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I. INTRODUCTION

The forces acting on an airship moving in a certain
field of flow and the resulting path of motion are the result
of numerous aerodynamic factors. These factors are principally
skin friction drag, form drag, induced drag, aerodynamic trans-
verse force distribution, lateral and longitudinal inertial and
static force distribution, 1lift, and moments arising from all
above factors. With the exception of aerodynamic transverse
force distribution, iift, and induced drag, these factors are
either small or may be determined by methods now available.

The transverse force distribution is of primary impor-
tance in the development of an airship of sufficient étructural
strength. An airship designed to withstand the bending moment
arising from all possible transverse forces will usually have
suffieient hull strength to withstand other smaller moments
arising. Local forces, however, must be investigated, such as
the high pressure at bow.

While certain methods for finding the transverse force
distribution on airship hulls are now available, all either
make basic assumptions at the start of the analysis that make
the fesults of quite duvubious value, or the analysis is extended
only to flows represented by potential functions of first
degree in x and y, and rotations. These methods apply only to
éllipsoids or similar shapes in steady potential flows. In an
article yet unpublished Dr. W. Tollmien has recently extended
the analysis to potential funcﬁions of second degree in x and y,
and has indicated the extention of his method to include the

unstecady state.



In the present paper general relations are developed for
the transverse force distribution on an ellipsold moving in an
arbitrary field of flow, whose potential functi;n is expressed
as a polynomial in x and y, or the coordinate system used.
while exact only for the ellipsoid, the expressions result in
forms applicable to bodies nearly ellipsoidal, hence may be
applied with some degree of accuracy to such shapes. For
certain potential fields and ﬁelocities of motion of an airship
that occur in practice, it becomes apparent that the higher
order terms are quite important if an accuracy of better than
about 50% is desired, and that the motion of the airship may
cause changes of force of the order of 100% over the steady
state transverse force.

The author\wishes to express to Dr. T. von Karman, Dr. /.
Tollmien, and Dr. C.B.lilllikan his appreciation of many helpful
sugpgestions and assistance rendered by them in the development

of this thesis.



ITI. DEVELOPMENT OF THE GENERAL TRANSVERSE FORCE

DISTRIBUTION EQUATIONS.

The development of the equations for transverse force
distribution is based on the assumptions that we have:

1) Prolate ellipsoid body shape;

2) Perfect fluid ( viscosity and compressibility forces

are not considered );

3) Potential flow ( no fluid rotatioh Je
The extension to airship hull body shapes must be regarded as
an approximation of the exact ellipsoidal analysise. Since the
flow about an airship is of good streamline form, the flow may
be considered that of a perfect fluid potential flow. Viscous
forces can be accounted for separately, while compressibility
effects may be neglected for present airship velocities.

The integration of Euler's equatiéns of motion for a

perfect fluid potential flow givés for the pressure relation,
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V = external force potential
()= integfation constant, a function of time.
All units are compatable.
In order to satisfy boundary conditions on the surface of

an ellipsoid it is convenient to express the potential functions
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of the undisturbed flow and the additional superimposed flow
in terms of elliptical coordinates. Elliptical coordinates
are orthogonal, being defined by, ( Reference, Lamb: Hydro-

dynamics),

X = Kf,/w
2 212
(2.2) v = K(E*1)(1-4)"cos w
7z = k(%) 1?5 w

The elements of length are,

V% - pfEid) . . — )5 (6%
(2e8)  ofs, = k(-%—;%) du; 95 = k(Ez)'de ;  dsg Kl)H(e%) s dew
where:
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(244)
minor semi-axis

k= Vo™b
£=

qﬂ-

o*-p
The coordinate surfaces s = constant are a series of confocal
ellipsoids, the surfaces £ = constant are confocal hyperboloids,
and the surfaces w = constant are coaxial meridianal planes.,

The ranges of variation of the coordinates are:

[N

(2¢8) -~-12ug| £ £ £ 02w 227

In elliptical coordinates the solution of Laplace!s equa-

tion for potential flow is given by the two forms,

(2.86) 5 = Pl(u) PE(£) cos sw
(2.6a) @ = PE) Qi(Z)cos sw

o\

|

. S
P:y) is the well known Legendre polynomial expression, and @,(£)
is the associated Legendre polynomiale. The first form of the

solution gives finlte values inside the ellipsoid but goes to
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o0 as £ goes toeo. Hence for the solution of the problem
outside the ellipsoid, the second form must be used, in which
Q:{i) goes to 0 as £ goes toeo,

