THE EFFECTS OF OXYGEN ON THE FORMATION OF
Ni, Pd and Pt SILICIDES

Thesis by
David Martin Scott

In Partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy

California Institute of Technology
Pasadena, California

1982
(Submitted March 3, 1982)
ACKNOWLEDGEMENTS

It is a very moving experience to acknowledge the people who have contributed to the successful completion of my work at Caltech. First and foremost I would like to express my appreciation to my advisor, Professor Marc-A. Nicolet for the guidance, support and encouragement he has given me throughout my stay at Caltech. I am deeply indebted to him. I would also like to thank Professor James W. Mayer for his thoughtful advice and encouragement. It has been a very rewarding experience to work in their solid state group.

Several people have contributed to the technical aspect of this work. I would like to give special thanks to Dr. Paula J. Grunthaner for her collaboration on the XPS work. I also wish to thank Dr. Bor-Yeu Tsaur for his assistance at the start of this work and also Drs. Silvanus S. Lau, Leszek S. Wielunski and Professor Charles A. Barnes for their interest and many fruitful discussions.

The collaboration of Thomas C. Banwell on the contact resistivity work and especially during meV/atom Pb implantations is gratefully acknowledged. I would also like to express my appreciation to Rob Gorris, Rouel Fernandez, Daniel G. Tonn and Jeff J. Mallory for their outstanding technical help and also to Wilfred Schick for his assistance with the 3 MeV accelerator. Thanks to Mrs. Michell L. Parks for her friendship and skillful typing and also to Linda Dozsa for her friendship throughout my stay here. Thanks also to Vivian Davies for her excellent work on this manuscript.
Of the people outside the Caltech community who also contributed to the successful completion of my graduate work, I am most deeply indebted to Dr. Judy Swerling for her friendship and support. I am also indebted to John Krenzalek for his support and understanding both as landlord and as a good friend. I especially wish to express my deepest appreciation to Jennette Johnson for her love and support. The concern and advice of Dr. Fernando Morinigo is also gratefully appreciated. I would also like to thank my mom, Janice V. Scott for her support and encouragement and my fiancee Anne E. Ludvigsen for her love, encouragement and patient understanding. Finally, I would like to acknowledge the Calculator (Toy) Division of Hewlett-Packard for making the work reported here not only easier but much more enjoyable.
ABSTRACT

A systematic study of the effects of implanted oxygen on the formation of Ni, Pt and Pd silicides has been carried out using $^4\text{He}^+$ backscattering spectrometry (BS), $^{16}\text{O}(d,a)^{14}\text{N}$ nuclear reaction analysis (NRA) and x-ray photoelectron spectroscopy (XPS) for the analysis. A detailed presentation of the NRA technique is given as this technique was central to this study and is not as generally known as are BS and XPS (Chapter II). The depth resolution of this technique is found to be ~ 150 to 200 Å in Ni. The oxygen sensitivity is essentially limited by measurement time (~ 10 hrs) to $\sim 10^{19}$ to 10^{20} O/cm2.

The effect of oxygen on the formation of Ni$_2$Si is shown to vary with the initial location of the oxygen (Chapter III). Ni is the dominant diffusing species in Ni$_2$Si formation. Oxygen initially located in the Ni film is found to build up during annealing at the Ni-Ni$_2$Si interface until a diffusion barrier to the Ni is formed. The XPS data shows this barrier to be SiO$_2$. Oxygen picked up during annealing from the ambient also plays a role in the buildup of this barrier. Once Ni$_2$Si growth is halted, the second phase NiSi begins to nucleate and grow. The result is the simultaneous presence of Ni, Ni$_2$Si and NiSi in the implanted samples. The threshold dose ϕ_{th} necessary for barrier formation is $\sim 1.2 \times 10^{16}$ O/cm2. This is equivalent to ~ 26 Å of stoichiometric fused quartz if present as a layer. For the oxygen initially present in the Si, the oxygen is incorporated into the Ni$_2$Si layer without an interfacial accumulation taking place. The relative reduction in oxygen density parallels that of the Si density as Si forms Ni$_2$Si.
We model these observations in terms of the asymmetries that are present in this system with regard to the moving species in Ni$_2$Si formation and with regard to the chemical reactivity of oxygen with Ni and Si.

The effects of implanted oxygen on NiSi formation are studied for the case of the oxygen initially present in the Ni$_2$Si film on a Si (100) substrate. Upon annealing, NiSi grows with square root of time in both implanted and unimplanted samples. This disagrees with the linear rate previously reported. The growth is slightly slower for implanted samples. The slowing is uncorrelated with the amount of oxygen, suggesting that a structural change due to ion implantation is the cause. During NiSi formation, oxygen is incorporated into the NiSi film without interfacial accumulation, but the oxygen distribution is seen to move towards the surface. This motion is explained in terms of a simple model based on the chemical affinity of oxygen to Si and Ni and the fact that Ni is the moving species in NiSi growth. The shift in the oxygen peak position during NiSi formation enables the implanted oxygen to act as a diffusion marker. This confirms that Ni is the diffusing species in NiSi formation. The use of implanted oxygen as a diffusion marker in thin film studies is briefly explored.

We have also studied the effect of impurity oxygen initially present in a Pt film on Pt$_2$Si formation (Chapter IV). We found that the redistribution of the oxygen during annealing, subsequent barrier formation and threshold oxygen dose were all identical to that of the corresponding Ni case. This result is shown to be consistent with the asymmetries present in the chemistry of oxygen relative to Pt and Si and in the initial
location of the oxygen relative to the moving species (Pt). The case of oxygen initially located in the Si was not investigated as this case most likely is also identical to the corresponding Ni case.

For the impurity oxygen initially present in a Pd film on a Si <100> substrate (Chapter V), we found that the oxygen is incorporated into the Pd$_2$Si without a diffusion barrier being formed. The implanted oxygen has no effect on the growth of Pt$_2$Si. We find oxygen to be mobile in the Pd at an annealing temperature of only 250°C. Upon annealing the oxygen diffuses to the Pd-Pt$_2$Si interface, to react and form SiO$_2$ there. Simultaneously Si diffuses through the Pd$_2$Si layer and forms additional silicide at the Pd-Pd$_2$Si interface thereby incorporating the SiO$_2$ into the Pd$_2$Si. Thus barrier formation does not occur. We also show that our results identify Si as the dominant diffusing species during Pd$_2$Si formation rather than both Pd and Si as previously reported.

Generalizing from the result of our study of the effects of impurity oxygen on the formation of the silicides of Ni, Pt and Pd we present a conceptual framework for impurity effects in metal silicide formation (Chapter VI). This model relies on the asymmetries present with regard to the initial location of the impurity relative to the moving species and with regard to the chemical affinities of the impurity relative to the reacting species. The results for impurity N in the Ni-Si system are briefly compared with predictions of the model and shown to agree.

Further work suggested by this model is summarized next (Chapter VII). The cases covered are impurity N in the Ni-Si, Pt-Si and Pd-Si systems along with impurity C in the Ni-Si and Pt-Si systems. Also covered are the preliminary results of contact restivity measurements
after barrier formation has occurred for the cases of impurity N and O in the Ni-Si system. The results of this additional work are shown to be consistent with the model.

Some parts of this thesis have already been published under the following titles:

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iv</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>viii</td>
</tr>
<tr>
<td>CHAPTER I. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>3</td>
</tr>
<tr>
<td>CHAPTER II. EXPERIMENTAL METHODS</td>
<td>4</td>
</tr>
<tr>
<td>A. Introduction</td>
<td>4</td>
</tr>
<tr>
<td>B. 16O(d,α)14N Nuclear Reaction Analysis</td>
<td>5</td>
</tr>
<tr>
<td>1. Introduction</td>
<td>5</td>
</tr>
<tr>
<td>2. Radiation Safety</td>
<td>6</td>
</tr>
<tr>
<td>3. Geometry</td>
<td>6</td>
</tr>
<tr>
<td>4. Depth Scale</td>
<td>9</td>
</tr>
<tr>
<td>5. Oxygen Concentration</td>
<td>9</td>
</tr>
<tr>
<td>6. Stopping Power</td>
<td>12</td>
</tr>
<tr>
<td>7. Cross Section</td>
<td>14</td>
</tr>
<tr>
<td>8. Charge Normalization</td>
<td>15</td>
</tr>
<tr>
<td>9. Resolution</td>
<td>17</td>
</tr>
<tr>
<td>10. Geometrical Effects</td>
<td>18</td>
</tr>
<tr>
<td>11. Straggling</td>
<td>19</td>
</tr>
<tr>
<td>12. Interferences</td>
<td>21</td>
</tr>
<tr>
<td>13. Results and Discussion</td>
<td>24</td>
</tr>
<tr>
<td>14. Sensitivity</td>
<td>26</td>
</tr>
<tr>
<td>15. Resolution</td>
<td>27</td>
</tr>
<tr>
<td>16. Summary</td>
<td>27</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>29</td>
</tr>
<tr>
<td>CHAPTER III. IMPURITY OXYGEN IN NICKEL SILICIDE FORMATION</td>
<td>31</td>
</tr>
<tr>
<td>A. Introduction</td>
<td>31</td>
</tr>
<tr>
<td>B. Experimental Procedures</td>
<td>33</td>
</tr>
<tr>
<td>1. Initial Oxygen in Ni</td>
<td>33</td>
</tr>
<tr>
<td>2. Initial Oxygen in Si</td>
<td>35</td>
</tr>
<tr>
<td>3. Initial Oxygen in Ni<sub>2</sub>Si</td>
<td>36</td>
</tr>
<tr>
<td>C. Oxygen in Ni</td>
<td>38</td>
</tr>
<tr>
<td>1. Experimental Results</td>
<td>38</td>
</tr>
<tr>
<td>2. Discussion</td>
<td>48</td>
</tr>
<tr>
<td>D. Oxygen in Silicon</td>
<td>52</td>
</tr>
<tr>
<td>1. Experimental Results</td>
<td>52</td>
</tr>
<tr>
<td>2. Discussion</td>
<td>55</td>
</tr>
<tr>
<td>E. Oxygen in Ni<sub>2</sub>Si</td>
<td>58</td>
</tr>
<tr>
<td>1. Experimental Results</td>
<td>58</td>
</tr>
<tr>
<td>2. Discussion</td>
<td>60</td>
</tr>
<tr>
<td>F. Summary and Conclusion</td>
<td>65</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>67</td>
</tr>
</tbody>
</table>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Table of Contents (Cont'd)

CHAPTER IV. IMPLANTED OXYGEN IN Pt SILICIDE FORMATION
A. Introduction .. 68
B. Experimental Procedures 70
C. Experimental Results ... 72
D. Discussion .. 80
E. Conclusion .. 88

REFERENCES .. 90

CHAPTER V. OXYGEN IN Pd$_2$Si FORMATION
A. Introduction .. 92
B. Experimental .. 94
C. Experimental Results .. 95
D. Discussion .. 98
E. Conclusion .. 104

REFERENCES .. 105

CHAPTER VI. GENERAL MODEL
A. Introduction .. 106
B. Model .. 106

REFERENCES .. 110

CHAPTER VII. SUMMARY OF ADDITIONAL WORK
A. Introduction .. 111
B. N in Ni, Pt and Pd Silicide Formation 112
1. N Effects on Ni Silicide Formation 112
2. N Effects on Pt Silicide Formation 113
3. N Effects on Pd Silicide Formation 114
C. C in Ni and Pt Silicide Formation 115
1. C Effects on Ni Silicide Formation 115
2. C Effects on Pt Silicide Formation 116
D. Diffusion Barrier Effects on Contact Resistivity of Nickel
Silicide .. 117
1. O Effects on Contact Resistivity 117
2. N Effects on Contact Resistivity 117

REFERENCES .. 119

CHAPTER VIII. CONCLUSION AND OUTLOOK
A. Conclusion ... 120
B. Outlook .. 123
CHAPTER I

INTRODUCTION

Metal silicides are important in the manufacture of semiconductor devices since they are used extensively to form contacts and Schottky barriers. Invariably these metal silicides are formed by a solid phase reaction between the Si substrate and a thin deposited metal film. No process is perfectly clean however, and therefore some contamination by impurities is inevitable. There are clear cases in the literature that show that impurities can greatly alter or even control the formation of these silicides [1]-[6]. An understanding of the role of impurities is important to avoid unwanted effects and also may lead to the possibility of using impurities to control silicide growth.

Aside from these technological incentives, the effects of an impurity on silicide formation is also of scientific interest because the mechanisms responsible for impurity effects are not known.

Thus far no systematic investigation of the effects of impurities on metal silicide formation has been made. In this thesis we present a systematic study on the effects of impurity oxygen on the formation of Ni, Pt and Pd silicide. Oxygen was selected as the impurity element both because it is a highly reactive and ubiquitous impurity element and because there is a good analytical technique for the detection of oxygen, $^{16}\text{O}(d,\alpha)^{14}\text{N}$ nuclear reaction analysis (NRA) (Chapter II, 7,8). Ni, Pt and Pd were selected as the silicide forming metals since their silicide formations are well characterized [5],[9]-[11] and they are important
contact materials used in semiconductor devices. The alternative is to look at early transition metal silicides; however, they are so reactive that the pure case is difficult to achieve or maintain. Ni, Pd and Pt are not prone to this difficulty; in addition, these metals form silicides at low temperatures (~300°C) which may enhance the effect an impurity has on the reaction.
REFERENCES

CHAPTER II

EXPERIMENTAL METHODS

A. INTRODUCTION

The work reported in this thesis has used three complementary techniques to investigate the effects of impurity elements on the silicide forming reactions of the near noble metals. These techniques are Rutherford backscattering spectrometry (BS), $^{16}\text{O}(d,\alpha)^{14}\text{N}$ nuclear reaction analysis (NRA), and x-ray photoelectron spectroscopy (XPS). BS was used to quantitatively determine the atomic composition as a function of depth. A limitation of this technique is its inability to measure low Z elements contained in a high Z matrix. This may be overcome for specific elements such as oxygen with NRA. A nuclear reaction is sensitive to only one element and therefore is insensitive to the matrix composition. Neither BS or NRA yield information about the chemical environment of an atom. This important information was obtained using the last of the three complementary techniques, XPS. The complementary nature of the information obtained by these three techniques was an essential part in obtaining an understanding of impurity effects on metal silicide formation.

In this chapter the NRA technique is presented as this technique was central to this study and is not as generally known as are BS and XPS. Excellent detailed treatments of BS [1] and XPS [2], [3], [4] may be found elsewhere.
B. 16O(d,α)14N NUCLEAR REACTION ANALYSIS

1. Introduction

There are other methods of profiling oxygen such as AES and SIMS. The 16O(d,α)14N nuclear reaction technique was used here because it offers good sensitivity and depth resolution, is quantitative and is directly adaptable to our existing backscattering setup. The practical sensitivity of \sim1 at. % is comparable with AES although not as good as SIMS which has typically 0.001 at. % sensitivity [5]. An advantage is that the 16O(d,α)14N method is nondestructive as compared to AES or SIMS which rely on ion milling to obtain depth profiles. The 16O(d,α)14N technique is an ideal complementary technique for BS to profile low concentrations of oxygen.

The 16O(d,α)14N nuclear reaction profiling technique is similar yet distinct from BS [6],[7],[8]. As in BS, the energy loss that an ion experiences in penetrating solid matter sets the depth scale. The major difference lies in the origin of the detected particle. In BS the reaction between incoming ion and target atom is an elastic collision and the incoming and outgoing particles are the same. In the 16O(d,α)14N nuclear reaction the initial particles are an oxygen target atom and an incident deuteron whereas the final particles are a nitrogen atom and an outgoing α particle. In addition, 3.115 MeV is released in the reaction giving the outgoing α's much higher energy than that of the incoming deuteron, which eliminates interferences between the signal of the α's and the much stronger signal of the elastically scattered deuterons. As in BS, energy analysis of the outgoing particle gives the oxygen profile. This
similarity enables an existing BS setup to use this reaction with only minor changes such as detector bias and amplifier gains.

2. Radiation Safety

Some nuclear reactions that take place with deuterium produce hazardous radiation. In our accelerator the $^{12}\text{C}(d,n)^{13}\text{N}$ reaction, which produces neutrons, is the main radiation source. Only a small fraction of the $^1\text{D}^+$ beam leaving the ion source actually reaches the target. The rest impinges on the walls of the beam line or upon the beam defining slits. The hydrocarbon film everpresent on these surfaces provides the carbon for this reaction. No shielding is possible in our system since the controls and beam line share the same room. Thus to avoid excessive neutron production the energy of the incident neutron must be kept in a region where the reaction probability, the total cross section σ_T, is low. σ_T increases rapidly from 0.5 to 2 MeV, however [9]. At 2.0 MeV $^1\text{D}^+$ energy, the average neutron level in the control/beam line room was ~ 10 mr/hr and rose to 250-300 mr/hr near the slits and analyzing magnet. By lowering the energy to 0.90 MeV the average level went to only 2 mr/hr. Since the Nuclear Regulatory Agency sets 2.5 mr/hr as the maximum a radiation worker may receive on a 40/hr week, 50 week/year basis, 0.90 MeV was the maximum energy used in this study. With this precaution the requirements of radiation safety were satisfied, however careful attention must be paid to the radiation levels whenever a deuterium beam is present.

3. Geometry

The experimental layout used for this technique is illustrated in Fig. 1. The normals to the sample, incident beam and detector are
The experimental layout for the $^{16}_0(d,\alpha)^{14}_N$ nuclear reaction technique. The beam direction, detector and surface normal are coplanar. The d^+ beam passes through defining slits to set the beam spot size then through scraping slits that remove the particles scattered from the defining slits. The d^+ beam impinges on the sample tilted at θ_1 degrees to the beam. The exiting α particles enter the detector placed at θ with a small angular divergence $\delta\theta$. The initial energy of the d^+ is E_0, just before the reaction at a depth x it is E_1. Just after the reaction the α particle has energy E_2 and after leaving the sample arrives at the detector with energy E_3.
coplanar. The sample may be tilted with respect to the incident beam to lengthen the incoming and outgoing paths and thus to enhance the depth resolution. A Si surface barrier detector is at an angle θ to the incident deuterium beam which has energy E_0. After penetrating into the sample a distance $x/cos\theta_1$ the deuterons have an energy E_1 given by

$$E_1(x) = E_0 - \int_0^{x/cos\theta_1} S_d \, dx ,$$ \hfill (1)

where $S_d = (dE/dx)_d$ is the rate of energy loss of deuterium in the sample.

