 IEEE International Conference on Acoustics,

Speech, and Signal Processing (ICASSP’04) [JH04d]. The journal paper is submitted

to IEEE Transactions on Signal Processing [JH04e].
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6.2 The Special Unitary Lie Group and Its Param-

eterization

Definition 6.1 (Special unitary group). [Sim94] SU(n) is the group of complex

n× n matrices obeying U ∗U = UU∗ = In and detU = 1.

From the definition, SU(n) is the group of complex n × n unitary matrices with

determinant 1. It is called the special unitary group. It is also known that SU(n) is

a compact, simple, simply-connected Lie group of dimension n2 − 1 and rank n − 1.

Since we are most interested in the case of rank 2, here the focus is on SU(3), which

has dimension 8. The following theorem on the parameterization of SU(3) is proved.

Theorem 6.1 (Parameterization of SU(3)). Any matrix U belongs to SU(3) if

and only if it can be written as

U =






1 012

021 Φ














a 0 −
√

1 − |a|2

0 1 0
√

1 − |a|2 0 ā














1 012

021 Ψ




 , (6.1)

where Φ,Ψ ∈ SU(2) and a is a complex number with |a| < 1.

Proof: See Section 6.8.1.

From the proof of the theorem, ā actually equals the determinant of the sub-

matrix






u22 u23

u32 u33




 of U . This theorem indicates that any matrix in SU(3) can

be written as a product of three 3 × 3 unitary matrices which are basically SU(2)

since they are actually reducible 3 × 3 unitary representations of SU(2) by adding

an identity block. Now let’s look at the number of degrees of freedom in U . Since

Φ,Ψ ∈ SU(2), there are 6 degrees of freedom in them. Together with the 2 degrees of

freedom in the complex scalar α, the dimension of U is 8, which is exactly the same
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as that of SU(3). Based on (6.1), matrices in SU(3) can be parameterized by entries

of Φ,Ψ and α, that is, any matrix in SU(3) can be identified with a 3-tuple (Φ,Ψ, α).

From (6.1), it can also be seen that all the three matrices are block-diagonal with a

unit block. The first and third matrices have the unit element at the (1, 1) entry and

the second matrix has the unit element at the (2, 2) entry. To get a more symmetric

parameterization method, the following corollary is proved.

Corollary 6.1. Any matrix U belongs to SU(3) if and only if it can be written as

U =






1 012

021 Φ














αejω 0
√

1 − |α|2ejβ

0 1 0

−
√

1 − |α|2e−jβ 0 αe−jω














Ψ 021

012 1




 , (6.2)

where Φ,Ψ ∈ SU(2), α ∈ [0, 1]. ω and β are arbitrary angles.

Proof: First, it is easy to prove that any matrix with the structure in (6.2) is in

SU(3) by checking the unitary and determinant conditions. What is left is to prove

that any matrix in SU(3) can be written as the formula in (6.2).

For any matrix U ∈ SU(3), define U ′ = U









0 0 −1

0 1 0

1 0 0









. It is easy to check

that U ′ is also a matrix in SU(3). Therefore, from Theorem 6.1, there exist matrices

Φ′,Ψ′′ ∈ SU(2) and a complex scalar a, such that

U ′ =






1 012

021 Φ′














a 0 −
√

1 − |a|2

0 1 0
√

1 − |a|2 0 ā














1 012

021 Ψ′′




 .



147

Let Ψ′′ =






ψ′
11 ψ′

12

−ψ̄′
12 ψ̄′

11




, where |ψ′

11|2 + |ψ′
12|2 = 1. Note that






1 012

021 Ψ′′




 =









0 0 1

0 1 0

−1 0 0














Ψ′
021

012 1














0 0 −1

0 1 0

1 0 0









,

where we have defined Ψ′ =






ψ̄′
11 −ψ̄′

12

ψ′
12 ψ′

11




 (it is easy to see that Ψ′ ∈ SU(2)).

Therefore,

U ′

=




1 012

021 Φ′













a 0 −
√

1 − |a|2

0 1 0
√

1 − |a|2 0 ā

















0 0 1

0 1 0

−1 0 0












Ψ′

021

012 1













0 0 −1

0 1 0

1 0 0









=




1 012

021 Φ′













√

1 − |a|2 0 a

0 1 0

−ā 0
√

1 − |a|2












Ψ′

021

012 1













0 0 −1

0 1 0

1 0 0









and

U =






1 012

021 Φ′














√

1 − |a|2 0 a

0 1 0

−ā 0
√

1 − |a|2














Ψ′
021

012 1




 .

It is easy to check that









1 0 0

0 ejω 0

0 0 e−jω

















√

1 − |a|2 0 a

0 1 0

−ā 0
√

1 − |a|2

















ejω 0 0

0 e−jω 0

0 0 1









=









√

1 − |a|2ejω 0 a

0 1 0

−ā 0
√

1 − |a|2e−jω








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for any angle ω. Define

Φ = Φ′






e−jω 0

0 ejω




 and Ψ =






e−jω 0

0 ejω




Ψ′.

It is easy to see that Φ,Ψ ∈ SU(2). (6.2) is obtained by letting α =
√

1 − |a|2 and

β = ∠a,

The parameter ω does not add any degrees of freedom as can be seen in the

proof of the corollary. However, as will be seen later that it is important to our code

design. From formula (6.2), any matrix in SU(3) can be written as a product of three

basically SU(2) matrices. The first matrix is a three-dimensional representation of

SU(2) with an identity block at the (1, 1) entry. The second matrix is a a three-

dimensional representation of SU(2) with an identity block at the (2, 2) entry and

the third matrix is a a three-dimensional representation of SU(2) with an identity

block at the (3, 3) entry.

6.3 SU(3) Code Design

To get finite constellations of unitary matrices from the infinite Lie group SU(3), the

parameters, Φ,Ψ, α, β, ω, need to be sampled appropriately. We first sample Φ and

Ψ. As discussed in Chapter 2, Alamouti’s orthogonal design







1
√

|x|2 + |y|2






x y

−x̄ ȳ






∣
∣
∣
∣
∣
∣
∣

x, y ∈ C







is a faithful representation of the group SU(2). To get a discrete set, x and y must

belong to discrete sets. As is well known, the PSK signal is a very good and simple
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modulation. Therefore, Φ and Ψ are chosen as follows.1

Φ =
1√
2






e2πj p
P e2πj q

Q

−e−2πj q
Q e−2πj p

P




 and Ψ =

1√
2






e2πj r
R e2πj s

S

−e−2πj s
S e−2πj r

R




 ,

where P,Q,R, S are positive integers.

Since the group is not fpf, we cannot use all the eight degrees of freedom in

it to get fully-diverse codes. To simplify the structure, let α = 1, by which the

middle matrix in (6.2) is a diagonal matrix. Also, fully-diverse subsets are desired.

Therefore the angle ω should depend on Φ and Ψ, or equivalently, it is a function

of p, q, r, s. To see this, assume that ω is independent of Φ. Then, the determinant

of U1(Φ1,Ψ, 1, ω)− U1(Φ2,Ψ, 1, ω) is zero since Φ has a unit block at its (1, 1) entry.

The same is true for Ψ. Therefore, let ω = 2π
(

p
P
− q

Q
+ r

R
+ s

S

)

. The reason for this

will be illuminated later. Define

θp,q = 2π

(
p

P
− q

Q

)

and ξr,s = 2π
( r

R
+
s

S

)

. (6.3)

(6.2) becomes









1 0 0

0 1√
2
e2πj

p

P
1√
2
e2πj

q

Q

0 − 1√
2
e−2πj

q

Q 1√
2
e−2πj

p

P









diag
{
eθp,q , 1, e−θp,q

}
diag {eξr,s , 1, e−ξr,s}









1√
2
e2πj r

R
1√
2
e2πj s

S 0

− 1√
2
e−2πj s

S
1√
2
e−2πj r

R 0

0 0 1









.

Define

A
(1)
(p,q) =









ejθp,q 0 0

0 1√
2
e2πj p

P
1√
2
e2πj q

Q e−jθp,q

0 − 1√
2
e−2πj q

Q 1√
2
e−2πj p

P e−jθp,q









, (6.4)

1PSK symbols have been analyzed in [SWWX04], where it is shown that having a full parame-
terization of SU(2), that is, parameterizing x and y fully (both the norms and the arguments) gives
about 1-2 dB improvement but with a much more complicated decoding. Here, to make our main
idea clear, x and y are chosen as simple PSK signals.
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which is the product of the first two matrices in the above formula, and

B
(1)
(r,s) =









1√
2
e2πj r

R ejξr,s 1√
2
e2πj s

S ejξr,s 0

− 1√
2
e−2πj s

S
1√
2
e−2πj r

R 0

0 0 e−jξr,s









, (6.5)

which is the product of the last two matrices. The following codes are obtained.

C(1)
(P,Q,R,S) =

{

A
(1)
(p,q)B

(1)
(r,s) |p ∈ [0, P ), q ∈ [0, Q), r ∈ [0, R), s ∈ [0, S)

}

(6.6)

The set is a subset of SU(3). We call it the SU(3) code. There are all together PQRS

elements in the code (6.6). Since the channel is used in blocks of three transmissions,

the rate of the code is

R =
1

3
log2(PQRS). (6.7)

Theorem 6.2 (Calculation of the diversity product). Define

x = e2πj( p1−p2
2P

− q1−q2
2Q ) cos 2π

(
p1−p2

2P
+ q1−q2

2Q

)

w = e2πj(− r1−r2
2R

− s1−s2
2S ) cos 2π

(
r1−r2

2R
− s1−s2

2S

)
. (6.8)

For U1(p1, q1, r1, s1), U2(p2, q2, r2, s2) ∈ C(1),

det(U1 − U2) = 2j=[(1 − Θ̄x)(1 − Θw)], (6.9)

where Θ = e−2πj( p1−p2
P

− q1−q2
Q

+
r1−r2

R
+

s1−s2
S ). =[c] indicates the imaginary part of the

complex scalar c.

Proof: See Section 6.8.2.
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The diversity product of the code is therefore

ζC(1)(P,Q,R, S) =
1

2
min

δp ∈ (−P, P ), δq ∈ (−Q, Q),

δr ∈ (−R, R), δs ∈ (−S, S)

(δp, δq , δr , δs) 6= (0, 0, 0, 0)

|2=[(1 − Θ̄x)(1 − Θw)]|1/3. (6.10)

In general, to obtain the diversity product, determinants of 1
2
L(L − 1) = 1

2
(L2 − L)

difference matrices, which is quadratic in L, need to be calculated. However, from

Theorem 6.2, x, w, Θ, Θ1, and Θ2 only depend on the differences δp = p1 − p2,

δq = q1 − q2, δr = r1 − r2, and δs = s1 − s2 instead of p1, p2, q1, q2, r1, r2, s1, s2. That

is, det(U1 − U2) can be written as ∆(δp, δq, δr, δs), a function of δp, δq, δr, δs. Since

δp, δq, δr, δs can take on 2P − 1, 2Q − 1, 2R − 1, 2S − 1 possible values, respectively,

to get the diversity products, calculation of determinants of (2P − 1)(2Q− 1)(2R −

1)(2S− 1)− 1 < 16PQRS = 16L difference matrices is required, which is linear in L.

Actually, instead of 16L, less than 8L calculations is enough because of the symmetry

in (6.10). Note that

|∆(δp, δq, δr, δs)|

= |2=[(1 − Θ̄x)(1 − Θw)]|1/3

= |2=[(1 − Θx̄)(1 − Θw)]|1/3

= |∆(−δp,−δq,−δr,−δs)|.

Therefore, only half of the determinants are needed to be calculated. The computa-

tional complexity is greatly reduced especially for codes of high rates, that is, when

PQRS is large.

From the symmetries of δp, δq, δr, δs in (6.10), it is easy to prove that

ζC(1)(P,Q,R, S) = ζC(1)(Q,P,R, S) = ζC(1)(P,Q, S,R) = ζC(1)(R, S, P,Q),
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(P,Q,R, S) Rate Diversity Product
(5, 7, 3, 1) 2.2381 0.2133
(5, 7, 9, 1) 2.7664 0.1714
(7, 9, 11, 1) 3.1456 0.0961
(3, 7, 5, 11) 3.3912 0.0803
(5, 9, 7, 11) 3.9195 0.0510
(7, 11, 9, 13) 4.3791 0.0316

Table 6.1: Diversity products of SU(3) codes

Group Rate Diversity Product
cyclic group with u = (1, 17, 26) 1.99 0.3301
cyclic group with u = (1, 11, 27) 2 0.2765

G21,4 1.99 0.3851
G171,64 3 0.1353
G1365,16 4 0.0361
G10815,46 5 0.0131

non-group code with LA = 65, u = (1, 30, 114) 4.01 0.0933

Table 6.2: Diversity products of some group-based codes and a non-group code

which indicates that switching the positions of P and Q, R and S, or (P,Q) and (R, S)

does not affect the diversity product. But generally, ζC(1)(P,Q,R, S) 6= ζC(1)(P,R,Q, S).

Diversity products of some of the SU(3) codes are given in Table 6.1. Diversity

products of some of the group-based codes and non-group codes in [SHHS01] are

also given in Table 6.2 for comparison. It can be seen from the tables that diversity

products of SU(3) codes are about the same as those of the group-based codes at

low rates, but when the rates are high, diversity products of SU(3) codes are much

greater than those of the group-based codes at about the same rates. However,

diversity products of the SU(3) code at rate 3.9195, which is 0.0510, is smaller than

that of the non-group code at rate 4.01, which is 0.0933. But simulated performance

shows that the code performs as well as the non-group code, which will be seen in

Section 6.6.

Theorem 6.3 (Necessary conditions for full diversity). Necessary conditions
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for code C(1) to be fully diverse are that any two of the integers (P,Q,R, S) are rela-

tively prime and none of them are even.

Proof: First, we prove that gcd(P,Q) = 1 is a necessary condition for the set

{A(1)
(p,q)} to be fully diverse and thus a necessary condition for full diversity of the

code. Let

A
(1)
(p1,q1)

=









ejθ1 0 0

0 1√
2
e2πj

p1
P

1√
2
e2πj

q1
Q e−jθ1

0 − 1√
2
e−2πj

q1
Q 1√

2
e−2πj

p1
P e−jθ1









and

A
(1)
(p2,q2)

=









ejθ2 0 0

0 1√
2
e2πj

p2
P

1√
2
e2πj

q2
Q e−jθ2

0 − 1√
2
e−2πj

q2
Q 1√

2
e−2πj

p2
P e−jθ2









,

where θ1 = 2π(p1

P
− q1

Q
) and θ2 = 2π(−p2

P
− q2

Q
). Therefore,

det
(

A
(1)
(p1,q1)

− A
(1)
(p2,q2)

)

=
(
ejθ1 − ejθ2

)
X

for some X. If gcd(P,Q) = G > 1, let 0 ≤ p1 = p2 + P/G < P and 0 ≤ q1 =

q2 +Q/G < Q. Then

ejθ1 − ejθ2 = e2πj( p2
P
− q2

Q ) − e2πj( p2
P
− q2

Q ) = 0.

Therefore, gcd(P,Q) = 1 is a necessary condition for the set {A(1)
(p,q)} to be fully

diverse. By a similar argument, gcd(R, S) = 1 is also a necessary condition.

Now assume gcd(P,R) = G > 1. Let q1 = q2, s1 = s2, 0 ≤ p1 = p2 + P/G, and

0 ≤ r1 = r2 + R/G. From (6.8), x = ej π
G cos π

G
, w = e−j π

G cos π
G

, and Θ = ej 4π
G .
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Therefore, for the two matrices U1(p1, q1, r1, s1) and U2(p2, q2, r2, s2) in C(1),

det (U1(p1, q1, r1, s1) − U2(p2, q2, r2, s2))

= 2j(Im(wx) − ImΘ̄x− ImΘw)

= 2j

(

− cos 2π
1

2G
sin 2π

5

2G
− cos 2π

1

2G
sin 2π

(

− 5

2G

))

= 0.

So, C(1) is not fully-diverse, which means gcd(P,R) = 1 is a necessary condition.

From the symmetries of P and Q, R and S, gcd(P, S) = gcd(Q,R) = gcd(Q, S) = 1

are also necessary. Therefore, any two of the four integers P,Q,R, S are relatively

prime is necessary for the code C(1) to be fully-diverse.

Now assume that P is even. Let’s look at the two matrices U1 and U2 with

(q1, r1, s1) = (q2, r2, s2) and p1 − p2 = P/2. (Since P is even, this is achievable.)

Therefore,

det (U1(p1, q1, r1, s1) − U2(p2, q2, r2, s2))

= 2jI
(

cos 2π
p1 − p2

2P
e2πj

p1−p2
2P − cos 2π

p1 − p2

2P
e2πj

p1−p2
2P e2πj

p1−p2
P − e2πj(− p1−p2

P )
)

= 2j

(

cos
π

2
sin

π

2
− cos

π

2
sin

3π

2
− sin(−π)

)

= 0,

which means that C(1) is not fully-diverse. By similar argument, if Q, R, or S is even,

C(1) is not fully diverse.

We are not able to give sufficient conditions for full diversity of the SU(3) codes.

Here is our conjecture.

Conjecture 6.1 (Sufficient conditions for full diversity). The conditions, that

any two of the integers (P,Q,R, S) are relatively prime and none of them are even,
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are sufficient for code C(1)
(P,Q,R,S) to be fully diverse.

6.4 AB Code Design

Note from (6.4) and (6.5) that the e−jθp,q in the last column of A
(1)
p,q and the ejξ in

the first row of B
(1)
p,q are used to make the matrices have determinant 1. However, in

differential unitary space-time code design, the signal matrices are only needed to be

unitary. Therefore, the structure of the code can be further simplified by abandoning

the restriction that both matrices have unit determinant. Define

A
(2)
(p,q) =









ejθ′p,q 0 0

0 1√
2
e2πj p

P
1√
2
e
2πj q

Q

0 − 1√
2
e
−2πj q

Q 1√
2
e−2πj p

P









B
(2)
(r,s) =









1√
2
e2πj r

R
1√
2
e2πj s

S 0

− 1√
2
e−2πj s

S
1√
2
e−2πj r

R 0

0 0 e−jξ′r,s









.(6.11)

and2

θ′p,q = 2π

(

± p

P
± q

Q

)

ξ′r,s = 2π
(

± r

R
± s

S

)

. (6.12)

The following codes with a simpler structure are obtained.

C(2)
(P,Q,R,S) =

{

A
(2)
(p,q)B

(2)
(r,s) |p ∈ [0, P ), q ∈ [0, Q), r ∈ [0, R), s ∈ [0, S)

}

. (6.13)

They are not subsets of the Lie group SU(3) any more since the determinant of

the matrices is now ej(θ′−ξ′) which is not 1 in general. However, the matrices in the

codes are still unitary. Since any matrix in the code is a product of two unitary

matrices (they are not representations of SU(2) anymore because their determinants

are no longer 1), we call it AB code. Simulations show that they have the same

and sometimes slightly better diversity products than the codes in (6.6), which is

2There are actually 16 possibilities in (6.12). Different codes are obtained by different choices of
signs. Two of them are used in this chapter.
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not surprising since we now get rid of the constraint of unit determinant. In the

next section, it will be seen that the handy structure of AB codes results in a fast

maximum-likelihood decoding algorithm. The code has the same rate as the code in

(6.6). It is easy to see that any matrix U in the two codes can be identified by the

4-tuple (p, q, r, s).

