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ABSTRACT

The phenomenon of wave propagation in viscoelastic materials
is investigated both theoretically and experimentally, with attention
directed to two areas. First, analytical methods of solution are devel-
oped for certain wave propagation problems in one and two dimensions
utilizing realistic material properties. This is accomplished by use of
time-dependent material property characterization through a Dirichlet
series representation to overcome the limitations of the widely-used
simple spring and dashpot models involving two or three elements.

The Laplace transformed solutions are then inverted by an extension
of the Schapery collocation method to dynamic situations.

The second topic deal.s with dynamic photoelasticity applied to
viscoelastic materials. It is shown that the relationships between
stress optic and strain optic coefficients for linearly viscoelastic
materials can be formulated. Then the time-dependent birefringence
characteristics of a typical low modulus polymer material are deter-
mined from constant strain rate tests for a full range of dynamic loading
rates by taking advantage of the time-temperature shift phenomenon.
Much recent work in dynamic photoviscoelasticity has been based on
static calibrations only. Hence to put the technique on a firm foundation
and indicate the general necessity of including the time dependency in
treatment of material properties, a comparison is made of predicted
fringe patterns with experimental results for both one- and two-
dimensional situations. The cases considered are the rod and semi-
infinite plate geometries under quasi-step pressure inputs, for which
viscoelastic solutions are obtained from the wave propagation analysis
in the first part of the thesis. The results indicate the feasibility of

quantitative photoviscoelasticity for dynamic stress analysis.
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INTRODUCTION

Dynamic analysis in viscoelastic media has received increasing
attention in recent years. Distinguished by a strong sénsitivity to rate
and temperature effects, viscoelastic materials are making their
appearance in such diverse uses as binder for solid propellant rockets,
shock-absorbing mountings and various structural applications, many
of which are subject to impulsively applied loads. Hence in addition to
the usual effect of the time parameter in the resulting vibration or
stress wave phenomena, there arises the possibility of direct inter-
action between loading input and basic material properties. This
interplay leads to analytical complications which so far have been
adequately resolved only in elementary geometries or simple mathe-
matical characterizations of the viscoelastic material in question.

Pioneering work in the treatment of materials possessing both
elastic and viscous characteristics centered on theoretical represen-
tation of mechanical properties by simple spring and dashpot models
of two or three elements. Lacking a stimulus to further refinement
for many years, the analysis remained largely on this level until the
introduction of materials with broad-band response characteristics
demonstrated the necessity of more realistic material representation.

The first portion of this dissertation presents a method of
dynamic analysis in linearly viscoelastic media involving a special
series representation of mechanical properties designed to overcome
thé limitations of the simple model approach. Indeed, it seems

appropriate to take up again the whole field of dynamic viscoelastic
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analysis; hence a solution technique is proposed involving the extension
to dynamic situations of a collocation Laplace transform inversion pro-
cedure previously used for static problems. The combination of these
two features makes possible the more accurate solution of many problems
in viscoelastodynamics. Part I trcats the problem of the wave propaga-
tion in a semi-infinite uniaxial rod subjected to a step load input at its
end. Associated two-dimensional problems for the plane strain and
plane stress analysis of a semi-infinite medium loaded by a step
pressure pulse moving along the boundary are considered in Part II.

The subject of quantitative photoviscoelasticity also requires
development inasmuch as the optical as well as mechanical properties
of pertinent materials are also time and temperature dependent. It
appears that until very recently experimentalists have not made a
comprehensive attempt to characterize these properties simultaneously,
especially for dynamic investigations where they are important factors.
Indeed, much of the present research originated in a photoelastic test
program to simulate the dynamic stresses due to ground shock loading.
The results of this program, reported in Part IV, are based upon the
theoretical relations and dynamic birefringence calibration mecthods
detailed in Part III as illustrated experimentally using Hysol 8705, a
high polymer synthetic rubber. It will be seen that a number of the
analytical features of the early part of the thesis prove to be equally
powerful in developing the photoviscoelastic relations.

Predicted photoviscoelastic fringe patterns from the theoretical
stress solutions of Parts I and II using thé birefringence data of Part III

are compared with high-speed camera results from similar experimental
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situations in Part IV, where the equipment and procedures used in
the tests are also described.

The research reported here is designed to provide more
accurate analytic solutions to dynamic viscoelastic problems by
using realistic material property representations, to serve as a
means of checking the applicability of the simple model approach,
and to illustrate the feasibility of quantitative photoviscoelastic

analysis for the determaination of dynamic stresses.
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PART I

LINEAR THEORY OF ONE-DIMENSIONAL WAVE PROPAGATION

The analysis of wave propagation in solid media genérally in-
volves two rather different sorts of problems. The first consists of
writing the differential equation of motion and associated boundary
and initial conditions for the geometry and material considered. The
other and frequently more difficult task is the solution of this equation.
Wave effects in viscoelastic materials illustrate this poinf quite

strikingly.

A. WAVES IN ELASTIC RODS

Before treating the viscoelastic problem, a brief survey of
the approaches taken in the case of elastic wave propagation in a rod
will illuminate several aspects of the situation. Kolsky (1) has out-
lined the basic problem involving low-frequency plane longitudinal
waves in a semi-infinite rod which result in non-dispersive propaga-
tion. The effect of lateral inertia was incorporated by Rayleigh (2)
in a first order correction applicable at the low end of the frequency
spectrum.

The exact equations from linear elasticity for an infinite
train of waves were derived by Pochhammer (3) and Chree (4); their
solution, in which a frequency equation is generated by the require-
ment of a traction-free rod surface, pointed out the nature of the
geometric dispersion to be expected. At input wave lengths either
small or large compared to the thickness of the rod, a constant wave

propagation speed is expected; in between these limits a gradual
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reduction in the speed of the fundamental mode with decreasing wave
length occurs. Basically this represents the effect of a boundary
with associated reflections as the wave moves down the rod. Precise
numerical solutions of the Pochhammer-Chree equations by Davies (5)
indicated the propagation characteristics of the various modes. At
the conclusion of the present analysis some comments will be made
regarding the effect of these factors on the waves in viscoelastic

media.

B. VISCOELASTIC ANALYSIS

The specific case of a one-dimensional viscoelastic rod loaded
dynamically in compression has been discussed previously by Lee and
Morrison (6) using idealized model representations of the viscoelastic
material. It is proposed to treat the same problem using a more
general and complete representation {7) of mechanical properties
based on the actual rate or time dependency of real viscoelastic ma-
terials; this dependency is found to spread over a fairly large number
of decades of logarithmic time (or frequency of input).

The Laplace transform approach is suited to problems involv-
ing the propagation of transient effects and forms the basis for this
analysis. As compared to the case of elastic solids however, with
viscoelastic media one faces the two additional complications of
representing the time~dependént material properties and then invert-
ing the transformed equations of motion subject to this added
complexity.

Information of a sort can usually be extracted if a wave front

expansion and long-time solution are employed (8), but it is always
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hoped that a more complete solution is possible. An approach widely
applied in the past ten years is the use of model representation.
Kolsky (9) has pointed out that most researchers have found that a
realistic material representation extending over about ten decades
of log time leads to a prohibitive numerical calculation problem. As
a result the use of simple spring and dashpot models incorporating
two to four elements has been customary. These are adequate to
cover one or two decades of log time but fail quite badly for larger
ranges of time (or equivalently, frequency). To overcome this
rather basic limitation, especially in engineering as opposed to
qualitative situations, the present analysis provides techniques
suitable for solving certain wave propagation problems using realistic
broad-band viscoelastic material properties. It depends on a method
of material characterization utilizing a Dirichlet series representa-
tion of the operational modulus, and then a numerical collocation
inversion process to obtain the wave propagation solution. As with
all numerical techniques, the example is more restrictive than a
fully analytical solution, but it nevertheless reveals several features

believed to be typical of wave propagation in viscoelastic mecdia.

1.1 Mathematical Formulation

To illustrate the method of solution, consider the one-
dimensional problem of wave propagation in a thin semi-~infinite
rod. The loading on the end of the rod will consist of a step input
which can be either a stress or a displacement boundary condition.
Since primary interest is centered in viscoelastic effects, we

assume no geometric dispersion, i.e., no lateral inertia effects
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will be taken into account. As noted above, several authors have
treated this aspect in elastic analysis; hence we can estimate the
importance of this effect to the viscoelastic problem. Indeed, it
will be seen that the higher frequency components of the step load-
ing are rapidly attenuated. Consequently, the geometric dispersion
is less severe than it otherwise would be.

If x is the coordinate along the rod axis, the corresponding

one-dimensional equation of motion is

da/dx = p Bzu/atz (1.1)
where

o(x,t) = uniaxial stress

p = mass density of the material

u(x,t) = displacement in the x-direction.

The boundary condition imposed at the end is assumed to be either
o(0,t) = GOH(t) (1.23a)
or
u(0,t) = uOH(t) (1.2b)

where H(t) is the Heaviside step function.
Assuming the rod to be initially undisturbed, the Laplace
transform (designated by a bar over the variable) of (1. 1) yields

an ordinary differential equation,

dE/dx=ppZE (1.3)



-8-
because the transform parameter p can be treated as a constant until
the final inversion.

To complete the formulation of a displacement equation of
motion from 1.3 requires a relation between the stress and displace-
ment. The most general kind of linear stress-strain relation is
deduced by means of Boltzmann's superposition principle and takes
the form of an integral equation. Gross (10) gives two alternative

forms for this equation:

t
€ (t) =S x te-7) 34 ar (L. 4)
-0
t
cf(t)=5 d)(t-'r)%%-'-’—)d'r (1.5)
-

where X(t) and ¢(t) are "memory" functions and the integrals are de-

i

scribed as "hereditary." If, following the formulation of Berry and

Hunter (11), we put
X(t) = a+ bt+ O{t) (1. 6)
o(t) = a' + b'&(t) + Y(t) (1.7)

where a, b, a', b' are numerical constants (which may assume the
value zero depending on the particular material), and 6(t) is the Dirac
delta function, then the functions 8(t) and yi(t) correspond, respectively,
to the creep and relaxation functions of Gross. The former, 0(t), is
associated with the strain response to a step stress input and is mono-
tonic increasing with the value zero at t = 0. The latter, (t), is

associated with the stress response to a step strain input and is
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monotonic decreasing with the value zero att = . Gross (10) derives
the conditions under which the equations 1.4 and 1.5 are compatible.
The creep function 6(t) is often represented in terms of a retar-
dation spectrum L(7), which is a distribution function of retardation

times of strain, by the integral

(8 0]
o(t) = 9(00)5 L(r) (- e /7y a7 (1.8)
0

where 0(w) serves as a normalizing factor. In a similar way, the
relaxation function Y(t) can be expressed in terms of a relaxation

spectrum H(7) thus:
oo

ylt) = L[;(O)S H(r) e /7 ar . 1.9)
0

When the distributions degenerate into discontinuous line spectra,

that is, when
6{co) L(T) =Z Ai 6(7-—7-i) (1.10)
i

and

P(0) H(7) =z B, &(7-73) (1.11)
i

it is found (11) that

6(t) =Z A (- e /i) (1.12)
i

and
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-l:/'r'i
di(t) = Z Bi e . (1.13)
i
In this case it can be shown that the stress-strain relation can be

written as the partial differential equation

n m
oo 8o _ o€ €
a00+al—a—t+...+an—n—boe+blﬁ+...+b

m (1.14)
ot ot
where thea,, ..., a_, bnr, «.., b are numerical constants (for iso-
0 n® "0 m

thermal conditions). The line spectra and 1.14 can be shown to
represent physically a combination of spring and/or dashpot elements
in series or parallel whose spring moduli and dashpot viscosities are
proportional to the constants. In the limit as n and m approach infinity,
the two formulations 1.14 and 1.4 (or 1.5) become equivalent.

It is the differential equation form that is found here more

convenient. Hence the one-dimensional viscoelastic stress-strain

relationship (12) is formulated as
Po = Qe (1.15)

where P and Q stand for the linear differential operators of the form
n . .
i§0 a; 8'/ot'. Transforming 1.15 and using the strain-displacement

relation gives

o(x,p) = [Q(p)/P(p)] €(,p) = [R(p)/P(p)] dul(x,p)/dx (1.16)

where P and Q now become algebraic operators in the Laplace trans-
form parameter p. If the indicated division can be carried out, the

operational tensile modulus is defined as
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E(p) = Q(p)/P(p) - (1.17)
Combining 1.16 and 1.17 with 1.3 gives

2

E(p)a®T/ax® = pp’ T (1.18)

which has only the solution

Tp) = Ae XP/c(p) (1.19)
where
c(p) = VE(p)/p = "operational" wave speed (1. 20)

because the positive exponential solution has been rejected since only

outgoing waves are permitted by the physics of the situation.

1.2 Standard Linear Solid Material

In general, a large number of terms would be required in the
operators P and Q of 1.15 to represent a real material; however, as
pointed out above, the studies done heretofore have employed only
very restricted model representations of two to four elements. Hence,
in order to compare later with the method of analysis to be proposed,
we first consider the case of a standard linear solid to which an
integral solution has been given by Morrison (13). The model con-
sists of three elements, a spring of modulus E' in series with a
dashpot of viscosity coefficient 1/u, both in parallel with a spring E.

In Morrison's notation, the relationship of stress (¢') to strain (€) is

(1/E") do' /dt +po' = (L + E/E') de /dt + Epe . (1.21)
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Thus an analytic expression of the form of 1.15 is available for this
simple model representation. Morrison has shown that the resulting
one-dimensional differential equation of motion in terms of stress is
identical in form to that for displacement; hence the solution expres-
sions have the same form also, provided the initial and boundary
conditions are of the same type. In terms of the dimensionless time
7' after the arrival of the fastest (glassy) wave where c ., is the

G

dimensionless glassy wave speed in the material, Morrison's trans-

formed solution for a step pressure input of magnitude % and the
special case E = E' is

S (6,0') = 0/p') exp {-&p' P2/ 2p)21/202] ) (L.22)
where

S' = ¢'/o, = dimensionless stress

£ = (pE)% px = dimensionless distance

7 = Ept = dimensionless time

T o= T - “E,/cG

p' = Laplace transform parameter corresponding to 7'.

Morrison carries out an inversion by a rather involved numerical inte -
gration of the inversion integrals to obtain the final solution for S'.
Of course, an asymptotic expansion of p'S', evaluated as p'— o, gives
the wave front stress.

