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I. INTRODUCTION 

The forces acting on an airship moving in a certain 

field of flow and the result.ing path of motion a1°e the result 

of numerous aerodynamic factors. These factors are principally 

skin friction drag, fomn drag, induced drag, aerodynamic trans­

verse force distribution, lateral and longitudinal inertial and 

static force distribution, lift, and moments arising from all 

above factors. With the exception of aerodynamic transverse 

force distribution, lift, and induced drag, these factors are 

either small or may be determined by methods now available. 

The transverse force distribution is of primary impor­

tance in the development of an airship of sufficient structural 

strength. An airship designed to withstand the bending moment 

arising from all possible transverse forces will usually have 

sufficiE::nt hull strength to withstand other smaller moments 

arising. Local forces, however, must be investigated, such as 

the high pressure at bow. 

While certain methods for finding the transverse force 

distribution on airship hulls are now available, all either 

make basic assumptions at the start of the analysis that make 

the results of quite dubious value, or the analysis is extended 

only to flows represented by potential functions of first 

degree in x and y, and rotation. These methods apply only to 

ellipsoids or similar shapes in steady potential flows. In an 

article yet unpublished Dr. w. Tollmien has recently extended 

the analysis to potential functions of second degre0 in x and y, 

and has indicated the extention of his method to include the 

unsteady state. 
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In the present paper general relations are developed for 

the transverse force distribution on an ellipsoid moving in an 

arbitrary field of flow, whose potential function is expressed 

as a polynomial in x and y, or the coordinate system used. 

While exact only for the ellipsoid, the expressions result in 

forms applicable to bodies nearly ellipsoidal, hence may be 

applied with some degree of accuracy to such shapes. For 

certain potential fields and v~locities of motion of an airship 

that occur in practice, it becomes apparent that the higher 

order terms are quite· important if an accuracy of better than 

about 50% is desired, and that the motion of the airship may 

cause changes of force of the order of lOOJb over the steady 

state transverse force. 

The author will.shes to express to Dr. T •. von Karman, Dr. '.,'J. 

':I.1ollmien, and Dr. C. B. Iiiillikan his appreciation of many helpful 

su~~E~estions and as sistanc'e rondered by them in the development 

of this thesis. 
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II. DEVELOPMENT OF THB GENERAL TRANSVERSE FORCE 

DISTRIBUTION EQUATIONS. 

The development of the equations for transverse force 

distribution is based on the assumptions that we have: 

1) Prolate ellipsoid body shape; 

2J Perfect fluid ( viscosity and compressibility forces 

are not considered ); 

3) Potential flow ( no fluid rotation J. 

The extension to airship hull body shapes must be regarded as 

an approximation of the exact ellipsoidal analysis. ~ince the 

flow about an airship is of good streamline form, the flow may 

be considered that of a perfect fluid poten~ial flow. Viscous 

forces can be accounted for separately, while c·ompressibility 

effects may be neglected for present airship velocities. 

The integration of Euler's equations of motion for a 

perfect fluid potential flow gives for the pressure relation, 

t2.l) p =: f (-2 M -'I 'L + v + Ftt~ 

where: p = pressure 

f = velocity potential, defined such that: 

t = time 

e = mass density 

q = resultant velocity 

V = external force potential 

F(t)= integration constant, a function of time. 

All units are compatable. 

In order to satisfy boundary conditions on the surface of 

an ellipsoid it is convenient to express the potential functions 
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of the undisturbed flow and the additional superimposed flow 

in terms of elliptical coordinates. Elliptical coordinates 

are orthogonal, being defined by, ( Reference, Lamb: Hydro­

dynamics), 

(2.2) 

The elements of length are, 

where: 

(2.4) 
k = -V"',..-b,. k£ = a = major semi-ax.is 

k(£~1)~ = b = minor semi-axis 

The coordinate surfaces_...M-= constant are a series of confocal 

ellipsoids, the surfaces X. = constant are confocal hyperboloids, 

and the surfaces w = constant are coaxial meridianal planes. 