Let the ellipsoid/?zimersed in a flow whose potential
function is arbitrarily expressed as a sum of superimposed

potential flows,

(2.7) B=@, +tdh t ot

This undisturbed potential function can now be expressed in
elliptical coordinates and expanded as a sum of terms contain-

ing the Legendre polynomials. Hence we may write,

(2.8) 3°=2 > A3 P REE) cos sw

where n and s are indices denoting the particular Legendre
polynomial. f-?,:&)is a function of £ only and cos S represents
the asymmetry of ‘the flow. A:(t)is a constant with regard to
the coordinates but in general may be a function of the time.
When an ellipsoid is placed in a velocity field, the
total potential }function must satisfy the boundary condition'

[
Jg,
o’3£

ellipsoid £,. The resulting velocities at the surface will

=0 at £ = £, for no flow across the boundary of the

necessarily be tangential. Superimposing the additional flow
given by the second type solution of Laplace's equation (2.6a).
so that the additional flow vanishes at infinity, we get for

the total potential function,

(2.9) j;s;- ZZ (A:(z")f,s@)ﬁms(‘e)“s sw + B:(t) &%}Qﬂ% cos sw)
~m 5

which upon solving for B:(t) to satisfy boundary conditions gives,



2R3(e)
(2.20)  F.°=2 7 AXO BYu) Ri(2)cos sw [ |- 2 £ar,) ?e(;;i,]

“ S

Since £, is a constant for any given ellipsoid, we may write,

(21)  §5= 7 D AR B RIE) HIE) cos s

The interesting fact here is that placing the ellipsoid in the
stream has the effect of increasing each term of the undisturbed
poten?ial function by a constant factor Jf;%ﬂ) which is a
function of the ellipsoid size parameter Ko only. For the
simple linear flows these -3&: factors are the well known
apparent masses. For terms of higher order the same coneeption
carries thru. For each Legendre polynomial term in the poten-
tial function expression, there corresponds one apparent mass
factore.

Tﬁe pressure on an annular slement of the ellipsoid is
determined by integrating the pressure times the cosine of the

angle around the annulms, hence,

ar
(2.12) dF. r[pcosw dw
dx o

the
Now introducing ¢ and the pressure/expression becomes,

(2.25) &F- a«-abnﬂ‘)’f [rowr-235 -] -G e da

ai&‘ = 0 by the boundary conditions. It is apparent for
homogenous matter that the integral of [F%t)+V] around the

of.

circuit vanishes. Also the eircuit integral of ;r—- vanishes.
w

)]casw dw

Hence - there remains only,

(2.14) ar - . ﬁab(l~ "')’if [_‘:"_gzs,. Lflze
qu

6



Substituting for the total potential function and integrating,

“the result reduces to,

[

This g;neral expression is exact for the ellipsoid and yet has
been reduced to very simple form. It will bf noted that in the
integration all terms of (;;A:(t)x,:ﬁ.:(f} i‘-’d%“;—@cos‘g“)" vanished
except the cross product given above,

The first term within the bracket represents the force on
the ellipsoid in a steady potential flow. The second term
represents the force due to the change in potential function
with time, and here only the terms with s = 1 remain, the other
terms integrating to zero.

Hence we Write for the force distribution,

Steady State

(2.16) i/: =-Tp 2 b(/ ‘)"cas TZA ®xX,, °R (E)——Q‘—ZA '(#Jf &)—‘AA‘

where 7 is the angle between the longitudinal axis and the
tangent to the surface of the ellipsoid. The fineness ratio and
cos*¥ are multiplicative factors for the general relation. All
terms of the initial potential function except those with s = 0
and s = 1 give no contribution to the force, and need not be
considered.