Before discussing the Morrison results, we briefly describe
and then apply a rhore widely applicable method of Laplace transform
inversion to be used in several phases of £his study. Actually two

inversion techniques are proposed; both methods have been formulated
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in some detail for other applications by Schapery (11, 12). The first
is a very rapid approximation technique suitable for step function inputs
termed the direct method; it depends on the condition that the derivative
with respect to log time of the ultimate time dependent solution
(dS'( 7' )/d(log 7')) is a slowly varying function of log time. Corres-
pondingly it is found that d[p'S'(p')] /d[log p'] must be a slowly varying
function of log p'. If this condition holds over approximately a two-
decade interval, then a Taylor's series expansion of the solution shows

that a reasonably good approximate inversion is given by

S'(7') = [p'S'{p')] ‘ (1.23)

o'
This is an extremely rapid method to apply and as we shall see yields
very informative results. The short time limit (p' — o) is recognized
as giving the glassy wave front stress value while the long-time stress
behavior is given by the limit as p' — 0.

The second and more versatile inversion technique, in contrast
to the direct method, is readily used with the Duhamel integral to give
the response to other than step function loads. It is a collocation
procedure in which the transient part of the solution is represented

by a Dirichlet series of decaying exponentials:
n
. . -7 /Yi-
AS D('r ) = Sie . (1. 24)
i=1
Again without going into details, it suffices to point out heuristically

that viscoelastic materials have exponential stress relaxalion charac-

teristics and the above expression ingeniously allows a wide spectrum
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of relaxation times, e.g., a reasonably large number of springs and
dashpots may be incorporated in the material representation.

The Y; in 1.24 are positive constants prescribed in such a way
as to provide adequate coverage of the time spectrum and the Si are
unspecified constants to be evaluated by minimizing the total square
error between the actual AS' and AS'D given by the series. This

minimizing procedure for a step loading leads to the relations

S.

;i=1,2, ..., n (L. 25)

s
< (-

H

=)

>

o)
=)

Pt
l.—

].+-_Y_ p,:'\(

.
1l
[

i
J

which constitute a set of simultaneous equations for n different values
of p' which are solved for Si. Thus the collocation consists of a
matching up of the summation on the left hand side of 1. 25 with the
calculated values of p' AS'(p') for various values of rcal, positive p'.
Hence the inversion procedure consists essentially in being able to
determine the values of the transform all along the positive real p'
axis. By considering the thermodynamics of irreversible processes
and certain variational principles, Schapery (12) has shown for static
and quasi-static situations the singularities of the Laplace transform
of viscoelastic stress or strain occur only on the non-positive real
axis. His analysis did not consider the question of the validity of
this representation in dynamic problems. But besides the encour-
aging fact that it is a least squares procedure, the series represen-

o -7'/y.
tation 'Zl Sie ! turns out to be complete under certain conditions.
1=

'7‘/\/1

Erdelyi (13) has shown that an infinite sequence of functions e

is complete with respect to all quadratically integrable functions
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over 0 < 7'< oo if the infinite series

Qo

z v,/ )

i=1

is divergent. Since we use only a finite number of terms of the series,
the divergence requirement can be satisfied by proper choice of the Y;
for large i. Thus it is mathematically guaranteed that the square
error can be made arbitrarily small.

A note of caution is necessary on the use of this series. In-
creased accuracy is normally expected by taking successively larger
numbers of terms in the series. However, at the same time, com-
mensurate accuracy in the evaluation of pS'(p) is required in order that
minor deviations in the transformed values, which sometimes occur in
series representations and usually introduce amplified departures
from the correct inverted values, are held to an acceptably small
level.

With these conditions satisfied, the total time solution from

1. 24 with the Si obtained from 1.25 is given by
z -7 /Y.
S'(7') = 8, z S.e . (1. 26)
i
i=l

where S, can be evaluated by examining the behavior of p'S'(p') as
p' tends to zero (long time solution).

We are now in a position to complete the comparison of Morri-
son's solution with the new results. Applying these various inversion

procedures to the problem of wave propagation in standard linear solid
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material gives the results shown in fig. 1 for the position £ = 2. The
direct method solution is of course the same curve as that of p'S'(p')
but is associated with the abscissa log 7' rather than log p'. The collo-
cation solution was carried out with a ten term series and is shown
only as a number of computed points since it is too close to Morrison's
integral solution to require drawing another curve.

It may be noted that the direct solution has a less steep rise
than the more exact methods; this proves to be true in general for
these methods. Another item of interest is the inflection point on
the direct solution curve. Calculations for other positions along the
rod show that the farther one goes down the rod, the closer the
inflection point approaches 'T’R, the arrival time of the slowest moving
or rubbery wave component of the input loading.

Indeed we can show theoretically that this is generally true
for viscoelastic rods provided the point of interest is far enough from
the loaded end. If the transformed solution 1.22 is substituted in the

inflection condition

2 <
d_(Eg_)__z_ =0 (l_ 27a)
d(logp')

and simplified by using the representation in 1.19, we have

= 0.

g R aRy -2
' [ ==}

e <. 2
d(log p") d(log p')

Introducing the appropriate derivatives gives
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1 d% 2, dc 2 Ep' 1 dec 1,
-—————-——+——(—-——T)+<1-—Ea[2<——-~ ,+—)J
c2 d(logp’)2 C3 dlogp c CZ dlogp' ¢
- &p' | - 1 dc 2 - 0
P cz dlogp - '
Employing the definition l.20 and simplifying gives
tp\ [\ 1d(log E) |* _ a%(og F)
(L-=Eyly - 2808 =) | g ) (1.27b)
c i 2 d(logp') d(log P,)Z

Since the value of c is always bounded, when § becomes large p' must
become small to satisfy this equation, which implies that ¢ approaches
the rubbery wave speed CR- Indeed, for small p' the operator deriva-
tives in 1. 27b approach zero so that £p' = ¢ and the relation of £ and p'
is explicitly demonstrated.* Hence for the condition of increasing §
where the rubbery arrival time tR from the instant of loading approxi-
mates th (since the glassy speed is roughly 30 times greater than the
rubbery speed), the inflection point in p'S' does converge to the rubbery
arrival time.

In fig. 1, the glassy wave front stress level corresponds to the

horizontal asymptote to the left at a value of S' . = 0.702; this front

G

arrives at 'r'G = 0 or in terms of time from the instant of loading,
1
TG T (2)2. Also to be noted is the fact that the entire build up of the

response occurs in approximately two decades of log time; this rather

* Note also that a similar argument for the degenerate case of large p'
indicates as it should that £ — 0, i.e., the inflection point coincides
with the end.of the bar where there is a step response to the applied
step load.
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narrow spread in the response is the result of the somewhat fictitious
simple model representation of the mechanical properties of the medium,
including the fact that the low to high modulus ratio is a factor of only
two (since E = E').

These same response curves plotted versus actual time from
initiation of loading are shown in fig. 2. The collocation solution
closely approximates the integral solution, the difference being no-
where greater than 2%. In addition, the integral solution was
evaluated numerically and hence may be subject to some error itself.
It may also be noted that a 20-term collocation fit produced essen-
tially the same values as the 10 term, thus indicating a high degree
of exactness in the results obtained.

The above comparisons, admittedly restricted for illustrative
purposcs to one station § = 2*, are believed to indicate the usefulness
and accuracy of the proposed inversion techniques. Hence we next

proceed to apply them to the case of an actual viscoelastic material.

1.3 Realistic Viscoelastic Material

The specific material to be considered next is a polyurethane
synthetic rubber, chosen because material data are available (14)
and because it approximates the .material used in some recent experi-
mental wave propagation studies (15). The only new feature in this
case is the representation of the material. Whereas we previously had
an analytical expression for the stress-strain relationship, i.e. 1.21,

the experimental data for the actual material are given in terms of the

*However, similar results were obtained for calculations at £ = 1
and £=3v2.
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dynamic compliance (reciprocal of modulus) in shear (fig. 3) where
the test points have been omitted for clarity. Noticeable immediately
is the considerably larger range of ten decades of log time (or
‘equivalently log frequency) between the maximum and minimum com-
pliance values. Consequently a simple model representation as in

the case of the standard linear solid will not be sufficient. As a matter
of fact, since one spring-dashpot combination works fairly well over
one decade, the desired representation might be viewed as a series

or summation of such simple models, each responding predominantly
to a different decade of the frequency range. Indeed, general linear
viscoelastic analysis (16) shows that the approximate representation
can be taken as the Kelvin model for which the real part of the complex

shear compliance for a fixed temperature is given by

=7
T (w) =T+ Z _— (1. 28)
G ~ 1+ wz'r.z
i=1 i
where
Ig = glassy (high frequency) compliance
J'i = component spring compliances
T, ni.}'i = component retardation times
7n. = component dashpot viscosities.

Thus the model is a glassy spring plus n Voigt {(parallel spring and
dashpot) elements in series.
Using values of J'(w) from the experimental data, the values

of the Ji for an appropriate choice of the 75 values can be obtained by
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once more using a collocating procedure at n values w, . It is usually
sufficient to choose the T, at one decade intervals so that in the present
case n = 9. Once the Ji are determined, the operational compliance
required for the transformed solution is given from viscoelastic theory

as

o7
Ip) = JG+Z H;T . (L. 29)
i=1 !

For the case of a polyurethane rod, this time using a step dis-
placement input of magnitude ug, the transformed solution analogous

to 1. 22 for the standard linear solid material is given by

_ i
RRE) - enp (- B2 (R - 1) (- 30)

where D(p) is the operational tensile compliance and e is the glassy
wave speed. For simplicity, an incompressible material has been
assumed so that D = J/3. This assumption is realistic except for the
highest frequencies which as we shall see are rapidly attenuated. The
exponential in 1,30 can in principle be expanded in powers of 1/p to
obtain the glassy wave front value, but it is also more easily available

by the computation of pE(p)/u.0 as p— .

1.4 Results
The matrix inversion of the collocation solution for 1.30 and
the summation processes have been carried out on the Burroughs 220

computer; they are standard procedures and are easily accomplished.
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The resulting non-dimensional responses are plotted in fig. 4 for three
different positions X1, %o and Xg corresponding to glassy wave arrival

8 -4, and 1072 seconds, respectively. As with the

times of 10, 10
standard linear solid case, the results would be numerically equal in

the case of the stress response to a step stress input of the same mag-
nitude. The transform curves of pﬁ(p)/u0 and the corresponding direct
method solutions {in which p is replaced by 1/2 t') are similar to those
of the previous case and again we see the convergence of the inflection

point and the "rubbery" arrival time, t‘R, as x increases.

Several striking differences from the former case are evident
however in the collocation solution. First is the spread of the response
over about five decades of log time compared to two decades for the
standard linear solid. This is a result of the inability of the simple
model to represent the real viscoelastic properties of such a material
as polyurethane*.

Secondly, the glassy wave front decays extremely rapidly as
shown by the curve for X = 0.00167 cm where the glassy response is

uG/uo = 0.09. A wave front expansion shows this response at any

point x to be given by

(1.31)

* Subsequent solution of the problem using a standard linear solid rep-
resentation of the polyurethane material fitted at the inflection point
also indicates a shorter overall response time; however, some por-
tions of the response curves in the two cases exhibit comparable slopes.
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The predominant term in the summation is for i = 9, and since
79 = 10-9 seconds, the relaxation is extremely fast. This corres-
ponds to high viscosity in this element of the model and hence very
rapid attenuation of the high frequency components of the input.
Consequently we have also verified the earlier comment that geo-
metric dispersion would play a less serious role in this analysis
than in the case of an elastic rod. However, this conclusion might
well be modified if the applied loading were different from a step
function, which has a Fourier spectrum gradually decreasing in
amiplitude with increasing frequency of the component; the strength
of the dispersive effect would be altered, for example, in the case
of a delta-function input. As an incidental note, the limit case of
purely elastic material is readily apparent from 1. 3l since then all
the T, would be infinite (hence exhibiting no stress relaxation or
attenuation).

A third difference is the appearance of dispersion in the
response at X, and X3 with the resulting oscillation in the neigh-
borhood of t'R. This behavior could be predicted by considering a
Fourier analysis of the step input into its sinusoidal components,
each with a different propagation speed. All the components super-
pose to produce the input compressive displacement at x = 0 but
will disperse as they travel down the rod, some places reinforcing
and other places interfering to the extent of producing a tension.

It is believed that this phenomenon did not appear in the case of
the standard linear solid because its response has only a two decade

spread and in addition its change in modulus from low to high
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frequency is relatively small (a factor of two compared to approximately
1000 in the polyurethane material under consideration here). |

The amplitude of the dispersive oscillations appears to be grow-
ing gradually with distance down the rod. However, considerations
associated with a Fourier series representation for a step input imply
that their ultimafe amplitude is limited.

A corresponding plot of the response at a fixed position, X5
along the bar is shown as a function of time in fig. 5. While the major
portion of the rise in response in the figure appears to be somewhat
spread out in time due to the scale used, it actually occurs in about

0.003 seconds around t,.

R

1.5 Discussion

The foregoing one-dimensional analysis indicates the charac-
teristic behavior to be expected from waves traveling in realistic
viscoelastic materials. The high fre.quency components of the re-
sponse to a step loading are very rapidly attenuated with distance
and the major portion of the stress or displacement rise occurs near
the "rubbery" arrival time. This feature suggests additional bene-
fits from the viscoelastic analysis which will be exploited in the
two-dimensional solutions to be discussed in Part 1I. Furthermore
the methods éf inversion proposed here can be made as accurate as
desired for any application simply by taking more terms in the series
with no essential increase in mathematical difficulty. It is believed
that this property yields a distinct advantage over the analytical
model representation used in previous treatments of viscoelastic

wave propagation.
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PART II

WAVES IN TWO-DIMENSIONS

Very few viscoelastic analyses exist for wave propagation
in two dimensions (20). As in the one-dimensional cases, most of
those that treat this type of geometry (21, 22, 23) are limited to
simple model viscoelastic representations.

The situation with respect to elastic analysis is of course
much more complete. Indeed in recent years, numerous investiga-
tors have been intercsted in the effects that moving blast waves on
the surface of the earth exert on its interior and in particular on
underground structures. The steady motion of a line load on the
surface of an elastic half-space has been treated by Sneddon (24)
and more completely by Cole and Huth (25). The transient analysis
including "start-up" effects near the point of load initiation has
been considered by Ang (26) for the "subsonic" case, i.e., the
traveling load moves at a speed less than any characteristic elastic
wave speed in the material of the half space; extension to the cor-
responding supersonic case was treated by Arenz (27). Miles (28)
has used an asymi)totic approximation technique to study the elastic
half-space subjected to a radially.syrnmetric step pressure pulse
which decays with time.