Theorem 6.4 (Calculation of the diversity product). For any two matrices

U1(p1, q1, r1, s1) and U2(p2, q2, r2, s2) in the code C(2),

det(U1 − U2) = 2ejθ′1e−jξ′2Θ̄1Θ̄2=[(Θ1 − Θ̄1w)(Θ̄2 − Θ2x)], (6.14)

where Θ1 = e2πj(± p1−p2
2P

± q1−q2
2Q ) and Θ2 = e2πj(± r1−r2

2R
± s1−s2

2S ).

Proof: See Section 6.8.3.

Therefore, diversity product of the AB code is

ζC(2)(P,Q,R, S) =
1

2
min

δp ∈ (−P, P ), δq ∈ (−Q, Q),

δr ∈ (−R, R), δs ∈ (−S, S)

(δp, δq , δr , δs) 6= (0, 0, 0, 0)

|2=[(Θ1 − Θ̄1w)(Θ̄2 − Θ2x)]|1/3. (6.15)

Similar to the argument in the previous section, less than 8L calculations of

the determinants of difference matrices are enough to obtain the diversity prod-

uct. AB codes also have the symmetry that ζC(2)(P,Q,R, S) = ζC(2)(Q,P,R, S) =

ζC(2)(P,Q, S,R) = ζC(2)(R, S, P,Q). But generally, ζC(1)(P,Q,R, S) 6= ζC(1)(P,R,Q, S).

As mentioned before, for AB codes, the choices for the angles θ and ξ are not

unique. Based on (6.12), there are actually 16 possible choices. Two of them are used

here,

θ′ = 2π

(

− p

P
+
q

Q

)

, ξ′ = 2π
(

− r

R
− s

S

)

and

θ′ = 2π

(
p

P
− q

Q

)

, ξ′ = 2π
(

− r

R
− s

S

)

,



157

(P,Q,R, S) Rate Type Diversity Product
(1, 3, 4, 5) 1.9690 I 0.2977
(4, 5, 3, 7) 2.9045 I 0.1413
(3, 7, 5, 11) 3.3912 II 0.0899
(4, 7, 5, 11) 3.5296 I 0.0731
(5, 9, 7, 11) 3.9195 I 0.0510
(5, 8, 9, 11) 3.9838 II 0.0611

(9, 10, 11, 13) 4.5506 II 0.0336
(11, 13, 14, 15) 4.9580 II 0.0276

Table 6.3: Diversity products of AB codes

which we call type I AB code and type II AB code, respectively.

Diversity products of some of the two types of AB codes are given in Table 6.3.

By comparing with Table 6.2, it can be seen that AB codes have about the same

diversity products as those of group-based codes at low rates, but when the rates

are high, diversity products of AB codes are much greater than those of group-based

codes at about the same rates. However, diversity product of the AB code at rate

3.9838, which is 0.0661, is smaller than that of the non-group code at rate 4.01,

which is 0.0933. However, simulated performances in Section 6.6 show that the code

performs as well as the non-group code.

Theorem 6.5. The set
{

A
(2)
(p,q), p ∈ [0, P ), q ∈ [0, Q)

}

is fully diverse if and only if

gcd(P,Q) = 1. The set
{

B
(2)
(r,s), r ∈ [0, R), s ∈ [0, S)

}

is fully diverse if and only if

gcd(R, S) = 1.

Proof: We first prove that the set
{

A
(2)
(p,q), p ∈ [0, P ), q ∈ [0, Q)

}

is fully diverse if

and only if P and Q are relatively prime. For any two different matrices A
(2)
(p1,q1)

and

A
(2)
(p2,q2)

in the set, denote

A
(2)
(p1,q1)

=









ejθ1 0 0

0 1√
2
e2πj

p1
P

1√
2
e2πj

q1
Q

0 − 1√
2
e−2πj

q1
Q 1√

2
e−2πj

p1
P









A
(2)
(p2,q2)

=









ejθ2 0 0

0 1√
2
e2πj

p2
P

1√
2
e2πj

q2
Q

0 − 1√
2
e−2πj

q2
Q 1√

2
e−2πj

p2
P









,
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where θ1 = 2π(±p1

P
± q1

Q
) and θ2 = 2π(±p2

P
± q2

Q
). Therefore,

det
(

A
(2)
(p1,q1)

− A
(2)
(p2,q2)

)

=
(
ejθ1 − ejθ2

)
det






1√
2
e2πj

p1
P − 1√

2
e2πj

p2
P

1√
2
e2πj

q1
Q − 1√

2
e2πj

q2
Q

− 1√
2
e−2πj

q1
Q + 1√

2
e−2πj

q2
Q 1√

2
e−2πj

p1
P − 1√

2
e−2πj

p2
P






=
1

2

(
ejθ1 − ejθ2

)
(∣
∣
∣e2πj

p1
P − e2πj

p2
P

∣
∣
∣

2

+
∣
∣
∣e

2πj
q1
Q − e2πj

q2
Q

∣
∣
∣

2
)

.

The second factor equals zero if and only if e2πj
p1
P = e2πj

p2
P and e2πj

q1
Q = e2πj

q2
Q . Since

p1, p2 ∈ [0, P ) and q1, q2 ∈ [0, Q), this is equivalent to (p1, q1) = (p2, q2), which cannot

be true since the two matrices are different. Therefore, the determinant equals zero

if and only if ejθ1 = ejθ2.

Now assume that gcd(P,Q) = G > 1, that is, P and Q are not relatively prime.

When p1−p2 = P
G

and q1−q2 = −Q
G

(since G divides both P and Q, this is achievable,)

θ1 − θ2 = 2π

(

±p1 − p2

P
± q1 − q2

Q

)

= 2π

(

± 1

G
±
(

− 1

G

))

= 0,

which means that ejθ1 = ejθ2. Therefore, the set
{

A
(2)
(p,q), p ∈ [0, P ), q ∈ [0, Q)

}

is not

fully diverse.

Now assume that gcd(P,Q) = 1. If ejθ1 = ejθ2, θ1 − θ2 = 2kπ for some integer

k, which means that ±p1−p2

P
± q1−q2

Q
= k. Therefore, p1−p2

P
= ±kQ∓(q1−q2)

Q
. Since

gcd(P,Q) = 1, P |(p1 − p2). However, because p1 − p2 ∈ (−P + 1, P − 1), the only

possibility is that p1 − p2 = 0. Therefore, q1−q2

Q
= ±k. From q1 − q2 ∈ (−Q +

1, Q − 1), q1 − q2 = 0 and k = 0. So, (p1, q1) = (p2, q2) is obtained, and this

is a contradiction since the two matrices are different. Therefore, ejθ1 6= ejθ2. So

det
(

A
(2)
(p1,q1)

− A
(2)
(p2,q2)

)

6= 0. Therefore, gcd(P,Q) = 1 is a sufficient condition for the

set to be fully diverse.

By similar argument, we can prove that the set
{

B
(2)
(r,s), r ∈ [0, R), s ∈ [0, S)

}

is
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fully-diverse if and only if R and S are relatively prime.

Theorem 6.6 (Necessary conditions for fully diversity).

1. Necessary conditions for full diversity of the type I AB code are that any two of

P,Q,R, S are relatively prime and at most one of the four integers P,Q,R, S

is even.

2. Necessary conditions for the full diversity of the type II AB code are gcd(P,Q) =

gcd(R, S) = 1 and at most one of the four integers P,Q,R, S is even.

Proof: Since for code C(2) to be fully diverse,
{

A
(2)
(p,q)

}

and
{

B
(2)
(r,s)

}

must be

fully-diverse. Therefore, from Theorem 6.5, gcd(P,Q) = gcd(R, S) = 1 are necessary

conditions for C(2) to be fully diverse.

Assume that both P and R are even. For any two matrices U1(p1, q1, r1, s1) and

U2(p2, q2, r2, s2) in C(2), choose q1 = q2, s1 = s2, p1 − p2 = P
2
, and r1 − r2 = R

2
.

Since both P and R are even, this is achievable and the two matrices are different.

Therefore, from the proof of Theorem 6.2,

| det(U1(p1, q1, r1, s1) − U2(p2, q2, r2, s2)| = 2|=(Θ1Θ̄2 − Θ1Θ2x− Θ̄1Θ̄2w + Θ̄1Θ2wx)|,

where

x = e2πj(p1−p2
2P

− q1−q2
2Q ) cos 2π

(
p1 − p2

2P
+
q1 − q2

2Q

)

= ej π
2 cos

π

2
= 0,

w = e2πj(− r1−r2
2R

− s1−s2
2S ) cos 2π

(
r1 − r2

2R
− s1 − s2

2S

)

= e−j π
2 cos

π

2
= 0,

Θ1 = e2πj(± p1−p2
2P

± q1−q2
2Q ) = e±j π

2 , and Θ2 = e2πj(± r1−r2
2R

± s1−s2
2S ) = e±j π

2 .

Therefore,

| det(U1(p1, q1, r1, s1) − U2(p2, q2, r2, s2)| = 2|=(Θ1Θ̄2)| = 0,
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which indicates that the code is not fully diverse. By a similar argument, it can

be proved that when any two of the integers P,Q,R, S are even, code C (2) is not

fully diverse. Therefore, necessary conditions for code C (2) to be fully-diverse are

gcd(P,Q) = gcd(R, S) = 1 and among the four integers P,Q,R, S, at most one is

even.

What is left is to prove that for type I AB code to be fully diverse, gcd(P,R) =

gcd(P,R) = gcd(Q,R) = gcd(Q, S) = 1 are necessary. This is proved by contradic-

tion. Assume that gcd(P,Q) = G > 1. Let p1 = p2 + G, q1 = q + 2, r1 = r2 + G,

and s1 = s2. Therefore, Θ = Θ2 = e−j 2π
G and x = w̄ = ej π

G cos π
G

. It is easy to check

by formula (6.15) that det(U1 − U2) = 0. Therefore, gcd(P,Q) = 1 is necessary. The

proofs are similar for other pairs.

Note that, for type II AB code, any two of (P,Q,R, S) being relatively prime

is not a necessary condition. By computer simulation, ζC(2)(3, 5, 3, 5) = 0.1706 > 0

and ζC(2)(7, 9, 7, 9) = 0.0219 > 0, which indicates that gcd(P,R) = 1, gcd(P, S) = 1,

gcd(Q,R) = 1, or gcd(Q, S) = 1 are not necessary for the code to be fully-diverse.

We are not able to give sufficient conditions for the full diversity of the AB codes.

Our conjectures are that the necessary conditions are also sufficient.

Conjecture 6.2 (Sufficient conditions for full diversity). The necessary con-

ditions given in Theorem 6.6 are also sufficient conditions for the two types of AB

codes to be fully diverse.

6.5 A Fast Decoding Algorithm for AB Codes

From (6.13), it can be seen that any matrix in code C(2)
(P,Q,R,S) is a product of two

basically U(2) matrices A
(2)
(p,q) and B

(2)
(r,s).

3 It is easy to see from formula (6.11) that

the two matrices have orthogonal design structure. This handy property can be used

3Although, A
(2)
(p,q) and B

(2)
(r,s) are not in U(2), they are 3-dimensional representations of two U(2)

matrices by a reducible homomorphism.
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to get linear-algebraic decoding, which means that the receiver can be made to form

a system of linear equations in the unknowns.

The ML decoder for differential USTM given in (2.12) is equivalent to

arg min
p,q,r,s

∥
∥
∥Xτ − A

(2)
(p,q)B

(2)
(r,s)Xτ−1

∥
∥
∥

2

F
= arg min

p,q,r,s

∥
∥
∥A

(2)∗
(p,q)Xτ

−B
(2)
(r,s)Xτ−1

∥
∥
∥

2

F
.

Therefore, the decoding formula for code C(2)
(P,Q,R,S) can be written as

arg max
p,q,r,s

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥









e−jθp,q 0 0

0 1√
2
e−2πj p

P − 1√
2
e
2πj q

Q

0 1√
2
e
−2πj q

Q 1√
2
e2πj p

P

















xτ,11 · · · xτ,1N

xτ,21 · · · xτ,2N

xτ,31 · · · xτ,3N









−









1√
2
e2πj r

R
1√
2
e2πj s

S 0

− 1√
2
e−2πj s

S
1√
2
e−2πj r

R 0

0 0 e−jξr,s

















xτ−1,11 · · · xτ−1,1N

τ−1,21 · · · xτ−1,2N

xτ−1,31 · · · xτ−1,3N









∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

2

F

= arg max
p,q,r,s

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥























xτ,11 0 0 0 −xτ−1,11√
2

−xτ−1,21√
2

0
x̄τ,21√

2
− x̄τ,31√

2
0 − x̄τ−1,21√

2

x̄τ−1,11√
2

0
xτ,31√

2

xτ,21√
2

−xτ−1,31 0 0

...
...

...
...

...
...

xτ,1N 0 0 0 −xτ−1,1N√
2

−xτ−1,2N√
2

0
x̄τ,2N√

2
− x̄τ,3N√

2
0 − x̄τ−1,2N√

2

x̄τ−1,1N√
2

0
xτ,3N√

2

xτ,2N√
2

−xτ−1,3N 0 0









































e−jθ′p,q

e2πj p
P

e
−2πj q

Q

e−jξ′r,s

e2πj r
R

e2πj s
S



















∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

2

F

,

where xt,ij indicates the (i, j)-th entry of the M ×N matrix Xt for t = τ, τ − 1. The

equality is obtained since the matrices A
(2)
(p,q) and B

(2)
(r,s) have orthogonal structure. It

is easy to see that the formula inside the norm is linear in the PSK unknown signals.

Therefore, sphere decoding for complex channels proposed in [HtB03] can be used with

slight modification. The only difference here is that the unknowns e−jθ′p,q and e−jξ′r,s

are not independent unknown PSK signals but are determined by e2πj p
P , e−2πj q

Q and
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e2πj r
R , e2πj s

S . Therefore, in the sphere decoding, instead of searching over the intervals

for the unknowns e−jθ′p,q and e−jξ′r,s, their values are calculated by values of p, q and

r, s respectively based on formulas in (6.12) depending on the choices of the angles

θ′p,q and ξ′r,s used in the code. Since sphere decoding has an average complexity that

is cubic in rate and dimension of the system, and at the same time achieves the exact

ML results, a fast decoding algorithm for AB codes is found.

In digital communication, choice of the searching radius is crucial to the speed of

the algorithm. If the initial radius is chosen to be very large, then actually most of

the points are being searched, by which not too much improvement on computational

complexity can be gained over exhaustive search. On the other hand, if the radius

is chosen to be too small, then there may be no point in the sphere being searched.

It is better to start with a small value then increase it gradually. In [DAML00], the

authors proposed to choose the packing radius or the estimated packing radius to be

the initial searching radius. Here, another initialization for the searching radius based

on the noise level as in [HV02] and [JH03b] is used. The noise of the system is given

in (2.11). Since Wτ ,Wτ−1 and the transmitted unitary matrix, Vzτ , are independent,

it is easy to prove that the noise matrix has mean zero and variance 2NI3. Each

component of the 3 × N -dimensional noise vector has mean zero and variance 2.

Therefore the random variable v = ‖W ′
τ‖2

F has Gamma distribution with mean 3N .

The searching radius
√
C is initialized in such a way that the probability that the

correct signal is in the sphere is 0.9, that is, P (‖v‖F <
√
C) = 0.9. If no point is

found in the sphere, then the searching radius is raised such that the probability is

increased to 0.99 and so on. Using this algorithm, the probability that a point can be

found during the first search is high. For more details of sphere decoding and sphere

decoding for complex channels, please refer to [DAML00] and [HtB03].

Although SU(3) codes also have the structure of products of two unitary matrices

A
(1)
(p,q) and B

(1)
(r,s), since the two unitary matrices do not have the orthogonal design
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structure, we cannot find a way to simplify the decoding. Therefore, for SU(3) codes,

exhaustive search is used to obtain the ML results.

6.6 Simulation Results

In this section, examples of both SU(3) codes and the two types of AB codes are shown

and also the simulated performance of the codes at different rates. The number of

transmit antennas is three. The fading coefficient from each transmit antenna to

each receive antenna is modeled independently as a complex Gaussian variable with

zero-mean and unit-variance and keeps constant for 2M = 6 channel uses. At each

channel use, zero-mean, unit-variance complex Gaussian noise is added to each receive

antenna. The block error rate (BLER), which corresponds to errors in decoding the

3 × 3 transmitted matrices, is demonstrated as the error event of interest. The

comparison of the proposed codes with some of the group-based codes and the non-

group code in [SHHS01] is also shown.

6.6.1 AB Code vs. Group-Based Codes at R ≈ 2

The first example is the P = 1, Q = 3, R = 4, S = 5 AB code with θp,q = 2π
(

− p
P

+ q
Q

)

and ξr,s = 2π
(
− r

R
− s

S

)
. In brief, we call it the (1, 3, 4, 5) type I AB code. From (6.7),

the rate of the code is 1.9690. From Table 6.3, diversity product of the code is 0.2977.

Its BLER is compared with the G21,4 group code at rate R = 1.99 with diversity prod-

uct 0.3851 and also the best cyclic group code at rate 1.99, whose diversity product is

0.3301, with u = (1, 17, 26). The number of receive antennas is one. The performance

curves are shown in Figure 6.1. The solid line indicates the BLER of the type I AB

code. The solid line with circles indicates the BLER of the G21,4 code and the dashed

line indicates the BLER of the cyclic group code. It can be seen from the plot that

the performance of the three codes is close to each other. The AB code is a little
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(1,3,4,5) AB code R=1.97
cyclic group code R=1.99

Figure 6.1: Comparison of the rate 1.9690, (1, 3, 4, 5) type I AB code with the rate
1.99 G21,4 code and the best rate 1.99 cyclic group code
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(0.5dB-1dB) worse than the G21,4 code and better (0.5dB-1dB) than the cyclic group

code. Notice that the decoding of both group-based codes needs exhaustive search

but the AB code has a fast decoding method. Therefore, at rate approximately 2, the

AB code is as good as the group-based codes with far superior decoding complexity.

6.6.2 SU(3) Codes and AB Codes vs. Group-Based Codes at

R ≈ 3

10 12 14 16 18 20 22 24 26 28 30
10−4

10−3

10−2

10−1

100

SNR (dB)

bl
er

G
171,64

 code R=3

(4,5,3,7) AB code R=2.90
(7,9,11,1) SU(3) code R=3.15
(3,7,5,11) AB code R=3.39
(4,7,5,11) AB code R=3.53
(3,7,5,11) SU(3) code R=3.39

Figure 6.2: Comparison of the 1) rate 2.9045, (4, 5, 3, 7) type I AB code, 2) rate
3.15, (7, 9, 11, 1), SU(3) code, 3) rate 3.3912, (3, 7, 5, 11) type II AB code, 4) rate
3.5296, (4, 7, 5, 11) type I AB code, and 5) rate 3.3912, (3, 7, 5, 11), SU(3) code with
6) the rate 3, G171,64 code

In this subsection, two sets of codes are compared. The first set includes the

(4, 5, 3, 7) type I AB code with rate R = 2.9045, the G171,64 group-based code at rate

3, and the SU(3) with (P,Q,R, S) = (7, 9, 11, 1) and rate 3.1456. The number of

receive antennas is one. The simulated BLERs are shown in Figure 6.2. The line
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with squares indicates the bler of the type I AB code at rate 2.9045. The line with

plus signs indicates the BLER of the G171,64 code and the line with stars shows the

BLER of the SU(3) code at rate 3.1456. It can be seen from the plot that the rate

2.9045 AB code is about 1dB better than the G171,64 code whose rate is 3. The SU(3)

code has about the same performance as the group-based code with a rate 0.1456

higher.