Unsteady State

F__ _.1)% ) p! 'y dA
(2.17) AF < rp ab (1547) ;xmﬂ,h)ﬁm(z)—f;ﬂ




which for translation and lateral motion becomes,

iE.. 3555 pl QA (K)o A (XiYe)
(2.18) -meab(a’) Z B.pe)ﬁm(z)[uﬁa—"f“—w_;zy:ﬂ.}

where X = x, ted U= %‘.sl.L
y = 'yo +¢b (, = -xb%
Xo and y, give the coordinates of the potential function

origin with reference to the center of the ellipsocid. Only the
terms with s = 1 contribute to this force,

When the ellipsoid is moving thru a potential fieid the
total force is actually represented by the sum of three come-
ponent parts, steady state force, superimposed veloclty -u
force, and unsteady state force. This is readily visualized
if we consider the ellipsoid stationary and the origin of the
disturbance such as vortex to move with -u velocity. Since
the disturbance must move with the fluid it is necessary to
superimpose the velocity -u. The three components of force

resulting then simulate exactly the motion of the ellipsoid.



ITI. FPORCE DISTRIBUTION EQUATIONS FOR ANY POTENTIAL FLOW

EXPRESSED AS A POLYNOMIAL IN CARTESIAN COORDINATES.

The preceding general relation for forced distribution
makes possible the development of a similar expanded expression
where the general undisturbed potential function is expressed

as a polynomial in x and Yy,

Pom = F(22y)
22,03y

Substituting for x and y in terms of elliptical coordinates,

(541)

(3.12) B =TT Com K& (6 B l10) Fos™e0
“ M

The only terms which contribute to the transverse force are
those contalning cos 0w and cos lrw (i.ee 8 =0 and s =1 in
notation of Section II). Expanding cos™w it is found that
each value of m contributes one important term In either

I .
M, cos 0w or M, cos /-w, since for,

'J ’ -------
(3.2) m even cos"w = 2—,;; Cos mw + - +Mm
m odd COS"’w =-2—L'b-_—"cos,nw_+.......,+M”"co.$w
where
M _m(M") ...... (L’?iﬂ)
(343) SN €
M, = mim)- o ()

277 (=)
Discarding then all terms except those contributing a

force there results the modified potential functlion,



Bon™ Bt By = 7 T Cor My Rl (15

(3e4) N m(cven)

+2 2 Com M Roml®) 7'{//‘) (I,a) cos w

N Mmledy)
It is apparent from the general relation developed in Section IIX

that the staedy state force will be a function of the cross
product of the even and odd portion, when the proper apparent
mass’factors are includede. Likewise the unsteady state force
will be & function of the odd term only when the apparent mass
factors are included.

Considering each portion individually since they are
finally used thusly, and noting that the higher value of m

raise the power of _« in the expression when expanded, we get.

neMm

(3.5) (even) 4«.0{;’ CrolTnst Mooz oG-z Rara) My (CraRoi2Gn-214 Ryt Go-sa1allpa-yg) oo }/u"'

?.JZ o oo 2

where the series cuts off at the highest value of m appearing
in the polynomial.

It was demonstrated in Section II that when the undisturbed
potential function is expressed as a series of Legéndre polyno-~
mials, the total potential function giving no flow across the
boundary of the ellipsoid differs only in the introduction of
the corresponding apparent mass factors JH&? « Hence the total

potential function must be found by expanding in a series of
Legendre polynomialSe performing this expansion, introducing

the apparent mass factors and reversing the process to obtain

the total potential in fterms of a simple power series in

/u Dh ﬁmn " and J{

hmp?

we get for the total potential function,
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Z {[Qmﬁu. Homo * Dam Ram (2K ami L Hama) + - J

(3.6) (Oven)
* tu [D,,,, Rt Pam Ry m ( 33 290, f]
. ,
A [Dzm Rym Homyt " 'J*"‘S[D:!nﬁm?{m?"]
"*,;"- e he e et s e s .,/am*ﬂ'([qmm)m &"m)m’&h'm)m(h*m]}
= DR m
where, 4=ZoZ [ )f]m"/“
gL Foml®) Qe ‘om Qp
(3.7) . |- HEZmY Qp = | (rrm)Eo~m (€,)
,{""P R nm(Ee) %ap(é) / - £o(£5) ;—E_Qp %)

Hence the derivative desired for the general transverse force

equation becomes,
JI £y
(3.8) Z Z n [DRIX] A

In 2 similar manner the portion of the potential
function containing odd values of m is treatede The term

from the undisturbed potentiadl function/is,
(529) £ 3 7 ok ML R 1) F e

which becomes wpon expanding,
nim=-!