Additional difficulties are encountered when the two-
dimensional material is viscoelastic, but the basic method outlined
in Part I can be extended to this situation provided the analysis is
applied in turn to each of the stress contributions entering the prob-

lem. In Part II the two following cases relevant to the interest
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indicated above are treated: (1) a semi-infinite half-space loaded by
a traveling plane step pressure input ("ground shock" loading), and
(2) a semi-infinite thin plate loaded on the edge in a similar manner.
The former is readily identified as a plane strain problem; the latter
is a plane stress situation and anticipates the photo analysis experi-

mental treatment of Part IV.

A. THE VISCOELASTIC HALF -SPACE
Consider the semi-infinite geometry of fig. 6 in a Cartesian
system of coordinates x'y'z' such that the half-space is represented
by y' =2 0. It is subjected to a step pressure loading which extends
without limit in the z'-direction and whose front is moving in the nega-
tive x-direction with a uniform velocity Cqs it is considered to exert

a constant pressure or normal stress Py at all places behind the front.

2.1 Mathematical Formulation

If u, v, w are the components of the vector displacement
—
u(x',y',z',t'), the displacement equation of motion, in the absence

of body forces, may be written as

(N + Zp)V(V-K)—pVXVXG):p:—;—%- (2.1)
where p is the material mass density and A and p are the Lamé elas-
ticity constants which must now however be considered as time oper-
ators in the general viscoelastic formulation. The viscoelastic
treatment will correspond to that for the tensile modulus in Part I.

While both Lamé parameters could incorporate viscoelastic

effects, several investigations (29, 30) indicate that the bulk modulus
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K varies relatively little in the viscoelastic transition region compared
to the very pronounced change occurring in the shear modulus. Hence
we neglect time effects in bulk but retain viscoelastic characteristics
in shear. Thus, for convenience \ is replaced in terms of K and p by

the usual relation
2 .
A=K-zpu (2.2)

so that 2.1 becomes

2
(K+§Mvm%m-vavXu=p§7 (2.3)
t

£

QO

where now only p is a viscoelastic operator; K is a constant.
—
Using the Helmholtz resolution, the displacement vector u can

be represented by a scalar and a vector potential such that

Vo+ V x{§ (2.4)

—
u

under the condition that V':ll>= 0. Thus a solution of 2.3 can be obtained

if
2
2 9
V= —Fb 2 (2.5)
2—>
2> p 0
Ve =2 2.6
Iy (2.6)

which are the dilatation and shear wave equations, respectively. Note
however that due to the viscoelastic nature of pu, the wave speeds will

not be constant for the dynamic phenomena under consideration.
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For the present geometry of unlimited extent in the z'-direction
and for the prescribed loading condition, the transverse displacement,
w, is zero and the conditioﬁs are those of plane strain; hence the vector
Cp’ has only one component, the z'-component, which will henceforth be
denoted by . Also the scalar potential is ¢ = ¢(x‘ ,y',t'), so that 2.4

has the components

- 2 (2.7)

a =
X
_ 2
v—-—g% - (2.8)

For the step function pressure load moving in the negative

x'-direction, the boundary conditions are

oy,y,(x',O,t') = -Pg HE' + cot') x>0
(2.9)

=0 %' <0
=0 All x' (2.10)

leyl(XI ,0,t")

where H(x',t') is the Heaviside unit step function. Along with these

conditions, the waves are required to be diverging, i.e.,

0‘,=0,,=0X,Y|=0 at x' = o0 .

The ai)proach previously used by Ang (26) in the transient elastic
problem of Fourier integral representation of the transformed stresses
cannot be readily applied here since the timme dependency of the wave
speeds appears to place this case beyond the scope of the Cagniard-

De Hoop Laplace inversion technique. Thus the most satisfactory
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solution for our purposes can be obtained by assuming that the load
has been moving for a long time such that a steady state exists with
respect to a coordinate system attached to the moving load. A similar
problem has been investigated in reference 21 but for the case of the
standard linear solid (three-element) model in shear, and only the
lwave front expansion and long time behavior are given explicitly.

As indicated in Part I, the solution method herein is general, can

be applied to realistic viscoelastic materials, and gives complete
time histories of the response.

Consider now that (x,y,z) denote a coordinate system attached

to the front of the moving load, while as before (x',vy',z') denote co-
ordinates fixed in the material of the half-space (fig. 6). They are

related by the Galilean transformation

x = x' + cot‘
y=y'
(2.11)
z = z!
t =t

In the new coordinates there is no variation with time and hence

the following conversions in derivatives take place:

0. 0 0 9 0 8

3y * B - “03x (2.12)

This transformation is readily applied to 2.5 and 2.6 with the caution
that p is to be considered as a viscoelastic differential time operator

and hence will become effectively an operator in various orders of
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n
cla 0 in the steady state. The result is
n
9x
4 2, _ 2
(K+zp) Vid=pecgo (2.13)
2 2
BV = el b (2.14)

where the subscripted coordinates represent partial differentiation. The

boundary conditions 2.9 and 2.10 in the new coordinate system are

0,y (%,0) = -pg HE) x>0
(2.15)

=0 x< 0
GXY (x,0)=0 All x (2.16)

It now becomes necessary to specify the speed regime for the
moving load. For the present case of interest, it is assumed to travel
supersonically relative to the maximum wave speed in the material.*
This case not only introduces simplifications into the analysis but will
prove useful as a basis for later comparison to an experimental situa-
tion. Since no stress signal can precede the load and thus guiescent
conditions exist for x < 0, the usual one-sided Laplace transform in

the space-variable x can be applied to 2.13 and 2.14, yielding

K+ Fu (cqp)] [P7F+ 3, 1 =pefp® (2.17)

u(cyp) [p” T+ byl =P Zp° T (2.18)

* The subsonic case appears to be amenable to analysis but requires
a matching of two separate solutions along the sonic line x = 0.
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where p is the Laplace transform parameter and p(cop) has the nature
of an operational shear modulus. With suitable definitions these reduce
to the following ordinary differential equations inasmuch as the parame-

ter p will be treated as a constant until final inversion:

2= _
3—923 - mip2¢ =0 (2.19)
y
R
dZ ‘quP J =0 (2.20)
y
where
_ 2 — 2
m, _’\/Md)_l —\[(co/c(b) -1

2 . 2
. :\[M\P-l =\f(co/c¢) -1

-4
K+ ?H(Cop)
c
¢ P

(2.21)

= "operational" dilatation wave speed

p(cgp)
c, = = "operational" shear wave speed

v p

The transformed boundary conditions become

(2.22)

O

ny (P:O) = -
Tyy (220) = 0 (2.23)

The usual tensor notation will be employed so that the strain-

displacement relation in the moving coordinate system is
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_ 1
Eij —z-(ui,j“' uj,i) (2.24)

and the cubical dilatation is
€.=u, .=-¢_ -0 _ =-V% (2.25)
ii i,i XX Yy :

where the repeated index indicates summation.

2.2 Stress-Strain Relations

The material has been assumed to be elastic in bulk; hence the
operator in this case is the constant bulk modulus K. Therefore, using

2.25,
o..=3Ke,. = - 3KV%¢ | (2.26)
11 11

In shear the viscoelastic relation is written in terms of stress and

strain deviators; hence in the original x',y',t' coordinates, it is

L = 1
Gij -3 O 613’ = 21 [.sij T €k aij] (2.27)

where p is the differential operator. Applying the steady state trans-
formation along with 2.26 and finally the Laplace transformation in x,
we have

€ (P2 Y)

Eij(p,y) = Kb, €, (p,y)-2p(cyp) [—F— 6ij-?ij(p,y)] . (2.28)

1)
The form of the displacement-potential relations 2.7 and 2.8
goes over unchanged into the steady state coordinates. Upon differen-

tiating and Laplace transforming, we have the following set of necessary

relations for the two-dimensional situation:
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— _ — - 2
du _ 2= oy du _ _9¢ B

5 - P ¢+P8y ) 3y " p‘E’.—Y'-+-a_},_LZE (2.29)
— —_ 2— —

ov _ B(I) 2 — ov _ 98¢ 8

3 - Pay P b, —3?-';2' Pay - (2.30)

Combining these with transformed strain-displacement relations from

2.24 and 2.25 gives the strain components

- 2— Al
€= P OF pg—;‘}

c .%o
Yy oy ° oy
(2.31)
— 2
- _1 9 . 8Ty 2—
GXY = Z["ZP 8Y+ ayz P ‘-l"]
2_
- _ 2= 979
ke =P P -7
oy
Hence the transformed stress components from 2.28 and 2.31 are
— 2 %3 _E
O x(Ps¥) = -(K - 3p) (p 26+ —)t 2 pys-p “%)
By~
8
oy = - (& - Zwp5+ 28y - 2, (——-+p-ﬂi (2.32
ay” oy”

2 —
_ 7] 9¢ 2—
Oy (p:y) =p (;-y%— ZP'g};“ P )

Incorporating 24.32 with 2.19-2.21 in the boundary conditions 2.22 and

2.23 for y = 0 yields
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-3y (p, 0)=(K- 3)p" ML G (p, 0)+ 2 [pmf 3lp, 0yrp 240N} (2.33)

Oy (p,0)

_ R ., 89(p,0) _
oy P‘mLp 1) Y(p, 0) ?-—-—-—ay 0. (2.34)

These boundary conditions will evaluate the arbitrary constants arising
from the solutions of 2.19 and 2.20 which are of the form

pm,y -pm,y

(2.35)

d(p,y) = A(p) e + A (p) e

P,y 'quJY

Ylp,y) = B,(p) e vy B,(p) e (2.36)

The constants Al and B1 are immediately set equal to zero by the re-
quirement that the waves are diverging. Upon inserting 2.35 and 2. 36
in 2.33 and 2. 34 to obtain the coefficients AZ and BZ’ the final trans-

formed solutions become

2
- m ' -1 -pm_y
¢(psy) = — ZL'J e ¢ (2.37)
B P [(qu-lH 4m¢m¢]
_ Zrn¢ -pm ,y
T(p.y) = - 5 e ¥ (2.38)

au ps[(mkp 1)+ 4rn¢m¢]

2.3 Laplace Transform Inversion

In terms of the usual inversion integral, the steady-state solu-

tion for ¢ appears as
' ytioco
l ——
¢x,y) = 5= g ¢ (p,y) P  dp . | (2.39)
y-ico
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However, since p, m¢, and qu are in general complicated functions of
p, the ordinary inversion process is not feasible and the even greater
advantages of the collocation procedure described in Part I are immi-
nently apparent, inasmuch as it can be readily applied in turn to all
three stress components arising from each wave, shear and dilatation.

The exponential part of 2.39 is

-pm gyt px p(x—m¢y)
e = e (2. 40)
To modify this for convenience in the inversion process, let
§¢=x-m¢ vy (2.41)

g

where §¢ is the horizontal distance behind the dilatation glassy wave
front in the material and mg is the glassy modulus value of m. Noting
that all the material-dependent factors in 2.37 and 2.38 have been
written as functions of coPs We redefine the Laplace transform variable

as

q=cgp - (2. 42)

Making all necessary modifications to incorporate 2.4l and 2.42, the

representation for the dilatation wave takes the form

0

o
e dq  (2.43)

'y .

-q 4+ (m - )
1 ytico Teg e mqbg i
¢(§¢.:Y) =5 S

y-ico

coz(mi—l)e

uq3[(mi-l)2+ 4m, mLP]

so that
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- 9y -
of mf 1) co 9T
2

3 )
q HL[(mLIJ )"+ 4m¢m¢]

C

$(q,y) = e

(2.44)

A similar definition for the shear wave, which arrives at a given

point some time later than the dilatation wave, is

X, =X -m . 2.45
v ¢gY ( )
This gives the following transformed solution for the shear wave:
-ay -
_ -Zco m, y (mq; mLp )
Ulq,y) = 5 e g (2.46)

O [(qu-l)Z + 4m¢m¢]

where the inverted solution will be L]J(ELP,Y).
Since dilatation and shear waves do arrive at different times,
the stress components o, 0, 0_  must be computed separately for
xx’ yy’ xy
the two wave contributions and then combined in the final time solution.

For example, from 2.32 and 2.44, the transformed stress o due to

the dilatation wave becomes

[E (q: Y)] = - - 2 ZLIJ € g . (2-.47)
vy ¢ ! (m¢—1) 4—4mq’,)mqJ

For abbreviation, we define



R{q) = (m -1)2+ 4m¢m¢
T(q) = mf -1
Uglad = mg - my
(2. 48)

Oylah = my -y
Vi) = ay/cg

_ 2 _ 2
W(g) = m¢+ 1 2m¢>

Hence the g-multiplied transforms of the stresses are

T = r? e_VU‘ﬁ
1 ¥4 R
4m ;m -VU
a7, =-—pLe ¥
Yy R
E _ WT e'VU¢
d XXd) R
(2.49)
) =-(q0
O (g oy )
2m , T -VU
R
4 xy¢ R
2m,T -VU
o = - ik e b
d R
xpr

The Laplace transform inversion for each stress component
can now be carried out by a collocation procedure essentially similar
to that in Part I for the one-dimensional problem. Thus the series

coefficients 5, are evaluated from the relations
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2 — -
= o.. 1 - o..
. [q 1J(q)] q=-L lq lJ(q)] q=0
f=1 1+ =2 Y
Yo
(2.50)
= [qAo0,. 1
[qAGU(q)] g= 1
Ym
and the stress component is given by
T
X
n - —
— Yy
oij(x,y) = SO + Z S£ e (2.51)
£=1

where T— = x/c is the physical time after the glassy wave has passed
the point in question and the stress far behind the wave front is given
by the final value theorem

Sy = lim (g o(q)] - (2.52)

q—0

As would agree with the static elasticity analysis, the long-
time stress state is one of uniform hydrostatic compression in the
half-space.

The solution has been programmed for the IBM 7090 computer
and carried out using the same viscoelastic properties of the polyure-
thane material represented by 1.29 in Part I, where the operational
shear modulus p(q) (or G(q) in engineering nomenclature) is the re-
ciprbcal of the operational shear compliance J(q). Based on experi-

1

mental data (30), the bulk modulus used was K =2.07 X10 0 dynes/cmz.

