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ABSTRACT 

In this thesis, we analyze high-permittivity dielectric waveguides 

for use as guiding structures of millimeter waves, Two basic geometries 

are considered: the circular and rectangular guides. 

In Part I, we describe the theory of round fibers surrounded by an 

infinite cladding. Millimeter wavelengths are comparable to the physi­

cal dimensions of the guide, Therefore, a large difference in permitti­

vity between the core and the cladding is required in order to provide 

for a tight confinement of the fields, We present the results of com­

putations of the propagation characteristics and losses of fibers of 

very high permittivity, We note that the distribution of the electro­

magnetic power between the core and the cladding can be deduced from 

the dispersion curves. Finally, we consider the feasibility of a di­

electric fiber made of thallium bromide-iodide (KRS-5) for the long 

distance transmission of W-band signals (94 GHz). Using our measure­

ments of the dielectric parameters of KRS-5, we find that the losses 

are several orders of magnitude higher than the losses of conventional 

metallic waveguides. 

In Part II, we analyze rectangular dielectric guides made of high­

permittivity materials such as GaAs that would permit the fabrication 

of active devices directly into the transmission line, We present a new 

numerical technique base on finite-differences for computing the modes 

of dielectric guiding structures. This method is simple and efficient 
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in computer storage and computational time. We use it to compute the 

modes of a rectangular dielectric waveguide and compare the numerical 

results to those obtained from Marcatili's closed-form solution. We 

find that this latter one is a good approximation for the dominant mode 

of a rectangular guide even when the permittivity of the guide is large 

compared to the outer medium, For higher order modes, Marcatili's 

solution predicts incorrect propagation curves. We have also observed 

the presence in our numerical solution of "spurious modes" that are 

thought to be due to the mathematical indefinitiveness of the problem, 

In Part III, we present a waveguide technique for the measurement 

of complex dielectric constants at millimiter wave frequencies: the 

shorted-waveguide method. Waveguide methods have been extensively used 

at lower frequencies but this is the first application at 94 GHZ. We 

use a novel sample preparation technique that allows for an accurate and 

gap-free positionment of a ductile dielectric material inside a metallic 

waveguide, We note that the correct choice of sample lengths is 

critical to the accuracy of the measurement of the loss tangent. 

Finally, we stm1marize the results of our measurement of the dielectric 

constant and loss tangent of thallium bromide-iodide (KRS.,-5) and 

thallium bromide-chloride (KRS-.6). 
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Part I. Round Dielectric Fibers 

1. Introduction 

1 2 3 Hondros and Debye and, more recently, Elsasser and Chandler 

have studied a dielectric rod as a structure capable of supporting a 

"surface wave" that is, an electromagnetic wave which is bound to the 

surface of the structure: The fields are characterized by an exponential 

decay away from the surface and a propagation function exp (-jSz). These 

studies have shown some of the peculiar features of the "surface wave" 

modes that differ from the modes existing in conventional metallic wave-

guides: 

a) the existence of a guided mode with no low-frequency 

cutoff; 

b) a finite spectrum of discrete guided modes together 

with a continuous spectrum of radiation modes; 

c) the possibility of modes that propagate with a phase 

velocity less than that of light. 

Since the late 1960's, optical waveguides, mostly in the form of 

glass fibers, have been studied extensively for their applications in 

optical communication systems (see, for example, the review paper by 

Gloge, Ref. 4). Such optical waveguides consist of a core surrounded 

by a cladding with an index of refraction that is somewhat lower than 

the index of the core (see Fig. 1). The difference in index is, in 

* practice, of the order of only a few parts in a thousand , which leads 

* Hence, the adjective "weakly-guiding" commonly used to describe such 
optical fibers. 
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to important simplifications in the equations determining the modes 

that can propagate. The results can be summarized in the form of 

curves that are independent of the actual difference in refractive 

index as long as it is a small quantity. Typical fiber core diameters 

are about 10 µm which is much larger than the wavelength of the light 

that propagates on the fiber (A < 1 µm). 
0 ~ 

In contrast, millimeter-wavelengths are comparable to the 

physical dimensions of the guiding structures, and it is thus 

necessary to provide for a tighter confinement of the fields within the 

guide ("strongly-guiding fiber"). This is achieved by using 

materials that present a large difference of refractive index between 

the core and the cladding. In such a guide, it is necessary to compute 

the exact solutions to Maxwell's equations for each configuration. 

Relatively little work has appeared in the recent literature on such 

strongly-guiding structures, compared to the vast literature on weakly-

guiding optical fibers. 

We will describe in the next sections the theory of circular 

fibers and the results of some computations of the propagation charac­

* teristics and losses of fibers of very high refractive index. 

We will also compare these results with the approximations employed for 

the study of weakly-guiding fibers. 

* We will often quote results from the excellent book by H.-G. Unger 
on "Planar Optical Waveguides and Fibers" that presents a detailed 
and complete analysis of dielectric guides. 
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Figure 1. Cladded-core fiber. A ray-optics picture permits to 

visualize the various types of modes. 
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2. Guided Modes for Unlimited Cladding 

2.1. Assumptions 

The fibers which we would use for signal transmission are 

designed in such a way that the fiber modes are guided by the core: the 

fields and their energy are well confined inside or near the 

core. The evanescent fields near the outer cladding boundary should 

be so small that the external jacket will not affect the core modes. 

Therefore, we need, in practice, to extend the cladding to a large 

enough diameter for the intensity of the evanescent fields to decay to 

a very low value (compatible with the losses that can be tolerated in 

the fiber). 

In our theoretical model, we will let the cladding region extend 

to infinity. This will not change any of the dominant mode characteris-

tics, except for the very small attenuation due to jacket absorption. 

Also, we will assume that all media are isotropic, homogeneous and 

lossless. The losses will be introduced afterwards as a perturbation. 

2.2. Field Solutions 

The fiber has a core of index n
1 

and radius a and is surrounded 

by an infinite cladding of index n
2 

(Fig. 2). We will consider a time­

harmonic solution of frequency w and a cylindrical system of coordinates 

(r,¢,z) with the z-axis along the fiber axis. We adopt the longitudinal 

components, E and H , as the generating components of the electro-
z z 

magnetic fields (see Appendix A). 
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Figure 2. Cross section of a round fiber with infinite cladding. 

A cylindrical system of coordinates is used in the field analysis. 
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For a wave propagating in the z-direction, the cormnon z-dependence 

must be: 

exp (-j Bz) 

The longitudinal fields must therefore satisfy the following transverse 

wave equation: 

(''iJ2 + k2 ) {Ez}= 0 
t r H 

q z 

where V2 is the transverse Laplacian operator 
t 

(1) 

(2) 

The separation constant k depends on the region considered, i.e., rq 

k2 = n2 k2 - B2 
r q o 

q 
for q :::: 1,2 (3) 

where k is the free-space wavenumber. The transversal field distri­
o 

* bution can be written as 

in region 1: 

E AE J (k r) cos mcp 
zl m r

1 
(5. a) 

H = ~ J (k r) sin mcp for r < a, 
zl m rl - (5.b) 

* The factor exp [j(wt - Bz)) is omitted in all the field components. 



7 

and in region 2: 

E = BE K (jk r) sin m¢ (6. a) 
z2 m r

2 

H = BH K (jk r) cos m¢ for r > a. (6.b) 
z2 m r 2 

The choice of radial functional dependence given in Eqs. 5 and 

6 assures, for a core mode, the proper behavior of the fields. 

-+ -+ The tangential components of the fields E and H must be matched 

at the interface r=a. The matching conditions specify a system of 

four linear homogeneous equations for the four undetermined quantities 

~- BH. The compatibility condition of the system is the characteristic 

equation that yields the values of S corresponding to modes of propaga-

tion. 

The various modes are designated E , H , HE , EH . The first 
on on mn mn 

capital letter shows the dominant field component; the second letter 

(if any) indicates that the mode is hybrid, i.e., that it has both 

longitudinal electric and magnetic fields. The subscripts correspond 

to the order of the mode: m for the angular variation and n for the 

radial variation. 

To describe the solutions, we will use the following abbreviations 

that are common in the description of optical fibers (see, for example, 

Ref. S). We define a radial phase parameter in the core, u, and a 

radial attenuation parameter in the cladding, v: 
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krla a~ k~ 2 - s2 u = = nl (7) 

jk a = a~B2 k2 2 
v = n2 r2 0 

(8) 

These quantities are real and positive for propagating modes. We also 

define a normalized frequency, V, (also called fiber parameter): 

(9) 

and a normalized phase parameter, B: 

B (IO) 

This last parameter is very useful in the description of dispersion 

characteristics as it is normalized to the range [O,l]. 

* 

and 

* 

The effective index for the mode in consideration is given by 

N = B/k 
0 

(11) 

Finally, we will use the following combinations of Bessel functions: 

J' (u) 
y m = u J (u) m 

m 
(12) 

K' (v) 
x m 

= 
v K (v) m 

m 
(13) 

This is the refractive index of an infinite medium in which a plane 

wave would propagate with the same phase velocity, 
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The characteristic equation then reduces to 1 •5 

(14) 

The mathematical properties of Eq. 14 allow us to deduce some of 

the properties of the modes without actually solving it. 

Let us consider first the case of the axially symmetric modes: 

m = 0. These modes are either transverse magnetic or transverse electric. 

The characteristic equation splits into: 

y + x = 0 
0 0 

for the H-modes 

for the E-modes 

When m # 0 the fields have an angular dependence~ the characteristic 

equation can be thought of as a quadratic equation in terms of Y and 
m 

rewritten as, 

y = -
m 

x 
m 

(17) 

The upper sign corresponds to the HE-modes while the lower corresponds 

to the EH-modes. The HE
11 

and EH
11 

modes are the lowest hybrid ones. 

The HE
11

-modes resembles, inside the core, the H11-mode of a round 

metallic guide in the field distribution. Unlike the HE
11

.-metallic 

* pipe mode, this particular solution to Eq. 17 has a zero cutoff and 

* This result can be obtained from the asymptotic behavior of Eq, 17 
for small values of u and v, 
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therefore constitutes the fundamental fiber mode. The next modes to go 

above cutoff, as Vis increased, are the axially-synunetric H
01 

and E
01 

modes: They have a cutoff at V = 2.405. At very low frequency 

(V ~ 2.405), the behavior of the HE
11

-mode can be approximated by5 

B 1.26 J [l 2/ 2)]/ 2[ = - 2- exp l- +n1 n2 V J. 
v 

(18) 

The limiting forms of the characteristic equations are summarized 

in Table I. We note that for all modes with m=O and m=l, the HE
11 

excepted, the cutoff frequency is a particular root of the Bessel func-

tion J (u), where m corresponds to the circumferential order. The 
m 

cutoff frequency is then independent of the index ratio n
1
/n

2
• 

Far from cutoff, i.e., for large values of V, all modes have a 

behavior of the form 5 

(19) 

where u is a Bessel root, as indicated in Table I. 
00 

2.3 Power Distribution 

An important consideration in the design of a clad dielectric 

fiber is the distribution of power between the core and the cladding. 

The fraction of power that flows in the core will determine, to first 

approximation (see Section 5), the attenuation due to dielectric 

losses. 



TABLE 1 

Limiting forms of the characteristic equation for the radial phase parameter u (from Ref. 5). 

Circumferential 

order 

m = 0 

1 

> 2 

HE -modes 
rrrp 

at cut-off 

J
0

(u) = o 

J 
1 

(u) = 0 

Jm-2(u) 
= -

Jm-1 (u) 

(EOp for m = O) 

far above 

J
1

(u) = 0 

J
0

(u) = o 

2 2 
nl-n2 

J 
1 

(u) = 0 2 2 m-
nl+n2 

EH -modes 
rrrp 

at cut-off 

J
0 

(u) = o 

J 
1 

(u) = 0 

(Hop for m = 0) 

far above 

J
1

(u) = 0 

J
2

(u) = 0 

(excluding u=O) 

J (u) = 0 
m Jm+l (u) = 0 

I-' 
I-' 

"Cut-off" and "far above cut-off" correspond to the following limits of the radial attenuation parameter v: 

cut-off: v = 0 

far above: v + oo 

The radial phase parameter, u, and the radial attenuation parameter, v, are related to the normalized fre-

2 2 2 
quency V by: V = u + v • 
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If S is the axial component of the time-averaged Poynting z 

* vector, then the total power traveling along the guide is given by: 

pt = f sz dx dy (20) 

CXJ 

The fractions of the total power propagating respectively in the 

core and in the cladding (assumed to be of infinite extent) are 

obtained from 

p 
J s dx dy core 

z (2la) 
core 

p ( s dx dy clad J z 
(2lb) 

clad 

The fractions that we will consider are: 

Peare p /P 
core t (22a) 

and 

pclad/Pt (22b) 

with 

p + P = I core clad 

If the waveguide incorporates only isotropic and non-dispersive 

(~~ = 0) media which may be inhomogeneous in the transverse direction, 

6 we can use the following identity 

* f 00 dx dy indicates an integral over the whole plane (x,y). 
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L~ 2 s dx dy 2 
2 as2 

n 
z c c --= (23) v v 

dw
2 

I 00 

g p s dx dy 
z 

where v and v are respectively the group and phase velocities, 
g p 

Eq. (23) is rigorous and can be derived either by expressing 

+ + + 
the Poynting vector S in terms of the fields E and H and integrating 

over the cross section 7 or by applying a perturbation 6w to the wave 

+ +8 
equations for E and H. By introducing the normalized parameters 

V and B (see Eqs. 9 and 10) in the left-hand side of Eq. (23) we 

obtain: 

2 dB B 1( 2 2) [d(V B) 2 
c dw w = 2 nl - n2 d V + B] + n2 

For a step-index fiber, the right-hand side simplifies into 

J
00

n2 s dx dy z 2 2 
= nl pcore + n2 pclad 

f 00sz 
dx dy 

Hence, the fraction of power in the core can be obtained very simply 

from the propagation characteristic, i.e., the curve B(V), 

by using the following relation: 

p core (24) 
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It is important to note that neither the derivation of this equation 

nor the use of Eq. (23) require the assumption of a weakly guiding 

fiber. 

3. Numerical Results 

A program was written to solve numerically the characteristic 

equation for a round fiber with an infinite cladding. The results are 

presented in Figs, 3-5 in terms of the normalized parameters V and B. 

* Fig. 3 corresponds to a Teflon core surrounded by air and Figs. 4 

and 5 correspond to a core of KRS-5 surrounded by air and Teflon, 

respectively. 