The ranges of variation of the coordinates are: 

(2. 5) I J 

In elliptical coordinates the solution of Laplace's equa­

tion for potential flow is given by the two forms, 

(2.6) ;,: : PM5 (/I) ~s(~) cos sw 

( 2. 6a) ¢.: = p: ~) Q: (L) cos suJ 

Ptte'y) is the well known Legendre polynomial expression, and 9~fiJ 

is the associated Legendre polynomial. The first form of the 

solution gives finite values inside the ellipsoid but goes to 
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ct:> as £ goes to .o. Hence for the solution of the problem 

outside the ellipsoid, the second form must be used, in which 

q,:(i.) goes to O as t goes to oo • 
be 

Let the ellipsoid/immersed in a flow whose potential 

function is arbitrarily expressed as a sum of superimposed 

potential flows, 

(2.7) 

This undisturbed potential function can now be expressed in 

elliptical coordinates and expanded as a sum of terms contain­

ing the Legendre polynomials. Hence we may write, 

(2.8) ¢:=LL A:(t) ~5~) R~5(i.) cossw 
~ s 

where n and s are indices denoting the particular Legendre 

polynomial. R:..(f.)is a function of ..i;.. only and cos .sw .represents 

" As the asynnnetry of the flow. "'(t}is a constant with regard to 

the coordinates but in general may be a function of the time. 

When an ellipsoid is placed in a velocity field, the 

total potential function must satisfy the boundary condition 

d ~,: = 0 at £ = .f.0 for no flow across the boundary of the 
JsL 
ellipsoid t 0 • The resulting velocities at the surface will 

necessarily be tangential. Superimposing the additional flow 

given by the second type solution of Laplace's equation (2.6a) 

so that the additional flow vanishes at infinity, we get for 

the total potential function, 

(2.9) i',_s= LL ( A:ft) ~5(µ)R"<5(f)cos sw + B:.(t) ~~Q.5(/.)tos sw) 
"" s 

s. 
which upon solving for B_lt) to satisfy boundary conditions gives, 
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(2.10) 

Since £0 is a constant for any given ellipsoid, we may write, 

(2.11) f'1(5= 2 2 A.:{t) f:..5£1.tJ n.:.<t> x:rio) cos SW 
l"k s 

The interesting fact here is that placing the ellipsoid in the 

stream has the effect of increasing each term of the undisturbed 

potential function by a constant factor 'C~tX.} which is a 

function of the ellipsoid size parameter only. For the 

' "l/' ~ simple linear flows these """·- factors are the well knovm 

apparent mass~s. For te1·ms of higher order the same coneeption 

carries thru. For each Legendre polynomial term in the poten-

tial function expression, there corresponds one apparent mass 

factor. 

The pressure on an annular element of the ellipsoid is 

determined by integrating the pressure times the cosine of the 

angle around the annulus, hence, 
,,.,, 

<i..f:: r[ p cos (I) aw (2.12) 
d~ " 

the 
Now introducing _µ and the pressure/expression becomes, 

(2.13) 

Ji:. as_, = O by the boundary conditions. It is apparent for 

homogenous matter that the integral of [F(t)+VJ a:r•ound the 
s 

circuit vanishes. Also the circuit integral of ~ vanishesc 
dSw 

Hence there remains only, 
' ,,,,. s 

( 2 .14) ~ : - fa b {!;,«~) 1 [ ~!• T t{~t; :) e!49'1 COS id tlw 
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Substituting for the total potentia~ function and integrating, 

the result reduces to, 

(2.15) 

This general expression is exact for the ellipsoid and yet has 

been reduced to very simple form. It will be noted that in the 

integration all terms of (!.'I.A!ltlX!R;(£) rJ£_ftt.) cos.!'1"' vanished 
.. s 

except the cross product given above. 