The resulting glassy dilatation wave speed was 1.778 X lO5 cm/sec,
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while the corresponding rubbery value was 1.385 X 105 cm/sec. For
the shear wave, the glassy speed was 0.963 X 105 cm/sec and the
rubbery speed was 3.68 X 103 cm/sec. Judging from the results
obtained in the one-dimensional problem, a 15-term series repre-
sentation for 2.51 was chosen and proved quite adequate. The col-
location process in each case covered five decades of logarithmic
response time with quarter-decade spacing in areas of rapid change.
The IBM program output incorporated a paper-plot of the series
p2A T%V_g_ compared with the actual values of qAc{q) as a function
of log q to monitor the accuracy of the series representation and
thus insure the validity of each inversion process. The main point
of practical concern was the choice of the center of the collocation
regime for the variousl conditions of Mach number of the loading
wave and depth in the material. The value of q corresponding to
the rubbery wave arrival time again was satisfactory.

The stress histories were obtained for Mach numbers (Md))
of 1.01, 1.10, 1.50, 2.00 and for depths (y) of 0.1, 1, 4, 9, and 15
cm. To illustrate the character of the solution, typical response
curves for the various components are shown in fig. 7 for the case
where M¢ =1.5, y = 4 cm. The first notable feature is that both
shear stress components, ny and GXpr, are of essentially neg-
ligible magnitude, as are the other components from the shear wave,
O =-0 . This probably results from the purely compressive
nature of the loading which predominantly excites the dilatation wave
and normal stresses. The latter, Gxx and o , differ by less than

¢ L

2% throughout the response history and are adequately shown by
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one curve; hence the stress state resembles one of continually increas-
ing hydréstatic compression. The long time behavior of course reflects
this state of equél normal stresses in all directions after the transient
effects have ceased. The above considerations indicate that the stress
sums from both waves at any place in the material can be approximated
by the dilatation wave components.

The actual total stresses are shown in figs. 8a to 8d for the
four differenf Mach numbers. The early dispersive features prior to

the sharp stress rise in each case have been suppressed to show more

s
=<

clearly the major portion of the viscoelastic response. Once again
the importance of the rubbery arrival time relative to the stress rise
is evident; the obvious engineering apprbximation to stress wave prob-
lems can be made that the viscoelastic response straddles this particu-
lar parameter for a step loading.

It is of interest in connection with the ground shock problem
mentioned previously to investigate the conditions at the wave front
bas it passes through the material. We have noted that o, = 0‘2 ;
hence the Mohr's circle representation of the two-dimensional stress
state is a point and in general there is no shear in the stress field.

The only modification to this condition occurs at the time of the first

significant stress arrival which is associated with a rapid rise in

* The computed solutions indicate a maximum tensile stress in this
dispersive region of the order of 10% of the applied boundary stress.
The dispersive amplitude showed no increase beyond a depth of 9
cm in the material for any of the Mach numbers investigated, tend-
ing to corroborate the statement in Section 1.4 regarding a limit on
the ultimate magnitude of the viscoelastic dispersive oscillations in
a rod.
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the normal stress. Immediately after the value of x for which Oy and
GYY start to increase in fig. 8, there appears a short transient shear
stress pulse of small magnitude originating at the head of the moving
pressure pulse as it passes over the surface of the half-space.

For all supersonic Mach numbers this shear stress has a rapid
increase to approximately ny/po = 0.05 in the immediate vicinity of
the surface of the half-space (y = 0.1 cm). However, it quickly decays
to essentially zero magnitude after a distance of 1 cm behind the wave
front. With increasing depth, the strength as well as the sharpness
of this pulse decreases exponentially; by y = 9 cm, the entire shear
signal is negligible.

The resultant normal stress on an arbitrary plane in a two-

dimensional stress field is given by
2 . 2 .
0 =0 cos B8+ 0 sin"6 o sin26 (2.53)
n X y Xy

where 0 is the angle that the normal to the plane makes with the x-axis.

In the present case, o__ = o__and o__ = 0.05 p,; thus if one considers
XX vy Xy 0

the problem of a structure buried in the viscoelastic material and

impacted by the stress pulse caused by a blast wave moving over the

surface of the half-space, an estimate for the maximum normal stress

from 2.53 is

o =o +0.05p.

®max vy

Since ny can reach approximately 1.07 Po (figs. 8a to 8d), the design

values of applied stresses for the situation treated here are
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G £ 1.07 py+ 0.05py = 1.12 p,
(2.54)

O a = 0.05 Pg -
max

The comparable elastic solution for this geometry for the
supersonic line load (25) indicates that stress occurs only at the wave
fronts. It is an immediate extension of this solution to the moving
step load (18) in which the response is a step stress increase at the
dilatation and shear wave fronts and the major contribution is found
to arise from the dilatation wave. Hence in comparison with the
data of figs. 8a to 8d, each stress rise curve in the elastic case
would appear as a wave-front step increase to the ultimate response
Gij = Py- To indicate the modification to the sharp stress rise which
occurs when the material is viscoelastic, it is convenient to consider
the distance (and hence time) between the first significant stress
arrival (denoted xoo) and the point at which it has increased to the
applied pressure (denoted Xo-po). Representing this distance by

Dx = x - x (2.55)
%0 %0

the corresponding stress rise time At is given by

At = 2% (2.56)

€0
Since Ax is related to the depth in the material, the data of figs. 8a
to 8d show that At is directly proportional to y for the polyurethane

material. The variation of At/y with Mach number is shown in fig. 9.
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Thus from an engineering point of view the effect of viscoelas-
ticity on the magnitude and sharpness of application of the stress pulse
can be determined. For the moving step pressure loading, the normal
stresses are slightly higher than in the elastic situation, but the sharp-
ness of the stress rise at any depth of the material is alleviated, varying
from the step at the surface to At = 5.2 X 10_5 sec at y =15 cm for
M¢ = 1.01. It appears feasible to correlate the rise time with mechani-
cal properties for other viscoelastic materials such that a rise-time

function might be constructed in the form
At = At (y; viscoelastic parameter)

where the viscoelastic parameter would probably involve the slope of
the compliance (or modulus) transition curve at the inflection point

and the ratio of glassy to rubbery compliance.

B. SEMI-INFINITE THIN PLATE

The corresponding problem in plane stress, in which it is
assumed that a semi-infinite plate represented by y = 0 (fig. 6) is
sufficiently thin that the o, = 0 boundary condition applies throughout
the thickness of the plate, is in general not a direct analog of the
plane strain situation. The geofnetric surface effects can introduce
dispersion of the waves not encountered in the infinite medium.

The problem of the basic mode of longitudinal wave propa-
gation in an infinite elastic plate has been solved by Lamb (3l).
Mindlin (32), Holden (33) and other investigators have considered

the higher modes of transmission as well as the dispersive character
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and approximate solutions associated with this geometry. But as in
the one-dimensional case, a solution emphasizing the viscoelastic
effects will be sought.

The conversion of static elastic problems from plane strain
to plane stress by modifying the effective values of the elastic constants
is well known (34). Less attention has been given to dynamic situations
but Bishop (35) has shown the applicability of the approach to certain
cases. One of these involves symmetrical waves in a thin plate.

The conditions under which it will be applied to viscoelastic material
are essentially the same as indicated in Part I for the uniaxial case.
The short wave-length components of a step input are again found to
be quickly damped and hence geometric dispersion in the thin plate is
neglected so that the viscoelastic behavior clearly appears.

Since there are no normal stress components on planes per-
pendicular to the wave front in the case of shear waves, the effective
shear modulus in plane stress is identical to that for plane strain.
Dilatation however involves normal stresses in directions perpen-
dicular to the wave front and hence the presence of boundaries allows
for lateral motion of the material. Hence the effective modulus in
bulk for plane stress will differ from that for plane strain. Thus in
modifying the semi-infinite half space solution to one applicable to

- the thin plate the material properties must obey the following con-
version:

R =

(2.57)

K - K (1—41/2)

1-v
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Since the bulk properties have been considered to be elastic at the
"rubbery values and MR is available from fig. 3, the value of v to be

used in the conversion is available from the elasticity relation

K:%':‘- (-il-jr%) . | (2.58)

Indicating the nearly incompressible nature of the polyurethane
material in the rubbe‘ry state, VR = 0.4996. Thus the effective

bulk modulus in the plane stress analysis is

10 dynes

2
cm

K = 0,003905 x 10

Eff.

The corresponding thin plate wave speeds are 7380 cm /sec for the
rubbery state and 111,300 cm/sec for the glassy state. The shear
wave speeds are the same as for the plane strain case.

The computer solution has been carried out for the same
supersonic Mach numbers relative to the glassy dilatation (thin plate)
wave speed and depths in the material as for the plane strain analysis.

Histories of the normal stress components UYY and o, asso-
ciated with the propagating waves are shown in figs. 10a to 10d.
Again the dispersive effect prior to the major sti‘ess increase is
limited to approximately 7% of the applied boundary stress. It
i:ypically appears as shown in fig. 10a, but for increased clarity,
this portion is not shown in the other three graphs. The OXY shear
stress, which never exceeds a magnitude of 0.04 Py and is usually
much less, is also omitted; it should be noted however that this
condition ils in general the result of a mutual cancellation of the

dilatation and shear wave contributions, each of which though small
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has a finite magnitude.

As expected from the results for the geometries considered
previously, the rubbery dilatation arrival position is centrally located
with respect to the major portion of the stress rise. Noteworthy is
the much greater extension of the viscoelastic response in the x-
direction compared with the case of plane strain. The long-time
behavior does however approach the static plane stress solution
values of 0 =p,and o__ = vo__ = 0.5 o (assuming the material

yy -0 xx vy vy
to be incompressible in its rubbery behavior).

The rather definite relationships with depth in the material
of the stress levels associated with the dilatation and shear wave

rubbery arrival times (x, and x ) are indicated in figs. 10a-d and

14 YR
illustrated for all Mach numbers treated in fig. 1l along with the
maximum tensile stresses developed. The tensile ny with a maxi-
mum value of approximately 0.07 Py arises from the dispersive
nature of the material; the tensile stresses in the x-direction which
according to the solution attain a momentary peak of Oxx/PO = 0.28
at y = 0.1 cm near the head of the stress pulse are apparently
associated in addition with the inertia effects in the neighborhood
of the load application point. The magnitude of this transient tensile
pulse decays rapidly with depth while the dispersive contribution to
'O‘XX increases to an ultimate amplitude of approximately 0.02 Py
Corresponding to the location of the above maximum O
value, the ny stress has risen to 0.95 Pgy SO that the maximum
shear stress experienced by the material near the surface is

o) = 0.62 Po- The magnitude of the maximum shear stress

D8max
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drops off rapidly with x and ultimately approaches the static value of
0.25 p,. Figs. 10a-d reveal that the first significant stress arrival

at the start of the major part of the stress rise travels at approxi-
mately 1.4 X 104 cm/sec, or an order of magnitude slower than in

the case of plane strain. The rise time At for ny to attain the applied
stress p is correspondingly much longer; since GYY asymptotically
approaches Po: the rise time is approximated as

At ®)s=0.9 PO_ =)5=0

_ . -4
y = R 2 1.3 %10 sec/cm

which remarkably is roughly independent of Mach number for all the
cases considered.

These two facts point to an important extension of the solution.
For since the first significant energy arrival travels at 1.4 X 104
cm/sec, much slower than the characteristic glassy wave speeds
in the material, the results should give an indication of the wave
propagation characteristics if the moving pressure pulse is travel-
ing as slow as this, or

c 4
Md): 0=0 _ 1.4 x10" cm/sec _ 0.126,

“6c 1.113 x 10° cm/sec

i.e., in the subsonic regime relative to cq:)G. Thus the significant
bonus to the foregoing supersonic solution is evident if we crossplot
the previous results as a function of Mach number in the form typi-
cally illustrated in fig. 12 for y = 9. The linearity of the stress

variation is evident and the drastic extension into the subsonic
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regime is possible because of the predominance of the shear modulus
relative to the bulk modulus (as modified for plane stress) in deter-

mining the plate wave speed, a condition which gives a wide spread

e
<

between rubbery and glassy plate wave speeds

While in the nature of an extrapolation since the method of
solution is limited to the supersonic case, it is nevertheless valid
since the effect of the step loading is independent of its speed rela-
tive to the characteristic material wave speeds. Thus the need to
construct a subsonic solution for the broad-band viscoelastic materials
is largely eliminated, or conversely it appears a posteriori that the
present type of solution can be adapted to lower values of <y

The importance of this extension in the present analysis lies
in the fact that comparison of photoelastic results in Part IV re-
quires the stress solution in the thin plate for a passing surface wave
traveling at a subsonic Mach number, Md) = 0,605. With the differ-
ence in principal stress obtained by straightforward calculations
from the data of figs. 10a-d plotted in the manner illustrated in fig.
12 and correlated as a function of time, the necessary viscoelastic
optical characterization is applied in Part III to predict the fringe
pattern in the semi-infinite plate geometry.

Hence the two-dimensional plane stress solution not only
illustrates the viscoelastic wavé propagation behavior expected in
a thin plate but also provides the information necessary to complete
one phase of the analysis of dynamic photoviscoelasticity to be

considered in the remainder of the thesis.

* The plane strain solution can also be extended to the subsonic case,
but here the advantage is slight as the approach is valid only to Md’é 0.85.
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PART III

DYNAMIC BIREFRINGENCE IN VISCOELASTIC MATERIAL

The investigation of dynamic phenorﬁena using photoelastic tech-
niques has shown great progress over the past quarter century with the
development of high speed cameras and associated apparatus to record
wave propagation. In recent years increasing attention has been given
to the use of birefringent polymeric materials for this purpose. Photo-
viscoelastic analysis however requires techniques not normally
encountered when using elastic materials because the optical proper-
ties as well as the mechanical behavior of viscoelastic media are time
and temperature dependent.

Among the earliest to apply low modulus viscoelastic materials
to wave propagation studies was Durelli (36), who for the most part
employed relativély low loading rates which did not activate the full
spectrum of time-dependent behavior. Other tests (37) have used
explosive and other high rate loading devices. Nevertheless, no com-
prehensive attempt by experimentalists to take the time-dependent
behavior into account, especially in dynamic investigations, has been
evident until very recently (current investigators include Theocaris
(38, 39), Williams et al. (40), Dill (41)). Indeed, the present research
was stimulated by an exploratory photoelastic test program (42) simu-

lating the dynamic stresses due to ground shock loading (Part IV).