The sequence of the various modes, that is, the order in which 

they turn on as the normalized frequency is increased, remains the same 

in all three cases. But as the index of the core is increased, the 

phase parameter of the HEpq- and E
0

q-modes remains very small until a 

higher value of V is reached. This tendency is lessened when the index 

of the cladding is increased, i.e., the important factor is the ratio 

of refractive indices between the core and the cladding. The H0q-modes 

are independent of the index ratio while the behavior of the EH -modes pq 

depends less on the index ratio than the HE -modes. 
pq 

For most millimeter-wave applications, the waveguide would be 

used in a single-mode configuration. It is therefore important to 

* By "air" we refer to a lossless medium of refractive index equal to 
unity, which is, in practice, a very good approximation to the di­
electric parameters of air. 
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MODES OF A CLAD FIBER 
n1 =1.60 n2 = 1.00 

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 
NORMALIZED FREQUENCY: V 

-----:E-modes --:H-modes -:HE 1 -modes ········=EH 1 -modes ,p ,p 

Figure 3. Dispersion curves for the modes of a round fiber with infinite 

cladding: 

core : n1 = 1.60 (Teflon) 

cladding: n2 = 1.00 (air). 
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MODES OF A CLAD FIBER 
n1 =5.67 n2 = 1.00 

1.0...------.----,----,----.--.-----,----r-~ 

0:: 
w 
I-

0.8 

~ 0.6 
4 
0:: 
4 
0... 0.4 

w 
Cf) 

4 I 0.2 
0... 

.. .. 
.. 

······ .. 
... ... 

-----:E- modes --:H-modes --:HE 1,p-modes ········:EH 1,p-modes 

Figure 4. Dispersion curves for the modes of a round fiber with infinite 

cladding. The higher index core modifies the way the modes go to cutoff. 

The cutoff frequencies are independent of the index ratio n
1

/n
2

• 

core : n1 = 5.67 (KRS-5) 

cladding: n2 e 1.00 (air). 
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MODES OF A CLAD FIBER 
n 1 = 5 .6 7 n 2 = I. 6 0 

... 
...... ·· 

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 
NORMALIZED FREQUENCY: V 

-----: E- modes - -: H-modes -:HE 1 - modes ········:EH 1 - modes ,p ,p 

Figure 5. Dispersion curves for the modes of a round fiber with infinite 

cladding. The presence of a Teflon cladding lowers the index ratio compared 

to the case illustrated in Fig. 4: 

core : n1 = 5,67 (KRS-5) 

cladding: n 2 = 1.60 (Teflon). 
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determine the frequency range over which only the lowest-order HE
11

-

mode can exist. This is similar to the useful frequency range of 

ordinary metallic "dominant-mode waveguide". However, unlike the 

dominant mode in a metallic guide, the HE11-mode has no low­

frequency cutoff. As the normalized frequency is decreased, more 

and more of the power will flow outside of the core, resulting in weak 

guiding or "loose confinement". We will consider the HE
11

-mode to 

be strongly guided, or "closely confined", when at least 90% of the 

power is propagating within the core, This constitutes, of course, 

an arbitrary definition of the lower frequency limit of the single-

mode range of operation, The high-frequency limit will occur when the 

next mode is turned on, which corresponds to a fixed value of V=2.405, 

independent of the ratio of refractive indices. Fig. 6-9 show the 

dispersion characteristic and power distribution in the different 

core/cladding combinations considered above. If the core has a high 

refractive index, the HE
11

-mode will turn on very rapidly, as seen 

by comparing Figs, 6 and 7. Figs, 8 and 9 show the turn on of this 

mode on an expanded scale in the case of a high-index core 

surrounded by claddings of different indices, It can be noted that a 

reduction of index step between the core and the cladding will slow 

the rise in the fraction of power carried by the core to the point 

that for a KRS-5/Teflon fiber, the next mode appears before strong 

guidance of the HE
11

-mode is attained (following our definition of 

strong guidance asp = 90%). Therefore, in practice, it is core 
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POWER DISTRIBUTION IN A CLAD FIBER: 

n1 = 1.60 n2 = 1.00 

NORMALIZED FREQUENCY: ko 
0.0 0.80 1.60 2.40 3.20 4.00 4.80 5.60 6.41 
1.01--r---r~--i--~======~====i======r==i 

0.8 

0.6 
SINGLE 

0.4 

0.2 

Ho1 
t o.o.__ ___ ::.,__ _ _J_ __ __.__ __ J__ _ __l ___ ~ __ __J_ _ ___.J 

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 
NORMALIZED FREQUENCY: V 

Figure 6. Dispersion characteristic and power distribution of a round 

fiber with infinite cladding. A single mode operation is desirable in 

most applications. 

8.0 
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POWER DISTRIBUTION IN A CLAD FIBER: 

n1 = 5.67 n2 = 1.00 

NORMALIZED FREQUENCY: ka 
0.18 0.36 0.54 0.72 0.90 1.08 1.25 

o. 5 SINGLE MODE 

0.4 

0.2 

1.43 

tH01 
Q0.__~~...._~~---~~--~~_._~~----~~~...._~~~~~-

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 
NORMALIZED FREQUENCY: V 

Figure 7. Dispersion characteristics and power distribution of a round 

fiber with infinite cladding. The high-index core introduces a very 

sharp rise in the power distribution as the mode is turned on. 

8.0 
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POWER DISTRIBUTION IN A CLAD FIBER: 

n 1 = 5.67 n2 = 1.00 
1.0.------.-----.----.------r----,------r---,---==::i 

0.8 

0.6 

0.4 

0.2 

90°/o ___ _ 

STRONGLY GUIDE HE 11 

SINGLE MULTIMODE 

10 °/o 

Figure 8. Enlarged view of the turn on of the HE
11

-mode represented 

in Figure 7. We have defined the useful operation range as the interval 

of frequency where the HE11-mode is strongly confined inside the core 

and the H01-mode is weakly guided or even cut-off. 
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POWER DISTRIBUTION IN A CLAD FIBER: 
n1 =5.67 n2 = 1.60 

I STRONGLY GUIDED HE 11 ,_ 
I 

SINGLE MODE !MULTIMODE 
1-, 

I 

I 
---+------

0.0L-~____L~~-1~~_.J_---=:::::::::L~~_J_~~..L_~~1-.~__J 
2.00 2.13 2.25 2.38 2.50 2.63 2.75 2.88 3.00 

NORMALIZED FREQUENCY: V 

Figure 9. The useful range of operation vanishes when the index ratio 

is reduced by the introduction of a cladding of larger index. 
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desirable to clad the fiber with a material of refractive index as 

close as possible to unity. 

The very steep slope of the dominant HE 11-dispersion curve in a 

high-index fiber can be explained by considering Eq. 18, which describes 

the behavior of this mode for V ~ 1: 

(18) 

Using Eq. 24, we find that the power distribution is approximately 

given by 

(25a) 

for the HE11-mode and V ~ l; this relation can also be written as: 

p /B 
core 

(25b) 

Equations (25) indicate that for a large ratio n 1/n2 , p will rise core 

much faster than B, as the mode is turned on, This phenomenon is 

actually an artifact due to the particular normalization that we 

chose for the propagation constant. 
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4. Linearly-Polarized Modes 

Consider the cylindrical fiber consisting of a core of index 

n
1 

surrounded by a cladding of index n
2 

and infinite extent (Fig. 2). 

In the case of a weakly-guiding fiber, the refractive indices satisfy 

6. = << l (26) 

In this case, we can construct modes whose transverse fields are 

mostly polarized in one direction: the ''linearly.--polarized modes" 4
• 5 

We postulate the following transverse field distribution in the core 

E 
1 E H 

0 
E.Q, JR, (ur /a) cos 9,cp = --= y x µo nl 

(27a) 

and, in the cladding 

E 
1 " E H 

0 
E.Q, K.Q, (vr/a) cos £¢ = --= 

y x µo n2 
(27b) 

where u and v are the transverse parameters that were defined previously 

(Eqs. 7 and 8). The longitudinal components are obtained by using the 

Maxwell curl equations. One finds that 

z 
0 

Ez = j k 
0 

H 
z 

• (lE 
= _] _ _L 

k z dx 
0 0 

for q=l,2 (28) 
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For small 6, the longitudinal components become negligible compared 

to the transverse ones; the factors involved are u/(ka) and v/(ka) 

k 
which because of the definition of u and v are of order 6 2

• We will 

therefore neglect these components when matching the tangential fields 

at the interface r=a. To first order in~. we then obtain the following 

characteristic equation 

u 
J£-l (u) 

J (u) 
-v 

K,Q,_J (v) 

K (v) 
(29) 

5 
for the linearly polarized (LP) modes. These modes can be shown to 

be particular superpositions of the HE- and EH- fiber modes. For a 

small index difference, 6 << 1, the HE£+l -mode is nearly degenerate ,p 

The with the EH2_1 ,P-mode and together, they form the LP2P-mode. 

LP0P-modes represent a special case because they correspond to the 

HE1P-modes that are already linearly polarized (only when /1 << 1). 

For the dominant LP01 -mode, we can obtain the characteristic 

equation in closed form, to the same degree of approximation; 

u(V) (28) 

where u
01 

= 2.405 represents the first zero of the Bessel function 

J
0

(u). To obtain the characteristic equation in the form B(V), we 

have to use the definition of u, v and V and write 



2 
B = 1 - (u/V) 

26 

The power distribution of this mode is given by 

2 Ko(v) 
p core = 1 - (u/V) [l - K

1 
(v) (29) 

We have compared, in Fig. 10, the dispersion characteristic for 

the dominant mode of a round fiber, as obtained by using respectively: 

- the LP
01

-mode closed-form characteristic equation; 

the exact HE
11

-mode for n
1 

1.500 and n2 

the exact HE
11

-mode for n
1 

= 5,667 and n 2 

1.000 

1.000. 

We observe that, as the index of the core is increased to several 

times the index of the outer medium, the LP
01

-approximation diverges 

more and more from the exact solution, The same conclusion is illus-

trated, in an even more drastic manner, by Fig. 11 that compares the 

power distributions, p • as computed from the same set of modes. core 

5. Guided Mode Attenuation 

Core and cladding materials were assumed, in what preceded, to 

be lossless. In reality, guided modes lose power due to material 

* absorption and scattering at inhomogeneities, We will assume that 

* We will not consider here the problem of geometrical inhomogeneities. 
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frequencies. 

······· 

8 



28 

I. o .--------~-:-:-= ... -:-:-:-... -:-:-:-... :-:-: ... -:--:-: .. -~·. ·::· ·=·: ·::· ·:~·. ·;::3·.·;3·. ·.:::;;;;· · m· ·.·;;;:::;· · ·:::====~..., 
I ---·--

0... 

' o...- 0.8 .. 
z 
0 
1-::J 0.6 
CD 
0::: 
I-­
Cf) 

0 

0::: 
w 
~ 
0 
0... 

0.4 

0.2 
I 

I 

I 

I 
I 

I 

i 
I 

I 
L~ 1 - mode 

He 11 -mode 

n1=1.500 n2 =1.0 

He 11 -mode 

n1 = 5.667 n2 = 1.0 

01.--'~--&.~~~.....i..~~~...,j..~~~.J..-~~~.1--~~--i.~~~-'-~~~~ 
0 2 

NORMALIZED 
4 6 

FREQUENCY:V 

Figure 11. Comparison between the power distribution for the dominant 

fiber and mode as computed by using the linearly-polarized mode approxi­

mation and the exact solution for a medium index core (n1=1.500) and 

a high index core (n1=5.667). The LP-approximation is especially poor 

for a high index core. 
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material inhomogeneities occur over a correlation length that is 

very much shorter than a wavelength. Under these conditions, Rayleigh's 

scattering law applies and the scattering loss can be accounted for 

by an imaginary component of the complex refractive index: 

for q=l,2 (20) 

II 

The absorption coefficient nq also includes the material absorption, 

The guided mode will propagate with a complex propagation constant 

y a + jS (21) 

where, for practical low-loss materials, 

(22) 

Due to the low absorption and scattering losses, the field distributions 

of the guided modes are only slightly perturbed from the lossless case. 

The attenuation a can therefore be computed by a perturbation method. 

* If only the core is lossy , we find that, disregarding signs, the 

2 
attenuation is given by 

* Without this assumption the righthand side of Eq, 23 will contain, 
in the numerator, an additional term, of the form 

Iba jEj 2 
r dr 

where b is the radius of the cladding region, 



1 
a = 

dP 
t 

= 

30 

2 !El r dr 

(23) 

r dr I 

where S is the longitudinal component of the time-averaged Poynting 
z 

vector and a is the conductivity of the material. This parameter is 

related to the loss tangent, tan 6, and to the real part of the 

' permittivity, E , by: 

a = wE tan o 

Elsasser 2 introduces the dimensionless quantity R 

(24) 

(25) 

For a plane wave propagating in an infinite medium of conductivity and 

dielectric constant E, R has the value l/.;sr 

value of R for the three lowest order modes: 

for the m=l, HE 11-mode: 

Y2+ l:_. - d__ 
l 2 4 

D-1 u u 2 2 
-2- 1 1 +(N +Z) 
v -+-2 2 

= 
u v 

R 

X 
4 NZ +--4 

u 

Elasser computed the 

(26) 

NX(D + z2
) + NY(l + z2

) + 
2~(D+N2 ) -

2~(l+N2) 
u v 
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where D (nl /n2) 
2 

x y2 
2Y

1
+1 1 

1 + 2 -4 
u u 

- x2 
2X -1 

1 y 1 
1 2 -4 

v v 

z 

(The other quantities have been defined in Section 2,2.) 

for m = 0, the H
01

-mode 

2Y + 1 
y2 0 

+ 2 0 1 
R 

u 
N 

y2 
2Y + 1 

x2 
2X -1 

+ 0 0 

0 2 0 2 (27) 
u v 

for m o, the E
01

-mode 

y2 1 +- 2Y -1 D-1 0 2 
+ N2 (Y2 u + 0 

) 
2 ..!_ + ..!_ 0 2 

v 2 2 u 

R 
u v (28) = 2Y +l 

N(Y2 N(X2 2X -1 
D + 0 ) - + 0 

) 
0 2 0 2 

u v 
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We have plotted in Figs. 12 and 13 the quantity n
1 

R, for the three 

lowest order modes and two different core indices, respectively, 

1.500 and 5,667. As the frequency increases, all the curves exhibit 

a maximum that is more pronounced for a higher core index. At high 

frequency, the quantity R approaches the "plane-wave limit" 1/n
1

. 