The second set of codes includes the (3, 7, 5, 11) type II AB code at rate R =

3.3912, the (4, 7, 5, 11) type I AB code with rate R = 3.5296, and the (3, 7, 5, 11)

SU(3) code with rate R = 3.3912. The number of receive antennas is one. The

simulated BLERs are also shown in Figure 6.2. The solid and dashed lines show the

BLER of the rate 3.3912 and rate 3.5296 AB code, respectively. BLER of the SU(3)

code is shown by the dash-dotted line. The three codes have very close performance.

Compared with the performance of the G171,64 code, which is shown by the line

with circles, the three codes, the two AB codes and the SU(3) codes with rates

0.3912,0.5296, and 0.3912 higher, perform about 1.5dB worse than that of the group-

based code. Note that the AB codes can be decoded much faster than the G171,64

code and the SU(3) codes.

6.6.3 SU(3) Codes and AB Codes vs. Group-Based Codes

and the Non-Group Code at R ≈ 4

The comparison of the (5, 8, 9, 11) type II AB code at rate 3.9838 and the (9, 10, 11, 13)

type II AB code at rate 4.5506, the (5, 9, 7, 11) SU(3) code at rate 3.9195, and the

(7, 11, 9, 13) SU(3) code at rate 4.3791, with the rate 4 group-based G1365,16 code is

given in Figure 6.3. As can be seen in Figure 6.3, the line with circles indicates the

BLER of the G1365,16 code. The line with plus signs and the solid line show the BLER

of the rate 3.9838 and 4.5506 AB code, respectively. The dashed and the dash-dotted
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(7,11,9,13) SU(3) code R=4.38
non−group code R=4

Figure 6.3: Comparison of the 1) rate 3.9838, (5, 8, 9, 11) type II AB code, 2) rate
4.5506, (9, 10, 11, 13) type II AB code, 3) rate 3.9195, (5, 9, 7, 11), SU(3) code, and 4)
rate 4.3791, (7, 11, 9, 13), SU(3) code with the 5) rate 4 G1365,16 code and 6) rate 4
non-group code
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line show the BLER of the rate 3.9195 and 4.3791 SU(3) code, respectively. The

number of receive antennas is one. It can been seen from the plot that at about the

same rate, the (5, 8, 9, 11) type II AB code and the (5, 9, 7, 11) SU(3) code perform

a lot better than the G1365,16 code. For example, at the BLER of 10−3, the AB code

has an advantage of about 4dB and the SU(3) code has an advantage of about 3.5dB.

Also, at rate 0.3791 higher, the (7, 11, 9, 13), SU(3) code is more than 1dB better than

the G1365,16 code does at high SNRs. The BLER of the (9, 10, 11, 13) type II AB code

is slightly lower than that of the G1365,16 code even with a rate 0.5506 higher. The

performance of the non-group code is also shown, which is indicated by the line with

squares. It can be seen from the plot that the (5, 8, 9, 11) type II AB code and the

SU(3) code at rates 3.9838 and 3.9195 are as good as the non-group code given in

[SHHS01] at rate 4 according to BLER, although diversity product of the non-group

code is much higher than those of the AB and SU(3) codes from Tables 6.1-6.3.

The reason might be that although in the AB and SU(3) codes, the minimum of

the determinants of the differences of two matrices is much smaller than that of the

non-group code, the overall distribution of elements in the AB and SU(3) codes are

as good as the overall distribution of the non-group code. Or in other words, in the

AB and SU(3) codes, pairs of matrices that have very small difference determinant

is scarce. The expected difference determinant, E 1≤i<j≤L det |Ui −Uj |, of the AB and

SU(3) codes may be as large as that of the non-group code. When the rate is high,

the probability that matrices that are close to others are transmitted is small. It

is the expected “distance”4 instead of the worse-case “distance” that dominants the

BLER.

This plot shows that both the AB codes and the SU(3) codes have much better

performance than the group-based code. They even have the same good performance

as the elaborately designed non-group codes. Another advantage is that the AB

4Here, the distance of two matrices, A and B, is | det(A−B)|. It is quoted since it is not a metric
by definition. For definition of metric, see [Yos78].
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codes have a fast decoding algorithm while the decoding of both the group-based and

non-group codes needs exhaustive search.

6.6.4 AB Code vs. Group-Based Code at Higher Rates

20 22 24 26 28 30 32 34 36 38 40
10−3

10−2

10−1

100

SNR (dB)

B
LE

R

(11,13,14,15) AB code R=4.96
G

10815,46
 code R=5

Figure 6.4: Comparison of the rate 4.9580, (11, 13, 14, 15) type II AB code with the
rate 5 G10815,46 code

In this subsection, the (11, 13, 14, 15) type II AB code is compared with the

G10815,46 group-based code. The rate of the AB code is 4.9580 and the rate of the

group-based code is 5. The performance is shown in Figure 6.4. The line with circles

indicates BLER of the G10815,46 code and the solid line shows BLER of the AB code.

The plot shows that the AB code has a much better performance. For example, at the

BLER of 10−3, the AB code is 6dB better and the performance gap is even higher for

lower BLERs or higher SNRs. As mentioned before, the AB code has a fast decoding

algorithm while decoding the group-based codes needs exhaustive search. Therefore,
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at high rates, AB codes have great advantages over group-based codes in both the

performance and decoding complexity.

6.7 Conclusion

In this chapter, the research on the idea of differential unitary space-time code designs

based on Lie groups with rank 2, which is first discussed in Chapter 4, is continued.

The special unitary Lie group SU(3) is analyzed, which has dimension 8 and rank 2.

The group is not fixed-point-free, but a method to design fully-diverse codes, which

are subsets of the group, is described. Furthermore, motivated by the structure of the

SU(3) codes proposed, a simpler code, called the AB code, is proposed. Both codes

are suitable for systems with three transmit antennas. Necessary conditions for the

full diversity of both codes are given and our conjecture is that they are also sufficient

conditions. The codes have simple formulas from which their diversity products can

be calculated in a fast way. A fast maximum-likelihood decoding algorithm for AB

codes based on complex sphere decoding is given by which the codes can be decoded

in a complexity that is polynomial in the rate and dimension. Simulation results

show that both SU(3) codes and AB codes perform as well as the finite group-based

codes at low rates. But they do not need the exhaustive search (of exponentially

growing size) required of group-based codes and therefore are far superior in terms

of decoding complexity. Both SU(3) and AB codes have great advantages over the

finite group-based codes at high rates and perform as well as the carefully designed

non-group code at rate 4.
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6.8 Appendices

6.8.1 Proof of Theorem 6.1

Proof: It is easy to check that any matrix U that satisfies (6.1) is in SU(3) by

checking that UU ∗ = I3 and detU = 1. Now what is left to prove is that any matrix

U ∈ SU(3) can be written as (6.1). Partition U into






a U12

U21 U22




 where a is a

complex number, U12 is 1 × 2, U21 is 2 × 1, and U22 is 2 × 2. Since UU ∗ = I3,






a U12

U21 U22











ā U∗
21

U∗
12 U∗

22




 =






1 012

021 I2




 .

Comparing the (1, 1) entries, U12U
∗
12 = 1 − |a|2 can be obtained. Therefore |a|2 < 1.

Comparing the (1, 2) entries,

aU∗
21 + U12U

∗
22 = 012 ⇒ U∗

21 = −a−1U12U
∗
22.

Comparing the (2, 2) entries and using the above equality, we have

U21U
∗
21 + U22U

∗
22 = I2 ⇒ −a−1U21U12U

∗
22 + U22U

∗
22 = I2 ⇒ a−1U21U12 = U22 − U−∗

22 .

Now let’s look at the unit determinant-constraint, which gives us

1 = detU = a · det(U22 − U21a
−1U12) = a · detU−∗

22 = a(detU22)
−1.

Therefore, detU22 = ā. From U21U
∗
21 + U22U

∗
22 = I2, it is obvious that I2 − U22U

∗
22

has rank 1. So, 1 is an eigenvalue of U22U
∗
22. The other eigenvalue must be |a|2

since detU22U
∗
22 = |a|2. Thus, the Hermitian and positive matrix U22U

∗
22 can be
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decomposed as U22U
∗
22 = Φ






1 0

0 |α|2




Φ∗, for some unitary matrix Φ with deter-

minant 1. Therefore, there exists a unitary matrix Ψ with determinant 1 such that

U22 = Φ






1 0

0 α




Ψ.

Again, from U21U
∗
21 + U22U

∗
22 = I2,

U21U
∗
21

= I2 − U22U
∗
22

= Φ






0 0

0 1 − |a|2




Φ∗

= Φ






0
√

1 − |a|2ejζ






[

0
√

1 − |a|2e−jζ

]

Φ∗.

A general solution for U21 is

U21 = Φ






0
√

1 − |a|2ejζ




 ,

where ζ is an arbitrary angle. By similar argument, a general solution for U12 is,

U12 =

[

0
√

1 − |α|2ejη

]

Ψ

where η is an arbitrary angle. Also,

aU∗
21 + U12U

∗
22 = 012

⇒ a

[

0
√

1 − |a|2e−jζ

]

Φ∗ +

[

0
√

1 − |a|2ejη

]

ΨΨ∗






1 0

0 a




Φ∗ = 0

⇒ ejη = −e−jζ .
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Therefore, we have proved that matrices in SU(3) can be written as










a

[

0 −
√

1 − |a|2e−jζ

]

Ψ

Φ






0
√

1 − |a|2ejζ




 Φ






1 0

0 ā




Ψ










=






1 012

021 Φ














ᾱ 0 −
√

1 − |α|2e−jζ

0 1 0
√

1 − |α|2ejζ 0 α














1 012

021 Ψ




 .

Since









1 0 0

0 e−jβ 0

0 0 ejβ

















a 0 −
√

1 − |a|2e−jζ

0 1 0
√

1 − |a|2ejζ 0 ā

















1 0 0

0 ejβ 0

0 0 e−jβ









=









a 0 −
√

1 − |a|2e−j(ζ+β)

0 1 0
√

1 − |a|2ej(ζ+β) 0 ā









for any real angle β, the angle ζ is a redundant degree of freedom. Therefore, we can

set ζ = 0. Thus, (6.1) is obtained.

6.8.2 Proof of Theorem 6.2

Proof: Define θi = 2π
(

pi

P
− qi

Q

)

and ξi = 2π
(

ri

R
+ si

S

)
for i = 1, 2. Furthermore,

define γ1 = p1−p2

2P
+ q1−q2

2Q
and γ2 = r1−r2

2P
− s1−s2

2Q
. For any U1(p1, q1, r1, s1) and

U2(p2, q2, r2, s2) in C(1), we can write U1 = A
(1)
(p1,q1)

B
(1)
(r1,s1)

and U2 = A
(1)
(p2,q2)

B
(1)
(r2,s2)
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where A(1) and B(1) are as defined in (6.4) and (6.5). Therefore,

(

A
(1)
(p2,q2)

)−1

A
(1)
(p1,q1)

=









e−jθ2 0 0

0 1√
2
e−2π

p2
P − 1√

2
e2π

q2
Q

0 1√
2
e−2π

q2
Q ejθ2 1√

2
e2π

p2
P ejθ2

















ejθ1 0 0

0 1√
2
e2π

p1
P

1√
2
e2π

q1
Q e−jθ1

0 − 1√
2
e−2π

q1
Q 1√

2
e−2π

p1
P e−jθ1









=









ej(θ1−θ2)

0 1
2

(

e2πj
p1−p2

P + e−2πj
q1−q2

Q

)
1
2

(

e2πj(− p2
P

+
q1
Q

) − e2πj(− p1
P

+
q2
Q

)
)

e−jθ1

0 1
2

(

e2πj(
p1
P
− q2

Q
) − e2πj(

p2
P
− q1

Q
)
)

ejθ2 1
2

(

e−2πj
p1−p2

P + e2πj
q1−q2

Q

)

e−j(θ1−θ2)









=









ej(θ1−θ2) 0 0

0 e2πj( p1−p2
2P

− q1−q2
2Q ) cos γ1 e−jθ1je2πj(− p1+p2

2P
+

q1+q2
2Q ) sin γ1

0 ejθ2je2πj(p1+p2
2P

− q1+q2
2Q ) sin γ1 e−j(θ1−θ2)e2πj(− p1−p2

2P
+

q1−q2
2Q ) cos γ1









=









e−jθ2 0 0

0 e2πj(− p2
2P

+
q2
2Q

) 0

0 0 ejθ2e2πj(
p2
2P

− q2
2Q

)

















1 0 0

0 cos γ1 j sin γ1

0 j sin γ1 cos γ1

















ejθ1 0 0

0 e2πj(
p1
2P

− q1
2Q

) 0

0 0 e−jθ1e2πj(− p1
2P

+
q1
2Q

)









,

and

B
(1)
(r2,s2)

(

B
(1)
(r1,s1)

)−1

=









1√
2
e2π

r2
R ejξ2 1√

2
e2π

s2
S ejξ2 0

− 1√
2
e−2π

s2
S

1√
2
e−2π

r2
R 0

0 0 e−jξ2

















1√
2
e−2π

r1
R e−jξ1 − 1√

2
e2π

s1
S 0

1√
2
e−2π

s1
S e−jξ1 1√

2
e2π

r1
R 0

0 0 ejξ1








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=









1
2

(

e−2πj
r1−r2

R + e−2πj
s1−s2

S

)

e−j(ξ1−ξ2) 1
2

(

e2πj(
r1
R

+
s2
S

) − e2πj(
r2
R

+
s1
S

)
)

ejξ2 0

1
2

(

e2πj(− r2
R
− s1

S
) − e2πj(− r1

R
− s2

S
)
)

e−jξ1 1
2

(

e2πj
r1−r2

R + e2πj
s1−s2

S

)

0

0 0 ej(ξ1−ξ2)









=









e−j(ξ1−ξ2)e2πj(− r1−r2
2R

− s1−s2
2S ) cos γ2 jejξ2e2πj( r1+r2

2R
+

s1+s2
2S ) sin γ2 0

je−jξ1e2πj(− r1+r2
2R

− s1+s2
2S ) sin γ2 e2πj(

r1−r2
2R

+
s1−s2

2S
) cos γ2 0

0 0 ej(ξ1−ξ2)









=









ejξ2e2πj( r2
2R

+
s2
2S ) 0 0

0 e2πj(− r2
2R

− s2
2S ) 0

0 0 e−jξ2

















cos γ2 j sin γ2 0

j sin γ2 cos γ2

0 0 1

















e−jξ1e2πj(− r1
2R

− s1
2S ) 0 0

0 e2πj( r1
2R

+
s1
2S ) 0

0 0 ejξ1









.

Thus,

det(U1(p1, q1, r1, s1) − U2(p2, q2, r2, s2)

= detA
(1)
(p2,q2)

detB
(1)
(r1,s1)

det

((

A
(1)
(p2,q2)

)−1

A
(1)
(p1,q1)

− B
(1)
(r2,s2)

(

B
(1)
(r1,s1)

)−1
)

= det

















e−jθ2 0 0

0 e2πj(− p2
2P

+
q2
2Q

) 0

0 0 ejθ2e2πj(
p2
2P

− q2
2Q

)

















1 0 0

0 cos γ1 j sin γ1

0 j sin γ1 cos γ2

















ejθ1 0 0

0 e2πj(
p1
2P

− q1
2Q

) 0

0 0 e−jθ1e2πj(− p1
2P

+
q1
2Q

)








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−









ejξ2e2πj( r2
2R

+
s2
2S ) 0 0

0 e2πj(− r2
2R

− s2
2S ) 0

0 0 e−jξ2

















cos γ2 j sin γ2 0

j sin γ2 cos γ2 0

0 0 1

















e−jξ1e2πj(− r1
2R

− s1
2S ) 0 0

0 e2πj( r1
2R

+
s1
2S ) 0

0 0 ejξ1

















= ej(θi−θ2+ξi−ξ2)

det

















1 0 0

0 e2πj(− p2
2P

+
q2
2Q

) 0

0 0 ej(θ2+ξ2)e2πj(
p2
2P

− q2
2Q

)

















1 0 0

0 cos γ1 j sin γ1

0 j sin γ1 cos γ1

















1 0 0

0 e2πj(
p1
2P

− q1
2Q

) 0

0 0 e−j(θ1+ξ1)e2πj(− p1
2P

+
q1
2Q

)









−









ej(θ2+ξ2)e2πj( r2
2R

+
s2
2S ) 0 0

0 e2πj(− r2
2R

− s2
2S ) 0

0 0 1

















cos γ2 j sin γ2 0

j sin γ2 cos γ2 0

0 0 1

















e−j(θ1+ξ1)e2πj(− r1
2R

− s1
2S ) 0 0

0 e2πj( r1
2R

+
s1
2S ) 0

0 0 1

















= ej(θi−θ2+ξi−ξ2)

det

















1 0 0

0 e2πj(p1−p2
2P

− q1−q2
2Q ) cos γ1 je−j(θ1+ξ1)e2πj(− p1+p2

2P
+

q1+q2
2Q ) sin γ1

0 jej(θ2+ξ2)e2πj(p1+p2
2P

− q1+q2
2Q ) sin γ1 e−j(θ1−θ2+ξ1−ξ2)e2πj(− p1−p2

2P
+

q1−q2
2Q ) cos γ1









−









e−j(θ1−θ2+ξ1−ξ2)e2πj(− r1−r2
2R

− s1−s2
2S ) cos γ2 jej(θ2+ξ2)e2πj( r1+r2

2R
+

s1+s2
2S ) sin γ2 0

je−j(θ1+ξ1)e2πj(− r1+r2
2R

− s1+s2
2S ) sin γ2 e2πj( r1−r2

2R
+

s1−s2
2S ) cos γ2 0

0 0 1

















.
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Define

y = je2πj(− p1+p2
2P

+
q1+q2

2Q ) sin 2π

(
p1 − p2

2P
+
q1 − q2

2Q

)

,

z = je2πj( r1+r2
2R

+
s1+s2

2S ) sin 2π

(
r1 − r2

2R
− s1 − s2

2S

)

.