A. GENERAL PHOTOVISCOELASTIC CONSIDERATIONS
The problem of handling photoviscoelastic data in the most

géneral case involves not only the time variation of optical and
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mechanical parameters but also the consequent possibility of non-
alignment of the axes of polarization, principal stress, and principal
strain. Mindlin (43) laid the groundwork with a basic mathematical
treatment, even though much of his analysis was directed toward
establishing the conditions under which a viscoelastic model would
represent the stresses in an elastic prototype. The special condi-
tions of incompressible material (both elastic and viscoelastic) and
proportional loading (no time variation in the distribution pattern
of the load, but only a magnitude change with time) were sufficient
to guarantee this effect as well as alignment of polarizing and prin-
cipal axes. When considering solely the viscoelastic stresses,
however, these conditions prove to be too restrictive, Read (44)
has generalized the viscoelastic analysis to include compressible
media and has demonstrated that, as in photoelasticity, the optical
measurements give the directions and difference in magnitude of
the principal stresses in the plane of the optical wave front, pro-~
vided the stress-optical relations can be expressed in the same
form as we have used earlier for the stress-strain relations. Read
points out that his formulation places no restriction on the boundary
conditions.

No attempt will be made here to treat the general question
of photoviscoelastic relations* since the main objective of Part III
is to indicate the treatment necessary to include approbria’ce optical

characterization of viscoelastic materials for photoelastic work.

#* Reference 40 includes some current efforts in this direction.
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It should be noted, however, that dynamic situations frequently
involve moving loéds so that the formulation prbposed by Read is ad-
vantageous. Even though in the general dynamic case principal stress
axes are not necessarily aligned with the polarizing axes, Read handles
the problem by referring all quantities to some arbitrary fixed set of
x-y axes and showing that the birefringence can be related to the stress
difference O’X-O'y_. In the type of situation depicted in the theoretical
studies of Parts I and II, in which the entire response spectrum is
activated, the glassy and rubbery states correspond to elastic condi-
tions, so that optical and mechanical principal axes are known to be
aligned at the start and finish of the wave propagation process. Hence
axis non-alignment will occur only during the photoviscoelastic transi-
tion period which can well be a relatively brief part of the time of
observation. An additional engineering aspect relative to this question
is that most high polymers are essentially incompressible except in
the glassy region; as noted in Part I, the corresponding high frequency
components are quickly attenuated for step function inputs, thus making
much of the incompressible treatment of Mindlin applicable for a large
portion of the time history in many cases.

Consequently, a reasonable engineering approximation might
be made that the optical and mechanical axes are aligned, subject to
later experimental verification. As to the other prime photovisco-
elastic consideration, there is ample theoretical and experimental
evidence (38, 43, 44, 45) to guarantee that the linear differential oper-
ator relation of birefringence to stress (or strain) is valid for polymers;

this will be further verified in the subsequent work of Part III.
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From the viewpoint of test procedure, it may be noted that a
calibration of viscoelastic material properties can be made by quasi-
static means for use in dynamié problems provided the appropriate

range of the time parameter is suitably accounted for.

B. CHARACTERIZATION OF PHOTOVISCOELASTIC MATERIALS

To utilize viscoelastic materials in dynamic photoelastic stress
analysis, the time dependencies of both the optical response charac-
teristics and the recorded fringe order must be taken into account.
Especially in wave propagation situations, extremely short time be-
havior is of importance. Hence special attention must be given to
the evaluation of material response properties over the complete
time spectrum including this short time region in order to apply the
photoelastic technique.

The present research is directed toward providing a sound
quantitative basis for using linear viscoelastic materials in dynamic
photoelastic testing. For the complete analysis of a two-dimensional
stress field, the question discussed above regarding time-dependent
optical axis orientation and the determination of the necessary third
piece of informé,tion (such as thickness change) must be considered;
however, the crucial initial concern is to establish a quantitatively
valid method to account for the time-dependent mechanical and
birefringent properties characterizing viscoelastic materials. It
can be pointed out immediately that for material calibration, the
problem is drastically simplified since a uniaxial test specimen can

be used; in this case all axes are known to be aligned providing the
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specimen was initially unstressed. Thus the treatment proposed
here is precisely applicable.

The verification of such a procedure will consist in comparing
theoretically predicted time-dependent fringe patterns with experi-
mental results for comparable geometry and loading. The analytical
portion of the study involves three basic phases: (1) theoretical
solution for stresses due to wave propagation (available from Parts
I and II); (2) characterization of the appropriate time-dependent
optical properties of the viscoelastic material used (to follow im-
mediately); (3) prediction of fringes by means of superposition
integrals involving the results of the first two phases (in Section

C below).

3.1 Test Apparatus and Procedure

The material chosen for the test program was Hysol 8705*,
a low modulus polyurethane material which has been used with some
success in previous tests involving low loading rates. A single
tensile specimen (fig. 13), machined from a sheet of 1/2 inch thick
material, was used for all the calibration tests. While repeated
loading effects in some types of viscoelastic tests (e.g., vibration)
can be serious, the calibration procedure employed here proved to
be satisfactory because of the long-time elastic behavior of Hysol
8705 and the allowance of adequate time for the substantially com-

plete relaxation of the specimen between runs.

* Available from the Hysol Corporation, Olean, New York.
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Tensile tests in creep or relaxation (39) could be carried out
to obtain the desired optical and mechanical properties, but a method
found extremely convenient was the use of an Instron Model TT-C
constant-strain-rate test machine. It incorporated a Missimers
temperature control chamber and a G.E. AH-4 mercury vapor light
source in conjunction with a green (54604&) filter, polaroid sheets
and quarter-wave plates to create a circular polariscope within the
test machine as suggested originally by Keedy, et al. (46). The
experimental arrangement is shown schematically in fig. 14, where
it may be noted that the polarizing units are placed within the thermal
chamber in order to eliminate any effect upon the birefringence due
to thermal stress in the window glass. Isothermal tests were per-
formed for a range of temperatures from -40°C to +18°C and exten-
sion rates of 0.02 in/min to 2 in/min. The ease of control and
short running time for each test by this method are distinct advan-
tages.

Observation of the change of fringe order with load and
elongation (which were recorded on a time base on the Instron chart)
was made by eye in this calibration study which was designed as
somewhat of a pilot run prior to more exhaustive investigation using
a photocell (cf. reference 40). Nevertheless, it proved possible to
obtain nearly the complete time-temperature response spectrum,
thus enabling the well-known time-temperature shift factor tech-
nique to be applied. A typical time history showing the raw mechani-
cal and optical data is shown in fig. 15 where the passing fringes are

recorded as pips on the otherwise continuous load vs. elongation



-54-

curve.

Owing to the enlarged sections at each end of the test specimen
(fig. 13) designed to relieve stress concentrations around the Instron
grips, it was found necessary to apply a factor of 0.96 to the total
elongation recorded on the Instron chart when computing strain based
on the uniform test section length of 3.5 in. Subsequent reduction to
coefficient form will utilize true stress incorporating the reduction of
cross-sectional area due to Poisson's ratio effect; also the logarithmic
strain accounting for the change in test specimen length with increasing
strain will be employed. Owing to the small order of magnitude of
strain involved (usually less than 8%), these corrections are signifi-
cant only in the high temperature and low strain rate tests.

Since the Instron machine operates at constant extension rate
rather than precisely at a constant strain rate, a correction as a
function of specimen length could be made. But as will be pointed
out in the next section, the reduced data appear as ratios involving
the strain rate in both numerator and denominator; hence the ratio
remains constant and no correction need be applied to the magnitudes
of the coefficients. But a related error does occur in the determina-
tion of the appropriate time in converting test data to an equivalent
relaxation process; in this case the strain rate is approximated as
constant. Again the effect is measurable only in the rubbery region
where however the time dependency of mechanical and optical

coefficients is very weak so that no significant error is introduced.
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3.2 Determination of Stress Relaxation Modulus

Constant strain rate data for linearly viscoelastic media are
most readily reduced to stress relaxation coefficients (19). In the case
of mechanical behavior, the stress relaxation modulus, defined as the

stress-strain ratio for a step input in strain, €y° is

Grel(t)

c (3.1)

Erel(t) - 0
where O al is the stress measured as a function of time, t, from the
beginning of the relaxation process. Therefore the general transform
expression, or transfer function, relating the stress and strain for

arbitrary strain input, namely,

E(p) = 2 (3.2)

can be determined conveniently by the relaxation measurement. For

this case, because erel(t) =€y

. 0 .e1(P) _ 0 _o1(P)
E(p) = = o) = Eo/p (3.2a)
rel

where p is the Laplace transform parameter.
On the other hand one could just as well characterize E(p) by

a constant strain rate test, in which € S(’c) = Rt, where R is the uni-

ten

form strain rate and Etens(t) is the corresponding tensile strain at

time, t. The transfer function in this case would then be



(p)

E(p) - itens - Cytens

€ onsP) R/p

> (3.2b)

where Ot ons is the tensile stress during the constant strain rate pro-
cess.

Because the operational modulus E(p) is an invariant of the
material, the relaxation and constant strain rate tests must be related.

Equating 3.2a and 3.2b gives

G, p) = eq —2Bs (3. 2¢)

Inversion of 3.2c for quiescent initial conditions gives

(t) = Grel(t) _ d‘Gtens(t)
rel™ 7 ¢ 0 d(Rt)
(3.3)
- (dotens)
- de ‘e=Rt

where € = Rt is the tensile strain during the constant strain rate test.
The statistical theory of rubberlike elasticity indicates that
the internal elastic retractive forces in polymeric chains are directly
proportional to the absolute (constant) temperature (47). Hence, the
test results can be normalized to an arbitrary reference temperature,

TO’ if the stress in 3.3 is adjusted by the ratio TO/T, giving

T, d(cT/T)
TErel(t) B { de }e: Rt ° (3.3a)

By introducing R in both numerator and denominator and using logar-

ithmic derivatives, (3.3a) can be written in the equivalent form
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To
—T-Erel(t) = (3. 3b)

OTO/RT d[log(aTO/RT)]}
{ €/R d{log(e/R)] Jit=e/R

A value of To = 291°K has been used in order to correlate the various
test data reported herein.

Finally, the experimentally-discovered (48, 49) time-
temperature shift factor, aT,» can be included to account for the
well-known qualitative similarity of low temperature-low strain
rate and high temperature-high strain rate behavior. It results in
the following equation in terms of reduced time, defined as

sle
th = E/RaTO, and reduced strain rate RaTO:

.(3.4)

T, ) - {GTO/RaTOT d[log(GTO/RaTOT)]}
! t'=€/Ray
0

e/RaTO d [1og(e/RaT0)]

A log (GTO/RaTOT) vs. log t' master plot of the stress-strain test
data reduced to T, = 291°K is shown in fig. 16 which indicates the
rubbery to glassy transition region as the non-linear portion of
the curve. While consistent and reproducible, the data shown at
the glassy end of the time spectrum are obtained very close to

the start-up point of some of the low temperature tests where
careful handling of the experimental curves is necessary. Indeed,

as the elongations under these conditions are quite small (of the

% If the situation is non-isothermal, the reduced time, t', is
related to the physical time, t, through the equation
t

dr
t' = et
So aT [T(T)]
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order of 0.001 in.) when the precision of the Instron recording device
(a follower pen on a time-base chart) is considered, the accuracy is
less than that obtained in the remainder of the calibration; hence this
possible approximation in the glassy response must be borne in mind.
It is highly desirable to have an improved coverage of this glassy
region; additional data‘will be forthcoming in the more exhaustive
program noted above (40).

Since both GTO/RT and €/R in 3.3b involve units of time,
application of the time-temperature superposition principle (49)
requires equal shifts in both coordinates of the preliminary log
(GTO/RT) vs. log (€/R) plots at the different temperatures to provide
the continuous fairing of the log-log curve in fig. 16. The amount of
shifting required along each axis for the respective test temperatures
establishes the relation of log am to temperature, fig. 17. Also shown
on this plot is the WLF shift factor equation (50)

-8.86 (T-T )
log apy ¢~ TOLBF(T-T, (3.5)

where the temperature T is in degrees Centigrade and TS, the refer-
ence temperature, was found to be +3°C for the best fit to the experi-
mental data. The test data are reasonably well represented by the
WLF equation in the transition region where it is expected to be valid.
Since TS is usually found to be approximately 50°C above the glass

transition temperature, we deduce that the value of the latter is

TG =TS - 50 =-47°C . ‘ (3.6)
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Independent tests (17) of the mechanically similar polyurethane
material used in the analysis of Parts I and II gave -40°C as the
glassy temperature; thus the foregoing value is seen to be in rea-
sonably good agreement with the expected range of the glassy

temperature for Hysol 8705. Note that in 3.5, log am , which

is essentially related to the glassy temperature, is shvi‘;iFd from
log ar plotted in fig. 17 since the latter corresponds to the arbi-
trarily selected reference temperature, T0 = 291°K. Fig. 17
also contains data points from the optical calibration to be de-
scribed in the next section.

The variation with reduced time of Erel as calculated from
fig. 17 using 3.4 is shown in fig. 18. Again the broad-band relaxa-
tion spectrum for this polyurethane material is evident, along with
the fact that a rubbery modulus exists due to the cross-linked
nature of the polymer preventing unlimited flow. As it should,
the rubbery modulus agrees with static test results on this ma-
terial (18}). Moreover the mechanical response of Hysol 8705
exhibits approximately the same behavior as the polyurethane
material tested by Landel (17) and used in the foregoing theoretical
wave propagation studies. Comparison of figs. 3 and 18 discloses
that the equilibrium and glassy moduli are roughly equal and the
logarithmic time (or frequency) transition curves are quite well
matched also. This will prove to be an advantage in the compari-

son of theory to experiment in Part IV.
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3.3 Determination of Relaxation Birefringence-Strain Coefficient

As noted in the foregoing, the question of optical calibration
needs careful consideration for photoviscoelastic materials. The
historical controversy as to whether birefringence is basically a
stress or strain activated phenomenon is somewhat academic for
essentially elastic media, but for rate-sensitive materials the rela-
tionships must be established.