Right after the reaction takes place the α particle exiting at an angle θ has an energy E_2 given by

$$E_2(E_1) = \frac{m_1m_2E_1}{(Mm_2)^2} \left[2\cos^2\theta + \frac{M(m_2+M)}{m_1m_2} \left(\frac{Q}{E_1} - \frac{m_1}{M} + 1 \right) \right]$$

$$+ 2\cos\theta \left(\cos^2\theta + \frac{M(m_2+M)}{m_1m_2} \left(\frac{Q}{E_1} - \frac{m_1}{M} + 1 \right) \right)^{1/2} \hfill (2)$$

where m_1, m_2 and M are the masses of the incident particle, outgoing particle and recoiling atom, respectively, and Q is the energy liberated in the reaction. Eq. (2) is the kinematics formula usually derived in nuclear physics texts [10], [11]. Finally after leaving the sample the outgoing α particle has energy E_3 given by

$$E_3(x) = E_2(E_1) - \int_0^{x/cos\theta_2} S_\alpha \, dx \hfill (3)$$
4. Depth Scale

If the variation of E_2 with E_1 is not too great

$$E_2(E_1) = E_2(E_0) - \frac{\partial E_2}{\partial E_1} \bigg|_{E_0} (E_0 - E_1). \quad (4)$$

For sample depths small enough we may take S_a and S_d to be constant. Eqs. (1) and (3) then may be integrated and combined with Eq. (4) to obtain

$$E_3(x=0) - E_3(x) = \left[\frac{\partial E_2}{\partial E_1} \right]_{E_0} \frac{S_d}{\cos \theta_1} + \frac{S_a}{\cos \theta_2} \right] x \quad (5)$$

Letting the expression in brackets equal $[S_r]$ we have

$$E_3(x=0) - E_3(x) = [S_r] x \quad (6)$$

This represents a linear depth scale and greatly simplifies the calculations. At greater depths the approximations break down and an exact expression must be used. A comparison of the exact energy to depth relation to the linear approximation for a Ni target is shown in Figure 2. For tilt angles up to 55° the approximation is within 10% of the exact value up to depths of 5000 Å.

5. Oxygen Concentration

To obtain the oxygen concentration it is necessary to recall from backscattering analysis the expression for the height of a spectrum [1]

$$H = \frac{N_0}{\cos \theta_1} \sigma(E_1) \Omega Q \quad (7)$$
Fig. 2. Plot of the linear depth scale (dashed line) compared with the exact depth scale (solid line) obtained numerically for three tilt angles. The material is Ni, E_0 is 900 keV and the detector angle is 164° to the incident beam. The linear approximation is within 10% of the exact value for Ni films up to 5 kÅ thick.
where \(H \) = the number of counts per channel

\[\sigma(E) = \text{differential cross section \ (for the } ^{16}O(d,\alpha)^{14}N \text{ reaction in this case)} \]

\(\Omega \) = the detector solid angle

\(Q \) = number of incident particles

\(\tau \) = the depth increment corresponding to the energy width of one channel

\(N_0 \) = the atomic density of oxygen in the sample.

Rewriting Eq. (7) explicitly for \(N_0 \) and dividing through by \(N_M \), the matrix atomic density of the sample, we obtain

\[
\frac{N_0}{N_M} = \frac{H \cos \theta_1}{\sigma(E_1)\Omega Q N_M \tau}.
\] \hspace{1cm} (8)

The depth increment \(\tau \) corresponding to the energy width per channel, \(\varepsilon \), must be determined. At a depth \(x \) the energy width \(\varepsilon' \) that will send the outgoing particles into one channel is related to \(\tau \) using (6) by

\[
\varepsilon' = [S_{\tau}] \tau.
\] \hspace{1cm} (9)

We may relate \(\varepsilon' \) to \(\varepsilon \) by noting that at a depth \(x \) the outward path length is given by

\[
\frac{x}{\cos \theta_2} = \int \frac{dE}{E_3} \frac{dE}{S_{\alpha}}.
\] \hspace{1cm} (10)

Using Eq. (9) we have that a particle from a depth \(x + \tau \) will arrive at \(x \) with energy \(E_2 - \varepsilon' \) and will exit with energy \(E_3 - \varepsilon \). Thus
Eating the integrals in Eqs. (10) and (11) and subtracting overlapping parts we obtain

$$\frac{E_3 - \varepsilon}{E_3 - \varepsilon} = \frac{dE}{S_a}$$

(12)

Since ε and ε' are small compared to E_2 and E_3 we have

$$\frac{\varepsilon}{S_a(E_3)} = \frac{\varepsilon'}{S_a(E_2)}$$

(13)

Substituting Eqs. (9) and (13) into Eq. (8) we finally obtain

$$\frac{N_d}{N_m} = \frac{H \cos \theta_1 [S_r] S_a(E_3)}{\sigma(E_1) \Omega Q N_m \varepsilon S_a(E_2)}$$

(14)

From this we have that the atomic percent concentration is simply

$$\text{at. % oxygen} = \frac{1}{N_m} \times 100$$

(15)

Some of the quantities in Eq. (14) must be known a priori. These are the stopping powers S_d and S_a, the cross section $\sigma(E)$ and also the product of detector solid angle and integrated charge ΩQ.

6. Stopping Power

S_a is available in the form of semiempirical data [12]. Unfortunately no such data are available for S_d. At our energies, however,
only the electronic contribution S_e to S_d is important. S_e has the generic form [1]

$$S_e = N_M Z_2 (Z_1 e^2)^2 f\left(\frac{E}{m}\right)$$

(16)

where

N_M = atomic density of the sample
$Z_1 e$ = charge of the incident particle
$Z_2 e$ = charge of the target nucleus
$f\left(\frac{E}{m}\right)$ is a function depending only on the velocity squared of the incident particle.

This equation tells us that

$$S_d(E) = \frac{1}{4} S_a(2E).$$

(17)

This relationship between stopping powers enables us to use S_a data to obtain S_d. A compilation of proton stopping powers S_p has also been made [13]. Using these proton values and the relationship

$$S_d(E) = S_p(E/2)$$

(18)

another independent estimate of S_d can be obtained. The values of S_d derived from S_a and S_p differ by less than 0.7%. Such good agreement for different estimates supports the validity of the procedure, and S_d has been taken from those estimates. In this work $S^\text{Ni}_d(0.90 \text{ MeV}) = 6.48 \text{ eV/Å}$ and $S^\text{Si}_d(0.90 \text{ MeV}) = 16.5 \text{ eV/Å}$. S_d for other elements and energies were calculated using Eq. (17). $S_a(2E)$ was obtained using Table V of [11], a table of coefficients to a 5th order polynomial least squares fit to ^4He
stopping cross sections ε_α. ($S_\alpha = N_0 \varepsilon_\alpha$). For compound samples and for samples containing large amounts of oxygen S is computed using Bragg's rule [14],

$$\frac{A_m B_n}{N_m n} = m \frac{S_A}{N_A} + n \frac{S_B}{N_B}$$

where $N_m n$ and $S_m n$ are the molecular density of compound $A_m B_n$ and energy loss rate for $A_m B_n$, respectively, and N_A is the atomic density of element A, etc.

S_α and $[S_r]$ in Eq. (14) depend on all the elements present in the sample through Bragg's rule. One of the elements that must be considered is the oxygen which is initially present in unknown quantities. Therefore, initially N_0 / N_m is computed with the oxygen concentration set to zero for the calculations of S_α and $[S_r]$. This first value of N_0 / N_m is then used to refine the values of the S's which are used to calculate a better value of N_0 / N_m, and so on. This iteration must be done for each data point. The matrix may also change with depth. For each point, the local composition must be used to calculate the initial S's.

7. Cross Section

Another important parameter left to be determined in Eq. (14) is the reaction cross section $\sigma(E)$. This cross section, unlike the Rutherford scattering cross section, is not given by a known formula and therefore must be found experimentally. Measurements have been made for a few angles and energies however, [15], [16], and from these possibilities $8 = 164^\circ$ was selected. The kinematic angle θ is 164° in all of the $^{16}O(d,\alpha)^{14}N$
measurements in this thesis. The published values of $\sigma(E)$ for this angle disagree by some 30% [15], [16]. However, the cross section used here is that measured by Kim et al [15] and was verified by measuring an SiO$_2$ sample. This cross section is shown in Figure 3. The ideal energy is 1.25 MeV since the cross section is quite constant from 1.20 to 1.25 MeV. However, 0.90 MeV was chosen to minimize the background neutron radiation hazard which is a relatively strong function of energy. The cross section between 0.8 and 0.9 MeV changes uniformly. In this work, however, the cross section was taken to be a constant (8.0 mb/sr) since S_d is very low.

Fig. 3. A plot of the cross section versus incident deuteron energy in the laboratory frame for the 16O(d,α)14N nuclear reaction. From Kim et al [15]. The angle detection θ is 164°.

8. Charge Normalization

The remaining term in Eq. (14) yet to be discussed is the product ΩQ. While Ω can be measured fairly accurately, Q is obtained by integrating
the charge that falls on the target and this process is not very reliable [17]. Secondary electron and neutral beam effects cause large errors that vary with time. A method to avoid these errors uses the signal of the deuterons that are elastically backscattered from the matrix during the measurement. The surface height H_s of this matrix signal is, using Eq. (7)

$$H_s = \frac{N_m \tau_0}{\cos \theta_1} \sigma_R(E_0) \Omega Q$$ \hspace{1cm} (20)

where $\sigma_R(E_0)$ is the Rutherford cross section for the elastic scattering of deuterons from the target matrix and subscript 0 refers to near-surface values.

For elastic scattering we use Eq. (2) for the incoming and outgoing particles as deuterons the recoiling nucleus as that of a matrix atom and $Q = 0$. Then the energy to depth relationship Eq. (6) becomes

$$E_3(x=0) - E_3(x) = [S_d]x$$ \hspace{1cm} (21)

where $[S_d]$ is the energy loss factor for deuterons in the sample. Eq. (21) tells us that

$$\tau_0 = \frac{E}{[S_d]}$$ \hspace{1cm} (22)

Using (22) and (20) we have that

$$\Omega Q = \frac{H_s [S_d] \cos \theta_1}{E \sigma_R(E_0) N_m}$$ \hspace{1cm} (23)
which yields the value of ΩQ in terms of H_S and known values, thus avoiding the charge integration problems. The major uncertainty in (23) comes from the energy loss factor $[S_d]$ and is on the order of 5%. Using Eq. (23), Eq. (14) becomes

$$\frac{N_O}{N_M} = \frac{H[S_r(x)]s_3(E_3)}{\sigma(E_1)S_2(E_2)} \left(\frac{\sigma_R(E_0)}{H_S[S_d]} \right). \quad (24)$$

The first factor comes from the matrix containing the oxygen and the second factor comes from normalization to the surface height of some element in the sample but not necessarily from the oxygen bearing matrix. In the general case for an oxygen bearing matrix $A_{n}B_{m}$ and taking the normalization from element C of $C_{n}D_{m}$ we have that

$$\frac{N_O}{A_{n}B_{m}} = \frac{A_{n}B_{m}}{N_{m}n} \left(\frac{H[S_r(x)]S_m(E_3)}{A_{n}B_{m}} \right) \left(\frac{A_{m}B_{n}(E_2)}{S_{m}n} \right) \left(\frac{\sigma_R(E_0)}{H_S[S_d]} \right). \quad (25)$$

where $[S_d]$ is the deuteron energy loss factor for elastic scattering from element C in compound $C_{n}D_{m}$ with $\sigma_R(E)$ the elastic scattering cross section for element C and H_S is the surface height of element C. S_mn is $\frac{dE}{dx}$ of this outgoing particle in $A_{m}B_{n}$ and $[S_r]$ is the nuclear reaction energy loss factor for a matrix $A_{m}B_{n}$.

9. **Resolution**

An important question is that of depth resolution. The depth resolution of this technique is determined by the energy broadening effects
present. If approximately Gaussian distributions for these effects are
assumed the fwhm of the system energy resolution δE is given by

$$\delta E^2 = \delta E_b^2 + \delta E_d^2 + \delta E_s^2 + \delta E_g^2$$ \hspace{1cm} (26)

where δE_b, δE_d, δE_s and δE_g are the fwhm of the beam spread (a few kev and
negligible), detector resolution (a constant for the experiment ≈ 18 kev),
straggling and geometrical effects, respectively. The depth resolution
then follows from Eq. (9)

10. Geometrical Effects

$$\delta x = \frac{\delta E}{\left[S_r\right]} .$$ \hspace{1cm} (27)

There are two contributions due to experimental geometry that tend
to degrade the energy resolution. Referring to Fig. 1, the finite size of
the beam spot and detector aperture allows particles with a range $\delta \theta$ of
angles to enter the detector. This causes energy broadening due to both
variations in the kinematic factor and also to variations in the exiting
particles path length. The energy spreading due to geometry is given by

$$\delta E_g = \frac{\partial E_3}{\partial \theta} \delta \theta$$ \hspace{1cm} (28)

Using Eq. (5) we obtain

$$\frac{\partial E_3}{\partial \theta} = \frac{\partial E_3(x=0)}{\partial \theta} - \frac{\partial^2 E_2}{\partial \theta^2} \frac{xS_d}{\cos \theta_1} - \frac{2}{\partial \theta} \frac{xS_a}{\cos \theta_2}$$ \hspace{1cm} (29)
The first term in Eq. (29) is computed using (2)\
\[
\frac{\partial E_3(x=0)}{\partial \theta} = -2E_0 \sin \theta \left[\frac{m_1 m_2}{(n+m_2)} \left(\frac{Q}{E} - \frac{M_1}{M} + 1 \right) \right] = -A \sin \theta .
\] (30)

\(\frac{\partial^2 E_2}{\partial \theta \partial E_1}\) is on the order of \(10^{-3}\), therefore the second term in Eq. (29) may be neglected. Therefore we have

\[
\delta E_s = [-A \sin \theta + xS \frac{\sin^2 \theta}{\cos^2 \theta} \delta \theta .
\] (31)

The first term in Eq. (26) arises from the variation in the kinematic factor and the second reflects length differences in the outgoing path. The one remaining term in Eq. (26) is that due to straggling \(\delta E_s\).

11. \textbf{Straggling}

The energy width of a beam of particles broadens as it penetrates solid matter due to the statistical nature of the energy loss process. This straggling process results in an increase in \(\delta E_s\) with depth. A reasonable estimate of straggling comes from the Bohr theory [18], [19]

\[
\delta E_s^2 = (5.55) 4\pi (Z_1 e^2) \frac{A_{m} B_{n}}{N^{m}_{n} (mZ_A + nZ_B) x} ,
\] (32)

where the target composition is \(A_{m} B_{n}\) and \(Z_1, Z_A\) and \(Z_B\) are the atomic numbers of the outgoing particle and target atoms A and B, respectively.

Using Eqns. (26), (31) and (32) we can calculate the depth resolution of this method. Fig. 4 shows the result of this calculation for 900 kev d\(^+\) incident on a Ni matrix \((N^{Ni}_N = 9.14 \times 10^{22}\) atoms/cm\(^3\)). \(\delta \theta\) and \(\delta E_d\) were taken to be 2\(^\circ\) and 18 kev, respectively. For each depth there is a
Fig. 4. A plot of depth resolution in Ni versus tilt angle (θ_1) for various depths. In the calculation $\delta \theta$, δE_d and N_{Ni} were taken to be 2°, 18 keV and 9.12×10^{22} atoms/cm3, respectively. The detection angle θ is 164°. The best resolution is seen to be near 50° for films less than 300 Å thick.
minimum in the depth resolution which occurs when the two terms in Eq. (31) cancel. For Ni films a few kÅ thick the minimum is between 40° to 60° of tilt. Since we are limited to ~1500 Å Ni films in order to prevent signal overlapping in backscattering measurements, a higher tilt angle is favored, typically 55°. The depth resolution for a fixed tilt angle may be conveniently displayed by a rearrangement of Fig. 4. This is shown in Fig. 5 keeping the same parameters as in Fig. 4. We see that for thick films 55° is not optimal. A better resolution may be achieved by only tilting 30° for film depths greater than 3500 Å. For 55° and films of less than 2k Å the depth resolution is less than 200 Å. This is directly comparable with usual backscattering. In all the work reported here the tilt angle θ1 was 55°.

12. Interferences

It is due to low background levels that the 16O(d,α)14N technique owes its high sensitivity; therefore overlapping signals from other nuclear reactions must be avoided. Two such reactions are shown in Fig. 6 top. 12C(d,p0)13C has a signal 0.36 MeV above the 16O(d,α)14N signal and 16O(d,p0)17 has a signal 0.22 MeV below it. For thick samples or high tilt angles the oxygen signal width may easily overlap this lower signal. As carbon does build up on the sample surface during the long measurement (~3 to 4 hours), this 12C(d,p0)13C signal can easily overlap the high energy part of oxygen signal. Both interfaces can be eliminated by reducing the depletion layer width of the surface barrier detector to ~35 µm. As shown in Fig. 6 bottom, the maximum energy a proton can deposit in this layer is only ~2.1 MeV. Thus the upper signal is eliminated entirely and the lower interference is moved to ~0.5 MeV below the oxygen
Fig. 5. A plot of depth resolution in Ni versus depth for a few tilt angles. The same parameters were used as in Fig. 4. A high tilt angle will improve depth resolution for thin films but will degrade resolution at depths greater than ~ 3000 Å.
Fig. 6. **TOP:** A spectrum obtained by the $^{16}\text{O}(d,\alpha)^{14}\text{N}$ nuclear reaction technique of a 1000 Å SiO$_2$ film on a Si substrate. Two interferences to the $^{16}\text{O}(d,\alpha)^{14}\text{N}$ signal are seen due to competing nuclear reactions.

BOTTOM: A spectrum obtained using the $^{16}\text{O}(d,\alpha)^{14}\text{N}$ technique showing the effect of reducing the detector depletion width. The two interferences have been removed. In both spectra the detector angle θ was 164°, the solid angle of the detector Ω was 0.54 mSr, the tilt angle θ_1 was 55° and the dose was \sim 1 mC.
signal. A disadvantage is that a low bias degrades the detector resolution. This effect is reduced for low resistivity detectors; therefore a 600 Ω cm rather than a more usual 2500 Ω cm detector was used (Ortec BA-14-25-100-S).

