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Abstract of Thesis

This paper deals with the stress distribution under plain strain
in a corner of any angular magnitude, i.e., & plane with an angular

ineision or notch.

The Introduction contains a brief statement of the method employed
by Dr. Theodor von Karmdn in his exact treatment of a beam in bending

(Aachen Abhandlungen, Heft 7, 1927).

In Part I a generalization of this method is outlined which is
applicable to the corner for any force distribution over the straight
boundaries., Solutions are found in the 3/4-plane for:

1. Concentrated load at any point of the straight boundaries.

2. TUniform distribution between the vertex and a point of the

boundary.

3. Linear distribution in the same region.

4, Superposition of 2 and 3.

Certain stresses are determined and plotted and shown to be infinite

at the vertex for partial loadings of the boundaries.

In Part II an alternate method is given to obtain a solution for

cese 1,

The discussion points out the very interesting parsdox that stresses
may be finite for certain continuous loadings, but become infinite if a

portion of the load is removed.



Introduction

The knowledge of two-dimensional stress distributions is useful
for the solution of many problems in mechanical and civil engineering,
when the usual methdds of strength of materials are not applicable or
not sufficiently accurate. The stress distribution in the half-plane
under the influence of a concentirated force acting on the straight
boundary is of fundamental importance, and the solution of this problem
is due to Bousinesg. Several extensions of his results have been made
by Mitchelll), especially by means of the so-called method of inversion,
the only conformal trensformation of bi-harmonic solutions which leaves
the boundary stresses undisturbed. By superposition of Bousi?sq's

solutions the stress distribution in the half-pleane ig easily obtained

for an arbitrary load distribution along the straight boundary.

The stress distribution in a plane strip has been discussed by
several authors and special reference is made to a paper by Dr. Th.
von Kérménz)containing a generzl method for the determination of the
stresses due to an arbitrary load along the boundaries. The paper is
not yet available in the English language, therefore a brief descrip-

tion shall be given of von Karmén's formulation of the problem.

3)
A two-dimensional elastic system is in equilibrium if the stresses

Gx>» Gy and T are the second partial derivatives of an arbitrary

function P(xy):

= 2 = 2 s 2
S5 a Z Sy a g Cry acr (1)
dy ax dx dy

1) 4. E. H. Love, BElasticity, p. 216. 2) Aachen Abhandlungen 1927, Heft 7.
3) See Appendix I.



In order to be compatible with the stress-sirain relations in

accordance with Hooke's law, F must be a solution of the equation

off  2a% _a% o

dx4 dx2 dy2 dy4
or in Gibb's notation

7% = o0 (2)
F, known as Airy's funetion, and its first partial derivatives

cen be interpreted in terms of the gquantities ususlly employed and
defined in "strength of materials", namely, shear and moment of the
external forceces. By integrating (1) along the boundary between

ax ax

931 - [ég] represent respectively the resultant ¥~ and X- components
dylp (9v]a
of the load on the boundary between A and B and, integrating once

points A and B it is seen that the differences [;EE] - [gg] and
B A

Iy

more, it is seen that the difference F p - F , represents the

increase in the bending moment, in going from A to B.

Hence, if all loads are assumed applied at the upper surface of
the strip x-axis, see Fig. 1, the usual moment curve becomes identi-
cal with F(x,0) for the strip in quesfion and the problem of stress
distribution becomes simply the determination of F(x,y) for given

boundary values.

If the loads are perpendicular to the upper surface and if the

depth of the strip is h, the bowndary conditions are



%% = 0, ¥ =M(x) at the upper boundary, y = 0
gé =0, F =0 at the lower voundary, v = -h
dy

It is now easy to determine a solution ¥(x,y), which is neriodical in

x and satisfiss the conditions:

4F =0, ¥ =a(m) cos(mx)+ b(m) cos{my); when y = 0
ig =0, ¥=20 when y = =h
dy
Such solution is
Mxy) = a(m).cos({mx) . £{y) + b{m).sin{mx) . gly)
where f{o) = glo) =1 and f(-h) = g(-h) = 0.

#
i

£*{o) g'(o) = 0 and f*(-h) = g'(-h) = 0.

£(y) and g(y) are composed of terms of the form e:my and yeimy with

certaln given numerical coefficients that will meke ¥ satisfy v4r = 0.
It is obvious that

X (2]
Fo= -S‘a(m) . cos({mx). £(y) am 4l5b(m) . sin{mx) . g(y) dn,
° o
is the desired stress Tunction if the moment curve is

0
M(x) = V[[%{m) . cos{mx) 4+ bi{m) . sin(mxé]-dm. {2}
[+
In other words, if it is possible to represent the moment distribution
M{x) as a Fourier's integral the solution of the stress problem is

immediately obiainsd.

von Kirmdn and F. Seewald have applied this method to several
important cases and obtained interesting results, among othsers the
"corrected’" relation between the bending moment and shear at a point

of a beam and the curvaiture of the central line



k- o, [e _ ek]e (4)
- EI 108 A

where K denotes the curvature, ¥ and G Young's modulus and the corres-
ponding modulus in shear, 4 Poisson's ratio, A area of cross section,
I moment of inertia, M and P the bending moment and shear at the point
in cuestion. The second term corresponds to the influence of shear on

the deflection.

A new and interesting conclusion of this theory is that the
deflection of the central line of a long beam is wave-shaped outside

the loaded region.

Part I.

Generalization: The method described sbove can be applied generally,

not only to the half-plaene, but to any angular nortion (1;’) of the
plane with any distribution of both normsl and tangential forces over

the straight boundaries.

Introducing polar coordinates and siress function must satisfy

the equation

2
2 2
V4r(r,e) = |&__ ., 1 & dj-/—"- =0 (5)
dr? r dr rgdegj
with corresponding stresses, see Fig. 2
2
Or = &F_ 1 aF (6)
r2382 r dr
dre
77 = - a(1 a7 (8)
ar T T8

The general solution of (5) is the real and/or imaginary parts of the



e
L

complex function: (P(z) = af(z) + Bxzg(z) + Cyh(z) (
whers z = x + 1y = r{cos 8 + i sin @) = rei®
A, B, and C are arbitrary complex constents. T(z), g(z) and h(z) are

arbitrary holomorphic functions,

For the present purpose we will employ the functions obtained by

taking real or impginary parts of

x . :
= 1 ( or) . (2™ I grimy
n 10
Po o= 34,08 (10)
where m is real and Ay are arbltrary constants to be determined by the

boundary conditions.

Let g = log T
and let f(z), denote "Real Part” of f(z) or Rf(z)
" and let f(z); denote "Imaginary Pert"” of f(z) or If(z),

then we obtain as particular solutions of VWV 4F = 0:

A/¢l =
A2¢2
4s s -
Ag P -
Asps -
A pe -
Ay ¢r -
AgPs -

im ~im = ~
X = 4 . e
A (= Z )1‘ Ayx cos m g Cosh m@
z L gz

-imy o -hox cos mE, . Sinh m@

Agi X( r

Cx(zim 4 gmimy

[

i -Agx sin m€ . Sinh me

Cx(zim - pmimy

i

+A4x sinm& . Cosh m@

=
N
ot
8
.l.-
N
i
s
2
]

Ay y(zi? - z"im)r = -hgy cos mE . Sinh me

=
Iy
s
=
+
™
1
i
=
(=N
]

-Apy sin mE . Sinh me

A - y(zim < z"im)i =+ Agy sin mE . Cosh m

| i ol ol ol ol ol g
s
1.8
e

+A4gy cos mE . Cosh m® (11)



It is convenient once for all to compute the first and second

partial derivatives of the particular solutions (11):

¥

4 a2 = +cos® Cosh mé(cosmE - msinmg)/f,
dcpg xon
= -cos6 Sinh mO{cosmE - mSimm €) A
AL ar g %
A 195 -cos@ Sinh m&(meosmE + Sim¥ ) A,
dr
P (12)
s}
/}% 2 = cos® Cosh mé({mcosm§ + Sinm% ) 47‘
dr
d?5 = N « - S _
/}s’——ﬁ—— + sin® Cosh m6(cosm§ mSinm& ) A4,
a
A Yo = -5in® Sinh me(cosm& - mSimZE) A,
dr
/47 dny = -s5in® Sinh mO(mcosmE + Simm€ ) A,
ar
/Iaii-(?;@ = +5in@ Cosh mB(mcosmE + simm € ) A
aqg
A, rd]{; = +4q(mcos® Sintmé -~ sin® Coshm@)cosmE
dPo  _ s
/{L-—r-a—e—- = =i {mcos® Coshmd - sin® Sinhmb)cosm¥
A aPs . -An(meos® Coshm8 - sind Sinhm0)simE
3 rd '
e
d
&.%%._ = + A (mcos® Sinhm@ - sind Coshm6)sinmE
495 (13)

]