The first term within the bracket represents the force on 

the ellipsoid in a steady potential flow. The second term 

represents the force due to the change in potential function 

with time, and here only the terms with s = 1 remain, the other 

terms integrating to zero. 

Hence we write for the force distribution, 

Steady State 

(2.16) 

where 't is the angle between the longitudinal axis and the 

tangent to the surface of the ellipsoid. The fineness ratio and 
,. 

cos 1: are multiplicative factors for the general relation. All 

terms of the initial potential function except those with s = O 

and s = 1 give no contribution to the force, and need not be 

considered. 

Unsteady State 

(2.1'7) 
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which for translation and lateral motion becomes, 

(2.18) 

where x = x. ~Cl .,,u= 

Y = Yo + 'f b "'= 
x 0 and y0 give the coordinates of the potential function 

origin with reference to the center of the ellipsoid. Only the 

terms with s = 1 contribute to this force. 

When the ellipsoid is moving thru a potential field the 

total force is actually represented by the Sl:Ull of three com­

ponent parts, steady state force, superimposed velocity -u 

force, and unsteady state force. This is readily visualized 

if we consider the ellipsoid stationary and the origin of the 

disturbance such as vortex to move with -u velocity. Since 

the disturbance must move with the fluid it is necessary to 

superimpose the velocity -u. The three components of force 

resulting then simulate exactly the motion of the ellipsoid. 
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III. FORCE DISTRIBUTION EQUATIONS FOR ANY POTENTIAL FLOW 

EXPRESSED AS A POLYNOMIAL IN CARTESIAN COORDINATES. 

The preceding general relation for forc~I distribution 

makes possible the development of a similar expanded expression 

where the general undisturbed potential function is expressed 

as a polynomial in x and y, 

(~.l) 
<p,.m = f r~,y) 

= z. i c,,,,, -,. "'y,,., 
"' "" ' 

Substituting for x and y in terms of elliptical coordinates, 

( 3.la) 

The only terms which contribute to the transverse force are 

those containing cos O·w and cos /·co (i.e. s = 0 and s = 1 in 

notation of Section II). Expanding cosh7w it is found that 

each value of m contributes one important term in either 

rvt,,. cos O·w 
I 

or M,,, cos I ·w , since for, 

(3o2) m even S "' - .L. cos mw +- · • · · · · • · + f'1 c (J w - 1"'.., "' 

m odd cos "'CcJ = ,_',,,_, eosmw·+ · · · ·· ... + M,;, eosw 

where 

(3.3) 

rnf 111-1) · · · · · · (~} 
Mm= 2 m-1 (';:)! 

M = m(nr-1)· ... a •• (l!!f1} 
In j /71-1 ( m;')! 

Discarding then all terms except those contributing a 
~ 

force there results the modified potential function, 
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"" .,. "'I = ~ \ c M R (I.J AA. ,,(1-.,µ~~ 
'1'11111 'nm LL nm h1 nm ,,r -

.,, m(even) 

+LL c:,,, 11~ R.,,,,,<£.J_,,µ 71(!~~1»£' (1?"'-,~cos w 
">r m(otfq) 

It is apparent from the general relation developed in Section II 

that the staedy state force will be a function of the cross 

product of the even and odd portion, when the proper apparent 

mass factors are included. Likewise the unsteady state force 

will be a function of the odd term only when the apparent mass 

factors are included. 

Considering each portion individually since they are 

finally used thusly, and noting that the higher value of m 

raise the power of ~ in the expression when expanded, we get . 
.,..,.,,, 

SJS,,,,, = LfH.C11oRno+MlC,,,_/i',,;Cr,,.zJ1f?n-1J~)+M4{Cn41?114-2({n-2)4~11-t)4+Q11-4J4/t.~4111)+11"·~"' 
( 3 • 5 ) (even) '11~0 

?li"'s-= L L D,,,,,, /{,,.,,,_/'"" 
llf r:O 1P1 

where the series cuts off at the highest value of m appearing 

in the polynomial. 