(310 ¢?:'m = -,.Z {M'Cn’, Rt Ms' (Crlis Rna™ le-a)s ﬁ(,,.,);)‘f‘ | }/“”'-
'HM-I

Z Z Dnm Rnnv/“'

The total potential function is now found by expanding in terms
, ,

of the Legendre polynomials P,, C«) and introducing the corres-

ponding apparent mass factors. uzxpanding thusly and retrans-

posing in terms of the simple polynomial in «¢ we obtain,

11



-é).zm= (% Bees “’E {[Dm o xom; *D zm(é’{z:m' i xz:n)*'"]

(3011) (OJJ) , ' ' '
+ 4 [Dlm ﬁmy Ximz +0sm ﬁ’,,,,(;)[;,,,,_-—% 7{3”,4),...]

" [ Bom Kot T 0 om By -]

T ) AREERTE ]}

_ 1)& ntm~/ | n
= (1=u) *cosw Z Z [or],,
Nsp M

where,

(5.12) | x, =/___§’—&5,,(£.) Qp(c:) = /- (nymes-n Qo lt)
hinp Fom(Ed %Q l; (£,) FN(A -/) gEQP@,)

Bquation (3.11) is the expression for the total potential
functiom of the terms with p_i'odd from the modified potentlal
functione For use in the transverse force eguation we need the

first derivative with respect to_xe,

ntm-
(3.15) ;‘ B = (;':”:)" ZZ{ [DRJ{] ()™ [OR "Jn;’“w}
orn, .
_9_’_ _Je Nnem-i 2 | wer d(“': 2 ) o
(5413a) Ju Erm 26 _;«1)& ;g{l{f}n[ﬂﬁx_l;a ‘f‘;‘:f)EDRJ{]m;,‘a}

Steady State

The transverse force expression of Section II for the steady
state becomes upon substitution of the even and odd total
o 7
potential functions corresponding to the P,, cu) andg Py ()

terms in Section II,

. B Ty
(3014) iﬁ = —7/"0-5-605 T{)W'l)f’z. dumzz OL“M
(3415)
f = -pg s ’{ﬁfm] "}{ (nﬂmx] (sF - DRA] ’")}
h=0 i heo m



or in terms of physical demensions of the ellipsoid and the
derivatives of the final potential flows,
" B g/ 2 Pris * ]
(z.16) -_gre b cosy {f Zn[vmd ,a"}{gm Z(Z(f)"["”’ﬂ ,’a"’;_;él [pRA] .,’“?}
I 2 ng m " o m bin >/ud "
In Cartesian coordinates the latter equation is of the physical

form,
df__ 2 % .. ds
(3.17) dz” fcos'z {unm}{ﬁ;; *77-}/1}

This form lends an excellent picture of the nature of the exact
solution for the transverse force on an ellipsoid or nearly
ellipsoidal body in a steady potential flow. The factor cos'z
is an exact end effect correction for all potential flows,

The force at any point is proportional to the product of the
forward velocity derived from the derivative of the total
potential of the even terms of the modified potential, and the
sum of twice the area of the annulus times the derivative of
the total potential transverse veloeity plus the transverse
velocitﬁ times the derivative of the area. Iquation (3.17)

might be written alternatively,

3417 dF __peos® }{d(m) d7r
( a) 9 %cos?{ﬂr 72 +5d1

The physical expréssions cannot be applied directly in the
general case because of the implicit form of the velocities
indicated, which are derived from the total potentials, For
bodies of nearly elliptical shapes, such as present alrship
hulls, equation (3.16) should produce good results if the
apparent mass factors are chosen for the ellipsoid of the
equivalent fineness ratio and if the physical dimensions of

2
the airship hull are substituted for (%7 e Any error arising

13



from such calculations must be attributed to the shape only
because the exact undisturbed potential flow can be used.
For the ellipsoid we can expand the force expression into

the polynomial,

(3.19) i«f =~7e f coszzg{é,mqm[nmq;-f}u(z[omq }pmq”"—[m;q” [pp)/_z’:* 2 [pmqm[og@”:)
+ o BrL, L1200, L] 2 LT #3030,
tu 3(40»41»— 3mam® bamam~ Yzmim * 63mam33mom* Yamim )
+u 4(5”,;». $1m3m™E1mam Cumam® Tunsm Sapmimt Symas > Yamom TS5, m)
T ( bim 6m man’ Vsmsin™Bamamt 2amars” Tumami*1 2 am 35 Bam it Dsmam

-&Mvm"“mm) +u (mmn Cimsn® 2am 61 10 gim ¥ 153y 5 123m 3m

"'"4;»4;» 124mam*15, J—— /om n T 2emam Csmomt 7,,”’ m’) PRI }

This expression is used in later examples in which are calculated
the force distribution on an ellipsoid.