Ao'—ﬁ'é_ + Ag(msin® Sinhm® + cosé Coshme)cosmg

AL QI(‘PZ = -A6(msine Coshmé& + cos® Sinhmd)cosm E

ady

/47 ——I-:a-é— = =Ap(msin® Coshm® + cosd Sinhme)simné

dqs = +A . . l rél e
T g(msin® Sinhmé + cosd Coshm®)sinm B

Ay
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cos8 CoshmO

T

T

r

cos@ Coshm
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T
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A [(mg - 1)cos® Cosh me@ - 2msin® Sinhmé/ cosng

cos Sinhmf

coshd Sinhmb

sin® Coshm@

sin® Sinhmé

sin® Sinhme

sin® CoshmB

(mzcosmg +

(mPcosm &
(meosmE

(mcosmE

(mPcosm®

(m%co smE

(mcosmg -

(mcosm€ -

-4

+

-+

msimm€ )

msinm¥ )
mzsinmg )

mPsinm€ )
msinm & )
msinm & )
n°sinm® )

msimmE )

(14)

.Az {;(mg - 1llcos® Sinh m® - 2msind Cos.‘mnﬂ cosm%

~ 1) cos® Sinhmé - Z2msin® Cosh m?] sinm?
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1l)cos® Coshmé - 2msiné Sinh m@] sinmg

1)sin® Cosh mé+ 2mcos® Sinh mej cosm§ (1)

1)sin® Sinh mé+ 2mcose Cosh me_] cosm%

1) sin® Sinh m& + 2mecose Cosh me:] sinmg

1l)sin® Cosh m8 -+ Zmcos® Sinh mé_?] sinm?

{mecose

(meose

(meoss

(mecos®

(msine

{msiné

Sinh m8e

Cosh me

Sinh m6

Sinh me

Cosh me

- 5in® Cosh mé) sinm§

- sin® Sinh me) simmE

- sin® Sinh m8) cosmE

- sin@ Cosh mB) cosmT {16)

+ cos8 Cosh me) sinmE

+ cos® Sinh me) sinm%
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H|

-4 a ) _ m
L | m— =+ Ap = (mgin® Cosh mé -+ cos® Sinh m8) cosm§

- ad
AS:r(?;Z = -4g % (msiné Sinh me -+ Cosé Cosh mé) cosm‘i

The coefficients An are now defined as functions of the parameter m.

The stress function may then be expressed as
m=$% 00 am 0 e oF
T = - L = . + . - _’.-— A Cl.n’l
¥ > Sagn(m) P, j[Al Pr+ n,- Fo+ug Pol o (17
n=1 o

from which the stresses are obtained by (6) ete.:

n=8 o o

Gr =4 j Ay {r a CPn . }_dcﬂn } d (18)
n-1 “ r2ae® r dr
n-8 /°

% =1+ j PO Y (19)
n=1 "o ar?
ng g

T =— Sﬁnl ”g(_l_dc?n> am (20)

7=l % ar T ae 7

Two typical cases of boundary loads must be considered:
a) The load may be continuous (not necessarily uniform) over portions
of the straight boundaries.

Let it be assumed that the load is distributed over finite poritions of
the boundaries or, if the load extends to infinity, that the load per
unit length becomes zero at infinity. Let the boundaries be the lines
& =0 and © =']°, and let the normal loads be reSpectiveiy P, and p

7

and the tangential loads be ay and qu . These guantities are func-



tions of r, msasured from the intersection of ithe boundaries, or fune-
tions of§= log r. Using Fourier's douvble integrals we can write

pc(g) in the following form

po(g) = %S Lcommggyg () coemK aol + smmg ol &) sinmd O(O/Jdm
/o
5 g, - - - {21)*

where the load pQ(E) is assumed to exist only betwsesn the points El

and g;, 2 Similer expressions are obtained for p U, and g

7 7

Thersfore, the boundary conditions are:

(Celg=0p = pG(E) expressed as in {21) (22)
(Tlg=0 = oo (23)
(Celg=p = rp (24)
(Clg=gp = Ly (25)

where © and T are given by (19) and (20).

By now equating coefficients of cosmE& and sin m& 1in the above
eguations, eight othsr equations are obtained which determine the
eight funections A{m) snd consecuently the stress function ¥ by substi-
tuting Ap{m) in {(17).

b) In the esse of concentrated loads the boundary conditions are ob-
$ained in the following manner:
It was already shown that the differences L_g};j [;

) SN

ag] - [ax
avi,

(? epresent respectively the Y and X~components of all the
the boundary forces beiween A and B. Therefore, in the case of concen-

*See TWourier Series by W. E. Byerly.



trated forces, these differences bescome discontinuous (similar to the
shear polygon for concentrated ﬁ;orces) and the Jjump in these values at
a eeriain point is equal to the respeciive components of the concen-

trated force at that voint., Consider, for instance, unit normal force

acting at point r = a of the boundary € = 0;

4. [
ar) . ar
a+g 8 =g

“

e

v

Obviousl

e,

where & is a smsll positive quantity.
If there is no continuously distributed load on the boundsry & = 0,

then by (22)

2
( 67.) = [ap =0
ee:O dw}
Tle =0

Hence %;;T = gonstant on either side of r = a, These conditions

can all be satisfied by writing

L] T
- . . 1
aF -1 sin(m log a) . (26) )
dr T m
[~]
This integral has the value ~- ,Jé; for & =log X < Qorr < =
8
+_§_fcr§ >Oorr >a
The integral:
oo eﬂg when€ < 0
1 n cosm - msimm¥ 1 " € =9 (27)2)
T 2 + nP 2
-] .
0 " €0
1) See Peirce, Short Tables of Integrals, #484.
2) Riemeaun-Weber, Differsntialgleichungen der Physik I, page 157,
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with its remifications
igs often very useful in expressing boundary functions on Fourier integral
form.

Loplication:

1. As the first application of the foregoing, the sitress function

I corresponding to a unit normal traction at point r = a of boundar

© = 0 will be found for e reentrant right corner, i.e, ?7’ = 3’2\ )
see Hig. 3.
The boundary conditions are:
when & = log (é) < 0
= 1 when E > o,
o
aFr 2
_ = 0
de
Let F =7, + Fl
FO is detsrmined by the boundary conditions
; 1l . -
0¥y = Ol‘g 0 He d¥s _ .
ar 1 senee, —mp 1) slmfun, vy (26)
8=0 +35 " E>o ' ™ m
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In order to remove the concentrated force introduced at the origin (due

]
o]

to the discontinuity in the first derivative) ¥, is determined so that

ar1) -

\dr//e =

bl L

for = oo < ?E <+ 00

i
O

=0
(Fl)e =?/i = O
<dF1> -
a6
8= g’
Fq is easily found by employing the simple solution to D74Fl = 0O
Fp o= ABrcos® + BOrsin® + Crcosé + Drsing (28a)

Hence, by the boundary conditions for ¥y:

dFl = C = .:_L_
ar /g = ¢ 2
aw
—* = Ar+Dr = 0
40 Jo =0
(F1)g =387 = - 3T
l)e g 5 Br -Dr =20
3 e = 34~ s AT -Br+Cr = 0




l6i

Solving these and substituting in (28a) we obtain

T o= 3T
1 ————= Orcos 6 -+ —-—-—-—-—2— frsin & (28
4-9M 49T )

THe Tirst degree terms have besn omitted as they contribute no stress.

In order to determine F we employ equation (17) and formulate the
given boundary conditions by differentiating the functions given by

(11) and obtain:

QJ
iy b
k_o/
]

) oo
= J [Al(cosmg -m sinmg )+ 4, (m cosmE +simm&) dm = L\ sinm& gy
0 A 4 T) m

i ,
=j [-m Az cosmE& - m Agsimn; + Ay cosm ¥ + AB sinmgj dm =

=

- S'o =dg CoshPm cosmgE + Ag Sinh m cosm§ + A7 Sinh ™ s1nm§
0 =g = § [ho 0osnm cosng rc o ‘f
- A osh@®m sinm dm =
u\ oo 34
2 = 4, Cosh¢m @os - A, Sinh cosm@ - A, Sinhem si
( /s ?q iLAl Zﬂm mE o Wm mg 5 51 ?am 81nm§

+ Ay CoshD«m sin.mg - mig Sinhyﬂm cosmg + mig Cosha‘»m cosm‘g + mAg Coshﬁ«m simng

TR

b b
\olo
(45

[
o

(o]

l

CD

- mig Sinhrm sinmgj .dm = 0

where g = log (E'.) and T

ml—z

By equating coefficients of cosm§ and sinmg

Al +mhy = O

~Mh. + A, = 1
ol 4 .
m

-mho + Ay = O

]
o

As Coshym'- Ag SinhTm

[}
o

Ay Sinha‘rm - Ag Cosh?’m



[
(o}

L Coshfrm - As Sinhzvm mis Sinha"m + mhg CoshTm
-4z Sinhz'm + Ag Coshﬁ?m -+ mip Coshrm - mig Sizzhzﬁm =0

and solving for An:

= - 1 1
1 S
] i+m
A = 1 CoshYm SinhQ'm
2 ‘4“ -:_: tr
i1+ mR) (m® - Sinhzrm)
A, = - 1 Sinhypm Cosh§’m
° T w1+ md) (m2 - Sinhzzm)
A = ¢+ 1 1
4 T (1« 2V
T Q@+ n®)m
A= 1 m Coshy'm SinhyY'm
A 2\ (2 TonZ
¥ (1+ m®) (m* - Sinh Tm)
Ay = o 1 m Cosh®gm
T (1+n®) (v - Sinhzym)
Ay = - 1 Cosh? 9’m
N1+ m?) (m® - Sinhzy'm)
AS = - 1 SinhP'm Coshy'm
T

(1 + m®) (n® -~ Sinh®qrm)

The stress function is then found simply by substituting the A's back into

equation (17) and the stresses are found from ecustions (18} (19) (20).