We also plotted for reference the fraction of the total power that 

propagates in the core, assuming that only the mode in consideration 

is present. We see that the maximum in the curves corresponds to the 

rise of the power fraction. The maximum indicates that at intermediate 

frequencies, the attenuation can be several times the high-frequency 

limit, which is equal to the attenuation that a plane wave propagating 

in an infinite expanse of core material would encounter. This result may 

be understood in simple physical terms. At very low frequencies most of 

the fields are outside of the core and therefore are subject to little 

attenuation. As the frequency is increased, the fields become more con­

centrated within the core. In a ray-optics picture, this situation cor­

responds to rays that bounce back and forth between the boundaries of the 

guide. The path followed by a ray is thus actually longer than if it 

were propagating along the guide axis and therefore the attenuation per 

physical length of guide is higher. At high frequencies, the 

guide radius becomes very large compared to a wavelength and the 

mode can be thought of as a plane wave propagating parallel to 

the axis. 



0:::: 
c 

Q_ 

1.2 

1.0 

0.8 

0.6 

0.4 

0.2 

1.0 

0.8 

0.6 

0.4 

0.2 

33 

HE
11 

HE, I 
EOI 

ATTENUATION 

n
1 

= 1.5 

n2 =1.0 

POWER 
DISTRIBUTION 

0'---~--J~~_...__..___._~~-'-~~---~~--~~...._~--

0 2 3 4 5 6 7 8 

NORMALIZED FREQUENCY: V 

Figure 12. The attenuation of the three lowest-order modes of a round 

fiber is plotted versus normalized frequency. The attenuation is normalized 

by its high-frequency limit. The fraction of the power propagating inside 

the core is shown in comparison. 
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Figure 13. The attenuation of the three lowest-order modes of a round 

fiber is plotted versus normalized frequency. The attenuation is normalized 

by its high-frequency limit. The fraction of the power propagating inside 

the core is shown in comparison. 
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6. Attempt at a Practical Design 

We will now consider from an engineering standpoint the 

feasibility of a dielectric fiber made of KRS-5 for long distance 

transmission of millimeter wave power. 

The most important parameter of such a transmission system is the 

total loss per unit of length. The total propagation losses result 

from the dielectric losses in the core and cladding and from bending 

losses. 

a = acore + acladding + abending 
(29) 

In this analysis, we are interested in orders of magnitude rather than 

exact numbers. We will therefore consider that the dielectric losses 

are obtained by multiplying the material losses °11 

E tano r 
for small tano and q=l,2 

by the fraction of the power propagating in region q: 

(30) 

(3la) 

(3lb) 
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The exact study of bending losses requires. the analysis of the modes 

that propagate on a curved waveguide, and the reflection and radiation 

phenomena that occur at the transition between the straight and curved 

portions of guide. Several authors have proposed formulas for com-

puting the bending losses. 9 Neuman, et al have shown that these 

formulas can be reduced to a common expression: 

1 1 
a '.::'. -R exp [-

R 61T2 

(R/"'A ) 
0 

] ' (32) 

where R is the radius of curvature, A is the wavelength in the outer 
0 

medium, and r is the extension of the field in this region. (The 
0 

fields outside the core behave like K
1 
(r/r

0
), which can be approximated 

by an exponential decay exp(-r/r ).) 
0 

We may now compute the fiber losses for three cases of practical 

interest, namely, those fiber designs that have an attenuation corn-

parable to metallic waveguides. We will assume that only the 

dominant HE
11

-mode propagates in these fibers with infinite cladding. 

a. KRS-5/Air Waveguide, As a benchmark value, we 

determine the radius a of the core that makes the dielectric losses 

correspond to the losses of conventional metallic waveguides at 

94 GHz: 
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3 dB/m = 3.45xl0-4 mm-l 

For very small V, we can approximate the dispersion relation of the 

HE
11

-mode by 5 

B ~ 1 · 26 
exp [-D/V2] 

v2 
(33) 

2 
where D = 1 + (n1/n2) . Also, we have seen earlier that the power 

distribution is given by 

pcore 

and therefore, 

B + y_ dB 
2 dV 

p ~ 1 · 26 D exp(-D/V2) 
core V4 

Because a = p a._ this value of a corresponds to core core M core 

(24) 

(34) 

pcore 3.lxl0-3 for KRS-5 (see Table 1), a very small amount of 

power flowing in the core, Knowing the value of p we can now core' 

solve Eq. (34) by successive iterations and find that V ~ 1.9, 

From (33) and the definition of B we obtain for the propagation 

constant: B/k = 1.0006, with k = 1,97 mm~l at 94 GHz. In order 

to compute the radiation losses, we must know r , the extension 
0 

of the fields outside of the core, in the air, From the definition 

of the parameters, we have 
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(35) 

and therefore, r 
0 

21.l mm. The bending losses, for a bending 

-3 radius R = 200 nnn, become aR = 5.0xlO , and for R = 600 mm, 

aR = 2.2xl0-4 , about 3 dB/meter or the same as the dissipative losses 

in a WR-10 metallic waveguide. 

b. Teflon/Air Waveguide. Using the same steps as in case 

a, we obtain successively 

pcore 0.12 

v = 1.25 

a = 0.51 nnn 

S/k = 1.06 

r = 1,44 mm 
0 

-8 -1 
for R 200 nnn aR = 5,lxlO mm 

= l.7xl0-18 mm-l for R = 600 mm 

The claimed advantage of a high-index core is that it would be to 

provide a better confinement of the fields inside the core. These 

two cases demonstrate that this advantage is practical only if the core 

material is low loss. KRS-5 is too lossy, and in order to achieve a 

small dielectric loss, most of the power would actually travel outside of 

the core; such a fiber suffers then from high bending losses because the mode 

is loosely confined, Teflon has a lower dielectric loss than KRS-5, 
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To obtain losses comparable to metallic waveguides, we can guide 12% 

of the power inside the core. This confinement is already sufficient 

to lower the bending losses by several orders of magnitude. 

c. KRS-5/Teflon/Air Waveguide. The losses in this case are 

worse than the losses in cases a and b, We must now add to the di-

electric losses in the KRS-5 core the losses in the Teflon cladding. 

The cladding in all practical cases will be very large so that the 

fields at the interface Teflon/air are negligible. Thus the losses 

in the Teflon will be essentially the bulk losses and it will not be 

possible to achieve a dielectric loss of 3 dB/m, no matter how small 

we choose the core. Also, the guiding properties of the KRS-5 core 

are degraded because the difference in index of refraction between 

the core and the outer medium is now decreased (see the earlier dis-

cussion of propagation characteristics), 

We must remark that in case a and b the outer medium is indicated 

as "air", but a practical realization will involve the use of a foamed 

material that will approximate the dielectric properties of air: 

c ~ 1 and very small losses. This is required in order to supply 
r 

mechanical support and prevent the fields from coupling with external 

objects. 

Finally, we must conclude that KRS-5 is not a suitable material 

for a closely confined HE11 dielectric waveguide because of its high 

losses. Teflon can be used (and is actually used in various applica-

tions) but only for short lengths, 
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TABLE 2 

Dielectric properties used in the calculation of waveguide losses: 

(f = 94 GHz) 

l -1 Material E: Tan 8 ~(mm ) r 

KRS-5 32 2xl0-2 1. llxlO 
-1 

Teflon 2.1 2xl0-3 2. 86x10 -3 

* See Ref, III-2 
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7. Conclusions 

We have presented the theory of dielectric fibers as applied to 

our case of interest, namely. a fiber of high refractive index and 

dimensions comparable to a wavelength. We observed that it is 

necessary to solve the exact characteristic equation rather than 

use the approximate formulas introduced for the study of optical 

waveguides. We pointed to the fact that information about the power 

distribution can be deduced from the dispersion characteristic. 

Finally, we noted that the attenuation on a high-index fiber can be 

several times the attenuation that would be expected from a bulk 

material loss figure. 

We have applied these calculations to a guide made of KRS-5, 

because this material was originally thought to be low-loss. It also 

had the desirable mechanical properties that are necessary for making a 

flexible fiber: extrudibility, ductility. We compared our numerical 

results to Teflon fibers because they are used in practical applica­

tions such as couplers. A practical fiber must present total losses 

comparable to the losses of metallic waveguides. From our measurement 

of dielectric properties at 94 GHz (see Part III), it appears that KRS-5 

is not at all a suitable material: Its losses are two order of magnitude 

too high. Even Teflon presents material losses that are about an 

order of magnitude larger than our target. 



42 

BIBLIOGRAPHY 

1. E. Hondros and P, Debye, "Elektromagnetischen Wellen an 

Dielektrischen Drahten", Ann. Phys,, Vol, 32, 1910, pp, 465-476. 

2. W. Elsasser, "Attenuation in a Dielectric Circular Rod", J. Appl. 

Phys., Vol. 20, Dec. 1949, pp. 1193-1196. 

3. C. Chandler, "Investigation of Dielectric Rod as Waveguide", J. 

Appl. Phys., Vol 20, Dec. 1949, pp. 1188-1192. 

4. E. Gloge, "Weakly Guiding Fibers", Appl.Opt., Vol. 10, Oct. 1971, 

pp. 2252-2258, and references therein contained. 

5. H.-G. Unger, Planar Optical Waveguides and Fibers , Clarendon 

Press, Oxford, 1977. 

6. D. Krumbholz, E. Brinkmeyer and E.-G, Neumann, "Core/Cladding 

Power Distribution, Propagation Constant and Group Delay: Simple 

Relations for Power-law Graded-index Fibers", J. Opt. Soc, Am., 

Vol. 70, Feb, 1980, pp. 179-183. 

7. S, Nemoto and T. Makimoto, "A Relationship between Phase and Group 

Indices of Guided Modes in Dielectric Waveguides", Int, J. Elec., 

Vol. 40, 1976, pp. 187-190, 

8. S. Kawakami, "Relations between Dispersion and Power Flow Distri­

bution in a Dielectric Waveguide", J. Opt. Soc. Am., Vol. 65, 

Jan. 1975, pp. 41-45. 

9. E.-G. Neumann and H.-D. Rudolph, "Radiation from Bends in Dielectric 

Rod Transmission Lines", IEEE Trans. Microwave Th, Tech., Vol. 

MTT-23, Jan. 1975, pp. 142-145. 



43 

Part II. Rectangular Dielectric Waveguides 

1. Introduction 

Rectangular dielectric waveguides of high permittivity (E;~lO) 

have been proposed as practical waveguiding structure for use in 

millimeter-wave integrated circuits (MMIC) l,Z, The use of high-

resistivity material is particularly indicated as active devices can 

be fabricated directly into the transmission line. 

Rectangular guides for integrated optics have been investigated 

by Marcatili 3 and Goell 4 These guides have, for ease of fabrication, 

transverse dimensions of the order of 10 wavelengths. Single-mode 

operation is obtained by choosing refractive indices of the guide and 

the surrounding medium that differ by 1% or less. Table I compares 

the typical figures for optical and millimeter-wave dielectric guides. 

Higher dielectric ratios (K
1

/K
2

) become practical at millimeter 

wavelengths. Also, they provide a better confinement of the fields 

and therefore tighter radii of curvature can be tolerated. Such a 

waveguide may have an attenuation somewhat higher than a conventional 

metallic waveguide, but the typical lengths are also quite shorter: 

For a high-resistivity GaAs-guide (p=l08 ~-cm) the attenuation at 

94 GHz is 0.10 dB/cm compared to 0.03 dB/cm for a silver WR-10 

guide, 

Various practical devices for millimeter-wave applications that 

utilize a rectangular dielectric waveguide have been proposed or are 

actually being used: directional couplers 5 , balanced mixers 
5 
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phase shifters 
6

•
7

, scanning antenna 8 channel-<lropping filters 9 

The theoretical analysis of these devices has been based, in all cases, 

on the analytical solution proposed by Marcatili 3 , which can be 

easily expressed in simple closed forms. We have investigated 

rectangular dielectric waveguides and found that the approximations 

introduced by Marcatili are not valid when the permittivity of the 

guide is high compared to the outer medium, 

Several authors have proposed methods for the study of rectangular 

l 10 
guides: Knox et al (modification of Marcatili 1 s analysis), Schlosser 

11 4 and Solbach (mode matching), Goell (expansion in circular 

harmonics), and Yeh 12 •13 (finite-elements), among others, They 

limited their analysis to relatively small values of the permittivity 

(s
1 

~ 2,5) and, with the exception of Solbach 
11

, their results 
r 

give only the propagation characteristics, i.e., the guide wavelength 

as a function of the free-space wavelength for the various modes but 

not the field distributions. 

Because none of these methods seemed to suit our purpose we 

have developed a numerical technique based on finite-differences (FD) 

for computing accurate characteristics and field distributions. This 

FD method is efficient and flexible and can be applied to a wide 

variety of dielectric waveguide problems: The waveguide can have a 

complex shape, a non-uniform permittivity profile or even include 

metal electrodes. 

We will first review Maractilils approach and point out the 

restrictive assumptions upon which his study is based. We will then 
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TABLE I 

Comparison between millimeter-wave and optical waveguides (typical 

values) 

MM-wave Optical 

Dielectric material alumina;semiconductors glass;semiconductors 

(guide) 

Dielectric material air;plastic glass;semiconductors 

(surrounding medium) 

Kl 10-15 or higher 2-4;12 

K2 1;2.5 2-4;12 

index ratio (v1{1/K2) 2 1.1-1.01 

waveguide width 0.5 2-10 
(in A. ) 

g 

radius of curvature 2-5 30-1000 
(in A. ) 

g 
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describe briefly the methods proposed by Knox et al 
1

, Solbach 11 and 

Yeh 12
•
13 . Finite~differences can be applied to a wave propagation 

problem by discretizing either the wave equation or a variational 

expression. We have analyzed both approaches and found that only the 

latter one can be used, Finally we will present our results for the 

dispersion characteristics and field distributions of the rectangular 

guide and compare them to Marcatili 1 s solution. 

2. Marcatili's Solution 

Marcatili 3 analyzed the mode properties of a guide consisting 

of a rectangular core surrounded by several dielectrics of different 

permittivity. We will present this analysis in a simplified form, 

by considering the outer medium to be infinite and homogeneous (see 

Fig. 1). 

2.1. Assumptions 

A closed form is only possible if one introduces a drastic 

simplification of the problem. For a well-guided mode, as is expected 

by analogy with a round fiber, the fields decay exponentially in 

regions 2,3,4,5, away from the core (see Fig. 1). Therefore, most 

of the power propagates in region 1, only a small fraction in regions 

2-5 and an even smaller part in the four corner areas, Consequently, 

only a small error is introduced if the fields are matched along the 
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'y 
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@ 

a 

Figure 1. Rectangular dielectric waveguide: Marcatili's analysis 

simplifies the problem by neglecting the corner areas. The arrows 

indicate the direction of the dominant transverse field components 
y for the E11'"'111ode, 
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edges of regions 1-2,1.,..J,l-4 and 1-5 and the corner areas are neglected. 