Other sources of background counts are due to scattering from the beam collimation slits and beam halo effects. Low angle forward scattered particles from the defining slits and the beam halo can hit the target holder. To minimize these effects a second set of scraping slits, a phosphor screen to facilitate their proper adjustment, and a 1 cm aperture to eliminate the beam halo were added. The beam definition slits were located 84 cm from the target. The scraping slits were 45 cm down beam from the defining slits followed by the aperture 9 cm further, 30 cm from the target. With this arrangement, the background obtained from single crystal Si used as a low oxygen containing target was reduced to 0.02 of its prior value. This is a much lower background level than obtained with the evaporated metal films and indicates the presence of residual oxygen in these films.

13. Results and Discussion

Fig. 7 shows a typical spectrum for this technique. The 900 keV d⁺ beam was incident on a 1500 Å Ni film, implanted with 2.3×10^{16} O/cm² at 80 keV/atom, on a Si substrate. The sample tilt angle θ_1 was 55°, detector angle θ, detector solid angle Ω and bias were 164°, 0.54 mSr and 10 V, respectively. The average beam current i was ~ 100 nA. The integrated charge Q was 2.0 mC resulting in a measurement time of ~ 330 min. Comparison of the product ΩQ using this integrated charge, 1.08 mC-mSr to that using Eq. (23), 1.05 mC-mSr, shows quite good agreement.
Fig. 7. A spectrum obtained for a 1500 Å Ni film implanted with 2.3×10^{16} O/cm² on a Si substrate. The broad peak located ~ 2.4 MeV is due to the implanted oxygen. The detector angle θ was 164°, detector solid angle Ω was 0.54 mSr, the tilt angle θ_1 was 55° and the dose was 2.0 mC.
The factors used in Eq. (23) are $H_s = 9.85 \times 10^5$, $[Sd]^{Ni/Ni} = 85.12 \times 10^{-18}$ keV cm2/atom, $\sigma_R(0.90$ MeV$) = 1.30 \times 10^{-24}$ cm2, the energy width of a channel $E = 5.63$ keV and $\theta_1 = 55^\circ$. Using Fig. 7 we next discuss the sensitivity of the technique to oxygen and also compare the resolution with that predicted in Figs. 4 and 5.

14. Sensitivity

The sensitivity of this method relies on low backgrounds rather than a large cross section, i.e., compared to the implanted oxygen signal height, the Ni elastic backscattering is over 17,000 times greater. The oxygen signal background is ~ 2 to 3 counts/channel corresponding to ~ 0.1 at. % oxygen or ~ 10^{20} O/cm3. This is due to residual oxygen in the evaporated Ni film, however, and does not represent the method's detection limit. For a single crystal Si target a total background of 5 counts was observed over the 141 channels of the oxygen signal region. This corresponds to a detection limit of ~ 0.001 at. % Si or ~ 7×10^{17} O/cm3 and represents a lower limit to the method's sensitivity. This lower limit is not attainable in practice since the beam current is limited by pileup considerations to ~ 200 nA and good statistics (~ 10%) lmC-at. % oxygen require about 1 mC-at. % oxygen. Thus for 0.001 at. % oxygen requires ~ 1C which would take ~ 1000 hours of continuous measurement. Practical limits are ~ 10 hrs of measurement time with target current of ~ 200 nA. Therefore ~ 0.1 at. % or between 10^{19} to 10^{20} O/cm3 constitutes a realistic sensitivity limit.
15. Resolution

The surface oxygen peak is due to both the surface oxidation of Ni that takes place when it is exposed to the atmosphere and surface contamination by oxygen containing organic vapors such as diffusion pump oils, etc. The energy width of this peak provides a convenient measure of the system resolution at the sample surface. As shown in Fig. 7 the energy width of the surface peak is ~ 28 keV. This corresponds to a depth resolution of ~ 150 Å of Ni. This increase over the calculated value of ~ 100 Å shown in Figs. 4 and 5 is most likely due largely to the accumulation of a carbon overlayer during the long (~ 6 hrs) measurement time.

A last method of improving depth resolution is that of numerically deconvoluting the spectra with the resolution function of the system. A simple deconvolution routine was tried but due to the statistical fluctuations in the original spectra, nonphysical highly oscillatory results were obtained. More advanced schemes involving the introduction of a priori information to avoid the statistics problem have been published [20] but were not tried here. It may be possible to further improve the depth resolution by such a scheme.

16. Summary

In this section the $^{16}O(d,\alpha)^{14}N$ nuclear reaction technique for profiling oxygen has been described in detail to explain the origin of oxygen profile spectra presented later and also enough practical considerations have been given to clarify the actual use of the method. Resolution was shown to be quite good (~ 200 Å) for film thickness of a few thousand Angstroms. While in concept the sensitivity of this method
can rival SIMS, which is currently the most sensitive technique of all profiling methods, practical considerations are shown to reduce that sensitivity by two orders of magnitude to the order obtainable by AES. This sensitivity is still very acceptable, as the $^{16}\text{O}(d,\alpha)^{14}\text{N}$ technique is inherently quantitative and does not need secondary standards for its use. The disadvantage that the matrix composition be known independently can be easily overcome with BS and these two techniques ideally complement each other. The $^{16}\text{O}(d,\alpha)^{14}\text{N}$ nuclear reaction technique has been found very adequate to study the effect of impurity oxygen.
REFERENCES

[18] N. Bohr, Phil. Mag. 30, 581 (1915)

References (Cont’d)

CHAPTER III

IMPURITY OXYGEN IN NICKEL SILICIDE FORMATION

A. INTRODUCTION

The growth of Ni silicides formed by solid-phase reactions has been studied before [1], [2], [3]. It is known that for impurity-free Ni films deposited on impurity-free Si substrates and annealed in vacuum (200°C ≤ T) the metal rich phase Ni₃Si forms first and grows as a layer between the Ni and the Si. The Ni₃Si grows with the square root of the annealing time eventually to consume all of the Ni film. Thereafter the second phase NiSi begins to nucleate and grow. NiSi also forms as a layer between the Ni₃Si and the Si. However, NiSi growth has been reported to be linear with annealing time [4]. NiSi grows until all of the Ni₃Si has been converted to NiSi and is the final phase formed for annealing temperatures below ~ 750°C. At no time during this growth sequence are Ni, Ni₃Si and NiSi simultaneously present. However for samples annealed in a N₂ ambient rather than in vacuum, formation of NiSi at the Ni₃Si-Si interface was observed with unreacted Ni still present on the surface [3].

It was suggested that this effect is caused by impurities from the ambient diffusing through the Ni to the Ni-Ni₃Si interface so that growth of the first phase ceases and the second phase appears [3].
There are thus two sequences of Ni silicide growth that have been observed. The first sequence is characterized by the complete consumption of the Ni film by the first phase before second phase growth is initiated. The second case is characterized by the simultaneous presence of Ni and both silicides. The available evidence suggests that this second sequence is associated with and caused by impurities. This chapter is a detailed study of these effects when oxygen is used as the impurity.

This choice introduces two major asymmetries that should be recognized at the outset; they will turn out to be of major importance. First, oxygen bonds very strongly to Si ($\Delta G_f^{\circ}(\text{SiO}_2) = -205.5 \text{ kcal/mol}$) and rather weakly to Ni ($\Delta G_f^{\circ}(\text{NiO}) = -58.4 \text{ kcal/mol}$) [5]. Second, marker studies show that Ni is the moving species in Ni$_2$Si and NiSi formation [1],[6]-[10]. Thus the case where oxygen is initially present in the Ni film differs basically from that where oxygen is initially present in the Si.

In this chapter we investigate the effects of impurity oxygen on Ni$_2$Si formation for both the case where the impurity oxygen is initially located in the Ni film and where the oxygen is initially located in the Si.

For semiconductor applications, it is the final phase NiSi rather than Ni$_2$Si that is important. An interesting question is what effects impurity oxygen has on the reaction that transforms Ni$_2$Si to NiSi. Therefore we complete this study by investigating the effects oxygen has on the NiSi reaction when the oxygen is initially located in the Ni$_2$Si film.
B. EXPERIMENTAL PROCEDURES

There are three basic types of samples used in this study. Since their preparation and subsequent processing vary substantially, an individual description will be given for each type. In the first type the impurity oxygen is present only in a Ni film deposited on a single crystal Si substrate.

1. Initial Oxygen in Ni

Commercially prepared and polished Si <100> wafers (Wacker) were cleaned ultrasonically with TCE, acetone and methanol then rinsed in doubly distilled H$_2$O. The wafers were then etched for one min. in a 1:1 HF:H$_2$O solution and immediately loaded into our oil-free e-beam evaporation system. Ni films 1300 to 1700 Å thick were then deposited at a rate of ~ 35 Å/sec with the pressure held below 4×10^{-7} torr during evaporation. Half of the wafers were then implanted with O$^+$ at 80 keV/atom to doses of 0.76, 1.54 and 2.34×10^{16} O/cm2. According to range tables [11], this places the peak of the oxygen concentration (1, 2 and 3 at. % respectively) at $R_p \sim 640$ Å with $\Delta R_p \sim 330$ Å in the Ni film. The sample temperature during implantation was monitored by a chromel-alumel thermocouple attached to the sample holder. Good thermal contact between the sample and the sample holder was made via silicone heat sink compound (Dow-Corning 340) to eliminate beam heating effects. The sample temperature was kept at $\sim 20^\circ$C during implantation.

After implantation the samples used for the kinetics study were diced and loaded into a quartz-tube vacuum annealing furnace. Unimplanted
and implanted samples were annealed simultaneously at 290°C with the background pressure kept to \(\sim 5 \times 10^{-7} \) torr.

The samples used for XPS were further cleaned to remove a carbon surface layer formed during implantation. We attribute this overlayer to a pump oil contamination which has subsequently been polymerized by the bombardment of the ion beam. This carbon overlayer was found to be impervious to a variety of common solvents (TCE, acetone, MEK, ethanol) and acids (HF, HCL). Plasma oxidation, however, was successful in removing this layer.

The XPS samples were placed into a flowing \(\text{N}_2 \) dry box containing a plasma cleaner and the input port to the XPS system. The samples were rinsed with ethanol and loaded into the plasma cleaner. The samples were exposed to a \(\sim 10 \) W \(\text{O}_2 \) plasma for 10 min. The \(\text{O}_2 \) pressure was \(\sim 50 \) m torr. The nickel oxide that formed during plasma oxidation was etched off by spinning the sample at 3600 rpm and adding dropwise 500 \(\mu \)l of 1:1 HCL:ethanol and 1 ml of ethanol as a final rinse. After each cleaning step the samples were loaded into the XPS system, a modified HP 5950A ESCA spectrometer [12] to monitor and verify this cleaning procedure. This procedure was found to remove all of the carbon overlayer and nickel oxide.

After cleaning, the samples were annealed in situ at \(\sim 280 \)°C in the analyzing chamber of the XPS system. This temperature is sufficient to allow \(\text{Ni}_2\text{Si} \) to form. As this reaction proceeds the \(\text{Ni-Ni}_2\text{Si} \) interface moves towards the sample surface. Either the Si 2p or O 1S core level was continuously monitored during this annealing. As the reaction brings the \(\text{Ni-Ni}_2\text{Si} \) interface within the depth range accessible to the analyzer
(< 50 Å), the intensity of the core level begins to increase. The reaction was considered complete when the intensity had reached a plateau. The sample was then cooled to room temperature to allow extended data accumulation (Ni2p, O1s and Si2p lines) on the final product.

The composition and distribution of the silicide phases present in both XPS and kinetics samples was studied using 2.0 MeV 4He+ backscattering spectroscopy [13]. The detector angle was 170° with the He beam incident along the sample normal. The chemical identity of Ni2Si and NiSi was inferred from the signal height ratios of Ni to Si in the backscattering spectra, without recourse to x-ray diffraction analysis, because the Ni-Si system has been very well characterized in previous studies [1], [2], [3]. The oxygen distribution was measured by 16O(d,a)14N nuclear reaction analysis as described in Chapter II. The detector angle was 164° with the D+ beam incident at 55° to the sample normal. The cross section used is that of Kim et al [14].

2. Initial Oxygen in Si

In the second type of sample the impurity oxygen is present only in the single crystal Si substrate and the impurities in the deposited Ni film are kept to a minimum.

The Si <100> substrates (Wacker) were cleaned ultrasonically with TCE, acetone and methanol before loading into the implanter. The substrates were implanted with 02+ at 30 keV/atom to a dose of 7.0×1015 O/cm². According to range tables [11], this places the peak of 2 at. % of the oxygen concentration at Rp ~ 720 Å into the Si with ΔRp ~ 270 Å. The wafers were tilted 7° to the incident 02+ beam to avoid channeling effects.
Lattice damage caused by the implantation was removed by thermal annealing in vacuum at 550°C for \(~\text{2600 min.}\). The wafers were then plasma-oxidized in 100 m torr of \(O_2\) for 80 min. with \(~\text{10 W of RF power}\) to remove the carbon layer formed during implantation. The \(SiO_2\) formed during this oxidation step was removed by etching for one min. in a 1:1 HF:H\(_2\)O solution just prior to loading into our oil-free e-beam evaporation system. Ni films 1300 to 1500 Å thick were then deposited at \(~\text{35 Å/sec}\) with the pressure kept below \(4\times10^{-7}\) torr during evaporation. These thicknesses will combine with from 1190 to 1375 Å of Si, twice the depth of the implanted O, in forming \(\text{Ni}_2\text{Si}\).

The wafers were then diced and loaded into our quartz-tube vacuum annealing furnace. Unimplanted and implanted samples were annealed simultaneously at \(~\text{290°C}\) with the background pressure kept to \(~\text{5×10}^{-7}\) torr.

The silicide composition and growth kinetics were studied by 2.0 MeV \(\text{He}^4\) backscattering spectroscopy [13]. The oxygen distribution was studied by the \(^{16}\text{O(d,α)}^{14}\text{N}\) nuclear reaction technique. The parameters for these measurements are the same as in the previous samples.

3. **Initial Oxygen in \(\text{Ni}_2\text{Si}\)**

In the third type of sample the impurity oxygen is initially located in a \(\text{Ni}_2\text{Si}\) film on a single crystal Si substrate.

The Si \(<100>\) wafers (Wacker) were cleaned ultrasonically with organic solvents as in the previous two cases. Immediately following a one min. etch in a 1:1 HF:H\(_2\)O solution, the wafers were loaded into our oil-free e-beam evaporation system. Ni films 1500 Å thick were evaporated
onto the silicon substrates at ~ 40 Å/sec with the vacuum kept at ~ 3x10^-7 torr during the evaporation. Following Ni deposition, the wafers were annealed in our quartz-tube vacuum furnace at 293°C for 90 min. plus 291°C for 50 min. with the background pressure kept below 1x10^-6 torr. This annealing is sufficient to react the Ni film completely with the Si substrate to form Ni_2Si yet does not allow for appreciable second phase NiSi formation. For Ni films initially 1500 Å thick, this corresponds to the formation of ~ 2300 Å of Ni_2Si.

One-half of these samples were then implanted with either 2 or 3x10^16 O/cm^2 at 100 keV/atom. An estimate based on range tables [11], places the peak oxygen concentration at R_p = ~ 1000 Å into the Ni_2Si layer with the width Δ R_p = ~ 400 Å. For a dose of 1x10^16 O/cm^2, this estimate implies a peak volume concentration of oxygen of 1.1 atomic percent (p_{Ni_2Si} = 8.94x10^{22} atoms/cm^3). Glancing angle x-ray diffraction measurements using a Read camera of the as-grown and the 2x10^16 O/cm^2 implanted samples were taken before further annealing. The samples were then again loaded into the quartz-tube vacuum furnace and both the implanted and unimplanted samples were annealed simultaneously at 325°C for various times with the background pressure kept below 1x10^-6 torr.

The silicide growth kinetics and composition were measured using MeV \(^4\)He\(^+\) backscattering and the oxygen distribution were measured using the \(^{16}\)O(d,α)\(^{14}\)N nuclear reaction as in the previous two cases.
C. OXYGEN IN NI

If the impurity oxygen is initially located in the Ni film, the oxygen may form at best only weak bonds with the Ni atoms. Further reaction with Si is energetically very favorable. In addition, the oxygen finds itself in the moving species in Ni$_2$Si formation and thus substantial redistribution of the oxygen may be anticipated. In this section we present the effects of impurity oxygen on Ni$_2$Si formation when the oxygen is initially located in the Ni film.

1. Experimental Results

Figure 1 shows a plot of Ni silicide thickness squared versus annealing time at 290°C for unimplanted samples and for samples implanted with 2.3×10^{16} O/cm2 half way into the Ni film. At the peak of its distribution, oxygen reaches a concentration of 3 at. % of Ni. In the unimplanted samples, Ni$_2$Si grows with square root of time until all unreacted Ni is consumed. The growth rate agrees with published data [2]. Then the second phase NiSi begins to grow, also with square root of time, which results in a parabolic decrease in Ni$_2$Si thickness squared. For the implanted samples, the Ni$_2$Si growth ceases after only ~1250 Å have formed. The Ni$_2$Si thickness squared decreases linearly and some NiSi begins to form but growth is much slower than in the unimplanted samples. The total amount of Ni in the Ni$_2$Si and NiSi layers slowly increases during subsequent annealing. This also confirmed by backscattering spectra which shows that the amount of unreacted Ni on the surface decreases. The effect of a reduced oxygen dose is shown in Fig. 2.
Fig. 1. Plot of Ni$_2$Si thickness squared versus annealing time at 292°C for unimplanted samples and for samples with $2.3 \times 10^{16} \text{ O/cm}^2$ ($3 \text{ at.} \% \text{ of Ni peak}$) implanted initially halfway into the Ni film. Barrier formation in the implanted samples stops Ni$_2$Si growth before the Ni is completely consumed. In comparison to the parabolic decrease in Ni$_2$Si thickness squared seen for unimplanted samples, the linear decrease indicates the presence of a partial barrier to the silicide formation process.
Fig. 2. Plot of Ni$_2$Si thickness squared versus annealing time at 290°C for unimplanted samples and for samples implanted with 1.5 x 1016 O/cm2 (2 at. % of Ni peak) halfway into the Ni film. Barrier formation is delayed due to the lower dose. The linear decrease in NiSi thickness squared indicates the presence of a partial barrier to Ni$_2$Si formation.
One may expect that for a lower oxygen dose more Ni$_2$Si will form. Fig. 2 shows a plot of Ni silicide thickness squared versus annealing time at 290°C for unimplanted samples and for samples implanted with 1.6×10^{16} O/cm2. At the peak of its distribution, the oxygen reaches 2 at. % of Ni. Upon annealing, 1470 Å of Ni$_2$Si forms in the implanted samples before growth ceases. NiSi begins to form then, but at a faster rate than in the previous case although still slower than for unimplanted samples. The effects of a still lower oxygen dose are shown in Fig. 3. Figure 3 shows a plot of Ni silicide thickness squared versus annealing time at 290°C for unimplanted samples and samples implanted with 0.76×10^{16} O/cm2. The peak of the oxygen distribution reaches only 1 at. % of Ni. The growth rate of Ni$_2$Si is the same in both implanted and unimplanted samples. Ni$_2$Si continues to form until all unreacted Ni is consumed. Then NiSi begins to nucleate and grow. No slowing of NiSi growth in the implanted samples is seen; NiSi growth rates for both implanted and unimplanted samples are evidently unimpeded.

