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Abstract 

A language is presented for describing tests of integrated circuits. The language has a 

high abstractive capability that enables test specifications to follow the structural or logical 

organization of a design. The test language is applied to a number of current design styles in 

a series of examples. Methods for designing integrated circuits for testability are 

demonstrated. An implementation of the test language through a test language interpreter 

and a tester is discussed. Tester designs are presented that will execute the test language 

with unusually high efficiency. 
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1 • Introduction 

This thesis describes the results of an investigation into systematic methods for testing 

integrated circuits. The central result is a language for describing tests. In the formal 

presentation. of the language, in chapter 2, the ability of the language to represent tests of 

integrated circuits in the same abstract manner that their designs are visualized is 

emphasized. The remainder of this document is an exploration and verification of the 

language's ability to solve a number of the problems of testing integrated circuits. In 

chapter 1 the usefulness of the language as an interactive tool for the design and debugging 

of integrated circuits is illustrated. In chapter 3 the ability of the language to describe test 

of real systems is demonstrated through examples applied to integrated circuits designed 

with different design styles. In chapter 4 the methods used to generate the examples of 

chapter 3 are discussed and their general applicability is explored. Chapter 5 describes an 

implementation of the language. Finally, in chapter 6 a tester design is proposed that can 

execute the test language more efficiently than conventional testers. The result of this 

analysis is general technique for designing integrated circuits and their tests that yields 

reliable results with a predictable amount of effort. 

The abstractive properties of the language are aimed at formalizing ~he manner of testing 

integrated circuits that is in use today. It has been observed that informally generated tests 

follow a physical structure (either real or imagined) of the device under test. The 

specifications of these tests do not generally appear to h~ve any structure, however. It is 

conjectured that the reason the test specifications do not reflect the structure of the 

design is that existing test languages do not have the necessary abstractive capabilities. 

The test language proposed in this thesis attempts to provide this capability. 
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1.1' A Tour Through the Design of an Integrated Circuit 

To gain a perspective into the nature of testing complex integrated circuit systems and as 

an informal introduction to the test language, this section will follow the design and testing 

of a small portion of a complex integrated circuit. As a demonstration of the test system, let 

us follow the development of an interesting part, an adder, in an integrated circuit. 

A common technique in the design of a complex system is to design and test many of the 

component parts separately and then simply compose them into a much larger system. This 

technique can be applied to integrated circuit design: a part, such as a memory cell, error 

correction unit, or adder, can initially be designed alone, then tested or simulated with a 

prototype integrated circuit, and finally incorporated into its environment in the system. 

1. 1 . 1 Initial Design and Testing 

In the earliest stages our adder is on a prototype chip with all of the inputs and outputs, 

and possibly some test points, connected to pads. The design of this chip must be verified. 

1.1.1.1 Description of the Pins 

Testing can start off immediately with the prototype chip. Figure 1-1 illustrates such a 

chip. The designer would place the chip into the tester and run the test system. Before 

testing can begin some preliminary description of the chip must be made: the pins must be 

described. This operation might appear as follows: 

FIFl}define port a 1 2 3 4; 
FIFl}define port b 5 6 7 8; 
FIFl}define port c 9 10 "i 1 12; 

definitions of pins 

An interactive implementation of the test language described here has been constructed 

and called FIFI. The FIFI> at the beginning of each line is representative of the prompting 

that the test system supplies. The underlined boldface text is the test language input. 
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Figure 1-1: Illustration of a Prototype Chip 

Examples of the test language preceded with FIFI> can generally be typed directly to the 

test language interpreter. Descriptive information placed to the right in an italic typeface is 

not part of the test language. These commands specify that there are. three logical signals 

that go in or out of the chip: a, b, and c. Each of these three signals consists of four wires or 

conductors, and the numbering of these conductors is as shown above. 

1. 1.1.2 Initial Checkout 

At this point the function of the prototype chip can be tested. The designer can imagine 

some inputs that will produce understandable outputs. If the chip were an adder, for 

example, it might be useful to verify that 2+2 works before an exhaustive functional and 

timing test is performed. If 2+2 does not generate 4, then a more comprehensive test will be 

worthless. Similarly, if a chip intended to perform error correction failed to recognize 

error-free data, then backtracking and carefully inspecting the design would be advisable. 

The designer continues his initial testing with: 



FIFl>i a<2,b<2; 
FIFl>i c!; 
c:15--
FIFl>i a<0,b<2; 
FIFl>i c!; 
c:15--

4 

line 1 
line 2 
line 3 
line 4 
line 5 
line 6 

Lines 1, 2, 4, and 5 start with the letter i. The i is an abbreviation of the word immediate 

that indicates that the remainder of the line is to be executed immediately. The first line 

contains two commands of the form p<e. These commands cause the tester to drive a 

voltage into the pins previously defined. The word on the left, p, is the name of a previously 

declared port, and the number (in general, an expression e) on the right is a value that will 

be driven to the pins. The operator < is like an arrow pointing from the expression to the 

port, indicating the direction of signal flow. The second line invokes immediate execution of 

the single command c!. Again, the word on the left, c, represents a port declared above, but 

the operator ! causes the tester to print the voltage on those pins instead of driving the pin. 

The third line is a report of the value of that port. 

Although these commands appear to be executed immediately, it is the semicolon at the 

end of each line that invokes the test steps. Where no ; appears at the end of a line the 

test stap would be deferred until one was encountered, similarly multiple ; 1s on the same line 

will cause multiple test steps. The commands are executed in between the time when the 

return key on the terminal is pressed and the next prompt is printed. 

Notice on the third line that the tester is reporting the value of the c port as 15 (decimal), 

meaning that all four pins have a high voltage. 

Having observed the result of 2+2, the values 2+0 are tried. The tester responds again 

with the result 1 5, or all pins high. 
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1. 1. 1 .3 Common Errors 

The 2+2 test did not generate the proper response. The designer then tries 2+0, and 

again gets an improper response. At this point the following thoughts pass through the 

designer's mind: 

1. Both responses were 1 5, and 1 5 corresponds to all wires high. An 
unconnected wire will read as high, and therefore perhaps the chip is not in 
the socket. 

2. If the power supplies were not connected1 not bonded, or corrupted inside the 
chip then all the outputs would float, causing the observed response. 

3. Perhaps the assumption that a and b are inputs and c is the output is 
incorrect, and actually a or b is the output and c is an input. The tester would 
then be monitoring an input port and would read high. 

After considering these possibilities, the designer checks the chip, the power supplies and 

the layout to determine if any of the above is responsible. He discovers that, in fact, the 

ground lead is disconnected. The 2+2 test is repeated: 

FIFl>i a<2,b{2; 
FIFl>i c!; 
a:1 
FIFl>i a<2,b<O; 
FIFl>i c!; 
a:O 

Considerable success: one of the outputs has been observed in both the high and low_ 

state in response to changes in inputs. This gives reason to believe that the power supply 

is intact and that the output drivers function. Otherwise, however, the outputs are all wrong 

(this is an adder and the result of 2+2 should be 4). 

Now the designer draws a picture to see what is happening: 

2 + 
2 = 
1?? 

binary 

0 0 1 0 
0 0 1 0 
0 0 0 1 

2 + 
0 = 
2?? 

binary 

0 0 1 0 
0 0 0 0 
0 0 1 0 
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This picture looks like addition with the binary order of bits reversed. Therefore, the 

designer checks the layout to verify this possibility, discovers the mistake, and then 

changes the port definitions with the following commands: 

FIFl>define port a 4 3 2 1 ; 
FIFl}define port b 8 7 6 5; 
FIFl}define port c 12 11 10 9; 
FIFl>i a<2,b<2; 
FIFl>i c!; 
a:4 --
FIFl>i a<2,b<O; 
FIFl>i c!; 
a:2 

conductors reversed 

The test system is used like a pocket calculator: short expressions can be entered and 

the results can be observed immediately. In the above example, the designer tried 2+2 and 

2+0 and received the correct response. 

1. 1.2 Exhaustive Checkout 

It is now possible to check the adder in considerable detail more-or-less automatically. 

Assume that a functional simulation of the device produced a table of inputs and expected 

responses in the following form: 1 

a<3, b<4, c>7; 
a<4, b<5, c>9; 
a<5, b<6, c}11; 
•.. etc ... 

Here, the symbol > indicates that the output of the chip, or port, on the left of the 

operator is to be sensed and compared with the value on the right. The value on the right is 

not altered; if there is a difference a global check fail flag is set. 

1 This is not as contrived as it may seem: it will later be shown that this notation is an 
efficient notation to describe simulations. 
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The input output relationship shown here can be applied to the chip by editing the table 

shown above to the following form and then executing the following tester commands: 

contents of file demo 
define procedure demo 

a<3,b<4,c>7; 
a<4,b<5,c>9; 
a<5,b<6,c>11; 
... etc ... 

end 

FIFl>read demo 
FIFl>execute demo 
[check failed] 
FIFI> 

declaration 
body of procedure 

file is read 
demo is executed 
printed only if bad 

The list of inputs and expected responses has been altered in a mechanical way to make 

a procedure definition. The procedure definition is read to the test system and the 

procedure name ·(demo) is made available as an executable test routine. In the example 

shown, at least one of the comparisons (indicated with a >) failed, causing the statement 

[check failed] to be printed. 

Another technique for functional checkout is to let the tester algorithmically generate a 

test. Consider, for example, testing an adder exhaustively. 

FIFl>immediate (loop i O 15 
FIFI> (loop j O 15 
FIFI> a<i,b<j,c>(i+j)&15;)) 
FIFI> 

i takes values O 1 2 ... 
13 14 15 

& is logical and 
no [check fail] printed 

Here the two loop statements cause the controlled variables to take values 0-15, and the 

third statement performs the test. The third statement uses the loop indices to generate all 

possible inputs, and uses the ability of the tester to evaluate simple expressions to 

generate the expected response of the adder. Since the message [check failed] was not 

printed, the operation of the adder is correct. 



8 

1 .1.3 Testing an Adder as an Arithmetic Array 

The exhaustive test shown above is an efficient test for an adder only if the adder is 

very small. A larger adder, say 16 bits, would require over four billion test steps. The key to 

developing a more efficient test for an adder is to test each of its parts separately. 

Complex devices are generally composed of a number of simpler devices that can be tested 

independently. The independent testing of all the simpler devices and the verification that 

they are connected properly is a proper test for their composition. Adders are usually 

constructed as s.n array of single bit full adders, and this structure will be exploited to aid in 

testing. 

Figure 1-2 illustrates a four bit adder constructed as an array of full adder stages. Each 

adder stage has three inputs, labeled A, B, and ci (carry input), and two outputs, labeled C 

(sum), and co (carry out). 

V V V V V V V V 

+-+--+-+ +-+--+-+ +-+--+-+ +~+--+-+ 
I A B I I A B I I A B I I A B I 
I ci+<---+co ci+<---+co ci+<---+co I 
I C I I C I C I C I 
+--+---+ 

I 
V 

+--+---+ 
I 
V 

+--+---+ 
I 
V 

+--+---+ 
I 
V 

Figure 1-2: Four Bit Adder as an Arithmetic Array 

Each stage could be tested as follows if the stage were directly available to the tester: 

FIFl)(loop i O 1 
FIFI> (loop j 0 1 
FIFI> Ooop k O 1 
FIFI> A<i,B<j,ci<k, 
FIFI> C>O+ j+k)[0], 
FIFI> co>(i+ j+k)[ 1 ]; )) ) 

all combinations of i 
j 
and k 

[ n] is bit extraction 
[OJ is lsb 
[1] is carry 

It is not possible to access the ports ci and co directly, however. These ports can only be 
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accessed through the stages before and after the stage under test. For example, the ci 

input to stage N can be set to state x by applying x to both A and B of stage N-1. Using this 

strategy the following tester code will test all the adder stages except the first and last: 

FIFl)(loop x 1 2 
FlFI> 
FIFI> 
FIFI> 
FIFI> 
FIFI> 
FIFI> 

(loop i O 1 
{loop j O 1 

(loop k O 1 
A<O<<x)+(k<<x-1 ), 
B<(j<<x)+(k<<x-1 ), 
C}(i+ j+k)< <x; )))) 

stages 1 to n-1 

< < is shift left 

The first stage cannot be tested this way due to its not having a carry input. Similarly the 

last stage cannot be tested because of lack of carry output. The following code would be 

required to test these: 

FIFl>(loop i O 1 
FIFI> (loop j O 1 
FIFI> A<i,B<j,C}i+j;)) 
FIFl>(loop i O 1 
FIFI> {loop j O 1 
FIFI> (loop k O 1 
FIFI> A<(i< <3)+(k< <2), 
FIFI> B<(j<<3)+(k<<2), 
FIFI> C)(i+ j+k)[O]< <3;))} 

test first stage 

test last stage 

1.1.4 Testing When Embedded in a System 

Once our adder has been verified functionally and tested as a separate part, it will be 

incorporated in its system environment. When put into a new environment testing must again 

be performed to verify that its composition into the new system is correct, not to mention 

production testing when the final system design has been verified. 

When the adder is not available on a prototype chip, with all it inputs and outputs 

conveniently available, but embedded in a complex system, verification becomes considerably 

more difficult. 
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The strategy to test our adder is to develop a set of software tools to effectively remove 

the system surrounding the part and then to apply the same tests as before. In other words, 

we create a software tool that can transform a test of a part into an equally valid test of 

that part when it is embedded in a system. 

Let us imagine that our adder is embedded in a system with a structure of a conventional 

one-address accumulator computer; that is, one input of the adder is from an accumulator, 

and the output always goes to the accumulator. Furthermore, assume that the accumulator 

contains a scan path that can be used for testing purposes. This structure is illustrated 

below: 

lsclk I sin 
I V 

+----------+ I +--------+ 
I adder I +--> I I 

INP ------------>+ i np a I I I 
I out c +------->+ ACC +------+--------> 

+-->+ inp b I I I I 
I I I +-->I I I 
I +----------+ I +--------+ I 
I I I I 
+-------------------)--------)----------+ 

I I 
lclk V sout 

1.1.4.1 Describing an Access Procedure 

Considering the particular structure of the device shown, the procedure to apply a set of 

stimuli to the b and c inputs and to observe the a output is as follows: load the c input into 

the ACC through the scan path, apply the b input to the adder and load the ACC with the 

result, then unload the a result from the accumulator through the scan path. 

A procedure can be constructed to apply two input values and compare one output value 

to the adder: 
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FIFl>procedure access line 1 
FIFI> var ab c; line 2 
FIFl> {loop i O 3 srn<c[i],sclk<1; line 3 
FIFI> sclk<O;) line 4 
FIFI> INP<b,clk{1; line 5 
FIFI> c,k<O; line 6 
FIFI> (loop i O 3 sout>a.[i],sclk<1; line 7 
FIFI> sclk<O;) line 8 
FIFl>end line 9 

Lines 1 and 2 declare a procedure with three arguments, a, b, and c. Lines 3 and 4 cause 

one bit at a time (indicated by the bit subscript [i]) of the c argument to be shifted into the 

accumulator via the scan path. Lines 5 and 6 cycle the system, causing the adder to be 

exercised and the result to be put into the accumulator. Lines 7 and 8 unload the 

accumulator serially and compare the value with the expected result. 

1. 1.4.2 Testing a Part Through an Access Procedure 

Having described how to access the adder, the testing can proceed exactly as if the part 

were constructed separately. The syntax. and semantics of the test language have been 

chosen to allow the same test description to generate tests either of a directly accessible 

part, or an embedded part. 

The exact syntax required to test the adder when embedded in the system is shown 

below: 

FIFI>( call access 
FIFI> a<3,b<4,c>7; 
FIFI> a<4,b<5,c>9; 
FIFI> a<5,b<6,c)11; 
FlFI> ... etc ... ) 

line 1 
line 2 
line 3 
line 4 
line 5 

Notice that the only change to tha code is the inclusion of the text 11(call access" at the 

beginning and a 11
)

11 at the end. The first line says that the test language code within the 

parentheses will refer to testing through the procedure named access. Within these 
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parenthesis each semicolon causes the procedure to be called. The arguments to the 

procedure are passed by assignments to the names of the parameters. For example, the 

first call of the procedure access is with a, b, and c having the values of drive to 3, drive to 

4, and compare with 72 . 

The access procedure can be applied to the other tests of the adder developed 

previously. For example, the test of the adder as an arithmetic array would appear as 

follows: 

FIFI>( call access 
FIFI> 
FIFI> 
FIFI> 
FIFI> 
FIFI> 
FIFI> 
FIFI> 

(loop X 1 2 
(loop i O 1 

{loop j O 1 
(loop k O 1 

A<(i<<x)+(k<<x-1 ), 
B<(j<<x)+(k<<x-1 ), 
C>{i+ j+k)< <x;))))) 

stages 1 to n-1 

In a sense the procedure access unlayers the design so the adder appears to be directly 

available to the user of the test language, when in fact it is not. The concept in the test 

language of a port is an abstraction of two concepts: the concept of electrical voltages on 

the pins and the concept of information residing on internal electrical nodes of a device. The 

concept of the port has the advantages of both the concepts from which it is derived. The 

application of a port through a tester is straightforward due to its origins as a operation 

performed on the pins of a devic.e. The generation of tests is greatly simplified by specifying 

the test in terms of actions on internal nodes. The purpose of the procedure is to implement 

this abstraction in each particular instance. 

2 The values could also be described as <3, <4, and > 7. 
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1.2 Strategy for the Design of Tests and Design for Testabmty 

The test language enforces a distinction between the primitive tests and the methods 

that are used to access these parts. Considerable design flexibility is possible because 

access proc_edures for subparts are essentially independent of the construction of the 

subpart. For example: 

- Access procedures for subparts can be specified before the subpart is 
designed. 

- The design of a subpart can be changed without having to change the test 
specifications for the rest of the design. 

- The interface between a part and a subpart may be straightforward enough to 
allow a division of labor between designers. 

1.2.1 Primitive Tests 

The criteria for generating primitive tests is more dependent upon the technology and 

physical layout than on the logic of an integrated circuit. Some primitive tests may be 

devised to assure that all wires adjacent on the silicon are not shorted, or that no wires are 

open, or that no gates have a stuck-at fault. 

The knowledge required to evaluate the types of faults likely to occur includes a 

knowledge of the technology and the exact placement of transistors and wires. The ideal 

mechanism for performing this task is a computer program, written with input from physical 

layout and having representation of the causes of faults. This program would analyze the 

geometry of portions of the design and generate tests for each portion. 

1.2.2 Application of Primitive Tests 

The procedures that are used to access the internal parts are dependent solely upon the 

logical organization of the circuit. The access procedures are a form of a functional 

description, but an incomplete one in that they describe only one manner of testing each 
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internal part of the system. It is only necessary, however, to describe one such manner of 

testing each part, when there may be many. 

Since the specification of the access procedures is only dependent upon the functional 

character of the device, the designer is in the ideal position to perform this task. In an ideal 

situation, the designer would provide the access procedures at the same time as the register 

transfer model, or block diagram, of a design is defined. 

1.2.3 Synergism of Testing and Design 

If testing is approached as described above, the test generation task can aid the design 

task and vice-versa. The access procedures required for testing are functional descriptions 

relating stimuli applied to the device to internal conditions (i.e. an internal device is tested) 

that can be verified by simulation. Simulation of the access procedures will serve to verify 

the functional description. On the other hand, the designer's understanding of the behavior 

of the device enables him to efficiently specify the access procedures. 

1.2.4 Testability 

A testability strategy consists of three parts: (1) the possible augmentation of the 

hardware of system to include mechanisms that simplify the application of primitive tests, (2) 

methods for applying primitive tests through the augmented hardware, and (3) the actual 

generation of the primitive tests. 

Previous researchers have formalized some testability strategies. In [Bouricius 71] a 

testing strategy c~!led D-calculus is described for generating primitive tests for 

combinational logic. The D-calculus computes all tests from the pins of the chip, and 

potential simplifications due to the logical structure are not exploited. When the computation 

of tests directly from the external pins becomes too difficult, selected internal nodes can be 
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connected to the pins to improve diagnosabli!ity [Hayes 74]. In LSSD, [Eichelberger 77], 

the access of internal state is aided by transforming state registers into a serial shift 

register. The manner of accessing internal state in LSSD is firmly defined and a designer has 

no freedom t~ make changes that would optimize performance. 