Non Steady Flow,

From the general equation for transverse force distribution
in Section II, we obtain upon substitution of the odd total

potential function,

(5.20) :’; --vpdb///«’? f
(3.21) ;:-—”"oab {I,«)ZZ,«”;; [DﬁJﬂm

nz=@
For translation and lateral motion we have as in Section II,

nerimn-i

(3422) A - rpablin) ZZ’“ (" t Vo, )E””’dm

h=0
Only P in the bracket is a function of time when x,and y, are
changing, since R and )X are constahts for a given ellipsoide
For application to body shapes nearly elliptical the equation

may be written,

14



nen-
(5.23) £=-7f¢° "b(f)zgz/“n;{[””’qn;

Equation (3.23) may be written with X, and y, derivatives, as
was equation (3.22).

These above equations provide a method for calculating the
transverse force distribution that is exact for the ellipsoid,
and probably applicable to within good accuracy for nearly
eliipséidal'shapes. The exact undisturbed flow can be used,

Remarks on Evaluation of Factors.

The values of the apparent mass factors for terms up to
the érder of n = 5 and m = 1 have been computed and are
plotted in Figures) and 2 . General analytical expressions
for the apparent mass factorswere given in this Section. The
value of the coefficients C,, A,, may be immediately
determined from dimensionless Cartesian coordinates, since

from the undisturbed potential function,

(5.24) Born = 2; Comxy"™
= Z chma”bﬂjanfm
M m
= Z ;Cnm Rhm(‘-o)/“”%m
where

x ) .
A a ) V‘f,!

The modified potential is then found as in the original

development in Section III. This introduction of the dimen-
- 4,

sionless parameter ¢ takes the place of (I'%t)l’cos w.

The modified potential functlons become,

15
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(5425) B = 2 ] Com My Rypl) "

(evem) "0 M

-1
(5.26) B =m§m: 7 Com Moy Foen€) 14" ¥

{oddk) nso m
and the development is exactly analogous to that used before.

The expressions for determining D,,,,, are given in equations
(505) and (5.10).

Simple Application to Force in Steady Pitched Flight.

The transverse force distributionsfor the simple cases of
potential floware immediately obtained from equation (3.19)e.

For example, in pitched flight,

3427) p=g=ux+vy
=Uqu +TbY
[brR>x], = ua X,

[PR3],, = Vb Hoy

(5.28) %aE = -‘7]'( —-q‘-’- Cos“Z' {;ﬂ[ﬂaJ{[‘l] [Vb.’{a;l]}
=Te b*cos™t u v K, J{O:I Pt
or,
(5.29) dFf - eur ot Moy ¢os5%r 4§
dy 2 dz
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IV. FORCE DISTRIBUTION ON AN ELLIPSOID MOVING IN
A VORTEX FIELD.

The potential function of a vortex field is expressed by,

Lo L pan 22
(4+1) “a7 977 U 3im

in the neighborhood of the x-axis, and

=L_I 4,7 zZtZe
(4.2) Pz ar ™ yiy

in the vieinity of the y-axis. X, and y, are coordinates
measured from the center of the vortex to the center of the
ellipsoide x and y are measured from the center of the ellipsoid,
their origin moving with the ellipsoide. The vortex field

potential may be represented by a polynomial of the type,

__E__['_ AtXo X)"Z’ot __t__Z_QB
(2.2) #=3 27r(e* yo5o * Agerd * Ol )
Expanding,

(402) @=K- ‘25, {[r(f +9r+hr")~bue (F+298+3h5") ta € (g+3h ,«),;:6’(/,)]
~ Y8 [r(Fr2grs3nd)pue(F1agr+ihy) pu€(2g+ 76)‘)-r/:3e3(3hﬂ

where,
o =%
:..;: /ud
(405) €y, ¥ =4
= b
€=

Neglecting terms of order sz and higher, the constants are,

17



[oR1] = (not needed)