Figure 4a shows the as-implanted oxygen distribution obtained from the 16O(d,α)14N nuclear reaction technique for a sample with a dose of 1.6×10^{16} O/cm2. The measured peak of the implanted oxygen distribution R_p is located at \sim 630 Å into the Ni film, very close to the calculated value of 640 Å. ΔR_p is \sim 370 Å only slightly larger than the calculated value of 330 Å. The maximum oxygen concentration is 2.3 at. % which is 15% higher than the 2.0 at. % calculated. The total amount of oxygen in this peak (from 150 Å to 1400 Å) is 1.7×10^{16} O/cm2. This is very close to the value obtained by charge integration during ion implantation. The narrow peak located at the Ni surface is mainly due to oxidation of the Ni surface during processing. Since this peak represents 3.3×10^{15} O/cm2
Fig. 3. Plot of Ni_2Si thickness squared versus annealing time at 290°C for unimplanted samples and for samples implanted with 0.76×10^{16} O/cm2 (1 at. % of Ni peak) halfway into the Ni film. The implanted oxygen dose is below the threshold dose for barrier formation. The reaction proceeds to completion unhindered in both unimplanted and implanted samples.
Fig. 4. Oxygen distribution obtained by the $^{16}\text{O}(d,\alpha)^{14}\text{N}$ nuclear reaction for a sample: a) as-implanted, and b) after annealing at 290°C for 121 min. The dashed lines are interface positions determined independently by $^4\text{He}^+$ backscattering. After annealing, the oxygen distribution peaks at the Ni-Ni$_2$Si interface. No oxygen is found in the Ni$_2$Si.
the total amount of oxygen in this sample is $\sim 2.0 \times 10^{16}$ O/cm2. The position of the interfaces in Figs. 4a and b were obtained independently using 4He backscattering. Figure 4b shows the oxygen distribution after annealing at 290°C for 121 min. The implanted oxygen has built up at the Ni-Ni$_2$Si interface and is rejected from the silicide. The total amount of oxygen increases during annealing from 2.0 to 3.2×10^{16} O/cm2. This additional oxygen is most likely introduced during annealing in the imperfect vacuum.

A very similar increase is observed during annealing of the sample with 2.3×10^{16} O/cm2; after 169 min. at 290°C the oxygen content rises to 3.3×10^{16} O/cm2. The amount of oxygen within ±100 Å of the Ni-Ni$_2$Si interface is 1.2×10^{16} O/cm2. The discontinuity of the profile at the Ni-Ni$_2$Si interface is due to the atomic density change from 9.14 to 8.98×10^{22} atoms/cm3 going from Ni to Ni$_2$Si.

Figure 5 shows the Ni 2p and Si 2p signals after in situ annealing for unimplanted samples and for samples implanted with 1.54×10^{16} O/cm2 (2 at. % of Ni) halfway into the Ni film. The position of these signals for various chemical states is shown by the labeled arrows. The position of the Ni 2p signal in both the unimplanted (5a) and implanted samples (5b) corresponds only to Ni$_2$Si. No signal from Ni oxide is found even though the oxygen was initially present in the Ni film. The Si 2p signal for the unimplanted samples (5c) also shows a large peak corresponding to Ni$_2$Si. This line is broader than the Ni 2p line due to overlapping Si 2p 1/2 and Si 2p 3/2 spin-orbit components. A low broad peak is present upfield of the Ni$_2$Si peak. Its position indicates the presence of some Si$^{+4}$, SiO$_2$, along with Si$^{+3}$ and Si$^{+2}$ suboxides Si$_2$O$_3$ and SiO\cdot [15].
Fig. 5. XPS spectra for Ni-Ni$_2$Si interface showing the Ni$_2$p and Si$_2$p core levels for a) and c) unimplanted samples and b) and d), samples implanted with 1.5×10^{16} O/cm2 halfway into the Ni film. The position of the signals corresponds to Ni$_2$Si and SiO$_2$.
The Si 2p signal in the implanted case (5d) shows a large peak corresponding to SiO$_2$, larger than the Ni$_2$Si signal. Similar spectra were also obtained after in situ annealing for the samples implanted with 0.76 and 2.34×10^{16} O/cm2 (1 and 3 at. %). If all the oxygen present in the film is bound as SiO$_2$, the 0 ls intensity should be completely accounted for by the Si 2p oxide intensity. In the lower curves in Fig. 6, the 0 ls and Si 2p oxide intensities are plotted as a function of in situ annealing time. The initial decrease in the 0 ls signal is due to the desorption of oxygen containing impurities on the sample surface as heating begins. During the first 45 min. no O or Si signal is detected. After 45 min., the 0 ls signal begins to increase rapidly followed by the Si 2p oxide signal at 55 min. Both signals reach nearly full intensity after ~90 min. and remain constant for the remainder of the experiment. Since the kinetic energy of the Si 2p photoelectron is greater than that of the 0 ls photoelectron one would not expect to observe the 0 ls signal first. This suggests there is a front of oxygen preceding the advancing Si. The middle curve of Fig. 6 shows the stoichiometry ratio of O to Si versus anneal time. This curve was obtained by calibrating the intensity ratio 0 ls/Si 2p of the oxide lines against a thick SiO$_2$ layer thermally grown on Si. The use of a calibration standard allows the estimation of the stoichiometry since such unknown factors as the photoelectron cross-sections and electron escape depths are intrinsically included. The initial dip in the O/Si curve indicates the presence of Si suboxides. The O/Si ratio, once the O and Si intensities reach a plateau, is two indicating the presence of SiO$_2$ with no excess oxygen. The 0 ls and Si 2p oxide binding energies in the upper set of curves in Fig. 6 also show a shift from low to high binding energies as the initial signals appear.
Fig. 6. Composite plot giving the core line intensities, O/Si stoichiometries, and binding energy maxima versus annealing time for the 2% oxygen implant dosage.
This also indicates the initial presence of Si suboxides followed by SiO₂ formation.

2. Discussion

Marker experiments have shown that Ni is the dominant diffusing species in Ni₂Si growth [1], [6]-[10]. The growth sequence of the unimplanted samples shows that as long as there is a supply of Ni atoms to the Ni₂Si-Si interface, the first phase Ni₂Si will continue to grow. Once the supply of Ni atoms is cut off, as when the Ni film is completely consumed, the second phase begins to nucleate and grow. That the suppression of the metal supply leads to the formation of a second silicide phase has been observed and stated before [3]. The implantation of 2 or 3 at. % oxygen (1.54 or 2.34 × 10^{16} O/cm² respectively) into the Ni film is sufficient to cause the second phase to nucleate and grow before all the unreacted Ni is consumed. Evidently, this presence of oxygen leads to the formation of a barrier to Ni diffusion, during annealing. Since the oxygen is seen to build up at the Ni-Ni₂Si interface and since the XPS results show this oxygen to have formed SiO₂, this barrier is SiO₂ that has accumulated at the Ni-Ni₂Si interface. If only 1 at. % oxygen (0.76 × 10^{16} O/cm²) is implanted into the Ni film a barrier to Ni diffusion does not form even though XPS measurements show the oxygen still forms SiO₂. There is, therefore, a threshold oxygen dose necessary for barrier formation. For annealing of 290°C, this dose is between 0.76 and 1.5 × 10^{16} O/cm² or in terms of SiO₂, between 16 Å and 32 Å of SiO₂ is necessary to block Ni diffusion. Since the barrier is SiO₂ at the Ni-Ni₂Si interface, the actual threshold dose can be estimated from the amount of oxygen present close to the interface. The threshold dose is,
taking the oxygen within ±100 Å of the Ni-Ni$_2$Si interface, 1.2×10^{16} O/cm2 or ~25 Å of SiO$_2$. Using the ratio of the intensity of the Si 2p oxide line I_{ox} to the Si 2p silicide line I_{sil} the thickness of the SiO$_2$ barrier may be independently estimated from the XPS results using:

$$\frac{I_{ox}}{I_{sil}} = \frac{N_{Si}^{SiO_2}}{N_{Ni_2Si}^{Ni_2Si}} \frac{\lambda_{ox}}{\lambda_{sil}} \left(e^{-\frac{x}{(\lambda_{ox} \sin \theta)}} - 1 \right)$$

where $N_{Si}^{SiO_2}$ and $N_{Si}^{Ni_2Si}$ are the atomic densities of Si in the oxide and silicide respectively; λ_{ox} and λ_{sil} are the electron escape depths in the oxide and silicide respectively and θ is the angle between the plane of the sample and the electron detector (38.5°). If we allow λ_{ox} to be 36 Å [16] and let λ_{sil} be a "metallic like" 15 Å [17] we find that ~24 Å of SiO$_2$ is the threshold necessary to form the barrier.

24 Å of SiO$_2$ amounts to 1.1×10^{16} O/cm2. This is within the range 0.76 to 1.5×10^{16} as it should be and also agrees with the value obtained previously. Thus the threshold dose necessary for barrier formation is ~1.2×10^{16} O/cm2.

These results are consistent with a sequence of events that is summarized in Fig. 7. The moving species in Ni$_2$Si formation is Ni. Presumably implanted oxygen binds with Ni atoms to form nickel oxide complexes that are apparently immobile in Ni. As the Ni atoms diffuse into the silicide (represented by arrows) upon annealing, these oxygen complexes (represented by the solid dots) are moved toward the Ni-Ni$_2$Si interface. Oxygen bonds rather weakly to Ni (ΔG^0_f (NiO) = 51.7 kcal/mol) and very strongly to Si (ΔG^0_f (SiO$_2$) = -204.8 kcal/mol [5]. Because of
Fig. 7. Model of SiO₂ barrier formation. The black dots represent oxygen complexes in the Ni film. Upon annealing Ni diffuses into the silicide, represented by the curved arrows, exposing the oxygen to the Si present at the Ni-Ni₂Si interface. Oxygen reacts there to form SiO₂. When all Ni diffusion paths are blocked, the second phase NiSi begins to form.
this asymmetry in the chemical affinity of oxygen to Si and Ni, Si reduces the nickel oxides and forms silicon oxides when the Ni diffusion exposes them to Si at the Ni-Ni$_2$Si interface. The oxygen initially forms Si suboxides. As further Ni diffusion brings increasing amounts of oxygen to the Ni-Ni$_2$Si interface, the suboxides become SiO$_2$. SiO$_2$ is not mobile relative to Ni$_2$Si and therefore remains at the Ni-Ni$_2$Si interface. Thus, as oxygen-bearing Ni diffuses into the Ni$_2$Si, the oxygen builds up at the interface in the form of SiO$_2$ until further Ni diffusion is blocked. Ni diffusion is blocked after ~25 Å of SiO$_2$ has accumulated at the Ni-Ni$_2$Si interface, thus at least 1.2×10^{16} O/cm2 must be initially present in the Ni film before subsequent barrier formation can take place. When the Ni supply ceases the second phase NiSi begins to form converting the Ni$_2$Si to NiSi. The NiSi growth rate, even though the impurity oxygen has been rejected from the Ni$_2$Si layer, leaving this layer impurity free, still remains dependent on the initial oxygen dose present in the Ni film. That this effect may be caused by the incorporation of small amounts of oxygen into the silicide layer is unlikely. In Section E of this chapter we investigate the effect of impurity oxygen initially present in the Ni$_2$Si layer on NiSi growth and show that even large amounts of oxygen have little effect. In that section we present arguments that a structural change in the Ni$_2$Si layer caused by ion implantation damage may be responsible for the slowing in NiSi growth observed there. A similar effect may be present here. The resolution of this question may require additional diagnostic techniques, in particular, TEM.
D. OXYGEN IN SILICON

If the oxygen is initially present in the Si rather than the Ni, the effect of oxygen is not expected to be the same, because oxygen is placed at once in the medium (Si) with the lowest free energy of reaction (SiO₂), so that a reaction with Ni is now energetically unfavorable. The oxygen is also located in the non-diffusing species. In this section we present the effects of impurity oxygen on Ni₂Si growth when the oxygen is initially present in the Si substrate.

1. Experimental Results

Figure 8 shows a plot of Ni₂Si thickness squared versus annealing time at 290°C for 1440 Å Ni films on Si <100> substrates that were implanted with \(7.0 \times 10^{15}\) O/cm² to a depth of \(~700\) Å in the Si. At the peak of its distribution, the oxygen concentration reaches 1 at. % of Si. In comparison with the unimplanted samples in which Ni₂Si grows as usual, the implanted samples show a slight drop in growth rate after \(~64\) min of annealing. Ni₂Si continues to form, however.

Figure 9a shows the as-implanted oxygen distribution obtained from the \(^{16}\)O(d,α)\(^{14}\)N nuclear reaction. The Ni-Si interface position, obtained independently by backscattering spectrometry, is located at 1440 Å. The broad peak located near 2200 Å is due to the implanted oxygen and corresponds to a depth in the Si of \(~780\) Å. This agrees reasonably well with the calculated range of 715 Å. The total amount of implanted oxygen determined from this oxygen signal (1000 Å to 3500 Å) is \(8.9 \times 10^{15}\) O/cm² and agrees well with the value of \(7.0 \times 10^{15}\) O/cm² measured during the
Fig. 8. Plot of Ni_2Si thickness squared versus annealing time at 289°C for unimplanted samples and samples implanted with 7.0×10^{15} O/cm2 approximately 715 Å into the Si substrate. No barrier forms and Ni_2Si grows until all unreacted Ni is consumed.
Fig. 9. Oxygen distribution obtained by the $^{16}\text{O}(d,\alpha)^{14}\text{N}$ nuclear reaction for a sample: a) as-implanted, and b) after annealing at 288°C for 144 min. No barrier formation is seen. The oxygen is incorporated into the Ni$_2$Si. The oxygen density is lowered similar to that of the Si as the Si formed Ni$_2$Si.
implantation. Figure 9b shows the oxygen distribution after annealing at 288°C for 144 min. The oxygen has been incorporated into the Ni₂Si with only a lowering and some broadening of its initial distribution. The decrease in oxygen concentration deduced from this plot is approximately 40%. An interfacial accumulation of oxygen is not observed. The total amount of oxygen in the annealed sample is 8.1×10^{15} O/cm² and differs insignificantly from the 8.9×10^{15} O/cm² measured initially. Evidently, oxygen from the ambient is not able to enter the silicide. As in the case when the implanted oxygen is initially in the Ni film, such oxygen will be swept out as the Ni-Ni₂Si interface moves through the Ni to the surface.

2. Discussion

It is clear from the results that a barrier to Ni diffusion does not form when the oxygen is initially located in the Si. Instead, the impurity oxygen is incorporated into the Ni₂Si without an interfacial accumulation taking place. The decrease in oxygen concentration during incorporation into the Ni₂Si is $\sim 40\%$. Since this value is also that of the density change of Si when Ni₂Si is formed, we conclude that oxygen and silicon do not alter their relative positions as Ni₂Si formation proceeds. This is in marked contrast to the case when oxygen is initially in the Ni and no oxygen is found in the Ni₂Si after annealing.

The effects observed on the Ni₂Si growth when oxygen is initially in the Si are summarized in Fig. 10. The oxygen distribution for the as-implanted case is approximately gaussian and located within the Si that will be consumed in Ni₂Si formation. Oxygen bonds very strongly to Si ($\Delta G_f^o(\text{SiO}_2) = -204.8$ kcal/mol) and very weakly to Ni ($\Delta G_f^o(\text{NiO}) = -51.7$ kcal/mol) [5]. Thus, since Ni cannot reduce Si oxides the oxygen will
Fig. 10. Model of oxygen incorporation into Ni$_2$Si without barrier formation. Oxygen binds to the silicon initially and remains bound to it during Ni$_2$Si formation. The Ni diffuses around Si-O complexes in forming Ni$_2$Si, diluting the oxygen density in the same ratio as the Si density.
remain bound to the Si during \(\text{Ni}_2\text{Si} \) formation. Presumably, \(\text{SiO}_2 \) (or a Si suboxide) is not mobile with respect to \(\text{Ni}_2\text{Si} \), and therefore it will be incorporated into the silicide along with the Si during \(\text{Ni}_2\text{Si} \) growth. Si undergoes a density decrease from 5.0 to \(3.0 \times 10^{16} \text{ Si/cm}^2 \) in forming \(\text{Ni}_2\text{Si} \). The oxygen in the Si will change its density by the same ratio, decreasing and broadening, unless sufficient oxygen is present to form a glassy substructure that would resist density changes. The oxygen in Si decreases the growth rate, however, as the presence of oxygen in the \(\text{Ni}_2\text{Si} \) and at the \(\text{Ni}_2\text{Si}-\text{Si} \) interface interferes with the Ni diffusion and the formation of new \(\text{Ni}_2\text{Si} \). This interference is not sufficient to significantly alter the reaction process and \(\text{Ni}_2\text{Si} \) is still the phase formed. Nucleation and growth of the second phase \(\text{NiSi} \) does not take place until all of the unreacted Ni film has been consumed by \(\text{Ni}_2\text{Si} \) growth.
E. OXYGEN IN Ni$_2$Si

In Section C we found that the growth rate of the second phase Ni$_3$Si strongly depends on the initial oxygen dose implanted into the Ni film. While an oxygen dose of 1 at. % of Ni had no effect on the Ni$_3$Si growth rate, doses of 2 and 3 at. % reduced the growth rate (Ni$_3$Si thickness squared/annealing time) from 9.9×10^3 Å2/min to 3.2×10^3 and 4.2×10^2 Å2/min respectively. An interesting question is if this effect is due to the incorporation of impurities into the Ni$_2$Si layer.