-The test language allows testability strategies to be formalized. Tests for combinational 

logic generated by the D-calculus would be formalized by the test language as tests with no 

access procedures. LSSD can be formalized by a very simple access procedure that clocks 

the serial shift register. Testability strategies for specific applications would include 

descriptions of access of internal state through relatively complex (i.e. more complex than a 

single shift register) hardware. The test language is therefore a testabmty strategy 

generator. 

1.3 The Design of Testers 

1.3.1 Test Generation Modes 

One test generation mode is the sequential mode. In sequential mode, the test is 

generated by the continuous execution of the test language. The output of the test 

language system is a series of commands to alter values on pins and perform test steps. 

Sequential mode has the advantage that the entire test is never instantiated in storage at 

one time, and therefore large test matrix storage is not necessary. 

An example of sequential test output is shown below. Each line is a tester command. 

Tester commands accumulate until a step command is encountered, and then are all applied 

simultaneously. 



FIFl>i (loop i 1 2 data<i,clk<1 ;clk<O;) 

sequence 
I 
I 
I 
V 

data<l 
clk<l 
step 
clk<0 
step 
data<2 
clk<l 
step 
clk<0 
step 
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output 

Sequential output is used in the tester that is pr~sently interfaced to the test language 

system. 

A second test generation mode is the rectangular matrix, or timing diagram, mode. In this 

mode the test system generates a single large static test matrix. A test matrix consists of 

a series of test vectors, each test vector being one row of the matrix. Each test vector 

:r 

represents the stimulus and response of the different ports of the device during one test 

step, and the vertical dimension represents the sequence of the test. The rectangular 

matrix mode cf output matches more closely the operation of conventional testers where the 

entire test is resident in memory for the entire duration of the test. 

The rectangular matrix test mode is illustrated below: 

FIFl>i (loop i 1 2 data<i,clk<1 ;dk<O;) 

data elk 
+-------+-------+ 
1<1 1<1 I 
1<1 1<0 I 
1<2 1<1 I 
I <2 1<0 I 
+-------+-------+ 

FIFI> 
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1.3.2 Tester Construction for the Test Language 

Testers can be made more efficient if they execute this test language. The test language 

lends itself well both to dynamic generation of tests and to the simple application of test 

vectors stor~d in a memory. Since the size of tests, measured in numbers of steps, grows 

astronomically as the complexity of devices increases, a system that needs to store all test 

vectors simultaneously has a considerable advantage. The speed at which tests can be 

generated sequentially may be much less than is required for efficient testing. 

A tester can be constructed to accept sequential commands and store test vectors. 

Testing procedures that are short and do not invoke any other testing procedures, called low 

level testing procedures, would be executed by storing the rectangular matrix representation 

in memory and dumping the memory to the test head when necessary. The low level 

procedures contain very few test vectors, but are executed many times. Sequential test 

generation can be used for the high level procedures that invoke the low level testing 

procedures. Since a complete low level testing procedure is executed between steps of the 

high level procedures, the rate of high level execution can be much less. 

A tester/test language system of this type would consist of a sequential test generation 

unit to generate tests in a very flexible, but slow manner, and a buffer test generator to 

buffer the high speed, but simple, tests and invoke them on command of the sequential test 

generation unit. 

1.3.3 interface of the Test Language to Simulators 

The function of the test language in describing electrical signals to be applied to a chip is 

very similar to the function of the input description language of a simulator. In this section, 

let us consider the possible application of the test language as an input language to a 



18 

simulator. 

Conventionally, simulators have two types of input, a description of the device as an 

assemblage of parts, and the description of the stimuli to be applied to the device. Typically, 

the response of the simulated device can only be printed for visual verification by the user. 

Simulators of this type include circuit level simulators such as MSINC [Young 76], and SPICE 

[Nagel 73], and switch simulators such as MOSSIM [Bryant 81] [Bryant 82J and system 

level simulators such as the functional simulator in [DeBenedictis 79]. 

In interfacing the test language to a simulator, most of the functions applicable to testers 

retain the same meaning: performing test steps corresponds to running the simulator, the < 

and > operations would effectively drive and sense the value at an internal port, etc. 

Some possibly subtle differences exist, however. A simulator has access to internal as 

well as external ports. It is possible to do a <, >, or ! operation on a port that is completely 

internal to the chip. Force operations can have considerably greater flexibility with a 

simulator. The simulator may be able to force a port gently, only changing the voltage on a 

capacitive port, or may force a port firmly by supplying DC current [Bryant 82]. 

The test language has the capability of sensing the output of the simulation through > 

operations and making decisions concerning the correctness of the simulation. If observing 

the output of the simulation manually was desired, the ! operation could be used. 

Since siinulation and testing play similar roles in the design process, a common language to 

both could be tremendously advantageous. Simulation is performed when a design is partially 

completed and limited verification of its operation is desired. Since simule,tions are of limited 

accuracy due to approximations about the characteristics of transistors and the layout, true 

verification through testing is necessary. In both the simulation and testing of an integrated 
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circuit the information provided and the results obtained are the same: a stimulus is specified 

and the results are observed or verified. A common language would give the effort expended 

in developing simulations double duty; it could be used for testing also. 

1.4 The Value of an Interactive, Non-Embedded Test language 

Previous work in the testing field has usually been in the direction of embedded test 

languages. Earlier work used a language such as Fortran and embedded commands to 

manipulate tester hardware. More recently high level test systems are being developed 

wherein test commands are embedded in Pascal. Current work includes interpreters written 

in the embedding language which implement a more machine independent test language. 

For reasons discussed later in this section, this work is opposed to the strategy of 

developing embedded test languages. 

1.4.1 ATLAS 

The test language ATLAS [IEEE 80] is defined by IEEE as a machine independent language 

for testing. Unfortunately, ATLAS is not specific to integrated circuit testing: it is equally 

efficient for describing tests for jet engines as adders. ATLAS's generality me.y make 

integrated circuit descriptions less compact than desired. 

ATLAS is basically a fortran style programming language with a large number of additional 

statements related to testing. An example of an ATLAS statement is shown below: 3 

M00840 VERIFY, (VOLTAGE), DC SIGNAL, UL +o.sv LL -o.sv, 
CNX HI SK 1-A LO SK 1-B $ performs a > operation 

ATLAS has the advantage of not being tied to the particular hardware of test instrument. 

3 [IEEE 80], page 105. 
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1 .4.2 FACTOR 

Another embedded test language is Fairchild's FACTOR programming language [Fairchild 

80], the control language for the series 20 testers. The series 20 testers contain a general 

purpose computer designed specifica!ly for the tester with interfaces to various electrical 

interfaces and a 1 024 vector test memory. The test language is basically Fortran with 

statements for manipulating the pins directly and for loading the 1024 vector test memory. 

Once loaded, the test memory can be dumped to the pin electronics to perform a functional 

test. 

The Fairchild tester contains a precision measurement unit, or PMU. The PMU can be 

connected to a number of different pins and drive or sense voltages of currents with high 

accuracy. The following are example statements to drive a current of -1 uA into pin number 

26:4 

CPMU PIN 26,; 
FORCE CURRENT -1 E-6, RNG 1; 

1.4.3 ANGEL 

connect to PMU 
exponential notation 

ANGEL [Snoulten 81] is an example of a test language midway between embedded and 

stand-alone. ANGEL is a block structured imperative language with embedded testing 

commands constructed for testing. ANGEL differs from other embedded test languages 

because the embedding language is original. Like other embedded languages, ANGEL includes 

flow control and! conditional statements. 

An example of ANGEL code is shown below: 

4 [Fairchild &OJ, pages 9-18 and 9-19. 



dot=7,12 
increment count 
if (count .eq. F 'hex) then 

set CO 
else 

clear CO 
end if 
apply COUNT end CO 

end do - · 
I t=[7, 12] 

1.4.4 The FIFI Test Language 
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.eq. is from fortran 
CO is a port 

The FIFI test language is a non-embedded interactive language. By making the language 

non-embedded a number of advantages are obtained: 

1. The language can be easily interactive. Most embedding languages require a 
compiler, and hence cannot be interactive. 

2. Test specifications can be much more concise if the syntax of a programming 
language is not required. 

3. A non-embedded language can constrain tests to have certain regularity and 
simplicity properties that may allow the test to execute quickly or on simple 
hardware. 

4. Portability. An embedded language is unlikely to be adopted as a portable test 
specification language because (1) the embedding language is probably not 
portable, and (2) there will likely be competition from other embedding 
languages. 

1.5 Summary 

The purpose of this work is to demonstrate that testing can be made into a systematic 

task. The testing task described in later chapters interfaces to design and layout in well 

defined ways. The generation of tests is partitioned into subtasks corresponding to 

different physical or logical parts of the system. This means small changes in a system will 

require only small changes in the test specifications. 



22 

2. A Notation for Describing Integrated Circuit Testing 

The test language introduced informally in the previous chapter will now be described 

formally. In section 2.1 the meaning of the' digital signals that flow between a tester and a 

device is formalized. In section 2.1.2 an algebra is developed for manipulating these digital 

signals in an abstract manner. In section 2.2 the assembly of these signal manipulations 

occurring at different times into test matrices is discussed. Chapter 3 continues with 

examples of the test language. 

2. 1 Abstract Elements of Digital Electrical Signals 

Electrical information on wires is more complicated than just ones or zeros. Information 

flows in a particular direction, or may not flow at all, and has various electrical and timing 

properties. A Signal will often be encoded on a number of conductors, or as a sequence of 

values separated in time. The test language uses an element of information that is a concise 

and understandable way of manipulating electrical signals. 

2. 1 • 1 Elements of the Algebra 

The testing algebra deals with elements called typed values that are ordered pairs 

consisting of a type part and a value part. Figure 2-1 illustrates a typed value. 

type part 

one of: 

force 
feel 
interrogate 
wait 
tri-state 
undefined 

value part) 

an: 

integer 

Figure 2-1: A Schematic Representation of a Typed Value. 
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The value of a digital signal will be represented as an integer. Each conductor in a 

multiple-conductor signal will be represented by one bit in the binary representation of the 

Integer. The number of relevant bits is determined by the number of conductors, or the 

degree of time multiplexing of the signal. 

In addition to the value of the signal, the direction of flow is relevant. The obvious 

concept that there are two directions, in and out, is too restricted. The algebra utilizes six 

directions, or types: force, feel, interrogate, wait, tri-state, and undefined. The physical 

meaning of these are described in figure 2-2. 

Force: The value part is forced upon the device under test. The tester output 
drivers are enabled. 

Feel: The outputs of the device under test are compared with the value part. 
If there is a difference a global error flag is set. 

Interrogate: The outputs of the device under test are sampled and the result is 
printed for interactive examination by the operator. 

Wait: 

Tri-state: 

Undefined: 

Advancement of the test step is delayed until the outputs of the 
device under test are equal to the value part. This action may be 
subject to a timeout. 

The tester outputs remove drive c3:nd the outputs of the device under 
test are ignored. 

Causes an error. The undefined type is generated by constants and 
must be changed to a 'defined' type before application to pins. 
Application of type undefined to a pin indicates a probable user error. 

Figure 2-2: Types of Information in a Tester and Their Meanings 

The reader may notice two interpretations of the typed values: 

- The tagged data interpretation is that the typed values are like data in a 
tagged data architecture machine. In a tagged data architecture computer data 
has a type part, describing the data as, for example an integer, floating point 
number, or procedure, and a value part, such as the bits of the integer or 
floating point number, or the address of a procedure. The value of the data is 
determined only when absoiutely necessary, either by using the integer or 
floating point value, or executing the procedure [Organick 73]. In the test 
algebra the available types are force, feel, etc. and the execution of a test 
step depends upon the types of the typed values applied to the pins. 

- The algebraic interpretation is that the typed values of the algebra are 
elements of a mathematical set with operations defined among its elements. 
The elements of the set are ordered pairs. The first element of the pair is 
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selected from a set of five types. The second element of the pair is an integer 
modulo 2°, where n is predetermined. As will be described later, this 
mathematical set has a subfield relating to the value, or integer, part. Other 
aspects of the structure are more complicated. 

2.1.2 Ports 

A port is a group of conductors available to the test instrument. This group of pins is 

always referred to as though it were an integer, that is, there is a MSB pin and a LSB pin. In 

addition, all pins in the group have the same type, i.e. all are either forced, felt, waited upon, 

etc. Figure 2-3 defines a port called addr that consists of 16 conductors. Conductor 5 is 

the MSB and conductor 30 is the LSB. The syntax of port definitions is discussed in appendix 

A.3. 

FlFl)define port addr 5 4 3 2 1 40 39 38 37 36 35 34 33 32 31 30; 

Figure 2-3: Example of a Port definition. 

2.1.3 Equations and Asscgnments 

In general, a typed value assignment is like a conventional assignment statement: the right 

hand side is an expression_ that is evaluated and the result is associated with the port on 

the left hand side. In the test language expressions are typed value expressions and 

evaluate to an ordered pair consisting of a type and a value. The entities that may appear 

on the left side of an assignment are carefully controlled. The left side may specify either a 

port or a parameter to a testing procedure. A port is a name associated with one or more 

electrical conductors of the tester. A typed value assignment to a port is the basic action 

used to make a test, and will often be called an action. 
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2. 1 .3. 1 Assignments 

The simplest assignment operator is =. The = operator simply takes the typed value 

generated by the right hand side and associates it with the entity on the left hand side. 

Other assignment operators exist that are Jess general, but more frequently used. These 

operators coerce the type of the assignment to their particular type, ignoring the type of the 

right hand side. Figure 2-6 defines the different assignment operators and figure 2-4 shows 

examples of the different operators and explains their meaning. The exact syntax of 

assignment operators is shown in appendix A.4. 

name oQerator ~ of result value of result 
force x<y force value-of-y 
feel X>Y feel value-of-y 
interrogate x! interrogate 
tri-state x<NULL tri-state 
wait x#y wait value-of-y 
equal x=y type-of-y value-of-y 

Figure 2-4: Examples of Assignment Operators of Different Types 

Except for interrogate, which will be discussed later, this interpretation of the type of an 

assignment statement is consistent with the original interpretation of the types in typed 

values. In all the types discussed associating the typed value with an electrical conductor 

of the tester requires additional data. This information will be driven through the output 

drivers of the tester if the type ,is force, or compared with the voltages sensed from the chip 

is the type is feel. 

2.1.3.2 Expressions 

The syntax of expressions in the testing algebra is similar to conventional expression 

syntax: an expression consists of constants or variables interspersed with unary or binary 

operators. Parentheses can be used. Figure 2-5 shows examples of typed value 

expressions. See appendix A for a general discussion of the syntax of the test language 
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and appendix A.5 for the specifics of expression syntax. 

expression value .L!:! (type,value} notation 
{undefined, 4} see note 

(type-of-X,value-of-X} 
(type-of-X,value-of-X + 4) 

a 4 
b X 
c. X+4 

{Note that constants have type undefined.) 

Figure 2-5: Examples of Typed Value Expressions 

The full meaning of the semantics of the operators is very different from the conventional 

interpretation of operators. The differences, however, always involve elements of type 

interrogate. We will discuss the conventional interpretation, where the use of interrogate is 

excluded. The changes required for type interrogate are discussed later. 

Left Hand Identifier Right Hand Expression 

+------------+ 
I I <----------------- Type 
I type rule I 

Type <------ I I 
(see note} +------------+ 

+------------+ 

<----------\ /-- Value 
\ I 
X 

I \ 
Value<------ I I <----------/ \-- Type 

I operation I 
I I <----------------- Value 
+------------+ 

a 

b - does 
not exist 
for unary 
operator 

Note: this interpretation does not apply if type is interrogate. 

Type ru I e: Input.§. Input e,. Result 
undefined p p 

Q undefined Q 
X X X 
y z error 

Figure 2-7: Conventional Interpretation of Arithmetic Operators 

In the conventional interpretation the evaluation of the type and value parts is 

independent. The value of an expression is the result of the indicated operation on the 
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Left Hand Identifier ---------
Operators 11 <11 (force), 11

)
11 (feel}, 

11 # 11 {wait): 

Right Hand Expression 

+----------------+ 
Type <--- operator type 

I I 
I error check +<- Type 
i I 
+----------------+ 

Value<---------------------------------------- Value 

Error check: 
if input type undefined then no error 
else if input type same as operator type then no error 
else error 

Operator 11 !11 {interrogate) with no right hand side: 

Type <---------------- interrogate 

Value----------------------------------------> Print 

Operator 11 <NULL" Ctr i -state): 

Type <---------------- tri state 

Value<---------------- 0 

Operator 11 =11 (assignment): 

Type <---------------------------------------- Type 

Value<---------------------------------------- Value 

Figure 2-6: Different Assignment Operators 

value parts of the two operands. A best guess is made for the type of the result. If one of 

the inputs is undefined (perhaps because it is a constant) the result will be the type of the 

other operand. If both inputs are of the same defined type than the result will be of that 

type. If the inputs are of different defined types then no good guess can be made. 



28 

2. 1 .4 Specification of Analog Tests 

The concept of the typed value has more generality than is exploited here. In addition to 

the specification of a digital signal value and direction, the typed value could have 

information describing the voltage levels corresponding to a one and a zero, or timing 

information describing the relative timing of the signal transition with respect to the start of 

the test step. A more complete set of potential attributes of a typed value are listed below: 

Type 

Value 

Voltages 

Timing Skew 

Glitch Detection 

Output Load 

One of force, feel, interrogate, wait, or undefined. 

Binary information. 

One and zero voltage levels for drive and sense. If these four numbers 
are not specified then the last specified values are used. If no 
voltages were ever specified, the system defaults are used. 

Two timing values, one for the transition time for forced values and one 
for felt values. If left unspecified, the last specified values are used, 
or a system default. 

A flag that may assume the values of true and false. If glitch detection 
is enabled, hazards encountered during feel operations will cause the 
feel operation to fail. 

Several real numbers that specify the type of output load to be applied 
to a pin. One such number might be a parallel capacitance, and another 
might be current load. 

The list of possible features that can be included in the typed values is not practically 

bounded. Special purpose testing tasks might require testers with special hardware which 

could be invoked through additional attributes of the typed value. For this reason, future 

test systems should allow special user defined attributes in the typed values, and should 

implement only those supported in hardware. 

2.2 Organization of Digital Manipulations into Test Matrices 

All tests of digital systems ultimately consist of a series of test steps. Each test step is 

essentially a typed value assignment to a group of conductors on the device under test. The 

changes in the state of the tester outputs for each test step are described by a test vector. 

A test consists of many test vectors applied in sequence, and these are termed a test 
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matrix. 

Section 2.1.2 describes an algebra for · manipulating information relevant to test 

instruments. That algebra is suitable for describing the information to be applied to a single 

output of the test instrument. This section describes how to combine many of these to form 

a test matrix. 

2.2.1 A Restricted Test Language and Testing Efficiency 

The test language is capable of generating non-adaptive tests only. A non-adaptive test is 

a test where the application of the test does not depend upon any information obtained from 

the device under test. Non-adaptive tests are sufficient for testing a large class of 

devices, including nearly all currently manufactured chips5 . 

An arbitrary non-adaptive test can always be represented as a finite fixed set of test 

operations (typed value assignments) associated with the pins of the device under test. 

Since the set is finite it can be evaluated, stored, and. manipulated. The test can also be 

stored in the high speed memory of a tester and played against the device under test at a 

constant high speed. 

The description of an arbitrary adaptive test will require a general purpose language, i.e. a 

language capable of computing all computable functions. A test program written in a general 

purpose language may produce an infinitely large test. Infinitely large tests cannot, of 

course, be stored and manipulated. The evaluation of an arbitrary computable function may 

require an arbitrary number of machine steps, and hence the test cannot necessarily be 

5 A sufficient condition for a chip to be testable with a non-adaptive test is that the chip 
have a reset sequence [Seitz 71 ]. An example of a chip that is not testable with a 
non-adaptive test is a chip containing a counter that can neither be reset nor loaded. 
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generated at a fixed rate. 

The restrictions in the test language over general purpose programming languages are as 

follows: 

1 . There are no conditionals. Conditionals could be of two types: ( 1) dependent 
upon information returned from the device under test, and (2) dependent only 
upon program variables. Conditionals of type 1 would result in an adaptive 
test

6 
and conditionals of type 2 can be eliminated by macro expanding the 

test • 

2. There are no variables to represent tests. Tests can only be created, they 
cannot be stored. The test language could, as an optimization, recognize 
repeated tests and store them, but it is not possible for the test language to 
require that this be done. This gives the test language the ability to handle 
arbitrarily large tests with a finite memory. 