This matching can be achieved by assuming simple field distributions. 

* The field components are assumed to vary : 

sinusoidally along x and y, in region l; 

sinusoidally along x and exponentially along y in region 2; 

sinusoidally along y and exponentially along x in region 3. 

The separation constant along x must be the same in region 1 and 2 

and independent of y. Similarly, the separation constant along y 

are identical in regions 1 and 3 and independent of x, We expect 

that these modes will be hybrid because of the field variations 

along the dielectric interfaces. In a ray picture, guidance occurs 

because of total internal reflection. If the index ratio IK1/K2 is 

close to unity, then total internal reflection occurs when the wavelets 

that make a mode are incident on the interfaces at grazing angles, 

As we will see, this implies that the largest fields components 

are the ones perpendicular to the direction of propagation: The 

modes are of the quasi-plane wave kind and can be grouped into two 

families, according to their polarization: Ey 
pq 

and Ex 
pq 

** The field 

configurations for the lowest Ey - and Ex -modes are sketched in Fig. 2. 
pq pq 

To sUillll1arize, the analysis rests on the following three assumptions: 

(i) the index ratio is small, i.e., /K1 /K
2 

- 1 << l; 

* By using symmetry we need only to consider the upper right quadrant 
of Fig. 1: The fields must be either symmetric or antisymmetric 
with respect to the x- and y-axis, 

+ ** The superscript indicates the direction of polarization of the main E~ 
field component while the subscripts denote the number of maxima 
respectively in the x- and y-directions, 
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(ii) the power propagating in the corner areas can be neglected; 

(iii) the boundary conditions should be satisfied only for the 

2.2. 

-+ -+ 
dominant components of the E- and H-fields. 

Derivation an0 Properties of the Ex -Modes 
q 

th * The field components in the n area of Fig, l are: 

Al cos(k x + 
x 

a) cos Ck y + B) for n = y 

Hn 
-jk y 

A2 cos(k x + Cl) e Y2 for n 
x x 

_;k x J •• x 

A3 cos (k y + 8) e3 3 for n 
y 

Hn 0 
y 

j_ 
aHn 

Hn x 
z k dX 

z 

l 
a2 Hn 

En x 
x WE: K k ax ay 

0 n z 

k2 K - k2 
En 0 n yn Hn 

y WE K k x 
0 n z 

* The common factor exp j(wt ~· k z) has been omitted, 
z 

1 

2 

3 

(1) 
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in which et, and S determine the symmetry (or antisymmetry), respectively 

with the x- and y-axis by taking the values o0 or 90°. th In the n 

medium the separation constants are related to the free-space wave­

* number, k , and the permittivity K by: 
o n 

2 w E: µK 
o n (2) 

To be able to match the fields at the interface between regions 1 and 

2 we have assumed in Eqs. (1) 

k 
-xl 

k 
x 

and, similarly, to match the fields between media 1 and 3 

k k = k 
Y1 Y3 Y 

If we assume that the index ratio is close to unity, that is 

(3) 

* We are interested in the case where K2=K
3
<K1 but the analysis is 

similar if K2~K3 • 
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(5) 

We obtain, by using Eq, 2 that 

k ' k << k x y z 
(6) 

Together, Eqs. (1) and (6) imply that the relative amplitudes of the 

field components are different: 

H "v 1 
x 

k k 
H '\; 2 '.::'. x 

z k k 
z 

k k k 2 
E '\; ~ z '.::'. (2-) z (7) 

x k k 0 k 0 
z z 

k2+k2 k2 
E '\; 

x y z "" -z "" z 
y k k 0 k2 0 0 

z z 

k 
E '\; _y z 

z k 0 

where Z is the vacuum impedance, In order to satisfy the boundary 
0 

conditions, we must assure, at the interface between regions 1 and 2 

the continuity of the tangential fields, H , H , E and E • However, 
z x z x 

using Eq. (7),we see that 

H << H z x and E << E . x z· 



Therefore, by matching, at y 

and E , we obtain 
z 
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b/2, the dominant components H 
x 

(8) 

(9) 

Similarly, at the boundary between media 1 and 3, we must match the 

tangential fields H , E and E . Considering their relative amplitudes, 
z y z 

we see that 

E << E z y 

and consequently, we will match only H and E at x = a/2: 
z y 

k2 - k2 
1 y _l_ A 

WE: Kl k 1 
0 z 

cos(kx I+ a) 

k2-k2 
3 y _l A 

WE: K3 k 3 
0 z 

a/2 

(10) 

(11) 

These equations serve to determine the amplitude coefficients A
2 

and 

A
3 

in terms of an arbitrary constant, A
1

, Moreover, by taking the 

rations, respectively of Eq. 9 to Eq, 8 and Eq, 11 to Eq. 10, we obtain 

the characteristic equations 
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.k 

tan(ky t + 
Kl J y 

S) 
2 ---

K2 k 
z 

and 

k 2 - k2 x3 Kl k3 
tan(k 5!:_ + a) j 

y 
x 2 k K3 k2 k2 x 

1 y 

In the latter expression, we can rewrite the right-hand side 

and the relation becomes 

tan (k 5!:. + a) 
x 2 

"k J x 
3 

k 
x 

(12) 

(13) 

Eqs. (12) and (13) have a physical interpretation: They are the 

characteristic equations of two independent slab problems. The first 

relation represents a slab of permittivity K
1 

parallel to the x-axis 

and of thickness b/2 while the second equation corresponds to a slab 

- of permittivity K
1 

that is parallel to the y-axis and of thickness 

a/2. 

Finally, we can define a parameter p that will indicate the 

dominance of E over H or vice-versa: z z 
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IE I z 1 max (14) p -- In I z 
z 0 max k /k 

z 0 

The quantity Z /(k /k ) is the impedance of a plane wave propagating 
0 z 0 

in a medium of apparent index equal to the normalized wavenumber 

(k /k ). For the Ey - mode, we obtain: 
z 0 pq 

p[EY J 
pq 

k 2 k 
= (_£) 1-_ J_ 

k K1 k 
0 .L x 

(15) 

This quantity will be useful for comparing our numerical solution to 

the approximate theory. 

2.3. Derivation and Properties of the Ex -Modes 
q 

These modes are qualitatively the same as the Ey -modes: They 
pq 

correspond to the orthogonal polarization. To obtain these modes, we 

proceed by duality 3 and change E to H, µ to -E and vice-versa, The 

field components are then: 

Bl cos(k x 
x 

+ a) cos(k y + 
y 

6) for n=l 

-jk y 

En B2 cos (k x + a) 
Yz 

e for n=2 x x 
-jk x 

B3 cos(kyy + 6) 
XJ 

e for n=3 
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n 
E 0 

y 

n 
n (JE 

B 
_ i__x_ 

z k dX 
z 

d2 n 
1 E n x 

H K k dx 8y (16) x wµ 
0 n z 

k~ ~ - k2 
n yn n 

H E 
y wµ K k z 

0 z 

n 
1 

'CJE n x 
H 

Kn ~ z wµ 
0 

Using the same approximations as in Section 2,2, from the boundary 

conditions, we obtain that the coefficients are related by: 

b 
B1 cos(ky 2 + 8) e 

b 
jk -

y 2 2 

jk a 
:x

3 
2 

e 

and the characteristic equations are: 

k 
b Y2 

tan(ky -2 + S) = k 
z 

(17) 

(18) 

(19) 



and a 
tan(kx 2 + a) = 

K jkx 
1 z 

k3 ~ 
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(20) 

As expected, in the case of a square waveguide surrounded on all sides 

by the same homogeneous medimn, the Ey - and the Ex -modes are degenerate. 
pq pq 

x For the E ~modes, the parameter p is pq 

k 
x 

= k Kl 
y 

2.3. Characteristic Equations: Closed-form Solutions 

(21) 

For well-guided modes, most of the power propagates in region 

1 and therefore 

k ,k << k 
x y z 

3 The characteristic equation can then be solved in closed-form For 

the Ey -modes, we have 
pq 

A 
TI 

(22) = 

k /Kl-K2 
0 

k ~(l + 2A)-l (23) 
x a TI a 

1 + K/K1 A)~l k .921:.(1 + (24) 
y b . Tib 



k = (k
2 

- k
2 

z 1 x 

"k J x 
3 

"k J y 
2 
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(25) 

(26) 

(27) 

For the Ex -modes, we have, together with Eqs, (22) and (25-27): 
pq 

k 
x 

k 
y 

1 + K/K1 A]-1 
.E:'.!:.[1 + ----
a 'TT a 

(28) 

(29) 

The exact solutions to the characteristic equations and these closed-

form expressions differ noticeably only in the cutoff region of a 

given mode: The approximate solution predicts a sharper drop in the 

phase parameter as the frequency is lowered. 

These modes exhibit a finite cutoff frequency while we know that the 

lowest order mode should have a zero cutoff frequency. At low frequency, 

the wavelength is larger than the physical dimensions of the guiding struc-

ture. By analogy with the round fiber, we expect that the fundamental mode 

~ remains guided no matter how small the (normalized) frequency becomes, 

As mentioned in Section 1, several authors have used the closed-

form expressions to study high-permittivity guides, We have plotted 
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MODES OF A RECTANGULAR GUIDE (MARCATILl'S APPROXIMATION) 

K2 

~!b 
oE )I> 

a 

K 1=13.1 

K2=i,0 

alb= 2.0 

5 15 

NORMALIZED FREQUENCY: V 

20 

Figure 3. Dispersion characteristics of a rectangular dielectric wave­

guide of high permittivity (K1 = 13,1) computed by using Marcatili's 

closed-form solutions. These equations predict erroneously that the 

dominant Ei1-mode has a non-zero cutoff frequency, 

25 
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in Fig. 3 the dispersion characteristics, as computed by Eqs. 22-29, 

for a rectangular guide made of GaAs (K
1
=13.l). Later on, we will com­

pare these curves with our FD calculations. 

3. Review of Solutions 

We will describe here briefly some alternative methods that have 

been proposed for the solution of rectangular dielectric waveguides. 

3.1. Effective Index 

As we remarked in 2.2 the characteristic equations obtained by 

Marcatili correspond to two independent slab problems. Knox et al 1 

have proposed to improve on this solution by coupling the two slab 

configurations. First, the slab depicted in Fig. 4.a is solved which 

results in a value for the separation constant k . The permittivity of 
y 

the second slab (Fig. 4.b) is then modified from K
1 

to 

K = K - (k /k ) 2 
e 1 y o 

(30) 

and the second separation constant k is obtained. The propagation 
x 

constant k is finally computed by using Eq. 25 that relates the various 
z 

constants to the free-space wavenumber k . 
0 

This approach does not overcome the limitations encountered with 

Marcatili's: In practice, even for higher dielectric constants, the 

dispersion curvesobtained by these two methods differ very little. 
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y 
y 

I 

x 

( a ) ( b ) 

Figure 4. Effective index method: The two independent slab problems are 

coupled by solving one slab for the separation constant k and then 
y 

modifying the dielectric constant of the other slab in order to determine 

the other transverse separation constant kx. 

x 
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3.2. Mode-matching 

10 This technique was introduced by Schlosser for the study of 

metallic waveguides partially filled with dielectric and applied to 

11 
image lines by Solbach 

If we consider the problem illustrated by Fig. 5, the method 

proceeds as follows: 

- a finite eigenvalue problem is defined by placing electric walls 

at a finite distance from the guide; 

- in each region, I to IV, the fields are expanded in a complete 

set of waveguide modes that must satisfy only the boundary 

conditions on the electric and magnetic walls: The interfaces 

are not considered; 

the coefficients of the expansions (up to a certain order) are 

then obtained by matching the fields at the various interfaces: 

This results in a characteristic determinant that must be 

solved numerically. The approximate solution proposed by 

Marcatili 
3 

is in fact the lowest order approximation by 

mode-matching, i.e., the expansions are limited to their first 

time. 

The search for the roots of this equation must be made in the 

complex B plane because some of the expansion terms correspond to modes 

beyond cutoff. 

This method does not appear to be flexible enough for our purposes. 

For example, it is limited to simple rectangular geometries. 
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and 

(48) 

is the eigenvalue. 

I h b h h h L d M lf d
. . 19 t as een s own t at t e operators an _ are se -a Joint 

p p 

and thus the eigenvalues k~ are the stationary values of the expression: 

2: J OT L e as 
p 

k2 = 
p s 

p 
(49) 

A 

J 
OT M 2: e as 

p 
p 

s 
p 

By expanding this relation, we obtain the following variational 

principle for k~ 

oJ 8 2:[T J 
v2 

<Pp as+ 82 
T K I WP 

v2 iJ! as] 
p p t p p t p 

s s 
p p 

(SO) 

+ k2 [ 2: J ¢ 2 as + 62 K J iµ~ as] 0 
A p p p 

s s 
p p 
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which can be further simplified (by use of the divergence theorem) 

so that it involves only first-order derivatives 18 , 20 . 

J = L: T I 1·v\<P1
2 

dS + S2 
T K f !v\lj.JI 2 

as 
p 

p p p 
s 

p 
(51) 

2T 
-2 J ('il t\j.Jxv\ ¢) 2 as - k~[J l<Ptl

2 
as+ 62 J l\j.JPl

2 
as] + s p 

s s s p p p 

This last relation will be the basis of our FD procedure, 

4.4. FD: Variational Approach 

For treating the problem of a rectangular dielectric guide, 

we need first to define a finite cross section by enclosing the guide 

in a "box" (electric walls) sufficiently large so that it will not 

perturb the modes. 

only one quadrant. 