Therefore,

det(U1 − U2)

= Θ̄ det

















1 0 0

0 x e−j(θ1+ξ1)y

0 −ej(θ2+ξ2)ȳ e−j(θ1−θ2+ξ1−ξ2)x̄









−









e−j(θ1−θ2+ξ1−ξ2)w ej(θ2+ξ2)z 0

−e−j(θ1+ξ1)z̄ w̄ 0

0 0 1

















= Θ̄det









1 − e−j(θ1−θ2+ξ1−ξ2)w −ej(θ2+ξ2)z 0

e−j(θ1+ξ1)z̄ x− w̄ e−j(θ1+ξ1)y

0 −ej(θ2+ξ2)ȳ e−j(θ1−θ2+ξ1−ξ2)x̄− 1









= Θ̄
[
(1 − e−j(θ1−θ2+ξ1−ξ2)w)(x− w̄)(e−j(θ1−θ2+ξ1−ξ2)x̄− 1)+

e−j(θ1−θ2+ξ1−ξ2)|z|2(e−j(θ1−θ2+ξ1−ξ2)x̄− 1) + e−j(θ1−θ2+ξ1−ξ2)|y|2(1 − e−j(θ1−θ2+ξ1−ξ2)w)
]

= Θ̄
[
(1 − Θw)(x− w̄)(Θx̄− 1) + Θ|z|2(Θx̄− 1) + Θ|y|2(1 − Θw)

]

= Θ̄
[
(x− Θwx− w̄ + Θ|w|2)(Θx̄− 1) + Θ|z|2(Θx̄− 1) + Θ|y|2(1 − Θw)

]

= Θ̄
[
(Θx̄− 1)(x− Θwx− w̄ + Θ) + Θ|y|2(1 − Θw)

]

= Θ̄
[
Θ|x|2 − x− Θ2|x|2w + Θwx− Θx̄w̄ + w̄ + Θ2x̄− Θ + Θ|y|2 − Θ2|y|2w′]

= Θ̄
[
Θwx− Θx̄w̄ − (x− Θ2x̄) − (Θ2w − w̄)

]

= Θ̄[wx− x̄w̄ − (Θ̄x− Θx̄) − (Θw − Θ̄w̄)]

= 2j(Im(wx) − ImΘ̄x− ImΘw)

= 2jIm[(1 − Θ̄x)(1 − Θw)].
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6.8.3 Proof of Theorem 6.4

Proof: Define θi = 2πj
(

±pi

P
± qi

Q

)

and ξi = 2πj
(
± ri

R
± si

S

)
for i = 1, 2. For any

U1(p1, q1, r1, s1) and U2(p2, q2, r2, s2) in C(2), we write U1 = A
(2)
(p1,q1)

B
(2)
(r1,s1)

and U2 =

A
(2)
(p2,q2)

B
(2)
(r2,s2)

, where A(2) and B(2) are as defined in (6.11). By a similar argument to

the proof of Theorem 6.2,

(

A
(2)
(p2,q2)

)−1
A

(2)
(p1,q1)

=









e−jθ2 0 0

0 e
2πj

“

− p2
2P

+
q2
2Q

”

0

0 0 e
2πj

“

p2
2P

− q2
2Q

”

















1 0 0

0 cos 2π
(

p1−p2

2P + q1−q2

2Q

)

j sin 2π
(

p1−p2

2P + q1−q2

2Q

)

0 j sin 2π
(

p1−p2

2P + q1−q2

2Q

)

cos 2π
(

p1−p2

2P + q1−q2

2Q

)

















ejθ1 0 0

0 e
2πj

“

p1
2P

− q1
2Q

”

0

0 0 e
2πj

“

− p1
2P

+
q1
2Q

”









,

and

B
(2)
(r2,s2)

(

B
(2)
(r1,s1)

)−1

=









e2πj( r2
2R

+
s2
2S ) 0 0

0 e2πj(− r2
2R

− s2
2S ) 0

0 0 e−jξ2

















cos 2π
(

r1−r2
2R − s1−s2

2S

)
j sin 2π

(
r1−r2

2R − s1−s2
2S

)
0

j sin 2π
(

r1−r2
2R − s1−s2

2S

)
cos 2π

(
r1−r2

2R − s1−s2
2S

)
0

0 0 1

















e2πj(− r1
2R

− s1
2S ) 0 0

0 e2πj( r1
2R

+
s1
2S ) 0

0 0 ejξ1









.

Therefore,

det(U1(p1, q1, r1, s1) − U2(p2, q2, r2, s2)

= detA
(2)
(p2,q2)

detB
(2)
(r1,s1)

det

((

A
(2)
(p2,q2)

)−1

A
(2)
(p1,q1)

−B
(2)
(r2,s2)

(

B
(2)
(r1,s1)

)−1
)
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= ejθ1e−jξ2 det

















1 0 0

0 x e−jξ1y

0 −ejξ2 ȳ e−j(ξ1−ξ2)x̄









−









e−j(θ1−θ2)w ejθ2z 0

−e−jθ1 z̄ w̄ 0

0 0 1

















= ejθ1e−jξ2 det









1 − e−j(θ1−θ2)w −ejθ2z 0

e−jθ1 z̄ x− w̄ e−jξ1y

0 −ejξ2 ȳ e−j(ξ1−ξ2)x̄− 1









= ejθ1e−jξ2
[
(e−j(ξ1−ξ2) − e−j(θ1−θ2)) − (x− e−j(θ1−θ2+ξ1−ξ2)x̄) + (w̄ − e−j(θ1−θ2+ξ1−ξ2)w)

+(e−j(θ1−θ2)wx− e−j(ξ1−ξ2)x̄w̄)
]

= ejθ1e−jξ2
[
(Θ̄2

2 − Θ̄2
1) − (x− Θ̄2

1Θ̄
2
2x̄) + (w̄ − Θ̄2

1Θ̄
2
2w) + (Θ̄2

1wx− Θ̄2
2x̄w̄)

]

= ejθ1e−jξ2Θ̄1Θ̄2

[

(Θ1Θ̄2 − Θ1Θ̄2) − (Θ1Θ2x− Θ1Θ2x) − (Θ̄1Θ̄2w − Θ̄1Θ̄2w)

+(Θ̄1Θ2wx− Θ̄1Θ2wx)
]

= 2jejθ1e−jξ2Θ̄1Θ̄2Im(Θ1Θ̄2 − Θ1Θ2x− Θ̄1Θ̄2w + Θ̄1Θ2wx)

= 2jejθ1e−jξ2Θ̄1Θ̄2Im[(Θ1 − Θ̄1w)(Θ̄2 − Θ2x)]

= 2jejθ1e−jξ2Θ̄1Θ̄2Im[Θ1Θ̄2(1 − Θ̄2
1w)(1 − Θ2

2x)].
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Chapter 7 Using Space-Time Codes in

Wireless Networks

7.1 Abstract

In this chapter, the idea of space-time coding devised for multiple-antenna systems

is applied to communications over wireless relay networks. A two-stage protocol is

used in the network communications, where in one stage the transmitter transmits

information and in the other, the relay nodes encode their received signals into a

“distributed” linear dispersion space-time code, and then transmit the coded signals

to the receive node. It is shown that at high SNR, the PEP behaves as
(

log P
P

)min{T,R}
,

with T the coherence interval, R the number of relay nodes, and P the total transmit-

ted power. Thus, apart from the logP factor and assuming T ≥ R, the network has

the same diversity as a multiple-antenna system with R transmit antennas, which is

the same as assuming that the R relay nodes can fully cooperate and have full knowl-

edge of the transmitted signal. It is further shown that for a fixed total transmit

power across the entire network, the optimal power allocation is for the transmitter

to expend half the power and for the relays to collectively expend the other half. It

is also proved that at low and high SNR, the coding gain is the same as that of a

multiple-antenna system with R transmit antennas. However, at intermediate SNR,

it can be quite different.
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7.2 Introduction

The communication systems that have been discussed or worked with in previous

chapters are point-to-point communication systems, which only have two users: one

is the transmitter and the other is the receiver. Recently, communications in wireless

networks are of great interest because of their diverse applications. Wireless networks

consist of a number of nodes or users communicating over wireless channels. Roughly,

there are two types of wireless networks according to the structure. One type is

networks that have a master node or base station. All nodes communicate with

the base station directly and the base station is in control of all transmissions and

forwarding data to the intended users. A cellular phone system is the most popular

example of this kind of wireless networks. Another example is satellite communication

systems. The other kind of wireless networks is ad hoc or sensory networks, which is

the type of networks that are going to be dealt with in this chapter.
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Figure 7.1: Ad hoc network

An ad hoc wireless network is a collection of wireless mobile nodes that self-

configure to form a network without the aid of any established infrastructure [GW02].

Figure 7.1 is a simple diagram of wireless ad hoc networks. A wireless links exists

between each pair of nodes. In the figure, only some of the links are represented. In ad
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hoc wireless networks, there is no master node or base station. All communications

are peer to peer. As every node may not be in the direct communication range1

of every other node, nodes can cooperate in routing each other’s data. Therefore,

transmissions may be completed by one-hop routing or even multiple-hop routing.

In addition, nodes in an ad-hoc network may be mobile. The difference between an

ad-hoc network and sensory network is that in the former, nodes may be mobile and

there can be more than one pair of nodes communicating at the same time, while, for

sensory networks, the nodes are normally static and there is only one pair of nodes

communicating at a time.

According to the features mentioned above, ad-hoc and sensory networks can be

rapidly deployed and reconfigured, can be easily tailored to specific applications, and

are robust due to the distributed nature and redundancy of the nodes. Because

of these advantages of ad-hoc and sensory networks, they have many applications,

for example, the data network, the home network, the wireless network of mobile

laptops, PDAs and smart phones, the automated transportation systems, sensor dust,

Bluetooth [Har00], etc.2 However, because of exactly the same unique features, the

analysis on wireless ad hoc networks is very difficult in networking, signal processing,

and especially information theoretical aspects.

There are many preliminary results in ad hoc wireless networks. In 2000, the

capacity of wireless ad-hoc networks was first analyzed in the landmark paper [GK00].

It is proved that the optimal bit-distance product can be transported by a network

placed in a disk of unit area scales as O(
√
n) bit-meters per second, where n is the

number of nodes in the network. In [GT02], it is proved that the mobility of nodes can

1There are many ways to define communication range of a wireless network according to the
transmit power, interference, distance, and other factors in the network. For example, in the protocol
model in [GK00], it is defined that one node located at Xi can transmit to another node located at
Xj successfully if |Xk − Xj | ≥ (1 + ∆)|Xi −Xj | for every other node located at Xk simultaneously
transmitting over the same sub-channel. ∆ is a positive number that models situations where a
guard zone is specified by the protocol to prevent a neighboring node from transmitting on the same
sub-channel at the same time.

2For more applications and introduction, refer to [GW02] and [Per01].
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increase the per-session throughput greatly. Results on the network layer designing,

interference, and energy management can be found in [PGH00, BMJ+98, RkT99,

RM99, DBT03]. Although these work illuminate issues in ad hoc networks with

specific network models and under specific conditions, most of the questions about

ad hoc networks are still open. For example, what is the Shannon capacity region,

how to do scheduling and coding to achieve capacity, and how to allocate power

among the nodes? In this chapter, we use the space-time coding idea, which is widely

used in multiple-antenna systems, in wireless networks to improve the performance

of network communications.

As has been mentioned in Chapter 1, multiple antennas can greatly increase

the capacity and reliability of a wireless communication link in a fading environ-

ment using space-time codes [Tel99, MH99, Fos96, TSC98]. Recently, with the

increasing interests in ad hoc networks, researchers have been looking for meth-

ods to exploit spatial diversity using the antennas of different users in the network

[SEA03a, SEA03b, TV01, LW03, NBK04]. In [LW03], the authors exploit spatial di-

versity using the repetition and space-time algorithms. The mutual information and

outage probability of the network are analyzed. However, in their model, the relay

nodes need to decode their received signals, which causes extra consumption in both

time and energy and also may cause error propagation. In [NBK04], a network with

a single relay under different protocols is analyzed and second order spatial diversity

is achieved. In [HMC03], the authors use space-time codes based on Hurwitz-Radon

matrices and conjecture a diversity factor around R/2 from their simulations. Also,

their simulations in [CH03] show that the use of Khatri-Rao codes lowers the average

bit error rate. In this chapter, relay networks with fading are considered and linear

dispersion space-time codes [HH02b] are applied among the relays. The problem we

are interested in is: can we increase the reliability of a wireless network by using

space-time codes among the relay nodes?



184

A key feature of this work is that no decoding is required at the relay nodes.

This has two main benefits: first, the computation at the relay nodes is considerably

simplified, and second, we can avoid imposing bottlenecks on the rate by requiring

some relay nodes to decode (See e.g., [DSG+03]).

The wireless relay network model used here is similar to those in [GV02, DH03]. In

[GV02], the authors show that the capacity of the wireless relay network with n nodes

behaves like log n. In [DH03], a power efficiency that behaves like
√
n is obtained.

Both results are based on the assumption that each relay knows its local channels

so that they can work coherently. Therefore, the system should be synchronized at

the carrier level. Here, it is assumed that the relay nodes do not know the channel

information. All we need is the much more reasonable assumption that the system is

synchronized at the symbol level.

The work in this chapter shows that the use of space-time codes among the relay

nodes, with linear dispersion structure, can achieve a diversity, min{T,R}
(

1 − log log P
log P

)

.

When T ≥ R, the transmit diversity is linear in the number of relays (size of the

network) and is a function of the total transmit power. When P is very large,

the diversity is approximately R. The coding gain for large R and very large P is

det −1(Si−Sj)
∗(Si−Sj), where Si is the distributed space-time code. Therefore, with

very large transmit power and a big network, the same transmit diversity and cod-

ing gain are obtained as in the multiple-antenna case, which means that the systems

works as if the relays can fully cooperate and have full knowledge of the transmitted

signal.

This chapter is organized as follows. In the following section, the network model

and the two-step protocol is introduced. The distributed space-time coding scheme

is explained in Section 7.4 and the pairwise error probability (PEP) is calculated

in Section 7.5. In Section 7.6, the optimum power allocation based on the PEP is

derived. Sections 7.7 and 7.8 contain the main results. The transmit diversity and the
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coding gain are derived. To motivate the main results, simple approximate derivations

are given first in Section 7.7, and then in Section 7.8 the more involved rigorous

derivation is shown. In Section 7.9, the transmit diversity obtained in Sections 7.7

and 7.8 is improved slightly, and the optimality of the new diversity is proved. A

more general distributed linear dispersion space-time coding is discussed in Section

7.10, and in Section 7.11 the transmit diversity and coding gain for a special case

are obtained, which coincide with those in Sections 7.7 and 7.8. The performance of

relay networks with randomly chosen distributed linear dispersion space-time codes

is simulated and compared with the performance of the same space-time codes used

in multiple-antenna systems with R transmit antennas and one receive antenna. The

details of the simulations and the BER and BLER figures are given in Section 7.12.

Section 7.13 provides the conclusion and future work. Section 7.14 contains some of

the technical proofs.

The work in this chapter has been published in the Proceeding of the Third Sen-

sory Array and Multi-Channel Signal Processing Workshop (SAM’04) [JH04f] and is

accepted in the Forty-Second Annual Allerton Conference on Communication, Con-

trol, and Computing (Allerton’04) [JH04a]. The journal papers, [JH04b] and [JH04c],

are submitted to IEEE Transactions on Wireless Communications.

7.3 System Model

Consider a wireless network with R + 2 nodes which are placed randomly and inde-

pendently according to some distribution. There is one transmit node and one receive

node. All the other R nodes work as relays. Every node has one antenna. Anten-

nas at the relay nodes can be used for both transmission and reception. Denote the

channel from the transmitter to the i-th relay as fi, and the channel from the i-th

relay to the receiver as gi. Assume that fi and gi are independent complex Gaussian
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with zero-mean and unit-variance. If the fading coefficients fi and gi are known to

relay i, it is proved in [GV02] and [DH03] that the capacity behaves like logR and a

power efficiency that behaves like
√
R can be obtained. However, these results rely on

the assumption that the relay nodes know their local connections, which requires the

system to be synchronized at the carrier level. However, for ad hoc networks with a

lot of nodes which can also be mobile, this is not a realistic assumption. In our work,

a much more practical assumption, that the relay nodes are only coherent at the

symbol level, is made. In the relay network, it is assumed that the relay nodes, know

only the statistical distribution of the channels. However, we make the assumption

that the receiver knows all the fading coefficients fi and gi, which needs the network

to be synchronized at the symbol level. Its knowledge of the channels can be obtained

by sending training signals from the relays and the transmitter. The main question

is what gains can be obtained? There are two types of gains: improvement in the

outage capacity and improvement in the PEP. In this chapter, the focus is on the

latter.
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Figure 7.2: Wireless relay network

Assume that the transmitter wants to send the signal s = [s1, · · · , sT ]t in the

codebook {s1, · · · , sL} to the receiver, where L is the cardinality of the codebook. s
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is normalized as

E s
∗
s = 1. (7.1)

The transmission is accomplished by the following two-step strategy, which is also

shown in Figure 7.2.3 From time 1 to T , the transmitter sends signals
√
P1Ts1, · · · ,

√
P1TsT to each relay. Based on the normalization of s in (7.1), the average total

transmit power of the T transmissions is P1T . The received signal at the i-th relay at

time τ is denoted as ri,τ , which is corrupted by the noise vi,τ . From time T +1 to 2T ,

the i-th relay node transmits ti,1, · · · , ti,T to the receiver based on its received signals.

Denote the received signal at the receiver at time τ + T by xτ , and the noise at the

receiver at time τ + T by wτ . Assume that the noises are complex Gaussian with

zero-mean and unit-variance, that is, the distribution of vi,τ and wτ are CN (0, 1).

The following notations are used:

vi =












vi,1

vi,2

...

vi,T












, ri =












ri,1

ri,2

...

ri,T












, ti =












ti,1

ti,2

...

ti,T












, w =












w1

w2

...

wT












, x =












x1

x2

...

xT












.

Note that vi, ri, ti, w, and x are all T -dimensional vectors. Clearly

ri =
√

P1Tfis + vi (7.2)

and

x =

R∑

i=1

giti + w. (7.3)

3Although in the figure, all the relay nodes sit on a line in the middle of the transmitter and the
receiver, this does not means that they must be in the middle of the two communicating nodes to
relay the information. The positions of the relay nodes are arbitrary. For simplicity and clearness
of the figure, we draw it this way.
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7.4 Distributed Space-Time Coding

The key question is what the relay nodes should do. There are two widely used

cooperative strategies for the relay nodes. The first one is called amplify-and-forward,

in which the relays just amplify their received signals according to power constraints

and forward to the receiver. The other is called decode-and-forward, in which the

relay nodes do fully decoding and then send their decoded information to the receiver.

If the relay nodes know their local connections, beamforming can be done by amplify-

and-forward. However, it is obvious that if the relay nodes do not know the channels,

amplify-and-forward is not optimal. For decode-and-forward, if the relays can decode

the signal correctly, which happens when the transmit power is very high or the

transmission rate is very low, the system is equivalent to a multiple-antenna system

with R transmit antennas and one receive antenna, and the best diversity R can be

obtained. However if some relay nodes decode incorrectly, whether because of bad

channel, low transmit power, or high transmission rate, they will forward incorrect

signals to the receiver, which will harm the decoding at the receiver greatly. Therefore,

for ad hoc networks whose nodes have limited power, decode-and-forward puts a heavy

restriction on the transmission rate. Another disadvantage of decode-and-forward is

that because of the decoding complexity, it causes both extra power consumption and

time delay.

We will instead focus on the diversity achievable without requiring the relay nodes

to decode. The strategy we use is called distributed space-time coding, in which simple

signal processing is done at relay nodes. No decoding is need at relay nodes, which

saves both time and energy, and more importantly, there is no rate constraint on

transmissions. As will be seen later, this strategy leads to the optimal diversity, R,

with asymptotically high transmit power.4

4A combination of requiring some relay nodes to decode and others to not, may also considered.
However, in the interest of space, we shall not do so here.
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In our approach, we use the idea of the linear dispersion space-time codes [HH02b]

for multi-antenna systems by designing the transmitted signal at every relay as a linear

function of its received signal:5

ti,τ =

√

P2

P1 + 1

T∑

t=1

ai,τ tri,t =

√

P2

P1 + 1
[ai,τ1, ai,τ2, · · · , ai,τT ]ri,

or in other words,

ti =

√

P2

P1 + 1
Airi, (7.4)

where

Ai =












ai,11 ai,12 · · · ai,1T

ai,21 ai,22 · · · ai,2T

...
...

. . .
...

ai,T1 ai,T2 · · · ai,TT












, for i = 1, 2, · · · , R.

While within the framework of linear dispersion codes, the T × T matrices Ai

can be quite arbitrary (apart from a Frobenius norm constraint). In the network,

since the relay nodes have no knowledge of the channels, there is no reason to put

more weight on anyone of the relay nodes or any time instant. To have a protocol

that is equitable among different users and among different time instants, we shall

henceforth assume that Ai are unitary matrices. As we shall presently see, this also

simplifies the analysis considerably since it keeps the noises forwarded by the relay

nodes to the receiver white.