3. Information flow is toward the device under test only. Information cannot be 
returned from the device under test except in very special, restricted, ways. 
Information return is limited as follows: (1) there is a go/no-go flag, and (2) 
interrogate operations cause information to be returned to the operator. This 
allows reasonable physical design of testers. 

The test language is really a weak programming language: there is no floating point, no 

I /0, no conditionals. It is impossible to compute prime numbers using the test language. In 

fact, it is impossible to do anything with the test language except generate tests. 

It is important that the language be viewed 'as a notation for describing tests, rather than 

as a programming language adapted to testing. These restrictions of the language will force 

the test designer to specify tests in a particular programming style. This style is enforced 

by the limitations on the choice of constructs available. The single allowable programming 

style emerges as the most structured and efficient to execute. 

6 The typed value operations previously described have a considerable power that, in 
other languages, would require conditionals. In a sense, the test language does not eliminate 
conditionals, it merely confines them to primitive operations on the defined data types. 



31 

2.2.2 Elements 

Description of a matrix always begins with a description of its elements. In the test 

language the elements are typed value assignments, or actions. 

Figure 2-8 illustrates some examples of typed value assignments. Notice in figure 2-8, 

line 4 that the word 'addr' appears twice. The occurrence on the left refers to port, and the 

occurrence on the right is a variable. 

FIFl>define port elk 6; 

FIFl>def port addr 5 4 3 2 1 40 39 38 37 36 35 34 33 32 31 30; 

FIFl)clk{1; 

FIFl>addr<addr[0:6]; 
FIFl>addr<addr[7: 13 ]; 
FIFI> 
FIFI> 
FIFl>clk<1,clk<O; 

port elk driven high 

line 4 
port addr driven to 

low and high parts 
of variable addr 

undefined, error condition 

Figure 2-8: Illustration of Pin and Variable Assignments 

The last line in figure 2-8 illustrates the condition where the same port is assigned 

different values in the same test step. This action corresponds to an incorrectly formed test 

and is a user error. 

2.2.3 Test Matrices 

There are two interpretations that can be applied to tests generated by the test 

language, the static interpretation and the dynamic interpretation. Each of these 

interpretations is the best view in some circumstances: the static view allows the most 

abstract visualization of large tests, and the dynamic view has greater flexibility in 

describing complex manipulations within a test. 

The static interpretation is based upon the test matrix. A test matrix is an array of typed 



32 

values specifying a typed value for each pin of the device under test for every step. Figure 

2-9 illustrates a small test matrix 7 • 

logical pins---> 

I<----------- data bus db --------->I 
elk dbS db4 db3 db2 dbl db0 

+-----------------------------------------+ 
test 1 I <1 <NULL <NULL <NULL <NULL <NULL <NULL I 
sfeps 2 I <0 <NULL <NULL <NULL <NULL <NULL <NULL I 

I 3 I <1 <NULL <NULL <NULL <NULL <NULL <NULL I 
I 4 I <0 <NULL <NULL <NULL <NULL <NULL <NULL I 
V 5 I <1 <0 <0 <0 <0 <0 <0 I 

8 I <0 <0 <0 <0 <0 <0 <0 I 
7 I <1 <0 <0 <0 <0 <0 <1 I 
8 I <0 <0 <0 <0 <0 <0 <1 I 
9 I <1 >0 >0 >0 >0 >1 >0 I 

10 I <0 >0 >0 >0 >0 >1 >0 I 
+-----------------------------------------+ 

Figure 2-9: A Test Matrix 

Figure 2-9 is a complete test consisting of 1 0 steps. The first four steps cycle the clock 

twice and the data bus is ignored by the tester. Steps 5-8 force the values 0 and 1 to the 

data bus in two clock cycles. Steps 9 and 1 0 feel the data bus values for the integer 2 

while cycling the clock. 

The dynamic interpretation is based on the continuous production of teste~ commands by 

the test language system. These tester commands are illustrated in figure 2-1 0. 

Figure 2-1 0 shows two types of commands: commands specifying operations to be 

performed on ports, and a command to perform a test step. Test vectors are delimited by the 

word step in figure 2-1 0. Typed value assignments between the steps are included in the 

same test vector. 

7 1n future illustrations <t,JULL will not be printed, but the space will be left blank. 
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clk<l 
step 
clk<0 
step 
clk<l 
step 

sequence clk<0 
I step 
I clk<l 
I data<0 
I step 
V clk<0 

step 
clk<l 
data<l 
step 
clk<0 
step 
clk<l 
data>2 
step 
clk<0 
step 

Figure 2-10: Continuous Stream of Tester Commands 

2.2 .. 4 Static Interpretation 

A test can be viewed as a test matrix. The elements of the matrix are typed values to be 

applied to the physical conductors of the chip. The horizontal axis of the matrix is calibrated 

in the physical conductors, or ports, and the vertical axis in test steps. Figure 2-11 includes 

a picture of the test matrix representation. 

The following notation is used in representing a test matrix: each entry consists of a 

typed value pair depicted by the assignment operator corresponding to that type, and a 

constant representing the value. For sake of appearance, ports that are ignored by the 

tester, ports that would be represented as <NULL, are left blank. 

The syntax of the test language representation of a test matrix is constructed according 
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Test Matrix Representation Textual Representation 

conductors -> 

elk data 
+-----------------------+ 

sequence I <1 clk<l; 
·I I <0 clk<0; 
i I <1 clk<l; 
V I <0 clk<0; 

I <1 >54 clk<l,data>54; 
I <0 >54 clk<0; 
I <1 clk<l,data<NULL; 
i <0 clk<0; 
I <1 clk<l; 
I <0 clk<0; 
+-----------------------+ 

Figure 2-11: Simple Test Matrix and Representation. 

to the following rules: 

1. Each force, feel, etc. on a port is described by a typed value assignment, 
discussed previously. 

2. Multiple actions performed on the same step are separated by commas, and 
form a test vector. 

3. Each test vector is terminated with a semicolon, and conversely, semicolons 
separate test vectors. A number of test vectors separated by semicolons are 
called a test matrix. 

A convenient manner of organizing this representation into lines of test is to pface each 

test vector on a separate line, and to end each line with a semicolon. Figure 2-11 shows an 

example of a test matrix and its representation. 

Some comments are in order: 

- When a test step is performed the action occurs first on the force operations, 
later on the feel operations, and last on the interrogate operations. The test 
system follows this convention and actions not written in this order will be put 
into this order by the test system. Execution of an typed value assignment 
then consists of scheduling an operation to occur at the appropriate phase of 
the test step. 

- When a test step occurs and a particular port is not specified as the 
destination of any typed value assignment, then the port state is retained. This 
means, for instance, that if the purpose of a test step is merely to change a 
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clock, only the change of the clock need be specified, and the states of afl the 
other ports that will not change need not be respecified. On the other hand, if 
the outputs of a port are to be sampled .only once then the feel condition must 
be explicitly withdrawn or the comparison will occur (and possibly fail) later. 

- The last vector of a test matrix according to this representation must end with 
a semicolon. Lack of a trailing semicolon means that the test step is not yet 
complete. This concept is subtly useful but is described only with the dynamic 
interpretation. 

Other operators exist: 

- The plus operator combines test matrices, overlaying them row by row and 
aligned at the top. The length of the resultant test matrix is the maximum of 
the lengths of the original matrices. 

- The comma operator, previously described as operating on typed value 
assignments, can operate on matrices also. Two matrices separated by 
commas result in a matrix that is the concatenation in sequence of the two 
matrices, the leftmost matrix occurring first. (The semicolon operator operates 
similarly, except it produces an empty test step at the point of concatenation.) 

- In addition, some labor saving constructs exist. There is a looping construct 
that when applied to a test matrix will repeat the matrix a number of times. 
There is also a step construct that generates a specified number of empty test 
steps. 

Figure 2-12 illustrates these operators. 

The static interpretation is useful because it allows test matrices to be instantiated and 

stored for fast execution. Test matrices may be larger than the memory available in the test 

system, and hence use of this interpretation is limited to small test matrices. Larger test 

matrices are executed dynamically. 

2.2.5 Dynamic Interpretation 

The static interpretation makes a distinction between test matrices and typed value 

assignments, and also a restriction that all test matrices end with a semicolon. The dynamic 

interpretation, while being more complex, eliminates these irregularities and allows grea.ter 

flexibility in describing tests. 
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{loop I 1 5 clk<l;clk<0;} (data<3; data<4;} , 
(loop I 1 3 data<5;data<6;} 

elk data elk data 
+------------------------+ +------------------------+ 
1<1 
I <0 
I <1 
I <0 
I <1 
I <0 
I <1 
I <0 
I <1 
I <0 

I <3 I 
I <4 I 
I <5 I 
I <6 I 
I <5 I 
I <6 I 
I <5 I 
I <6 I 
+------------------------+ 

+------------------------+ 
(loop I 1 5 clk<l;clk<0;) + 

{data<3;data<4;}, (loop I 1 3 data<5;data<6;} 

elk data 
+------------------------+ 
I <1 <3 I 
I <0 <4 I 
I <1 <5 I 
I <0 <6 I 
I <1 <5 I 
I <0 <6 I 
I <1 <5 I 
I <0 <6 I 
I <1 <6 I 
I <0 <6 I 
+------------------------+ 

Figure 2-12: Illustration of operators. 

Execution of a test is nothing more than the evaluation of a sequential/parallel 

expression. For optimization, some portions of the expression will be compiled into the 

special purpose format of the tester (the test matrix), but this will have no effect on the 

behavior of the test. 

This sequential/parallel expression consists of executable parts and control parts. The 

executable parts are the typed value assignments described previously and the control 
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parts are the operators comma, semicolon, plus, and various constructs such as looping. 

Typed value assignments, or typed value assignments separated by operators, possibly with 

parentheses, form a matrix expression, according to the following rules: 

1. A typed value assignment is the simplest matrix expression, and its evaluation 
is immediate. Evaluation consists of scheduling the action to occur during the 
appropriate phase of the next test step. 

2. The comma operator is a sequential asynchronous operator. The matrix 
expression on the left is evaluated and upon completion the matrix 
expression on the right is evaluated. Upon completion of evaluation of the 
matrix expression on the right the comma is said to have completed. The 
previous discussion about the order of force/feel actions still applies, of 
course. 

3. The semicolon operator invokes a test step. The matrix expression on the 
left is evaluated, then a test step occurs, then the matrix expression on the 
right is evaluated. Upon completion of evaluation of the matrix expression on 
the right the evaluation of the semicolon is said to have completed. (A special 
case exists. A semicolon operator need not have a right term. In this case 
the left part is evaluated, a test step is performed then the semicolon 
terminates.) 

4. The plus operator performs a concurrent fork. Both the matrix expressions on 
the left and right are evaluated in parallel. Test steps in both forks remain 
synchronized, however. When both matrix expressions have been evaluated, 
the plus is said to have completed. 

5. A construct called looping exists. The looping construct specifies a loop 
count and a matrix expression to be repeated. All such special constructs 
are entirely within parentheses, hence there is no question about order of 
evaluation. 

6. A construct exists to skip steps, called the step control clause. The step 
control clause skips the number of steps specified by its argument and then 
executes its matrix expression. 

Note that a typed value assignment is also a matrix expression. Therefore, all operators 

can be viewed as operating on matrix expressions. The plus operator is commutative. Other 

operators are not. The three operators group left to right and can therefore be interpreted 

as list separators. 

Note that this interpretation is consistent with the static interpretation. A procedure 

would consist only of elements, commas and semicolons. Furthermore, a procedure always 
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ends with a semicolon. It is clear that the comma, semicolon, and plus operations described 

for test matrices are the same here. The looping construct, when the term to be repeated 

ends with a semicolon, is identical to that in the previous interpretation. The syntax of 

matrix expre~sions is discussed in appendix A.4 and the syntax of procedure declarations is 

discussed in appendix A.2. 

The dynamic interpretation has the advantage of minimal test matrix storage. Dynamic 

generation of tests may be slow, however. Off line generation of static test matrices is 

desirable when speed is critical and memory is sufficient. 

2.3 Test Language Procedures 

As in all programming languages it is necessary to have a subroutine, procedure, or macro 

construct. Such a construct exists in the test language. 

Procedures will often be used to access the internal state of a device. To make the 

procedure best represent the intentions of the test designer, a slightly unusual syntax 

exists. Recall that the primitive tests are specified in the following form: 

primitive 
test 

inp<1,fcn<2,addr<3; 
~lk<1; --

out>4, cond>S, inst>6; 
clk<O;--

A major goal of test language procedures is to apply such a primitive test to a device 

embedded in a more complex system. In the example the procedure will accept values 

corresponding to the words inp, fen, addr, out, cond, and inst. The procedure will then 

perform whatever manipulations are necessary to implement the primitive test shown above. 

The implementation of procedures in the test language is highly restricted. Since 

conditionals are not allowed, there is no reason for a procedure to return any value. Without 



39 

returned values, there is no need for functional forms. The test language tailors the syntax 

and semantics of procedures to aid in the particular type of accessing of internal ports 

encountered in testing. 

2.3. 1 Procedure Defining and Calling tJotat~ons en Programming Languages 

The following is presented as an alternative to the normal, functional, procedure ca!llng 

convention found in most programming languages: 

- each argument has a name, and 

- the value of an argument is specified by an assignment to the argument name. 

This syntax is illustrated below: 

procedure 
declaration 

invocation 

conventional test syntax 

PROCEDURE P(a,b,c} procedure P 
var a b c; 

P(l,2,3) Cea I I P a=l, b=2, c=3) 

In both cases procedure P is invoked with argument a 1, b 2, and c 3. 

2.3.2 Procedure Conventions in the Test Language 

A procedure call in the test language consists of the name of the procedure and a matrix 

expression. The interpretation ?fa matrix expression in a procedure call is different from its 

normal interprets.tion. The differences etre as follows: 

- The typed value assignments, instead of assigning to ports of the tester, 
assign to named variables of the called procedure. 

- Semicolons, instead of causing advancement of the test step, cause the called 
procedure to be invoked . 

.. In the called procedure the variables are available for use in typed value 
expressions. 

A procedure declaration in the test language consists of a header part and a matrix 
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expression. The header part identifies the name of the procedure and includes a list of 

variables. The matrix expression is the body of the procedure. Execution of the procedures 

consists of evaluating the matrix expression with the variables supplied by the call. 

Each procedure will have a name associated with it. This name will be used to invoke the 

procedure, or to identify a top level test program. 

The new syntax for describing when procedures are to be invoked is the ca// control 

clause. The calf clause takes the name of the procedure to be used and a matrix expression. 

Within the expression typed value assignments cause assignments to variables of the 

procedure, and semicolons cause the procedure to be executed. The new syntax is quite 

different from most programming notations. Here the declaration is made that a particular 

procedure will be called, and it will then be invoked by default with each new set of 

variables. See appendix A.2 for details of the syntax. 

There is a syntax for describing formal variables of a procedure. A procedure may have 

parameters, known as vars. The var statement is like a declaration statement in a 

programming language (but no commas). Figure 2-13 illustrates a var statement that 

declares the identifiers pc, ace, q, x1, x2, x3, and cy as parameters. See appendix A.2 for 

details. 

FIFl>var pc ace q x1 x2 x3 cy; note no separators 

Figure 2-13: Example syntax of the var statement. 

Using these conventions, a procedure declaration and invocation are written as shown in 

figure 2-1 4. 

Notice the (intentional) similarity of the call syntax to the primitive test. The arguments of 

the procedure specification are textually similar to the result of the procedure. This 



define procedure access 
var inp fen addr out cond inst; 

... matrix expression ... 
end 

(call access 
inp<1,fcn<2,addr<3, 
out>4,cond>S,inst>6;) 
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procedure declaration 

procedure call 

Figure 2-14: Skeleton of Routine to Perform State Access 

similarity will be later exploited as a significant mnemonic in understanding test 

specifications. 

Notice that no ambiguity arises due to the scope of variable/port names. Within a call the 

only names allowed on the left hand side of a typed value assignment are the variables of 

the called procedures. Outside a call the only names allowed are port names. In general, 

variables defined on the same level as an assignment are allowed only on the right hand side 

of that assignment. 

2.3.3 Sophisticated Interpretation of the Interrogate Action 

The interrogate operation is normally used as an interactive version of the feel operation. 

In an automatically generated test the accuracy of the fabrication of the device under test 

is verified with feel operations comparing the outputs of the device with specified expected 

values. In an interactive characterization of a device a human operator will prefer to know 

the actual values occurring on internal nodes, rather than just specify expected values. The 

interrogate action can be substituted for the feel action in these cases. 

Sampling the value of a data bus of a microprocessor is a simple example. An automatic 

test might expect the value 243 to be on the data pins; the typed value assignment 

data>243 tests for this. The typed value assignment data! specifies an action of type 
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interrogate for the pins and the value on the pins is printed interactively. In this simple 

example, the interrogate assignment operator (which does not need a right hand side) 

generates a typed value with type interrogate and an irrelevant value. When the tester 

performs the interrogate action, the value is printed on the operator's console. 

2.3.3.1 Simple Interpretation of the Interrogate Action 

In the simple interpretation, the association of a typed value with type interrogate causes 

the value sensed to be printed interactively for the operator. This situation can arise in one 

of two ways: (1) a typed value assignment with the ! operator, or (2) a typed value 

assignment with the = operator and a right hand side that has type interrogate. 

2.3.3.2 A More Complex Interpretation of the Interrogate Action 

While the simple interpretation of the interrogate action is very useful for ! assignments, 

the interpretation for = assignments (of type interrogate) is overly simplistic. 

A more sophisticated scenario might involve passing parameters to testing procedures of 

type interrogate. For example, a procedure may take an argument called data that 

represents the value of a multiple bit ( 16 bit) accumulator. The procedure may transform this 

parameter to a bit serial form by performing repeated bit subscripting operations. Each of 

the bit subscripting operations extracts a single bit from the parameter. The bit would have 

the same type part as the parameter and associate it with a serial data pin of the device 

under test. An = assignment operator can be used to associate the parameter with the pin 

. 
of the tester. Whatever type of action is specified by the parameter would be repeated 16 

times. 

If the simple interpretation of the interrogate action were used, and the parameter were 

of type interrogate, the operator would be presented with a sequence of 16 one-bit numbers 
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that were sensed by the test system. The operator would have to assemble these 16 

results into the desired number. 

In a more sophisticated interpretation, the interrogate operations sense the value on the 

pins and store the value into the expression on the right hand side. In the example, the 

se_rialized values would be stored individually into the appropriate bits of the parameter 

repeatedly until the complete value of the accumulator were assembled. The complete value 

could then be printed as one number for the operator. 

In order to generate a parameter of type interrogate in a testing procedure, there must be 

an ! operator with a parameter on the left hand side at a higher level. When an ! operator 

occurs in a procedure call, the value of the parameter (changed by the procedure) is printed 

after the procedure returns. 

The necessary action by the test system is to determine algebraically that the values of 

the independent variables in the expression must be for the value parts on both sides of the 

assignment operator to be the same. This action may require sophisticated programming. 

It is not always possible to determine the values for the unknowns in the right hand side. 

If the right hand side contains more than one independent unknown, or is too complex8 then 

this task is impossible. The interpretation in the test language is to allow solution only when 

there is one unknown (variable of type interrogate) in the expression. This provides a 

solution that works in most useful cases and is implemented efficiently. 

If only one operand to an operator contains unknowns then it may be possible to 

8 consider the right hand side being a polynomial: if of degree less than 4 it can be solved 
by general but possibly very complex techniques, if of degree 4 or more it cannot be solved 
in general. 
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determine the value of the unknown operand by use of the inverse of the operator. For 

example, if the value of the expression X+5 is known to be 6, then it is possible to 

determine the value of X to be 1 by knowing that subtraction is the inverse of addition. The 

operator inverses are illustrated in figure 2-15. 

0Qerator 
C a I b 
C = a 1' b 
C = a & b 
C = a << b 
C = a >> b 
C = a + b 
C = a -1, b 

0Qerator 
c = a [e] 
c = a [el: e2] 

2.3.4 Timing 

Inverse 

a = 

a = 
a = 
a = 
a 

lf. left 
none 

C 'f' b 
none 

C >> b 
C << b 
C - b 
C I b 

unknown 

Inverse 

Inverse lf. right unknown 
none 

b = c 1' a 
none 
none 
none 

b = c - a 
b = c / a 

put c into eth bit of a 
put c into bits el to e2 of a 

Figure 2-15: Reverse Evaluation of Operators 

All practical test systems must have control over timing.· The test language has bypassed 

this issue in an attempt to simplify the description and implementation. An important aspect 

of timing in tests is the rate that test vectors are applied. In the •simplest case, this 

corresponds to test vectors being applied at fixed intervals, such as 200 ns. In more 

complex cases, an overall interval may be fixed, but within there will be several subintervals. 