Again, because of symmetry, we need to treat 

The longitudinal electric field, E , must be 
z 

either symmetric (magnetic b,c.) or antisynnnetric (electric b.c.) with 

respect to the x- and y-axes while the longitudinal magnetic field, 

H , has the opposite symmetry. We then superpose a mesh that covers 
z 

the region of interest with rectangular elements (Fig. 6): These 

elements are chosen so that the permittivity is constant inside each 

element and the electric and magnetic walls each divide a row of 
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Figure 6, Before applying the FD-approximations, the dielectric guide 

is enclosed in a box (metallic wall boundary conditions) and the area 

of interest is covered by a rectangular grid, The permittivity inside 

each element must be uniform, 
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elements in two equal halves, 

Consider one such element S (Fig. 7), The contribution of this 
p 

element of the variational expression J can be evaluated by using FD 

approximations l6,20. * Using ¢i and Wi to denote the field values at point 

i, we have 

s 
p 

r 2 hlh2 2 
111

2 j w ds ~ - 4-cw1 + 'V 2 

s 
p 

I 
J 

p 
0 

(52) 

0 0 0 

3¢ ¢3-¢1 
For the first term, we assume that ax has the constant value h on 

¢4-¢2 1 
the segment 1-3 and the constant value h on the segment 1-2, We 

-1 

then integrate with respect to y and apply the trapezoidal rule: 

* The grid lines are aligned parallel to the x-,y-axes, For 

convenience we assume that the coordinates of point 1 are (O,O). 
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Figure 7. Typical rectangular element used for FD-approximations. 
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Likewise, we obtain for the second term 

so that, 

J 
s 

p 

A similar expression is obtained for f Iv wl 2 
dS • 

s 
p 

Finally, each term of I (CT ,r, x CT ~) dS is integrated as follows: 
Vt'j' Yt'V Z 

s 
p 



and 

f 
8¢ ClijJ dS 
Cly dX 

75 

s 0 0 
p 

0 

1 
~ 2 hl 

1 
~-h 

2 1 

J
r ~ aip as 

dX 'dy 
s 

p 

hlh2 
~--

4 

0 

h2 

J aw [~I + ~1 J dy 
dX (Jy x=h (Jy x=O 

0 1 

¢2-¢1 ¢4-¢3 
h2 

J 
(Ji_/) d 

( h + h ) 
2 2 

dX y 

0 

¢4-¢3 ¢ ·-¢ l/J -ljJ i.JJ3-w1 
( h + 2 1) ( 4 2 + h ) 

2 h2 hl 1 
(54) 

The variational expression J is then obtained as the sum of the con-

tribution of each element s : J = I: s . J is a quadratic expression p p p 

of the field values ¢.,l/J. at each of the N mesh points. The stationary 
J J 

property of J is utilized by differentiating with respect to each of 

the 2N variables¢. and ljJ,. In this way a set of 2N linear equations 
J J 

is derived, and they are of the form 

AX (55) 

where A is a symmetric band matrix, B is a diagonal positive definite 
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matrix and Xis an ordered vector of the variables ¢j,wj. 

expressions for A and B are given in Appendix B, 

Detailed 

By a transformation we can reduce Eq. 55 to a simple eigenvalue 

problem 

A' X (56) 

with 

A' (57) 

It is important to note that the matrix A' is also symmetric and banded, 

This structure allows us to use a compact storage scheme for the 

numerical calculations and efficient algorithms for computing the 

eigenvalues and eigenvectors, 
12 13 

In the case of the FE-method , , an 

equation similar to Eq, 55 is obtained but the matrix B is banded and 

therefore the eigenvalue problem is more complicated, 
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4.5 Properties of FD Approximations 

A complete analysis of the truncation error of the method that 

we just outlined would be very lengthy and rather useless, We will 

proceed by comparison with other well known numerical solutions. 

Let's assume that we can consider, for the purpose of our error 

analysis, a simplified problem that requires only one longitudinal 

field. The problem is then described by one elliptic partial 

differential equation: 

2 v u + AU 0 (58) 

valid at all points inside a domain R, The solution u of Eq. 58 

corresponds to the stationary points of 

J(u) (59) 

where the subscripts x and y denote a partial derivative. The domain 

R is divided into rectangular subregions Si. Let J 1 (u) be the contri­

bution to J(u) from the subregion s1 (Fig. 8). Following the procedure 

outlined in Section 4.4, we use FD approximations to evaluate 

* 

* Capital letters are used for the value of the function u at the nodes. 
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Figure 8. Rectangular mesh. By adding the contributions of the elements 

51 , 52 , 53 and 54 , we obtain that the FD-equations at the node Pare 

equivalent to the equations resulting from the application of the five­

point Laplace operator. 
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JJ 
2 d d ~ ~~(u2 + u2 + u2 + u2) u x y 4 P N NW W 

(60) 

I I 
h h . U -U 2 UN-UNW 2 

u~ dx dy ~ --~--~-[( ~ w) + ( hw ) ] 

sl 

- A ~~ (u2 + u2 + u2 + u2) 
1 8 P N NW W 

(61) 

To find the difference equation at P we take the partial derivative of 

J 1 (u) with respect to Up'* 

(62) 

and sum the equivalent expressions for subregions s2, s3 and s4. 

We find that 

* The subscript "l" indicates that A can be a function of (x,y). 
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0 (63) 

When all the h. 's are equal to h (square mesh), Eq. 63 reduces to 
l. 

the FD equation obtained by application of the usual five-point 

A 17,21, Laplace difference operator oh 

The properties of this operator are well known, Following the example 

outlined in Ref. 17, we consider the eigenproblem defined by Eq. 

58 on the unit square R with u=O on the boundary, The eigenfunctions 

of Eq. 58 are: 

u = sin (pnx) sin (qny) 
pq 

with the corresponding eigenvalues 

2 2 2 A =(p +q)TI 
pq 

(65) 
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On a square grid of size h=l/M, the five-point difference operator 

gives 

2 
U + U + u1 m+l - (U - A h ) Ulm 1-1,m l+l ,m , 0 (66) 

for l,m = l,, •. ,M-1. 

By direct substitution it can be verified that the eigenfunctions are 

sin ~ sin qTim 
M M 

leading to eigenvalues, 

for p,q 

/\. pq 
2 ( 2 pTI qTI) 
h2 -cos M- cos M 

1, ... ,M-1. 

(67) 

Therefore, whereas the differential equation has an infinite number 

2 
of eigenvalues, the FD equations provide only (M~l) , By expanding 

in a Taylor series the right-hand side of Eq. 67, we obtain 

A pq 

In general, the dominant (smallest) eigenvalue is much better 

approximated than the higher ones, 

(68) 
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From this analysis we expect that the error on the eigenvalues 

will be of O(h2) where h would be the largest dimension of a rectangular 

* element in the case of a graded mesh The accuracy of the approximate 

eigenfunctions is much more difficult to assess, but it is usually 

assumed to be one order of magnitude smaller than the accuracy of 

the corresponding eigenvalue, i,e., O(h). 

4.6. Solution of the Matrix Eigenvalue Equations 

The solution of the matrix eigenvalue equation is sought in the 

standard form A'X = \X, where A' is a symmetric band matrix, If we 

use a mesh of NxN rectangular elements (Fig. 6), then the order of A 

is 2(N-1) 2 and the bandwidth (the number of subdiagonals including 

the main diagonal) is 2N, For a typical calculation, N=l5 and thus 

the order equals 392 and the bandwidth equals 30. 

The numerical algorithms chosen were specifically designed for 

a symmetric band-matrix: The storage requirements are minimized by 

storing only the non-trivial elements. The routines are part of the 

22 
well known EISPACK package ~ they proceed as follows: 

* This property was verified in the course of our numerical calculations 
by comparing the eigenvalues corresponding to successively refined 
grids, all other parameters :remaining unchanged~ 
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a) A' is reduced to tridiagonal by a series of Givens rotations 

that eliminate successively each subdiagonal while maintaining 

the band form (routine BANDR) 22 •23 • 

b) The eigenvalues in an interval of interest, that is the 

negative eigenvalues that are closest to zero, are determined 

22,24 by the routine BISECT The number of eigenvalues in 

the given interval is computed from Sturm sequences. 

Next, the eigenvalues are evaluated by refining the input 

interval by a bisection process. 

c) The eigenvectors are computed by inverse iteration (routine 

BANDV) 22 •25 . The system (A' - I) X =bis solved by 

Gaussian elimination: The right-hand side vector b is 

chosen so as to obtain a proper eigenvector. 

It is important to note that by these methods it is impossible 

to omit any eigenvalue: This is a very desirable feature in com-

parison with iterative methods. 

If the finite-elements formulation had been used, the resulting 

eigenproblem, A' X = ABX, would involve two banded matrices, The 

minimum storage requirements are doubled and the numerical methods 

1 bl 11 . . 12,13,26 avai a e are a 1terat1ve, 
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4.7. Mode Designation 

All the possible modes of the rectangular guide may be divided 

into four classes depending on the symmetry of the longitudinal 

fields, since a longitudinal field H of even symmetry with respect to 
z 

one particular axis is always associated with a longitudinal field 

E of odd symmetry with respect to the same coordinate, These four 
z 

classes are designated in this work: HEoe HEeo HE00 HEee. The 
n ' n ' n ' n 

first superscript, o or e, indicates the symmetry of H with respect 
z 

to the x-axis, while the second superscript denotes the symmetry of 

H with respect to the y-axis, The subscript n indicates the order 
z 

of the given mode in its class. 

4.8. Numerical Results and Comparison with Other Work 

Using the FD method described above we wrote a computer program 

that builds the matrices A and B for a guiding structure of gjven 

geometry and permittivity and a given mesh (see Appendix B), In 

addition to these parameters, we need to provide a value of B/k 
0 

an the range~ '~for a guided mode), which in turn determines 

2 Then the program computes the dominant eigenvalues, k
2

, 

that is, the negative eigenvalues closest to zero. For each of these 

eigenvalues, the corresponding value of the free-space wave number, k , 
0 

is determined, If a mode characteristic is desired~ this computation 

is repeated for a set of values of T. To obtain field plots, the 
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program computes the eigenvectors corresponding to the first few 

eigenvalues. 

The dispersion curves are presented in the B,V description 

commonly used for optical waveguides (see Part I): 

V is the normalized frequency defined by 

v (69) 

for a waveguide, of dimensions axb, and B is the normalized phase parameter 

B 
CB/k )2 

- K 
0 2 

(70) 

To verify numerically the accuracy of our FD approach, we shall 

compare our results with those obtained according to other methods. 

Specifically we shall consider the comparison with: 

1) the exact solution of a circular guide; 

2) the approximate solution proposed by Marcatili, in the 

case of a square guide; 

3) the mode matching solution. 

We will then present a complete set of dispersion curves for 

square dielectric guide of permittivity 2,1 (Teflon) and 13.1 (GaAs) 

and also some field plots, 
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4.8.1 Round Guide 

A comparison with the round guide is particularly indicated because 

the exact solution is known, We defined the permittivity of the elements 

of a square mesh in such a way that they approximate one quadrant of a 

circular fiber. In Fig. 9, the hatched squares are assigned a permittivity 

K1 while the other elements correspond to K
2

. The exact dispersion 

curve for the dominant HE
11

-mode is presented in Fig. 10 along with 

the FD approximations: The total number of elements is N
2 

while 

the parameter M defines the ntnnber of elements in the circular section 

(see Fig. 9), If Mis chosen too small, the round guide is poorly 

approximated. For N 15 and M = 10, the FD calculations are in very 

close agreement with the theoretical curve, far above cutoff, where 

the mode is well confined. For smaller values of V, the fields 

extend further out and the mode is influenced by the outer box 

(metallic walls): To obtain the dispersion curve in this frequency 

region we need to increase the ratio N/M, It is important to note 

that for N = 15, the CPU time required on an IBM 3032 to compute the 

first five eigenvalues corresponding to one value of T, or 

equivalently~ one value of B, is about 1.4 minutes. For N 20, this 

time increases to approximately 4 minutes, 
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II 
outer b II 

ox 

I=M 

Figure 9. Approximations of a round guide by use of a square mesh. The 

hatched elements are assigned a dielectric constant K
1

, while the remaining 

ones correspond to K
2 

(<K
1
). 

I=N 
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Figure 10. Dispersion characteristics for the dominant mode of a round 

waveguide: The continuous line corresponds to the exact theoretical 

solution for the HE11..mode while the dashed line is obtained from 

the FD..approximations. 
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4.8.2. Marcatili's Approximation of a Square Guide~ Discussion 

In Figs. 11 and 12 we have plotted the dispersion curves, 

respectively, for a square guide of permittivity K
1 

= 2.1 and for a 

square guide of K
1 

= 13.1, the dispersion curves obtained by using: 

(i) Marcatili's closed-form solution (Eqs. 22-29); 

(ii) the exact solution of the HE
11

-mode of a round fiber 

that has the same area as the square guide! 

(iii) the FD method: N
2 

is the total number of elements and M2 

is the number of elements defining the dielectric guide, 

At high frequency, V >> 1, most of the field energy lies inside 

the guide and the dispersion curves computed by (i) and (ii) cannot 

be distinguished. This gives use a very good check on the accuracy 

of our FD calculations: They agree very well. Because the fields 

are well confined, the metallic walls can be relatively close to the 

guide. For small values of V, we know that Marcatili's solution is 

not correct: it predicts erroneously a cutoff frequency, In this 

region, the fields are loosely confined, and we expect that the dis­

persion curve of the square guide will be very similar to the curve of 

the round guide. This is confirmed by our FD calculations, In 

this frequency range, we needed to remove the metallic walls 

further from the guide, i.e., increase the ration N/M. However, as for 

the dominant mode the fields are expected to vary slowly inside the 

guide, we can achieve the increase in N/M by decreasing M. When the 

ratio N/M is too small for the frequency range studied, the dispersion 

curve appears to drop more rapidly than it actually does. 



90 

DOMINANT MODE OF A SQUARE GUIDE 
1.0 r----------------------------. 

lD 
0.8 

0::: 
w 
1-
w 
~ 0.6 
<[ 
0::: 

~ 
w 
(f) 

<[ 

0.4 

~ 0.2 

K 1 =2.I K2 =1.0 

R = 1.0 

FD(N=IO M=7): HEeo 
I 

FD(N=IO M=4): HEeo 
I I 

I 
I 

y 
MARCATILl'S APPROXIMATION: E11 -mode 

2 

.. 
_.: I 

: I /. 
; I 

: I . 

:I I 
:1 .Y . 

4 

ROUND FIBER (same area as 
square guide): HE 11 -mode 

6 8 

NORMALIZED 

10 12 14 

FREQUENCY: V 

16 
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of a square dielectric guide, For obtaining an accurate FD-solution at 

low frequencies, it is necessary to use a higher ratio N/M. The 

solution for a round fiber of equivalent cross-sectional area is shown 
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Figure 12. Comparison between various solutions for the dominant mode 

of a high-permittivity square dielectric guide, The solution for a 

round fiber of equivalent cross-sectional area is shown for comparison. 
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4.8.3. Mode-Matching 

As described in Section 3.2, mode matching has been used to compute 

th d f h . h . . . . 1 . 11 e mo es o ig -permittivity image ines , We compared the dis-

persion characteristics obtained by this method to our FD calculations in 

Figs. 13 and 14. 11 The mode designation used by Solbach is identical 

to the one adopted by Marcatili, After determining the symmetry properties 

of these modes, we computed by FD the modes belonging to the same class of 

symmetry. For a permittivity of 2.22 (Fig, 13) the two techniques do not 

agree very well for the first mode but are in closer agreement, particu-

larly at higher values of V, for the second mode. For K
1
=12.0 the agree­

ment between the two methods is excellent for the lowest mode, 

4.8.4. Dispersion Curves for K
1

=2.1 and K
1
=13.l: Higher Order Modes 

For each class of modes (see Section 4.7) we computed the dispersion 

characteristics for two values of the permittivity: K
1 

= 2.1 (Fig. 15) 

and K1 = 13.l (Fig. 16). It was necessary to make plots of the cor­

responding eigenvectors in order to reject the spurious modes that we 

shall describe in Section 4.9. 