It was demonstrated in Section II that when the undisturbed 

potential function is expressed as a series of Legendre polyno-

mials, the total potential function giving no flow across the 

boundary of the ellipsoid differs only in the introduction of 
s 

the corresponding apparent mass factors :>cm • Hence the total 

potent±al function must be found by expanding in a series of 

Legendre polynomials• Performing this expansion, introducing 

the apparent mass factors and reversing the process to obtain 

the total potential in terms of a sim~Jle power series in 

,;U- ~, D.,., 111 , R,,.,,,,and X-..mp,we get for the total potential .function, 
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where, 

(3.7) 

::. l ff q,,.~ '\mo+ D2,,,R2,,, (f Xt111ofXi11n.)+ · · · · ·] 
m 

= 

+,,µ [D,,,,H,,,X,,,,,+D3,,,Ff3,,.(fX,,.; ix
1

,,,
3
)t···] 

+ ~" f Di,,, Ra,,, Jf 1111, t -· · · · ·] + .M 
3 

[ D3"' Rs111 'J&,,,t· J 
+ · · · · · · ' · · · · ./"' "'lf''llC[Q,,.,.,,,,. ~.,,,,~,,,.m)1n(11t-1r111 

n+m ~ 
l l [DRX] fa~ 

"91:: 0 "" 71 In 

Hence the derivative desired for the general transverse force 

equation becomes, 

In a similar manner the portion of the potential 

function containing odd values of' m is treated. The term 

from the undisturbed potential function is, 

which becomes µpon expanding, 

The tota~ potential function is now found by expanding in terms 

o,,' '··) of the Legendre polynomials f4 ~ and introducing the corres-

ponding apparent mass factors. ~xpanding thusly and retrans-

posing in terms of the simple polynomial in ~ we obtain, 
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(3.11) 
/,,m = (t;,1,1'l)~cos '°~ ffDo~ ~nr Jf0~1 t02~ tfz,,,(jH2~,"-f '<i~,)t· .. ] 
~d~ ~ I I 

-+ ~ [O,,,, N,,,,X,,,,1 tO,~ l&m(~x,~,_- ~ ,,-;,,4)+·-J 
+ ... ~/'[Di~ Rt11r .7CV:,3.,.··.J ~ 3fo.,; R,"7'(,~-t··· ·] 

.,. .............. tM ?f+m-'[· ......... J l 
Ji nt.,,,_, 

= (J~ ,_) COSGO ~ L [DRX]:,,,"""1£ 
where, 

11=o ,,, 

j{ 1 =-I - 3;,H,,,f,1.J Q:(to) = I- (n1mU:-n qp1
fio) 

'11#p Rhl,,(1.,J !i Q~ {I0 ) fof fo '"-!) 1f ~~0) 
Equation (3.11) is the expression for the total potential 

functiom of the terms with m odd from the modified potential 

function. For use in the transverse force equation we need thE 

first derivative Yid th respect to~, 

or, 

Steady State 

11he transverse force expression of Section II for the steady 

state becomes upon substitution of the even and odd total 

potential functions corresponding to the P,, 0(,µ) and P,,1 fP.) 

terms in 

(3ol4) 

(3.15) 

l ~· 
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or in terms of physical demensions of the ellipsoid and the 

derivatives of the final potential flows, 

In Cartesian coordinates the latter equation is of the physical 

form, 

{3.17) 

This form lends an excellent picture of the nature of the exact 

solution for the transverse force on an ellipsoid or nearly 

ellipsoidal body in a steady potential flow. The factor cos~~ 

is an exact end effect correction for all potential flows, 

The force at any point is proportional to the product of the 

forward velocrity derived from the derivative of the total 

potential of the even terms of the modified potential, and the 

sum of twice the area of the annulus times the derivative of 

the total potential transverse velocity plus the transverse 

velocity times the derivative of the area. Equation (3.17) 

might be written alternatively, 

( 3.17a) 

The physical expressions cannot be applied directly in the 

general case because of the implicit form of the velocities 

indicated, which are derived from the total potentials. For 

bodies of nearly elliptical shapes, such as present airship 

hulls, equation (3.16) should produce good results if the 

apparent mass factors are chosen for the ellipsoid of the 

equivalent fineness ratio and if the physical dimensions of 

/_br\1 • the airship hull are substituted for (J/ 

13 
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from such calculations must be attributed to the shape only 

because the exact undisturbed potential flow can be used. 