An example of the latter case is a multiphase clocked system where the first phase is 67 ns 

and the second is 1 33 ns; the two phases always alternate for an overall cycle time of 200 

ns. The generalization that is suggested here is to allow each test step to have an 

associated time. 

We propose a~sociating two time intervals with each test step. These are described 

below: 

Minimum Step Time The minimum step time is normally the time from the beginning of a test 
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step until the beginning of the next step. 

Step Timeout If a test step contains operations of type wait, then the test step wm 
be delayed until the specified condition is satisfied, or until the step 
timeout interval is exhausted. The step timeout is necessary because 
without a timeout, a defective chip could cause the tester to hang. 

The incorporation of the timing specifications into the test system will be as two sets of 

phantom pins. The minimum step time will be controlled by assignments to a pin called time 

and the step timeout through the pin timeout. When a value is associated with these pins, 

the value part becomes the time interval in nanoseconds. For example, the following -

generates a 1 /3 duty factor clock (such as required by an 8086): 

FIFl>i (loop i 1 5000000 
FIFI> tirne=67,clk<1; 
FIFI> time= 133,clk<O;) 

runs for one second 
67 ns high 
133 ns high 

Below is an example of manipulating a four cycle request-acknowledge system. The 

tester applies a request and expects an acknowledge. The tester continues when the 

acknowledge occurs, but the tester will timeout after 1 00 us and report a failure. 

FIFl>request<1; 
FIFl>timeout= 1 00000,acknowledge#1; 
FIFl>request<0; 

apply request 
wait on acknowledge but 

timeout after 1 00us 
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3. Examples of the Test Language 

This chapter is aimed mostly at describing how the test language developed in previous 

chapters can deal with existing system design and test design strategies. The novelty in 

this chapter is not in the systems or in the approach to developing the tests, but in the 

manner in which the tests are formalized by the test language. 

The reader should be particularly aware of the natural way in which the test 

specifications of the examples fit the natural structural partitions of a design. 

3. 1 Abstraction of a Bidirectional Data Bus 

Consider the testing of devices utilizing a memory bus. Memory buses are bidirectional 

channels that communicate data to or from a particular bus device. There are two types of 

memory bus cycles: read and write. Both cycles often have identical timing, the difference 

being that one cycle transfers data from the bus device and the other transfers data to it. 

It would be convenient to be able to describe a bus cycle once in general, and have this 

specification describe both read and write cycles. 

The procedure to specify the bus cycle has two parts. One part describes the 

miscellaneous timing that is ~he same for all bus cycles. The other part would transfer data 

to or from the bus device depending on the type of the cycle. The data transferred would be 

an argument to the procedure, and hence a typed value. The type part of the typed value 

could represent the desired direction of the transfer. 

Figure 3-1 illustrates the operation of a generalized memory access state of the RCA 

1 802 microprocessor [RCA 76]. The operation of the 1 802 consists entirely of cycles eight 

clock periods in length. These cycles are of one of three types: memory read, memory write, 

and idle. The procedure in figure 3-1 will test the chip for any of the three different cycles 
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depending on the type of the parameter data: if data is feel a memory read, force a memory 

write, and tri-state an idle state. 

When procedure mcycle is called in figure 3-1 the type of parameter addr is irrelevant 

(because its type is overridden with the > operator) and the type of parameter data 

determines the direction of information flow for the cycle. If the type of addr is feel or 

undefined the type will be changed by the feel operator. If addr is of another type, an error 

condition exists. The type of parameter data is important, however because it is used with 

the equal operator, which does not effect type. 

FIFl>define port elk 1; 
FIFl}define port addr 32 31 30 29 28 27 26 25; 
FIFl>define port data 8 9 10 11 12 13 14 15; 

FIFl}define procedure mcycle 
FIFI> var addr data; 
FIFI> (loop i 0 7 
FIFI> clk<O; 
FIFI> clk<1 ;) + 
FIFI> (step 4: addr)addr[8: 15];) + 
FIFI> (step 6: addr>addr[0:7];) + 
FIFI> (step 8: data=data;) + 
FIFI> (step 15: data<NULL;) 
FIFl>end 

FIFl>define procedure test 
FIFI> ( call mcycle 
FIFI> addr=O, data<16r5 i; 
FIFI> addr= 1, data>12; 
FIFI> addr=2, dataOJULL;) 
FIFl>end 

address and data 
8 clock periods 

skip 4 steps then 
apply address 

data force/feel 
shut off data 

read cycle 
write cycle 
idle 

Figure 3-1: Procedure for Memory Cycles of an 1802 
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3.2 Performing Complex Data l\1anipuiations 

Consider a device where data is transferred serially. It would be convenient to continue 

to refer to its registers as typed values even though the bits are not transferred 

simultaneously. 

One method of manipulating serial data is to use the bit subscripting operator multiple 

times when applying the data to the pins. 

Consider the accessing of a data register in a device that transfers data serially. This 

concept will be illustrated with a device that transfers a 16 bit binary value in or out through 

a single pin on 16 clock cycles. A single procedure is presented that will allow the transfer 

in either direction. Figure 3-2 i!lustrates a test for such a device. 

FIFl}define port elk 1 ; 
FIFl>define port data 2; 

FIFl}define procedure cycle 
FIFI> var data; 
FIFI> (loop i O 15 
FIFI> clk<0,dats=data[i]; 
FIFI> clk(1 ;) 
FIFl>end 

FIFl>define procedure test 
FIFI> •.. etc ... 
FIFI> (call cycle data(16r55aa;), 
FIFI> ... etc ... 
FIFI> (call cycle data}16r55aa;) 
FIFl>end 

bit subscripting 

calling program 
specify a write 
write 55aa hex 
specify a read 
compare 

Figure 3-2: Parallel Serial Translation 
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3.3 Testing a 16K Dynamic Random Access Memory 

This example will describe a portion of a test of an Intel 21179 . The 2117 is a 

conventional 1 6K dynamic RAM. The RAM has 1 4 address bits that are applied in two steps to 

7 address lines. The falling edges of two signals, RAS and CAS, clock the two portions of the 

address bits into the ram. Simultaneously with the application of the second group of 

address bits, a negative write enable, WR, is sampled. If the cycle is a write, the data input, 

DIN, is sampled, and if a read the data output, DOUT, provides the contents of the memory 

location. 

This example will show a procedure that will access all of the locations in the memory and 

read or write a one or zero in each location. This fragment of a complete test would be 

called by a procedure to write different patterns in the memory. A more complete test will be 

described later. 

Figure 3-3 illustrates the physical connections of the RAM to the tester. · Figure 3-5 

shows a test language program that will read all locations in the RAM. Figure 3-4 shows the 

operation of the test in rectangular matrix form. 

A real test of a dynamic RAM would test the address decoding logic and pattern sensitivity 

of the memory array. Let us discuss an exhaustive test of the decoding logic. 

A test of the RAM decoding logic verifies that each memory location is addressed uniquely. 

Such a test can be accomplished by writing a unique pattern to each memory location and 

then reading all locations and verifying that their contents are correct. If a memory location 

were to be enabled by more than one address, at the conclusion of the writing phase it would 

9 see [Intel 80], pages 1-26 to 1-37. 
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+--------------------+ 
7 

ADDR ======I=======> address 
1 

RAS------/-------> -ras 
- 1 2117 
CAS ------/-------> -cas 

1 
WE------/-------> -we 

1 
D ------/-+-----> data data -----+/------> 

1 I 
I 
I 

in out 

+--------------------+ 
I 
I 
I 

+-----------------------------------+ 
Figure 3-3: Illustration of a 2117 Dynamic RAM 

ADDR RAS CAS DIN WE □OUT value of!. 
+--------------------------+ 

. . 
<127 <1 <1 <1 16381 
<127 <0 <1 <1 16381 
<125 <0 <0 <1 16381 
<125 <0 <0 <1 >1 16381 
<125 <1 <1 <1 16381 
<127 <1 <1 <1 16382 
<127 <0 <1 <1 16382 
<126 <0 <0 <1 16382 
<126 <0 <0 <1 >1 16382 
<126 <1 <1 <1 16382 
<127 <1 <1 <1 16383 
<127 <0 <1 <1 16383 
<127 <0 <0 <1 16383 
<127 <0 <0. <1 >1 16383 
<127 <1 <1 <1 16383 

+--------------------------+ 
Figure 3-4: Square Matrix Representation of 211 7 Test 



FIFl>define port RAS 4; 
FIFl>define port CAS 15; 
FIFl}def ine port D 2; 
FIFl}define port WE3; 
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FIFl)define port ADDR 13 10 11 12 6 7 5; 

FIF!>define procedure access 
FIFI> var we d; 
FIFI> WE<we; 
FIFI> (loop IO 16383 
FIFI> ADDR<I[ 13:7]; 
FIFI> RAS<0; 
FIFI> ADDR<l[6:0],CAS<0; 
FIFI> D=d; 
FIFI> RAS<1,CAS<1,D<NULL;) 
FIFI> end 

FIFl>define procedure test 
FIFI> (call access we<0,d<1 ;) 
FIFl>end 

Figure 3-5: Test Language to Test a 2117 RAM 

have the correct pattern for only one of the addresses. 

An obvious unique pattern to write into each memory location is simply its address. At first 

observation, there is a problem: 16K RAM addresses are 14 bits, but each location can hold 

only one bit. The problem is solved, however, because the 14 bit address can be loaded and 

read from the ram in 1 4 separate tests, each using one of the 14 address bits. 

Informally, a complete decoder test would consist of writing and verifying the following 

patterns: 

pattern 

I 
I 
V 

Address ... 
0123456789 
0101010101 .. . 
0 0 1 1 0 0 1 1 0 0 .. . 
0 0 0 0 1 1 1 1 0 0 .. . 
0000000011 .. . 
0 0 0 0 0 0 0 0 0 0 .. . 

... etc ... 

Notice that the columns of bits to be written to and read from each address form a binary 
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number that is the address of the location. 

The test code shown in figure 3-6 illustrates this testing strategy. 

FIFl>define port RAS 4; 
FIFl}define port CAS 15; 
FIFl}define port O 2; 
FIFl}define port WE3; 
FIFl}define port ADDR 13 10 11 12 6 7 5; 

FIFl>define procedure access 
FIFI> var we d n; 
FIFI> WE <we; 
FIFI> {loop I O 16383 
FIFI> ADDR<i[13:7]; 
FIFI> RAS<O; 
FIFI> ADDR<1[6:0],CAS<O; 
FIFI> D=dtBLnJ; 
FIFI> RAS<1,CAS<1,D<NULL;) 
FIFI> end 

FIFl}define procedure test 
FIFI> (loop i O 1 3 
FIFI> (call access we<O,n<i,d<O;), 
F!FI> (call access we<1,n<i,d}O;)) 
FIFl>end 

ascending addresses 

xor with d allows bit 
reversed testing 

once for each bit 
write enable, data forced 
no write enable, data fee/ed 

Figure 3-6: Decoder Test of a 2117 RAM 

3.4 Multiphase Clocking and the Test language 

Existing testers and test systems have facilities for testing devices that utilize 

multiphase clocking. In this seetion the facilities of the test language to describe tests of 

multiphase devices will be examined. 

Conventional testers solve the multiphase testing probiem by providing special hardware 

support for generating the clock or clocks, and for adjusting the phase of the timing signals 

relative to these clocks. 

The approach in the test language is very different. In the proposed implementation the 
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tester will generate the clock signal just like any other signal. Software means are used to 

generate the clock and specify the sequences of data signals relative to the clocks. 

As an example an imaginary device with a three phase clock and two data phases will be 

discussed._ Figure 3-7 illustrates the timing of this device. In this device the data ports are 

used in a multiplexed fashion. During the phase 1 time the data signals have one meaning 

and during phase 2 time another. Phase 3 of the imaginary device has no interaction with 

any externally accessible ports. The data ports are physically known as A and B. The A port 

is used only during the phase 1 time, v11hereas the B port is used as 'an address during phase 

1 and data during phase 2. 

+---+ +---+ 
phase 1 I I I i 

+---+ +-------------------+ +-------------------+ 

+---+ +---+ 
phase 2 I I I I 

+-----------+ +-------------------+ +-----------+ 

+---+ +---+ 
phase 3 I . I I I 

+-------------------+ +-------------------+ +---+ 

+----\+/---------------------\+/--------------------+ 
a ports A A 

+----/+\---------------------/+\--------------------+ 

+----\+/-----\+/-------------\+/-----\+/------------+ 
b ports addr data addr data 

+----/+\-----/+\-------------/+\-----/+\------------+ 

Figure 3-7: A Three Phase Clocking System 

The strategy for specifying this timing would be to write a procedure that would generate 

the clocks and perform the multiplexing. The parameters to the procedure would be the 

states of the (virtual) ports A, addr, and data. Figure 3-8 illustrates this procedure. 



FIFl)define port clk1 1; 
FIFl}define port clk2 2; 
FIFl)define port clk3 3; 
FIFl)define port A 4; 
FIFl}define port B 5; 

FIFl>define procedure threephase 
FIFI> var A addr data; 
FIFI> elk 1 <1; 
FIFI> A=A, B=addr; 
FIFI> elk 1 <O, A<NULL, B<NULL; 
FIFI> clk2{1; 
FIFI> B=data; 
FIFI> clk2<0, B<NULL; 
F~FI> clk3<1; 
FIFI} clk3<0; 
FIFl>end 

FIFl>define procedure test 
FIFI> (caH threephase 
FIFI> A<1,addr<2,data<3; 
FIFI> A<4,addr<5,data<S; 
FIFI> __ etc ... ) 
FIFl>end 
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A is only phase on A 
addr is only phase B 

dat.a is on B lines 

clock only, no signal 

apply 3 phase eye/ es 

Figure 3-8: Multiphase Clocking Procedure 

Notice in procedure test of figure 3-8 that the bulk of the body is written with the same 

syntax as if the lines A, addr, and data were directly available as ports ·of the tester. The 

similarity of the syntax in this instance is an example of the abstraction of the details of the 

clocking scheme. The changes necessary to implement this abstraction are to write a 

procedure to translate the abstract notation referring to a device with ports A, addr, and 

data to the reaJ1 device with ports A, B, and three clocks. It is only necessary to place the 

text "(call threephase" and 11
)

11 around the body of the test. 
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3.5 An Example of the Test Generation Technique for large Systems 

This section is intended to establish the usefulness of the test language as a tool for 

describing systems of realistic complexity. The system in this section is similar to 

commercially available microprocessor products, although simplified in some details. The 

problem addressed is to test a system that defies all measures of testability. The section 

illustrates the transforming of the testing problem for a large untestable system into the 

generation of tests for three smaller testable systems. The three testable systems are a 

rom, a memory, and a combinational logic ALU. 

The test language code presented in this section to simplify the testing problem is about 

one page in length, illustrating the power of the language. To actually test the device it 

would be necessary to supply primitive tests for the various parts. The primitive tests are 

not included here for two reasons: (1) the methods for developing rorn, memory, and 

combinational logic tests are known, and are automatic, and (2) the size of the required 

primitive test code for a realistic system might be very large, say 1000 pages. 

The next two examples illustrate the hierarchical approach to test generation supported 

by the test language. An imaginary system is to be tested that is illustrated in figures 3-9 

and 3-10. It is assumed that tests can be devised for the low level parts, such as the ALU, 

register file, microcode ROM, etc. The first example concerns the testing of a data path unit 

constructed of primitive elements such as an ALU, register, memory, etc. The second 

example extends the testing to a complete state machine. 
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16 I sel I 
l!:!E. ---------/-------->lsel=l I 

rfout 

~ 
I 
I 
V 

I I 16 abus 

I MUX QI-----+--------/-------+ 
1 I I 

+--->lse1=0 I I 
I I I 
+--------+ I I 

I I 
~ I I 

I I I 
V V I 

+------------------+ I 
I en D I I 
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I Q I I 
+------------------+ I 

I I 
I 16 I 
+--/-+ I 
ace I I 

V V 

cond 
1' . 
I 

+-------------------+ QB. 
I 

+--------------------+ I 
I addr out I 
I I 

elk --->lclk register I 
I f i I e I 
I in I 
+-------------------+ 

1' 
I 

I A B I I 
I I I I 
+--->lop 

I 
ALU ++> 

I 
I Q I 
+--------------------+ 

I 
V 

+~------------------------------------> out 

Figure 3-9: A Model Data Path Unit 

3.5. 1 Testing the Data Pa.th Unit 

We will be provided with a series of primitive test vectors for the more complex parts. We 

will also be provided with the following list to test the ALU: 



FIFl>op< 1,abus<2,acc<3,out>4; 
FIFl)op<2, abus<3, acc<4, out>5; 
F!Fl> ... etc ... 

57 

These are combinational tests, and can be applied in any order. The tests for the register 

file will be of· the following type: 

Flfl}addr<1,out<5; 
FlFl}addr<2,out<6; 
FIFl)addr<1,rfout>5; 
FIFl>addr<2,rfout>6; 
FIFl> ... etc ... 

These are memory tests, and must be applied in the given order. 

The following test procedure will aid in performing the test of the ALU: 

FIFl>define procedure ALUTEST 
FiFl>var op,abus,acc,out; 
FIFI> sel<1,inp<acc,en<1 ;clk<1; 
FIFI> clk<0; 
FIFI> sel< 1,inp<abus,op{op,out>out;clk<1; 
FIFI> clk<0; 
FIFl>END 

This procedure invokes two clock cycles of the data path unit. On the first cycle the inp 

fines are loaded into the accumulator. On the second cycle the inp lines are routed to the 

abus inputs of the ALU. The ALU has as inputs the value previously loaded. into the 

accumulator, the value of the inp lines, and outputs its result to the out lines. 

The code entered to the test system would consist of the definition of ALUTEST, shown 

above, and the following: 

FIFI>( call ALUTEST 
FIFI> op< 1,abus<2,acc<3,out>4; 
FIFI> op<2,abus<3,acc<4,out>5; 
FIFI> ... etc ... ) 
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The following test procedures will aid in performing the register file tests: (Note: we 

require that the ALU have an input code that causes the outputs to be equal to the abus 

inputs. This input code will be called NOP.) 

FIFl>define procedure RF\NRITE 
FIFl>var reg,out; 
FIFI> seK1,op{NOP,reg<reg;clk<1; 
FIFI> clk(Oi; 

FIFl>define procedure RFREAD 
FIFl>var reg,rfout; 
FIFI> sel<O,op<NOP,reg<reg,out>rfout 

Two procedures are required, one to write into the register file, the other to read from it. 

The write procedure trans-fers the data to be written through the multiplexor and ALU to the 

data inputs of the register file. A clock cycle does the writing. The read procedure routes 

the output of the register file through the multiplexor and ALU to the outputs, where it can be 

analyzed. Reading does not require a clock. 

The procedures above and the code below are a register file test for the data path part: 

FIFl>(caU RFWRffE 
FIFI> reg<1,out<5; 
FIFI> reg<2,out<6;), 
FIFl>(call RFREAD 
FIFI> reg<1,rfout>5; 
FIFI> reg<2,rfout>6;), 
FIFI> •.. etc ... 

3.6 Testing a Microprogr2.mmed System with a Data Path 

Figure 3-1 O rnustrates a microcoded system containing a data path unit that could be the 

data path unit described in the previous section. This example will extend the primitive 

tests from the data path level to the system level. 
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8 
+--------------/---------+ 

V 
+-----------------------------+ 
I addr I 
I I 
I microcode I 
I I 
I out I 
+-----------------------------+ 

I 1 
I +---------/----+ 

addr inst /16 I I 
V V I 

+-----------------------------+ I 
tclk ---)-------->ltclk d d I I 
si -----)-------->lsi latch (srl) I I 
so -----}-------->lso q elk q I I 

+--------------t--------------+ I 
I I I I 

+--------------------+ I I I 
I I I 

elk-----------------------------+ /9 fen lcond 
I I I 
I I I 
I V I 

+------------------------¥------------------------+ 
I elk control I 

16 I I 16 
in -I-> I bus in data path bus out I -/-> 

I (with memory) I out 
I I 
+-------------------------------------------------+ 

Figure 3-10: A Model Digital System 

3.6.1 Data Path Part 

Let us first consider the data path part. We will assume that a set of primitive test 

vectors is available to test the data path part if it were not embedded. Assuming that the 

device contains two-input arithmetic elements, the tests could all be of a two-clock-period 

form. The first phase wouid load the first operand into the accumulator, and the second 

would perform arithmetic on the accumulator and a new input and transfer the result to the 
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output. Each test would consist of six numbers: the function code, inputs, and outputs for 

each of the two clock periods. A possible set of primitive tests is shown in figure 3-11. 

primitive 
test #1 

primitive 
test #2 

etc. 