The stress function in the 3/4-plane for unit tensile force concen~

trated at point (r,8) = (a,0) after some reduction hecomes:

rxj

o0 = Fo v B =

=1 Ega?'Costh - (xSinh9m + ymCoshPm) Sinhm(g- S)]- (mcosm& - sinm€) 4.,
= |\ ]& L4 I
T m(l + =) (Sinh‘g?"m - m?)

o
+ BN 8rcoso+ 2 Brsing (29)
4 - 92 4 - ofe
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we

Lol
wh = 3
There ?P >

?; = log.g ; X= rcos®é ; y= T sineé
The integral ¥ may be evaluated by the method of contour integra-
tion in the complex plane™, making use of Cauchy's theorem of residues

as outlined below.

Bvaluation by Contour Intsgration

Cquechy's theorem of residues
j&p(m) -dm = 274 Z Residues
enables us~t;$compute the definite integral in (29)
m is complex = & + i/3

The residues are Tound by integrating =round each pole in the positive

direction.
Fo may be written as . "
o may be FI- & o9 (30)
Fo= __1 m.f(m). cosm& dm - 1 J f{m), sinmm¥E dm = ) - M
2T mﬂ+zﬁ)(&mg7m-m2) 27 ) m(1 + m®)(SinhRpm - m?) 2
- 00 e

where the meaning of f(m) is evident by comparing with eguation (29).

Consider the complex integrals:

¢ +4iH = 1 eim€,  f(n) am (1)
BT ) (1 + m®) (Sinhgim - m?)
and
K + iL = 1 m.elmE, £(n) dm (32)

2T m{1l + m?) (Sinhzgﬂm.- n?)
taken along the contours S consisting of the real axis and the infinite

half cirecle above or below the real axis, sse Ffig. 7.

o

* See f. expl. MacRobert, Functions of a Complex Variable.
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Ir ?;, = log .E < 0 the half circle below the real axis must be
chosen because in thie ease the integral along this part of the path
converges to zero as lml—ax. For the same reason the upper infinite
half circle is chosen When§> 0, i.6s T > a. Consider for example

the lower half-plane:

m = & - i/Z*r where ﬁ is real and positive
therefore, if O’E = -¢ where ¢ is real and positive
imE - Gi(X-siB)(-c) . g-iXe . g=cPp= cosac - i sinake

eCR

which becomes zero in the limit, D —=> o0
The singularities of the integrand are all simple noles and are
the roots of:
Sinh®y’m - m? = 0 (28)
or if m is pure imaginary = i(d

B == sin () (34)

The complex roots may be found with very good approximation (except n = 2) by:

]

m= ol,+ i/3n =11 log/W (2n + ll-&\\tiT(2n+ 1) -& (35)
T . T / 2
whare
U {en +l))
£ = 4 log T (36)
{2n + 1)
and n = 2, 3, 4, 5 LR B B B 2 3
¥y = 3U”
2
For large values of n:
m=°<n+iﬁn*t 2 log Ant 2 {2n+ 1 (37)
oW 3
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The lower rcots are:

ol /5:
0 0
0 T 1.5%9
ol T 1.909
0 <
1,231 ~ 1.829, corresponds to n = 2 in (35)

Ay = 3 ete., use equations (35) and (36).

<
It will be seen that for]ml = 1 the roots are loceted on the
imeginary exis, i.e. pure imsginary. ¥or |m| > [ all the roots are

located near the imaginary axis.

Now returning to (31) and 32), integrating in the positive direec-
tions and observing (30) we find for: >0, i.e. r > a:

Yo =H =9 1 o€ | £(m) am [ S est J [ ]

2 . = |1 Residues | =|* >R (38)
°92 T m(l + mz)(SinhB}nm - m2) i 2 By

®

1 = imE \ ,

m{l + m2)(Sinh®gm ~ ml)
5 A

Due to m = 0 being a simple pole of the integrsnd in (38) the con-

1

teur must be irndented and half the residue at the origin must be in-
cluded irlszg. In (%9) m = 0 is not a pole so no indentation is neces-

© sary.

It should be noted that Ry = mRp which facilitates the computations

greatly.



Emrg < 0, ise. T < a, and now integreting in negative direction:

E— i 2: Resmues] i [-— 2 Re_g
-

[- i Z Residuesj " £+ Z.R(-—l

]
[}

Mizg) = H - {40)

;o (4

N

3'}:(-1) = K

The same remarks as ahove hold here and R(-l) = mR(_g») where the

[

subseript indicates integration in the negative nhelf-plane.

The convergence of the power series is rapid and even for values

of r near a, only a few of the poles need be considered outside the

]

unit circle lm\ =1, ¥H only the poles inside the

or very large )§

circle }ml = 1 contribute.

o

The stress functions eveluated in this manner valid for small and

large values of _g become: Fo= }?O -+ F‘ =
1.545 1.209 y
¥ =g [.101 (.;.‘) . g8}y + .125 (g;) . 11(6)j ihen _g.<<l (42)
L4505 .081
¥ = a[—.:%o 2) . z(8) -2.629(5) . h(e)
21 a
b L

+ 5 T:;‘qfl"(?' O cos + —g-z-:—g—,l.—l,-z 9 sing - cos?.ej wﬂenéﬁ > 1 {az)
where
g(8) = sin.545 @ . cos8® - .545c0s.545 © .siné - .830sin.545 @ ., sing; (44)

1

n(e)

ein.209 € . cos€ -~ .209co0s,909 € .eih8 + ,416s81n.209 € . sinOJ-(/&S)
It is interssting t notice that the terms in (42) including those of
higher order are the Biharmonics (solutions of Vi = 0) which correspond

to boundaries free of forces. This can also be seen by writing

F = ArD cosn® + Brl cos(n-2)8 + CrRk sin n® + Drl sin(n-2)8 (48)



where n may be complex and finding the values of n which give possible

£ 3 iq i ' - >

solutious in case ¥ snd & are both to be zero along both boundaries.
as ‘

The di‘p}fﬂf’iz;&ﬂt of the four boundary equations gives exactly the roois
corresponding to the exponents in (42)., It is, however, only possible
to determine the ratios.% ete., in this way. The absolute values of
the constsnts neturslly depend upon the location and mesgnitude of the
concentrated forces, and these can only be specified by the use of
Fourier integrals as above.

is

P - S
The writer/informed that Dr. H. M., Wester

0Q

zard, Professor of

.

Theoretical and Applied Mechanies, University of Illincis, in a com-
municaticn to Dr. Th. von Kérmén, has pointed out the existence of
these solutions, presumably obitained in the manner just described. Dr.

Westergaard applies these soluitions to the case of a trisngle repre-

n

senting a masonry dem, in order to investigate the character of stress

¢

Gistrivutions near the base.

Check on boundary conditions:

By (42) and @3) it is easily seen that

F o= when @ = (Q
ar = 9 and © = 2SI
de 2

are satisfied.

In order to investigate if all boundary forees are in equilibriw
we will determine the siresses on a circle of large radius r = R, sce

Fig. 4. By differentiating (43) and only taking such terms that

o



contribute:

G, = - a0 . 2 sin 8 + 4 . 2 cos &
* L3972 R 4 -97= R
Z‘ = asin 2€
RZ
: 3

Projecting on x-axis and letting R~ oo
3

_ = i B 1. = _
= s} - 52 u Jheniy 1 = ;
2;)( wSGS;ooser e [- 3 T co e_f 4 (e + 5 5 nze)k ¢
o

4 -9T2 4~ 9m*= o
Projecﬁ%ng on y-axis: 'gﬁ
ZS'I?* = *6-sinerée =/~ &1 (e --% singg) - 2 cose8l = 1,
* 4 - o2 4-9T2
@ o
Moments about th rigin: o

° %
My = J'Z'rgde = [acos Bej + 8.
‘o 2 o

It will be seen that all equilibrium conditions are satisfied, the only

other force being unit tensile force at a, The stresses for large and

small radii are now obtained from (42) and é3) by application of
P that streszses hecoms

formulae (8), (7), and (8). It will be noticed i

infinite at the origin.