(4.6) PR3], == [e (F+290+3h2°) 3,0t +€(h) ( 2 Mo §-)£,03)]
[prR7],, =-i§ [e*(q+ 3}73')-7{201]
[0R],, =37 [€1h) Haps]
[onx]) = £ 0 [ (£ 12900 3100) Hoy € g 910) (£ 360)]
[””x],, = @[é (F+4g4+ Thy Phz +€ (35) (3 %12~ 5 H3a)]
[DRJ(]I = 5= @[5 Mg+ Tho) Hays]
[or], = 5,,;@ [€(3h) 3¢,,,]

Gase 1. Ellipsoid of fineness ratio 6 : 1. Vortex center on

equakorial plane at a distance from the center of the

ellipsoid equal to its length, 2a.
(447) £,= lb-. =/,0042

The apparent mass factors are,

Ko~ 105 Hopy = 191 Hapr= 197
(4.8) !
Hapn =107 Xy = 1.85 Hypy = 1.70
!’
M 343 =108 Mz = 1. 79
0= .14 3z00= 1.73

The values of the parameters corresponding to the configuration

are,

(449) —;o-o ; €=2=£ ; g=L_ L
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The potential function,

r_ I (xrx, 3
ol = = — X7l X2
(4410) P =75 (y+y, 0.24(y+),°))
where,

f=1 ; 9=0 ; h==0.29

represents the potential and velocities of the vortex in the

XtZeo

neighborhood of the y - axis to within 3% for values of VYo

up to 0. 7,

“(a) Steady State

Substituting in the general expressions for the constants
(4¢6) and then substituting these values in equation (3.19)
for the transverse force on an ellipsoid in a steady field
we get,

(4011) i—-f = 7r(: (zlf')lcos*t {_wua - o;aI'I,a"f-. 00767 aaaas;a‘}
(b) Ellipsoid moving in axial direction with velocity U .

The force distribution due to this motlon of the ellipsoid
thru the field is obtained from the sum of the forces due to the
unsteady potential j%? and a superimposed velocity =2

For the superimposed velocity - U ,

(4412) P=-uUL=-Uqu
(4013) [DR’(]u: “ U N,

Hence the force distribution-upon substitution in the general

relation in combination with the vortex fleld relation gives,

(4414) ”/ F- TeUYoyr L eosy {,omo —-.ozeso,«"+.oo4s;a4}
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For the force due to the unsteady potential we obtain,

4,15 arE _ b2l g 93{ ! T
(4.15) Ta= T (1547 Juo | PR, +4[0R] +
Substituting for the values of the derivatives indicated we
obtain,

r
520)  ZE oo wyo g (1) fa0es7- 00300.0)

These components of the transverse force distribution
have been plotted in Figure 3 « The force distribution due to
the vortex field on the stationary ellipsoid shows the large
buoyancy force at the center directed toward the vértex and
small reversed force at the ends. The superimposed velocity -u
tends primarily to increase this same general distribution.

The striking fact of this problem is that the unsteady
potential force is of the same magnitude as the superimposed
flow force and of opposite sign. The resultant of these two
latter forces gives the actual additional force due to motion
thru the vortex. "It is apparent that force distributions
derived from steady potentials are far from representing the
actual force on a moving body, because the 5&? force is of the
same order of magnitude as the steady state forces, For
comparison of the sccuracy of the force distribution due to a
potential function of only two terms,. 90=14x +(3‘x'y s the
resulting force distribution for this potential function has
been plotted for the stationary ellipsoid. The error reaches
approximately 35%.

Case 2. Vortex center on longitudinal axis at a distance from

the center of the 1llipsoid equal to twice its length, 4a.

(a) Steady State
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In an exactly similar manner the force distribution has
been computed for the ellipsoid moving along the x~axis away
from the vortex. Thé resulting force distributions have been
ploﬁted in Pigure 4. There results no trapsverse force for
the ellipsoid stationary. The buoyancy force is here axial
and not transverse. This result of no tranéverse force for
the stationary ellipsoid would hardly be vdlid in a real fluid,
however, as a cylinder is known to have a high form drag.
Nevertheless in combination with forward velocity this steady
componaent of force may be assumed zero provided the resulting
angle of attack is not too greate. |

(b) Ellipsoid moving in axial direction with velocity U .