(possibly 
thousands 
of tests) 

inp<1, fcn<2,addr<3; 
--clk<1; 

out>4,cond}5,inst>6; 
clk<O;--

inp<2, fcn<3,addr<4; 
~lk<1; --

out)5,cond}6, inst> 7; 
clk<O;--

inp<3, fcn<4,addr<5; 
--clk<1; 

out>6,cond>7 ,inst>S; 
clk<O;-- --

inp<4, fcn<5,addr<6; 
--clk<1; ---

out> 7 ,cond>S,inst>9; 
clk<O;-- --

Figure 3-11: Primitive Tests 

The difficulty in applying this test when the part is embedded is that the function code is 

not directly accessible. It is necessary to generate the effectively arbitrary sequence of 

function codes specified by the given primitive tests, without any extraneous intervening 

system clock c}rcles. 

A procedure can be devised 'tor this. The function codes can be shifted serially into the 

state latch between each cycle of the system clock. The full procedure to apply one 

primitive test \Mould be: 

1. clock the test clock a number of times while shifting the function code into 
the state latch, 

2. apply the input values, 

3. cycle the system clock, and 

4. analyze the outputs. 
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3.6.2 Microcode Part 

The primitive tests for the microcode consist of a series of addresses and the 

corresponding contents of the microcode location. Testing consists of a series of cycles 

that load an address into the state latch, cycle the system clock, and then shift the output 

of the microcode from the state latch. Shifting in the next address can be performed when 

shifting out the output of the microcode, thus halving test time. 

3.6.3 State Latch Part 

The state latch will be automatically tested by this process. Any defective shift element 

in the state latch \"✓ ill change the shift in and shift out sequences and will probably be 

detected on the first use of the state latch as a shift register. The only other problem that 

can occur in the state latch is for a parallel input or output to be defective. This will, 

however, appear as a fault in the inputs or outputs of the microcode or data path. 

The first step is to develop a procedure that will access the ports of the data path that 

are not available externally: 

FIFl>procedure access 
FIFl>var inp,out,cc,addr,inst; 
FIFl>var reg,sel,en,op; 
FIFl>((loop i 1 N 
FIFI> si<((addr<<9) + (reg<<S) + (sel<<4) + 
FIFI> (en<<3) + op)[i]; 
FIFI> tclk<1 ;tclk{O ) + 
FIFI> inp<inpJ, clk<"i; 
FIFI> clk<O; 
FIFI>( out>out + (loop i 1 N 
FIFI> so>((inst<<1) + cc)[i]; 
FIFI> tclk<1; 
FIFI> tcfk<O)), clk<1; 
FIFI> clk<O; 

The following procedures, ALUTEST, RFWRITE, and RFREAD, will produce a set of stimuli to 

be applied to the inputs of the data path part. We have already described a procedure, 



62 

access, that will apply stimulus to the data path part from the inputs of the system. we 

must direct the test system to use procedure access by placing cails to access in the 

procedures ALUTEST, RFWRITE, and RFREAD. These procedures must be edited as follows: 

FIFl)define procedure ALUTEST 
FlFl>var op,abus,acc,out; 
FIFI> ( call access 
FIFI> sel<1,inp<acc,en<1 ;), 
FIFI> (call access 
FIFI> sel<1,inp{abus,op{op,out>out;) 
FIFl>END 

FIFl>define procedure RFWRITE 
FIFl>var reg,out; 
FIFI> (can access 
FIFI> sel<1,op<NOP,reg(reg;) 
FIFl>END 

FIFl>define procedure RFREAD 
FIFl>var reg,rfout; 
FIFI> ( caU access 
FIFI> sel<0,op(NOP,reg<regiout>rfout;) 
FIFl>END 
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4. Testing of Sequential Systems 

The test language incorporates a certain model of testing in which the abstraction of the 

design hierarchy may be represented in the procedural abstraction of the test language. In 

this chapter this model of testing is formalized and analyzed. 

The formalization of the model has some of the characteristics of a design-for-testability 

strategy. The reader should be warned, however that the subject of this discussion is more 

abstract than conventional design-for-testability strategies. The formalization o-f the testing 

model provides a manner of describing a wide range of design-for-testability strategies, 

including most existing ones. At no point, however, is a particular implementation discussed. 

The notation for the testing model is exactly the test language developed earlier. The 

significance of this point is that the formalization is not only a useful notational tool for 

discussing testability strategies, but is also an executable language. 

4.1 Previous Approaches to Sequential Testing 

The problem of generating tests for complex systems has two parts: specifying the test 

that is to be applied to the transistors and wires of the parts of the system, and determining 

a method of applying these tests from the access points of the system. In the jargon of the 

testing literature, the former is related to a fault model and the latter to the combination of 

the actions of controllability and observability. This section will review different techniques 

and the tradeoffs involved. 

The testing problem has its origins ultimately at the transistor and wire level. At the 

transistor and wire level a fault model is adopted and a set of primitive tests is developed to 
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detect these faults. These faults will be simple, limited to defective transistors or wires 1 o. 

A set of primitive tests can be developed from the set of faults: such a test might consist of 

verify that wire A and wire B are not shorted. The meaning of these tests to the system is 

also obvious: in this example the required test is drive A and B to opposite states and verify 

that they are indeed sensed in opposite states. The difficulty in test generation is to cause 

the test stimuli to be applied to the appropriate parts, and for the result of the test to be 

observed from the access points of the system. 

4.1.1 Conventional Testing of Combinational Networks 

The problem of accessibility has received a great deal of attention for simple devices. In 

combinational networks, where any internal point can be controlled and observed in one 

operation, the problem has largely been solved [Bouricius 71 ]. Test generation techniques 

for combinational networks will be briefly summarized: 

The progress of the test generation is represented by a complete list of the possible 

faults and an indication of whether each has been tested. When a primitive test is proposed 

it is simulated and all faults that are detected by that test are flagged as being tested. This 

method exploits the ability of a single test to test a number of faults. 

Often a test will begin with a few completely random test vectors. The fault simulator will 

apply these test vectors to the network and record the faults that are actually tested. The 

Justification for using the random test vectors is that a very few test vectors will test a 

large fraction of the faults [Agrawal 75]. In a sense, the random test vectors test the 

'easy' faults. 

1 OThe industry standard is a stuck fault model, where faults consist of wires that exist at 
a fixed logical level independent of outputs driving them. 
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Tests for the remaining faults must be determined individually by tracing through the 

gate-level representation of the network. In general, a test for a single specific fault will 

not require use of all the inputs or outputs of the network, thus allowing one to combine the 

tests for several faults into one test vector. The result of these two steps can be a 

complete test set for a particular fault model. 

If a reasonable fault model is chosen the computational effort required to generate the 

tests is tolerable. Algorithms for stuck faults in combinational networks have been shown to 

be of polynomial complexity [Ibarra 75], but in practice are relatively efficient. 

It is assumed here that generation of tests for combinational logic is presently no more 

than a time consuming process for a computer. 

4.1.2 New Methods for Testing Sequential Devices 

Switching theory has studied means of generating tests for sequential systems. The 

results have been general and broad, but_ the necessary computational effort required to 

generate the tests can be extremely large [Seitz 71 ], i.e. exponential with the size of the 

system, and in practice are hard to program. 

Each fault in a sequential system will alter the behavior of the system from the behavior 

of the desired machine, in effect creating a new machine. The problem of testing is 

equivalent to the problem of distinguishing between the desired machine and all of the new 

machines that could be created by a fault. 

Given the state diagrams for a correct and an altered machine a difference can be located 

and the presence of this differer.ce in a real device can be tested. The procedure for 

generating a test for a difference in the state diagram is to ( 1) put the machine into a known 

state (homing experiment), (2) operate the machine through a transition that may be 
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corrupted by a fault, and (3) determine whether or not the corruption occurred (distinguishing 

experiment). 

Several hard problems arise in the implementation of this method. First, the number of 

faults in a large system is large. Second, the size of the state diagram for a machine may be 

exponential in the number of bits of state in the machine. Third, the methods for generating 

distinguishing experiments may involve graph manipulations on the whole state diagram. As a 

result these techniques can be applied in general only to devices with less than about 1 oo 

gates. 

4.1.3 LSSD 

LSSD [Eichelberger 77] is an example of two phase testing where the accessibility is 

well defined and easy. LSSD augments the hardware of a chip by incorporating all the state 

variables into a parallel/serial shift register latch (SRL), where the serial mode is used only 

for testing. The remainder of the chip consists solely of combinational logic. In LSSD 

accessibility always consists of shifting the desired state serially in or out with a test clock. 

Accessibility is the same for all chips, even to the extent of providing identical pin Placement 

for the test functions. The task of gaining accessibility was done once years ago when the 

LSSD scheme was proposed and special testers were built. Defining test patterns for the 

combinational lo,gic in a system is the only additional work now in generating test for LSSD 

system. 

4.1.4 Testing Art 

Test pattern generation for devices designed without any special testability scheme are 

very intensive in the accessibility part and sparse in the combinational testing. 

Consider generating tests for the register memory of an 1802 microprocessor [Timoc 81 ]. 
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At the primitive level the test consists of writing marching patterns of ones and zeroes into 

the memory and verifying that they can be read back intact. The only way this test can be 

performed is by the processor executing instructions that transfer data between the data 

bus and the accumulator and between the accumulator and the registers of the processor. 

Each read or write of the memory consists of 24 clock periods, only one of which is used for 

the memory access. 

In addition, the 1802 microprocessor uses one of the registers as a program counter, and 

as the memory is tested, this register is incremented. This causes the generation of the test 

to become much more difficult! This example is derived from a project undertaken at JPL to 

develop a highly reliable set of vectors for the RCA 1802 microprocessor, described in 

[Timoc 81 ]. The budget for the project at JPL was around one million dollars, and this figure 

does not include post-engineering work done at RCA. The test set made at JPL achieved a 

mere 85% coverage of faults from a realistic model of circuit failures. Needless to say, 

RCA's investment in the design of the 1802 _was substantially less than the cost to generate 

the tests. 

4.1.5 Other Methods 

Other very different techniques have been proposed. One of the most promising is the 

self test methods best represemted by BILBO [Konemann 80]. In this type of self test, 

hardware is added to the design to generate pseudo random test vectors, apply them to the 

network, and perform data compression on the result. The technique has the advantage that 

there is no need to compute test vectors, but the disadvantage is that there is no way to 

control the test vectors. 

The theoretical analysis done on this subject indicates that under some circumstances 
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testability is assured. In [Savir 80] rules are discussed for making combinational networks 

which can be tested by applying an exhaustive set of test vectors and performing a simple 

data reduction on the output. This thesis does not address this type of testing. 

4.2 Structured Design and Design for Testabmty 

.In this section a design technique will be discussed that applies both to the design of 

integrated circuits and tests for those integrated circuits. The technique is called 

structured design and its application to the design of integrated circuits is well known 

[Mead 80], [Rowson 80]. The integration of testing into the structured design process, 

however, is new. 

4.2.1 The Value of Structured Design 

A structured organization in performing tasks is based on the divide-and-conquer strategy. 

Testing is a task where both organization and work are required. As the task becomes larger, 

the amount of work becomes larger proportionately, but in addition the organizational task 

becomes more complex. In very large designs, the organizational task may become dominant. 

It is therefore advantageous to have techniques wherein a larger problem may be divided 

into a number of smaller problems. If the smaller problems are of similar difficulty, and the 

amount of work required to partition the problem is reasonable, the method reduces the total 

effort. 

In testing based upon structured design, the strategy is to divide a large system into 

progressively smaller parts and test the parts. When the divisions are made it is necessary 

that the parts be proportionately easier to test and that it is possible to test the smaller 

parts when assembled in the composition. These activities correspond to generating 

primitive tests and generating access procedures. Testing can then proceed on each of the 
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parts of a ls..rger system in sequence, testing them one at a time. 

4.2.2 Structured Integrated Circuit Design 

The integrated circuit depicted in figure 4-1 is designed in a structured manner. The parts 

shown in figure 4-1 can be formally defined as follows: 

element 

part 

system 

external environment 
+---------------------------------------------------+ 

+-------+ 
lpa&t 0 I 
I P I 
+-------+ 

+-------+ 
I pa1 t 1 I 
I P I 
+-------+ 

+-------+ 
lpart B I 
le1 9mentl 
I P I 

system 

glue 

+-------+ 
+---------------------------------------------------+ 

Figure 4-1: A Hierarchical Design 

An element is a group of transistors and wires in a structure that is not 
considered to be a COll)POSition, i.e. a primitive. 

A part is either an element or a composition of other parts connected 
by glue. Usually the glue will simply be wires, but may be more 
complex. 

A system is a distinguished part in which all other parts are contained. 
The definition of system is relative to the context of the discussion. A 
system can be combined with other systems to create a larger system. 
If this occurs, the original systems are no longer distinguished and can 
be referred to only as parts. 

In figure 4-1 a system is illustrated consisting of three parts. Notationally, the different 

parts of a system will be identified with pre-st.!perscripts, such as Op, 1 P, and 8P. Two of 

the parts, named Op and 1 P, are compositions of parts themselves. The third pa.rt, named 8P, 

is explicitly identified as an element. 

In real systems more than one level of structure may be used. The highest level in a 

system is the system level, where a system is described as a composition of parts. Each 
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part may then be described as a composition of parts at a level one lower than the original 

part. After some number of levels have been traversed in this recursive manner, all of the 

parts will be elements. Usually, the level where all parts are elements is known as level o, 

and the other levels are level 1, 2, 3 •.• n. 

4.2.3 Testing Structured Desfgns with Access Procedures 

In testing a system composed of a number of parts, two testing tasks are required: (1) 

each of the parts must be tested, and (2) the composition of the parts must be verified (i.e. 

test the glue). If some of the parts are com~ositions, the testing task is applied recursively. 

Without loss of generality, it can be assumed that each system that is a composition has 

exactly one internal part. This transformation of a system is accomplished by assuming that 

all other parts in the composition become part of the glue. Complete testing of such a 

system is accomplished by independently testing each of the internal parts sequentially. 

Access procedures are used to test the parts of a system. An access procedure is a 

method by which a test for a part can be transformed into a test for that part when 

embedded in a system. Figure 4-2 illustrates the action of an access procedure. 

external environment 
+---------------------------------------------------+ 

externa 11 
------>I 
test I 

I 
I 
I 

+-------+ 
I I 
I I 
+-------+ 

internal +-------+ 
-------->I part 11 
test 1A I I 

+-------+ 

+-------+ 
I I 
I I 
+-------+ 

system 

glue 

+---------------------------------------------------+ 
Figure 4-2: A Hierarchical Design 

In figure 4-2 part 1 of the structured design is tested. The test that must be applied to 
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part 1 is known (or can be recursively determined) and is called the internal test. In order to 

test part 1 when it is embedded in a system it i_s necessary to apply test vectors, called the 

external test, to the system in such a way that the desired internal test is app[ied to the 

part. In general, the external test will not be the same as the internal test. 

When discussing an access procedure for a particular part of a system, all of the other 

parts are considered to be part of the glue. As illustrated in figure 4-2, Op and Bp are no 

longer distinguished as parts. 

4.2.4 A Fifter Model 

Figure 4-3 illustrates the testing problem as one of manipulating filters. A test called T2 

is applied from an external environment to a system S. The behavior of system S modifies T2 

into an internal test T1 by the transfer function H2. This internal test becomes the external 

test for a second level of composition. The second level modifies T1 into test TO. At the 

lowest level of the composition, an element is tested, called E. The test TO is applied to this 

part and should correspond to the required primitive test. 

+-------+ 
I H2 I 

T2 ->+ S 
I 

+- Tl 
I 

+-------+ 

T0 = Hl H2 T2 

+-------+ 
I Hl I 

->+ ap +-
I I 
+-------+ 

+-------+ 
I I 

T0 ->+ E I 
I e I ement I 
+-------+ 

Figure 4-3: Filter Representation of a Test 

The testing task for part E consists of two parts, (1) determining a primitive test TO for 

that part, and (2) determining the inverse of the transfer functions H2 and H1, and computing 

the test T2 that can be applied to the system directly. If part 2 of this task is too difficult, 

the designer can change the behavior of the system to simplify the inverse function or 
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reduce the size of the test. 

4.2.4.1 Controt~abmty and Observabmty in the FHter Model 

In figure 4-3 the flow is indicated as left-to-right. In a simple interpretation, the flow 

would be int$rpreted as signal flow. If the flow were only conventional signals, it would be 

possible only to pass control in a rightward manner, and it would be impossible to observe the 

response. 

Figure 4-4 illustrates the left-to-right flow of test vectors. If a testing device performs a 

force action on wire A, the buffer will apply a corresponding force operation to wire X. The 

force operation flow~ left-to-right in the direction of signal flow through a buffer. 

+---------------------------------------+ 
I 
I I\ +---------------+ 
I A I \ X 

---1-----1 +---------!--------+ 
I I / I I 
I I/ I 
I I \ / 
I I \ / 
I /I I 0 
I B 

---1-----+ 
I 
I 
I 

/ I Y I I 
1---------1--------+ 

\ I I 
\I +---------------+ 

+---------------------------------------+ 
Figure 4-4: Propagation of Force and Feel Operations 

Reca!I the definition of a feel operation: The outputs of the device under test are compared 

with the value part. If there is a difference a global error flag is set. If a testing device 

performs a feel operation on wire B, the buffer will cause a corresponding feel operation to 

be performed on wire Y. The feel operation flows left-to-right through the buffer in the 

reverse direction of signal flow. 
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4.2.5 Access Procedures as an Inverse Filter Function 

In figure 4-3, T2, T1, and TO are tests. The parts' in figure 4-3, S and ap, have filter 

transfer functions H2 and H1. The syntax of filter transfer functions is right-associative 

function application, as in electrical engineering. Unlike electrical filters, the filter transfer 

functions operate on tests, rather than real functions, and function application is not 

commutative. An access procedure is also a function, but the syntax of its application is 

different from that of a fitter transfer function. Let A be an access procedure with argument 

x. The application of A to x is written (call A x). 

Access procedures are, in a very general way, the inverse of the filter transfer function. 

In figure 4-3, let part ap have transfer function H1, an access procedure A, then TO is H1 

T1. It then follows that the result of applying the access procedure to T1 produces TO, i.e. 

TO is (call A T1 ). In the test language, this interpretation is subject to numerous abstractions 

and special cases, but is generally true. 

4.2.6 Definition of an Access Procedure 

An access procedure is defined as having two parts: an external and internal test. The 

external test is a description of a test that can be applied to the external ports of the part. 

The internal test is the behavior that results on the internal ports when the external test is 

applied. 

An access procedure, as defined above, represents one input and one corresponding 

output of the inverse filter function. To completely describe the inverse filter function of a 

part a set of access procedures would be used; there would be one access procedure for 

each distinct internal test (the number of access procedures would be billions or more). In 

using access procedures for testing, the inverse filter function is not completely specified. 
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The test designer will provide access procedures only for the particular internal behaviors 

that are required (usually resulting in one to three access procedures). 

Parameterization of the external and internal tests is allowed, and almost always done. 

Access procedures are allowed to have parameters that are typed values. These 

parameters can change any of the values in the test vectors of the external test or internal 

test, but cannot change the timing. Usually, however, all test vectors have identical timing 

but different values, making a single access procedure unexpectedly powerful. 

4.3 Using the Test language to Describe General Behavior 

The test language was developed as a language to describe the action of a tester upon a 

system. The necessary tools required to describe the behavior of a device are slightly 

different. The test language will be adapted to describe response. 

4.3.1 The Actions of a Part Upon a Port 

A port is an intangible interface between two parts. Each of the two parts connected to 

the port can perform an action upon the port. The following actions are sufficient to 

describe the behavior of digital devices: 

force 

feel 

The part forces the port to a specified value. 

The part senses the value on the port. The value is then available for 
further processing. 

undefined The part either ignores the port, or forces the port in a.n undefined 
manner. 