In this section we investigate the effects that implanted oxygen has on the Ni$_3$Si reaction when oxygen is initially located in the Ni$_2$Si film.

1. Experimental Results

Figure 11a shows a plot of Ni$_3$Si thickness squared versus annealing time for unimplanted samples and for samples implanted with 2 or 3×10^{16} O/cm2 into the Ni$_2$Si film for an annealing temperature of 325°C. X-ray diffraction patterns taken from a sample before and after the 2×10^{16} O/cm2 implantation show the presence of Ni$_2$Si in both cases. However, there is a significant broadening of the lines in the implanted case indicating that structural changes have taken place. This sample remains polycrystalline, however, damage has occurred possibly enough to form local amorphous regions. In the unimplanted samples, Ni$_3$Si is seen to grow with square root of time. This disagrees with the linear rate previously reported by Coe et al [4] (also shown in Fig. 11a). For the implanted samples, the Ni$_3$Si growth is again proportional to the square root of time, but is slower than for the unimplanted case and is practically identical for both the 2 and 3×10^{16} O/cm2 cases. Ni$_3$Si growth continues until all
Fig. 11. (a) A plot of NiSi thickness squared versus annealing time at 325°C for unimplanted samples and samples implanted with 2 and 3×10^{16} O/cm². Growth is uniformly proportional to square root of time in both cases. Also shown for comparison is a calculated curve of NiSi growth using Coe et al [1], results reporting a linear time-dependence.

(b) The total oxygen incorporated into the NiSi and the concentration of oxygen present at the NiSi side of the Ni$_2$Si-NiSi interface as a function of NiSi thickness squared. These curves were calculated from the initial oxygen distribution. They illustrate that depth dependences of oxygen have little effect on the time dependence of NiSi growth.
of the Ni$_2$Si layer has been consumed. These results were reproduced with samples prepared fully independently to within the uncertainty resulting from the furnace setting. The nonzero intercepts for the NiSi thickness squared in both the implanted and unimplanted cases indicate that an initial amount of NiSi was present before annealing.

Figure 12a shows the oxygen distribution obtained by the 16O(d,α)14N nuclear reaction technique for the as-implanted sample. The implanted oxygen is seen to have an approximately Gaussian distribution with a range $R_p \sim 1200$ Å and a width $\Delta R_p \sim 550$ Å. Both values are near the estimated ones (~ 1000 Å and ~ 450 Å). The total amount of oxygen in this peak (350 Å to 2200 Å) is 2.74×10^{16} O/cm2 and agrees well with that obtained by charge integration. The boundaries of the initial amount of NiSi present in the as-implanted sample as determined from the intercept of Fig. 11a are shown as vertical dashed lines. A small amount of the implanted oxygen reaches this layer. Fig. 12b shows the oxygen distribution after the Ni$_2$Si film has fully reacted to form NiSi. The oxygen remains approximately Gaussian; however, R_p and ΔR_p are less than before (~ 925 Å and ~ 400 Å, respectively). The total amount of oxygen in this peak (250 Å to 1700 Å) is 3.42×10^{16} O/cm2 ~ 25% larger than the as-implanted oxygen peak. The large surface peaks shown one-tenth actual size in both spectra is most likely due to surface oxidation of the samples during processing.

2. Discussion

These results may be explained in terms of the asymmetries present in the chemical affinities of oxygen to the reacting species and in the initial location of the oxygen relative to the moving species. Marker experiments have shown that Ni is the diffusing species in NiSi formation
Fig. 12. (a) Oxygen distribution obtained by $^{16}\text{O}(d,\alpha)^{14}\text{N}$ nuclear reaction for the as-implanted sample. The broad peak located at \sim 1200 Å is due to the implanted oxygen. The boundaries between Ni_2Si, the initial NiSi present and the Si substrate are shown as vertical dashed lines.

(b) Oxygen distribution obtained by $^{16}\text{O}(d,\alpha)^{14}\text{N}$ nuclear reaction after the Ni_2Si film has been completely reacted to form NiSi. The peak of the oxygen distribution is located at \sim 950 Å and agrees very well with the calculated curve from the model.
Oxygen bonds weakly to Ni ($\Delta G_f^{\circ}(\text{NiO}) = -51.7 \text{ kcal/mol}$) as compared with Si ($\Delta G_f^{\circ}(\text{SiO}_2) = -204.8 \text{ kcal/mol}$). Thus oxygen initially located in Ni$_2$Si finds itself in a medium containing both the moving species with which it only weakly bonds and the stationary species with which it forms strong bonds. The difference in chemical affinity suggests that the oxygen will initially bond to the Si and will remain so throughout NiSi formation.

In Fig. 12b we show a theoretical curve (dashed line) calculated on this assumption from the as-implanted oxygen distribution (solid line shown in Fig. 12a). This curve matches very well to the measured oxygen distribution. Evidently, the oxygen has been incorporated into the NiSi film without an interfacial accumulation taking place. This ability of oxygen to form an inert oxide that is incorporated in the Si without interfacial effects suggests an interesting possibility to use oxygen as a diffusion marker. Since each oxygen atom is tightly bound to two Si atoms and these are tied to the silicon lattice, this array of atoms is not expected to move relative to the Si lattice even though considerable mass transport may take place around it. The lack of segregation effects in the present case would seem to verify this picture. Assuming Si rather than Ni as the diffusing species in NiSi formation, we calculate the third curve ("Si moves") on Fig. 12b. The clear difference between the two predicted curves provides an independent verification that within our experimental sensitivity it is only the Ni that moves. While oxide inclusions have been used before as a diffusion marker during bulk diffusion [18], [19], the use of ion implanted oxygen to form an inert oxide may open this possibility to studies of thin films as well.
The origin of the disagreement between the square root of time growth rate measured here and the linear growth rate reported by Coe et al [3] is not known. One evident difference appears to lie in the annealing ambient of forming gas (90% N₂ - 10% H₂) in the latter case. After annealing a sample in forming gas, however, we found nearly the same NiSi growth as in the vacuum annealed samples. Linear growth, instead of square root growth, will result if the interfacial reactions are slowed down. It is well known that impurities introduced during film deposition or annealing can interfere with silicide reactions. We suspect this to have happened in the case of Coe et al [3].

The slowing of NiSi growth in the implanted samples may be due to various effects. The presence of oxygen may be expected to slow down the reaction. Since the kinetics remains transport-limited, oxygen interference with the interfacial reaction must be insignificant, but oxygen may alter the diffusion of Ni through the NiSi layer. The amount of oxygen present on the NiSi side of the NiSi-Ni₂Si interface and the total amount of oxygen incorporated in the NiSi film are shown in Fig. 10b. These curves were calculated based on the as-implanted oxygen distribution. The lack of correlation of the NiSi growth with either of these parameters shows that the presence of oxygen per se is not a plausible explanation for the reduced kinetics. This conclusion is further supported by the observation that a 50% increase in oxygen does not affect the resulting kinetics. Structural damage caused to the Ni₂Si film by the ion implantation process is another factor to be considered in regards to the slowing of the NiSi growth for the implanted samples. The X-ray diffraction measurements indicate a structural change after implantation. However, any amorphous regions present will recrystallize in only a few
seconds at 325°C [20]. This can result in a further change in Ni$_2$Si structure. What effect a change in Ni$_2$Si structure has on the resulting NiSi structure is not known. However, it is known that the initial structure of the Si substrates affects the structure and the kinetics of the first phase Ni$_2$Si formed upon annealing [2]. A similar effect may be present here in the second phase of NiSi as well. Finally, it is conceivable that both structural alterations of the Ni$_2$Si and the presence of oxygen simultaneously affect the reaction, and in different ways. Further studies using additional diagnostic techniques, and in particular TEM, are required to settle these questions.

The implantation of 2 to 3 x 1016 O/cm2 reduces the reaction kinetics slightly. Strictly speaking, a marker should not alter the reaction, but in the present case, the oxygen performs as a valid marker nevertheless. Mass transport should not take place through a truly inert marker. Thus the presence of marker material can only decrease the number of available diffusion paths. This is not expected to alter the identity of the moving species. Therefore, we speculate that an inert marker will perform properly even if it causes a reduction in the growth rate so long as the phase formed is unaltered. In the present case, we find that noticeable interference by the marker can be tolerated. This relaxation of the requirements placed on the marker could be useful in further marker studies of thin film reactions.
F. SUMMARY AND CONCLUSION

We have investigated the effects of oxygen on Ni$_2$Si formation by implanting oxygen initially into the Ni film and by implanting oxygen initially into the Si substrate. We found that if oxygen is initially in the Ni, oxygen continuously accumulates at the Ni-Ni$_2$Si interface during annealing and ultimately a barrier to further Ni diffusion is formed. The XPS measurements show that the chemical form of the oxygen at the Ni-Ni$_2$Si interface is SiO$_2$. It is the formation of SiO$_2$ at the Ni-Ni$_2$Si interface that prevents Ni from entering the Ni$_2$Si. Once the Ni supply is cut off, the second phase NiSi begins to form. When the oxygen is initially in the Si, it is incorporated into the Ni$_2$Si without barrier formation. The decrease in oxygen density parallels that of Si as the Si reacts to form Ni$_2$Si, indicating that the oxygen remains bound to Si during Ni$_2$Si formation. We propose a model in which the moving species Ni binds with the impurity oxygen much more weakly than does the stationary species Si. Oxygen will therefore react with the Si at the Ni-Ni$_2$Si interface to form a barrier of SiO$_2$, whereas oxygen initially in Si will remain tied to the Si during Ni$_2$Si formation.

We have also investigated the effects of oxygen on the formation of the second phase NiSi by implanting oxygen initially into the Ni$_2$Si film. We found that NiSi grows with square root of time in both implanted and unimplanted samples. The slowing is uncorrelated with the amount of oxygen suggesting that a structural change due to ion implantation is the cause. During NiSi formation oxygen initially present in the Ni$_2$Si layer
is incorporated into the NiSi film without interfacial accumulation, however the oxygen is seen to move toward the surface. This motion is explained in terms of a simple model based on the chemical affinity of oxygen to Si and Ni and the fact that Ni is the diffusing species in NiSi growth. The shift in the peak of the oxygen distribution during NiSi formation enables the implanted oxygen to act as a diffusion marker, thus confirming Ni as the diffusing species in NiSi growth. The use of implanted oxygen as a diffusion marker in thin film studies is explored briefly.
REFERENCES

CHAPTER IV

IMPLANTED OXYGEN IN Pt SILICIDE FORMATION

A. INTRODUCTION

Platinum silicide formation commands an important role in integrated circuit technology where it is used to form ohmic and Schottky contacts in silicon devices. For impurity-free Pt films deposited on Si and annealed in vacuum, a uniform layer of Pt$_2$Si first begins to grow at the Pt-Si interface [1],[2],[3]. The thickness of this layer increases with the square root of time indicating diffusion-limited growth. Marker experiments have shown that Pt is the diffusing species in Pt$_2$Si formation [4],[5]. The Pt$_2$Si layer will continue to form as long as there is a supply of unreacted Pt. When all of the Pt film is consumed, a layer of PtSi nucleates and grows, converting the Pt$_2$Si to PtSi [1],[3]. The simultaneous presence of Pt, Pt$_2$Si and PtSi is not observed. It is known, however, that this growth sequence can be greatly altered by the presence of impurities [1], [6]-[12]. Impurities introduced into the Pt film during deposition [7]-[9] or during annealing [6],[12] have been found to prevent a Pt metal layer from forming silicide. Thus Pt, Pt$_2$Si and PtSi can then be simultaneously present. It has also been observed that impurity oxygen and Al accumulate at the Pt-Pt$_2$Si interface during annealing [2],[6]-[10]. From these observations it has been postulated that impurities in the metal may stop the supply of Pt to the Pt$_2$Si-Si interface, thus allowing PtSi to nucleate and grow [1].
In our previous work on the effects of impurity oxygen on Ni silicide formation [13],[14],[15] (Chapter III), we modeled the effects of the impurity oxygen in terms of two parameters. The first is the initial location of the impurity relative to the moving species and the second is the chemical affinities of the oxygen relative to the Ni and Si.

In this chapter we apply this model to explain and clarify the effects of impurity oxygen on Pt silicide formation. We also present experimental results, using ion implantation, to control the initial position and amount of the oxygen.
B. EXPERIMENTAL PROCEDURES

Commercially prepared and polished Si <100> wafers (Wacker) were cleaned ultrasonically with TCE, acetone and methanol, and etched for 1 min. in 1:1 HF:H₂O immediately prior to loading into an oil-free e-beam evaporation system. Pt films of ~2000 Å were evaporated onto the silicon substrate at ~17 Å/sec with the vacuum kept < 9 × 10⁻⁷ torr during the evaporation. Half of the wafers were then implanted with either 1.0 or 2.0 × 10¹⁶ O/cm² at 180 keV per atom. According to range tables [16] this places the peak oxygen concentration (0.9 and 1.8 at. % respectively) at R_p ~ 970 Å into the Pt with ΔR_p ~ 670 Å.

The wafers used in the kinetic study were diced and loaded into a quartz-tube vacuum-annealing furnace. Unimplanted and implanted samples were annealed simultaneously at 290°C with a background pressure of ~5 × 10⁻⁷ torr. The silicide composition and growth kinetics were studied with 2.0 MeV ⁴He⁺ backscattering [17]. The detector angle was 170° with the He⁺ beam incident 5° from the sample normal. An identification of the phases by X-ray diffraction was not performed since the Pt/Si system has been extensively studied before [18]. Instead, the phases were identified from the composition ratios determined from the backscattering spectra. The oxygen distribution was measured by the ¹⁶O(d,α)¹⁴N nuclear reaction (Chapter II).

A detector angle of 164° and sample tilt angle of 55° with respect to the incident beam were used. The cross section reported by Kim et al was used to calculate the oxygen concentration [19].
After implantation, samples examined by XPS were cleaned by a 20-minute plasma oxidation at a pressure of ~ 50 m torr. This step is required to remove a carbon overlayer which we attribute to contamination by diffusion pump oil during the ion implantation step [20]. The Pt oxide that had formed during the oxidation was etched off in a dry box maintained under a N$_2$ atmosphere by spinning the sample at 3600 rpm and adding dropwise 500 µl of 1:10 HF in ethanol followed by a 1000 µl ethanol rinse. The sample inlet port of the spectrometer is connected directly to the N$_2$ dry box and, consequently, no further oxygen contamination occurred after etching. After loading into the XPS system [21], initial measurements of the Pt 4f, Si 2p and O 1s core levels were taken. The samples then were annealed in situ at a pressure of 2 x 10$^{-9}$ torr until the Pt-Pt$_2$Si interface was within the depth range accessible to the analyzer (≤ 50 Å). Samples were initially heated to 325°C. This temperature turned out to be insufficient to bring the Pt-Pt$_2$Si within the depth range of the analyzer for the samples implanted with 2.0 x 1016 O/cm2. For these samples additional annealing at 377°C was required. During annealing the sample was monitored using the O 1s core level for samples implanted with 1.0 16O(d,α)14N and the Si 2p line for samples implanted with 2.0 x 1016 O/cm2. Annealing was stopped after the intensity of the core line being monitored had reached a plateau. Following annealing the samples were cooled to 25°C to allow extended final measurements of the Pt 4f, Si 2p and O 1s core level binding energies. After XPS analysis, the sample composition and oxygen distributions were measured by BS and the 16O(d,α)14N nuclear reaction.
C. EXPERIMENTAL RESULTS

Figure 1 illustrates the formation of Pt_2Si and PtSi for unimplanted samples and for samples implanted with $2.0 \times 10^{16} \text{ O/cm}^2$ half way through the Pt film. Initially Pt_2Si grows with square root of time indicating that the reaction process is transport-limited for both implanted and unimplanted samples. The growth rate agrees with published values [2]. In the unimplanted samples Pt_2Si continues to grow with square root of time until all of the unreacted Pt is consumed. Subsequently, after a slight delay, the second phase PtSi nucleates and begins to grow, also with square root of time. In the implanted samples, the Pt_2Si growth first slows and then finally halts after 80 minutes, at which time ~1580 Å of Pt_2Si have formed. The PtSi phase then begins to form at the expense of the Pt_2Si.

Backscattering spectra show that the amount of unreacted Pt left on the surface is unchanged by subsequent annealing at 290°C for up to 300 minutes. The increase in PtSi and decrease in Pt_2Si shown in Fig. 1 also corresponds to a constant amount of Pt shared between the silicides. The total amount of Pt in the Pt_2Si and PtSi remains constant during the transformation of Pt_2Si to PtSi. While the growth rate of the PtSi is slower than in the unimplanted case, the growth still remains proportional to the square root of the annealing time.

Fig. 2a shows the as-implanted oxygen profile obtained from the $^{16}\text{O}(d,\alpha)^{14}\text{N}$ nuclear reaction technique. The intense peak at the sample surface is due to an oxidized layer which forms during sample handling. The low broad peak located in the Pt is due to the implanted oxygen. The peak of the oxygen distribution is located at ~1100 Å (R_p) which is
Fig. 1. Plot of Pt silicide thickness squared versus annealing time at 290°C for unimplanted samples and for samples implanted with 2.0×10^{16} O/cm2. Barrier formation in the implanted sample halts Pt$_2$Si growth before all Pt is consumed. The total amount of Pt in Pt$_2$Si and PtSi is conserved in the implanted samples indicating that further diffusion of Pt into the silicide layers is completely blocked.
Fig. 2. Oxygen distributions obtained by the $^{16}\text{O}(d,\alpha)^{14}\text{N}$ nuclear reaction for: (a) the as-implanted sample, (b) after annealing at 290°C for 122 min. in vacuum. The dashed lines are interface positions independently determined from $^{4}\text{He}^+$ backscattering spectra. After annealing the oxygen distribution peaks at the Pt-Pt$_2$Si interface. The amount of oxygen beneath the surface remains constant after annealing, indicating that oxygen from the ambient does not reach the Pt-Pt$_2$Si interface.
slightly deeper than $R_p \sim 970$ calculated from the range tables [16]. However, $\Delta R_p \sim 700 \text{Å}$ is very close to the calculated value of 670 Å. The total amount of oxygen in this peak (from 250 Å to 2400 Å) is calculated to be 2.0×10^{16} O/cm2, which agrees fortuitously well with that obtained by charge integration during ion implantation. The positions of the Pt/Si, Pt/Pt$_2$Si, Pt$_2$Si/PtSi, and PtSi/Si interfaces in Fig. 2 have been determined independently using 4He$^+$ backscattering. Fig. 2b shows the oxygen distribution after annealing the implanted sample for 122 minutes at 290°C. From Fig. 1 this corresponds to the point where the transport of the unreacted Pt remaining on the sample surface has been blocked. The growth of PtSi has begun at the Pt$_2$Si-Si interface. The oxygen distribution is seen to peak at the Pt-Pt$_2$Si interface. The total amount of oxygen beneath the surface (from 300 Å to 1800 Å) is again 2.0×10^{16} O/cm2, indicating that no additional oxygen from the ambient has been introduced during the annealing. The total amount of oxygen near the Pt-Pt$_2$Si interface (from 900 Å to 1400 Å) amounts to 1.2×10^{16} O/cm2.