Evaluation of 8tresses

If it 1s only desired to know the siresses at certain points or

the distribution on a line, it is often more simple 1o specialize F in
(29) before evaluating the integrsl.
For example, to obtain the distribution of normal stress on the

T-axis, nlace © =fg in (29):
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oo “—_—(4:‘7)
Fo =g = '_E; Coshim Sinh T m (m cosm§ =~ sinm& ) dm+ Fy
Z ] (l,+-m2}(Sinh27~m - m®)
o
o9
= s =¥ a
% =T = 4 f; = rl\ mCosh¥m SinhTnm cosmg  ém (48)
2 dr ir A Sinh229m - m?

Notice that Fy contributes nothing to G”G =T .
2

By {42) and (43) we cobtain the correct stresses for small and large
radii which usually are the most interssiing, so thét only a few additionsal
terms of hiéher powers in r would bhe needed to give the stresses in the
region r = a. 7These can be obtained by the method of residues applied o
(48) as explained above. However, if only a plot of the stresses is desired,
it is simpler to evaluate (48) for values of r in the neighborhood of a, by

more primitive methods. The simplest of these would perhaps bs to plot

the integrand for wvarious values of m and r and apply Simpson's rule.

This method need only be done for m < 1 because for larger m, (48) can
1 i ified i = Sinl SUm
be further simplified by placing Cosha'm =  5inh mT= 5 and

ignoring m® in the denominator.
(2]

_.'T’"'m
The integzral then becomes 7%1_ J me T&. cosm¥€ dm.
o

The normal stresses on the line 6 = L for large and small L, are easily
a

found by (42) and (43):

- 45 -.001
& = &®F -1 -.084(-1'-5 455 4+ 062 /v 0 j ;i Tr<< oa (49)
6 =1 2 a a a

« -2
2y 1 +,455 At.091 e
Gy o= -1 -.084/% 062 /X <- 5
=T~ T=73 - + - 3 );F77e (50)
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The siresses G;é = gf obtained by evaluating (48), (49) and (50)
are plotted in ¥ig. B. The corresponding stresses for the half-plane,
ir = , are also shown. It is interesting to notice the effeect of
the additional quarter plane by comparing the two stress distributions,
T and II. Bousinesg's solution for a unit trsction at x = a on the

¥-gxis gives

o] g

6, -

TR

along the Y-axis, which is plotted as the curve II of Fig. 5.

If the several concentrated forces are applied on the boundary
& = 0, the stress functions and stresses are obtained by superposing
the functions computed for the various values of a. ZXHor a concentrated

force acting on the boundary 6 = §§;_ , the stresses are obtained from
W

the pressnt formulae by substituting 31 -~ & for 8, maintaining the
2

*
same coordinate system.

It is of intersst to note that the function z(8) ziven in {(44) is
symmetric and h(8) given in (45) is‘%gymmetric about the bisector of
the angle. This holds also for the corresponding functions for higher
DOWErS in.g . This would mean that concentrated forees of egual magni-
tude located on each boundary at eqgual distance from the vertex would

have stress functions (velid near the vertex):

F o= .202 a (ry.szxs . g(®) (42a)

a
if the unit forces are both tension

O
and Fo= ,250 a (%)1..409 . h(8) (43a)
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with traction cn the boundary € = 0 and pressure on © = A This

shows that the stresg at ths vertex is always infinite for partial

loading of the boundaries., It is now also clear why there should be
two terms producing infinite stresses, because if there were only one
term it would have to be symmetric so that equation (4%a) would have

to be indentieally zero.
A discussion of the siresses will be given latsr.

2, In the second application of the general method the stress function
will be determined for a uniform traction p on the region r = 0 —> a of

the boundary & = O of the %/4-plame, in Fig. 8.
Let ¥ = g + Fy

Ve will determine a stress function ¥, which satisfies the boundary con-

ditions:

427,
/dzoﬁ =pvwhen ~0w<E¥ L 0
( r 6 =0
rie

g=20
¥ =0
( °>e =

=0

(58, .,

Where ?; = log [g) end SQT' as before

]

It will be seen thet discontinuities in ¥ and its first derivative exist

at the origin so that concentratsed forces will have been introduced.



These must be removed by superposing a function # which will be deter-

mined later.

We now express F, as in (17) by use of the particular solutions

given in (11) and from the boundary ecquations by means of (12} to (15):
6

2
a~F 3 - e

0) = X [-A.l(mz cos mE + m sin mg ) + Aé (m cos mg mesin mg )} dm
drz 5 =0 T

’ = p when E < 0
< (a)

0 when & > 0
£

We NOW eXDress DT = ap (E'.) = gp &> on Fourier integrsl form by Dirich-
a :
# 4 k3 k] 03 - Y » -
lets  integral given in (27), teking n =1 in this application.
Henece we obtain

oo

£
apJ cos mF - m sin mE ape when§ < 0

— — im = (27a)

A o when € > 0O

Equation (.&) then becomes

-Aj(m? cosmg = m sin mE ) + 4, (m cos mg' - m® sin ng) =

ap cos m§€ - m sin m¥
i 1 + me
and by equating coefficients of cos m& and sin 'rxg , respeciively, we
obtain
2 = 1l
- m® Ay 4+ =+ a
1 m A4 o D
‘ 1 +m T
— m .—‘L - 2 A -
oAy m J—L4 - n a p

l+m2 '

Solving these we find

A =0

1]
+
o)

o

e}

by
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The remaining boundary conditions give:

/aF . e
L}E%Je i O: m AgCos mg - m Az Sin mg + Ag CosmE + ig Sin ng =0

(Qe=r’

A5cos m_;' Coshg‘m + AG cos m; . Sinhrm + A,,, sin mg Sinhz'm

- Ag sinm§g Coshffm =0

o e o . cos _
(rd@) P 4y cos mg Coshgpm Ay cosmE Sinhopm Az sin mg Sinhgm
e =9
* by sin m g Coshgm =~ m Ag cosmE Sinhgm + m Ag cosm £ CoshgPm
+m Ay sinm E Cosn Y~ 'mAS Sin mg SINA Tm =Q
From these we obtain, by eguating to zero coefficients of cos m& and

sin m€

—mA2\+A5 0

‘mAB =A8=O

Ag Coshgm - ,A,@ Sinhrm 0

A, Sinhepm - 4g Coshgm = O

4) Coshepm - Ap Sinhpm - m Ag Sinhgpm + m Ag Coshepm = 0

~Agz Sinhtfm + Ay Coshym + m Ay Coshym - m Ag Si nhym =0

By substitution of Ay and Ay we find:

Ay = Ay = A5 =Lhg =0

A3 = 4 Sinh’[‘m CoshP’m ap
m(l + m )(Slnhzlrm -me) T
by =+ Cosh P ap
(I + m?)(Sinh%pm - m?) 7
Ag =+ _Sinn¥m Coshpm asp
(1 + mz)(SinhBTm - m2) T
Finally
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= apr [— Sinh¥m Cosh®Pm sin m&€ Sinh fm 6) cos

p + w2 (Sinhemm - 2
A m(l + m?)(Sinhspm me)
+ Cosh(m € sin mE& cos@
m(l + m2)
- Cosh™Z'm Sinh(m ©)sinm ¥ sin ©
(1 + m°)(Sinh® m - m®)
+ SinhPm Coshgm Cosh(m €) sin m & sin e] am
2 s mho - me -
o (1 + m®)(Sinh“pm m<)
Fo = é__llj - x m> Cosh(m &)+ (x Sinh%m + m y Coshpm) Sinh m (9= 8)
T m(l + m?)(Sinh2pm - m?2)
A m( X m o (51)

= = i = r = 3
where x = Jcos 8, y = Psin 8, € = log (3) and = -
This integral can be evaluated as a power series in ’E as indicated
above, the poles being the same as for (29).

For B << 0 i.e. r << a, we find

. 1.545 1,909 2
F, = alp [.221 (.1_') . g{8) + 1.376 (3?.) . hie) + L (2 - c:os:3 e
a a 2 a
+ 1 r + : \
= : 2 2
STETI % 6 (81 cos © mni)] (52)

and for €>>0 orr >> a

455 091 .
Fo = - a®p [.221 (3) . g(8) + 1,376 {E) h (8) + £ cos®e
a a 2
+ 1 r .98 (3r cos & + 2 sin i] (53)
9 ,”,2 - 4 a

where g(®) and h(e) are given by (44) and (45).