The dispersion curves are presented in comparison with the curves 

corresponding to Marcatili's modes that have the same axis-symmetries. 

Because the waveguide that we are studying is square, the Ey and 
pq 

x 
E -modes are degenerate. pq 

In the case of the FD modes, the Hee0 -modes 
n 

are degenerate with the HE0 e-modes. 
n 
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Figure 13, Comparison between the FD- and the mode-matching solutions, 

The mode denomination for the mode matching solution is the same as 

Marcatili's, The mode denomination for the FD-calculations is derived 

from the symmetry properties of the longitudinal magnetic field with 

respect to the x- and y-axes, as explained in Section 4-7. 
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In Figs. 15 and 16 we observe that only the dominant Ei
1
-mode 

agrees with our FD computations: The disagreement is progressively 

worse as we consider the higher order modes. We recall that the 

propagation constants are the stationary values of a functional 

(Eq. 49). Therefore, for the dominant mode, the guess of the eigen-

functions that is inherent in Marcatili's assumptions still leads to 

very good values for the propagation parameter. We note that the 

degeneracy of the E~ 1 and Ei2-modes is not confirmed by our FD-

calculations. Corresponding to each of these modes, we obtain two 

modes, HEee and HEee (with n equal to 1 and 2, respectively,) that 
n n 

become degenerate only for very large values of V. This is because, 

for a very tightly confined mode, the fields corresponding to these 

two modes are not much influenced by the outer dielectric interface 

and the fields can be superimposed by a 45° rotation. 

Until now we have presented results mostly for the square guide. 

This is because we expect that Marcatili's solutions become a better 

approximation as the guide aspect ratio R = a/b increases. This is 

confirmed by Fig. 17 that indicates that already for R = 5 we cannot 

distinguish the FD solution from Marcatili's. 

4.8.5. Field Plots 

We have now established that Marcatili's solutions are a relatively 

good approximation for computing the propagation constant of the 

dominant mode of rectangular dielectric guides, and they are attractive 
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because the solution can be written in a simple closed form. 

We shall now compare the field behavior of the dominant mode as 

computed by both methods. 

In Fig. 18 we plotted the longitudinal electric and magnetic 

fields of the Ex -mode, as they vary in the x,y-plane, respectively, 
pq 

along a line x=l/h and y=l/h: The guide is a square guide of per-

mittivity K
1
=2.l. The discrete points are the field values at the 

node points for the corresponding HE 0 e-mode. In Fig, 19 we compare 

the Ey -mode with the FD equivalent, the HEe0 ..-mode, for a square guide 
pq 

of permittivity K1=13.l, In each case the fields have been separately 

normalized so that IH I = 1 and IE I = 1. This allows us to 
I z max z1max 

compare only the spatial behavior, The relative importance of the 

fields is obtained by considering, for both methods, the value of the 

parameter P [defined in Section 2]. These quantities are listed in 

Table II. For both values of the permittivity, the qualitative 

behavior predicted by Marcatili's approximation is observed. The 

fields behave sinusoidally inside the waveguide and decay exponentially 

away from the surface, However, ou~ FD calculations show that the 

fields are actually more tightly confined. In the case of the low 

permittivity guide (K1=2.l) the dominance of the Ez- over the Hz-field 

is underestimated by about 80%; for the higher index guide the para-

meter p is overestimated by 25%. There does not appear to be a 

clear trend in the comparison of the values of P , computed by the two 

method. This is further complicated by the fact that P , for a 

given mode, will vary as the mode goes from cutoff to far above 
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TABLE II 

* Comparison between Marcatili 1 s and FD solution for the dominant mode 

of a square dielectric guide 

Mode v B p 
y 

Ell 5.44 0,58 0.91 

Kl 2.1 

K2 1.0 
HEeo 

1 
5.44 0,60 1.65 

x 

Ell 6.26 0.62 16.9 

Kl 13.l 

K2 1. 0 

HE~e 6,26 0.60 13.5 

* N 15 M 8 
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cutoff. For the high-permittivity guide the closer correspondence in p 

may be explained by the fact that this guide is further above cutoff th2n 

the lower permittivity one, 

4.9. Spurious Modes 

As explained in Section 4.6, the dispersion characteristics are 

obtained by scanning a range of values for the normalized phase para-

meter B and computing the corresponding values of the normalized 

frequency V, for a given class of modes. The computer then generates 

a plot such as the one illustrated in Fig. 20. The open circles 

correspond each to an eigenvalue, By taking a sufficient number of 

values for B it is possible to connect the results by smooth curves. 

However, this cannot be done uniquely, as shown by the two sets of 

lines in Fig. 20. The continuous lines correspond to the dispersion 

characteristics we have shown, for example, in Figs. 11,15. The 

interrupted lines do not seem to correspond to physical modes. This 

is verified by plotting the fields for the various modes. The 

"non-physical" modes will not exhibit the simple sinusoidal/ 

exponential behavior, Such spurious modes have also been reported by 

Corr and Davies
20 

and Ikeuchi, et al27 • These modes appear only for values 

of (B/k ) 2 
in the range 

. 0 
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For K
1 

>> 1, this means that the spurious modes are restricted to the 

range 

0.5 < B < 1 

which we observe on Fig. 20. The cause of these solutions may be in 

the indefinite nature of the variational formulation of the problem. 

He recall that we are computing the eigenvalues k; corresponding 
k2 -

2 to a given (negative) value of T = ~2- . For propagating modes, 
k 

both k
1 

and k
2 

are real quantities: 1 k
1 

> 0 and k
2 

< 0, A negative 

value of T can also be obtained if ki were negative and k; positive. 

This would be the case for transient modes, that is modes that have 

an imaginary value for both the propagation constant 6 and the free-

space wavenumber k . 
0 

5. Conclusions 

We have developed a numerical method based on finite-difference 

(FD) for computing the propagation constants and fields of a dielectric 

guiding structure. 

The method was tested in the case of a round guide for which a 

rigorous analytical solution exists and also by comparison with other 

work. The FD method gives very good agreement, by using relatively 

small meshes. It also is more efficient than the finite-elements 

method (FE) in terms of computer storage (this would allow us to 

treat larger meshes, being limited only by CPU time) and also in 

terms of the numerical method available for computing the eigenvalues 

of the resulting linear eigenproblem. 
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We have compared our solutions to Marcatili's approximate one, 

in the case of square guides that have a permittivity much larger 

than the surrounding medium, We found that Marcatili's solution 

gives a very good estimate, but only for the dominant mode. However, 

because most dielectric waveguides are used in a single-mode configura­

tion, this does not diminish the usefulness of Marcatili's closed-

form solution which remains useful for design purposes, 

Devices that depend critically on the details of the external 

field (such as directional couples) may require the FD-calculations. 

Finally, our method can be applied to guiding structures of 

arbitrary shapes and dielectric profiles, 
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Part III. Measurement of Complex Permittivity at Millimiter Wave 
Frequency 

1. Introduction 

This section describes a series of experiments made to determine the 

complex permittivity of KRS-5 and KRS-6 at 94 GHz. The mixed crystal 

thallium bromide-iodide (KRS-5) has been known as an infrared window 

material for the wavelength range 0.6-40 µm. Nothing was known of its 

properties in the millimeter wave range. Von Rippel 
1 

reports a low­

frequency dielectric constant of 32 and a loss tangent of 2xl0-3 at 10 

GHz. The low-frequency losses of thallium bromide-chloride (KRS~6), 

as given by von Rippel 1 , are also quite low. Therefore, we proceeded 

to measure the dielectric properties of these materials at 94 GHz. 

In selecting the experimental procedure, an important consideration 

was the ability to use standard millimeter-wave test equipment. Past work 

at these frequencies made use primarily of quasi-optical methods: open 

resonator, interferometer, "free-space path". Our measurement 

techniques utilize samples mounted in standard metal waveguides. They 

are based on a novel sample mounting configuration 
2 

that eliminates gaps 

between the sample and the waveguide walls. Waveguide methods offer the 

advantage of simplicity and accurate positioning of the dielectric 

material. 
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2. Survey of Available Experimental Methods 

2.1 Quasi-Optical Techniques 

These methods are based on the interaction of a plane-polarized 

wave with a dielectric slab positioned in free-space. They can be 

divided into two categories: 

- free space path; 

- open resonator. 

2.1.1 Free-Space Path 

These techniques involve a dielectric sample in the form of a 

relatively large dielectric slab positioned between two horns (see 

Fig. 1): a transmitting and a receiving horn. The rest of the apparatus 

is either a strictly free-space system or a microwave bridge. 

3 4 When using a free-space system ' , the real part of the complex 

permittivity is determined from the measurement of the Brewster's angle, 

and the loss tangent is obtained by comparing the transmitting power 

before and after insertion of the sample in the path. When the thickness 

of the dielectric sample is equal to or greater than half a material wave­

* length, A /2 , it is necessary to take into account the effect of 
m 

multiple reflections within the slab. 

A microwave bridge can be used to determine the dielectric constant 

by measuring the phase shift resulting from the presence of the sample. 

The losses are then also obtained by a comparison of the transmitted 

power with the incident power. 3 •5 The microwave bridge offers the 

* Material wavelength: A = 
m 

For KRS-5 (K=32) at 94 GHz A = 0,56 mm. 
m 
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horn dielectric slab horn 

Figure 1. Free-space method for measuring the complex dielectric constant. 

The measurement can be done by determining Brewster's angle and the trans­

mission losses through the sample. A microwave bridge can be used to 

obtain the phase shift resulting from the presence of the sample. 
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advantage of a high measurement sensitivity but requires a careful 

1 
. 6 error-ana ys1s. 

A more elaborate form of this latter technique is the Michelson-type 

* 7 interference spectrometer. In this instrument, the radiation emitted 

from a broad band noise source is divided into two paths of variable 

length and recombined at a square law detector. The output of this 

detector is recorded as a function of the differential length in the 

two paths. The measurement of the dielectric constant is based on the 

determination of the phase shift due to the presence of the sample, 

The loss tangent is obtained by compa1ring wide resolution power spectra 

with and without the sample. 

2.1.2 Open Resonator 

Fabry-Perot confocal or semi-confocal resonators (Figs, 2 and 3) 

have been used for measuring complex dielectric permittivity in the 

millimeter wave range. The dielectric sample is a slab large enough to 

cover the region where the electric field is non-negligible, The change 

in length of the resonator required to bring it back into resonance after 

the sample is inserted determines the dielectric constant. The loss 

tangent is determined from the reduction in Q when the sample is in-

verted. Great care must be exercised to distinguish the various modes 

of the resonator and to assure that the measurements correspond to 

identical modes. 

* Also commonly referred to as a '~Fourier transform spectrometer'·', 
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L 

dielectric slab 

mirror mirror 

Figure 2. Fabry-Perot confocal resonator. The changes in resonant con­

dition of the resonator determine the complex dielectric constant. The 

sample can be tilted to avoid multiple reflections and simplify the 

measurement of the permittivity. 
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/ 

I 

-------7 plane mirror at 
resonant position 
without sample 

concave mirror 

__ --/phase front 

beam 

plane mirror at 
resonant position 
with sample 

Figure 3. Semi-confocal resonator, The sample lies on the flat mirror. 

The system is brought into resonance with and without the sample. The 

changes in length and in Q-value determine the complex dielectric constant. 
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2.2 Cavity 

This technique is based on the modification of the resonance 

condition of a closed metallic cavity due to the presence of a di-

12 
electric sample. As the frequency of interest is increased to 100 

GHz and above, the physical dimensions of the resonator become very small, 

in order to keep the wall losses low. Correct mode identification also 

becomes a problem and some authors recommend the use of several cavities 

to confirm a measurement without ambiguity. 

3. Waveguide Techniques 

The various methods described earlier have the disadvantage that 

they require a relatively large sample in the form of a slab with 

parallel faces that must be positioned accurately in free-space. 

The waveguide techniques that will be presented here require only a 

small sample and utilize standard test equipment. A new sample mounting 

technique 2 was developed at Hughes Research Laboratories and is appli-

cable to a wide range of ductile materials. The dielectric samples are 

hot-pressed into copper wafers that have an aperture with dimensions 

corresponding to standard WR-10 waveguides. These wafers are then 

machined and polished to obtain flat, parallel faces (Fig. 4). We have 

used these wafers in two waveguide methods, the shorted waveguide and the 

waveguide Fabry-Perot, In both cases the properties of the dielectric 

are deduced from a standing-wave that is established within the di-

electric. 
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Figure 4. Waveguide wafers containing a sample of KRS-5. These wafers 

were made at the Hughes Research Laboratories and utilize a new sample 

mounting technique. 
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3.1 Shorted Waveguide 

13 This method was first described by Roberts and von Rippel. 

A sample of the dielectric material is inserted at the shorted end of a 

waveguide. The voltage standing wave ratio (VSWR) is measured with the 

sample in place and with the sample removed (Figs. 5 and 6). The shift 

in position of a voltage minimum (node) due to the presence of the 

sample is also determined. With this information and also with the 

sample dimensions, the frequency and the guide wavelength, it is possible 

to deduce the complex permittivity of the sample. The method requires 

a slotted line or a similar device that allows measurement of a 

standing wave in amplitude and phase. 

3.1.1 Mathematical Formulation 

A standing wave in the waveguide can be represented as the sum of 

two traveling waves propagating in opposite directions. In the empty 

waveguide (medium 1) the transverse field components, E
1 

(z) and H
1

(z). 

are given by: 

-y z Y1Z -y z Y1Z 
E1(z) Alie 

1 l 
+ Alre Ali (e + r e ) 

0 
(la) 

H1 (z) 
Ali -ylz Alr Y1Z Ali -y 1 z y lz 

zl 
e 

zl 
e -(e r e ) 

zl 0 
(lb) 

where Ali and Alr are the amplitudes (assumed real) of the incident and 

reflected waves at the dielectric interface. We have introduced in 

Equations 1 the complex reflection coefficient 
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x 

empty waveguide dielectric-filled guide 

d 

Figure 5. Shorted waveguide method for the measurement of dielectric 

constant. A sample of the dielectric material is inserted at the shorted 

end of the waveguide, 

short 
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---->!!Dool~d~ 

Figure 6. The shift in position of a node and the VSWR with the sample 

inserted at the shorted end of a waveguide determine the complex dielectric 

constant. 

z 
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Air _ -2¢ 
ro ;::: Ali = e (2) 

where 

cp = p + jiJ; (3) 

defines a reflection coefficient which characterizes the loaded guide. 