4.3.1.1 The Actions of a Tester 

The actions that a tester performs upon a part are consistent with the actions described 

above to the extent that they are defined. In particular: 

1. When a tester performs a feel operation on a port, the value sensed is 
compared with the expected value. If the comparison fails, a global error flag 
is set and the device is discarded. 
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2. When the tester is performing the undefined action on a port, it will take the 
course of action that requires least effort and is consistent with the 
description above. Usually this means if the tester were performing a feel 
operation, the tester ignores the port. If the tester were performing a force 
operation, the tester continues the force operation. 

3. The interrogate operation is a variation of the feel operation. 

4.3.2 The DuaHty of Actions Upon a Port 

Each of the two parts connected to a port perform one of the three actions described 

above at every instant in time. Furthermore, in a proper description of a properly formed part, 

only certain combinations of the actions will occur. Pairs of actions that may occur at the 

same time on a port are considered to match. The following three rules describe all matches: 

1 . A force action matches a feel action and the value parts are the same. This 
is the situation where one part has an output that drives a signal to an input 
in another part. 

2. A force action matches an undefined action and the value parts are irrelevant. 
This is the situation where a part with an output is driving a signal to another 
part that is not receiving the value. 

3. An undefined action matches an undefined action and the value parts are 
irrelevant. 

In some cases the matching requirements stated above cause the actions performed by 

the two parts connected to a port to be synchronized. For example; consider one part 

performing a feel operation with value O and then changing to a feel operation with value 1. 

If the description is correct, the other part must initially be performing a force operation with 

value O and must change to a force operation with value 1. For the matching rules to be 

valid, the two actions must occur at the same instant. Figure 4-5 illustrates this behavior. 

In some cases, however, synchronization between actions is not required. If one part has 

a port in an undefined state, the other part ce.n perform actions on the part without 

restriction. Figure 4-6 illustrates this. 
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One Part 
I 

+-------¥-------+ +-------¥-------+ sequence 
I a<0 1-----------1 a>0 
+-------+-------+ 

I 
+-------¥-------+ 
I clk<l I 
+-------+-------+ 

I 
+-------¥-------+ 
I clk<0 I 
+-------+-------+ 

I 

+-------+-------+ 
I 
I 
I 
I 
I 
I 
I 
I 
I 

+-------¥-------+ +-------¥-------+ 
I a<l 1-----------1 a>l 
+-------+-------+ 

I 
V 

+-------+-------+ 
I 
V 

Figure 4-5: Synchronization of Actions 

Other Part One Part 
I I 

I 
I 
V 

I +-------¥-------+ sequence 
I I a<NULL I I 
I +-------+---~---+ I 
I I V 

+-------¥-------+ I 
a<0 1-------------------X 

+-------+-------+ I 
I I 

+-------¥-------+ +-------V-------+ 
I clk<l 1-----------1 clk>l 
+-------+-------+ 

I 
I 
I 
I 
I 
V 

+-------+-------+ 
I 

+-------¥-------+ 
I a>0 I 
+-------+-------+ 

I 
V 

Figure 4-6: Non-Synchronization of Actions 

4.3.3 The Behavior of Groups of Ports 
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The behavior of actions on a group of ports is represented as a partial ordering of actions 

on the ports. (The reader will be familiar with most of the notation from knowledge of the 

test language. An additional operator is used, however, and the notation will therefore be 

summarized.) Actions, or groups of actions, are ordered by several operators, each with a 

precedence, as shown below. Lowest binding precedence is first, and highest last: 

II 

+ 

( ) 

4.3.4 Repetition 

Shuffle. The actions, or groups of actions, separated by the shuffle 
occur concurrently and are unsynchronized. 

Plus. The actions, or groups of actions, separated by the plus occur 
concurrently and are synchronized. 

Semicolon. The actions, or groups of actions, separated by a semicolon 
occur sequentially. 

Comma. The actions, or groups of actions, separated by a comma occur 
simultaneously. 

Parenthesis. Parenthesis can alter the normal binding order, and hence 
allow the construction of somewhat arbitrary sequence dependencies. 

The behavior of many devices is best represented as the cyclic repetition of a single 

characteristic behavior. In describing such repetition the notation * [ ] will be used. The 

description within the brackets is assumed to be repeated. 

4.3.5 Relationships Between Styles of System Descriptions 

A behavioral description conveys information about the operation of a part in the same 

way as a functional description or a direct observation of the operation of a part. These 

three manners of characterizing a part are points in a spectrum of styles of system 

descriptions. 

A functional description describes the operation of a system under all possible inputs and 

outputs. In general, a functional description will have conditional statements which allow the 

behavior to change in an arbitrary manner in response to different inputs and outputs. Timing 
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can be included in the functional description to model the behavior of the part under all 

inputs. 

The behavioral descriptions used here describe the outputs for only a small class of 

inputs. The descriptions have no conditional statements, and hence the timing (or sequence) 

behavior of the part must always be the same. Parameterization is allowed, however, 

allowing a single description to describe a number of different instances of behavior. A 

behavioral description, however, can be obtained from a functional description and some 

knowledge of the input by evaluating all the conditionals. The behavioral description 

describes the sequential depend9ncies of actions, and could (not presently implemented) 

describe some timing dependencies (such as propagation delay). The behavioral description 

does not generally constrain the timin"g dependencies of the environment. 

Observations of the operation of real systems describe the outputs of a system for 

exactly one instance of input. All timing behavior is described. An observation of an 

operating system gives no information of the algorithms performed internally to translate 

input to output. Timing relationships determined by the device and those determined by the 

environment are not distinguishable. 

The reason the behavioral descriptions were defined in the particular manner that they 

were for testing is that the other representations have undesirable properties. Functional 

descriptions, while containing all the necessary information for testing, have a great deal of 

additional information making them unstructured and difficult to manipulate. Functional 

descriptions may also be inefficient to execute, an important concern for testing that must 

occur at high rates. 

Observations of the operation of a part do not allow any abstraction of the behavior of a 
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device. A test specifying the actual operation of the tester would be just a matrix of ones 

and zeroes to be applied and sensed at particular times. 

The behavioral descriptions give a somewhat general description of a part without 

incurring the difficulties of a full functional description. The methods of parameterization of a 

behavioral description are efficie_nt and satisfy most of the requirements for testing. 

4.3.6 Examples of Behavioral Descriptions 

Two simple examples will be presented to clar;fy the concept of the behavioral 

description. 

4.3.6.1 A Four Bit Adder 

A behavioral description of a 4 bit binary adder is shown below: 

*[ 
a>x1 , b}x2; 
c<(x1 +x2)&15 ; 
a<NULL , b(f\JULL , c<NULL ; 
] 

* [ ] is infinite repeat 

add inputs mod 24 

inputs and outputs become 
undefined at the same 
time 

In the first step the adder receives the two values from its environment to be added, x1 

and x2. The inputs may contain spurious transitions because the input ports are in an 

undefined state before the feel. The feel operator will be satisfied only after the inputs 

have stabilized. Following the stabilization of the inputs, the outputs will change to the sum 

of the inputs. The notation accounts for hazards that may occur at the outputs because the 

outputs are in an undefined state before the force. After the inputs and outputs have been 

valid for some time, one of the inputs may start to change to a new value. 

The third step states that three events occur at the same instant: 1) and 2) the inputs 

become undefined and hence are allowed to change, and 3) the output becomes undefined 

and the adder may change its value. The first step placed the inputs in a feel condition, and 
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these inputs are not allowed to change until another step (such as the third step) occurs to 

release them from the feel condition. Therefore, step three must occur before either input 

changes. The third step therefore states that the output becomes invalid at the instant that 

either input starts to change. 

4.3.6.2 A D-type Flip Flop 

A behavioral description of a D-type flip flop is shown below: 

*[ 
d)x1; 
clk>1; 
( clk)O II q<x1 II d<NULL ); 
] 

* [ ] is infinite repeat 
input becomes defined 
input sampled 
output changes inputs 

become undefined 

The first step of the description consists of the d input being sensed. In the second step 

the cloclc is asserted. Spurious transitions are allowed on the d input because the input was 

in an undefined state previous to the operation. Spurious transitions are not allowed on the 

clock because the clock was in a defined O state previous to the feel. The second step 

consists of three asynchronous operations separated by the II operator. The operations 

consist of the clock being returned to zero, the q output changing to the sampled input value, 

and the d input becoming invalid. These three operations are concurrent because they may 

occur in any order separated by arbitrary amounts of time. 

4.4 Deriving Access Procedures from Behavioral Descriptions 

The access procedure for a part in a system is a direct consequence of the behavioral 

description of the system. In using a system to apply a test to a part, the ports a.re divided 

into two groups. Some of the ports are the external access points of the system, either 

being physical conductors accessible to the tester or internal nodes accessfole through 

other access procedures. The other ports are called rnternal ports, and are the external 

ports of the part. 
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On the first group of ports the tester is performing action on the system, whereas the 

behavioral description describes the action performed on the tester. If the sense of the 

actions on these ports is reversed, the result is the actions the tester must perform to 

invoke the behavior on that set of ports. On the second group of ports, the behavioral 

description describes the actions performed on the part connected to those ports. 

The complete definition of an access procedure consists of two parts: 

1 . An external test. 

2. An internal test. 

Both the external test and internal test are behavioral descriptions of a sequence of 

actions on ports. The external test is actually not a test, it is a test with the sense of all 

the actions reversed. 

Some examples of behavioral descriptions and their transformation into access procedures 

are shown below: 

4.4.1 Accessibmty Through Flip Flops 

Consider testing a device consisting of the parts shown in figure 4-7. 

+------------+ +-----------+ 
Al ID f I i p f I ops I A2 I in terna I I 

------>+ dl ql +------>+ a device I 
Bl I I B2 I I 

------>+ d2 q2 +------>+ b I 
Cl I I C2 I I 

<------+ q3 d3 +<------+ c I 
I I I 

elk 
+-----'!'------+ 

I 
-------------+ 

+-----------+ 

Figure 4-7: System Consisting of Fiip Flops and an Internal Part 

The functional behavior of the flip flop section is as follows: 
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*[ * [ ]is infinite repeat 
A1>a, B1>b, C2>c; 
clk>1 ; 
(A2<a; II B2<b; II C1 <c; II 
A 1 <fJULL; II B 1 <NULL; II C2<NULL; II clk>O; ) 
] 

The internal and external ports can be separated with the following results: 

*[ 
A1)a, B1>b; 
clk)1 ; 
(C1 <c II clk>O) ; 
] 

*[ 
C2>c; 
A2<a, B2<b; 
] 

external ports 

no need for a1 <NULL, etc. 

internal ports 

The separated port notation above formalizes the structure and results of the access 

procedure. The external test received by the ports is reversed in sense to specify an 

access procedure acceptable by the test language: 

FIFl}define procedure access 
FIFl>var a b c; 
FIFI> A1<a, B1<b, clk<1 
FIFI> C1 >c , cik<O ; 
FIFl>end 

Notice that the internal test indicates that a feel operation occurs and then later two 

force operations occur. If the part were, for example, an and gate, the primitive tests would 

specify that the force operations should occur first and the feel operations later. By 

applying the access procedure twice the internal test becomes feel-force-feel-force, 

containing the desired force-feel sequence. The desired behavior can be obtained by 

performing the access procedure twice, first for the force operations and later for the feel 

operation. The test language appropriately captures this characteristic of the system. 
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4.4.2 Accessibmty Through A Sc~n Path 

Consider testing the device illustrated in figure 4-8. 

lsclk I sin 
I V 

+----------+ I +--------+ 
I adder I +-->I I 

INP ------------>+ inp a I OUT I I ACC 
I out c +------->+ ACC +------+--------> 

+-->+ inp b I I I I 
I I I +-->I I I 
I +----------+ I +--------+ I 
I I I I 
+-------------------}--------)----------+ 

I I 
lclk V sout 

Figure 4-8: Shift Register Accessed System 

The functional behavior of the shift register is as follows: 

var ab c; 
*[ 
(loop i 0 3 

sin>b[i]; 
sclk> 1 ; sclk.>0 ;), 

lr\lP<a , ACC<b ; elk> 1 ; 
OUT>c , clk>0 ; 
ltJP<NULL , ACC<NULL , OUT<NULL ; 
(loop i 0 3 

] 

sout<c[f] ; sclk> 1 ; 
sclk}0 ;) 

* [ ] is infinite repeat 

The internal nodes and external ports can be separated with the following results: 



var ab c; 
"'[ 
(loop i 0 3 

sin>b[i] ; 
sclk> 1 ; sclk>O ;), 

INP>a ; elk> 1 
clk>O; 
INP<NULL; 
(loop i O 3 

] 

"[ 

sout<c[i] ; sclk>1 ; 
sclk.>O.;) 

- INP<a , ACC{b ; 
OUT>c; 
INP<tJULL , ACC<NULL , OUT<NULL ; 
] 
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external ports 

internal ports 

The external test received by the ports is reversed in sense to specify an access 

procedure acceptable by the test language: 

F[Fl)define procedure access 
FIFl>var a b c; 
FIFI> (loop i 0 3 
FIFI> sin<b[i] , 
FIFI> sclk<il ; sclk<O ;), . 
FIFI> INP<a , elk< 1 
FIFI> clk<O ; 
FIFI> (loop i O 3 
FIFI> sout>c[i] , sclk<1 
FIFI> sc~k<O ;) 
FIFl>end 

Notice that the test applied to the adder consists of alternating forces or feels and 

undefined states. In reality the desired test pattern is shifted serially through the 

accumulator, ca1Using inputs to the adder to change during this shifting. In the specification 

of the behavior, this shifting corresponds to undefined states. If the part were not an adder, 

but rather a sequential device the access procedure (and probably the system in general) 

would not be suitable. This suitability follows from the access procedure and the primitive 

tests, however. The access procedure is described as only capable of generating tests with 
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embedded undefined states, and the tests for a (combinational) adder are compatible. If the 

part were sequential, then the primitive tests would not include undefined states, indicating 

incompatibility. 

4.4.3 A Method for Generating Access Procedures 

The method used previously to generate access procedures can be formalized: 

1. A test sequence that can be applied externally is (manually) proposed for a 
system. 

2. The behavior of all the internal and external ports of the system in response 
to the test is computed and named the general description. 

3. The general description is divided into an internal test, consisting only of 
actions performed on internal ports, and an external test, consisting only of 
actions performed on external ports. 

4. The external test is transformed into a test language procedure by reversing 
the sense of all the force and feel operations. 

5. The complete description of the access procedure consists of the external 
test and internal test. The external test can be applied through a tester by 
reversing the sense of all its actions. 

4.4.4 Matching Access Procedures with Tests 

As described up to this point, the application of access procedures is an algebraic 

process. The variables for the access procedure are merged with the parts of the primitive 

tests and the result is suitable for testing. At this level access procedures are suitable for 

machine implementation. The test language does exactly this: the procedure calling 

conventions specify the arguments to be applied to the access procedures and when they 

are to be executed. 

In practical systems there may be a number of access procedures for each part of a 

structured composition. in such cases it may become necessary to carefully match the 

internal test of the access procedures with the primitive testing operations. In a more highly 

automated implementation it would be necessary for the machine to examine the internal test 
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part of the access procedures and match with the external test part specified for the 

primitive tests. This is no longer an algebraic task. 

The suitability of an access procedure for a particular primitive test can be determined by 

examining the internal test part of the access procedure and the primitive test. If a match 

exists between the internal test and the primitive test, the access procedure is suitable. 

Some machine methods are known for solving this part of the problem, i.e. pattern 

matching and theorem proving. In pattern matching, the internal test and the primitive tests 

would be treated as patterns. The machine would locate the access procedure that matched 

the primitive tests. In theorem proving, the access procedures would be theorems. The 

theorems allow the external test to be substituted for an instance of the internal test in a 

primitive test. The theorem prover would be directed to perform substitutions of access 

procedures until all inaccessible ports disappear. 

4.5 Controlled Expansh;m of Test Vectors 

In the previous discussion of access procedures the emphasis was on limiting the amount 

of test language specification required for a test. The total number of test vectors 

generated by such a specification was not discussed. An analysis is presented here to 

estimate the number of vectors. Methods will be demonstrated tha.t can limit the number of 

vectors to a reasonable value. 

4.5.1 Number of Test Vectors in a Test 

In this analysis it is assumed that all of the parts at each level of the system will have 

identical testing behavior. In reality systems will not have this property. If we let the 

properties of the canonical part that we are studying be representative of the average of 

the properties at each level, our analysis will be fairly accurate. Exceptions to this will be 
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pointed out as they occur. 

Consider a system with n levels, named Ho to Hn. Ho represents the elements, such as a 

memory or combinational logic. H
0 

represents the entire chip. There is a branching ratio, B, 

that represents the number of parts within each part at the next higher level. Assume 

fu~hermore that an access procedure is written for each of the Hj (except H0 ) and that 

these access procedures require some number of vectors, k, to be applied externally for 

each vector applied internally. Finally, each of the elements require T vectors to test. 

level branching ratio total parts expansion at total vectors 
this level per HO element 

n B 1 k k"T 
n-1 B B k kn-1T 

. 
2 B 8n-2 k ic2 T 
1 B sn-1 k kT 
0 none s" none T 

4.5.2 Asymptotic Dependence of Test Size on Number of Cells 

An asymptotic dependence of the number of test vectors upon the total number of 

elements can now be computed. Let S represent the total number of elements, S=Bn, and V 

represent the total number of vectors. The total number of test vectors required to apply 

one step to level O is kn. The number of primitive tests required to test each element at 

level H0 is T, hence the number of test vectors required to test each H0 element is Tk0
• The 

total number of Ho elements is Bn, hence the number of test vectors required to test the 

chip is V=BnTk". Performing algebra: 

V = BnTkn 
V = STkn 
V = TSx where 
x = 1 + log k/log B 
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x is the exponent of the polynomial dependence of the number of test vectors upon the 

number of elements in the system. In a typical system, designed without a priori knowledge 

of the results of this analysis, values can be estimated for k and B. Assume that each 

access procedure requires 1 00 external steps for each internal step, or k= 1 00. The 

branching ratio will be 10, or 8=10. Hence cubic dependence of test vectors upon number of 

elements: 

x = 1 + log 100/log 10 = 3 
v = rs3 

4.5.3 Improvements on Asymptotic Behavior 

Third power dependence on S is intermediate in the spectrum of known test vector 

behaviors: LSSD exhibits O(N) behavior, this exhibits O(N3 ), general switching theory 

exhibits O(eN). In practice, a discipline can be adopted which reduces the N3 behavior. 

Three possibilities exist: ( 1) the effective test step increase factor, k, is less, (2) the 

branching ratio, B, is larger, and (3) the relationship between S, the number of elements, and 

N, the complexity of the chip is different. 

4.5.3.1 Reducing the Length of Access Procedures 

The number of test steps in the access procedure is a very soft figure; the designer can 

• 
reduce this· number by proper selection of a design discipline. Cleverness in reducing the 

number of test steps by careful test language coding in an access procedure pays off by 

asymptotically reducing the size of the test (remember the exponent was x=1 +log k/log B). 

A technique to reduce the number of vectors in an access procedure exploits state in the 

glue of a system. Consider, for example the system shown in figure 4-9. Figure 4-9 

illustrates a bus organized system where there are four parts connected to the bus. One of 
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-----------+ 
I 

+------+------+ 
----> latch I 

+------+------+ 
I 

+------+------+ 
I select 
I 0 1 2 3 
+-+--+--+--+--+ 

I I I I 
+-----------------+ I I +--------------------+ 
I +----+ +-------+ I 
I I I I 

+---+---+ +---+---+ +---+---+ +---+---+ 
I part 01 I part 11 I part 21 I part 31 
+---+---+ +---+---+ +---+---+ +---+---+ 

t t 1' t 
I I I I 
V V V V 

BUS-------+---------------+---------------+---------------+------

Figure 4-9: Composition Cell with No Test Vector Expansion 

the four parts is connected to the bus as determined by the output of the selector. The 

testing strategy for such a system is to select the appropriate bus part once and then test 

the part directly. The effect on the number of test vectors is that the exponent on k is 

reduced to unity. In the typical analysis, where k=100, the number of test vectors is 

reduced by nearly a factor of 100. 

4.5.3.2 Changing the Branching Factor 

If a special access procedure is written for two (or more) levels of the hierarchy, 

improvements may be possible. By composing several related levels of hierarchy into one, 

the number of levels is reduced and the effective branching ratio increases. 