It must be remembered thgt in order 1o eliminate the concentrated

forces contained in Fo we must superpose F, and by (52) it is seen that

b;:j

_ -
1 ZP_:EWI'GLSWCOSG+ 2sine~4‘j‘ (54)

sin m§dm



B0,

The stress function for the 3/4-plane ( §°= _'3_42'”_ ) with a uniform

traction p on the boundary € = 0 between r = 0 and r = a then becomes

B =Tg + Fy
- 2 + S. h i -
P = PJ x m* Cosh(m &)+ {x SinhPm + my Coshwgm) inh m (@ G)Smmgdm
T m(l+m§(81nh?m-m)
*..pa&a __ rg [:5 T cos 8 + 2 Sin e] - - (85)
4 - 9 78

For very small -g :
1.545 1.909
F = a®p [221( ) g (8) + 1.376 (-i-) h (8) + l (r) cosgg
- - +{%8)
For very large _g. :
p .

F = -afp [.221 %} + 495 g (e} + 1.376(_51:) -091 h(e) +% cos® 8

* 2 “ Iz + 2 81 57)

m Py (O']T cos © 2 n 8) ) ( )

Check on Boundery Forces

It is easily seen that the boundary conditions are satisfied on the
straight boundaries. The next thing to make certain is that the forces

on the boundaries, including the infinite boundary, are in equilibrium.

As before, we determine the siresses on a circle of large radius
from (57), only taking powers which contribute when r becomes infinite,

see Pig. 4.



iz
s

G; = Z2avyp
&7 sin 8 - 4 cos é]
r R(9 7° - 4) [

alp
2R%

4

sin 2 8

Projsction on X-axis:

a7
ar =
Y = 6.c0s 6 .7dae = —2°P B cos 26 + 4(6 + % Sin 2 6
r 2 - 9o gf z
<]
0

Projezction on Y-axis:

Moment about origin:

i 8T
2 2
A 4 o 2

This shows that equilibrium exists with the given load on the X-axis.

Evaluation of Stresses

The stresses are now obtained from (55) by use of (6), (7), and (8).

If we are only interested in the stresses near the vertsex these ecan

be obtained by (56), for instance:

-.455 -.091 .
Ge = P [.186 (E) g(e) + 2.380 (_I'_) h (8) + cos g (58)
a a ”
Hence, for smell values of r: (Op) =+p
8 =0

(Sg) =0 .

o = 57

2

T
For all other values 0 < 8§ > é?i_, 65é becomes infinite when 7 —* g,

<

3 B
3 =

:E'yf = Qi} sinerae= 802 [.6 T (8 -.% Sin 2 8) + 2 cos 2;%
5]

it
(@]

...+a;c.



For large values of .g the stresses are obtained by (57) for instance
-1,545 ~1.909
6 = = r ¢ . r —] O
o pl.055 (_a.) z(8) + .114 (E) h (e)_] (59)

If we desire the sitresses for all values of.% , it is nscessary to
compute a few more terms of higher powers inte (56), (57), or else
proceed as explained on pages 22 and 24, For example if we are interested
in the distribution along a certain line 8 = €7 it would be more simple
to specialize ¥ and then attempt to eveluaste the integral by more elemen-

tary means than contour integration,

Y = T .
In the case 6 - ¢

o
F(,ﬂ,.) = apr Coshp'm Sinh g7 m Sin mg am (60)
z T (1 + mz)(é?;inhza"m - m<) E
)
and
G oo
e T apf_m Coshpym Sinh m 7 < - Sin am 1
o7 rf(l + %) (Sinhgm - w8) (00 mg - m Sin mg ) an  (61)

- [4]
which could be evaluated in the manner outlined for (48).

The charscter of g(@) and h(8) have already been discussed and the
stress function for uniform load on the boundary alone or on boih
boundaries are obtained in the same mamner as describsd for concentrated

force.

Later the stress function (58) will be supernosed on the function
for linear distribution sc as to produce a function for hydrostatic
(triangular) loading and the stresses will be computed and ploitted for

6 =3 , sse Fig. 8.

'2' 2
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3, In the third application of the methad the stress funetion for the
15/4—131&119 will bé determined for a linear normel load p(aif_',) Ketween

r=0and r=a on the boumdary & = 0, See Fig. 9.

We must now determine a stress funciion 'FO satisfying the following

boundary conditions:

21
(ﬂ) = p(.l.?.) whien ~c0o £ & <. 0
dr? a
6 =20
’dFO) =0
(rde e =0
- =0
(E°> 6=y
dF = O
rdse e =y/,
= r =
where E = log (E) and ' = %

again we notice the discontinuities in the first derivative of the
origin so that a second function 7y will have to be superposed in order

to remove the extransous concentrated forces. This function can besit

be determined upon evaluation of iy near the vertex.

is before we express Fy as in (17) by use of (1l1) and form the
boundary eguations by means of (12) to (13):

Hence:

2’-5
(d xo)
ara
e

oo -
= _]I__:f[- Al(m‘g cosmE + m sinmg) *+ 4,(cosmg - m¥sin z@dm
0 o

p(-g-) when € < 0

= (62)
0 wheng > 0C



2§

2
By Dirichlet's integral (27) we express ap(-gm) =ape  an

Fourisr integral form, tsking n = 2 in this applidation:

(= ]

28
ap 2 cosmf - m sinm€ o . 2PE when & < 0
g me + 8% 0 when € > 0

(27p)
(=]
Eguation (62) then becomes:

2

-1 (mfcosm& + m sin m& ) + A4(m cos mE - m® sin nE) =

ap 2 cos mE - m sin m&
T me + 4

and by equating coefficients of cosm? end sin m§ respectively we

obtain:

- mgﬁl tma, = _Ezg_z_ ég
-miy - mwfA, = - - 2
and solving these:

Ai = - 1 ap

(m® + 1)(m2 + &) T

hy= + me + 2 . ap
m(m® + 1) (m® + 4) T

The remsining boundary condtions yield the equations:

dFqg

> : -mAgcosmg—mAgsinmE +A5cosm§ +Agsinm§=0
rde 6 =0

(FQG -y : - hg Cosh Tm cos m§+ Ag Sighym cos mE + A, Sinh?ﬂm Sin m§

- AB Cosh?/zm sin mg = 0



€A
ot
®

(——-) : 4y Coshyrm cosmE& - Ap Sinhom cos m§ - An Sinh(rm sin m§
* g Gesh?nm sin mE - m 4y Sinh')ﬂm cos mg * m A6Cosh7‘m cos mg

+ m Ap Coshrm sin mg - m 4g Sinimr»m sinm€&€ =20

By equating to zero the coefficlents of cosm& and sinm®& respectively

we obtain:

~mbpg +t Ay =0

~mhg ¥ hg =0

Ag Coshym = Ag Sinhrm =0

Ay Sinhrm - Ag Coshrm = 0

Ay Coshrm - Ag Sinhrm - m Ag SinhTm + m Ag Coshym =0

~Am Sinh?«»m + Ay Cosh?nm +m Ay Coshrm - m Ag Sinhrm =0
Solving these and substituting the values alresdy determined for 4y and

4y we find:

Ao = =~ Coshy'm Sinhpm ap
(m€ + 1) (m2 + 4)(Sinh32nm - m®) T
Ay = + (m® +2) Coshym Sinhym an
m{m® + 1)(m® + 4)(Sinh Bfm - me) T
_&5 = = m Cosh®m Sinhym ap
(me + 1) (m% + 4}(8131}122@1 - =) a
A — i 2
hg = - m Cosh™Prm ap
(m? + 1)(m® + 4)(8111?122,1*& - m2) T
A= 4 2 2
n = (m” +2) Cosh'¥m ap
(m® + 1) (n® + 4)(Sinh2 m - m?') T
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bg = 4 (m® + 2) Cosh®m Sinhy’m ap
(m® + L) (m® + 4)(Sinh27m - m?)

Finally,

f s > A

’—E’J[ ( Cas“(z e) cos m§ . Coshym Sinh7'm Sinh(n ©)

DmZe D)~ (nf * 1) + &) (SintGm = 8] °°° "8

- (m + 2) Coshym Sinh?m Sinh(m &

sin mE
m(m® + 1)(m® + 4)(Sinh%m - m)
+ (m + + 2). Cosh(m 8) )
P > sin mE
m{m™ + 1) (m® + 4)
+y <—- m CoshY'm Sinh?Pm Cosh(m &) cos nE
(m? + 1) (m?+ 4}(51nh?7nm - m®)

+ m’"’oshzyf Sinh m ©

cos mE

(m® + 1) (m® + )(Swh - )

- (m® CoshPyp m Sinh
{m~ + 8) Cosh™pm Sinh m & . sin me
(mg + 1) (m? + 4)(Sinh%am - m%)

+ (m® + 2) Coshym Simhyn Gosh m sin m~§
(m2 + 1){(m® + 4)(Sink® m - m®

o0

B, = ap m® x Cosh m 8 - (x Sinh9y’m +Ym Cosh)’m) Sinh m (o - e)[
m{l + m?“)(éfe + mB)(Sinh%‘m _—

m cosm§ -(m® + 2) ein mgj dm (63)

The integral can be evaluasted as explained in the case of concen~
trated force., The sirgulsrities in the contour integral are the same

a8 before in addition tc simple Poles at m = e i.