At the dielectric interface, z = 0, the wave impedance Z = E/H is 

given by 

E(O) l+ro 
Z(O) = H(O) = 21 1 - r 

0 

2
1 

coth cp 
... 

(4) 

The attenuation in the air-filled waveguide can be neglected in most 

cases and the propagation constant y 1 is 

(5) 

where Al is the wavelength inside the guide. The maximum and minimum 

amplitudes of the fields are: 

E = I A
1

. I (1 + Ir I ) I A
1

i. ! (1 + e-2
p) 

max i o 
(6a) 

E . I A
1

. I (1 - Ir I) I A
1

i. I (1 - e -2
p) 

min i o 
(6b) 
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Therefore: 

E . 1 - e-2p min --= 
Emax 1 + e-2P 

tanh p • (7) 

The first minimum above the dielectric boundary occurs at a point z = -z 
0 

where the reflected wave has a phase shift of TI radians with respect to 

the incident wave, that is, 

2nz 2nz 
Alo= -21)! - Alo - 1T • (8) 

If we expand coth ¢in Equation (4), we obtain 

E min 2nz 
--- j tan --0 

E Al 
Z (O) zl 

max 
(9) 

E 2nz 
1 - j 

min tan --0 

E Al max 

The impedance Z(O) is determined by analyzing the standing wave in the 

dielectric-filled guide (Region 2). We assume that the power remains in 

the TE
10 

mode, even though higher order modes can propagate in this 

section. This assumption is supported by the fact that the planar 

normal air-dielectric interfaces and the constant metallic guide cross 

section do not encourage mode conversion. Thus, in Region 2: 



A2i e 

-y z 
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(lOa) 

(lOb) 

At z = d, the waveguide is terminated by a short that is assumed to be 

perfect. This introduces the boundary condition 

0 (11) 

Hence, 

Z (O) (12) 

For a TE wave in Region 2, the following relation exists between the 

wave impedance and the propagation constant: 

(13a) 

The permeability of the dielectric material, µ
2

, is, in general, equal to 

the permeability of free space µ
0

; therefore, 

(13b) 
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and 

Z(O) (14) 

Equating (9) and (14) yields 

E min 2Tiz 

Al 
--- j tan --0 

tanhy
2

d E Al 
j 

max 
(15) y

2
d 2nd E 2nz 

1 - j 
min tan --0

-
E Al max 

The experimental measurement method then consists of the following steps: 

* 

- Measure the thickness of the sample d, the wavelength Al in the air-

* filled guide, the standing-wave ration E . /E min max and the distance 

** of the first minimum z from the dielectric boundary 
0 

- Compute the right-hand side of Equation (15) which determines the 

complex quantity 

(16a) 

Solve numerically the transcendental equation for the complex 

variable Y
2

d 

(16b) 

-1 
Note that the voltage standing wave ratio is defined by VSWR=(E . /E ) . min max 

** This distance is in fact equal to the shift in the position of the 
voltage nodes due to the presence of the sample. 
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Compute the dielectr,ic constant and the loss factor from 

where A is the free-space wavelength. 
0 

3.1.2 .9.E_!:imum Sample Length 

(17) 

R b d H. 1 13 . h f 1 1 1 o erts an von ippe point out t at or ow- oss materia s it 

is desirable to use a thickness nearly equal to an odd multiple of ), . 

2 When attempting to measure the loss tangent of low-loss, low-dielectric 

constant materials such as Teflon and Rexolite, we observed that it was 

necessary to use significantly longer samples: This is because the 

losses introduced by the sample must be larger than the losses due to 

the metallic walls. 

To first approximation, the shift z in the position of the voltage 
0 

nodes determines the dielectric constant of the sample, while the loss 

tangent is given by the VSWR of the loaded guide. In practice, VSWR's 

can be measured only in a limited range: 

- The minimum value is determined by the mismatch of standard wave-

guide components: VSWR. = 1.2 (= 1.6 dB); min 

- The maximum value results from the finite conductivity of the 

waveguide walls and the short: VSWR ~ 30 dB(*). 
max 

This in turn determines a range of sample length for an accurate measure-

ment of the loss tangent: 

(*) measured about 50 nun from a copper short terminating a standard WR-
10 wavezuide. 
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- If the length is too small, the sample will introduce losses that 

are negligible compared to the waveguide losses; 

- If the length is too large, the resulting VSWR will be masked by 

the residual VSWR of the components. 

To determine the range of optimum length, we consider the VSWR created 

by a sample of length d, dielectric constant €2 and loss tangent tan a 
. 14 15 For small values of tan o (<0.1), Eq. (15) can be rewritten as: • 

A 21TZ 
= - _g_ tan --0

-
21Td d 

2 
2rrz 

1 +tan T 

(18) 

(19) 

where s2 = ~: is the imaginary part of the propagation constant y
2

,A.c 

is the guide cutoff wavelength and A.2 is the wavelength in the dielectric­

f illed waveguide. We have: 

~ and 

A. 
0 

(20) 

(21) 
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Denoting S
2

d x, we can deduce from Eq. (18) and (19) that 

2 2 2 
E . s

2 
nd 1 x tan - x tanx + x 

min = ~~ ~~~~x~~~~~~~-
E A A 2nd 2 2 2 

max g rE -(~)2] (-A~) tan x + x 
L 2 A g 

c 

At resonance, 

d (2n+l) 
A2 

4 

and 

(2n+l) 
1T 

x = 
2 

Eq. (22) becomes 

E . 
min = E nd tano 

E 2 
max res 

1 
A 2 

(Ao) J 
c 

Simplifying this expression, we obtain 

E . min 
E 

max res 

E tan 8 

(22) 

(23) 

(24) 



At anti-resonance, 

x = nTI 

and 

d = 

Equation (22) becomes 

E . min 
--= 
E max 

which reduces to: 

E . min 
E an tires 

max 

TI 
= n 2 E2 tarn) 
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[1 - A 2 
(\ 0) J 1 c (25) 

[ E2 
A 2 

[s2 -
:\ 2 

- (A:) J (_2.) J ;\ 
c 

Comparing Eq. (24) and (25), we observe that for large n the ratio of 

the peaks to the valleys of E . /E is independent of sample length: 
min max 

ratio = (26) 

This quantity depends primarily on the dielectric constant. At 94.75 GHz 



in a WR-10 waveguide (A 
c 

ratio 6.8 dB 

and 

ratio 32 dB 
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5.080 mm), 

for E2 = 2.1 

for E = 32 2 

In Figs. 7 and 8, the inverse standing 

(Teflon) 

(KRS-5,6). 

wave ratio, E . /E , is plotted min max 

versus normalized lengths d/A 2 , for two different sets of dielectric 

constant and loss tangent, corresponding respectively to Teflon and 

KRS-5. Figures 9 and 10 represent only the maxima and minima of this 

function that vary linearly with length, as indicated by Equations (24) 

and (25). As mentioned before, interrupted lines corresponding to the 

limits of measurable VSWR also appear on these figures. In the case of 

low-index, low-loss materials, such as Teflon, it is necessary to consider 

relatively long samples that introduce a VSWR below the upper limit of 

30 dB. On the contrary, for high-index, high-loss samples such as KRS-5, 

the samples must be short enough so that the VSWR is kept above the lower 

limit of 1.2. It also appears from these figures that sample lengths 

nearly equal to resonant lengths give the best accuracy in the determina-

tion of tan o. Similarly for these lengths, as it results from Eq. 

(18) and its graphical representation in Fig. 11, the measurement of the 

shift, z
0

, will result in a more accurate value of A
2

, and hence a smaller 

uncertainty in the dielectric constant E2 . Therefore, an accurate 

measurement by the shorted waveguide technique of complex dielectric 

constant requires resonant lengths. 
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E = 2.1 
-3 

tan8=10 

-1 
The field ratio (Emin/Emax = VSWR ) is plotted versus the 

normalized length of the sample. In case of a low-index and low-loss 

sample, the sample must be long enough to obtain a VSWR lower than the 

maximum measurable value. 
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Figure 8, In case of a high-index, high-loss sample, the peaks are 
-1 always located below the maximum VSWR value (Emin/Emax = VSWR ); if the 

sample is chosen too long, the resulting VSWR will be smaller than the 

minimum measurable value. 
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0.1 

E = 2. I 
-3 

tan 8 =10 

I 

0.05 1 
VSWRmax =30d8 
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dl>..2 

Figure 9. The maxima and minima of the field ratio (Emin/Emax) are 

plotted versus the normalized length of the sample. The maxima cor­

respond to odd multiples of quarter wavelengths while the minima cor­

respond to half wavelengths, 

16 17 
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1.0 r------.------,------.------.----------, 

VSWRmin = 1.2 

0.8 

0.6 

E = 32 
-2 

0.4 tan 8 = 10 

0.2 

2 3 4 

Figure 10. In the case of a high-index, high-loss sample, the peaks 

only correspond to favorable lengths for determining the dielectric 

loss tangent. If the sample is too long, the resulting VSWR cannot 

be measured. 

5 
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Figure 11. The shift in position of a voltage node is plotted versus 

the normalized sample length. The resonances occur for odd multiples 

of a quarter wavelength and correspond to favorable lengths for the 

measurement of the dielectric constant. 
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3 .1. 3 Air Gaps 

The effect of an air gap can be roughly described by using a 

quasi-static approximation which leads UEj to consider two capacitq;rs in 

series, 16 one formed by the dielectric and the other by the air gap 

For a gap of thickness g, located along the broad wall of a waveguide 

of height b, the corrected values E and tan o are obtained from the 
c c 

measured values, respectively, E and tan o , 
m m 

E 
c 

ta no 
c 

= E 
b - g 

m h - gE 
m 

= tano ~ - g 
m · - gE 

m 

(27) 

(28) 

These equations show that the errors introduced by an air gap increase 

rapidly with the dielectric constant of the sample. As it appears under 

a microscope (see Fig, 12) ~ our new sample mount;Lng technique 

completely eliminates air gaps and thus no correction was made to our 

results. 

3.1.4 Waveguide Wall Losses 

14 
As suggested by Dakins and Works , the effect of wall losses can be 

estimated by applying Eq. (19) to the empty waveguide. It results that, 

A E . 
tan o = -1L. min 

w 1Td E 
w max 

(29) 
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Figure 12. Enlarged view of the central portion of the waveguide wafers 

containing a sample of KRS-5, No air gaps can be distinguished under 

the microscope. The thin white line around the sample is the gold layer 

that prevents the copper wafer from oxidizing when the material is 

pressed. 
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where d is the length of empty waveguide from the short to the position 
w 

of the slotted line probe and tan o is the equivalent loss tangent of 
w 

the guide. This equation does not take into account the losses due to 

the imperfect short, for which no model exists. 

At 94.75 GHz, in a silver WR-10 waveguide, terminated by a copper 

short, the standing wave was measured to be about 30 dB at 50 mm from 

the short. Therefore the loss tangent is 

tan o w 

which corresponds to an attenuation 

The correction to the measured value of tan o 
m 

tan o = tan o - tan o 
c m w 

14 
is then 

(30) 

As our samples presented a loss tangent of at least one order of magnitude 

larger than tan o , we did not apply any correction. 
w 

(*) This is an estimate that compares very well with the value quoted 
by the technical literature: a 5 dB/m at 94 GHz. 

w 
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3.2 Results of Measurements 

The experimental arrangement is shown in Fig. 13b. The position 

of a node was determined with a W-band slotted line (Alpha/TRG Model W740). 

To obtain the complex dielectric constant from the measurements, a com-

puter program was written along the lines of the program used by Nelson, 

15 
et al. 

The values of complex dielectric constant obtained at 94.75 GHz 

for the samples of KRS-5 and KRS-6 are given in Table I. The agreement 

between the various samples is quite good. The larger dispersion in the 

loss tangent of the KRS-6 samples is presumed to be due to sample im-

perfections: KRS-6 is less ductile than KRS-5 and the wafers presented 

some cracks visible under a microscope. 

In order to check further the accuracy of our experimental technique, 

we measured the dielectric properties of Teflon and Rexolite at 95 GHz. 

In this case it was necessary to use substantially longer samples, 

Accordingly, we machined long samples of Teflon and Rexolite (rv13 mm) 

to slip fit in WR-10 waveguides. Our results for these samples were: 

E: 
r 

E: 
r 

2.4 

1.9 

tan8 

tan8 

-3 3.3xl0 for Rexolite, 

-3 4xl0 for Teflon. 

The measured values of dielectric constant are in good agreement with 

literature values 
17

•18 •19 for Rexolite (2.47 - 2.58) and Teflon 

(2.0 - 2.1), while the measured values of loss tangent are larger than 
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Figure 13. Experilllental arrangements used for the waveguide measurement 

of complex dielectric constant. 

(a) Fabry-Perot resonances in reflection and transmission; 

(b) Shorted-waveguide method. 
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. 17 18 19 3 
the literature values ' ' for Rexolite (l.2xl0- ) and Teflon 

-3 \ -3 
(2xl0 - 3xl0 ). We should, however, note that there is no 

"accepted" value for tan6 at millimeter wave frequencies, and that 

literature values often differ by as much as a factor of 2. In any 

case, since our measured value of tan KRS-5 and KRS-6 are one order of 

magnitude larger, we feel that our method is reasonably accurate for 

these materials. 