Now let’s discuss the transmit power at each relay node. Because tr ss∗ = 1, fi, vi,j

are CN (0, 1), and fi, si, vi,j are independent,

E r∗i ri = E (
√

P1Tfis + vi)
∗(
√

P1Tfis + vi) = E
(
P1T |fi|2s∗s + v∗

i vi

)
= (P1 + 1)T.

5Note that the conjugate of ri does not appear in (7.4). The case with ri is discussed in Section
7.10.
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Therefore the average transmit power at relay node i is

E t∗i ti =
P2

P1 + 1
E (Airi)

∗(Airi) =
P2

P1 + 1
E r∗i ri = P2T,

which explains our normalization in (7.4). The expected transmit power for one

transmission at each relay is P2.

Let us now focus on the received signal. Clearly from (7.2) and (7.3),

x =

√

P2

P1 + 1

R∑

i=1

giAiri + w

=

√

P2

P1 + 1

R∑

i=1

giAi(
√

P1Tfis + vi) + w

=

√
P1P2T

P1 + 1
[A1s, · · · , ARs]









f1g1

...

fRgR









+

√
P2

P1 + 1

R∑

i=1

giAivi + w.

Define

S = [A1s, A2s, · · · , ARs], H =












f1g1

f2g2

...

fRgR












, and W =

√

P2

P1 + 1

R∑

i=1

giAivi + w.

The received signal can therefore be written as

x =

√

P1P2T

P1 + 1
SH +W. (7.5)

Remark: From equation (7.5), it can be seen that the T ×R matrix S works like

the space-time code in the multiple-antenna case. We call it the distributed space-time

code to emphasize that it has been generated in a distributed way by the relay nodes,
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without having access to s. H, which is R × 1, is the equivalent channel matrix and

W , which is T × 1, is the equivalent noise, W is clearly influenced by the choice of

the space-time code. Using the unitarity of the Ai, it is easy to get the normalization

of S:

trS∗S =
R∑

i=1

s∗A∗
iAis =

R∑

i=1

s∗s = R.

7.5 Pairwise Error Probability

Since Ais are unitary and wj, vi,j are independent Gaussian, W is also Gaussian when

gis are known. It is easy to see that EW = 0T1 and

Var (W |gi) = EWW ∗

= E

(√

P2

P1 + 1

R∑

i=1

giAivi + w

)(√

P2

P1 + 1

R∑

i=1

giAivi + w

)∗

=
P2

P1 + 1
E

R,R
∑

i=1,j=1

giḡjAiviv
∗
jA

∗
j + IT

=
P2

P1 + 1

R∑

i=1

|gi|2AiA
∗
i + IT

=

(

1 +
P2

P1 + 1

R∑

i=1

|gi|2
)

IT .

Thus, W is both spatially and temporally white. This implies that, when both fi and

gi are known, x|si is also Gaussian with the following mean and variance.

E (x|si) =

√
P1P2T

P1 + 1
SiH
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and

Var (x|si) = VarW =

(

1 +
P2

P1 + 1

R∑

i=1

|gi|2
)

IT .

Thus,

P (x|si) =
1

[

2π
(

1 + P2

P1+1

∑R
i=1 |gi|2

)]T
e
−

(x−

r

P1P2T
P1+1

SiH)∗(x−

r

P1P2T
P1+1

SiH)

1+
P2

P1+1
PR

i=1
|gi|

2

.

The ML decoder of the system can be easily calculated to be

arg max
si

P (x|si) = arg min
si

∥
∥
∥
∥
∥
x −

√

P1P2T

P1 + 1
SiH

∥
∥
∥
∥
∥

2

F

. (7.6)

Recall that Si = [A1si, · · · , ARsi], with si in the code book {s1, · · · , sL}. By splitting

the real and imaginary parts, the ML decoding in (7.6) is equivalent to

arg min
si

∥
∥
∥
∥
∥
∥
∥






xRe

xIm




−

√
P1P2T

P1 + 1






(
∑R

i=1 figiAi

)

Re
−
(
∑R

i=1 figiAi

)

Im(
∑R

i=1 figiAi

)

Im

(
∑R

i=1 figiAi

)

Re











sRe

sIm






∥
∥
∥
∥
∥
∥
∥

2

F

.(7.7)

Since (7.7) is equivalent to the decoding of a real linear system, sphere decoding can

be used whose complexity is polynomial in the transmission rate and dimension at

almost any practical SNR [DAML00, HV02].

Theorem 7.1 (Chernoff bound on PEP). With the ML decoding in (7.6), the

PEP, averaged over the channel coefficients, of mistaking si by sj has the following

Chernoff bound.

Pe ≤ E
fi,gi

e
− P1P2T

4(1+P1+P2
PR

i=1
|gi|

2)
H∗(Si−Sj)∗(Si−Sj)H

.

By integrating over fis in the above formula, we can get the following inequality on



193

PEP.

Pe ≤ E
gi

det −1



IR +
P1P2T

4
(

1 + P1 + P2
∑R

i=1 |gi|2
)(Si − Sj)

∗(Si − Sj)diag {|g1|2, · · · , |gR|2}



 .(7.8)

Proof: The PEP of mistaking S1 by Si has the following Chernoff upper bound

[SOSL85].

Pe ≤ E eλ(lnP (x|Si)−ln P (x|S1)).

Since Si is transmitted, x =
√

P1P2T
P1+1

SiH +W . Therefore, from (7.6),

ln P (x|Sj) − ln P (x|Si)

= −

[
P1P2T
P1+1

H∗(Si − Sj)
∗(Si − Sj)H +

√
P1P2T
P1+1

H∗(Si − Sj)
∗W +

√
P1P2T
P1+1

W ∗(Si − Sj)H
]

1 + P2

P1+1

∑R
i=1 |gi|2

.

Thus,

Pe

≤ E
fi,gi,W

e
− λ

1+
P2

P1+1

PR
i=1

|gi|
2

h

P2
P1+1

P1TH∗(Si−Sj)
∗(Si−Sj)H+

q

P1P2T
P1+1

H∗(Si−Sj)
∗W+

q

P1P2T
P1+1

W ∗(Si−Sj)H
i

= E
fi,gi

∫
e
−

λ

»

P2
P1+1

P1TH∗(Si−Sj )∗(Si−Sj)H+

r

P1P2T
P1+1

H∗(Si−Sj)∗W+

r

P1P2T
P1+1

W∗(Si−Sj )H

–

+WW∗

1+
P2

P1+1
PR

i=1
|gi|

2

[

2π
(

1 + P2

P1+1

∑R
i=1 |gi|2

)]T
dW

= E
fi,gi

e
−

λ(1−λ)
P1P2T
1+P1

1+α
PR

i=1
|gi|

2
H∗(Si−Sj)∗(Si−Sj)H

∫
e
−

„

λ

r

P1P2T
P1+1

(Si−Sj)H+W

«∗„

λ

r

P1P2T
P1+1

(Si−Sj)H+W

«

1+
P2

P1+1

PR
i=1

|gi|
2

[

2π
(

1 + P2

P1+1

∑R
i=1 |gi|2

)]T
dW

= E
fi,gi

e
−

λ(1−λ)
P1P2T
P1+1

1+
P2

P1+1

PR
i=1

|gi|
2
H∗(Si−Sj)

∗(Si−Sj)H

= E
fi,gi

e
− λ(1−λ)P1P2T

1+P1+P2
PR

i=1
|gi|

2
H∗(Si−Sj)

∗(Si−Sj)H
.
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Choose λ = 1
2

which maximizes λ(1− λ) = 1
4

and therefore minimizes the right-hand

side of the above formula. Thus,

Pe ≤ E
fi,gi

e
− P1P2T

4(1+P1+P2
PR

i=1
|gi|

2)
H∗(Si−Sj)∗(Si−Sj)H

. (7.9)

This is the first upper bound in Theorem 7.1. To get the second upper bound,

the expectation over fis must be calculated. Notice that

H =









f1g1

...

fRgR









=









g1 · · · 0

...
. . .

...

0 · · · gR

















f1

...

fR









.

Denote diag {g1, · · · , gR} as G, [f1, · · · , fR]t as f . (7.9) becomes,

Pe ≤ E
fi,gi

e
− P1P2T

4(1+P1+P2
PR

i=1
|gi|

2)
f∗G(Si−Sj)∗(Si−Sj)Gf

=
1

2
E
gi

∫
1

(2π)R
e
− P1P2T

4(1+P1+P2
PR

i=1
|gi|

2)
f∗G(Si−Sj)∗(Si−Sj)Gf

e−f
∗
fdf

= E
gi

∫
1

(2π)R
e
−f

∗

„

IR+
P1P2T

4(1+P1+P2
PR

i=1
|gi|

2)
G(Si−Sj)

∗(Si−Sj)G

«

f

df

= E
gi

det −1



IR +
P1P2T

4
(

1 + P1 + P2

∑R
i=1 |gi|2

)G(Si − Sj)
∗(Si − Sj)G





= E
gi

det −1



IR +
P1P2T

4
(

1 + P1 + P2

∑R
i=1 |gi|2

)(Si − Sj)
∗(Si − Sj)diag {|g1|2, · · · , |gR|2}





as desired.

Let’s compare (7.8) with the Chernoff bound on the PEP of a multiple-antenna

system with R transmit antennas and 1 receive antenna (the receiver knows the

channel) [TSC98, HM00]:

Pe ≤ det −1

[

IR +
PT

4R
(Si − Sj)

∗(Si − Sj)

]

.



195

The difference is that now the expectations over the gi must be calculated. Similar

to the multiple-antenna case, the “full diversity” condition can be obtained from

(7.8). It is easy to see that if Si − Sj drops rank, the upper bound in (7.8) increases.

Therefore, the Chernoff bound is minimized when Si−Sj is full-rank, or equivalently,

det(Si − Sj)
∗(Si − Sj) 6= 0 for any 1 ≤ i 6= j ≤ L.

7.6 Optimum Power Allocation

In this section, the optimum power allocation between the transmit node and relay

nodes, that minimize the PEP, is discussed. Because of the expectations over gi,

this is easier said than done. Therefore, a heuristic argument is used. Note that

g =
∑R

i=1 |gi|2 has the gamma distribution [EHP93],

p(g) =
gR−1e−g

(R− 1)!
,

whose mean and variance are both R. By the law of large numbers, almost surely

1
R
g → 1 when R → ∞. It is therefore reasonable to approximate g by its mean, i.e.,
∑R

i=1 |gi|2 ≈ R, especially for large R. Therefore, (7.8) becomes

Pe . E
gi

det −1

[

IT +
P1P2T

4 (1 + P1 + P2R)
(Si − Sj)

∗(Si − Sj)diag {|g1|2, · · · , |gR|2}
]

. (7.10)

It can be seen that the upper bound in (7.10) is minimized when P1P2T
4(1+P1+P2R)

is

maximized, which can be easily done.

Assume that the total power consumed in the whole network is PT for transmis-

sions of T symbols. Since the power used at the transmitter and each relay are P1

and P2 respectively for each transmission, P = P1 +RP2. Therefore,

P1P2T

4 (1 + P1 + P2R)
=

P1
P−P1

R
T

4(1 + P1 + P − P1)
=
P1(P − P1)T

R(1 + P )
≤ P 2T

16R(1 + P )
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with equality when

P1 =
P

2
and P2 =

P

2R
. (7.11)

Therefore, the optimum power allocation is such that the transmitter uses half the

total power and the relay nodes share the other half fairly. So, for large R, the relay

nodes spend only a very small amount of power to help the transmitter.

With this optimum power allocation, for high total transmit power (P � 1),

P1P2T

4
(

1 + P1 + P2

∑R
i=1 |gi|2

)

=
P
2

P
2R
T

4
(

1 + P
2

+ P
2R

∑R
i=1 |gi|2

)

≈
P
2

P
2R
T

4
(

P
2

+ P
2R

∑R
i=1 |gi|2

)

=
PT

8(R+
∑R

i=1 |gi|2)
.

(7.8) becomes

Pe . E
gi

det −1

[

IT +
PT

8(R +
∑R

i=1 |gi|2)
(Si − Sj)

∗(Si − Sj)diag {|g1|2, · · · , |gR|2}
]

. (7.12)

7.7 Approximate Derivations of the Diversity

As mentioned earlier, to obtain the diversity, the expectation in (7.8) must be cal-

culated. This will be done rigorously in Section 7.8. However, since the calculations

are detailed and give little insight, a simple approximate derivation, which leads to

the same diversity result, is given here. As discussed in the previous section, when R
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is large,
∑R

i=1 |gi|2 ≈ R with high probability. In this section, this approximation is

used to simplify the derivation.

Define

M = (Si − Sj)
∗(Si − Sj). (7.13)

To highlight the transmit diversity result, we first upper bound the PEP using the

minimum nonzero singular values of M , which is denoted as σ2
min. Therefore, from

(7.12),

Pe . E
gi

det −1

[

IT +
PTσ2

min

16R
diag {Irank M , 0}diag {|g1|2, · · · , |gR|2}

]

= E
gi

rank M∏

i=1

(

1 +
PTσ2

min

16R
|gi|2

)−1

=

[
∫ ∞

0

(

1 +
PTσ2

min

16R
x

)−1

e−xdx

]rank M

=

(
PTσ2

min

16R

)−rank M [

−e−
16R

PTσ2
min Ei

(

− 16R

PTσ2
min

)]rank M

,

where

Ei(χ) =

∫ χ

−∞

et

t
dt, χ < 0

is the exponential integral function [GR00]. For χ < 0,

Ei(χ) = c+ log(−χ) +

∞∑

k=1

(−1)kχk

k · k! , (7.14)

where c is the Euler constant.6 For logP � 1,

e
− 16R

PTσ2
min = 1 +O

(
1

P

)

≈ 1

6The Euler-Mascheroni constant is defined by c = limn→∞
(∑n

k=1
1
k
− log n

)
. c has the numerical

value 0.57721566 · · · .
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and

−Ei

(

− 16R

PTσ2
min

)

= logP +O(1) ≈ logP.

Therefore,

Pe .

(
16R

Tσ2
min

)rank M (
logP

P

)rank M

=

(
16R

Tσ2
min

)rank M

P rankM(1− log log P
log P ).(7.15)

When M is full rank, the transmit diversity is min{T,R}
(

1 − log log P
log P

)

. Therefore,

similar to the multiple-antenna case, there is no point in having more relays than the

coherence interval according to the diversity. Thus, we will henceforth always assume

T ≥ R. The transmit diversity is therefore R
(

1 − log log P
log P

)

. (7.15) also shows that

the PEP is smaller for bigger coherence interval T . A tighter upper bound is given

in the following theorem.

Theorem 7.2. Design the transmit signal at the i-th relay node as in (7.4) and

use the power allocation in (7.11). For full diversity of the space-time code, assume

T ≥ R. If P � 1, for any positive x, the PEP has the following upper bound

Pe .

R∑

k=0

(
16R

PT

)k ∑

1≤i1<···<ik≤R

det −1[M ]i1,··· ,ik
(
1 − e−x

)R−k
[−Ei(−x)]k , (7.16)

where [M ]i1 ,··· ,ik denotes the k× k matrix composed by choosing the i1, · · · , ik-th rows

and columns of M .

Proof: From (7.10),

Pe .

∫ ∞

0

· · ·
∫ ∞

0

det −1

[

IR +
PT

16R
Mdiag {λ1, · · · , λR}

]

e−λ1 · · · e−λRdλ1 · · ·dλR,

where λi is defined as λi = |gi|2. Therefore, λi is a random variable with exponential

distribution pλi
(x) = e−x. We upper bound this by breaking each integral into two

parts: the integration from 0 to an arbitrary positive number x and from x to ∞,
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and then upper bound every one of the resulting 2R terms. That is,

Pe

.

(∫ x

0

+

∫ ∞

x

)

· · ·
(∫ x

0

+

∫ ∞

x

)

det

(

IR +
PT

16R
Mdiag {λ1, · · · , λR}

)−1

e−λ1 · · · e−λRdλ1 · · ·dλR

=
1

2

R∑

k=0

∑

1≤i1<···<ik≤R

Ti1,··· ,ik ,

where

Ti1,··· ,ik =

∫

· · ·
∫

the i1, · · · ik-th integrals

are from x to ∞,

all others are from 0 to x

det

(

IR +
PT

16R
Mdiag {λ1, · · · , λR}

)−1

e−λ1 · · · e−λRdλ1 · · ·dλR.

Without loss of generality, T1,··· ,k is calculated.

T1,··· ,k =

∫ ∞

x

· · ·
∫ ∞

x
︸ ︷︷ ︸

k

∫ x

0

· · ·
∫ x

0
︸ ︷︷ ︸

R−k

det

(

IR +
PT

16R
Mdiag {λ1, · · · , λR}

)−1

e−λ1 · · · e−λRdλ1 · · ·dλR.

Note that since M > 0, for any λk + 1, · · · , λR > 0,

det

(

IR +
PT

16R
Mdiag {λ1, · · · , λR}

)

> det

(

IR +
PT

16R
Mdiag {λ1, · · · , λk, 0, · · · , 0}

)

= det




IR +

PT

16R
M






det[M ]1,··· ,kdiag {λ1, · · · , λk} 0k,R−k

∗ 0R−k,R−k











= det

(

Ik +
PT

16R
[M ]1,··· ,kdiag {λ1, · · · , λk}

)

> det

(
PT

16R
[M ]1,··· ,kdiag {λ1, · · · , λk}

)

=

(
PT

16R

)k

det[M ]1,··· ,kλ1 · · ·λk,
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where [M ]i1,··· ,ik is defined in Theorem 7.2. Therefore,

T1,··· ,k <

(
16R

PT

)k

det −1[M ]1,··· ,k

∫ x

0

· · ·
∫ x

0

e−λk+1 · · · e−λRdλk+1 · · ·dλR

∫ ∞

x

· · ·
∫ ∞

x

e−λ1

λ1
· · · e

−λk

λk
dλ1 · · ·dλk

=

(
16R

PT

)k

det −1[M ]1,··· ,k

(∫ x

0

e−λdλ

)R−k (∫ ∞

x

e−λ

λ
dλ

)k

=

(
16R

PT

)k

det −1[M ]1,··· ,k
(
1 − e−x

)R−k
[Ei(−x)]k .

In general,

Ti1,··· ,ik <

(
16R

PT

)k

det −1[M ]1,··· ,k
(
1 − e−x

)R−k
[Ei(−x)]k .

The upper bound in (7.16) is obtained.

It is easy to see that for any 1 ≤ i1 < · · · < ik ≤ R, [M ]i1,··· ,ik is a positive definite

matrix since M is positive definite. Therefore, all terms in (7.16) are positive.

Corollary 7.1. If logP � 1,

Pe .
1

PR

R∑

k=0

(
16R

T

)k ∑

1≤i1<···<ik≤R

det −1[M ]i1,··· ,ik logk P. (7.17)

Proof: Set x = 1
P

.7 Therefore,

(
1 − e−x

)R−k
=
(

1 − e−
1
P

)R−k

=

(
1

P
+ o

(
1

P

))R−k

=
1

PR−k
+ o

(
1

PR−k

)

.

7Actually, this is not the optimum choice based on the transmit diversity. The transmit diversity
can be improved slightly by choosing a optimum x. However, the coding gain of that case is smaller
than the coding gain in (7.17). The details will be discussed in Section 7.9.
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From (7.14),

−Ei(−x) = logP +O(1).

Therefore, (7.17) is obtained from (7.16) by omitting the higher order terms of 1
P

.

The same as the PEP Chernoff upper bound of multiple-antenna systems with R

transmit antennas and one receive antenna at high SNR, which is

Pe ≤ 1

PR
det −1(Si − Sj)

∗(Si − Sj)

(
4R

T

)R

,

the factor 1
P R is also obtained in the network case. However, instead of a constant

that is independent of P , the coefficient of the factor in (7.17) is a polynomial in

logP , which actually changes the diversity result.