1.545 1,209 &
F, = a"p |.0805 E) g(8) + 115 [E‘.> nie) + L (}:) cos
a a [ a
+ 1 r 3
- - + 4
m = Q(Z T Cos € w10 QDJ (6 )
Forg >> 0 i.e. T >> &8:
1,485 L0091 1
Fo = - ap [.1:544 (£) g(8) + .905 (.al.“,) n(e) + = cos® @
+ 1 T (Sr 5 -
55 -2 & 9l3 cos e+ sin %) (65)

where g(8) and h{8) are given by (44)

It can now be seen by (65) that in order to remove the extransous
concentrated forces at the corigin the function

o= a p ‘ (511‘ c 8 + ai ) .
B —Le— T 8 ( 5 cos 6 * sin & {
1 4 - G B ‘

T

o
fo2)
ot

must be superposed in order to properly satisfy the boundary conditions.

=,
The stress function for the 5:3/4.--plane (T = ~9£ } with & linear

traction p. -;; on the boundary € =

0 between r = 0 and r = a then

finally hecomes:

T o= FO + Fl
00
F = ap mfx Cosh m @ - (x Sinhy'm + myCosh9'm) Sivh m (9P - G‘En CosmE - (m2+2)31in m§
T m(l = m?) (4 + mR) Sme—mg) -
[+]

+

D o .
T-908 T 9(":2—' cos & + sin 8) (67)



Where E = 1o

Jijs]

‘g;T:: :q*;_s:; };=rcose;fj=rsine.

For very small é} :

1.545 1.209 ,, o
° 1 S )
T = 8% [.0695 (-E) g(8) + ,115 (g—) h(e) + 5 [-?- cos QJ (68}

.455 o <091 N .
F=-2a% |,1344 (X z(8) + .905 [£ n(e) + = cos” ®
P L2} &
+ 1 T ; f
e X (37 cos & + 2 sin 8) (89)
9 'n'z -4 a (

Check on boundsry forces:

In order to see if the forees on the infinite boundary are sueh as to
te in equilitrium with the forces on the streight boundary (X-axis), we
compute the stresses 6}" and 7 from (69) only inecluding terms of such

order which will contribute in the integration when = — oo , See Fig. 4.

G = aup
B T ei - s 6
r R(9 7° - &) [6 T 8in © 4co.)6‘§]
P 2
asp :
(’ gz sin 28
Projection on X~-axis:
e T o
>X = G,cos©.rae = 20 _ |or cosze+2(e+}-sin2§ =0
A 4 - 9 72 2 2 o

Projection on Y~-axis:
B
e

li

4 - 9 R

(=]

or '
2 ap 1

ZY= q‘sine.rde s [%(e—%sin26}+coszé] = +
0



Moment about origin:
i

o
- 2 R 2 2 1
E;Mor- Trae =~ 22 [«30529:} =+ = agp
8 o 3

(]

This shows that equilibrium exists, sc that the function is now in order.

Bvgluation of Stresses

The stresses are obtained by partial differentiation of (67) in
accordance with (6), (7), and (8).
Negr the vertex we obtsin by {(89):

- .455

-.001
- r b r & y
6‘9 = p ( 059 (—a) g(8) + 199 (_8.> n(e) + L cos e; (70)

Hence for small values of r:

Eo), .o " T3

<6qe>eﬁzg_= °

il

[

For all other values 0 < & < gz , 68 becomes infinite whehﬁ-» 0.

o

r ., o
For large values of < the stresses are obtained by (68), for example:

S = »[-om (%)

If the stresses are also desired in the neighborhood X = 1, it
a

-1.545 2lo) + .05 (%) -1.909 h(@_}] (1)

is either necessary to include a few more terms of higher order in

(63), (69), or else proceed as on pages 23 and 24
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In case we are only interesited 1

or along a line it woulé be simpler first to specialize F and then

svalvate by other methods than contour integration. If for example, the
normal stress is desired on the Y-axis, we place & = T in (87) and
[~

F = gpr Sosh N m Sinhfw m (mg + 2) Sin ggi-m;sos ?E{]@m
l;' T (1 + m2) (2 + n2)(SinhBm - 1)
: o 7 (72)
and
o0
6. = 5| mCosPm Sith 7w m (2 cos mg - m sin ff?} an {73)
Fssad —
L (4 + m?*){a’:iinh%,m - m®)
(]

]

which can be evelusted in the manner outlined Ffor (48},

«

The remarks made on pages 24 and 32 with regard Lo loads on the

boundery 8 = —Eﬁz also hold in this case.

4, Stress Funection for Hydrostatic Distribution

The stressses in the B/Qﬂglane due ito normsl traciticn as shown in

Fig. 8 cen be found simply as difference of the functions ziven in (53)

We obitain for all values of »:

oo
. .
F o=ap | -n° x Coshm 6 + (x Sinhqfm + m Cosh Pm) Sinh m (T~ ‘8)(?,IL cos m
—— it m
Kk m{l * m2)(4 + n2)(Sinh® m - md)
0
+ 2 sinn€) dam
* ap :
W 1‘6(-—;5 cos @ + Sin 8) {74)

E7mere§=logé;r= ?;Z,;x=rcose; v =1 8in 8
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Por very small values of _g :
o= afp K;lﬁl (é) S z{e) + 1.261 (%9 +-80° n{e) + .% Cg)gcosg 8 -_%(gﬁccs%_%g
6
| — - - (75)
For very large value of .g :
T= - &fp [iosv é§> $498 z(8) + .471 Zég 1% n(s) +-% cos® 8
* 2722%327” .g e (37 cos &+ 2 sin e—iz — —(76)

Evaluation of Stresses

The hydrostatic loading is of special interest in connsction with
stress analysis in masonry dams. Therefore, the formulae for certain

stresses will be given and plotted in Fig. 6 for further discussion later.

Q)

om0 |2 (B) e v zaa () h(e) + cos? 6 - I cosgf]; (77)

Tor lzrge values of é.:

~1.545 -1.909
e [:022 (;5 2(8) + 059 (2) h(e)} - - {78)
a 8,

Of special interest are the stresses on the Y-axis and substituting

)

in (44) and {45) we obtain:
e = @
z
2(f) = -.290

=
5
i}

+.282



>
£
L]

.
Pe

By inserting these values in {77) and {
(5— -, 455 -.0e1
% =p | =-.126 (X + 615 (X when r << a &)
8 =1 8
- 8 a
-1 ,845 -1.80
(o =p|-.082/% + ,011 (_I;) when T>> a (80)
8 )pn = a
2
ositive powers must be compubed, but

or values of .g.col a few »
it is simpler in this case to specialize F,

i

(74) we obiain:

Placing 8 = % in
( o9
) apr | CoshPm Sinh 7 m . .
i ! ar + 2 Y i -
= (l T ) (4 + (Siﬂh?f‘; ) {m cosmg‘ 2 sin mg) am  {
C@j _..E. M Coahrwl Sinh T n Bg - m2) cos g m sin mg am
T (1 + mR) {4 + mB)(SinhBem ~ m?2)
7 - -—(53)
{80), and (82) are plotted in fig. 6,
ses due to

The stresses computed by (79)
The dotted curve II represenits the normsl sirsss
These are obtained by integrating

n Fg. 10,

]

Curve T.
some loading on the half pldnu,‘a”—- T
on for a concentraied force, as indicated i

the Pousinesg's scl

a
G = 2| xy o (x)ax
£ 7 2
o
where p {x) =p. £ 8
a
a
« = 2yp | x2(x - a)
Ta (2 + yR)B d
o
G, = of “ta v ya
X e — EUR
'frl}‘an 7y * & log 02 + yzj

will be noticed that at the origin

It
Gﬂx = 1 p, independent of a.
2



i
3

It will be noticed that ecuation (34) has no real roots, except
m= 0, WhenAg°is less than 9v. This means that in general a partial
loading of the boundaries of a corner will produce finite stresses at
the origin {vertex) if 27>~w, but irnfinite stresses if‘g“(wy and the
greater P is the sharper the infinitg. The half plane,zf = q, thus
is the critical cass and the stresses at the origin are zere if it is

chosen outside the loaded region.

Special cases of stress distribution in an infinite wedge have
been treated by a number of investigators. we find J. H..Mitchelll)
who generslizes Bousinesg's solution for a concentrated force on the
hslf-plane to a concentrated force at the vertex of an infinite wedge

. 2) . . .
., M., Levy * who finds a solution for a linesr load distribution
over the boundaries, S. D. Carotherz) who gives solutions for a counle

at the vertex and uniform loads on the boundaries.