Fig. 3 shows the oxygen distribution obtained using the 16O(d,α)14N nuclear reaction for the XPS sample implanted with 2.0×10^{16} O/cm2 after annealing. The surface peak is again most likely due to surface oxidation during exposure to the atmosphere prior to 16O(d,α)14N measurements. The low broad peak located from ~ 1000 to ~ 2500 Å (1.6×10^{16} O/cm2) is most likely due to further redistribution of the oxygen that was located at the Pt-Pt$_2$Si interface when Pt diffusion was first halted during Pt$_2$Si formation (325° annealing, cf. Fig. 2). The bulk of this oxygen has not been brought within the depth range accessible to the XPS system. A new feature is the peak located at the Pt$_2$Si-Si interface (~ 4000 Å). The total amount of oxygen in this peak (~ 3000 to ~ 5000 Å) is 9.4×10^{15} O/cm2.
Fig. 3. The Si2p and Pt 4f spectra for (a) clean Si and Pt and after in situ annealing, (b) unimplanted samples, annealed at 250°C, (c) samples implanted with 1.0×10^{16} O/cm2 annealed at 325°C (d) samples implanted with 2.0×10^{16} O/cm2 annealed at 325°C and 377°C.
A detailed study of the Pt$_2$Si growth rate in the samples implanted with 1.0×10^{16} O/cm2 was not done. However, a delay of the Pt-Pt$_2$Si interface in reaching the surface during in situ annealing for the XPS measurements was not observed. Thus barrier formation, which would have prevented the Pt-Pt$_2$Si interface from coming within ~ 50 Å of the surface, did not take place.

Fig 4. shows the Pt and Si core level spectra obtained after in situ annealing for an unimplanted sample and for samples implanted with 1.0 and 2.0×10^{16} O/cm2. Clean Si substrate and Pt metal spectra are also shown for comparison (Fig. 4a). The Pt 4f$_{7/2}$ core level is found at 71.3 eV for Pt metal.

This line is broadened and highly asymmetric due to electron-hole pair formation around the Fermi energy accompanying photoemission [22]. After annealing this core level has shifted upfield by 1.2 eV to 72.5 eV and the FWHM has decreased to 1.2 eV for both unimplanted samples (Fig. 4b) and samples implanted with 1.0×10^{16} O/cm2 (Fig. 4c). This binding energy agrees with the value reported previously for Pt$_2$Si [23]. We have also found Pt$_2$Si formation in these samples using 4He backscattering. The final Pt 4f$_{7/2}$ core level obtained from the sample implanted with 2.0×10^{16} O/cm2 (Fig. 4d) falls at 72.8 eV which is half-way between the previously reported values [23] for Pt$_2$Si (72.5 eV) and PtSi (73.0 eV). This suggests that the sample surface consists of a distribution of both silicides.

The FWHM of this line has also increased slightly (0.1 eV) to 1.3 eV compared to the other samples. This slight broadening may also result from an inhomogeneous surface consisting of both silicides. The Pt 4f$_{7/2}$
Fig. 4. Oxygen distribution obtained by the $^{16}\text{O}(d,\alpha)^{14}\text{N}$ nuclear reaction for the XPS sample implanted with 2.0×10^{16} O/cm2 after barrier breakdown. The oxygen initially forming the barrier has been dispersed into the sample (1000 Å to 2500 Å). The presence of oxygen at the PtSi-Si interface is also seen.
binding energies for the oxides PtO and PtO₂ are also indicated on this figure [24].

The corresponding Si 2p signals for the unimplanted and implanted samples are shown in the left-hand panels of Fig. 4. The doublet structure is due to the 2p₃/₂,1/₂ spin-orbit coupling. The Si 2p₃/₂ binding energy is 100.5 eV for both Pt₂Si and PtSi [23]. Thus the position of the Si 2p₃/₂ line for unimplanted samples (Fig. 4b) and for samples implanted with 2.0 × 10¹⁶ O/cm² (Fig. 4c) does agree with the Pt₂Si previously assigned using the position of the Pt 4f core level along with the backscattering.

In the samples implanted with 2.0 × 10¹⁶ O/cm² (Fig. 4d) the major peak is a result of contributions from both Pt₂Si and PtSi. Since the Si 2p₃/₂ binding energy is the same for both silicides the inhomogeneity of the surface composition as previously determined from the Pt 4f spectra does not lead to additional complexity in the Si 2p signal. Table 1 summarizes the binding energies and full widths observed for the unimplanted and implanted samples as well as Pt, Pt₂Si and PtSi samples for comparison. A broad low intensity distribution is observed to the left of the dominant Si 2p signal for each sample (shaded areas). This peak is due to intermediate oxidation states of Si. Evidently a residual amount of oxygen is present in the unimplanted samples. The intensity of this distribution relative to the Si 2p silicide signal increases with increasing oxygen dose (Table 1). The ratios of the integrated intensity of the oxygen 1S line (not shown in Fig. 3) to that of the shaded Si 2p oxide peak normalized using a thick thermal SiO₂ layer on Si are also summarized in Table 1.
D. DISCUSSION

The growth of Pt$_2$Si and PtSi in the unimplanted samples is that previously observed for impurity-free Pt films annealed in vacuum [2]. Pt$_2$Si grows with square root of time until all free Pt is consumed. This exhausts the supply of free Pt to the Pt$_2$Si interface and allows PtSi to nucleate and grow. After a slight delay that may represent a nucleation time, PtSi begins to grow, also with square root of time. The simultaneous presence of Pt, Pt$_2$Si and PtSi is not observed. For the samples implanted with oxygen, Pt$_2$Si growth ceases before all of the unreacted Pt is consumed. Evidently the presence of the implanted oxygen results in the formation of a barrier to further Pt diffusion. This diffusion barrier remains impenetrable during subsequent annealing so that the total amount of Pt in the Pt$_2$Si and PtSi remains constant during the transformation of Pt$_2$Si to PtSi. Fig. 2 shows that it is the build-up of oxygen at the Pt-Pt$_2$Si interface that prevents further Pt diffusion. The accumulation of oxygen at this interface and the subsequent formation of a reaction barrier have been reported previously by other workers [7], [10].

In the XPS sample implanted with 1.0×10^{16} O/cm2 barrier formation did not take place. Thus the threshold dose necessary for the barrier is between 1 and 2×10^{16} O/cm2. An improved estimate of the amount of oxygen required may be found from the amount of oxygen near to the Pt-Pt$_2$Si interface once the diffusion of Pt has halted. From Fig. 2, this dose is 1.2×10^{16} O/cm2. This is much higher than the value of 2 to 4×10^{15} O/cm2 reported recently by Nava et al [10]. The study by Nava et al differs from ours in two major ways: first, their Pt films are sputtered unlike ours that were evaporated Pt films. It is well known that
sputtering may incorporate large amounts of the sputtering gas or other impurities into the metal film during deposition. Thus the rather low value quoted by Nava et al may represent only the additional amount of impurity oxygen necessary for barrier formation, above the amount of impurities already present. Second, Nava et al uses AES for impurity profiling; but an AES signal is difficult to quantify, especially when the host matrix is also changing. Thus we believe that $\sim 1.2 \times 10^{16}$ O/cm2 represents the threshold oxygen dose necessary for barrier formation. This value is also close to that observed for Ni (see Chapter III).

The chemical nature of this reaction barrier has been reported to be SiO$_2$ as well as PtSiO$_4$ [26]. The possibility of participation of either Pt silicates or Pt oxides in the barrier can be eliminated by examination of the Pt 4f spectra in Fig. 4. The Pt 4f binding energies for PtO (73.8 eV and PtO$_2$ (74.8 eV) are well distinguishable from the energies observed for Pt$_2$Si and PtSi [23],[24]. No indication of the presence of these oxides can be found in the Pt 4f spectra. If the Pt 4f signal from PtSiO$_4$ or some other Pt oxide were only slightly shifted from the Pt silicide peaks, then the presence of these species should be manifested as an increase in the full width at half maximum (FWHM) of the Pt 4f core line as the oxygen implant dosage increases; this is not the case (see Table 1). The Pt 4f$_{7/2}$ binding energy for the sample, however, falls midway between the energy observed for bulk Pt$_2$Si and PtSi, which suggests that the slight broadening of the FWHM by ~ 0.1 eV is the result of an inhomogeneous surface consisting of both silicides. The formation of PtSiO$_4$ or other Pt suboxides can thus be ruled out by the lack of any dependence of the FWHM of the Pt 4f$_{7/2}$ signal upon the oxygen implant.
dosage. The Si 2p spectrum in Fig. 4 immediately suggests that the formation of Si oxides is of major importance in the reaction barrier.

The absolute binding energy of the Si 2p oxide peak cannot be used to establish the precise stoichiometry of the Si oxide for two reasons. First, the contribution of final state relaxation energy to the chemical shift is different for a Si oxide—say, SiO$_2$—in a metallic matrix as compared to bulk SiO$_2$ (an insulating matrix). A thin layer of stoichiometric SiO$_2$ sandwiched within a metallic silicide/metal structure would be expected to fall at a lower binding energy than bulk SiO$_2$. Secondly, the flexibility of the Si-O-Si bond angle results in a measurable structure-induced charge transfer [26]. The Si 2p binding energy of SiO$_2$ in α-quartz, where the bond angle is 144°, is expected to be greater than the binding energy of a strained oxide where the bond angle distribution is less than 144°. Since any Si oxide formed in the silicide reaction barrier is likely to be in a strained environment, it is impossible to ignore and difficult to estimate the magnitude of any strain-induced charge transfer.

To estimate stoichiometry of the Si oxides observed in Fig. 4b–d we have therefore used the ratio of the intensities of the O 1s line (not shown in Fig. 4) to the shaded Si oxide signal normalized using a thick thermal SiO$_2$ layer on Si (Table 1). The use of such a standard assumes that samples with similar electron escape depth are compared. Since the SiO$_x$ layer is of finite thickness while the SiO$_2$ standard is effectively infinitely thick, we also need to assume that the escape depth of an electron from the Si 2p level is approximately the same as that for the O 1s level. This approximation that the escape depth is independent of
the electron kinetic energy for these two core levels results in ~10% error in the stoichiometry of the Si oxides. The O/Si ratio for the unimplanted sample was found to be 0.9, indicating that nominally SiO is present. Both implanted samples yield an oxygen-to-silicon ratio of 1.5, corresponding to Si$_2$O$_3$. Since XPS examines a relatively large area of the sample which is most likely nonuniform laterally as well as in depth, these stoichiometries should be considered as an average of the oxide layer present. The large full width of the Si oxide peak suggests that, in fact, a distribution of suboxides is present.

The presence of only Si suboxide is not surprising for unimplanted samples since the total amount of oxygen initially present in the Pt film is most likely too small to form even one monolayer of SiO$_2$ (1.6×10^{15} O/cm2). The samples implanted with 1.0×10^{16} O/cm2 contain much more oxygen than the unimplanted samples yet still less than the threshold dose necessary to form a barrier. The effect of this additional oxygen is to form additional oxides of Si at the Pt-Pt$_2$Si interface. Thus this buildup of Si suboxides is the precursor to the actual barrier formation.

The presence of enough oxygen to form a barrier will undoubtedly enable the Si to take on a full coordination of oxygen and thus form SiO$_2$. Such a dose dependance of Si oxide formation has been shown directly in the Ni-Si system (Chapter III). In addition, it is known from Auger studies of the formation of PtSi in an O$_2$ ambient that oxygen forms SiO$_2$ with Si even in the presence of a thin layer of unreacted Pt [6]. Thus we propose that the final chemical form of the oxygen is SiO$_2$.
The two major parameters previously identified in our study of impurity oxygen in the Ni-Si system (Chapter III) are the initial location of the impurity oxygen relative to the moving species and the relative chemical affinities of the oxygen to the reacting species. To apply these parameters to the present case we note that marker experiments have shown that Pt is the moving species during Pt$_2$Si formation [4],[5]. Thus oxygen initially present in the Pt film is located in the moving species. It is also known that oxygen forms weak bonds with Pt(ΔH_f°(PtO,Pt$_3$O$_4$,PtO$_2$) = -17.0, -16.8, -32.1 kcal/mol) as compared to Si(ΔH_f°(SiO$_2$) = -205.5 kcal/mol) [27]. By taking into account these asymmetries in initial location and in chemical affinities, the effect of the implanted oxygen can be modeled as shown in Fig. 5.

The implanted oxygen is initially distributed in the Pt with an approximately Gaussian profile. Presumably the implanted oxygen binds with the Pt to form complexes that are immobile in Pt during annealing. As Pt diffuses into the Pt$_2$Si, these complexes meet with the advancing Pt-Pt$_2$Si interface. Because of their weak binding to oxygen these Pt complexes are reduced by Si to form Si oxides and free Pt metal. This model predicts that the Si present at the Pt-Pt$_2$Si interface will be oxidized a step at a time as it encounters oxygen atoms in the Pt. This is verified by the presence of Si suboxides in the XPS data. As oxygen-bearing Pt diffuses into the Pt$_2$Si, Si takes on its full coordination of oxygen, forming SiO$_2$. When sufficient SiO$_2$ has accumulated at the Pt-Pt$_2$Si interface, Pt can no longer diffuse to the Pt$_2$Si-Si interface to maintain the formation of Pt$_2$Si. The results show that the threshold oxygen dose necessary for barrier formation is about 1.2×10^{16} O/cm2. The cessation of the Pt
Fig. 5 Model of SiO₂ barrier formation. The black dots represent oxygen atoms. Upon annealing, Pt diffuses into the silicide, (curved arrows), exposing the oxygen to Si at the Pt-Pt₂Si interface. Oxygen reacts with the Si and forms SiO₂. When all Pt diffusion paths are blocked, the second phase PtSi begins to form.
supply then allows the next phase PtSi to nucleate and grow, converting the Pt$_2$Si to PtSi.

The growth rate of PtSi is slower in the implanted samples than in the unimplanted samples. However, the implanted oxygen is rejected from the silicide so that the Pt$_2$Si film contains little oxygen. This slower growth of the second phase has also been observed for ion implanted Ni films on Si substrates (Chapter III). In that case it was concluded that structural changes due to ion implantation rather than impurity effects were responsible. A similar situation may also exist in the present case.

The 2×10^{16} O/cm2 XPS sample shows the effects of barrier breakdown at high temperatures. An examination of the sample surface with optical microscopy shows the sample to be laterally nonuniform. This is also confirmed by backscattering measurements. XPS measurements show that the Pt 4f signal falls at an energy intermediate between PtSi and Pt$_2$Si (Fig. 4d); both phases are present on the surface. Evidently very nonuniform silicide growth takes place after barrier breakdown. The final oxygen distribution (Fig. 3) shows that the oxygen initially forming the barrier has not been brought to the sample surface. Instead, this oxygen remains buried and has been dispersed over a wide range of depths. This is also consistent with nonuniform silicide growth. Thus the observation of Si suboxides (Fig. 4d) is most likely due to Si bonding with oxygen in the Pt that did not take part in barrier formation along with fragments of the barrier exposed to the surface due to the nonuniformity of the final silicide growth.

The origin of the oxygen at the PtSi-Si interface (Fig. 3) is not known. We speculate that since the implanted oxygen is nearly all
accounted for by the distribution from 1000 to 2700 Å, the additional oxygen at the PtSi-Si interface comes from exposure to air. This would indicate that the final silicide after barrier failure is no longer a continuous layer. Further studies using additional techniques, in particular using \(^{18}O\) to differentiate between implanted and atmospheric oxygen, are required to settle this question.
E. CONCLUSION

We have investigated the effects of oxygen on Pt$_2$Si formation from a thin Pt film on a Si substrate by implanting oxygen into the Pt film. We found that oxygen accumulates at the Pt-Pt$_2$Si interface during annealing and for oxygen doses above the threshold dose of about 1.2×10^{16} O/cm2, forms a barrier to the Pt diffusion. It is the formation of SiO$_2$ at the Pt-Pt$_2$Si interface that prevents Pt from entering the Pt$_2$Si. Once the Pt supply is cut off, the second phase PtSi nucleates and grows. These results can be understood using two asymmetries present, one being in the chemical affinities of oxygen relative to the reacting species and the other in the initial location of the oxygen relative to the moving species.
<table>
<thead>
<tr>
<th>Sample</th>
<th>Pt 4f<sub>7/2</sub> Binding Energy (ev)</th>
<th>Pt 4f<sub>7/2</sub> FWHM (ev)</th>
<th>Si 2p<sub>3/2</sub> Binding energy (ev)</th>
<th>Relative Si 2p oxide intensity</th>
<th>0:Si ratio</th>
<th>(H_f^0) (b) (kcal/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>unimplanted</td>
<td>72.5 (a)</td>
<td>1.2 (a)</td>
<td>100.5 (a)</td>
<td>0.16 (a)</td>
<td>0.9 (a)</td>
<td>-</td>
</tr>
<tr>
<td>1x10<sup>-16</sup> O/cm<sup>2</sup></td>
<td>72.4 (a)</td>
<td>1.2 (a)</td>
<td>100.5 (a)</td>
<td>0.28 (a)</td>
<td>1.5 (a)</td>
<td>-</td>
</tr>
<tr>
<td>2x10<sup>-16</sup> O/cm<sup>2</sup></td>
<td>72.8 (a)</td>
<td>1.3 (a)</td>
<td>100.3 (a)</td>
<td>0.34 (a)</td>
<td>1.48 (a)</td>
<td>-</td>
</tr>
</tbody>
</table>

Si	-	-	99.7 (a)	-	-	0
Pt	71.3 (a)	1.5 (a)	-	-	-	0
Pt₂Si	72.5 (c)	1.2 (c)	100.5 (c)	-	-	-20.7
PtSi	73.0 (c)	1.1 (c)	100.5 (c)	-	-	-15.8
PtO	73.8 (d)	-	-	-	-	-17.0
PtO₂	74.8 (d)	-	-	-	-	-32.1
SiO₂	-	-	102.8 (a)	0.46 (a)	2 (a)	-205.5

(a) This work;

(b) R. Pretorius, J.M. Harris and M-A. Nicolet, *Solid-State Elect.* 21, 667, (1978);

(c) P.J. Grunthaner and F. J. Grunthaner and A. Madhukar, *J. Vac Sci. Tech.*, to appear

REFERENCES

CHAPTER V

OXYGEN IN Pd$_2$Si FORMATION

A. INTRODUCTION

The silicide of the near-noble metal Pd, in addition to Ni and Pt silicides, is extensively used to form contacts to semiconductor devices. This silicide contact is also formed by a solid-phase reaction between the metal and the Si. Small amounts of impurities either initially present or incorporated during annealing can dominate the reactions of Ni and Pt with Si ([1]-[6], Chapters III, IV), however Pd silicide formation has much less sensitivity than Pt or Ni silicide formation to impurities [5],[7],[8]. A thin oxide layer formed by boiling the Si wafer in H$_2$O, HNO$_3$ or H$_2$O$_2$ will not prevent Pd silicide formation [5],[7],[8]. An understanding of the relative immunity of Pd silicide formation to the presence of impurities is important to a general understanding of impurity effects in metal silicide reactions. In this chapter we study the effects of implanted oxygen on the growth of Pd silicide.