It is appropriate here to reiterate the salient features per-
taining to optical characterization of viscoelastic materials. The
possibility of lag in the mechanical or optical response to a given
loading can in general give rise to a non-alignment of the principal
strain axes with the principal stress axes as well as of the optical
axis with both of these (43). This does not occur in elastic material
since the appropriate coefficients relating stress and strain or
either of thése with birefringence are not time dependent. However,

in the case of isotropic, homogeneous viscoelastic media, in which

the coefficients become time operators, special conditions must
apply before the alignment of all pertinent axes is assured. Never-
theless, for viscoelastic materials which allow the stress- and
strain-optical relations to be expressed by the type of linear
operators discussed previously for mechanical properties, the
directions of principal stress axes and difference in principal
stresses can be determined (44). It requires the measurement of
both isochromatics (fringes) and isoclinics (indicating the locus of

points having a constant angle of inclination of polarizing axis to
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fixed x and y axes) as functions of time. Maximization of the resulting
O'X—O‘Y values with respect to the orientation of the arbitrary x- and
y-axes gives the difference in principal stresses and the corresponding
directions.

Thus for photoviscoelasticity in general, the time-varying
isoclinics become a necessary part of the experimental data to be
acquired along with the isochromatics. The practicality or possi-
‘bility of doing so in dynamic situations will depend on the individual
test circumstances. Nevertheless the reduction of data from such a
test requires the basic knowledge of the operator relationship between
strain and/or stress and birefringence. This is the one item needed
to characterize the material, all other pieces of data being dependent
on the individual experiment being performed.

To cstablish this characterization, it is expedient to use a
simple test situation eliminating some of the variables. Such a
situation we have seen to exist in the case of a uniaxial tensile test
starting from rest which guarantees the alignment of optical and
mechanical axes; thus the birefringence relationships are simplified
and can be formulated directly as functions of the difference in
principal strains or stresses.

The theoretical approach to viscoelastic birefringence cali-
bration suggested by Williams (51) and already implied in the work
of Mindlin (43) has received preliminary experimental verification
(52). As presented herein, it follows the development of Arenz (53).

Photoelastic theory usually takes the form of postulating

birefringence-stress and birefringence-strain coefficients relating
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fringe order with principal stress and strain difference, respectively;

specifically, for the strain dependency, we write

n= Ce (El - 62) (3.7)
where

CE = model birefringence-strain coefficient, fringes/in/in

n = fringe order number.

From the definition given it is apparent that CE is related to the
usual photoelastic material strain-optic coefficient fE based on

maximum shear strain in the following manner:

_ h
C, = s (3. 8)

where h = model thickness.

For viscoelastic materials, the association between fringe
order and strain is time dependent. In a relaxation test for
example, the corresponding birefringence-strain coefficient can

be defined as

c (t):-;zfig;— . (3.9)
€ rel €-€20p

Referring again to a constant-strain-rate uniaxial test for charac-
terization of the material, a derivation essentially similar to that
for 3.4 gives the following relation for the relaxation birefringence-

strain coefficient:
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dn
2,1 tens
G [l zlg — )
rel
or
n/RaTO d[log(n/RaTO)]
c, (t‘)=%{e/RaT - (3.10)
ol o AMioge/ag 11 yoe ja,
0

In this expression, the material is assumed incompressible (v=0.5),

and the test is uniaxial so that if € = El is the axial strain, and 62 the
transverse, then
€. -€ =€ - (-ve)=oe (3.11)
1 2 1 1 21 )

thus accounting for the factor 2/3 in 3.10. Deviation from the value
v = 0.5 which occurs in the glassy response regime of viscoelastic
materials would introduce only minor changes in the magnitude of
this factor.

Reduction of test data is similar to the procedure used to
determine mechanical property characterization of Section 3. 2.
The decrease of specimen thickness with elongation was accounted

for by multiplying the experimental fringe order by the factor

1
1-ve

= 1+ ve

to obtain n. Again, v= 0.5 was assumed since the factor is signifi-
cant only in'the higher temperature and lower strain rate regime
where the material behaves in a rubbery manner. Thus, the bire-
fringence coefficient is corrected for the effects of thickness change

and the initial thickness can be used at any reduced time when
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performing additional operations on the characteristic curve.

Values of log(n/R) vs. log (€/R) for each isothermal run were
plotted and then shifted according to standard procedure (49) along a

45° reference line, to form the smooth master curve of log(n/RaT )
0
thus obtained
To

is plotted on fig. 17. Furthermore, from a comparison of the shift

vs. log t', fig. 19. The time-temperature shift factor a

factor for the mechanical data, it is seen that the birefringence shift

factor is essentially the same; it is also in good agreement with the

WLF equation. The logarithmic master curve of C6 vs. t', fig.
recl

20, is obtained from 3.10 using fig. 19. The long time value compares

favorably with static determinations of Ce for Hysol 8705 material (36).

3.4 Conversion to Creep Birefringence-Stress Coefficient

An elastic birefringence-stress coeifficient is defined in a

manner analogous to 3.7 for strain, i.e.,
n= C0 (a1 - 02) (3.12)

where Cc = model birefringence-stress coefficient, fringes/psi, and

G, is related to the usual material stress-optic coefficient f_ by

Cy= 57 - (3.13)

The viscoelastic creep birefringence-stress coefficient

C (t), which is determined during a constant stress test, is not
crp
directly obtainable from a constant-strain-rate test. However, it

can be obtained from C€ (t) for linear viscoelastic materials since
rel

interrelationships among the time-dependent functions in 3.7 and
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3.12 can be derived.

Suppose the time-dependent shear response is characterized by
P(o1 - 02) = Q(el - 62) | (3.14)

where P and Q are linear differential operators as described in Part I.
If reduced time is used in 3.14, then the Laplace transforms of 3.7

and 3.12 are related (52). Specifically, from 3.12, one has

It

n(p) = C(p) [oy(p) - 0,(p)]
C,(p) BB [€(p) - €, ()]

assuming that principal axes are aligned. Similarly, from 3.7 it

(3.15)

follows that
n(p) = C, (p) [€(p) - €,()] - (3.16)

Hence, upon defining the operational shear modulus (in servomecha-
nism notation, a transfer function) with due regard to the relation of
maximum shear stress and strain to principal stress and strain dif-

ferences, we have

Q

—

2 G(p) = 2p) | (3.17)

S

from which one has immediately that

C (p) = 2Glp) Cylp) - (3.18)

Thus the birefringence-stress and -strain coefficients are not inde-

pendent, but for the case of aligned axes are uniquely related in the
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above manner through the time-temperature dependent shear modulus
of the linear viscoelastic material.

Application of the Laplace transform to 3.7, 3.12, and 3.14 |
for conditions of unit step mechanical inputs and introduction of the
definition 3.17 lead to the following useful relationships between
operational parameters and the transforms of the material proper-

ties for the specific processes of stress relaxation and strain creep:

Glp) =pG_,(p) (3.19)
Je)  =pT 0P (3.20)
Glp) =pC, rel(p) (3. 21)
C,lp) =p Eocrp(p) (3.22)

where the compliance J is by definition the reciprocal of G.
We are now in a position to solve for C0 . For if 3.19, 3.21,

crp
and 3.22 are applied to 3.18, we have

C (=2pG (T, (). (3.23)
rel _ crp

Substituting 3.19 and 3.20 in 3.23 gives

— _1_
Co ®=35C (IpI . P . (3.24)

crp rel

Applying the convolution inversion integral to 3. 24, we choose the fol-

lowing solution form most convenient for our purpose:
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t
ar __ (7
(t)+§Ce (t-rr)-—%-r-f——-dT}.

_1
CO' (t) = _Z{Jcrp(o) CF.
crp rel o rel

(3. 25)

To utilize this equation, the behavior of Jcrp(t) is required, and
two or three suitable methods to obtain it from Erel(t) are available.
The first is a collocation method (54), similar to that used in the theo-
retical solution for wave propagation in a viscoelastic rod (Part I), in
which Em is the relaxation modulus for a finite-element Weichert

model (10) represented analytically by the series
3 —t/'Ti
Em(t,) = Ep TZ E e (3.26)
i=1

where ER is the rubbery equilibrium modulus and the 7, arc choscn
to span the complete time history of the response; Erel(t) and Em(t)
are then collocated to evaluate the coefficients Ei' This series can

be Laplace transformed and the values of E(p) and hence ﬁc (p) =

rp
D(p)/p = 1/pE(p) determined. Assuming a similar type of series rep-
resentation for D t), D (p) can be inverted by the collocation
crp crp

inversion procedure (14) used in the wave propagation solution to give
Dcrp(t). If again incompressibility is assumed, Jcrp(t) = 3Dcrp(t).
Thus all the necessary ingredients are available to evaluate 3. 25.

A more rapid but slightly less accurate method involves a

modified power law representation (19) of Erel(t), which is then con-

verted to an analogous expression for D (t}y (oxr J (t)), with the
: crp crp
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fit being accomplished at the inflection point in the curve plotted to a
logarithmic scale. Indications are that this latter approach is suffi-
ciently accurate for our purposes. The relaxation data are hence
represented by

Eg-Eg
[1+c at ]n

Ty

where EG is the glassy (short-time) modulus and ¢ and n are material

E_,(t)=Eg+ (3.27)

constants. From fig. 18, c and n are determined from the modulus
and its derivative at the inflection point to be 6.64 X 109°8 and 0,513,

respectively. A similar approximation to the creep compliance be-

havior is
D_.-D
D plt) = Dg+ R Cg = - (3.28)
[1+ 575Ez?

Using the common inflection point and reciprocal slopes at this point

for the two functions with D_, and D, being the reciprocals of E_, and

G R G
ER respectively, we obtain the values ¢' = 1.11 X10_5 and n' = 0.513.
Finally, J = 3D and is given as a function of reduced time in fig.
crp crp
21 with the normalizing ratio T/TO incorporated. Thus its time deriva-
tive can be obtained with the result shown in fig. 22, and the integral
in 3. 25 evaluated to give (T/TO)C0 as shown in fig. 23; both opera-
crp

tions were carried out numerically. The general accuracy to be expected
by the numerical method is indicated by the rubbery value of CG

crp
which deviated 2% f{rom the directly computed value using long-time

elasticity relations between Cc and Ce . As a limit check, the rubbery

magnitude of CO agreed closely with the results from static tests of
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Hysol 8705 (18, 36).

A third and most simple conversion for Jcrp(t) is from the

approximation
D (t) £ _——51 . (3.29)
crp Er el(t

Some recent data {39, 55) indicate that for most of the transition
region, this is quite well justified experimentally, although it appears
that at the "knees" in the relaxation and creep curves, which are
fairly critical areas, the error can be appreciable. The strongest
argument for the use of 3.29 lies in its providing a method for rapid

estimates.

C. DYNAMIC FRINGE PREDICTIONS FOR STRESS WAVE PHENOMENA
The final step before comparing the theoretical analysis with
experiment involves the fringe order prediction* based on the Duhamel

superposition integral

t
h
) = -22del Jooyc o+ \ o -1 2T arl  (3.30)
h (o) (o) ar
test crp 0 “crp
where h is the thickness of the photoelastic model used in the
model

wave propagation study and htest is the thickness of the material

calibration test specimen. If the material is initially undisturbed

with no stress applied at a given point in the model until the first

* For purposes of experimental stress analysis, the inverse bire-
fringence operators are required; the determination of these is dis-
cussed in Section D below.
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finite stress wave arrivals begin to appear, o(0) is zero and only the
integral contributes to the fringe pattern.

Since wave propagation in two geometries has been studied
analytically (Parts I and II), predicted fringe patterns were deter-
mined for both the one-dimensional rod and the two-dimensional thin
plate under step input loadings in order to provide a comparison with
the experimental findings to be described in Part IV.

The theoretical stress wave solution of fig. 4 incorporated
with the optical calibration of Hysol 8705 in equation 3. 30 for two
positions along the uniaxial rod gave the variation of fringe order
with time shown in fig. 24. The appropriate integrations have been
carried out numerically in the present analysis, but this operation
can readily be performed by computer and assimilated into an overall
program with previous steps in the calculations. Also shown in fig.
24 is the experimental fringe pattern from a test on a bar 0.365 in.
thick by 0.875 in. wide loaded on the end by a shock wave pressure
front. Since comparison of the theoretically predicted and experi-
mental fringe patterns involves an analysis of the test conditions,
it is deferred until Part IV which treats the experimental wave prop-
agation aspect of the program.

For the present, we concentrate on a comparison of the
predicted dynamic fringe pattern with that given by using the static
or long-time equilibrium value of Co' In the latter case, the
integral disappears from 3.30 and the fringe order is proportional
to the stress value, giving the static calibration curve in fig. 24.

Apparent first of all is the relatively small difference in the values
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of n between the two methods. Examination of the time scale dis-

closes the reason; C(j is already approaching its rubbery value
crp

for times greater than 10—5 sec (fig. 23). On the other hand, only

a small part of the stress rise in the rod at x = 1.67 cm takes place

5 5

(at ambient temperature) in the interval from 4.5 x 10 ~ to 5.5 x 10~
sec (fig. 24). Furthermore, farther down the rod (x = 3.81 cm) the
difference in n is even less., Hence we conclude that for the step
input loading the characteristic optical response time is so short
that relatively little delayed photoviscoelasticity occurs over most
of the specimen. If however the loading situation produced a much
shorter stress rise time, the delayed birefringence would play a
significantly larger role during the transient phenomenon.

Several conclusions thus emerge from this theoretical photo-
viscoelastic treatment alone. For Hysol 8705, the optical response
to stress is very rapid compared to many stress rise phenomena,
making it a desirable material for wave propagation situations.

But the more rapid the stress rise (e.g., very close to the step
input), the more influential is the photoviscoelastic behavior
during that time period. Moreover, some other viscoelastic
materials suggested for photoelastic use (39) have significantly
longer relaxation times at room temperature, making the photo-
viscoelastic analysis even more essential when they are applied

to dynamic problems. Finally, a material calibration and analysis
of the sort proposed here is useful to evaluate the relative impor-
tance of viscoelastic effects in any given situation and hence deter-

mine when the calibration is essential and where it might be dispensed
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with for engineering applications. For example, for a pulse loading
approximating the Dirac §-function with equal amplitudes for all
frequency components, a greater deviation from the rubbery bire-
fringence characteristics is expected since the high frequency
components will be stronger than in the case of a step loading.

In the case of the semi-infinite thin plate, the experimental
situation again needs discussion since the practical aspects of model
size dictate a thickness such that a plane stress situation is not fully
realized; these considerations are discussed in Part IV. Hence in
this case the comparison with experiment is limited to the shape
of the curve depicting variation of fringe order with depth in the
material.