For the ellipsoid we can expand the force expression into 

the polynomial, 

( 3 .19) ~ = -1fp: cos"t:}./jpmU [OR'[/_' -t;,u'2IDRH1 [pR'{J'-[PHJQ [P1xl'.,.2[DRX] [oaJf]') 
'!"' "1 ~ '"' 11'1/ l.,. '1111 VII 1111 ~ znr 1111 

+ ..-'-' 2f3rz,,,ri~-2ri,"'r i,:,, .,..,, ri"'ri~ -if JJ~~ +3L 13,,,c~:) 
+,,,,µ 

3 (1 ,,,,.,m -3,1112,,, ..,.,2m1m -"12n111r1 +{,31172m - 31mo1n 1' ""'"' ltn} 

+..A "'f {s,,,,~,,, -11111311r 'f'!,_,,,.,; 6:t111z111+'tam ,,,,-'a,,,,,,,-r'4,,,t.,;'141110111 -r~m im) 

+ ./"" S( ,,,,,.; 5,,,,4/IJ-t Jl21115,,,-82111,111+12•m'<l,;' 'l,1nt.1n+l2,411t31rr- 84,,,,jlDG'1111111 

-~mo,,,,..,.,'"""') -1-~ ' ( 7,,,,.,,,;,,,..n-nr122n16tn-10~4m+IS3mf,;1z~,,,1m 
+ ,,41114m-12w,mtll1 -rlS5"1113hl - /05'1111/lf r/2,,,,1,,,..,6"10"1+1,,,,,,,,,} f- . ...... ] 

This expression is used in later examples in which are calculated 

the force distribution on an ellipsoid. 

Non Steady Flow. 

From the general equation for transverse force distribution 

in Section II, we obtain upon substitution of the odd total 

potential function, 

{3.20) 

(3.21) 

!/f = - 11(' '1 b (l;M ~ Jf. ti ff_ I '!"" rJt .,,,,, 
1) ,.,,,,,_, ' 

!if= - tr fa 6 (1-;,M) z Lfl 11 ft [onJC)_,,, 
~ n=e .,, 

For translation and lateral motion we have as in Section II, 

(3.22) 

Only D in the bracket is a function of time when x
0 

and y0 are 

changing, since R and X are constants :for a given ellipsoid. 

For application to body shapes nearly elliptical the equation 

may be written, 
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(3.23) 

Equation (3.23) may be written with x
0 

and y
0 

derivatives, as 

was equation { 3. 22}. 

These above equations provide a method for calculating the 

transverse force distribution that is exact for the ellipsoid, 

and probably applicable to within good accuracy for nearly 

el~ipsoidal shapes. The exact undisturbed flow can be used. 

Remarks on Evaluation of Factors. 

The values of the apparent mass factors for terms up to 

the cbrder o:f n = 3 and m = 1 have been computed and are 

plotted in Figures I and 2. • General analytical expressions 

for the apparent mass factorswere given in this Section. The 

value of the coefficients Ch-Rnm may be immediately 

determined from dimensionless Cartesian coordinates, since 

from the undisturbed potential function, 

(3.24) 

where 

. 
) 

The modified potential is then found as in the original 

development in Section III. This introduction of the dimen~ 

sionless parameter If takes-the place of 

The modified potential functions become, 
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Figure i .. for Prolate 
only Plotted. 