In previous work we have shown that the effects of implanted oxygen on both Ni and Pt silicide formation can be explained in terms of a model using only two parameters ([1],[9], Chapters III and IV). The first parameter is the relative chemical affinities of the oxygen to the reacting species. The second parameter is the location of the impurity relative to the moving species. While marker experiments have shown that Ni and Pt are the dominant diffusing species during their silicide formation [10],[11], both Si and Pd move during Pd silicide formation [11],[12],[13]. The chemical affinity of oxygen to Si ($\Delta H^o_F(SiO_2) = -205.5$
93 kcal/mole) is much greater than for either Ni, Pt or Pd (\(\Delta H_f^°(\text{NiO}) = -58.4\) kcal/mole, \(\Delta H_f^°(\text{PtO}) = -17.0\) kcal/mole, and \(\Delta H_f^°(\text{PdO}) = -21.0\) kcal/mole) [14]. When the impurity oxygen is initially located in the Ni or Pt, the metal diffusion will expose the oxygen to Si at the metal-silicide interface.

Due to the large chemical affinity of oxygen and silicon, the oxygen will react with the Si to form SiO\(_2\). As the metal-silicide interface moves through the Ni or Pt film, this SiO\(_2\) builds up until a barrier to further metal diffusion is formed. For the case of oxygen initially located in a Pd film on a Si substrate, the model suggests that while Pd diffusion may still expose the oxygen to Si at the Pd-Pd\(_2\)Si interface and lead to a build-up of oxygen there, the simultaneous diffusion of Si through the Pd\(_2\)Si will lead to the incorporation of the oxygen into the silicide without the build-up of oxygen at the interface and the formation of a barrier. In this chapter we verify this prediction and extend our model to include Pd\(_2\)Si formation.
B. EXPERIMENTAL

Commercially prepared and polished Si <100> wafers were cleaned ultrasonically with TCE, acetone and methanol and rinsed in doubly distilled H₂O. The wafers were then given a 1 min. etch in a 1:1 HF:H₂O solution just prior to loading into our oil-free E-beam evaporation system. Palladium films ~ 2000 Å thick were then deposited at a rate of ~ 20 Å/sec with the background pressure kept below 8 x 10⁻⁷ torr during the evaporation. Half of the wafers were then implanted with 2.0 x 10¹⁶ 0/cm² at 130 keV/atom. According to range tables [15], this corresponds to a R_p ~ 1010 Å and a ΔR_p ~ 570 Å, with the peak of the oxygen distribution ~ 2.0 at. %. The samples were then diced and loaded into a quartz tube vacuum annealing furnace. Implanted and unimplanted samples were annealed simultaneously at 250°C with the vacuum kept ~ 5 x 10⁻⁷ torr.

The silicide composition and growth kinetics were studied by 2.0 MeV \(^4\)He\(^+\) backscattering spectrometry. The detector angle was 170° with the He\(^+\) beam along the sample normal. The oxygen distribution was measured by the \(^{16}\)O(d,α)\(^{14}\)N nuclear reaction technique [Chapter II]. The detector angle was 164° with the \(^{16}\)O\(^+\) beam incident at 55° to the sample normal. The cross-section used was that measured by Kim et al [16].
C. EXPERIMENTAL RESULTS

Figure 1 shows a plot of \(\text{Pd}_2\text{Si} \) thickness squared versus annealing time for an annealing temperature of 250°C. In both unimplanted samples and samples implanted with \(2.0 \times 10^{16} \text{ O/cm}^2 \), \(\text{Pd}_2\text{Si} \) grows proportionally to the square root of annealing time. The growth rate is the same in both the implanted and unimplanted cases and agrees with published data [8]. The nonzero intercept at zero annealing time indicates an initial amount of \(\text{Pd}_2\text{Si} \) present before annealing. Figure 2a shows the oxygen distribution obtained by the \(^{16}\text{O}(d,\alpha)^{14}\text{N} \) nuclear reaction for the as-implanted sample. The implanted oxygen is seen to have an approximately Gaussian distribution with a range \(R_p \sim 1250 \text{ Å} \) and width \(\Delta R_p \sim 600 \text{ Å} \). These values are near the ones estimated from range tables [15] (\(\sim 1010 \text{ Å} \) and \(\sim 570 \text{ Å} \)).

The peak oxygen concentration is \(\sim 1.75 \text{ at. \%} \) as compared to the estimated 2.0 at. %. The total amount of oxygen beneath the surface (from 200 Å to 2500 Å) is \(1.7 \times 10^{16} \text{ O/cm}^2 \) as compared to \(2.0 \times 10^{16} \) obtained by charge integration during implantation. Figure 2b shows the oxygen distribution for a sample annealed at 250°C for 100 min. The relatively sharp peak located at \(\sim 2500 \text{ Å} \) in the \(\text{Pd}_2\text{Si} \) was not present in the unimplanted samples and is due to the redistribution of the implanted oxygen. The total amount of oxygen in this peak is \(1.9 \times 10^{16} \text{ O/cm}^2 \) which agrees well with that in the as-implanted sample. The large surface peak is due to the incorporation of \(\sim 7.1 \times 10^{16} \text{ O/cm}^2 \) over three times the implanted dose, during annealing. This oxygen extends over 1000 Å into the \(\text{Pd}_2\text{Si} \), but apparently has no effect on the growth kinetics of \(\text{Pd}_2\text{Si} \). The surface of both implanted and unimplanted samples appeared a dark brown due to this accumulation of oxygen.
Fig. 1 Plot of Pd$_2$Si thickness squared versus annealing time at 250°C for unimplanted samples and samples implanted with 2.0×10^{16} O/cm2 half-way through the Pd film. Identical behavior is seen in both cases. The dashed line is extrapolated from Bower et al [8] and agrees well with our measurement.
Fig. 2 Oxygen distribution obtained by the $^{16}\text{O}(d,\alpha)^{14}\text{N}$ nuclear reaction for a sample: (a) as-implanted, and (b) after annealing at 250°C for 100 min. The dashed lines are interfacial positions determined independently by $^4\text{He}^+$ backscattering spectrometry. After annealing, the oxygen has accumulated near, but not at the Pd$_2$Si-Si interface.
D. DISCUSSION

In the cases of Ni and Pt silicide formation, 1.2×10^{16} O/cm2 present in the metal film is sufficient to halt formation of the metal rich phases Ni$_2$Si, Pt$_2$Si before all of the unreacted metal has been consumed, (Chapters III and IV). In the present case 2.0×10^{16} O/cm2 initially present in the Pd film has no effect on the growth rate of Pd$_2$Si. Even the incorporation of 7.1×10^{16} O/cm2, extending over 1000 Å into the silicide, is insufficient to alter the reaction kinetics. Thus Pd$_2$Si formation is indeed highly insensitive to oxygen initially present in the Pd film or picked up during annealing. Marker experiments have shown that both Pd and Si move during Pd$_2$Si formation [11]-[13]. Evidently the presence of amounts of oxygen as substantial as 9×10^{16} O/cm2, equivalent to ~ 190 Å of SiO$_2$ if present as a layer, does not lead to the formation of a diffusion barrier to either species during annealing.

The redistribution of the implanted oxygen after annealing is also different from that observed during Ni and Pt silicide formation (Chapters III & IV). In the present case an interfacial accumulation does not take place. Instead, the oxygen moves deeper into the sample, near but not at the Pd$_2$Si-Si interface, and accumulates into a distribution of narrowed depth. Thus the implanted oxygen does not remain stationary with respect to the Pd distribution during annealing. Interfacial drag or segregation is not responsible for this since the movement of the Pd-Pd$_2$Si interface is opposite to that of the oxygen displacement and the Pd$_2$Si-Si interface motion is away from the implanted oxygen. Thus the implanted oxygen is mobile relative to the Pd distribution at the annealing temperature.
 Implanted oxygen is not mobile relative to a Ni or Pt film during annealing at even higher temperatures (~300°C) (Chapters III & IV) without interfacial effects.

The oxygen not only moves deeper into the sample during annealing, it also accumulates in a relatively narrow region. Diffusion alone can only broaden the initial distribution. Evidently the oxygen accumulates at a sink. The nature of this sink can be inferred from the chemical affinities of the oxygen relative to the reacting species. The chemical affinity of oxygen to Si ($\Delta H_f^{\circ}(SiO_2) = -205.5$ kcal/mol) much exceeds that between oxygen and Pd ($\Delta H_f^{\circ}(PdO) = 21.0$ kcal/mol) or between Pd and Si ($\Delta H_f^{\circ}(Pd_2Si) = -20.7$ kcal/mol) [14]. Thus as previously shown for the cases of Pt and Ni, (Chapters III & IV) oxygen present at the Pd-Pd$_2$Si interface will oxidize the Pd$_2$Si to form free Pd and Si oxides. Since Si oxides are not mobile relative to either Pd or Pd$_2$Si further motion of the oxygen will not take place. Thus we conclude that the sink must be the Si present at the Pd-Pd$_2$Si interface.

Our results can be modeled as shown in Fig. 3. The implanted oxygen is initially distributed in the Pd in an approximately Gaussian shape. In the early stages of the annealing, Pd$_2$Si begins to form. Oxygen is mobile in Pd at the annealing temperature and begins to diffuse throughout the Pd. As this oxygen comes in contact with the Si at the Pd-Pd$_2$Si interface, the oxygen will react with the Si there to form SiO$_2$ due to the large chemical affinity between oxygen and Si. The Si at the Pd-Pd$_2$Si interface acts as a sink for the implanted oxygen. However SiO$_2$ is not mobile relative to either element or the silicide. Thus, as SiO$_2$ forms by the diffusion of oxygen to the Pd-Pd$_2$Si interface, it is incorporated into
Fig. 3 Model of oxygen in Pd$_2$Si growth. The initial oxygen distribution is approximately Gaussian. Upon annealing the implanted oxygen diffuses throughout the Pd film as Pd$_2$Si growth begins. Oxygen diffusing to the Pd-Pd$_2$Si interface reacts with Si there to form SiO$_2$. The Si at the Pd-Pd$_2$Si interface acts as a sink for the oxygen. The joint diffusion of Si incorporates the SiO$_2$ into the growing Pd$_2$Si without barrier formation taking place.
the growing Pd$_2$Si by the Si diffusion. Thus, barrier formation does not take place as in the case of Ni and Pt. The sharpness of the oxygen distribution after annealing shows that the diffusion rate of the implanted oxygen to the Pd-Pd$_2$Si interface is fast compared to Pd$_2$Si growth. This joint diffusion of both Si and oxygen is responsible for the relative immunity of Pd$_2$Si formation to impurities. Interfacial accumulation and subsequent blocking of the diffusion paths does not take place. Our results confirm that neither implanted oxygen nor oxygen picked up during annealing impedes the Pd$_2$Si growth.

The ability of oxygen to form an inert oxide that is incorporated into the Pd$_2$Si layer without interfacial effects suggests the interesting possibility to use the oxygen as a diffusion marker. Since each oxygen atom is tightly bound to two Si atoms and these are tied to the silicide lattice, this array of atoms is not expected to move relative to the silicide lattice even though considerable mass transport may take place around it. Thus we can reinterpret the experiment as in the case of oxygen in NiSi formation (Chapter III) and use the implanted oxygen to determine the relative diffusion rates of Si and Pd during Pd$_2$Si formation.

Since oxygen is immobile in Pd$_2$Si (by assumption) the Si to Pd transport ratio can only be determined once the oxygen is incorporated in the Pd$_2$Si. The Pd$_2$Si layer containing the oxygen becomes the marker region. Thus the shift in position of the oxygen distribution identifying this region after Pd$_2$Si formation relative to that just after incorporation into the Pd$_2$Si determines the Pd to Si transport ratio. Direct measurements of the position of the oxygen distribution just after
incorporation into the Pd$_2$Si have not been made, however limits may be inferred from the shape of the final oxygen distribution (Fig. 3). For the case where the width of the oxygen distribution remains unchanged after incorporation into the Pd$_2$Si, we may take the FWHM ($550 \, \text{Å}$) to be the width of the initial marker layer. This gives 0.014 as the Pd to Si atomic transport ratio. This case is also consistent with the assumption that oxygen is immobile in Pd$_2$Si. The other, extreme case is obtained by taking the oxygen to be initially incorporated into a Pt$_2$Si layer of negligible width located at the Pd-Si interface. This assumption yields a Pd to Si transport ratio of 0.24. Thus we obtain Si as the dominant diffusing species during Pd$_2$Si formation. This is a different result than that reported by Chu et al [12] using an inert gas marker and that reported by Pretorius et al [13] using a $^{31}\text{Si}^*$ marker. The origin of this disagreement is not known. However in his paper Chu [12] states that very little marker displacement occurred during Pd$_2$Si growth, and therefore on the basis of energy loss considerations he concludes that both Pd and Si are moving. We speculate after a close inspection of his paper that the origin of the disagreement lies in that his Ar marker was initially placed in the Si substrate at a depth Pd$_2$Si formation could not reach. Thus a marker shift would not occur.

The $^{31}\text{Si}^*$ radioactive marker experiment of Pretorius et al, [11], [13] on the other hand cannot distinguish between the case where both the metal and the Si move and the case where only Si moves by both substitutional and interstitial means. Both his and our results can be explained if we assume that some component of both types of Si diffusion are present.
during Pd$_2$Si growth. The resolution of the questions raised by the interpretation that Si is the diffusing species as suggested by our facts must await further experiments.

In our model of the effects of oxygen or Pd$_2$Si formation, the effects of Pd diffusion are virtually eliminated due to the high mobility of the implanted oxygen in the Pd film. Thus our model is consistent with only Si moving during Pd$_2$Si formation as found here and with both Pd and Si moving as reported previously [11],[12],[13].
E. CONCLUSION

We have investigated the effects of oxygen on Pd_2Si formation by implanting oxygen initially into the Pd film. We found that the oxygen is incorporated into the Pd_2Si near the Pd_2Si-Si interface without a diffusion barrier being formed. The implanted oxygen has no effect on the growth of Pd_2Si. We propose a model in which implanted oxygen is mobile in Pd. Oxygen will therefore diffuse to the Pd-Pd_2Si interface upon annealing, react and form SiO_2 with the Si there. Simultaneously Si diffuses through the Pd_2Si and forms additional silicide at that interface, thereby incorporating the SiO_2 into Pd_2Si, so that no SiO_2 barrier is formed. This model fits a general conceptual model proposed previously.

Our results can also be interpreted to show that Si is the dominant diffusing species during Pd_2Si formation rather than both Pd and Si as previously reported. It is shown that this is not necessarily in contradiction with the other marker experiments thus the statement that both Pd and Si move during Pd_2Si growth may need reconsidering.
REFERENCES

A. INTRODUCTION

The silicides of Ni, Pd and Pt are not the only ones presently used to form contacts to semiconductor devices. An understanding of the role of impurities in the formation of these other silicides is also important to avoid unwanted effects. It is also important to understand the effects of impurities other than oxygen on silicide formation. A systematic experimental determination of these effects for each system and impurity is both time consuming and difficult.

In this chapter we present a general framework in which such future work on silicides can be cast. We also make some predictions of impurity effects, especially on barrier formation.

1. Model

Generalizing from the results of our study on the effects of impurity oxygen on the formation of the silicides of Ni, Pt and Pd, (Chapters III to V), we can identify two major parameters that determine the effect of impurities on metal silicide formation. The first is the initial location of the impurity relative to the moving species. Second is the chemical affinities of the impurity element relative to the reacting species. If we assume that the most stable compound the impurity forms will constitute a diffusion barrier if accumulated at an interface, and if one ignores the ambivalent cases (both species moving, comparable chemical affinity of impurity with both species), there are four distinct
combinations of initial position of the impurity relative to the moving species and of the degree of chemical affinity with respect to the two species (Table 1). Only in the case where the impurity is initially located in the moving species and the moving species has a low chemical affinity with the impurity can a barrier build up during annealing as a result of both chemical reaction and physical accumulation. The case of impurity oxygen initially present in a Ni or Pt film on a Si substrate is an example of this combination (Chapters III and IV). In the other three combinations, barriers can form only by redistribution and build up (segregation, interface drag) of the impurity at an interface; a chemical reaction is not associated with the barrier formation. Oxygen initially present in Si during Ni$_2$Si formation (Chapter III) is an example where the impurity is initially in the stationary species and is strongly bound there. No barrier is formed however since SiO$_2$ is not rejected from the silicide, but incorporated in it. The case where oxygen is initially present in the Pd film during Pd$_2$Si formation (Chapter V) is an example where the impurity is initially located in the stationary species and is weakly chemically bound there. Again, no barrier is formed as the SiO$_2$ is incorporated into the silicide without an interfacial accumulation taking place. The remaining case, where the impurity is initially located in the moving species and is strongly chemically bound there, has not yet been investigated. Oxygen initially present in Si during Pd$_2$Si formation may be an example of this combination. We expect on the basis of this model that a buildup of SiO$_2$ at the Pd$_2$Si-Si interface will take place due to segregation during Pd$_2$Si formation. It is not known however, whether such an accumulation of SiO$_2$, not chemically bound to the Si in the silicide,
constitutes a diffusion barrier. The resolution of this question must be experimentally determined.