Since the plane-stress solution of Part II indicates an ap-
proximately constant orientation of principal stress axes (inasmuch
as the GXY shear stresses are practically always ngligible with
respect to the normal stresses), we take advantage of this charac-
teristic of "proportional loading" to apply the fringe superposition
integral 3.30 directly. The resulting prediction indicates that
n_ax? the maximum number of fringes (occurring at the surface),
is approximately equal numerically to 0.4 of the applied overpres-
sure in psi. For comparison purposes, however, the parameter
plotted in fig. 25 is n/nmax for two values of x, the distance behind
the head of the moving step load. The stress rise times are of the
order of those pertaining to the one-dimensional case; hence the

use of the static birefringence coefficient in calculating fringe
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order would produce the same comparisdn as described just above

for the case of wave propagation in a rod.

D. APPLICATION TO DYNAMIC STRESS ANALYSIS

For application to a dynamic stress analysis problem*, the
inverses of the coefficients and procedure outlined above are required.
In general, a superposition integral must be formulated to incorporate
a stress-optic (or strain-optic) coefficient and the variation of fringe
order with time. If the engineering approximation of colinear optical
and principal mechanical axes cannot be made, the treatment will
follow the lines suggested by Read (44) and referred to earlier in
which all measurements and components are taken with respect to
a fixed x-vy coordinate system.

Again, however, the coefficients themselves are uniquely
defined. Analogous to 3.12, the constitutive equation defining the

time -dependent model stress-birefringence operator K _ is
o, -0,=Kn, (3. 31)
(o)
Laplace transformation of 3. 31 yields
o,(p) - 0,(p) = K_(p) n(p). (3.32)

where Kc(p) may be termed the operational stress-birefringence co-
efficient in analogy to an operational modulus. Comparison of 3.32

with 3.15 reveals that

% For a recent comprehensive summary of viscoelastic stress analy-
sis procedures, consult Williams (56).
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_ 1
KG(P) T (3. 33)

o

Considering for analytical purposes only a relaxation type of
test in which a step input in fringes is made and maintained by suit-

ably varying the stress, a relation similar to 3.22 is readily derived:

K, p) =p Kg,, (P) . (3. 34)

rel

This defines a relaxation stress-birefringence coefficient where it

should be noted that the relaxation in stress results from a constant
fringe condition rather than constant strain. The relation is unique
however inasmuch as stress and strain are uniquely related for any

given process in time. Combining 3. 34 with 3.33 and 3.22 gives

— 1
KG (p) = —— (3. 35)
rel. p°C, (p)
crp

Thus, by one of the methods proposed in Section 3.4 for converting
mechanical relaxation modulus and creep compliance, the time de-
pendent function Korel(t) can be obtained from 3. 35.

A parallel derivation for the strain variation for a step fringe

input gives a K, relation similar to 3. 21 and finally leads to

€
crp p C (p)

which can also be converted to a time function suitable for use in a

superposition integral to obtain the variation of strain with a
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e

time-dependent fringe history. §

* Specific interconversions for these coefficients are presented in
reference 40 but are not included hetre inasmuch as the fringe order
prediction follows from the analytically determined stresses; thus
3.25 is the required characterization.
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PART IV

PHOTOVISCOELASTIC OBSERVATION OF WAVE PHENOMENA

Analysis of stress wave phenomena by means of experimental
photoelasticity involves a significant increase in complexity over the
static and quasi-static situations. Primary attention must be paid to
the photographic recording of a rapidly changing stress field which
implies a short exposure time to stop the motion. Intense monochro-
matic light sources along with fine-grain high speed films are a
necessity.

Although important information can frequently be deduced
solely from isochromatic patterns especially at free or normally
loaded boundaries or along lines of symmetry, the quantitalive speci-
fication of a two-dimensional stress state at an internal point requires
in general three independent pieces of information. These are usually
the isochromatics, isoclinics and isopachics. The last of these can
often be replaced in a static problem by a plane stress elasticity
relation. In the dynamic situation it appears impractical to observe
all three quantities simultaneously, and therefore the same test
must be repeated a number of times. This implies rather precise,
and perhaps impossible, repeatability of loading and material response.

Since most wave propagation phenomena in solids occur very
rapidly, the depiction of the stress time history requires the evalua-
tion of a large number of fringe patterns. The efficient handling of
such a data reduction problem looks eventually toward some form of

automated treatment.
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Finally, as has been treated extensively in Part III, the use
of viscoelastic media imposes the additional considerations of me-
chanical and optical response variation with rate of loading.

As reported by Goldsmith (57) in a recent comprehensive
survey, great strides have been made in developing satisfactory
equipment and methods to meet these requirements. Long since
developed to a high degree for making static observations, photo-
elasticity was initially applied in a significant manner to a dynamic
elastic situation in the mid-1930's. Tuzi and Nisida (58) in 1936
employed a streak camera to obtain a high equivalent framing rate.
In 1939 Findley (59) utilized a rotating drum camera and spark
illumination to obtain full image photographs. Subseguently Senior
and Wells (’60) used an ordinary camera and a flash type light
source to produce single photographs of fringe patierns. Records
of stress wave propagation in glass and perspex were obtained by
Christie (61) who employed a high speed multiple spark and lens
camera. Attempts to increase the framing rates of cameras led to
the work of Sutton (62), Feder et al. (63), and Williams et al. (64).
The last of these papers describes the development of a 200,000
frames-per-second drum-type camera based on the Ellis principle
(65) which has been utilized in the two-dimensional testing discussed
in Section B below.

The first effort in the use of materials of low moduli of
elasticity was due to Perkins (66) who in 1953 obtained photographs
of stress wave propagation in photoelastic rubber and gelatin using

a'16 mm Fastax camera. Such relatively soft materials have
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stress wave speeds an order of magnitude lower than materials
used previously, with én attendant easing of the high speed photog-
raphy problem. Durelli and co-workers (36, 37, 67) have devel-
oped this technique to a high state using Hysol 8705 material.
These low modulus materials, however, are for the most
part high polymers and depending on the temperature respond
viscoelastically. None of the foregoing experimentalists have
attempted to include an analysis of the viscoelastic influence on
their results. As pointed out recently by Kolsky and Lee (68),
the difficulties associated with viscoelastic materials for this
application remain to be treated. While a sketchy calibration at
low strain rates has been given (36) and may be adequate for some
mechanical loading situations, the complete spectrum coverage

of birefringence characteristics for Hysol 8705 has been lacking

e

until now. The results of Part III are intended to remedy this
situation.

The continued use of Hysol type materials in photo analysis
has been reinforced by interest in the effects on various solid bod-
ies of traveling pressure waves generated by high yield explosive
devices. This so-called ground shock problem is formulated as
the two-dimensional experiment presented in Section B. Indeed,
when the technique was originally reported (42), it stimulated a
more exhaustive investigation (69) incorporating strain measure-

ments as well as fringe patterns. Yet this latter study still did

* However, as noted in Part III, some other epoxy materials of
higher modulus have been characterized (39) concurrently with the
present investigation.
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not adequately consider viscoelastic effects. Hence, as suggested
by Flynn, et al. (70), the calibrations and comparisons presented
here are most appropriate to establish a firm basis for the photo-
viscoelastic method.
Before taking up the two-dimensional thin plate under the

sudden pressure loading of an aerodynamic shock wave, we consider
first the results of photoviscoelastic tests of uniaxial wave propaga-

tion in a rectangular bar.

A. VISCOELASTIC BAR WITH STEP PRESSURE LOADING

As part of the verification of the proposed photoviscoelastic
theory, a comparison has been made between the predicted fringe
patterns and those obtained cxpcrimentally. The one-dimensional
test data from a separate GALCIT research program referred to
previously (40) are correlated with the results from Parts I and III.

The experimental equipment and procedure are described
only briefly here; the reader is referred to reference 40 for details.
The model consisted of a 0.365 X 0.875 X 3.5 inch prismatic bar of
Hysol 8705 material mounted at the exhaust end of a small rectangular
aerodynamic shock tube (described more fully in Section B below).
The end of the specimen fitted the shock tube opening (except for a
small gap around the periphery) and extended about 1/4 inch into the
tube. The tube and bar were mounted vertically to reduce bending
of the model to 2 minimum and produce essentially axial loading by
the shock wave as it traveled down the tube and impinged on the

leading end of the bar. The shock wave loading represents a step
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pressure input, corresponding to the boundary condition specified for
the rod in Part I. A Kistler 605B quartz piezoelectric pressure trans-
ducer was used to determine the magnitude of the step pressure input.
For the tests described here, it was 59 psi to an accuracy of better
than 10%; this value agreed well with the reflected pressure calculated
by elementary shock tube theory.

A polariscope was provided to record time dependent fringes,
the camera being an Eastman Kodak 16 mm camera caéable of taking
pictures at the rate of 3300 frames per second. While a higher fram-
ing rate would have been preferable, this camera provided three
frames during the event so that a time history could be estimated.
Fig. 26 taken from reference 40 shows enlargements of three frames
from a typical test of the series. The resulting diagram of position
along the bar and arrival time for the various fringe order numbers
is given in fig. 27. From this curve the experimental variation
(fig. 24) of nvs. tfor x = 1.67 cm and x = 3.81 cm was derived.

The most prominent difference to be noted is the more
gradual rise in experimental fringe order early in the response period
compared to that predicted by theory using calibrated material prop-
erties. Near the end of the wave arrival however the test values are
approximately 5% higher than predicted, but this is still within the
possible variation already noted in the measurement of the applied
pressure.

Probably lthe major reason for the discrepancy can be sought
in the effect of lateral inertia and the higher modes of transmission.
In a compressional wave, the accompanying tendency for the material

at the wave front to expand outward is resisted by its inertia; hence



-81-
this acts as an equivalent compressive stress so that the difference
in principal stresses is less than if inertia forces are neglected. Thus
until the wave has essentially passed, the number of fringes would be
fewer than predicted by the simple one-dimensional theory. Associ-
ated with this stress-free boundary effect are the higher modes of
wave propagation. While phase velocities in these modes can become
quite large, the group velocity of energy transmission is always less
than that of the rod velocity. Furthermore the rectangular bar
geometry introduces a wave propagation modification from that of
the thin bar or rod. Elastic analysis by Gazis and Mindlin (71) shows
that the coupling of width and thickness modes decreases the velocity
of low-frequency components below the corresponding plane stress
values. The speed of propagation seems definitely to be involved,
for in order to compare fringe pattern shapes from theory and exper-
iment, the origin of the predicted pattern for x = 3,81 cm in fig. 24
had to be increased by 0,75 X 10_4 sec. to make it coincide with the
experimental fringe order curve. Thus the actual stress wave
velocity was less than that predicted by the simple theory. For

x = 1.67, near the front end of the model, no measurable shift was
necessary.

Jones (72), besides noting this effect for wide rectangular bars,
has investigated by approximate plane-stress elasticity equations the
warping of plane sections during wave propagation and qualitatively
predicts curved photoelastic fringe patterns of the type shown in fig.

26, The deviation from the plane cross-section characteristic
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assumed in the stress analysis of Part I would introduce modifications
to the fringe pattern which represents integrated optical effects through-
out the thickness of the bar.

An additional factor of possible significant influence was the
high pressure gases that spilled out around the side of the model at
the mouth of the shock tube. Such pressure exerted on the faces of
the model would also reduce the fringe order at short times; however
at greater distances from the leading end of the model (e.g., at 3.81
cm), its effect should appear considerably diminished, which is not
the case in fig. 24. Hence it is not believed to be an important con-
tributing factor.

Finally, there is some preliminary indication (40) that a
more precise calibration of CG using a photocell would place its
transition region (fig. 23) at a.c:ightly later time. This too would
be in a direction to cause the predicted and experimental curves to
coincide.

Despite the discrepancies just noted, there is sufficient evi-
dence to draw some definite even though qualitative conclusions. The
difference between the results from a constant (static) birefringence
coefficient and a photoviscoelastically-calibrated function indicates
the necessity of suitably characterizing any viscoelastic material that
is to be used in photoelastic stress analysis. The modification of the
resulting birefringence time response shown in fig. 24 is qualitatively

correct. For the case of Hysol 8705, the birefringence relaxation

processes are quite rapid and imply for dynamic phenomena with
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stress rise times of the order of slightly greater than 10"% sec that
the modification to effective fringe value is no larger than 20% dur-
ing the transient period.

Thus, tentatively it appears that Hysol 8705 has some very
desirable features from a viscoelastic standpoint for dynamic photé-
elastic investigation. On the other hand, the associated rapid atten-
uation of high frequency components would be a disadvantage in certain
applications. In more rapid events in Hysol 8705, and especially in
other photoviscoelastic materials, the variation in the operative
birefringence value can be considerably larger. In either case, the
method of calibration and application of viscoelastic birefringence
operators proposed here places the technique of photoviscoelasticity

on a firmer theoretical and practical foundation.

B. THIN PLATE UNDER SHOCK WAVE LOADING

A second aspect of the verification of the photoviscoelastic
theory involves the study of a two-dimensional thin plate geometry
approximating that analyzed in Part II. Chronologically, this exper-
imental program preceded the rest of the material reported herein
and served as the stimulus to the previous photoviscoelastic calibra-
tion investigation inasmuch as it was discovered that no adequate
method existed for handling the viscoelastic aspects of high polymer
birefringent materials.

The original test series (42) examined the effect of an aero-
dynamic shock wave passing over the upper edge of a slab of photo-

elastic material, with the resulting stress-wave photoelastic pattern
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being photographed by a high speed camera. In addition, various
geometries including the simulated semi-infinite plate, covered and
uncovered cutouts at the surface of the material, and layered media
were examined (18)., Of basic interest in the present study, how-
ever, is the comparison with predicted fringe patterns for the semi-

infinite plate from Parts II and III.

4.1 Experimental Apparatus

The basic specimen, a 12 inch square plate of 1/2 inch thick
Hysol 8705, was mounted at the end of the aerodynamic shock tube
as shown in fig. 28. The 1/2 inch by 1 inch rectangular tube utilized
nitrogen gas as a driving fluid in the high pressure chamber and
exhausted into an enclosed rectangular area at atmospheric pressure
over the model. Upon rupture of the diaphragm material (one or
more layers of mylar placed between the pair of flanges at the right
of fig. 28), a shock wave formed, traveled down the tube, and passed
over the top edge of the two-dimensional model. The pressure jump
across the shock front induced a propagating stress wave in the model.