To get the diversity, we should look at the the term with the highest order of P

in (7.17), which is the k = R term: det −1M
(

16R
T

)R logR P
P R . By simple rewriting, it is

equivalent to

det −1M

(
16R

T

)R

P−R(1− log log P
log P ). (7.18)

Therefore, as in (7.15), transmit diversity of the distributed space-time code is, again,

R
(

1 − log log P
log P

)

, which is linear in the number of relays. When P is very large (P �

logP ), log log P
log P

� 1, and a transmit diversity about R is obtained which is the same

as the transmit diversity of a multiple-antenna system with R transmit antennas

and one receive antenna. That is, the system works as if the R relay nodes can fully

cooperate and have full knowledge of the transmitted signal as in the multiple-antenna

case. However, for any general average total transmit power, the transmit diversity

depends on the average total transmit power P .
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7.8 Rigorous Derivation of the Diversity

In the previous section, we use the approximation
∑R

i=1 |gi|2 ≈ R. In this section,

a rigorous derivation of the Chernoff upper bound on the PEP is given. The same

transmit diversity is obtained but the coding gain becomes more complicated. Here

is the main result.

Theorem 7.3. Design the transmit signal at the i-th relay node as in (7.4) and

use the power allocation in (7.11). For full diversity of the space-time code, assume

T ≥ R. If logP � 1, the PEP has the following Chernoff bound.

Pe .
1

PR

R∑

k=0

(
8

T

)k ∑

1≤i1<···<ik≤R

det −1[M ]i1 ,··· ,ik

k∑

l=0

BR(k − l, k) logl P,(7.19)

where

BR(j, k) =






k

j






k∑

i1=1

k−i1∑

i2=1

· · ·
k−i1−···−ij−1∑

ij=1






k

i1




 · · ·






k − i1 − · · · − ij−1

ij






(i1 − 1)! · · · (ij − 1)!Rk−i1−···−ij . (7.20)

Proof: Before proving the theorem, we first give a lemma that is needed.

Lemma 7.1. If A is a constant,

∫ ∞

x

· · ·
∫ ∞

x

(

A +
k∑

i=1

λi

)k

e−λ1 · · · e−λk

λ1 · · ·λk

dλ1 · · ·dλk =
k∑

j=0

BA,x(j, k) [−Ei(−x)]k−j ,(7.21)
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where

BA,x(j, k) =






k

j






∑k
i1=1

∑k−i1
i2=1 · · ·

∑k−i1−···−ij−1

ij=1






k

i1




 · · ·






k − i1 − · · · − ij−1

ij






Γ(i1, x) · · ·Γ(ij, x)A
k−i1−···−ij

and

Γ(i, x) =

∫ ∞

x

e−tti−1dt

is the incomplete Gamma function [GR00].

Proof: See Section 7.14.1.

Now we prove Theorem 7.3. From (7.12), we need to upper bound

∫ ∞

0

· · ·
∫ ∞

0

det −1



IR +
PT

8
(

R +
∑R

i=1 λi

)Mdiag {λ1, · · · , λR}



 e−λ1 · · · e−λRdλ1 · · ·dλR.

We use the same method as in the previous section: breaking every integral into two

parts. Therefore,

Pe ≤ 1

2

R∑

k=0

∑

1≤i1<···<ik≤R

T ′
i1,··· ,ik ,

while

T ′
i1,··· ,ik

=

∫

· · ·
∫

the i1, · · · ik-th integrals

are from x to ∞,

all others are from 0 to x

det −1



IR +
PT

8
(

R +
∑R

i=1 λi

)Mdiag {λ1, · · · , λR}





e−λ1 · · · e−λRdλ1 · · ·dλR.
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Without loss of generality, T ′
1,··· ,k is calculated.

T ′
1,··· ,k

=

∫ ∞

x

· · ·
∫ ∞

x
︸ ︷︷ ︸

k

∫ x

0

· · ·
∫ x

0
︸ ︷︷ ︸

R−k

det −1



IR +
PT

8
(

R +
∑R

i=1 λi

)Mdiag {λ1, · · · , λR}





e−λ1 · · · e−λRdλ1 · · ·dλR.

For any 0 < λk+1 < x, · · · , 0 < λR < x,

det



IR +
PT

8
(

R +
∑R

i=1 λi

)Mdiag {λ1, · · · , λR}





> det



IR +
PT

8
(

R + (R− k)x +
∑k

i=1 λi

)Mdiag {λ1, · · · , λk, 0, · · · , 0}





> det




PT

8
(

R + (R− k)x+
∑k

i=1 λi

) [M ]1,··· ,kdiag {λ1, · · · , λk}





=




PT

8
(

R + (R− k)x +
∑k

i=1 λi

)





k

det[M ]1,··· ,kλ1 · · ·λk.

Therefore,

T ′
1,··· ,k <

(
8

PT

)k

det −1[M ]1,··· ,k

∫ x

0

· · ·
∫ x

0

e−λk+1 · · · e−λRdλk+1 · · ·dλR

∫ ∞

x

· · ·
∫ ∞

x

[

R + (R− k)x +

k∑

i=1

λi

]k

e−λ1 · · · e−λk

λ1 · · ·λk
dλ1 · · ·dλk.

Using Lemma 7.1,

T ′
1,··· ,k <

(
8

PT

)k

det −1[M ]1,··· ,k
(
1 − e−x

)R−k
k∑

j=0

BR+(R−k)x,x(j, k) [−Ei(−x)]k−j .
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Choose x = 1
P
. Similarly, for large P ,

[

R + (R− k)
1

P

]k

≈ Rk, −Ei

(

− 1

P

)

≈ logP,

1 − e−
1
P ≈ 1

P
, Γ(i, x) ≈ (i− 1)!.

Therefore,

T ′
1,··· ,k <

(
8

PT

)k

det −1[M ]1,··· ,k
1

PR−k

k∑

j=0

BR,x(j, k) logk−j P

=

(
8

PT

)k

det −1[M ]1,··· ,k
1

PR−k

k∑

l=0

BR,x(k − l, k) logl P.

In general,

T ′
i1,··· ,ik <

1

PR

(
8

T

)k

det −1[M ]i1 ,··· ,ik

k∑

l=0

BR,x(k − l, k) logl P.

Thus, (7.19) is obtained.

Corollary 7.2. If R� 1,

Pe .
1

PR

R∑

k=0

(
8R

T

)k ∑

1≤i1<···<ik≤R

det −1[M ]i1 ,··· ,ik logk P. (7.22)

Proof: When R � 1, BR(0, k) >> BR(l, k) for all l > 0 since BR(0, k) = Rk is

the term with the highest order of R. Therefore, (7.22) is obtained from (7.19).

Remarks:

1. The k = l = R term,

det −1M

(
8R logP

TP

)R

, (7.23)
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in (7.19) has the highest order of P . By simple rewriting, it is equivalent to

det −1M

(
8R

T

)R

P−R(1− log log P
log P ), (7.24)

which is the same as (7.18) except for a coefficient of 2R. Therefore, the same

transmit diversity, R
(

1 − log log P
log P

)

, is obtained.

2. In a multiple-antenna system withR transmit antennas and one receive antenna,

at high transmit power (or SNR), the PEP has the following upper bound,

(which is given in (2.4) in Section 2.3,)

det −1M

(
4R

PT

)R

.

Comparing this with the highest order term given in (7.23), we can see the relay

network has a performance that is

(3 + 10 log10 logP ) dB (7.25)

worse. This analysis is also verified by simulations in Section 7.12.

3. Corollary 7.2 also gives the coding gain for networks with large number of relay

nodes. When P is very large (logP � 1), the dominant term in (7.22) is (7.24).

The coding gain is therefore det−1M , which is the same as the multiple-antenna

case. When P is not very large, the second term in (7.22),

(
8R

T

)R−1 R∑

i=1

det −1[M ]1,··· ,i−1,i+1,··· ,R
logR−1 P

PR
,

cannot be ignored and even the k = 3, 4, · · · terms have non-neglectable contri-

butions. Therefore, we want not only detM to be large but also det[M ]i1 ,··· ,ik
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to be large for all 0 ≤ k ≤ R, 1 ≤ i1 < · · · < ik ≤ R. Note that

[M ]i1 ,··· ,ik = ([Si]i1,··· ,ik − [Sj]i1,··· ,ik)
∗([Si]i1,··· ,ik − [Sj]i1,··· ,ik),

where [Si]i1,··· ,ik = [Ai1si · · · Aiksi] is the distributed space-time code when

only the i1, · · · , ik-th relay nodes are working. To have a good performance

for not very large transmit power, Corollary 7.2 indicates that the distributed

space-time code should have the property that it is “scale-free” in the sense

that it is still a good distributed space-time code when some of the relays are

not working. In general, for networks with any number of relay nodes, the same

conclusion can be obtained from (7.19).

4. Now we look at the low average total transmit power case, that is the P � 1

case. With the same approximation
∑R

i=1 |gi|2 ≈ R, using the power allocation

given in (7.11),

P1P2T

4
(

1 + P1 + P2

∑R
i=1 |gi|2

) ≈
P
2

P
2R
T

4 (1 + P )
=
P 2T

16R
.

Therefore, (7.8) becomes

Pe . E
gi

det −1

(

IR +
P 2T

16R
Mdiag {|g1|2, · · · , |gR|2}

)

= E
gi

[

1 +
P 2T

16R
tr
(
Mdiag {|g1|2, · · · , |gR|2}

)
+ o(P 2)

]−1

= E
gi

(

1 +
P 2T

16R

R∑

i=1

mii|gi|2 + o(P 2)

)−1

= E
gi

(

1 − P 2T

16R

R∑

i=1

mii|gi|2
)

+ o(P 2)

=

(

1 − P 2T

16R

R∑

i=1

mii

)

+ o(P 2)
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=

(

1 − P 2T

16R
trM

)

+ o(P 2),

where mii is the (i, i) entry ofM . Therefore, the same as in the multiple-antenna

case, the coding gain at low total transmit power is trM . The design criterion

is to maximize trM .

5. Corollary 7.2 also shows that the results obtained by the rigorous derivation in

this section is consistent with the approximate derivation in the previous section

except for a coefficient 2k. Actually the upper bound in (7.22) is tighter than

the one in (7.17). This is reasonable since in (7.22) all the terms except the one

with the highest order of R are omitted, however in the derivation of (7.17), we

approximate
∑R

i=1 |gi|2 by its expected value R.

7.9 Improvement in the Diversity

In Corollary 7.1 and Theorem 7.3, x = 1
P

is used, which actually is not the optimal

choice according to transmit diversity. The transmit diversity can be improved slightly

by choosing the positive number x optimally.

Theorem 7.4. The best transmit diversity can be obtained using the distributed space-

time codes is α0R, where α0 is the solution of

α +
logα

logP
= 1 − log logP

logP
. (7.26)

For P � logP , the PEP has the following upper bound,

Pe .

R∑

k=0

(
8

T

)k ∑

1≤i1<···<ik≤R

det −1[M ]i1,··· ,ik

k∑

l=0

BR(k − l, k)P−[α0R+(1−α0)(k−l)]. (7.27)
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If R � 1,

Pe .

[
R∑

k=0

(
8R

T

)k ∑

1≤i1<···<ik≤R

det −1[M ]i1,··· ,ik

]

P−α0R. (7.28)

Proof: According to the proof of Theorem 7.3,

Pe

≤
R∑

k=0

∑

1≤i1<···<ik≤R
det −1[M ]i1,··· ,ik

(
8

PT

)k
(1 − ex)R−k

∑k
l=0 BR+(R−k)x(k − l, k)[−Ei(−x)]l

.(7.29)

Set x = 1
P α with α > 0. Therefore,

(
1 − e−x

)R−k
=
(

1 − e−
1

Pα

)R−k

=

(
1

P α
+ o

(
1

P α

))R−k

=
1

P α(R−k)
+ o

(
1

P α(R−k)

)

.

and

(

R + (R − k)
1

P α

)k

= Rk +O

(
1

P α

)

.

From (7.14),

−Ei(−x) = logP α +O(1) = α logP +O(1).

To omit high order terms of P , we need P α � 1 and logP α � 1. Combining the

two, logP � 1
α

is needed.

Assume logP � 1
α
. (7.29) becomes

Pe .

R∑

k=0

∑

1≤i1<···<ik≤R

det −1[M ]i1 ,··· ,ik

(
8

PT

)k k∑

l=0

BR(k − l, k)
αl logl P

P α(R−k)

=

R∑

k=0

∑

1≤i1<···<ik≤R

det −1[M ]i1 ,··· ,ik

(
8

T

)k k∑

l=0

BR(k − l, k)P−[k+α(R−k)]αl logl P.
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Note that αl = P l log α
log P and logl P = P l log log P

log P . Therefore,

Pe

.

R∑

k=0

∑

1≤i1<···<ik≤R

det −1[M ]i1 ,··· ,ik

(
8

PT

)k k∑

l=0

BR(k − l, k)P−[αR+(1−α)k−l log α
log P

−l log log P
log P ].

When α = α0, (7.27) is obtained. As in the proof of Corollary 7.2, for R � 1, we

only keep the terms with the highest order of R, that is, the l = k terms. (7.28) is

then obtained from (7.27).

What left to prove is the optimality of the choice x = 1
P α0

. For any k, let’s look

at the term with the highest order of P , which is the l = k term. Define

β(α, k) = αR + (1 − α)k − k
logα

logP
− k

log logP

logP
,

which is the negative of the highest order of P . To obtain the best transmit diversity,

α should be chosen to maximize mink∈[1,R] β(α, k). Note that

∂β

∂k
= (1 − α) − logα

logP
− log logP

logP
.

From the definition of α0, we have

∂β

∂k
|α=α0 = 0.

Also note

∂2β

∂α∂k
= −1 − 1

α logP
< 0.

Therefore, 





∂β
∂k
> 0 if α < α0

∂β
∂k
< 0 if α > α0

.
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Thus,

min
k∈[1,R]

β(α, k) =







β(α, 0) = αR if α ≤ α0

β(α,R) = R
(

1 − log α
log P

− log log P
log P

)

if α ≥ α0

.

It is easy to see that for α ≤ α0, maxα≤α0 mink∈[1,R] β(α, k) = maxα≤α0 αR = α0R,

which is obtained when α = α0. Now let’s look at the case of α ≥ α0. Note that

dmink∈[1,R] β(α, k)

dα
=
β(α,R)

dα
= − R

α logP
< 0.

Therefore,

max
α≥α0

min
k∈[1,R]

β(α, k) = β(α0, R) = R

(

1 − logα0

logP
− log logP

logP

)

= α0R,

which is obtained when α = α0. Therefore, α0 is the optimum and

α0R + (1 − α0)k − l
logα0

logP
− l

log logP

logP
= α0R + (1 − α0)(k − l).

Still we need to check the condition logP � 1
α0

. Define γ(α) = α + log α
log P

. Then

dγ(α)
dα

= 1 + 1
α log P

> 0. Since

γ(1) = 1 > 1 − log logP

logP

and

γ

(

1 − log logP

logP

)

= 1 − log logP

logP
+

log
(

1 − log log P
log P

)

logP
< 1 − log logP

logP
,
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therefore,

1 − log logP

logP
< α0 < 1. (7.30)

Therefore, α0 logP > logP − log logP . If logP � log logP , logP � 1 is true and

thus logP − log logP � 1. The condition is satisfied.

There is no closed form for the solution of equation (7.26). The following theorem

gives a region of α0 and also gives some ideas about how much improvement in

transmit diversity is obatined.

Theorem 7.5. For P > e,

1 − log logP

logP
< α0 < 1 − log logP

logP
+

log logP

logP (logP − log logP )
.

Proof: From the proof of Theorem 7.4, we know that 1 − log log P
log P

< α0. We only

need to prove the other part. Let

α1 = 1 − log logP

logP
+

log logP

(logP − log logP ) logP
.

Since as in the proof of Theorem 7.4, γ ′(α) > 0. We just need to prove that γ(α1) −

1 − log log P
log P

> 0.

Let’s first prove

logα1 > − logP

logP − log logP

(
log logP

logP
− log logP

(logP − log logP ) logP

)

.

Define g(x) = log(1−x)+ cx. Since g′(x) = c− 1
1−x

, g′(x) > 0 if x < 1− 1
c
. Note that

g(0) = 0, therefore, g(x) > 0 or equivalently log(1−x) > −cx when 0 < x < 1− 1
c
. Let

x0 = log log P
log P

− log log P
log P (log P−log log P )

and c0 = log P
log P−log log P

. 1− 1
c0

= log log P
log P

> x0 for P > e.
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It is also easy to check that x0 > 0 for P > e. Therefore, logα1 = log(1−x0) > −c0x0

and

γ(α1) − 1 − log logP

logP

=
log logP

logP (logP − log logP )
+

1

logP
logα1

>
log logP

logP (logP − log logP )
− 1

logP

logP

logP − log logP

(
log logP

logP
− log logP

logP (logP − log logP )

)

=
log logP

logP (logP − log logP )2

> 0.

Theorem 7.5 indicates that the PEP Chernoff bound of the distributed space-time

codes decreases faster than

R∑

k=0

(
8R

T

)k ∑

1≤i1<···<ik≤R

det −1[M ]i1,··· ,ik

(
logP

P

)R

and slower than

R∑

k=0

(
8R

T

)k ∑

1≤i1<···<ik≤R

det −1[M ]i1,··· ,ik

(

(logP )1− 1
log P−log log P

P

)R

.

When P is large (logP � 1), 1− log log P
log P

is a very accurate approximation of α0. The

improvement in transmit diversity is small.

Now let’s comapre the new upper bound in (7.28) with the one in (7.22). As

discussed above, a slightly better transmit diversity is obtained. However, the coding

gain in (7.28) smaller. The coding gain of (7.28) is

[
R∑

k=0

(
8R

T

)k ∑

1≤i1<···<ik≤R

det −1[M ]i1,··· ,ik

]−1

,
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and the coding gain of (7.22) for very high SNR logP � 1 is detM . To compare

the two, we assume that the singular values of M take their maximum value,
√

2,

and R = T . Therefore the coding gain of (7.28) is






∑R
k=0






R

k




 4k






−1

= 5−R. The

coding gain of (7.22) is 4−R. The upper bound in (7.22) is 0.97dB better according

to coding gain.

Therefore, when P is extremely large, the new upper bound is tighter than the

previous one since it has a lager diversity. Otherwise, the previous bound is tighter

since it has a larger coding gain.

7.10 A More General Case

In this section, a more general type of distributed linear dispersion space-time codes

[HH02b] is discussed. The transmitted signal at the i-th relay node is designed as

ti =

√
P2

P1 + 1
(Airi +Biri) i = 1, 2, · · · , R, (7.31)

where Ai and Bi are T × T real matrices. Similar to before, we assume that Ai +Bi

and Ai − Bi are orthogonal, which is equivalent to







AiA
T
i +BiB

T
i = IT

AiB
T
i = −(AiB

T
i )T

.

By separating the real and imaginary parts, (7.31) can be written equivalently as






ti,Re

ti,Im




 =

√

P2

P1 + 1






Ai +Bi 0

0 Ai − Bi











ri,Re

ri,Im




 . (7.32)
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The expected total transmit power at the i-th relay can therefore be calculated to be

P2T .

Now let’s look at the received signal. Similar to the rewriting of (7.31), (7.2) can

be equivalently written as






ri,Re

ri,Im




 =

√

P1T






fi,ReIT −fi,ImIT

fi,ImIT fi,ReIT











sRe

sIm




 +






vi,Re

vi,Im




 .