As a check on the 10 GHz values of Er and tano quoted vaguely 

by von Hippel 
1

, we also made a shorted waveguide measurement at 10 GHz, 

using an X-band setup similar to the one depicted on Fig. 13b, In this 

case the samples were machined to size and slipped into the end of a 

standard X-band waveguide. Our average results at 10 GHz for KRS-5 

were: 

€ 
r 

30.6 tan6 

As mentioned in Ref. 2, it is possible to model to first approxi-

mation the frequency behavior of the losses in KRS-5. The low-

frequency behavior corresponds to ionic conductivity, whereas at micro-

wave and millimeter wave frequencies the behavior is dominated by the 

tail of the lattice absorption centered at about 1400 GHz. Our measured 

values and these models are depicted in Fig. 14. 
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TABLE I 

Experimental Values of€ and tan oat 94.75 GHz by the Shorted Waveguide 
r 

Method 

Sample Thickness 
(mm) Material € Tan o r 

0.942 KRS-5 31. 7 1. 7 x 10-2 

0.940 KRS-5 31. 9 1. 7 x 10-2 

0.686 KRS-5 31.l 1.9 x 10-2 

0.414 KRS-5 31.5 1.6 x 10-2 

0.973 KRS-6 30.8 1.1 x 10-2 

o. 777 KRS-6 31.0 3.3 x 10-2 

0.483 KRS-6 30.8 3.6 x 10-2 

0.358 KRS-6 30.8 1.0 x 10-2 

12.532 Rexolite 2.41 3.4 x 10-3 

12.517 Rexolite 2.41 3.2 x 10-3 

14.030 Teflon 1. 94 4.1 x 10-3 

13. 872 Teflon 1. 98 4.7 x 10-3 
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(a) 

( b) 

(i,j +I) 

(i,j} (i +l,j) ( c) 

//// ) ~ 

Figure 2. a) An interior point (i,j) and its four nearest neighbors 

in the mesh are represented in this graphical illustration of the 

five-point Laplace difference operator. 

b) Image terms are obtained when the interface is approached 

from the dielectric and the point (i,j) is considered to be inside 

region 1. 

c) The other set of image terms is obtained when the interface 

is approached from the outer medium and the point (i,j) is considered 

inside region 2. 
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Figure 14. Measured values of the loss tangent of KRS-5 and theoretical 

behavior due to ionic conductivity (l03 to 107 Hz) and lattice absorption 

(above 107 Hz). 
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3.3 Waveguide Fabry-Perot 

Our sample mounting method allowed us to build a waveguide 

Fabry-Perot experiment, where multiple reflections are created between 

the parallel faces of our samples and the total transmission or reflec-

2 
tion coefficient is measured as a function of sample length The 

experimental setup is illustrated in Fig. 13a. Results obtained by this 

method are comparable to the results from the shorted waveguide 

experiments. The theory of the Fabry-Perot measurements and the 

experimental results obtained are discussed in Ref. 2 and will not be 

repeated here. 
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APPENDIX A 

Waveguide Modes: Longitudinal Field Formulation 

The general mode of a waveguide of axis z is a combination of 

1 -+ -+ 
A complete description of the E- and H-fields TE and TM modes 

requires the knowledge of six components. However, because of Maxwell 

curl equations, only two components are independent. It is most common 

to formulate the problem of dielectric guides in terms of the longitu-

dinal components E and H . The four remaining components, the trans-
z z 

verse ones,can be derived from E and H , Assuming a z-dependence of 
z z 

the form exp(~jSz), the longitudinal components must satisfy the wave 

equation 

where 

The transverse 

1/2 H + k2 H 0 t z q z 

1/2 H + k2 H 0 
t z q z 

k2 = n2 k2 - s2 
q q 0 

components are given by 

E 
x 

E 
y 

H 
x 

·s C3E . C3H 
J Z JW).1 Z 

- k2 ~ - k2 C3y 
q q 

'S C3E . C3H = _ J_ __ z + JWf:l __ z 
k2 C3y k2 C3y 

q q 

jwn
2 

(3E 
= q z 731-

q 

·s (3H .J ___ z 

k2 dX 
q 

(1) 

(2) 

in region q. (3) 
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in rectangular coordinates [x,y,z] , and, 

E 
r 

. B ClE • 1 3H J z JWP z 
- k2 ar-- k2 ~ T¢ 

q q 

. 2 ~E H 
JWil (j z j B 1 z .=__g_ ____ _ 
k2 8r k2 r 3¢ 

q q 

in cylindrical coordinates [r,¢,z]. 

(4) 

(5) 
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APPENDIX B: 

FD-Matrices 

As mentioned in Part II, the finite .... differences (FD) method 

utilizes a mesh that covers the region of interest with rectangular 

elements in such a way that the boundaries and the two axes of synnnetry 

* divide, each one respectively,a row of elements in two equal halves (Part 

II,Fig. 6) . Therefore, we have four types of rectangular elements: 

a) the general rectangular element (Fig. 1.a); 

b) the element divided in two by a line parallel to the x-axis 

(Fig. 1. b); 

c) the element divided in two by a line parallel to the y-axis 

(Fig. 1. c); 

d) the element divided by two orthogonal lines (Fig. l.d). 

On each of these lines, an electric or magnetic boundary condition must 

be applied. Let us define the quantities s and s' that define the 

symmetry of the longitudinal field ¢ = H with respect to one of these 
z 

axes: s and s' take the values ±1. If, for example, for the element 

illustrated in Fig. l.b, s takes the value +l, this signifies that 

cp is an even function about the axis and therefore iJ; 

is equivalent to an electric boundary condition. 

WE: 

= ---.£.. E must s z 

- w3 • This 

* The outer "box" corresponds to an electric wall boundary condition, 
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(a) 

2 4 

h2-+-2-Kp I __ s_ (b) 

h, 3 

s' 
2 4 

15 
h2 I p (c) 

I KP 

3 
h, 

2 
Is' 

4 

h2 -~- s (d) 
I KP 

3 
h, 

Figure 1. The element used for FD-calculations can either be the 

general element (a) or an element divided by one (b,c) or two symmetry 

axes (d). The parameters sands' define the symmetry of the longitudinal 

magnetic field with respect to the x- and y-axis: s and s' take the values 

+ 1. For example, Hz ~ s s Hz ~· while Hz ~ = s' Hz b . 
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We can now evaluate the contribution of these elements to the FD 

matrices A and B (Eq. II-55) by using the FD approximations (Eqs. 

II-52-54). 

form 

For each element, S , we can write a relation of the 
p 

{1) 

These relations are then summed to form AX= k2 
A 

B X. For the general 

* element (Fig. l.a)' Eq. 1 becomes 

r~ ff~+ 0 -TR w 

P(R+ -w -PR 

aJ 
T(R~) ___l'. 0 

a¢2 

aJ 
___l'. 

P(R·+ al)J2 

= 
aJ 

___l'. 

o<P3 

aJ 
___l'. 

al)J3 

ilJ 
___l'. 

a<P4 

aJ 
__.£. 

al)J4 

t -w 0 -i 

w -P 
0 'R 

0 0 T -p: 

0 0 - w 

T(R+ 0 -TR 

P(R~) w 

t(R~) 

<P1 
l)Jl 

<Pz 

'iiz 
diag [l,P' ,l,P' ,l,P' ,l,P'] "' 

"'3 
ljJ3 

<P4 
ljJ4 

0 '1 
0 11'1 

w 4'2 

-P 
11'2 "R 

-w ,3 

-PR ¢3 

0 <P4 

P(R~) ¢4 

(2) 



where 

T = 
82 

-1 

82 
K 

p 

P' = 82 
K 

p 

p = 82 KT 
p 

w -2 
= $ T 
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(3) 

(4) 

(5) 

(6) 

Using the symmetry parameters s and s' we can compute the contribution 

of the element illustrated : 

in Fig. l.b.: 

oJ 
T[(l-s)

2 
R + ~) -2T -1.'. 2Ws 2W 4>2 aq,2 R" 

oJ 
P((l + s)

2 
R + ~] -2P -1.'. -2W t/!2 a¢2 R" 

= 
oJ t 2 2 -1.'. (1-s) R + RJ -zws 4>4 l ~. oJ 

P[(l- s
2 

R + ~] -1.'. ljJ 
alj!4 4 

- ·~ "" "" [!"' ,1.''{~1] (7) 



in Fig. 1.c.: 

= 

[ZR+ (1-B')z !.] 
R 

in Fig. 1. d.: 

-2Ws' 

P{2R + (l + s') 2 l] 
R 
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-ZTR 

2W 

T[2R + (l - s')z j:i 

2T((l - s')z i + (1 - ~)z R] -4W(s'-s) 

= 
-4W(s'-s) 2P[(l + s')

2 i + (1 + s)
2 

RJ 

-2W 4>3 

-2PR >f3 

2WS t 4>4 

P(2R + (1 + s') 2 i:J >f4 

(8) 

>fl 

(9) 

Only half of the matrices A is reproduced here :A is a symmetric p p 
matrix. 
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These relations are then used by a program to build systematically 

the matrices A and B by adding numerically the contribution of each 

element. The necessary inputs to the routine are: 

the total number of 1llesh elements; 

* - the local mesh size h
1

,h2 ; 

- the normalized propagation constant B = 8/k ; 
0 

- the permittivity K at the location of the element S ~ 
p p 

- the symmetry parameters s and s' that define the various 

modes. 

When a graded mesh is used, the dimensions h
1 

and h2 of each element Sp 

become a function of the position of the element. 
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Appendix C. Wave Equation Approach to Finite-Differences 

1. Introduction 

In Part II we presented a finite-difference (FD) method for 

computing the modes of dielectric guiding structures that is based on 

a variational expression for the longitudinal fields H and E . How-
z z 

ever, previously we had attempted to use a wave-equation approach: This 

consists in discretizing the differential equations that define the 

problem. We tested successfully the method in a simple one-dimensional 

case but found that it was totally inaccurate when applied to the 

rectangular dielectric guide. 

We will briefly describe here the wave equation approach because 

it shows, in comparison, the advantages of the variational formulation 

that we used for our calculations. 

2, Wave Equation Approach 

As mentioned earlier, the fields propagating along a cylindrical 

guiding structure of axis z can be derived from the longitudinal fields 

¢ H (1) 
z 

and 

w € 

~ 
0 

E = -6- z 

The wave equations for these fields are (see Part II 9 Eqs. 38-39): 
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Figure 1. Mesh used for the wave-equation approach to FD. The 

rectangular dielectric guide is enclosed in a "box" (electric wall 

boundary conditions). 

6y 

x 

/ / 



160 

(3) 

in region p, where 

(4) 

The boundary conditions at the interface between two regions of dif--

ferent dielectric permittivity, regions 1 and 2, can be written in the 

1 2 
form ' 

(5) 

(6) 

where the parameter T quantizes the difference in permittivity between 

the two regions: 

T = (7) 

If we consider the rectangular dielectric guide, we define a problem 

of finite extent by enclosing the waveguide in a "box" (electric walls) 

large enough so that it perturbs only minimally the modes of interest 

(Fig. 1). Because of symmetry we need to examine only one quadrant 
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which will be covered by a discrete mesh. At each mesh point, the 

wave equations are replaced by their FD..,.equivalents 2 , 3 With the 

notation 

cjlij == ¢(illx,j6y) 

we have approximately, 

(~) 
3x .. 

lJ 

¢.+l . - 2¢.. + ¢. 1 . 2 
_i _ _,_,..o:.J _____ i_.,_~ ___ i_-__,,.u.J __ + 0 ( Lix ) 

6x 

¢.+l . - ¢. 1 . 2 
l ,J l~ + 0 (llx ) 

2llx 

(8) 

(9) 

3¢ 3
2¢ with similar expressions for a- and ~-2 • 

y 3y 
Substituting these expres-

sions into the wave equation for region 2 (the outer medium of permit-

tivity K
2

) we obtain 

A.¢ •. 
lJ 

2 
R ¢ .. 1 

l ,J- (10) 

where A 6x/lly; a similar expression can be written 

for ijJ. 

At interior points in the rectangular dielectric (region 1 of 

permittivity K
1
), the corresponding equation for¢ is 
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A¢ .. 
l] 

2 = 2T(l + R ) ~ .. - T¢.+l . - T¢. l . 
l] l 'J i- • J 

2 2 
- TR ¢ . . +l - TR ¢ . . l l,J i,J-

(11) 

and a similar equation for l/J. 

Lqs. 10 and 11 are valid at all points interior to regions 1 and 

2, respectively. To treat the points located on the interface, we will 

introduce "image terms" 
2

'
3 

in the FD equations. Consider a point 

(i,j) located on the interface. We can write the limiting form of 

Eq, 11 when the interface is approached from the dielectric while the 

point (i,j) remains inside the dielectric (Fig, 2,b): The resulting 

equations contain terms involving ¢~ '+l and l/J~ ·+l' Similarly, when 
l,J l,J 

the interface is approached from the air, we obtain another limiting 

form of Eq. 10 containing ¢~ . 
1 

and l/J~ • 1 l,J- l,J.,... 
These "image terms" are 

then eliminated by using the interface conditions written in FD-form
2

•3 . 

By proceeding as outlined above, we obtained a set of equations 

for each point (i,j) of the mesh. These equations are written in 

matrix form as 

AX A. X (12) 

where Xis an ordered vector of the field values¢ .. and l/J ..• 
l] l] 

Equation 12 constitute a set of linear eigenvalue equations that are 

solved by standard numerical techniques. It is important to note that 
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I 
( i,J +I) 

(i,j+I) 

(a) 

( b) 

® 

(i,j) (i +l,j) ( c) 

~(i,j/-l)f!IA 
///,/~ 

Figure 2. a) An interior point (i,j) and its four nearest neighbors 

in the mesh are represented in this graphical illustration of the 

five-point Laplace difference operator. 

b) Image terms are obtained when the interface is approached 

from the dielectric and the point (i,j) is considered to be inside 

region l. 

c) The other set of image terms is obtained when the interface 

is approached from the outer medium and the point (i,j) is considered 

inside region 2. 
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in this case the matrix A presents a very unfavorable structure. 

It is nearly banded but for sparse off-band elements that introduce 

a coupling between the ¢ and ~-fields at the interface points. The 

matrix A must be treated as a full matrix. 

3. Numerical Results 

We first applied this method on a semi-infinite slab because 

this problem has an analytical solution and permits us to test the 

treatment of the interface points and the influence of the outer "box", 

Figure 3 depicts the one-dimensional mesh used in this case and Figure 

4 compares the field distribution computed by our numerical method and 

by the exact analytical solution, The agreement is excellent even for 

a very small number of points in the mexh (N=3). 

We then tried to apply the method to the problem of a rectangular 

waveguide and by comparing it, in the large frequency region to 

Marcatili 1 s or the round guide (see Part II), we found it very in­

accurate for the maximum number of mesh points that we could practi­

cally use (N=9 in each linear direction). Because size of the matrix A 

increases with N
2

, computer storage limitations prevent us from refining 

the mesh any further. In comparison the variational approach presents 

the advantage that the difference in permittivity between the region 

is taken globally into account instead of ata few discrete interface 

points. These results, as we have seen, in a banded matrix A can 

be handled numerically much more efficiently. 
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Figure 3. One-dimensional mesh for the FD-solution of a semi-infinite 

slab. 
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E0 -mode 
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o N=20 M=6 

analytical 
solution 
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Figure 4. E0-mode of a dielectric slab of high-permittivity: K
1
=13.l 

K2=1.0 . The normalized free-space wavenumber is: k
0
d=l.39 • The 

longitudinal electric field is plotted versus normalized distance 
x (the location of the slab corresponds to: -0.S ~ d ~ 0.5 

2 
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Moreover, the wave equation approach is limited simple geometries, 

while the variational FD-method can test any geometry and permittivity 

profile. 
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