Primary Apparent Maes Coefficients 
Elli~soids. 'Lower Order Coefficients 



Figure • Beoondary Apparent Mass Coefficients for ~elate 
Ellipsoids. Lower Order Coefficients only Plotted. 



ntm 

91,111 = LL C,,m M,,,R,,mflo)J1 11 

( t!Vtn) n=o 117 

A. I ~I~ 1 I '- ) 11 1J, 
't'nm = L L Cn111 M,,, lfnml~ !/" T 
(odd) n:o rn 

(3.26) 

and the development is exactly analogous to that used before. 

The expressions for determining Dnm are given in equations 

(3.5) and (3.lo). 

Simple Application to Force in Steady Pitched Flig1lt. 

The transverse force distributionsfor the simple cases of 

potential floware immediately obtained from equation (3.19). 

For example, in pitched flight, 

(3.27) 

(3.28} 

or, 

{3.29) 

~ = lj :::.?J~+vy 

= 1' "fa -/- vb "' 

fp R x],o = lllfl X101 

I 
[DR'f]01 =vb Xo11 

ti.E = -71'(' h cos .. t' f ~[11aJf,.1] [vb Xa~'1) ti_,µ q l~ J 
= 1r(' b,,cos.,.T 1i v X,,,1 ¥0!1,,.µ 
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(4.1) 

IV. FORCE DISTRIBUTION ON AN ELLIPSOID MOVING IN 

A VORTEX FIELD. 

The potential function of a vortex field is expressed by, 

in the neighborhood of the x-axis, and 

(4.2) 
('T n -1 ..,, fl' = - -..L tan X+eo 

., 2.7r y..,.y;, 

in the vicinity of the y-axis. x 0 and y
0 

are coordinates 

measured from the center of the vortex to the center of the 

ellipsoid. x and y are measured from the center of the ellipsoid, 

their origin moving with the ellipsoid. The vortex field 

potential may be represented by a polynomial of the type, 

Expanding, 

( 4. 4:) 

where, 

{4o5) 

'f = K-fi. [[i4(f+-9~+hi'~tp1: (f+2.gl'+3hllf~V.:1i'(9t-3h.r)~/(hij 
- ttp f!tf+21>'+311~J+/l~rf+4'J~.,.,,h~1 +;-u"EY2,+ '""'J.~,,,3i'{3hll 
+ tp~p""[- . ........... J.,.. ........................... ·] 

lJ' :::r 'J!e 
Yo 

(:= !!.. 
Yo 

p= fo 
Neglecting terms of order 'f ~ and higher, the constants are, 
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(4.6) 

[OR'f] = {not needeti) 
oe 

[ORX] 
10 

=- -,_~ [t: (f+i9~1-3hll'')X,oit-l(h) ( j X30,- }X301 )] 

[PR'£]
20 

=---/;. [E 'l{<J+ 3h'1"} X,, 02.J 

[DR'l]
30 

= -f;. [e1h) X 303] 

[Dlf'l]0~ ~ /i;.@ [ittfft-2'frr3n~ x0: 1+€ri.(2qt- ~h~}(-}'<2:1 -t){i.~3)] 
[oRxJ,; =/;.ft [E {f+49" 1- 1 h,,.~)x,:,. + e-

3 
(3n) (1; x,:'l -~ X3~_,)] 

[off~',=,!; P [<:''t2,,. 'lh~)xi,3] 

[DRX]
3
1
1 

• ;,.~ [e'( 3h) '!~14] 

Base 1. Ellipsoid of fineness ratio 6 : 1. Vortex center on 

equaDorial plane at a distance f'rom the center of the 

ellipsoid equal to its length, 2a. 