Therefore,






ti,Re

ti,Im




 =

√

P1P2T

P1 + 1






Ai +Bi 0

0 Ai − Bi











fi,ReIT −fi,ImIT

fi,ImIT fi,ReIT











sRe

sIm






+

√
P2

P1 + 1






vi,Re

vi,Im






For the T × 1 complex vector x, define the 2T × 1 real vector x̂ =






xRe

xIm




. Further

define the 2T × 2T real matrix

H =

R∑

i=1






gi,ReIT −gi,ImIT

gi,ImIT gi,ReIT











Ai +Bi 0

0 Ai − Bi











fi,ReIT −fi,ImIT

fi,ImIT fi,ReIT




 ,

and the 2T × 1 real vector

W =






wRe

wIm




+

√

P2

P1 + 1

R∑

i=1






gi,ReIT −gi,ImIT

gi,ImIT gi,ReIT











Ai +Bi 0

0 Ai − Bi











vi,Re

vi,Im




 .

The following equivalent system equation is obtained.

x̂ =

√
P1P2T

P1 + 1
Hŝ + W,
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where H is the equivalent channel matrix and W is the equivalent noise.

Theorem 7.6 (ML decoding and PEP). Design the transmit signal at the i-th

relay node as in (7.31). Then

P (x|si) =
1

[

2π
(

1 + P2

P1+1

∑R
i=1 |gi|2

)]T
e
−

„

x̂−

r

P1P2T
P1+1

Hŝi

«∗„

x̂−

r

P1P2T
P1+1

Hŝi

«

2(1+
P2

P1+1
PR

i=1
|gi|

2) , (7.33)

and the ML decoding is

arg max
si

P (x|si) = arg min
si

∥
∥
∥
∥
∥
x̂ −

√

P1P2T

P1 + 1
Hŝi

∥
∥
∥
∥
∥

2

F

.

Using the optimum power allocation given in (7.11), the PEP of mistaking si with sj

has the following Chernoff upper bound for large P .

Pe ≤ E
gi

det −1/2

[

I2R + PT

8(R+
PR

k=1 |gk|2)

R∑

k=1

GkGt
k

]

, (7.34)

where

Gk =






gk,ReIT −gk,ImIT

gk,ImIT gk,ReIT











Ak +Bk 0

0 Ak − Bk











(si − sj)Re −(si − sj)Im

(si − sj)Im (si − sj)Re




 .

Proof: To get the distribution of x|si, let’s first discuss the noise part. Since

vi and w are independent circularly symmetric Gaussian with mean 0 and vari-

ance IT , W is Gaussian with mean zero and its variance can be calculated to be
(

1 + P2

P1+1

∑R
i=1 |gi|2

)

I2T . Therefore, when fi and gi are known, x̂|si is Gaussian with

mean
√

P1P2T
P1+1

Hŝi and variance the same as that of W. Thus, P (x|si) = P (x̂|ŝi) is as

given in (7.33). It is straightforward to get the ML decoding from the distribution.

Now let’s look at the PEP of mistaking si by sj. By the same argument as in the



217

proof of Theorem 7.1, the PEP has the following Chernoff upper bound.

Pe ≤ E
fi,gi

e
− P1P2T

8(1+P1+P2
PR

i=1
|gi|

2)
[H ̂(si−sj)]tH ̂(si−sj)

.

Note that






fi,ReIT −fi,ImIT

fi,ImIT fi,ReIT











(si − sj)Re

(si − sj)Im




 =






(si − sj)Re −(si − sj)Im

(si − sj)Im (si − sj)Re











fi,Re

fi,Im




 .

Therefore,

H ̂(si − sj)

=

R∑

i=1






gi,ReIT −gi,ImIT

gi,ImIT gi,ReIT











Ai +Bi 0

0 Ai − Bi










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fi,ImIT fi,ReIT
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

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


=
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

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
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
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
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= Ĥ







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
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







,

where Ĥ = [G1,G2, · · · ,GR] is a 2T × 2R real matrix. Now we can calculate the

expectation over fi,Re and fi,Im. Similar to the argument in the proof of Theorem

7.1, the following can be proved.

Pe ≤ E
gi

det −1/2



I2R +
P1P2T

4
(

1 + P1 + P2

∑R
i=1 |gi|2

)ĤĤt



 .
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The same as before, using the approximation
∑R

i=1 |gi|2 ≈ R, the optimum power

allocation is as given in (7.11). Using this power allocation, (7.34) is obtained.

7.11 Either Ai = 0 or Bi = 0

We have not yet been able to explicitly evaluate the expectation in (7.34). Our

conjecture is that when T ≥ R, the same transmit diversity R
(

1 − log log P
log P

)

will be

obtained. Here we give an analysis of a much simpler, but far from trivial, case:

for any i, either Ai = 0 or Bi = 0. That is, each relay node sends a signal that

is either linear in its received signal or linear in the conjugate of its received signal.

It is clear to see that Alamouti’s scheme is included in this case with R = 2, A1 =

I2, B1 = 0, A2 = 0, and B2 =






0 1

1 0




. The conditions that Ai +Bi and Ai −Bi are

orthogonal become that Ai is orthogonal if Bi = 0 and Bi is orthogonal if Ai = 0.

Theorem 7.7. Design the transmitted signal at the i-th relay node as in (7.31).

Use the optimum power allocation given in (7.11). Further assume that for any

i = 1, · · · , R, either Ai = 0 or Bi = 0. The PEP of mistaking si with sj has the

following Chernoff upper bound.

Pe ≤ E
gi

det−1



IR +
PT

8
(

R +
∑R

i=1 |gi|2
)(Ŝi − Ŝj)

∗(Ŝi − Ŝj)diag {|g1|2, · · · , |gR|2}



 ,(7.35)

where

Ŝi = [A1si +B1si, · · · , ARsi +BRsi] (7.36)

is a T × R matrix which is the distributed space-time code.

Proof: See Section 7.14.2.

(7.35) is exactly the same as (7.12) except that now the distributed space-time
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code is Ŝ instead of S. Therefore, by the same argument, the following theorem can

be obtained.

Theorem 7.8. Design the transmit signal at the i-th relay as in (7.31). Use the

optimum power allocation as given in (7.11). For the full diversity of the space-time

code, assume T ≥ R. Define

M̂ = (Ŝi − Ŝj)
∗(Ŝi − Ŝj). (7.37)

If logP � 1, the PEP has the following Chernoff bound.

Pe .

R∑

k=0

(
8

T

)k ∑

1≤i1<···<ik≤R

[
k∑

l=0

BR(k − l, k)

]

det −1[M̂ ]i1,··· ,ik
logl P

PR
.

The best transmit diversity that can be obtained is α0R. When P � logP ,

Pe .

R∑

k=0

(
8

T

)k ∑

1≤i1<···<ik≤R

[
R∑

l=0

BR(k − l, k)

]

det −1[M̂ ]i1,··· ,ikP
−[α0R+(1−α0)(k−l)].

Proof: The same as the proof of Theorem 7.3 and 7.4.

Therefore, exactly the same transmit diversity is obtained as in Section 7.7 and

7.8. The coding gain for very large P (P � logP ) is det M̂ . When P is not very

large, we not only want det M̂ to be large but also want det[M̂ ]i1,··· ,ik to be large for

all 0 ≤ k ≤ R, 1 ≤ i1 < · · · < ik ≤ R. That is, to have good performance for not very

large transmit power, the distributed space-time code should have the property that

it is “scale-free” in the sense that it is still a good distributed space-time code when

some of the relays are not working.
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7.12 Simulation Results

In this section, we give the simulated performance of the distributed space-time codes

for different values of the coherence interval T , number of relay nodes R, and total

transmit power P . The fading coefficients between the transmitter and the relays,

fi, and between the receiver and the relays, gi, are modeled as independent complex

Gaussian variables with zero-mean and unit-variance. The fading coefficients keep

constant for T channel uses. The noises at the relays and the receiver are also modeled

as independent zero-mean unit-variance Gaussian additive noise. The block error rate

(BLER), which corresponds to errors in decoding the vector of transmitted signals

s, and the bit error rate (BER), which corresponds to errors in decoding s1, · · · , sT ,

is demonstrated as the error events of interest. Note that one block error rate may

correspond to only a few bit errors.

The transmit signals at each relay are designed as in (7.4). We should remark

that our goal here is to compare the performance of linear dispersion (LD) codes

implemented distributively over wireless networks with the performance of the same

codes in multiple-antenna systems. Therefore the actual design of the LD codes and

their optimality is not an issue here: all that matters is that the codes used for

simulations in both systems be the same.8 Therefore, the matrices, Ai, are generated

randomly based on the isotropic distribution on the space of T ×T unitary matrices.

It is certainly conceivable that the performance obtained in the following figures can

be improved by several dB if Ais are chosen optimally.

The transmitted signals s1, · · · , sT are designed as independent N 2-QAM signals.

Both the real and imaginary parts of si are equal probably chosen from the N -PAM

8The question of how to design optimal codes is an interesting one, but is beyond the scope of
this thesis.
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signal set:

√

6

T (N2 − 1)
{−(N − 1)/2, · · · ,−1/2, 1/2, · · · , (N − 1)/2},

where N is a positive integer. The coefficient
√

6
T (N2−1)

is used for the normalization

of s given in (7.1). The number of possible transmitted signal is therefore L2T . Since

the channel is used in blocks of T transmissions, the rate of the code is, therefore,

1

T
logN2T = 2 logN.

In the simulations of the multiple-antenna systems, the number of transmit an-

tennas is R and the number of receive antennas is 1. We also model the fading

coefficients between the transmit antennas and the receive antenna as independent

zero-mean unit-variance complex Gaussian. The noises at the receive antenna are also

modeled as independent zero-mean unit-variance complex Gaussian. As discussed in

the chapter, the space-time code used is the T × R matrix S = [A1s, · · · , ARs].

The rate of the space-time code is again 2 logN . In both systems, sphere decoding

[DAML00, HV02] is used to obtain the ML results.

7.12.1 Performance of Wireless Networks with Different T

and R

In Figure 7.3, the BER curves of relay networks with different coherence interval

T and number of relay nodes R are shown. The solid line indicates the BER of

a network with T = R = 5, the line with circles indicates the BER of a network

with T = 10 and R = 5, the dash-dotted line indicates the BER of a network

with T = R = 10, and the line with stars indicates the BER of a network with

T = R = 20. It can be seen from the plot that the bigger R, the faster the BER
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Figure 7.3: BER comparison of wireless networks with different T and R

curve decreases, which verifies our analysis that the diversity is linear in R when

T ≥ R. However, the slopes of the BER curves of networks with T = R = 5 and

T = 10, R = 5 is the same. This verifies our result that the transmit diversity only

depends on min{T,R}, which is always R in our examples. Increasing the coherence

interval does not improve the diversity. According to the analysis in Section 6 and

7, increasing T can improvement the coding gain. However, when having a larger

coherence interval, not much performance improvement can be seen from the plot by

comparing the solid line (the BER curve of network with T = R = 5) and the line

with circles (the BER curve of network with T = 10, R = 5). The reason may be that

our code is randomly chosen without any optimization.
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7.12.2 Perfromance Comparisions of Distributed Space-Time

Codes with Space-Time Codes

In this subsection, the performance of relay networks using distributed space-time

codes is compared with that of multiple-antenna systems using the same space-time

codes. The performance is compared in two ways. In one, we assume that the total

transmit power for both the systems is the same. This is done since the noise and

channel variances are everywhere normalized to unity. In other words, the total

transmit power in the networks (summed over the transmitter and R relay nodes) is

the same as the transmit power of the multiple-antenna systems. In the other, we

assume that the SNR at the receiver is the same for the two systems. Assuming that

the total transmit power is P , in the distributed scheme the SNR can be calculated

to be P 2

4(1+P )
, and in the multiple-antenna setting it is P . Thus, roughly a 6 dB

increase in power is needed to make the SNR of the relay networks identical to that

of the multiple-antenna systems. In the examples below, plots of both comparisons

are provided.

In the first example, T = R = 5 and N = 2. Therefore, the rate of both the

distributed space-time code and the space-time code is 2 bits per transmission. The

BER and BLER curves are shown in Figure 7.4 and 7.5. Figure 7.4 shows the BER

and BLER of the two systems with respect to the total transmit power. Figure

7.5 shows the BER and BLER of the two systems with respect to the receive SNR.

In both figures, the solid and dashed curves indicate the BER and BLER of the

relay network. The curve with plus signs and curve with circles indicate the BER

and BLER of the multiple-antenna system. It can be seen from the figures that the

performance of the multiple-antenna system is always better than the relay network at

any total transmit power or SNR. This is what we expected because in the multiple-

antenna system, the transmit antennas of the transmitter can fully cooperate and
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Figure 7.4: BER/BLER comparison of relay network with multiple-antenna system
at T = R = 5, rate = 2 and the same total transmit power
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Figure 7.5: BER/BLER comparison of relay network with multiple-antenna system
at T = R = 5, rate = 2 and the same receive SNR
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have perfect information of the transmit signal. Also, Figure 7.4 shows that the BER

and BLER curves of the multiple-antenna system goes done faster than those of the

relay network. However, the differences of the slopes of the BER and BLER curves of

the two systems are diminishing as the total transmit power goes higher. This can be

seen more clearly in Figure 7.5. At low SNR (0-10dB), the BER and BLER curves of

the multiple-antenna system go down faster than those of the relay network. As SNR

goes higher, the differences of slopes of the BER curves and BLER curves vanishes,

which indicates that the two system have about the same diversity at high SNR. This

verifies our analysis of the transmit diversity.

Also, in Figure 7.4, at the BER of 10−4, the total transmit power of the relay

network is about 37.5dB. Our analysis of (7.25) indicates that the performance of

the relay network should be 12.36dB worse. Reading from the plot, we get a 11.5dB

difference. This verifies the correctness and tightness of our upper bound.

In the next example, T = R = 10 and N = 2. Therefore, the rate is again 2.

The simulated performances are as shown in Figure 7.6 and 7.7. Figure 7.6 shows

the BER and BLER of the two systems with respect to the total transmit power.

Figure 7.7 shows the BER and BLER of the two systems with respect to the receive

SNR. The indicators of the curves are the same as before. The BER and BLER of

both the relay network and the multiple-antenna system are lower than those in the

previous example. This is because there are more relay nodes or transmit antennas

present. From Figure 7.6, it can be seen that the multiple-antenna system has a

higher diversity at low transmit power. However, as the total transmit power or SNR

goes higher, the slope differences of the BER and BLER curves between the two

systems diminish. Figure 7.7 shows the same phenomenon. When the receive SNR is

low (0-10dB), the performance of the two systems are about the same. However, the

BER and BLER curves of the multiple-antenna system goes done faster than those

of the relay network. When SNR is high (above 20dB), the BER and BLER curves
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Figure 7.6: BER/BLER comparison of the relay network with the multiple-antenna
system at T = R = 10, rate = 2 and the same total transmit power
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Figure 7.7: BER/BLER comparison of the relay network with the multiple-antenna
system at T = R = 10, rate = 2 and the same receive SNR
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have about the same slope.

Also, in Figure 7.6, at the BER of 10−3, the total transmit power of the relay

network is about 26dB. Our analysis of (7.25) indicates that the performance of the

relay network should be 10.77dB worse than that of the multiple-antenna system.

Reading from the plot, we get a 9dB difference. At a BER of 10−4, the total transmit

power of the relay network is about 30dB. Our analysis of (7.25) indicates that the

performance of the relay network should be 11.39dB worse. Reading from the plot,

we get a 10dB difference.
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Figure 7.8: BER/BLER comparison of the relay network with the multiple-antenna
system at T = R = 20, rate = 2 and the same total transmit power

Figure 7.8 and Figure 7.9 show the performance of systems with T = R = 20 and

N = 2. The rate is again 2. Figure 7.8 shows the BER and BLER of the two systems

with respect to the total transmit power. Figure 7.9 shows the BER and BLER of

the two systems with respect to the receive SNR. The indicators of the curves are
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Figure 7.9: BER/BLER comparison of the relay network with the multiple-antenna
system with T = R = 20, rate = 2 and the same receive SNR
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the same as before. It can be seen from the figures that for total transmit power or

SNR higher than 20, the slopes of the BER and BLER curves of the two systems

are about the same. Also, from Figure 7.9 we can see that for SNR less than 14dB,

the performance of the two systems are about the same. However, the BER and

BLER curves of the multiple-antenna system goes down faster than those of the relay

network. When SNR is high (above 20dB), the performance difference converges.

Again, in Figure 7.8, at a BER of 10−4, the total transmit power of the relay

network is about 26dB. Our analysis of (7.25) indicates that the performance of

the relay network should be 10.77dB worse. Reading from the plot, we get a 9dB

difference.
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Figure 7.10: BER/BLER comparison of the relay network with the multiple-antenna
system at T = 10, R = 5, rate = 2 and the same total transmit power

Finally, we give an example with T 6= R. In this example, T = 10, R = 5 and

N = 2. The rate of the system is again 2. The BER and BLER curves of both
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the relay network and the multiple antenna system with respect to the average total

transmit power are shown in Figure 7.10. The indicators of the curves are the same

as before. The same phenomenon can be observed.

7.13 Conclusion and Future Work

In this chapter, the use of linear dispersion space-time codes in wireless relay net-

works is proposed. We assume that the transmitter and relay nodes do not know

the channel realizations but only their statistical distribution. The ML decoding and

pairwise error probability at the receiver is analyzed. The main result is that the

diversity of the system behaves as min{T,R}
(

1 − log log P
log P

)

, which shows that when

T ≥ R and the average total transmit power is very high (P � logP ), the relay

network has almost the same diversity as a multiple-antenna system with R transmit

antennas and one receive antenna. This result is also supported by simulations. It is

further shown that, assuming R = T , the leading order term in the PEP behaves as

1
|det(Si−Sj)|2

(
8 log P

P

)R
, which compared to 1

|det(Si−Sj)|2
(

4
P

)R
, the PEP of a space-time

code, shows the loss of performance due to the fact that the code is implemented

distributively and the relay nodes have no knowledge of the transmitted symbols. We

also observe that the high SNR coding gain, | det(Si − Sj)|−2, is the same as that

arises in space-time coding. The same is true at low SNR where a trace condition

comes up.

We then improve the achieved diversity gain slightly (by the order no larger than

O
(

log log P
log2 P

)

). Furthermore, a more general type of distributed space-time linear codes

is discussed, in which the transmission signal from each relay node to the receive node

is designed as a linear combination of both its received signal and the conjugate of its

received signal. For a special case, which includes the Alamouti’s scheme, exactly the

same diversity gain can be obtained. Simulation results on some randomly generated
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distributed space-time codes are demonstrated, which verify our theoretical analysis

on both the diversity and coding gain.

There are several directions for future work that can be envisioned. One is to study

the outage capacity of our scheme. Another is to determine whether the diversity

order min{T,R}
(

1 − log log P
log P

)

can be improved by other coding methods that are

more complicated and general than linear code used here. We conjecture that it

cannot. Another interesting question is to study the design and optimization of

distributed space-time codes. For this the PEP expression (7.19) in Theorem 7.3

should be useful. In fact, relay networks provide an opportunity for the design of

space-time codes with a large number of transmit antennas, since R can be quite

large. Also, in our network model, only single antenna is used at every node. What

if there are multiple antennas at the transmit node, the receive node, and/or the

relay nodes? For multiple-antenna systems, it has been shown in Chapter 2 that the

diversity increases linearly in the number of transmit and receive antennas. Here,

in relay networks, can we obtain the same linear increase in the number of antennas

nodes in the network?