Two Microdot high frequency electrical leads attached to the
shock tube sent the signal of the passing shock wave from two resis-
tance thermometer pick-ups (located ten inches apart in small inserts
near the exhaust end of the tube) to an amplifier and Berkeley 7360
microsecond counter. A thin‘narrow platinum film sputtered onto
the glass pick-up body acted as an electrical conductor of small ther-

mal inertia whose resistance varied with temperature. The amplifier

* The manufacture and operation of these pick-ups have been described
by Rabinowitz, et al. (73).
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boosted the signal generated by the temperature jump existing acrbss
a passing shock wave. The two pulses activated the counter to give
the velocity of the shock wave and, after suitable time delays, also
initiated the photographic cycle by firing the light source and tripping
the camera shuttering action.

Some of the optical elements of the polariscope are shown in
fig. 28 behind the model at the end of the tube. A close-up of the model
in its holder is shown in fig. 29. As shown, the specimen is enclosed
on the vertical faces and on the top by plexiglass (essentially not bire-
fringent) plates. Hence in effect the shock tube is extended unchanged
in shape to the end of the model holder with the upper edge of the model
forming the lower boundary of this part of the tube. The face plates in
the region enclosing the model are slightly recessed to leave a small
clearance between them and the model material itself. Thus the con-
figuration is a relatively thin slice of material with free surfaces and

approaches a two-dimensional plane stress situation.

4.2 Camera Design

The high-speed Ellis-type framing camera developed during
the past few years at the Guggenheim Aeronautical Laboratory was
used in these photoelastic experiments. Its design has been extensively
described (64) and hence only a brief review of the camera and auxiliary
equipment is necessary.

The schematic layout of the camera assembly and photoelastic
bench is shown in fig. 30. The camera itself consists of a circular
drum whose axis coincides with the optical axis of the photoelastic

bench. A bevelled mirror is mounted on a shaft at the center of the
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drum and driven by an air turbine. The mirror reflects the image
through 90° and flashes it onto the stationary film track around the
complete periphery of the drum. Space is provided in the drum for
128 frames of 35 mm film.

The photoelastic bench is a conventional straight-through
type employing 10-inch diameter lenses. With such a large optical
field, a diffused light source consisting of a 5-kilovolt Xenon flash
tube in a parabolic reflector and a frosted glass proved to give the
best results. The polarizer and quarter wave plate produce circu-
larly polarized light to illuminate the specimen (denoted S in the
figure). The final quarter plate and analyzer complete the basic
elements of the polariscope.

The lone remaining item listed in the schematic layout, the
pulse circuit, is shown in the block diagram, fig. 31. Here are
indicated the camera assembly and photoelastic bench, and between
them the Kerr cell, which is essentially an electrical shuttering
device to provide the extremely rapid framing rate and short expo-
sure times. The principle of operation depends on the fact that
nitrobenzine in an electrically charged field becomes optically bire-
fringent until the charge is removed. Thus when a pulsed voltage of
the proper magnitude is applied to the plates in the cell, it acts as
a half wave plate which, in conjunction with a pair of crossed pola-
roids, pro.duces a shutter of extremely rapid response time. The
appropriate voltage, depending on the size and spacing of the elec-
trodes, is 20 kilovolté in this case. The pulses are synchronized

with the mirror rotation by a magnetic pick-up on the rotating shaft.
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The other major components indicated on the block diagram are the
control chassis, the power amplifier for the Kerr cell pulses, the
initiator circuit, and the input power control unit. The camera oper-
ates at framing rates in excess of 100,000 frames per second and a
fixed exposure time of 0.1 microsecond.

The large photoelastic field, the extremely short exposure
time, and the fact that Hysol 8705 is not completely transparent
imposéd some serious limitations on the photographic film density
that could be obtained. The 35 mm film selected as both fast enough
and sufficiently fine-grained was Agfa Isopan Record film with a

nominal ASA rating of 640.

4.3 Semi-Infinite Plate Geometry

The principal two-dimensional investigation involved the
semi-infinite plate geometry loaded on the upper edge by the pass-
ing shock wave. Experimentally the semi-infinite character is
simulated by the fairly large model size so that all the wave propa-
gation events of interest are photographed before any reflections
from the boundaries occur. The high-speed motion pictures shown
in fig. 32 are from such a test on Hysol 8705. The framing rate
was 72,000 frames per second with an exposure time of 0.1 psec.
The nitrogen pressure in the reservoir at rupture of the shock tube
diaphragm was 750 psi at a tefnperature of 75°F. As it passed
through the test section over the specimen, the shock wave was
traveling at 2'210 feet per second. Shock tube theory predicts a

susfained pressure situation for a disfance of at least six Inches
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behind the shock front. The pressure differential across the shock
for this test was approximately 70 psi (74). The time represented by
the 16 frames shown in fig. 32 is approximately 230 microseconds
beginning shortly after the shock wave started to move across the
surface of the model.

The passage of the shock wave is evident from the stress
fringe pattern spreading down at an angle across the model. After
a short portion at a steepened angle near the surface, the leading
heavy fringe is essentially linear for most of its length, but does
exhibit some curvature near the left hand edge of the model. Before
these facts are discussed in detail, the quasi-circular pattern pro-
ceeding ahead of the main stress fringes in fig. 32 should be noted.
At first thought to be part of the stress wave propagation phenomenon,
it was further investigated with a simplified model holder that per-
mitted the high pressure gas behind the shock wave to escape from
the model faces about one-quarter inch below the top surface of the
model. No such pattern appeared with this modified set-up, ivndi—
cating that the effect is due to high pressure gas acting in the slight
clearance between the specimen and its enclosing plexiglass face
plate to compress the model material. That is, the photoelastic
effect displayed in the model, a partial order fringe, is in reality
due to an air-propagated pressure wave rather than a solid-propagated
stress wave. The pattern does not appear with polaroids removed,
which confirms ifs photoelastic nature. While it consequently does

not immediately concern the study of stress wave propagation in
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solids, it is of some interest as a possible method of experimentally
creating a stress field.

The shock wave speeds for several runs of the type shown in
fig. 32 have varied between (aerodynamic) Mach numbers of 1.7 and
2.1. These are clearly faster than any of the photoelastically dis-
cernible stress effects propagatcd in the Hysol 8705 material as
evidenced by the fringe patterns. This conclusion correlates with
the analytical results of Part II; thus these tests while " supersconic"
relative to the first significant stress arrivals would actually be in
the subsonic regime relative to glassy dilatation wave speeds in the
material. In the notation of Part II, Mq’; = 0,605 for the illustrated
test. Additionally, these tests have established the essential linearity
of the photoelastic fringe front, but they also showed a curved char-
acteristic in the vicinity of the vertical boundary adjacent to the shock
tube exit. Fig. 33, which is an enlarged view of one of the frames
from the film strip of fig. 32, illustrates these features in greater
detail. Correlating with the transient elastic analysis of Ang (26)
for a moving line load, the curvature of the wave front near the left
boundary of fig. 33 is believed to represent the start-up transient
effects near the point at which the shock wave first comes in contact
with the model. The linear portion of the fringe pattern corresponds
to the steady-state region of the model.

As may be observed, the angle between the leading half-
order stress friﬁge and the surface along which the shock wave

travels is approximately 11°. This angle corresponds approximately
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to the leading significant components of the dilatation wave. It is
interesting to note that its propagation speed is readily obtained by
a calculation exactly analogous to that for the geometry of Mach
waves in aerodynamics, except that here the moving disturbance
is the shock wave and the Mach wave becomes the dilatation front
in the material. Using the shock wave speed of 2210 feet per sec-
ond, the stress wave propagation speed by this calculation is 425
feet per secoﬁd. On the basis of the viscoelastic theory of Part
III, it is somewhat hazardous* to attempt to predict the effective
material modulus from the propagation speed of the leading photo-

elastic fringe by use of the longitudinal plate wave velocity equation

E 2 '
c_ == . (4-1)
P {p(l—v )}

Rather, this relation precisely applies to each stress component

—

as it arrives, and the fringes, as pointed out heretofore, are the
result of integrated energy propagation contributions which are
necessarily spread out by dispersion for a viscoelastic material.
Similarly to the one-dimensional case, a comparison has
been made of the predicted and observed fringe order numbers
for two positions in the model (fig. 25). The photoelastic data
for x = 3.12 in were taken from the frame shown in fig. 33. As

pointed out in the analysis leading to the prediction of fringes in

% A recent report (18) discussed some of the problems associated
with analysis of dynamic photoelastic results.
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Part III, the plane stress results do not precisely apply to the half-
inch thick plate and thé comparison is consequently made on the basis
of the normalized coordinate n/nmax. Indeed the plane strain solu-
tion of Part II indicated nearly a hydrostatic stress state which would
result in approximately a nul fringe pattern. The actual recorded
fringe values did fall between this and the predicted plane stress
pattern, .indicating qualitative verification of the theoretical approach
for two-dimensional photoviscoelastic application. The general
agreement of thé shape of the fringe patterns for x = 3.12 in and
x = 10.3 in shown in fig. 25 further substantiates this conclusion.

The nature of the discrepancy between predicted and exper-
imental fringe values is similar to that found in the case of uniaxial
wave propagation (fig. 24). The source of the differences can be
discussed on the basis of all the factors mentioned in the parallel
analysis of the one-dimensional geometry (Section A), e.g., higher
modes, lateral inertia, and non-plane wave fronts. Thus, future
work in two-dimensional viscoelasticity can profitably include these
effects to provide further quantitative verification of the proposed
photoviscoelastic method for analyzing dynamic stress states.
Another variable not accounted for was the slight rotation of prin-
cipal stress axes with time which might produce some non-alignment
of these with respect to the optical polarization axes. But as pointed
out in Part II, this probably is a negligible factor in the present
tests.

Hence, the two-dimensional resﬁlts strengthen the conclusions

derived earlier from the uniaxial analysis and tests. The qualitative
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agreement obtained for the plate geometry indicates that extension
of the photoviscoelastic techniques to two-dimensional situations
is justified using the same basic viscoelastic optical calibration of

the material.
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CONCLUSIONS

Since the distinguishing characteristic of viscoelastic material
is its strong sensitivity to rate and temperature effects, they must be
adequately accounted for in dynamic situations. An improved method
of incorporating the time or rate dependency in the analysis of certain
wave propagation problems has been developed. The Dirichlet series
not only represents the broad-band properties of many actual visco-
elastic materials much more closely than the widely-used simple
spring and dashpot models of two to four elements, but in conjunction
with the collocation inversion procedure also circumvents the compu-
tational difficulties inherent in the usual Laplace transform type of
solution.

The method can be made as accurate as desired for any ap-
plication with no essential increase in mathematical difficulty simply
by taking more terms in the series. It is believed that this property
represents a distinct advantage over the analytical model representa-
tion used in previous treatments of viscoelastic wave propagation.
For most situations, ten to fifteen terms in the series prove to be
adequate; the résulting matrices are nearly triangular and can some-
times be inverted by hand, but the computational part is more readily
accomplished by relatively simple and rapid computer programs.

The solution technique has been applied to one- and two-
dimensional problems characterized by step input mechanical loading.
The one-dimensional rod analysis indicates several of the features

associated with waves traveling in realistic viscoelastic materials.
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The high frequency components of the response to a step input are
rapidly attenuated with distance and the major portion of the rise in
stress or displacement occurs near the rubbery arrival time. In
addition, just prior to the main stress arrival, there appears an
oscillation in stress (due to material dispersion) that has not been
evident heretofore in the solutions using less adequate simple model
representations.

The results for an infinite half-space loaded by a superson-
ically moving step pressure pulse indicate that the viscoelastic
normal stresses can be about 12% higher than in the corresponding
elastic case. The stress rise time At is directly proportional to
depth in the half-space; moreover, it appears feasible to formulate
an expression for At in terms of a specific viscoelastic parameter
of the material involved. The semi-infinite thin plate has also been
treated, indicating the range of application of the combined Dirichlet
series and collocation inversion approach.

The application of photoviscoelastic materials to model the
responses due to dynamic loading has been placed on a firmer theo-
retical and practical foundation as a result of an investigation of the
methods of optical calibration and the use of birefringence operators
analogous to the mechanical operational moduli. The theoretical
relationships between stress optic and strain optic coefficients for
linearly viscoelastic materials have been derived. It is emphasized
that this operatof relationship is the one item needed to characterize
the material for photoviscoelastic applicat.ion; all other pieces of

data, such as variation of fringe order number with time and the
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possible lag between optical and mechanical responses as indicated
by the time-dependent isoclinics, are dependent on the individual ex-
periment being performed. A convenient method of calibration in a
constant strain rate test has been illustrated for a typical low modulus
polymer material.

A comparison of theoretically predicted fringe patterns with
experimental results for the cases of the rod and semi-infinite plate
geometries under quasi-step pressure inputs has demonstrated the
general necessity of including the time dependency in treatment of
photoviscoelastic material properties. The agreement has also indi-
cated the feasibility of quantitative photoviscoelasticity for dynamic

stress analysis.
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FIG.13 TENSILE SPECIMEN OF HYSOL 8705
MATERIAL FOR INSTRON TESTING
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FIG. 14

SCHEMATIC DIAGRAM OF INSTRON TEST MACHINE

AND PHOTOELASTIC CALIBRATION APPARATUS
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FIG.25 COMPARISON OF PREDICTED AND EXPERIMENTAL FRINGE

VARIATION WITH DEPTH FOR WAVE PROPAGATION IN A
HYSOL 8705 PLATE LOADED BY A SHOCK WAVE MOVING
ON THE FREE SURFACE .
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FIG2ZBSHOCK TUBE WITH RESISTANCE THERMOMETER
PICKUPS AND MODEL HOLDER (LEFT)CONTAINING
RECTANGULAR HYSOL 8705 MODEL

e
CLOSE - UP OF MODEL IN ITS HOLDER
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STRESS PATTERN

FIELD OF
POLARISGOPE
SHOGCK TUBE
. 77 e X
i A A\
5225/ )
AW /
\ /
~_ -

LMODEL Z/
MODEL

HOLDER

MODEL: HYSOL 8705,
URETHANE RUBBER
GOMPOUND , 172" THICK

FRAMING RATE: 72,000 "RAMES e

LOAD: SHOGK WAVE PASSING
OVER FREE SURFAGE

POLARISCOPE: LIGHT FIELD

FIG.32DYNAMIC FRINGE PATTERNS ASSOCIATED WITH STRESS
WAVE PROPAGATION IN RECTANGULAR THIN PLATE

OF VISCOELASTIC MATERIAL
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FIG.33 ENLARGED VIEW OF A SINGLE FRAME AT
t= 250 u SEC FROM THE FILM STRIP OF
FI1G.32