The stress function for continuous uniform pressure on the bound-

aries is easily determined by ecuation (46):

F= -2 1% cos® 8 (83)
2
corresponds to uniform pressure on the boundary & = 0., From this it

will be seen that the stresses are finite at the vertex for any value

of ?r. We have seen that a partial losding produces infinite stress

1) A. E. H. Love, Blasticity, page 212.
2) Proe. Royal Society, zdinburgh, Vol. 53, 1913, page 292.



st the vertex if 7”>7?, s¢ that we have the curious result that in this

case the removal of a portion of the load raises the stress to infinity.

If uniform pressure acis on the boundary € =.§E (as in the case of
a dam with a full reservoir), the corresponding stress funciion is

2 r® sin® o (84)

F = = B
2
Thie gives the result, importent in the design of dams, that the base
will be under compression due to this load. In Ffig, 6 is plotted the
normal stresses on the hase, 8 = j% , due to reversed hydrostatie
pregsure distribution on the boundary, © = 0., It is important 1o notice

that near the vertex the bsse is under high ftension, i.e. opposite to

P . ra
the stress due to the uniform pressure on the boundary, 8 = ﬁ%,

Levyts solution for linear normal pressure on the boundary of an
infinite wedge {or triangle)} shows linesr distribution of all stresses
along any straight line through the wedge. In practice this result is
conveniently avplied to masonry dams., However, the application is
dubious because the height of a dam is of the same order of magnituce
as the base width, so that great deviations from the linear stress dis-
tritution ecan be exprected {at any rate near the base) due to the

influence of the unylelding, or rather, infinite foundstion,

ngineers are well aware of this faet, and the present study grew

out of an atiempt to determine the stress distribution in ftriangular dams



s =

on infinite, rigid and elastic foundations by the Ritz' method. However,
it was found that the siresses in the up- and downstream faces at the
base did not converge when more parameters were included in the sclution.
At points only slightly distant from the up- and downstream corhers

Ritz!' method rave reasonable resulis.

The present method enables us to compute the stresses in dams of
triangular and other shapes for any load and far more accurate solutions

cen be reached in this way.
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APPENDIX I.

With the ususl notation

5}_ = dU etc. (e5)
v dx

{D/,KV N %_:( * _d_)[__ = -}—" a etc, (86}
? - ax G Xy

ané the analogous, we will define a two-dimensional elastic system such

that

From (87) it immediately fTollows that

' —
C = =
Xz Cyp =0
and it can easily be shown that
2
dw =
= 0
— o~ e ——
Henee

2

= = VY = o ant == G -
EFE - constan '

N
£

&)

3

jol

o)
it
P

w—
0
28]

Ry

0= i (’Jt;‘ GV) + constant

The constant is unimportant and may be placed esqual to zero.

By (83) and (&8}

1 1 1
E( Gy+67) =6;c-"r§[6'y+ m {€x+ 631' }.

=
n
#
i
2
i

Eﬁx‘mz—lg -m+lG=m2‘-—l acy m+ 1 &°F (90)
2 x 2 2 2 7 48 ax® 7

me ¥ m



Similerly
T = {,2 - - TY k| = 2 - 18 - m o+ 2y
mﬁy m ZLG1 m+*6‘x ™ 1 Q‘F uzl 4~ (91)
me T onR 2 me Gx? m aye -
By (2): )
2 2 )
Py = a°u + 3%V = "¢ + dgexz =1 a°C
- a . 2 - z 2 G daxady
é x 4y d xdy 4 x4y dy g x X Y
1 a4
ubstituting (90) and (21) into (92)2 = - = = -{92)
G 4 x4 y®
-1atF =1 om+lf gy % - atw * g4r - a4x
e & e 5 - m - 1)
G dx° dy® B m [: dy%  ax® ay® ax%  ax® ay®

and remembering the relation

mz-l[d‘%ﬁ* + % | +,m+1l m+1 [ 8% .
me dx4 dy4 m me dx2 aye

adr | a4y a4w
+ =0
axé dy4+g ax® dyg

or (74F = Q.

The state of strain defined by {(87) is exaectly the case we deal
with in the infinite half plsne or any portion of the plane for that
matter acted upon by a "line-load"” as any distribution of "line-loads®

and in this casse 5% = (),

and 62% L (6L + G, (89a)
m



Part II1.

1. In this chapier an aliternste method of procedure shall be used in

obtaining the solution in the csse of a concentrated force acting at

ol

r = a2 on the boundary € = 0 of the 3/4-plane, see Fig. 2.

The anslogous solution in the l/E—plane, given by Bousinesa is

- -1
F*=1 (u=-a) tan v
T u - a

we define

¢J-=El+i’i"l=}.(u-a)[log W-aﬂ w=u+iv
T

It will be seen that ¥ is the imaginary part of 95

- . . 2/ 3
In ths conformal transfomation w = 2 / , the half-plane goes

. N 7 5 P .
into the 3/4-plane so we are led to consider the fumetion

2/3 2/3
.gg =8 + iF = C{x - a) log(a / -z / ) = C{x - a)‘J{(z) (1)
where z = x + 1Ly =1 ele and C is a real constant. The resl and
imaginary parts are both biharmonics. Ve will only #mply the imaginary

part
P = C{x - a)Z:log (ag/5 - zg/gljyi = 0{zx -~ a) ”f(zz] i (2)

In order to determine the forces on the boundaries corresponding

to ¥ we must compute the first derivatives:

o 8 [ / -l/u
% =C | log (a /d— z 2/5) - 2/3(x __7_.____7_ (3)
L



, -1/3
ar C[j- 2/3 (x - a) - - = ¢{x - a) [.QJZQ (4)
ay a2/3_ Bl% az
r
On the boundary 6 = (Q:
0 when % < &

dx 70 when X > =&

%e conelude that the only normal force on this wundary is 7C
at x = a acting in the direction of the Y-axis. We wish this forece to

be unity traction, i.e. along the nezative Y-axis

7¢ = -1
c =-2
1l
ar = 2 X - a
oz =_ . i 0 (4a)
(d.‘f>9 =g 9r  xl/S(a B/%- xR/O) 7

which means that tangentisl forces exist on this boundary.

It is our aim to clear the boundaries 8 = 0 and © = 2{’=-§£ of all
forces except p = 1 at z = a. Therefore, we superpose a function H
defined as the imaginary pari of 90 or

g =c +ix (5)

and determine ﬁﬁ such that the following conditions are satisfied when

e = 0.
[ R
ay dy
and H= 0

We have




ang _9?_*: = rd@} by (5)
ay [ &=z -

hence [d-%’} = - C(x - a)[}gil when 6 = 0 or z = X%,
L4z . dzf,

or 8P =
d =z

k}“_,
™
i
3
=

SP = - 2 z - a . az
ar 21/5(a 2/3_ Zz/U)

This is easily integrated by the substitution z = tz, and we obtain:

2/3 1/3 1/3 1/3
lz(z)=§'[§+a/z/-alog(a' +Z/J=G+i}£ (7)
o

3

The siress function

L=F+E=(f+%)i (8)
will correspond to unit normel traction 2t z = a in addition perhaps o
forces on the boundary & = ?‘ . It is easily verified that H = 0
when 8 = 0, so that H has added no mormel force on this boundary. Ve

must also determine and remove the foreces on houndary 8 = and therefore
;)

.o
compute the value of L when z = r el ¥ = - i r;
Therefore x=0,y=~-7
zl/5= i rl/3 {choosing this branch)

By (2) and (7) we have,

/5

o [ 2
L=2)- (x - a) log (aa/”~ 22/5) +2/32 +2a/" z

and by substituting the above values we cobtain when 8 = Z°:



e}
[
.