As an example of testing through two levels of hierarchy, consider the system shown in 

figures 3-9 and 3-1 0. In these examples, two levels of access procedures were written, 

one to apply general tests to the data path unit, and one to test the parts of the data path 
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unit. The access procedure for the data path unit was general; it allowed complete 

read/write access of the data path and the microcode memory above. If a special single 

access procedure for the individual parts of the data path were made, it would not need to 

generate as many vectors. In this case, the simplification is that the tests of the data path 

require only that a function code be written into the pipeline latch; it is not necessary to 

read from the latch. By eliminating the reading or the scan path, the test is nearly cut in half. 

4.5.3.3 Size of Primitive Celis 

The straightforward analysis of the dependence of test vectors upon size was based 

upon the assumption that the size of the elements is constant as the total size of the 

system scales. 

In practice, however, elements consist of such parts as memories and ALUs, which 

increase in size as the system becomes larger. Consider, for example, real (not single chip) 

computers. A certain small computer consists of a 16 bit CPU 11 and a memory that is 2 16 

words of 1 6 bits. As described the system has a single level hierarchy of two parts. The 

natural successor to such a computer might be a machine with a 32 bit CPU and a memory of 

2 24 words of 32 bits, with a special floating point unit. The larger system has a one level 

hierarchy with three parts. Notice, however, that the size of the component parts increased. 

If the size of the elements of a design were to expand without any increase in the number 

of parts in the system, the test time would only linearly expand. If the size of each part 

expanded from an average of t transistor to t 1 transistors, the number of vectors would be 

given by: 

11 We are assuming that the entire 16 bit CPU is a element. Generally it is constructed as 
a repetition of 1 6 single bit sections, but efficient testing will test all 16 sections 
simultaneously. 
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V = (t'/t) TSx 

In applying this example to the theoretical analysis it becomes evident that the 

assumption. all elements are of the same size is not quite correct. When the size of a design 

doubles, it appears that the number of new and different parts does not double, but the 

average size of the parts increases. In addition, the effect of this on the asymptotic 

behavior of the design will be to reduce the exponent. 

4.5.4 Actual Dependence of Test Size Upon Chip Size 

The original naive analysis of the scalability of the access procedure concept revealed 

that test time did not scale very well. The exponent of the asymptotic dependence was 

very design dependent, however. It was then shown there were systematic ways of 

violating each of the assumptions which could reduce the asymptotic growth in the number of 

test vectors. What is the result? Does growth drop from n3 to n 1 •5 or even n 1? 

The actual number of test vectors required for testing a given function will be part of a 

tradeoff. It was shown in section 4.5.3.1 that the number of extra test vectors can be 

reduced to a constant by adding extra hardware, but of course the extra hardware 

increases fabrication cost. In section 4.5.3.2 it was shown that extra effort by the test 

designer can reduce test size, but the cost of the test designer must be considered. 

Let us apply the results of this analysis to present testing practice. Similar results would 

make the analysis more credible. Consider a 16 bit microprocessor. Chips manufactured 

today generally have shallow hierarchies, microprocessors perhaps the most complex 

typically using one level. Using the typical figures given earlier, system the total increase in 

test vectors would be 1 00 for a one level. Each primitive test vector can test for up to 16 
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bits of information (i.e. the data bus is used in parallel), but will also be used often to test 

one bit. We will assume that each primitive test extracts 5 bits of information from the 

design. If we assume that testing such a chip requires 50,000 bits of information (i.e. 

several bits for each transistor) the total number of test vectors is 12 106 . At a test 

application rate of 1 MHz this corresponds to a test time of 1 second. This is close to real 

statistics for microprocessor testing. 

In large systems with many levels of hierarchy it is expected that the lower level parts 

will be designed for efficiency and the higher level parts would be designed for easy test 

access. In the lower level parts often repeated the extra hardware required to reduce the 

complexity of the access procedure would be reproduced many times. At the higher levels, 

the extra hardware can be amortized over a great deal of hardware. It will probably never be 

necessary to optimize all the levels of the design. Even for the very largest chips the 

number of transistors is small compared to the number of t~st vectors that can reasonably 

be applied during testing, anc_f hence a factor of k in the range of 1 00 will be tolerable. 

4.6 A Perspective on Structured Compositions 

There are basically three classes of design-for-testability strategies available now. 

These are classified here in terms of their behavior when parts are composed into larger 

parts or sys.terns. 

- The most primitive is the conventional design discipline where no special 
attention is given to testability. Systems are combined without any concern for 
the testability characteristics of the result. This type design is called 
composition. An example of this type of design is the composition of a latch 
and a rom to make a state machine. 

- A refinement of this type of design is when designs are composed in a manner 

1 2 so,ooo bits of information/5 bits per test = 10,000 tests. Each primitive test requires 
100 test vectors, for a total of 106 vectors. 
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that guarantees access to all the internal state of the composition. Scan path 
testability methods utilize this technique. Usually the state variables in each 
part are chained into a parallel/serial shift register where the serial mode is 
used only for testing. When parts are composed, the shift registers are 
concatenated. The result allows access to all the internal state by shifting the 
internal state in and out through a single shift register chain. This type of 
composition is called concatenat.ion because testing is done by concatenating 
the tests for all the parts of a system. 

- A refinement of design by concatenation is recursive design, the testing of 
which is proposed here. In recursive, or structured design parts are composed 
but considerable independence is retained. The relevant aspect of this to 
testing is that access can be obtained to any part without effecting the other 
parts. An example of this type of design is the combination of a processor and 
memory into a computer. 

4.S.1 Oescgn by Composition 

Switching theory indicates that the difficulty in devising tests for general networks may 

be exponential in the number of gates. It therefore follows that the number of vectors 

required to test a composition of two general systems is bounded only by the product of the 

number of vectors required to test each separately. 

As a general tool for building large systems, general composition is unreasonable. Direct 

composition is the normal tool for generating elements of a system because it allows the 

most compact design. If the elements are small the exponential behavior is not dominant. 

4.6.2 Composition by Concatenation 

Testability by concatenation is the basis for scan path testability techniques. The 

technique for testing is to make an access procedure that can access all of the internal 

state of the part at once. In the most common implementation, LSSD, all the internal state is 

contained in shift register latches (SRLs) and can be accessed by serially shifting the state 

through the device. In LSSD the shift register is one bit wide, but the scalabHity of testing 

does not depend upon this; the relevant characteristic is that all parts are tested 
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simultaneously. Figure 4-1 O illustrates a concatenated composition. 

--+ 
r 

+-----------+ 
I T0 vectors! 
I n0 bits I 
+-----------+ 

I 

max{T0 ,T1 ,T2,Tn) vectors 
n0+n1+n2+nn bits 

+-------+ 
internal I I test 
+-----· -----+ +-----------+ 
I T1 vectors! 
I n1 bi ts I 

I T2 vectors! 
I ~2 bits I 

+-----------+ +-----------+ 
I I 

external 
test 

+--> 
I 

+-----------+ 
I Tn vectors! 
I nn bits I 
+----------. + 

I 
+-------+ +-------+ 

Figure 4-10: Scan Path Testability 

In LSSD systems this type of concatenated composition is extremely good. LSSD systems 

are made of SRLs and combinational logic. Since the combinational logic is in a system with a 

fixed clock rate, the number of levels and the fan-in and fan-out are limited. These 

limitations have the property of making the test for any particular fault involve only a few of 

the state variables. By judicious combination of tests that involve independent sets of state 

variables the number of complete scans becomes quite small. It has been observed that the 

number of complete scans is about 300 regardless of the size of the system [IBM 80]. 

When a number of LSSD systems are composed, the effect is to make the scan path 

longer. The number of complete scans does not increase, however, beyond the maximum of 

any of the parts. Since test vectors are scanned in and out serialfy the time to perform one 

complete scan becomes proportional to the number of SRLs in the system. The number of 

test vectors for a sy3tem of n SRLs becomes 300n. 

Concatenated composition systems become less attractive when devices other than 

conventional combinational logic are used. Consider a concatenation of memory elements, 

roms, and conventional combinational logic, such as might be found in a real design. The 
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number of test vectors required for each of the parts is described below: 

Combinational Logic 300. 300 test vectors is an average number, independent of the size 
of the system, for conventional combinational logic. 

ROM Depth of the ROM. A ROM is tested by reading each of its entries and 
verifying the contents. 

Memory n log n, n the number of locations in the memory. A n log n vector test 
is the minimum required to verify that the decoding circuitry is 
functional. 

For a typical system with 1 024 words of memory, 20,480 test vectors are required 

( 10,240 for reading and 10,240 for writing) to test the memory. It would then be necessary 

to perform 20,480 complete scans to test the memory. Of these 20,480 vectors, 300 will 

also test the combinational logic. The total number of test vectors will then be 20,480n. 

The problem is that it is not possible to test the parts independently and, as a result, one 

difficult to test part makes everything else difficult to test. Analytically, in comparison to 

the recursive testing case, the maximum function is applied to the tests of the parts rather 

than weighted average. If all the parts are of similar testing complexity, the two systems 

will be similar. If one part is much more complex to test than the others, the concatenation 

testing strategy is poor. 

4 .. 6.3 Design by Recursion 

In a recursively designed system each part can be tested independently of the others. 

Consider a system consisting of n parts, numbered j = 0, 1, 2 ... n-1, each requiring a test Tj 

vectors in length and each test vector being n j bits wide. This structure is illustrated in 

figure 4-11 . 

In testing such a design with access procedures, the total number of vectors will be: 
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+-------------+-------------+ 
1 k(Te+T1+T2+Tn) vectors I 
I max(n0 ,n1,n2 ,nn) bits I 
+-+-------+-------+-------+-+ 

f f f t 
I I i I 

+-----------+ I I +-----------+ 
I +---+ +---+ I 
I I internal I I 
V V tests V V 

+-----------+ +-----------+ +-----------+ +-----------+ 
I T0 vectors! I T1 vectors! I T2 vectors! I Tn vectors! 
I n0 bi ts I I n1 bi ts I I n2 bi ts I I nn bi ts I 
+-----------+ +-----------+ +-----------+ +-----------+ 

Figure 4-11: Recursive Test Composition 

It was demonstrated earlier that the factors k are controllable, and if testing were to 

become a problem, could be made unity. If this is done, the test size for a system then 

becomes the sum of the test sizes for the elements. 

A spectrum of testing difficulty becomes apparent, however. Unconstrained compositions 

require the most vectors to test, i.e. the number of vectors required to test a system is the 

product of the numbers of vectors required to test its parts. If accessibility is guaranteed 

by a concatenated access sequence, the number of vectors is related to the maximum of the 

number of vectors in any part times the number of parts. If independence is assured, the 

number of vectors is the sum of the vectors in the parts. 

4.6.4 A Numerical Comparison of Testing Strategies 

The scalabirity of design by composition, concatenation, and recursion will be 

demonstrated in this section. The ideal scalability of a system is that the amount of test 

time increases linearly with size. Linear scaling corresponds to a constant amount of test 
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time for each part, regardless of whether the part is buried in a system. The figure-of-merit 

that will be developed here will be a representation of the amount of work required per part 

as a function of the size of the total number of parts. Linear scaling corresponds to a 

constant figure-of-merit. 

_The size of the testing task will be represented by two factors that scale with the size of 

the system: number of vectors and size of each vector. The difficulty of the task can be 

represented as the product of the number of vectors and the size of each vector. The 

distinction between the two factors is included to make the analysis of scan path systems 

easier. Tests of scan path systems are typically visualized as a relatively small number of 

tests of the entire scan path. The size of each scan scales, however, and must be included. 

Consider the composition of n parts. Each part, 1 P ... "P, requires T 1 ... T n test vectors and 

each test vector is L bits in length. Let T"' represent the average of the Tj. Assume for 

recursion that the n parts are in an m level hierarchy. 

attribute composition 

number of vectors 

size of each vector 

size of test 

test size per part exp n 

concatenation 

max(T 1 ,T 2 , ... T n) 

nl 

nl max(T 1,T 2 , ... T n) 

max(T 1,T 2 , ... T n)/T 
)I( 

recursion 

km(T 1 + T 2+ ••• T n) 

L 

Lkm(T 1 + T 2 + ... T n) 

km 

The entries under test size per part are factors indicating the scaling of the test size 

)I( 

normalized to the number of parts. Note that the factor max(t1 ,T 2 , ... T n)/T for scan path 

systems may be as small as unity if all the parts require the same number of primitive tests, 

Tf The scaling of hierarchically designed tests uses the factor km, which can also be made 

as small as unity by careful design. 
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General compositions have the practical advantage of being easy to design and efficient 

in operation. The upper bound on the number of test vectors required to test a general 

composition is extremely high. Scan path systems can have a linear limit. If the variance in 

the T's is small, the scalability of the total effort in testing a system will become linear. In 

practical cases, however, the variance in the T's is not small causing large factors to be 

introduced in the test size. Recursive test design scales linearly, but with a factor for test 

vector expansion. It was demonstrated that additional hardware could reduce the text 

vector expansion if necessary. 

4.6.5 Other HierarcMcal Compositions 

It is important to understand that scan path systems and hierarchical systems are not 

necessarily mutually exclusive. Historically, one of the most elegant testability strategies, 

LSSD, is both a scan path system and is not hierarchical. Varie.tions on the scan path 

concept are possible. Consider the scan path system in figure 4-12. 

select stn sout sclk 
I I t I 
I V I V 

I +-------+---+---+-------+ 
+-->+ switch I 

+-+-+-+---+-+-+---+-+-+-+ 
I 1' I I 1' I I 1' I 

+-------------+ I I I I I I I +-------------+ 
I +-----------+ I I I I I +~----------+ I 
I I +---------++-+I +-+ +---------+ I I 
V I V V I V V I V 

+---+---+---+---+ +---+---+---+---+ +---+---+---+---+ 
I sin sout sc I k I I sin sout sc I k I I sin sout sc I k I 
I part 1 I I part 2 I I part 3 I 
+---------------+ +---------------+ +---------------+ 

Figure 4-12: A Hierarchical Scan Path System 

The select input controls a switch that connects the scan path controls of one of the 

parts to the external scan path. If the parts can be constructed in the same manner the 
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system has recursive independence, as well as having a scan path. The resultant device 

would differ from a conventional scan path system in that a single part could be tested 

without disturbing the other parts. The number of test steps required to test a part is not 

increased by the hierarchy, except that the switches must be set properly. The scalability 

of the test length is reduced to linear. 

Another example of a hierarchical system with a scan path is shown in figures 3-9 and 

3-10. In these examples, the scan path is used only for the access of the microcode 

address latch. Scaling of these systems would be accomplished by mal~:ing the data path 

more complex, while the microcode word would increase in size very slowly. These examples 

do, however, illustrate the disadvantage of using a single bit serial scan path. Each test of a 

microcode word requires 25 clock cycles; 8 to clock in the address and 1 7 to unload the 

microcode data. 

Pipelined systems are another example of design by concatenation. In order to access 

any part of a pipeline it is necessary the shift the test, or the response, through the entire 

pipeline. It is assumed that such systems have the ability to pass a test through the 

pipeline without significant alteration. Without this ability, test[:ig becomes more difficult. A 

pipelined digital filter is shown in figure 4-13. 

Accessibility of the pipeline in figure 4-13 is straightforward: test patterns are loaded 

into and unloaded from the pipeline by shifting them while applying the values of zero for a1 

and a2. Although the data path may be 1 2 or i 6 bits wide, the system must be tested as a 

concatenation because all le..tches must be loaded to do any testing. 
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clock 
--------------------+------------------------+------> 

I I 
+-------+ +---v---+ +-------+ +---v---+ 
I I I I I I I I 

--->+ add +-->+latch+--->+ add +-->+latch+--> 
I I I I I I I I 
+---+---+ +---+---+ 

t I 
I V 

I +---+---+ 
I I I 
+-------+ mul I 

I I 
+---+---+ 

t 
I 
al 

+---+---+ +---+---+ 
t I 
I V 

I +---+---+ 
I I I 
+-------+ mul I 

I I 
+---+---+ 

t 
I 
a2 

Figure 4-13: A Digital Filter 

4.6.6 Serial and ParaHel Testing 

An objection to testability strategies utilizing a single external pin for loading and 

unloading tests is that the bandwidth available at the pins is not utilized. Scan path systems 

typically have two pins for the scan path; a serial input and a serial output. Such chips often 

have a 16 or 32 bit data path that is unused during the shifting of the scan path. 

In most cases the advantage of using a multiple pin bus for tests over a single serial scan 

path is to reduce the number of test vectors by the number of pins in the bus. Recall, 

however, that in the original analysis the number of test vectors required in a hierarchical 

test was related to the factor k, the number of steps in the access procedure. According to 

this analysis, the decrease in the length of the access procedure that would result from 

using a parallel data bus would change the asymptotic behavior of the testing system. In the 

hierarchical scan path system shown in figure 4-12 the penalty for using one pin instead of a 

bus is again limited to the bandwidth difference between one pin and a bus. 
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In conclusion, the advantage in using a bus to gain access to a device is limited to 

reducing the number of test vectors by the size of the bus. In some cases the resultant 

factor of 16 or 32 might be significant. In other cases the design may be simplified 

considerably by having only a one bit serial path, and the number of test vectors may be 

small enough either way. 

4.7 Conclusions 

The testability strategy developed in this chapter is a method that can be implemented by 

a human to design a chip and its test together in a balanced manner. The strategy has the 

advantage that the human effort applies to c!asses of designs, rather than individual chips. 

The method can be considered a testability strategy generator, rather than a test generator. 

An alternative application of the method is to develop a catalog of composition systems 

and to study and record their access procedures and properties. If chips are constructed 

using only the cataloged hierarchical designs, in proper compositions, then the resulting 

designs is guaranteed testable, and tests can be generated automatically. 

A designer could also customize the design of all the parts in his system. The testability 

formalism developed here would aid the designer in partitioning the design task, aid in 

documentation, and provide an efficient manner of testing the system. 

If a system is not testable, or if the test designer does not know an efficient manner of 

testing a system, these methods will not help. The method described here merely provides a 

manner of formally describing the testability attributes of a design. The designer must 

understand the testability attributes before they can be formalized. 
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5. The FfFI Test System: A Reality Test 

The notation developed in the previous chapters is implemented in a test system. This 

chapter describes a few details about the test system and then illustrates its operation with 

examples. 

The purpose of this chapter is not to be a complete user's manual for the test system. 

Commands and examples are developed only to give the reader an idea of the context in 

which the test language is used. Readers interested in more details are referred to the real 

user's manual: [DeBenedictis 82]. 

5.1 Test System Commands 

The FIFI test system is an interactive system. The test system processes commands 

immediately when they are entered. Interactive commands may involve storing a sequence 

of commands to be executed automatically at a later time, or taking commands from a file. 

Figure 5-1 illustrates the test system operation. In illustrations of interactive use all 

computer typeout is in boldface. Descriptive information is in an italic type face. User input 

is underlined. Nian-underlined text is output by the test system as a prompt or the output of 

a command. Refer to appendix A.1 for details of the syntax. 

In figure 5-1 the user is exercising the set command. 

FIFl>set trace 
trace mode 
FIFl>set timing 
timing diagram mode 
FIFl>set z80 
z80 tester modle 
FIFl>s t 
trace mode 

traces test steps 

generate timing 
diagram 

uses Z80 tester 

set trace abbreviated 

Figure 5-1: Illustration of Interactive Use of the Test System 
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5.1.1 Loading Test Programs: Define Command 

Test programs are loaded into the test system with the define command. The test system 

maintains lists of the definable entities: procedures and ports. When a procedure or port 

definition is processed, the input is checked for syntax only, semantic checking is done later. 

Figure 5-2 illustrates a define command. 

FIFl>define port elk 1; 
FIFl>define procedure frog 
FIFI> (loop i 1 100 elk< 1; 

new port named elk 
def !nitions 

may be more than 
one line in length 

procedure frog 
FIFI> clk<O;) 
FIFl>end 
FIFI>--

Figure 5-2: Examples of the Define Command 

5.1.2 Executing Test Programs: Execute and Immediate Commands 

The effect of executing a test program depends upon the mode. Each different kind of 

tester will require different input from the test language system and may only implement 

some of the features of the test language. There are also some modes that do not actually 

operate on a device. The modes and their effects are described below: 

trace mode In trace mode the port operations are printed when they are executed. 

timing diagram mode In timing diagram mode the execution is assembled into its rectangular 
matrix representation. When the command is finished, the rectangular 
matrix is printed. 

z80 tester mode In z80 tester mode commands are generated to drive the 280 tester. 
It is assumed that the user is at a tester console and a chip is 
connected to the tester. 