The resultant force due to the axial motion of the
ellipsoid in the vortex field is again the sum of the forces
arising from the superimposed velocity - u, and the non-steady
potential EEEI. The unsteady potential gives rise to a force
entirely on one side of the body whereas the superimposed\
flow - glves rise to the famillar pitching moment type of
distribution.s The force is larger toward the center of the
vortex as would be expecteds The hfill alone is unstable in
this motion and will tend to turn broadside. In case controls
were operated to hold the ellipsoid in the axial direction it
would move laterally off the path.

Numerical Evaluation

In order to get a ﬁicture of the actual probable forces
and distributioh on a full scéle airship these forces have been
computed and plotted for an ellipsoid of length 240 meters and
fineness ratio 1 : 6 as in the preceding cases, These are

approximately the physical dimensions of the Akron, For Case 1
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the distribution has been computed for several values of
forward veadocity and vortex velocity at the ellipsoid and has
been plotted in Figure 5. The dotted curve shows the distribu-
tion for the stationary ellipsoid.in a vortex of velocity 20 m/s.
ah/zgiipsoid. It is interesting to note that flying thru a
vortex field against the direction of the vortex field velocity
increases the force at the ends, while flying with the vértex
may reverse the end force giving a forced distribution along
the ellipsoid of the same sign. Control might be difficult in
such a state as the force might easily reach about 500 kge/m.
along the entire length.' Doubling the strength of the vortex
practicaily quadruples the values of the forces acting.

When the ellipsoid is moving along the x-axis, the force
~1s directly proportional to the product of 'uiE;; The curves
for numerical values have been plotted in Figure 6 for this
product%%%: 400 m/s. « Reversing either the direction of the
motion or vortex velocity reverses the force. The force at the
end of the ellipsoid toward the vortex is approximately 5/3
that at the far end, which corresponds approximately to the
ratio of transverse velocities. The moment is large and forces
might reach magnitudes of 1000 kg./m. or more. It should be
noted that the moment and forces will increase rapidly if
flying into the vortex, possibly becoming prohibitive near the
center of the vortex.

‘A rough prediction of the motion of the airship in a
vortex field is possible., Assuming that controls are operated
such tﬂat the nose of the airship is kept pointed in the

X direction, and assuming that it enters the field along the

x-axis the probable motion would be as follows: The airship
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would move laterally off its course passing the vortex at a
certéin distance which would be a function of the vortex
strength and airship velocity. Upon passihg the vortex the
buoyancy force would move the airshié‘back toward the x-axis,
which the airShip would approach again asymptotieally. Such
motion would be fortunate in that it would prevent the airship

from flying directly into the vortex.
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V. CONCLUSION

When the undisturbed potential function is expressed as a
series of legendre polynoﬁials f;?h) the exact‘general
equations for transverse force distribution on an ellipsoid
have been derived. For the steady state the force is shown to
be proportional to the cross product only of the Legendre
polynomial terms with s =0 and s = 1, The force due to an
unsteady potential is a function of the terms with s = 1 only.

The total potential function is derived from the
undisturbed potential function by multiplying each term by a
constant, which is the apparent mass factor,

The general relation for transverse force distribution
shows that cos™¥ 1is an exact end effect correction for all
flows,

When the potential function is expressed as a simple
polynomial in X and y, or_« and ¢:, the exact transverse
force equations for the ellipsoid can be expfessed as
polynomials in x, or_ M , whose cgefficients are functions of
the undisturbed potential functi;gn coefficients, physical
properties of the ellipsoid, and apparent mass factoré.

For application to bodies of nearly ellipsoidal shape
the equations for transverse force have been expressed in
terms of the final potential.function and the geometrical
dimensions of the body. These equations should lead to good
results because the exact uﬁdisturbed potential flow can be
used.

Géneral analytical expressions for the apparent mass

factors have been developed. The apparent mass factors of
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lower order have been plotted in Figures 1 and 2.

A pblynomial has been developed whiéh well represents
the potential function of a vortex field. This polynomial has
been used in conjunction with the general relations of Section
II to compute the force distribution on an ellipsoid moving in
-8 vortex field. The computations show that the forces due to
the unsteady potential arising from the motion of the ellipsoid
are of the same order of magnitude as the steady state forces.
Hence forces due to the motion of a body cannot be determined
from steady state analysis only.

The forces on a body moving thru.a vortex field may be of
more importance'when the body is moving with the vortex velocity
~ than when moving against the vortex velocity since in the former
case all forces might act toward the vortex center, whereas in
the latter case the forces at the endé and center of the body

are oppositely directed.
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