L =
g = =
W il
and fTeking the imeginsry part:

3

2

Lo =gp= 22 z)l/z’-tan'l <£>1/° -1
T I\& a 3

=
1
|
|
]
}a-‘
]

llg log(a2/5+ rg/:z,)_ 2/5 ir o+ 2&2/51 rl/z- Z2a log(al/5+ i

rl/S r—l/%
_Eﬂ;i = i?— ]7 1 L 1 = l—_ (-g) B [-g) + 1 . (11"
51‘6 - & /_1:‘?/0 E— 4 1"2/:‘ /':; & I‘l/5+ r-l[S B bl
Toota = I £ )
Azein by differentiastion of (2):
. ; 2/z  z2/3 -1/9
_g‘é;,’a(ﬁb-t—(ﬁ) =2 2Biog {a/—zé/ )+ (x - a) Z /
ax T dz ), & P e 2225
2/ 3 -2/3 -2/3
+l+a?/ﬂz/o-a zé/
/3 1/3
A i
Hence
I = ; 2/5  2/3 o /e
gh = £ii o [z ¢ g4 = YL
=T a”/é+r2/5)i rl/z e ( /% H'l/‘ﬁ") DE

(ﬁ:ﬁ) = _3___( a_ e T a8 ) = 0
. — o/ Ira 7 K /2
0x/g = BT (agﬁ#r&o)rLu (ay5+rau) Y

It is now seen that if & function ¥ is determined such that

(X) =0
8 =0

@ =
<69 6 =0



and if ¥ is superposed on L:

A=L+K
A will be the stress function corresponding to the unit normsl traction
£t z = a heing the only load. ¥rom here on the problem follows the

general method explained in Part I.

g

e place E = log £ , therefore, 'QE' =@
The variable part of (11)} f
/3, <1/3 1/3 -1/
e - @ -& .. L € - L mn 8
kG ( )1/3 rol/% 5T T p1/cE _J o 5 (2)

Hote: The constant part of {11) corresponds to concentrated force at the

origin and will be considered latsr.

o dI‘leI' _fb eorem

j[ J am j t) cosm (E- %) dt (13)

In this a_@pllCuthn f( E ) ie odd and (13) rsduces to

co +00 02

-}(( g ) = _}?-: Tanh 5__ = 1 SinmE dffj Sin(m t) Tenh £ dt = 1 \e(m) sinm &
é L ¥

i :zm-2 —':7‘?:
-
‘ (14)
where g{m) = | sinm t Tenh % de (15)
-~ 00

The latter integral is evaluated in Bierens de Hean's table 265, page I88:

o0
9t -at
€~ /eat Sinmtat = L i
- T s
e 4 & T e - ez

which applied to (15), with g = 1/5, gives

g{m) = ér — - 5“’ where 7’= e
2



5.

e

#inally, by (14)

[~
-1 o= L 7onn g =1 1 o . o
]( E ““"’3}:_ -—g ;;; Sinhrm . olin (:u. E ) dm (16)
o

We now write K = ¥ + N where I will be determined so as to remove
the concentrated forces, at the origin and ¥ must satisfy the following

conditions:

& = . j( ) {by 1é) and ife = 0.

The boundary equations are now formed by using (12) and (13) of Part I:

>

o0
{1y . =T | [4) cosm + 4y Sin mj dm = 0
6 - Q J e
[«]
Therefore Al = 0 and "@‘4 = 0

o0

mj)@ _ o= J[— m Lp cosm€ - m Az Simm€ + Ay cosm§ *+ Ag sin "rf] dm =0

a = ( - As (Cosmf - m Sin ' Cosh m9? + Ap(cosm — m sin m& ) Sinh m
‘/\_55‘_7@ =7 )[ b E-m wg) 74 6 3 2 g 7
]

+ A?(m cos mg + sin m§ } Sinh m?”- As(m ccsmg’f“ sinz g } Cesh m?jém

[>=]

= + _3;[ sin mE .

e (1T,

{ Sinh m
- U I

=
74

iz

L =’[—£ Sinh m¥ cosmE - A, Sinh m} sin mf - m A-Sinh n i
Crﬁs\/ . =T//a Lo 2‘ '3 by 81 m]’ in mg - m A Sinh m]’ cosmg

+om Aé(}os'h_ m]’ cos m§ +m Ar; Cosh 1717 sin mg -m AgSinh m]‘ sin V’f] dm



o
N
A

By comparison of the coefficients %o cosm§ and sin m¥ respsctively

we obtain:

"-J_ A 2 + ,é. o) = 3
-m S + A =
) 173.8 0

m Az Cosh m?‘- m AgSinh mfl + ApSinh mg? - AgCosh myr = + ~—~—-}--~-
-4 Cosh m?”+ ALgSinh mgt + m AnSinh m?”- m Ag Cosh mﬁ”’* 0
~ip Sinh mpP - nm A5Sinh m]%-f m }—‘Lacosh m)r”-'

=Am Sinh %.12- + m ApCosh mf—- m Ag Sinh m?ﬂ;:

Solwving these, we cbtain the coefficient A, &

he = n® Cosh m%
&7 XN Zyea

7 {1 +m )(Slnh?,m - m~¥Sinh ngy
by = 7 m Cosh m’["

ar Il o+ 'rrl (Slnq 7‘17— \ Ejlnh flr

e
>

Ay = = m° Cosh my

7 (1 + m®)(Sinh® my' - m2)Sinh "xz?/’
A@ - m

o (Sinhe mr - m2)
A‘? B 1




o
be1]

The fupection ¥ is now found by substitution of 4, ete. ints (17)

and after raduction it bescomse:

Sinh “17;') inh(n § - ym®Cosh m ("~ 8)
(1 + m?)(Sinh® mye -~ m?)Sink mys

{m cosmg - simmg)
- - - (18)

The constant part of (11) which produces concentrated forces at the

origin must now be removed by superposing the funetion I determined by

the following boundary conditions:

A -4 1 oema UL =g

PR v S

dr a5 rd8
We employ the simple soclution:
N=0C rcos®+Cyrein® +0C,r8cos8+Cyrosinsd

and form the boundary equations:

(;5)e = 0 ¢y r =0 , thersfore € =0

ax _ .
__...) o, +

¢

o3
|
(e}

an = -
= C - C = 0
rde)e 77 2 4

By solving, we find:



0, = + 4
© o (4 - or%)
¢ o=+ 2

“# 4 - Q WE

Omitting the terms of first degree, which contribute no stress

the function N becomes:

2 2 . .
= T 8 (e COS & + sin @ {19}
4 - 9 (Br )

1

The stress function corresponding to unit traction at z = s

finally is

Aoboraed (20)
where ,
b '711: (a = x) 1og (a7 22/%) + 2%/ 5 _ g 1og(al/5 + zl'/g)l

firet degree terms have been omitted, being unimportant.

¥ and N are given by (18) and (19).

Bvaluation

by

The integral in (18) ig evaluated as outlined in article 1, Part I.

The poles are the same as in that case in addition to the roots of

w
5.—30
B
oY
i
o

i Nl'

which are m = ¥ i

[
[N RAY]
B
=
fmy
&
5
o
e
[
C
‘.._l
v
L]
§
1
i
t

The details of the residue computetions being again omitied, we

obtain:

r .
z ¢
r 1.545 1,909
M o= a{}l@lkg} g(8) + .125 Cg) hi{e) *

FTor emall values of

e}



5/3
+ 1 ™ / (fD P & o
(; 2 cos w8 5in 8 - S bld-g 8 cos
or (@
- 2 r 6( 2 cos & + sin &)
4 - op? o
For large values of .g :
45D L0901
= -a [:340 [g) g(8) + 2.629 (g) n(e)
1/3
1 (r 2 i a _m oaie D
4-%:{a {2 cos = 8 sin 8 - 3 sin = & cos {]
+ 2 6 (2 cos & + Sin 8)
4 - op® kg

[

sin .902 € cos € -

,809 cos L9098 8 sin & +

identiecal with (44) 2nd (45) of Part I.

In order to compute L for the

series and obiain:

For !-g J<<‘< | s

2.
- A3 o 5/
L =2 ::..{5.3 E(E)/]géﬁsinﬁacos
T oa a S\a i - 3
5/3 '
= & r o 2 .
= - EE—'(EA (2 cos = © sin 6 - 3 sin = & cos ©
For Iél >>1:
-2/5 g2/ 1/3
T = + .l[% (2 "+ 22 / Z / - é-x log (azij,
i a b i
' 3
= .% (ﬁ) / (2 cos 2 @ sin 6 - & sin 6 cos & )

+

416 sin

]

r & cos 8

- -—-{18a)

sing e

-— - {18b)

909 8 sin €

same region we expand (2) in power

ol

0O

gin .545 © cos 8 - ,D4D cos L.D4D @ sin 8 - 838 sin 540 @ sin ea;(21)

J(ga)



by
o
]

it will

and

¢
3

By now superposing ths functions, we cobtain:

small I by adding (18a), (9a) and (19):
a

1.545 1.909
a[.l@l (%) gle) + .125 () n(e)
a

- lerge -§ , by adding (18b), (9b) and (18):

455 .09 .
- [.340 (-g-) g(8) + 2.629 (;‘i) h(e}j + 8 sin” 6

* #T@(&WCOSG*ESJ’.HG)
- 7

If we compare these with the solutions (42) and {

o3
@

- -~ (24)

4%) in Part I,

) . 2
seen that they are identicsl except for the terms + g sin 8

- a 0032 e, however, these terms contribute exactly the same stresses,

It is interesting to notice that (9b) contributes exactly the

term which is needed to combine with (18b) and (19) in order to make

the last term in (24) identicsl with the Bousinesq term in (4%)

Part I., namely:

- % r6cose+ 2.2 re (E_cose+sine)
> 4_9,}_‘,,2 zl!

b

(4 cos & -~ 4 cos & + Q7

cos & + & 7 sin ©)
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NoTEe : Only the force distribution
p, is indicated.
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