The apparent mass factors are, 

X,o,= J,85 X0~, .:: /. 'I I ' '<211 : /. 'l'T 
(4.8) 

X102. :/. 07 ' ' X11i. = /.8S ){3/'l : I. 'IO 

' ){303 -=}. 08 "2./S :. I. 71 

X301= J. /'f 
I 

X3,4 = /. '13 

The values of the parameters corresponding to the configuration 

are, 

(4.9) r -- 1Co: O • £ • SL - L · A = .! __ .L 
Yo J ~ Yo - .2.. I l- Yo /'2, 
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The potential function, 

where, 

. 
J J 

represents the potential and velocities of the vortex in the 

neighborhood of the y - axis to within 3% for values of ~;;; 

up to o. 7. 

·(a) Steady State 

Substituting in the general expressions for the constants 

(4.6) and then substituting these values in equation (3.19) 

for the transverse force on an ellipsoid in a steady field 

we get, 

(b) Ellipsoid moving in axial direction with velocity 1A. • 

The force distribution due to this motion of the ellipsoid 

thru the field is obtained from the sum of the forces due to the 

unsteady potential ;t and a superimposed velocity -u • 
For the superimposed velocity - 'U , 

9J: -U%:::: -U"/'l 

[DR'f],.= -11~ 'Co1 

Hence the force distribution-upon substitution in the general 

relation in combination with the vortex field relation gives, 
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For the force due to the unsteady potential we obtain, 

(4.15) cl F = - ..,,.ea" l!l (l-;M1 j. ffoRxl I +.,u [oRK] 1 + .... ·] 
~ 2Tfo g:u0 01 11 

Substituting for the values of the derivatives indicated we 

obtain, 

(4.16) 

These compone.nts of the transverse force distribution 

have been plottec. in l''igure 3 • The force distribution due to 

the vortex field on the stationary ellipsoid shows the large 

buoyancy force at the center directed toward the vortex and 

small reversed force at the ends. The superimposed velocity -1.4 

tends primarily to increase this same general distribution. 

The striking fact of this problem is that the unsteady 

potential force is of the same magnitude as the superimposed 

flow fmrce and of opposite sign. The resultant of these two 

latter forces gives the actual additional force due to motion 

thru the vortex. · !t is apparent that force distributions 

derived from steady potentials are far from representing the 

actual force on a moving body, because the ~ force is of the 
<lt 

same order of magnitude as the steady state forces. For 

comparison of the accuracy of the force distribution due to a 

potential function of only two terms,, Cf =U~ +~"¥.lJ, the 

resulting force distribution for this potential function has 

been plotted for the stationary ellipsoid. The error reaches 

approximately 35%. 

Case 2. Vortex center on longitudinal axis at a distance from 

the center of the illipsoid equal to twice its length, 4a. 

(a) Steady State 
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In an exactly similar manner the force distribution has 

been computed for the ellipsoid moving along the x-axis away 

from the vortex. The resulting force distributions have been 

plotted in Figure 4. There results no transverse force for 

the ellipsoid stationary. The buoyancy force is here axial 

and not transverse. This result of no transverse force for 

the stationary ellipsoid would hardly be valid in a real fluid, 

however, as a cylinder is known to have a high form drag. 

Nevertheless in combination with forward velocity this steady 

component of force may be assumed zero provided the resulting 

angle of attack is not too great. 

(b) Ellipsoid mov~p.g in axial direction with velocit~ 'U • 

The resultant force due to the axial motion of the 

ellipsoid in the vortex field is again the sum of the forces 

arising from the superimposed velocity -u, and the non-steady 

potential s~ . The unsteady potential gives rise to a force 

entirely on one side of the body whereas the superimposed 

flow - tc gives rise to the familiar pitching moment type of 

distribution. The force is larger toward the center of the 

vortex as would be expected. The hmll alone is unstable in 

this motion and will tend to turn broadside. In case controls 

were operated to hold the ellipsoid in the axial direction it 

would move laterally off the path. 