We have tested the predictions of this general treatment for the case of impurity N in the Ni–Si system [1],[2]. Since Ni is the moving species and N does not form a stable nitride with Ni although it forms a very strong nitride with Si(ΔH°_f(Si N$_4$) = -179.3 kcal/mol [3], we predict that the influence of N should parallel that of oxygen on Pt and Ni silicide formation. This is indeed the case. A minor difference however is that N is mobile in Ni at the annealing temperatures of ~300°C and thus N is not carried by Ni diffusion. Nitrogen impurity in Ni thus behaves much like oxygen in Pd films. In fact, barrier formation takes place so fast due to N diffusion that no measurable Ni$_2$Si forms. Other, preliminary, results supporting the conclusions of this model will be briefly presented in the next chapter.
<table>
<thead>
<tr>
<th>Binding Energy</th>
<th>Location</th>
<th>Moving</th>
<th>Stationary</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>Segregation</td>
<td>Pd/(Si+O)?</td>
<td>Incorporation:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ni/(Si + O)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ni/(Si + N)</td>
</tr>
<tr>
<td>Low</td>
<td>Barrier Formation:</td>
<td>(Ni + O)/Si</td>
<td>Incorporation:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Pd+O)/Si</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Pt + O)/Si</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Ni + N)/Si</td>
</tr>
</tbody>
</table>
REFERENCES

CHAPTER VII

SUMMARY OF ADDITIONAL WORK

A. INTRODUCTION

The culmination of the work presented thus far is the general conceptual model presented in Chapter VI. This model may prove applicable to impurity elements other than oxygen or silicide formation. Two such elements of special concern are C and N since both are everpresent contaminants in semiconductor processing. We have, therefore, begun to investigate the effects of these two impurity elements on silicide formation.

In this chapter we present a brief summary of work on the effects of N on Ni\textsubscript{2}Si formation along with brief summaries of preliminary work on the effects of N on Pt and Pd silicide formation and on the effects of C on the formation of Ni and Pt silicide.

In the case of sufficient oxygen initially present in a Ni or Pt film, we have shown that a barrier to metal diffusion will form during silicide growth (Chapters III and IV). Since metal silicides are used extensively to form contacts to semiconductor devices, an interesting question is that of the change in the contact properties of the silicide due to this barrier formation. In this chapter we also present a brief summary of preliminary work on the effects of O and N on the contact properties of Ni silicide.
B. N IN Ni, Pt AND Pd SILICIDE FORMATION

The chemistry between N and Si is quite different from that between N and Ni, Pt or Pd. N forms a very stable nitride with Si \(\Delta H_f^{\text{Si}_3\text{Ni}} = -179.3 \text{ kcal/mol} \) [1]; however, no Pt or Pd nitrides are known [2]. The Ni nitride \(\text{Ni}_3\text{N} \) has been reported to be very unstable, decomposing at only 190°C in vacuum [2]. Thus N has a much greater chemical affinity to Si than to these metals. This asymmetry in the chemistry of N relative to the reacting species suggests that impurity N will effect the silicide formation of these metals in a manner similar to that previously observed for oxygen (Chapters III to V); i.e., formation of a barrier to Ni or Pt diffusion will take place only if sufficient N is initially located in the metal film; N will have little effect on \(\text{Pd}_2\text{Si} \) formation, etc.

1. N Effects on Ni Silicide Formation

We have studied the effects of implanted N on \(\text{Ni}_2\text{Si} \) formation using \(^4\text{He}^+\) backscattering spectroscopy and the \(^{14}\text{N}(d,\alpha)^{12}\text{C} \) nuclear reaction [3], [4]. Ni films 1.5 to 4.0 kÅ thick were evaporated on Si \(<100>\) and \(<111>\) substrates; were implanted with \(^{14}\text{N}^+\) into the Ni film and through the Ni film into the substrate; and were thermally annealed in vacuum at temperatures from 290 to 450°C for various times. The two cases behave as expected. For the N initially located in the Ni film on Si \(<100>\) substrates the \(^{14}\text{N}(d,\alpha)^{12}\text{C} \) nuclear reaction shows that the N profile changes its distribution from an as-implanted Gaussian located in the Ni film to a peak positioned at the Ni-Si interface without loss of N. Barrier formation takes place for a threshold dose \(\phi \)th of about \(9 \times 10^{15} \text{ N/cm}^2 \), independent of the film thickness (\(\leq 4000 \text{ Å} \)). One difference between oxygen and N is that N is mobile in Ni at the annealing temperature (\(\geq 290°C \)) and
redistributes quickly to the Ni-Si interface preventing appreciable \(\text{Ni}_2\text{Si} \) formation. At a dose of \(5 \times 10^{16} \text{ N/cm}^2 \) the reaction between Ni and Si is completely halted for annealing temperatures below \(\sim 375^\circ\text{C} \). Changing the substrate orientation to \(\langle 111 \rangle \) raises \(\phi_{th} \) to between \(1.0 \) and \(2.0 \times 10^{16} \text{ N/cm}^2 \).

For the N initially located in the Si substrate the growth rate of \(\text{Ni}_2\text{Si} \) is retarded but not suppressed. Thus the effects of impurity N or Ni silicide formation are consistent with the predictions of our model [3],[4].

2. N Effects on Pt Silicide Formation

We have made preliminary measurements on the effects of implanted N on the formation of Pt\(_2\text{Si} \) using backscattering spectroscopy. Pt films \(\sim 2500 \text{ Å} \) thick were evaporated onto Si \(\langle 100 \rangle \) substrates, then implanted with N to a depth of \(\sim 600 \text{ Å} \) with doses ranging from \(0.5 \) to \(5.0 \times 10^{16} \text{ N/cm}^2 \). The samples were then annealed in vacuum at \(300^\circ\text{C} \) for various times.

The growth of Pt\(_2\text{Si} \) is halted before all of the Pt is consumed for N doses \(\geq 2 \times 10^{16} \text{ N/cm}^2 \). The amount of unreacted Pt left after cessation of Pt\(_2\text{Si} \) growth increases with increasing N dose. Pt\(_2\text{Si} \) growth in samples with N doses \(\leq 1.0 \times 10^{16} \text{ N/cm}^2 \) is not impeded and takes place as in unimplanted samples. Evidently a barrier to Pt diffusion forms in those samples with \(\geq 2.0 \times 10^{16} \text{ N/cm}^2 \). The threshold N dose is between 1 to \(2 \times 10^{16} \text{ N/cm}^2 \).

While the redistribution of the N during annealing and the chemical state of the N has yet to be determined, the results so far support the predictions of our model.
3. **N in Pd Silicide Formation**

We have made only preliminary measurements of the effects of N on Pd$_2$Si formation using backscattering spectrometry. Pd films \sim 2000 Å thick were evaporated onto Si (100) substrates than implanted with four N doses ranging from 0.5×10^{16} N/cm2 to a depth \sim 600 Å into the Pd film. These samples were then annealed at 250°C in vacuum for various times.

A detailed examination of the backscattering spectra taken for these samples reveals no detectable effects on Pd$_2$Si formation by the N implantation. This result is consistent with that observed previously in the case of impurity oxygen and is also consistent with our model.
C. C IN Ni AND Pt SILICIDE FORMATION

The chemistry of C in the Ni-Si or Pt-Si systems is not clear. It is known that C forms a stable carbide SiC \[1\] with Si and does not form any compounds with Pt \[2\]. A nickel carbide Ni$_3$C does exist, but is thermodynamically unstable \[2\]. Thus C forms a stable carbide with Si but not with Ni or Pt. However, SiC has a heat of formation ΔH_f° of only -26.7 kcal/mol \[1\]. This is close to the heats of formation of Ni and Pt silicides ($\Delta H_f^\circ (\text{Ni}_2\text{Si}, \text{NiSi}, \text{Pt}_2\text{Si}, \text{PtSi}) = -31.5, -20.4, -20.7, -15.8$ kcal/mole)\[5\]. Since it is also known that SiC is attacked by molten Ni or Pt \[2\] and thus at least at high temperatures SiC may not be stable in the presence of Ni or Pt, we are unable to predict the chemistry of C relative to the reacting species as required by our model. Hence no prediction of the effects of impurity C on the formation of Ni or Pt silicides can be made. Therefore an experimental determination of these effects becomes of increased interest.

1. C Effects on Ni Silicide Formation

We have made preliminary measurements on the effects of implanted C on Ni silicide formation using backscattering spectroscopy. Ni films ~ 1500 Å thick evaporated onto Si $\langle 100 \rangle$ substrates were implanted with 3.0×10^{16} C/cm2 halfway into the film, then thermally annealed in vacuum at 290$^\circ$C for various times.

Formation of a barrier to Ni diffusion does not take place during annealing. The effect of the implanted C is to slow the rate of Ni$_2$Si formation ($((\text{Ni}_2\text{Si thickness})^2/\text{annealing time})$) to \sim half the unimplanted rate. The Ni$_2$Si growth rate remains, however, proportional to the square
root of time. The width of the Ni$_2$Si-Ni interface appears slightly larger than in unimplanted samples, indicating some lateral nonuniformity in Ni$_2$Si growth. Evidently a SiC diffusion barrier does not form at concentrations at which N or O does.

2. **C Effects on Pt Silicide Formation**

We have made preliminary measurements on the effects of implanted C on Pt$_2$Si formation using backscattering spectroscopy. Pt films ~ 1100 Å thick were evaporated onto Si (100) substrates, implanted with 3.0×10^{16} C/cm2 halfway through the Pt film then annealed in vacuum at 275°C for various times.

We found that Pt$_2$Si continues to grow proportionally to the square root of time, but at a rate ($\left(\text{Pt}_2\text{Si thickness}\right)^2$/annealing time) \sim half of that observed for unimplanted samples. Formation of a barrier to Pt diffusion did not take place during annealing. The width of the Pt-Pt$_2$Si interface remains sharp, indicating that Pt$_2$Si has formed uniformly. There is a dip in the Pt signal at the Pt-Pt$_2$Si interface for samples in which Pt$_2$Si growth has nearly reached the Pt surface. This may indicate that the implanted C is rejected from the Pt$_2$Si and has built up at the Pt-Pt$_2$Si interface during Pt$_2$Si formation. As in the Ni$_2$Si case, evidence of a SiC barrier is absent.
D. DIFFUSION BARRIER EFFECTS ON CONTACT RESISTIVITY OF NICKEL SILICIDE

We have made preliminary measurements of the contact resistivities of Ni silicide contacts to shallow junction solar-cell-type silicon substrates. The substrates were solar cells; 1-10 Ωcm p-type <100> silicon wafers with a P diffused n-layer. Ni films of ~1400 Å were evaporated onto these substrates and implanted with either 2 x 10^{16} O/cm^2 or 2 x 10^{16} N/cm^2. Patterns conforming to the transmission line model (TLM) [6],[7] were defined by conventional photolithography using the lift-off technique. The samples were then annealed in vacuum from 290 to 625°C for various times.

1. O Effects on Contact Resistivity

For the case of impurity oxygen in the Ni-Si system, we have shown that a barrier of SiO_2 forms during Ni_2Si formation that prevents complete consumption of the Ni layer. Thus the contact becomes n+Si-Ni_2Si-SiO\textsubscript{2} barrier-Ni after annealing. Using the TLM [6],[7] we measured the sheet resistance of the n+ layer to be 37.4 Ω/□ for the implanted samples, which agrees well with 36.0 Ω/□ measured for the unimplanted samples. The measured values of the contact resistivity P_c are also close: $P_c = 70 \, \mu\Omega\text{cm}^2$ for the implanted case and $P_c = 28 \, \mu\Omega\text{cm}^2$ for the unimplanted case. Evidently the presence of the SiO\textsubscript{2} barrier to Ni diffusion has only a small effect on the contact resistivity.

2. N Effects on Contact Resistivity

For the case of impurity N in the Ni-Si system we have shown that a barrier to Ni diffusion forms before appreciable Ni_2Si can form. Thus the contact becomes n+Si-N barrier-Ni. We found that the sheet resistance of
the n+ layer to be $\sim 32 \ \Omega/\square$ in both implanted and unimplanted samples.

The contact resistivity P_c was found to be $\sim 90 \ \mu\Omega\text{cm}^2$ in the implanted samples and $\sim 150 \ \mu\Omega\text{cm}^2$ for unimplanted samples. The lower value observed in the implanted samples may result from improved contact adhesion found after implantation. Thus while N completely blocks N diffusion, the presence of this barrier has little effect on the contact resistivity.
REFERENCES

CHAPTER VIII

CONCLUSION AND OUTLOOK

A. CONCLUSION

We have used three complimentary techniques, BS, NRA and XPS to investigate the effects of impurity oxygen on the formation of the silicides of Ni, Pt and Pd by thermal annealing of a thin film of the metal deposited on a Si substrate. We found that oxygen initially present in a Ni or Pt film continuously accumulates at the metal-metal silicide interface during annealing. Ultimately a barrier to further metal diffusion is formed. It is the formation of SiO$_2$ at the metal-metal silicide interface that prevents the metal from entering the silicide. Once the metal supply is cut off, the second phase (NiSi or PtSi) begins to form. When the oxygen is initially present in a Pd film on a Si substrate, we found that this barrier formation does not take place. Instead the oxygen is incorporated into the Pd$_2$Si during annealing without an interfacial accumulation taking place. The implanted oxygen has little effect on the growth of Pd$_2$Si. We also found the impurity oxygen to be incorporated both into Ni$_2$Si for the case of impurity oxygen initially located in the Si substrate and into NiSi for the case of the impurity oxygen initially located in the Ni$_2$Si film. These results are summarized in Table 1.

We propose a model in which oxygen bonds to Si much more strongly than to either Ni, Pt or Pd. Since Ni and Pt are the moving species during silicide formation, oxygen initially present in the metal will be
exposed to, and react with, the Si at the metal-metal silicide interface to form a barrier of SiO₂, whereas oxygen initially present in Si or Ni₃Si will remain tied to the Si during silicide formation. The same asymmetry in chemical affinities is also present between oxygen relative to Pd and Si. However since Si is moving during Pd₂Si formation, the SiO₂ formed at the Pd-Pd₂Si interface is incorporated into the Pd₂Si by Si diffusion. Thus barrier formation does not take place.

Generalizing from these cases we propose a model in which only two parameters determine the effect of an impurity element on metal silicide formation. The first parameter is the initial location of the impurity element relative to the moving species. The second is the chemistry of the impurity element relative to the reacting species. If we ignore the ambivalent cases (both species moving, comparable chemical affinities) there are four distinct combinations of initial position and chemical affinity of the impurity relative to the reacting species. We show that only the case where the impurity element is initially in the moving species and this moving species has a low chemical affinity to the impurity can a barrier build up during annealing as a result of both chemical reaction and physical accumulation, e.g., O in a Ni or Pt film on a Si substrate. We have tested the predictions of this general treatment for the cases of impurity N in Ni₂Si, Pt₂Si and Pd₂Si formation and also for impurity C in Ni₂Si and Pt₂Si formation (Table 1). We show that the effects of impurity N on the formation of these silicides are consistent with the predictions of the model. The case of impurity C in Ni₂Si and Pt₂Si is an ambivalent case as C, Ni and Pt have comparable chemical affinities to Si. Thus this model is unable to predict the effects of impurity C on Ni or Pt silicide formation. Experimentally we show that
formation of a barrier does not take place during either Ni$_2$Si or Pt$_2$Si formation for C initially present in the metal films. Finally, we have shown that the formation of an oxygen or N diffusion barrier during Ni$_2$Si formation has little effect on the contact resistivity of nickel silicide.
B. OUTLOOK

At the conclusion of this study, interesting unanswered questions remain. It would be most desirable, for example, to complete the work started on the effects of impurity C since the model breaks down for this case. An investigation of practical importance is that of determining the contact resistivity of silicides found in the presence of impurities. Two questions regarding the diffusion barrier itself are: (1) What is the physical form of the barrier? i.e., is the barrier located at grain boundaries? and (2) What is the effect of temperature on the barrier stability? These possibilities for further studies indicate the direction for future work in an area in which only the first step has been taken.
TABLE 1

Summary of Results

<table>
<thead>
<tr>
<th>Impurity System</th>
<th>Element Location</th>
<th>Silicide Formed</th>
<th>Moving Species</th>
<th>Result (a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni-Si</td>
<td>0 Ni</td>
<td>Ni₂Si</td>
<td>Ni (b,c)</td>
<td>Barrier</td>
</tr>
<tr>
<td></td>
<td>0 Si</td>
<td>Ni₂Si</td>
<td>Ni (b,c)</td>
<td>Incorporation</td>
</tr>
<tr>
<td></td>
<td>0 Ni₂Si</td>
<td>NiSi</td>
<td>Ni (d)</td>
<td>Incorporation</td>
</tr>
<tr>
<td>Pd-Si</td>
<td>0 Pd</td>
<td>Pd₂Si</td>
<td>Si (a), Pd(b)</td>
<td>Incorporation</td>
</tr>
<tr>
<td>Pt-Si</td>
<td>0 Pt</td>
<td>Pt₂Si</td>
<td>Pt (e)</td>
<td>Barrier</td>
</tr>
<tr>
<td>Ni-Si</td>
<td>N Ni</td>
<td>Ni₂Si</td>
<td>Ni (b,c)</td>
<td>Barrier</td>
</tr>
<tr>
<td></td>
<td>N Si</td>
<td>Ni₂Si</td>
<td>Ni (b,c)</td>
<td>Incorporation</td>
</tr>
<tr>
<td>Pd-Si</td>
<td>N Pd</td>
<td>Pd₂Si</td>
<td>Si (a), Pd(b)</td>
<td>Incorporation</td>
</tr>
<tr>
<td>Pt-Si</td>
<td>N Pt</td>
<td>Pt₂Si</td>
<td>Pt (e)</td>
<td>Barrier</td>
</tr>
<tr>
<td>Ni-Si</td>
<td>C Ni</td>
<td>Ni₂Si</td>
<td>Ni (b,c)</td>
<td>No barrier</td>
</tr>
<tr>
<td>Pt-Si</td>
<td>C Pt</td>
<td>Pt₂Si</td>
<td>Pt (e)</td>
<td>No barrier</td>
</tr>
</tbody>
</table>

(a) this work