As discussed in the introduction of this chapter, decode-and-forward can achieve

higher diversity however with a strict rate constraint. With the scheme of distributed

space-time coding, in which no decoding is need at any relay node, there is no rate

constraint. If, in the relay network, we allow some of the relay nodes to decode

and then all the relay nodes, those who decode and those who do not, generate

a distributed space-time code, it is conceivable that the diversity can be improved

with some sacrifice of rate (needed for the decoding relay nodes to decode correctly).

Therefore there is a diversity-and-rate trade-off to be analyzed.

Finally, in our network model, it is assumed that the receive node knows all the

channel information, which needs the system to be synchronized at the symbol level

and needs training symbols to be sent from both the transmit node and the relay
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nodes. It is interesting to see whether differential space-time coding techniques can

be generalized to the distributed setting that there is no channel information at the

receiver as well. The Cayley codes [HH02a] might be a suitable candidate for this.

7.14 Appendices

7.14.1 Proof of Lemma 7.1

Proof: We want to explicitly evaluate

I ≡
∫ ∞

x

· · ·
∫ ∞

x

(

A+

k∑

i=1

λi

)k

e−λ1e−λ2 · · · e−λk

λ1 · · ·λk
dλ1 · · ·dλk.

Consider the expansion of
(

A+
∑k

i=1 λi

)k

into monomial terms. We have

(

A+

k∑

i=1

λi

)k

=

k∑

j=0




∑

1≤l1<···<lj≤k

k∑

i1=1

k−i1∑

i2=1

· · ·
k−i1−···−ij−1∑

ij=1

C(i1, . . . , ij)λ
i1
l1
λi2

l2
· · ·λij

lj
Ak−i1−···−ij



 ,

where j denotes how many λ’s are present, l1, . . . , lj are the subscripts of the j λ’s

that appears, im ≥ 1 indicates that λlm is taken to the im-th power (the summation

should be
∑

i1,...,ij≥1
P

im≤k

,

which is equivalent to
k∑

i1=1

k−i1∑

i2=1

· · ·
k−i1−···−ij−1∑

ij=1

.

if we sum i1 first, then i2, etc. ), and finally

C(i1, . . . , ij) =

(
k

i1

)(
k − i1
i2

)

· · ·
(
k − i1 − · · · − ij−1

ij

)
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counts how many times the term λi1
l1
λi2

l2
· · ·λij

lj
Ak−i1−···−ij appears in the expansion.

Thus we have

I =

k∑

j=0

∑

1≤l1<···<lj≤k

k∑

i1=1

· · ·
k−i1−···−ij−1∑

ij=1

C(i1, . . . , ij)I(j; l1, . . . , lj; i1, . . . , ij),

where

I(j; l1, . . . , lj; i1, . . . , ij) ≡
∫ ∞

x

· · ·
∫ ∞

x

λi1
l1
λi2

l2
· · ·λij

lj
Ak−i1−···−ij

e−λ1 · · · e−λk

λ1 · · ·λk

dλ1 · · ·dλk.

We compute

I(j; l1, . . . , lj; i1, . . . , ij)

= Ak−i1−···−ij

(
j∏

m=1

∫ ∞

x

λim−1
lm

e−λlm dλlm

)
∏

i6=i1,...ij

∫ ∞

x

e−λi

λi
dλi

= Ak−i1−···−ij

(
j∏

m=1

Γ(im, x)

)

[−Ei(−x)]k−j .

Note that the result is independent of l1, . . . , lj. Finally adding the terms up, we have

I

=
k∑

j=0

∑

1≤l1<···<lj≤k

k∑

i1=1

· · ·
k−i1−···−ij−1∑

ij=1

C(i1, . . . , ij)A
k−i1−···−ij [−Ei(−x)]k−j

j
∏

m=1

Γ(im, x)

=
k∑

j=0








∑

1≤l1<···<lj≤k

1









k∑

i1=1

· · ·
k−i1−···−ij−1∑

ij=1

C(i1, . . . , ij)A
k−i1−···−ijΓ(i1, x) · · ·Γ(ij, x)









[−Ei(−x)]k−j

=

k∑

j=0





(
k

j

) k∑

i1=1

· · ·
k−i1−···−ij−1∑

ij=1

(
k

i1

)

· · ·
(
k − i1 − · · · − ij−1

ij

)

Γ(i1, x) · · ·Γ(ij, x)A
k−i1−···−ij





[−Ei(−x)]k−j

≡
k∑

j=0

BA,x(j, k) [−Ei(−x)]k−j .



236

Thus ends the proof.

7.14.2 Proof of Theorem 7.7

Proof: Note that






gk,ReIT −gk,ImIT

gk,ImIT gk,ReIT











Ak 0

0 Ak




 =






Ak 0

0 Ak











gk,ReIT −gk,ImIT

gk,ImIT gk,ReIT




 ,






gk,ReIT −gk,ImIT

gk,ImIT gk,ReIT











0 Bk

Bk 0




 =






0 Bk

Bk 0











gk,ReIT gk,ImIT

−gk,ImIT gk,ReIT




 ,

and






gk,ReIT ∓gk,ImIT

±gk,ImIT gk,ReIT











(si − sj)Re −(si − sj)Im

(si − sj)Im (si − sj)Re






=






(si − sj)Re −(si − sj)Im

(si − sj)Im (si − sj)Re











gk,Re ∓gk,Im

±gk,Im gk,Re




 .

Therefore,






gk,ReIT −gk,ImIT

gk,ImIT gk,ReIT











Ak +Bk 0

0 Ak − Bk











(si − sj)Re −(si − sj)Im

(si − sj)Im (si − sj)Re






=






Ak +Bk 0

0 Ak −Bk











(si − sj)Re −(si − sj)Im

(si − sj)Im (si − sj)Re











gk,ReIT −sgn kgk,ImIT

sgn kgk,ImIT gk,ReIT




 ,
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where sgn k = 1 if Bk = 0 and sgn k = −1 if Ak = 0. Thus,

GkGt
k =






Ak +Bk 0

0 Ak −Bk











(si − sj)Re −(si − sj)Im

(si − sj)Im (si − sj)Re











|gk|2 0

0 |gk|2











(si − sj)Re −(si − sj)Im

(si − sj)Im (si − sj)Re






t 




Ak +Bk 0

0 Ak − Bk






t

.

Define

S ′
i =











A1 − B1 0

0 A1 − B1











si,Re −si,Im

si,Im si,Re




 · · ·






AR +BR 0

0 AR −BR











si,Re −si,Im

si,Im si,Re









 .(7.38)

(7.34) thus becomes,

Pe . E
gi

det −1



I2R +
PT

8
(

R +
∑R

i=1 |gi|2
) (S′

i − S′
j)diag {|g1|2, |g1|2, · · · , |gR|2, |gR|2}(S′

i − S′
j)

t





= E
gi

det −1



I2R +
PT

8
(

R +
∑R

i=1 |gi|2
) (S′

i − S′
j)

t(S′
i − S′

j)diag {|g1|2, |g1|2, · · · , |gR|2, |gR|2}



 .

Define

SGN = diag







· · ·






1 0

0 sgn k




 · · ·







.

Note that det SGN = 1. From the definition of S ′
i in (7.38),

(S ′
i − S ′

j)SGN

=




 · · ·






Ak +Bk 0

0 Ak − Bk











si,Re − sj,Re −sgn k(si,Im − sj,Im)

si,Im − sj,Im sgn k(si,Re − sj,Re)




 · · ·








238

=




 · · ·






[Ak(si − sj) +Bk(si − sj)]Re − [Ak(si − sj) +Bk(si − sj)]Im

[Ak(si − sj) +Bk(si − sj)]Im [Ak(si − sj) +Bk(si − sj)]Re




 · · ·




 .

It is easy to see that the matrix






[Ŝi − Ŝj]Re −[Ŝi − Ŝj]Im

[Ŝi − Ŝj]Im [Ŝi − Ŝj]Re




 can be obtained by

switching the columns of (S ′
i − S ′

j)SGN . More precisely,






[Ŝi − Ŝj]Re −[Ŝi − Ŝj]Im

[Ŝi − Ŝj]Im [Ŝi − Ŝj]Re




 = (S ′

i − S ′
j)SGN

R∏

k=2

Ek,

where Ek = [e1, · · · , ek−1, e2k−1, ek, · · · , e2k−2, e2k, · · · , e2R] with {ek} the standard

basis of RR. It is easy to see that E−1
k = Et

k and detEk = 1. Right multiplying by

Ek, we move the (2k − 1)-th column of a matrix to the k-th position and shift the

k-th to (2k − 2)-th columns one column right, that is,

[c1, · · · , cn]Ek = [c1 · · · , ck−1, c2k−1, ck, · · · , c2k−2, c2k, · · · , c2R] .

Therefore,

(S ′
i − S ′

j)
t(S ′

i − S ′
j)diag {|g1|2, |g1|2, · · · , |gR|2, |gR|2}

= SGN
R∏

k=2

Ek






[Ŝi − Ŝj]Re [Ŝi − Ŝj]Im

−[Ŝi − Ŝj]Im [Ŝi − Ŝj]Re






t 




[Ŝi − Ŝj]Re [Ŝi − Ŝj]Im

−[Ŝi − Ŝj]Im [Ŝi − Ŝj]Re






2∏

k=R

Et
kSGN diag {|g1|2, |g1|2, · · · , |gR|2, |gR|2}

= SGN
R∏

k=2

Ek






[Ŝi − Ŝj]Re [Ŝi − Ŝj]Im

−[Ŝi − Ŝj]Im [Ŝi − Ŝj]Re






t 




[Ŝi − Ŝj]Re [Ŝi − Ŝj]Im

−[Ŝi − Ŝj]Im [Ŝi − Ŝj]Re






diag {|g1|2, · · · , |gR|2, |g1|2, · · · , |gR|2}
2∏

k=R

Et
kSGN
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= SGN

R∏

k=2

Ek






[(Ŝi − Ŝj)
∗(Ŝi − Ŝj)]Re [(Ŝi − Ŝj)

∗(Ŝi − Ŝj)]Im

−[(Ŝi − Ŝj)
∗(Ŝi − Ŝj)]Im [(Ŝi − Ŝj)

∗(Ŝi − Ŝj)]Re






diag {G,G}
2∏

k=R

Et
kSGN

= SGN
R∏

k=2

Ek






[(Ŝi − Ŝj)
∗(Ŝi − Ŝj)G]Re [(Ŝi − Ŝj)

∗(Ŝi − Ŝj)G]Im

−[(Ŝi − Ŝj)
∗(Ŝi − Ŝj)G]Im [(Ŝi − Ŝj)

∗(Ŝi − Ŝj)G]Re






2∏

k=R

Et
kSGN ,

where we have defined G = diag {|g1|2, · · · , |g1|2}. Note that for any complex matrix

A,

det






ARe AIm

−AIm ARe




 = | detA|2.

Therefore,

det



I2R +
PT

8
(

R +
∑R

i=1 |gi|2
)(S′

i − S′
j)

t(S′
i − S′

j)diag {|g1|2, |g1|2, · · · , |gR|2, |gR|2}





= det




I2R +

PT

8
(

R +
∑R

i=1 |gi|2
)






[(Ŝi − Ŝj)
∗(Ŝi − Ŝj)G]Re [(Ŝi − Ŝj)

∗(Ŝi − Ŝj)G]Im

−[(Ŝi − Ŝj)
∗(Ŝi − Ŝj)G]Im [(Ŝi − Ŝj)

∗(Ŝi − Ŝj)G]Re











= det






[IR + PT
8(R+

PR
i=1 |gi|2)

(Ŝi − Ŝj)
∗(Ŝi − Ŝj)G]Re [IR + PT

8(R+
PR

i=1 |gi|2)
(Ŝi − Ŝj)

∗(Ŝi − Ŝj)G]Im

−[IR + PT
8(R+

PR
i=1 |gi|2)

(Ŝi − Ŝj)
∗(Ŝi − Ŝj)G]Im [IR + PT

8(R+
PR

i=1 |gi|2)
(Ŝi − Ŝj)

∗(Ŝi − Ŝj)G]Re






= det



IR +
PT

8
(

R +
∑R

i=1 |gi|2
)(Ŝi − Ŝj)

∗(Ŝi − Ŝj)GG∗



 .
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Chapter 8 Summary and Discussion

Reaching the end of this thesis, to conclude, a brief summary of contributions of this

thesis and discussions on possible future research directions are given in the following.

As this thesis can be roughly divided into two big parts: the MIMO/multiple-antenna

systems part and the wireless ad hoc network part, a separate summary and discussion

are provided for each.

8.1 Summary and Discussion on Multiple-Antenna

Systems

From Chapter 1 to Chapter 6, multiple-antenna systems are discussed. In the first

two chapters, an introduction of multiple-antenna systems is given including the fad-

ing model, the systems model, the Shannon capacity, the training-based scheme, the

differential and non-differential unitary space-time modulations, and the diversity and

coding gain according to the PEP of multiple-antenna systems. An example, which

is the well-known Alamouti’s scheme, is presented. A brief review of the real and

complex sphere decoding algorithms, which are widely used as fast ML decoding al-

gorithms in multiple-antenna communications, is also given. In Chapter 3, non-square

unitary space-time codes is designed via Cayley transform. The code can be used to

systems with any number of transmit and receive antennas with a fast nearly optimal

decoding algorithm. Preliminary simulations show that the code is far better than

the uncoded training-based space-time schemes and only slightly underperforms op-

timized training-based schemes using orthogonal designs and linear dispersion codes.

Chapters 4, 5, and 6 are on differential unitary space-time codes based on groups. In
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Chapter 4, the idea of group-based differential unitary space-time codes is introduced

and its advantages are explained. The research on rank 2 Lie groups is also motivated

in Chapter 4. Following this, differential unitary space-time codes based on rank 2

Lie groups, Sp(2) and SU(3), are described, which can be used in systems with four

and three transmit antennas and any number of receive antennas, respectively. The

codes are fully diverse with high diversity products. Simulations show that they are

superior to existing differential Cayley codes, orthogonal designs, finite-group-based

codes, and are comparable to the elaborately-designed non-group codes which have a

structure of products of groups.

There are still many open questions and unsolved problems in this area. The

most prominent one is the capacity. The capacity of multiple-antenna systems is still

unknown when neither the transmitter and the receiver has the channel information,

which is the most practical case. Although some results are obtained for very high

[MH99, HM00, ZT02, LM03] and very low SNR cases [LTV03, PV02, HS02b, RH04],

we just scratched the surface of the research on the capacity of multiple-antenna

systems. The capacity when partial channel information is available and the capacity

for systems with frequency-selective channels are also open. This area of research will

remain timely and important for many years.

As most research on multiple-antenna systems focused on exploiting the diversity

gain provided by multiple antennas, there is another gain, called the spatial multiplex-

ing or the degrees of freedom, corresponding to the increase in the data rate provided

by multiple antennas. In [ZT03], it is proved that these two types of gains can be

obtained simultaneously, however, there is a fundamental trade-off between how much

each of the two gains can be extracted. Then comes the question of finding practical

codes which can actually achieve the optimal trade-off between diversity and spatial

multiplexing with good performance. In [GCD04], a coding scheme called LAST cod-

ing is proposed and is proved to achieve the optimal trade-off. Other related work
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can be found in [LK04, GT04, TV04].

Another open problem is the error rate of multiple-antenna systems. The analysis

on the exact block or bit error rate is very difficult. In all the analysis given in this

thesis, the Chernoff upper bound on the pairwise error probability is used. There are

also works on the exact pairwise error probability [TB02]. Any improvement in the

analysis of exact block/bit error rate or any results of non-trivial lower bound on the

PEP will be very interesting.

8.2 Summary and Discussion on Wireless Ad Hoc

Networks

Chapter 7 is about wireless ad hoc networks. In this chapter, the idea of space-time

coding proposed for multiple-antenna systems is applied to wireless relay networks,

by which diversity R is achieved when the transmit power is asymptotically high,

where R is the number of relay nodes in the network. This result indicates that

wireless networks with R relay nodes can achieve the same diversity as multiple-

antenna systems with R transmit antennas and one receive antenna at asymptotically

high transmit power although space-time codes are used distributively among the R

relay nodes.

As discussed in Chapter 7, the straightforward future research are the analysis

on the outage capacity with this coding scheme and coding scheme designs when no

channel information is known at the receiver. Another possibility is the optimization

of the distributed space-time codes. It is mentioned in Chapter 7 that the design

criterion is the same as space-time codes for multiple-antenna systems for very high

and low transmit power. However, it is different for intermediate transmit power.

Also, the design of space-time codes for large R is rare.

In research on wireless relay networks, as mentioned in the introduction of Chap-



243

ter 7, there are two mainly used cooperative diversity algorithms for transmissions

between a pair of nodes through a bunch of relay nodes: amplify-and-forward [DH03]

and decoding-and-forward [LW03, NBK04]. Intuitively, when the receive SNR of a

relay node is low (for example, if the relay is far from the transmitter), it is not ben-

eficial for the relay to do decoding since with high probability, it will make an error.

As discussed in [DH03], wireless networks are most power efficient in the low power

regime, in which case, the receive SNR at the relay nodes is low. In this situation,

decoding-and-forward is not advantageous. However, if some relay nodes are very

near the transmitter, it might be advantageous for them to decode since they have

high receive SNRs according to diversity gain, capacity, outage capacity, etc. In our

approach, simple signal processing, which is called the distributed space-time coding,

is used at the relay nodes. No decoding needs to be done at the relay nodes, which

both saves the computational complexity and improves the reliability when the SNR

is not very high. This algorithm is superior to amplify-and-forward since the latter is

actually a special case of the former. Other work based on this algorithm can be find

in [CH03, HMC03, LW03]. A mixed algorithm of decode-and-forward and distributed

space-time coding according to the instantaneous SNR and transmission rate at the

relay nodes will be interesting. A trade-off between diversity and rate is expected.

In our network model, all the relay nodes have the same power allocation. This

might not be applicable for real ad hoc or sensory networks. What is more important

is that this might be not optimal if some relay nodes have full or partial knowledge

of their local channels. Relay nodes can estimate their instantaneous receive SNR

from the transmit node at every time. Therefore, it might be advantageous for those

relay nodes who have high SNR to use higher transmit power to relay the signals.

Therefore, the optimal power allocation among the relay nodes is another interesting

problem.

In the network model in Chapter 7, there is only one transmit-and-receive pair,
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which is applicable to most sensory networks but not to general ad hoc wireless

networks. When there are multiple pairs of transmit and receive nodes, not only

does noise exist but also interference. One most straightforward method to solve this

is to use time division or frequency division by assigning a different time instant or

frequency interval to every pair. However, it will be interesting to see if there are

better and more efficient strategies.

As discussed before, because of their features and related issues (distributivity,

interference, routing, power constraint, mobility, etc.), analysis on wireless ad hoc

networks is very difficult. Most questions on wireless ad hoc networks are still open.

For example, what is the capacity, what is the optimal diversity gain, is multi-hop

routing better than single-hop routing, and what is the optimal power allocation? Re-

lated work can be found in [GK00, GK01, GT02, TG03]. To get some results in this

area, most of the work nowadays focus on one of the two special networks: networks

with a small amount of nodes so that theoretical analysis are possible (for example,

[TG03, CH04]) and networks with very large number of nodes in which asymptotic

results may be obtained [GK00, GK01, GT02]. Understanding wireless ad hoc net-

work is the key to our ultimate goal of wireless communication: to communicate

with anybody anywhere at anytime for anything. For a considerable period of time,

research on wireless ad hoc networks will keep timely, interesting and significant.
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