Numerical Evaluation 

In order to get a picture of the actual probable forces 
. 

and distributioh on a fUll scale airship these forces have been 

computed and plotted for an ellipsoid of length 240 meters and 

fineness ratio 1 : 6 as in the preceding cases. These are 

approximately the physfucal dimensions of the Akron. For Case 1 
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the distribution has been computed for several values of 

forward vemocity and vortex velocity at the ellipsoid and has 

been plotted in Figure 5. The dotted curve shows the distribu­

tion for the stationary ellipsoid Jn a vortex of velocity 20 111/s. 
the 

at/ellipsoid. It is interesting to note that flying thru a 

vortex field against the direction of the vortex field velocity 

increases the force at the ends, while flying with the vortex 

may reverse the end force giving a forced distribution along 

the ellipsoid of the same sign. Control might be difficult in 

such a state as the force might easily reach about 500 kg./m. 

along the entire length. Doubling the strength of the vortex 

practically quadruples the values of the forces acting. 

\'men the ellipsoid is moving along the x-axis, the f'orce 

is directly proportional to the product of u/;;,
0

• The curves 

for numerical values have been plotted in Figure 6 for this 

product 2~r= 400 ml~. Reversing either the direction of the 
lf):o 

motion or vortex velocity reverses the force. The force at the 

end of the ellipsoid toward the vortex is approximately 5/3 

that at the far end, which corresponds approximately to the 

ratio of transverse velocities. The moment is large and forces 

might reach magnitudes of 1000 kg./m. or more. It should be 

noted that the moment and forces will increase rapidly if 

flying into the vortex, possibly becoming prohibitive near the 

center of the vortex. 

A rough prediction of the motion of the airship in a 

vortex field is possible. Assuming that controls are operated 

such that the nose of the airship is kept pointed in the 

x direction, and assuming that it enters the field along the 

x-axis the probable motion would be as follows: The airship 

22 



would move laterally off its course passing the vortex at a 

certain distance which would be a function of the vortex 

strength and airship velocity. Upon passihg the vortex the 

buoyancy force would move the airship back toward the x-axis, 

which the airship would approach again asymptotically. Such 

motion would be fortunate in that it would prevent the airship 

from flying directly into the vortex. 
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V. CONCLUSION 

When the undisturbed potential function is expressed as a 

series of Legendre polynomials f',,5J,M> the exact general 

equations for transverse force distribution on an ellipsoid 

have been derived. For the steady state the force is shown to 

be proportional to the cross product only of the Legendre 

polynomial terms with s = O and s = 1. The force due to an 

unsteady potential is a function of the terms with s = 1 only. 

The total potential function is derived from the 

undisturbed potential function by multiplying each term by a 

constant, which is the apparent mass factor. 

The general relation for transverse force distribution 

shows that cos 'J.'t' is an exact end effect correction .for all 

.flows. 

When the potential function is expressed as a simple 

polynomial in x and y, or~ and tp , the exact transverse 

force equations for the ellipsoid can be expressed as 

polynomials in x, or~, whose c~ficients are functions of 

the undisturbed potential functi6n coefficients, physical 

properties of the ellipsoid, and apparent mass factors. 

For application to bodies of nearly ellipsoidal shape 

the equations for transverse force have been expressed in 

terms of the final potential function and the geometrical 

dimensions of the body. These equationsshould lead to good 

results because the exact undisturbed potential flow can be 

used. 

General analytical expressions for the apparent mass 

factors have been developed. The apparent mass factors of 
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lower order have been plotted in Figures 1 and 2. 

A polynomial has been developed which well represents 

the potential function of a vortex field. This polynomial has 

been used in conjunction with the general relations of Section 

II to compute the force distribution on an ellipsoid moving in 

a vortex field. The computations show that the forces due to 

the unsteady potential arising from the motion of the ellipsoid 

are of the same order of magnitude as the steady state forces. 

Hence forces due to the motion of a body cannot be determined 

from steady state analysis only. 

The forces on a body moving thru,a vortex field may be of 

more importance when the body is moving with the vortex velocity 

than when moving against the vortex velocity since in the former 

case all forces might act toward the vortex center, whereas in 

the latter case the forces at the ends and center of the body 

are oppositely direct$d. 
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