The command to invoke a main test program is execute. The execute command takes one 

argument that is the name of a defined procedure 13. 

13There is no distinction between a testing procedure and a main test program. A .main 
test program is written as a test procedure, but it is never called by any other procedure. 
The user will invoke the main test program by its name. The test language is Hke the C 
programming !anguage in this respect: a main program in C is a procedure with name 'main'. 
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The immediate command interprets, compiles, and executes a one line test language 

command. The immediate command is used for interactive debugging of test programs. 

Figure 5-3 shows an example of the execution commands. Refer to appendix A.1 for the 

syntax cf the execution commands. 

FIFl>set timing 
timing diagram mode 
FIFl}define port elk 1; 
FIFl>define procedure frog 
FIFI> (loop i 1 2 elk< 1 ; 

timing diagram 

new port named elk 
definitions 

may be more than 
one line in length 

procedure frog 
wiggles elk 2 cycles 

FIFI> clk<O;) 
FiFi>end 
F(Fl>eiecute frog 
elk 

+-------+ 
1<1 I 
1<0 I 
1<1 I 
1<0 I 
+-------+ 

timing diagram 

FIFl>immediate (loop i 1 4 clk<i[O]); does same thing 
elk 

+-------+ 
1<0 I 
1<1 I timing diagram 
1<0 I 
1<1 I 
+-------+ 
FIFI> 

Figure 5-3: Example of Execution Commands 

5. 1 .3 Miscel!aneous Commands 

A few other commands exist and are described below: 

read 

print port 

print procedure 

The read command takes input from a file rather than the terminal. 
When the file is complete control returns to the terminal. 

If the name of a port is provided then the definition of the port is 
printed, otherwise a listing of all defined ports is printed. 

If the name of a procedure is provided then the definition of the 
procedure is printed, otherwise a listing of all defined procedure is 
printed. 
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quit Test system exits. 

Figure 5-4 illustrates the commands described above by showing a terminal session. 

@type testfile 
define port a 1 2 3; 
define port b 4 5 6; 
define port c 7 8 9; 
define procedure x a<1,b}2;c<3; end 
@fifi 
FIFi>read 11testfile11 

FfFl>print port 
Ports: 
C 

b 
a 
FIFl>print port a 
port a 1 2 3; 
FIFl}p pr x 
procedure x 
a<1,b}2; 

c<3; 
end 

FIFl>quit 

will be read later 

test program started 
filename in quotes 
list of ports printed 

port a printed 

print proc. x abbr. 

exit to monitor 

Figure 5-4: Illustration of Miscellaneous Commands 

5.2 Some Examples of the Test language 

This section demonstrates examples and gives explanation of the test language. The 

purpose is to illustrate some of the abilities of the language, and demonstrate some tricks 

that may not be obvious initially. 

5.2.1 TesUng the Adder in a Z80 Microprocessor 

How to test an adder if the inputs to the adder are directly available is well known, see 

section 1.1. It is much more difficult to test an adder if it is embedded inside a complex or 

irregular device. One purpose of this demonstration is to show how the parts of the 280 
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microprocessor that surround the adder can be stripped away. This will allow exercising the 

adder as though it were directly accessible. 

This demonstration also illustrates some of the abstractive nature of the test language. 

In an abstract interpretation the 280 processor has three basic cycles; instruction fetch, 

read, and write. The instruction fetch has a different number of clock periods and different 

timing from the read and write. The read and write are identical, however, except for the 

direction of data flow during the cycle. 

In this demonstration, the similarities of the read and write cycles are abstracted. There 

is a single cycle, called a mcycle, that can perform either a read or write cycle depending 

upon the type of the argument provided. 

First the definitions of the pins. Only those pins relevant to the demonstration are 

required. The first two pins, power and gnd, are not used by the test system, but instead 

are present to remind the technician setting up the test fixture of manual connections that 

must be made. (Also, these commands could be properly interpreted by a more sophisticated 

tester.) 

FIFl}define port power 11 ; 
FlFl}define port gnd 29; 
FIFl}define port addr 5 4 3 2 1 40 39 38 37 36 35 34 
FIFI> 33 32 31 30; 
FIFl}define port data 13 10 9 7 8 12 15 14; 
FiFl}define port elk 6; 
FIFl}define port reset 26; 

The following is a procedure to reset the processor. It takes a var null due to an 

oversight in the design of the language. In the language at present there is no way to 

invoke a procedure without passing at least one argument. 



FIFl)define procedure reset 
FIFI> var null; 
FIFI> reset<O; 
FIFI> (loop I 1 10 clk{1 ;clk<O;), reset<1; 
FIFI> (loop I 1 2 clk<1 ;clk<O;), cik{1; 
FiFl>end 
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The ifetch procedure performs an instruction fetch cycle for the microprocessor. The 

necessary parameter in an instruction fetch is the opcode that the machine will execute. 

This procedure accepts this opcode as the parameter named opcode. 

FIFl>define procedure ifetch 
FIFI> var opcode; 
FIFI> (loop I "i 4 clk<1 ;clk<O;) + 
FIFI> (step 1: data<opcode;) + 
FIFI> (step 1: m1 }0;) + 
FIFI> (step 5: m1 )1 ;) + 
FIFI> (step 6: m1 <~JULL;) + 
FIFI> (step 8: data<NULL;) 
FIFl>end 

step N skips N steps 
apply opcode 
m 1 should be low 
m1 goes high 
m1 goes low 
shut off data bus 

The mcycle procedure performs both the read and write cycles for the microprocessor. 

Although the read and write cycles generate different sequences of transitions on the mreq, 

rd, and wr lines, these signals are not necessary to exercise the internal parts of the 

processor. The direction of data transfer in this procedure is determined by the type of the 

argument ::!_:. The type of~ may be force, feel, or interrogate. 

FIFl)define procedure mcycle 
FIFI> var d; 
FIFI> (loop I 1 3 clk<1 ;clk<O;) + 
FIFI> (step 5: data=d;) + 
FIFI> (step 6: data<NULL;) 
FlFl>end 

either read or write 
shut off data bus 

The following three procedures build rnacroinstructions upon the cycles ifetch and mcycle. 

The rnacroinstructions are to load the accumulator, store the accumulator, and add to the 

accumulator. Each of these instructions are two cycles. The first applies an opcode to the 

processor, and the second reads or writes data. 
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The last operation performed in ea.ch procedure is to change the elk pin to 1. This puts 

the processor into a static state. With the elk pin in the O condition, the internal ports of the 

processor are subject to dynamic discharge and would change after about 15 seconds at 

room temperature. This is undesirable in interactive use of the language wherein a 15 

second delay is not uncommon. 

F!Fl>define procedure load 
FIFI> var va!ue; 
FIFI> (can ifetch opcode<16r3e;), 
FIFI> (call mcycle d<value;), clk<1; 
FIFl>end 

FIFI >define procedure add 
FIFI> var vaiue; 
FIFI> (caU ifetch opcode{16rc6;), 
FIFI> (caH mcycie d<va!ue;),clk<1; 
FIFf>end 

FIFl>define procedure store 
FIFI> var valu:e; 
FIFI> (call ifetch opcode<16r02;), 
FIFI> (caU mcycle d=vatue;), elk< 1; 
FIFl>end 

Id a,nn instruction 

add a,nn instruction 

Id (bc),a instruction 

The following procedure is a top level test program that is invoked by the command 

execute entered interactively. The procedure will add two numbers, 23 and 1 and examine 

the result. Since the result is examined with a feel operation, the user will receive no 

response from the test instrument if the processor is working properly. Only if the value 24 

is not sensed on the outputs will any response occur. 

FIFl}define procedure tp 
FIFI> (call reset null<O;), 
FIFI> (caH add value< 1 ;), 
FIFl>end 

(call load value<23;), 
(call store vaiue>24;) 

Figure 5-5 is a log of a terminal session using the file just discussed. The session uses 

the tp procedure to load the accumulator with 24. The add and store procedures are then 

invoked manually. 
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Demonstration Run of the FIFI System 

@fifi 
FIFl> ... etc ... 
FIFl>execute tp 
FIFl>i (call store value!;) 
24 
FIFl>i (can add value<12;) 
FIFi>i (call store value!;) 
36 
FIFI> 

previous input 
executes but no print 

Figure 5-5: Output From a Sample Run of the FIFI System 

5.2.2 Testing Instruction Decoding in a 280 Microprocessor 

The instruction decoding logic in a 280 microprocessor is very irregular sequential logic 

designed without any testability in mind. In this example this logic is exercised in an attempt 

to locate possible problems. 

The strategy used in this example is to make the microprocessor execute each opcode 

and to verify that the time required is correct. If there were a problem in the instruction 

decoding or in the timing of memory or arithmetic cycles, this problem might cause an 

instruction to become longer or shorter by some number of clock cycles. 

This is an example of testing art. It is expected that this testing strategy will be good at 

locating a wide variety of problems, but there is no way of verifying this assertion. Because 

the testing does not make use of any special design features that enhance testability (there 

probably are none) the efficiency of the test is low. Since it is assumed that the instruction 

decoding logic is combinational logic with 8 input wires, it should be testable in 256 steps. 

This strategy requires one instruction execution, consisting of a number of steps, to test 

each of the 256 combinations. 
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The first step is to determine the number of clock cycles required for each instruction to 

execute. This information is available from the manufacturer. The execution time of 

conditional jump instructions and two opcode instructions are dependent upon more than just 

the opcode, and hence cannot be tested by this method. All other opcodes can be tested. 

An excerpt of this table is shown below: 

opcode 
00 
01 
02 
03 
04 
05 
06 
07 
08 
09 

mnemonic 
nap 
Id bc,nn 
Id @bc,a 
inc be 
inc b 
dee b 
Id b,nn 
rlca 
ex af,af 
add hl,bc 

number of cycles 
4 
10 
7 
6 
4 
4 
7 
4 
4 
11 

The next step is to construct a testing procedure that applies a given opcode to the z80 

and verifies that the number of cycles is correct. The procedure below performs this 

function. 

FIFl)define procedure inst 
FIFI> var opcode eye; 
FIFI> (eaH ifeteh opcode{opcode;), 
FIFI> (loop i 5 eye 
FIFI> clk<1; 
FIFI> clk<O;), 
FIFI> clk<1; 
FIFl>end 

eye is length of instruction 

may execute O ti mes 

clock high to prevent 
dynamic discharge 

The procedure ifetch and mcycle have been previously described. The verification that an 

instruction uses the proper number of cycles is performed by ifetch on the next instruction 

fetch. 

A test program to test the instruction lengths is shown below: 



FIFl>define procedure length 
FIFI> (call reset null<O;), 
FIFI> ( call inst 
FIFI> opcode<O,cyc<4; 
FlFI> opcode{1,cyc<1 O; 
FIFI> opcode<2,cyc<7; 
FIFI> opcode<3,cyc<6;) 
FlFI> opcode<4,cyc<4; 
FIFI> opcode{5,cyc<4; 
FIFI> opcode<6,cyc<7; 
FIFI> opcode<7 ,cyc<4; 
FIFI> opcode<S,cyc<4;) 
FIFI> opcode(9,cyc<11 ;) 
FIFI> opcode<O,cyc<4;) 
FIFl>end 

The test program is invoked as follows: 

FIFl>execute length 
FIFI> 
FIFI> 

5.2.3 Reading the ROM of an 8041 
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reset processor 
multiple calls 

separat.ed by 
semicolons 

check last instruction 

no [ check failed] 
because it worked 

The following is a very simple example illustrating use of the test system as a general 

purpose interface between the world of programming notations and the world of electronics. 

The problem addressed in this example is reading the ROM of a one chip factory programmed 

microprocessor, the Intel 8041 [Intel 80]. 

The Intel databook describes a method of reading the ROM that involves about a dozen 

functions which must be performed for each byte in the ROM. One method of performing this 

task would be to build a special purpose machine that would perform these dozen functions 

and send the results to a computer. Such a special purpose machine would involve an 

expenditure of time that would not be justified except in extremely high volume applications. 

In this example the test system is set up to perform this task. The total effort involved 

was to write the program shown, and to interface the chip to the tester. 
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Interfacing, in this case, involved some unusual tasks. To read the ROM it is necessary to 

apply + 12 volts to a certain pin. The solution to this was to disconnect that pin from the 

tester and connect it to a +12 volt power supply. Another problem is that the specifications 

indicate the processor should have a 3 MHz clock running during the process. Since this 

implementation of the test instrument was not capable of that speed, the clock pins were 

removed from the tester and a crystal was connected. 

The first section is the pin definitions. The first five are reminders for setup. gnd and vcc 

are connected to standard power supplies. v12pullup is connected ,to +12 volts through the 

specified pullup resistor. phi1 and phi2 are connected to a crystal. -- --
FIFl)define port gnd 20; 
FIFl>define port vcc 40; 
FIFl)define port v12puliup 7; 
FIFl)define port phi1 2; 
FIFl}define port phi2 3; 
FIFl>define port: ea 7; 

power connection 
power connection 
special +12v supply 
crystal 
crystal 

FIFl)define port a.bus 22 21 19 18 17 16 15 14 13 12; 
FIFl)define port dbus 19 18 17 16 15 14 13 12; 
FIFl>define port reset 4; 
FIFl>define port to 1; 
FIFl>define port t1 39; 
FIFl}define port cs 6; 
FIFl}define port aO S; 

The following procedure reads from ROM location addr and performs the function specified 

by the type of data. 

FIFl}define procedure mread 
FIFI> var addr data; 
FIFI> reset<0:1 tO<O,cs<1,aO<O; 
FIFI> abus<addr; 
FIFI> reset<1:,t0<1; 
FIFI> abus<NULL; 
FIFI> dbus=data; 
FIFI> reset<O:, tO<O; 
FIFl>end 

The main program procedure does the read function for each location in ROM. It specifies 
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the interrogate function that prints the answer on the terminal. The output of the test 

program can be logged and the contents of the ROM can be extracted. 

FIFl>define procedure x 
FIFI> (caH mread 
FIFI> (loop IO 1023 addr<l,data!;)) 
FIFl>end 
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6. The Design of Test Instruments 

There are different types of testing with different requirements on the test instrument 

and test software. It would be desirable to have a series of compatible testers available, 

each optimized to a particular phase of the testing process. 

For example, the process of characterizing a device and developing a production test set 

is a slow process with much human interaction. There is no need for the test instrument be 

extremely fast or accurate, so it would be expected that the test instrument for this phase 

be inexpensive, but what about the computer behind it? On the other hand, production 

testing must be performed with high speed and accuracy. Since the test instrument for this 

application is efficiently utilized, its cost can be higher. For such a set of testers to be 

useful, however, it is necessary to have assurance that a test developed on one tester will 

be valid when executed on another. 

We will describe a general design strategy for testers. By implementing only some of the 

parts described, specialized testers can be constructed. By implementing the parts in 

different architectures and technologies, the speed and cost of the test instrument can be 

varied. Any such tester will be able to execute the same test specification and achieve 

valid results. 

6.1 Constrained Tests and Tester Design 

The test language developed previously has supported only non-adaptive tests sequences. 

A non-adaptive test can be executed by a pipelined tester. Such a test would consist of 

the stimulus and expected response of the chip. All comparisons can be performed in the 

test head and would effect only the state of a fault flag. 

An adaptive test requires that the output of the chip be fed back to the test pattern 
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generator. During the time that the test pattern generator is interpreting the response of 

the chip the remainder of the tester would be idle. If the tester were pipelined, each value 

returned from the chip would require that the pipeline be flushed. 

The proposed manner of constructing test systems includes both highly pipelined hardware 

and feedback from the chip. In production testing feedback from the chip would not be 

required, and the test would be executed at pipelined speeds. Other uses of the tester, 

such as exploratory testing uses, require information returned from the chip be displayed. In 

non-production testing high speed is less important, and less efficient use of the pipeline 

would be tolerable. 

6.2 High Performance Test Instruments 

In practice, the number of vectors in a high fault coverage test for a large integrated 

circuit may be astronomical. Conventional testers, where the entire test must be 

instantiated in storage, must be provided with an huge amount of storage. Exploitation of 

the structure of the test language can yield a tester design where storage requirements are 

minimized. 

6.2.1 Conventional Tester Design 

The average general-purpose IC tester consists of two parts: a Von-Neuman type 

computer and a high speed test vector buffer. The computer is used for making low-speed 

measurements (DC parametric testing) and manipulating the high speed vector buffer. The 

high speed vector buffer is capable of storing from 500-500,000 test vectors for application 

at 1-100 MHz. 

In the testing of a chip the computer will perform several thousand parametric tests at a 

rate of about 1 per millisecond. The reason for the slow speed of 1 mS per test is twofold: 
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the computer is slow, and parametric tests require accurate analog measurements that take 

a long time to perform. 

The test vector buffer is totally under the control of the computer. The computer loads 

test vectors. from secondary storage (disk.) and instructs the test vector buffer to dump its 

contents to the device under test. Usually the test vectors are dumped at a fixed rate, but 

possibly with a number of clock phases. In the event that a test is larger than the size of 

the test vector buffer, the test must be broken into smaller sections and executed 

sequentially. 

An additional duty of the computer is to configure the test head. The physical conductors 

leading to the device under test are usually (although not always) connected to the tester 

electronics though a crossbar switch, allowing all pins to be the same. A tester will have a 

supply of drivers of different types: a clock, inputs, outputs, input/output combinations, and 

special measurement units. Setup consists of allocating drivers to the pins of the chip. 

Sometimes there will not be as many drivers of a particular type on the tester as required by 

the chip. In this case the solution is to buy a bigger tester. 

The conventional design of testers has the advantage of extreme simplicity, but is quite 

irregular to program. 

6.2.2 Areas for Improvement 

Al.though a test could reasonably consist of a billion test vectors, there is a great deal of 

redundancy in the test vectors that can be exploited. A memory test, for example, can be 

expressed in fess than one page with the test language, but expands to millions of test 

vectors. 

There are two strategies for the efficient storage and generation of test vectors: 
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1. Elimination of redundant information in the test vectors by either bit 
compression of the instantiated test vectors, or by storing the test vectors 
before they are fully instantiated. 

2. Algorithmic generation of test vectors. Simple algorithms such as generating 
count and shift sequences, and substitution of small amounts of data into 
otherwise static groups of test vectors are sufficient. 

6.2.3 Efficient Use of Test Vector Storage 

The great majority of the test vectors in a large test consist of repetitions of a few 

vectors many times. Some examples are: groups of vectors that cause an instruction to be 

executed in a microprocessor, or an access sequence for an ALU in a microprocessor, or a 

memory cycle. In each of these cases the test vectors are applied many times and changed 

in only very minor ways each time. The vectors that execute an instruction are different in 

the opcode and data each time, but are otherwise the same. Similarly for an access 

sequence. Memory accesses are different in address and data, but have identical timing. 

An (intermediate) test language can be made to represent tests compacted in this way. 

Such a test language would consist of statements of the following types: 

Fully Instantiated Test Vectors 
Fully instantiated test vectors to be applied many times. 

Execution Instructions 
Instructions for the test vector buffer to apply groups of test vectors 
to the device under test. This statement would carry two test vector 
numbers, like apply vectors 23 through 87. 

Change Instructions Instructions to alter small portions of the test vector buffer memory. 
This statement would have information to store, a vector number, and a 
position in the vector, such as: store 03 into vector number 23, 
positions 15, 9, 12, 6, 3, 11, 13, 14. 

A tester to execute this intermediate form would have the appearance of figure 6-1. 

Figure 6-1 does not show the source of test vect?rs, they may come from a computer or 

from more advanced test generators. There are three new functions in the hardware: 

1. The test command interpreter. This device split.3 the stream of test 
commands into three streams: one to the sequencer, one to the test vector 
buffer, and one to the change unit. 



118 

+-------------------+ 
I test 1 

+--------->+ output I 
I I sequencer I 
I +---------+---------+ 
I I 
I V 
I +---------+---------+ 

+-----------+ I I I +--------+ 
I test +--+ I test +<--->+ pin I 

->+ command +------------>+ vector I drivers! 
I interpreter+--+ storage +--------+ 
+-----------+ I +---------+---------+ 

I t 
I I 
I +---------+---------+ 
I I change I 
+--------->+ unit I 

I I 
+-------------------+ 

Figure 6-1: Buffered Test Generation Unit 

2. A test vector sequencer. The sequencer generates vector addresses for 
transfers from the test vector storage to the pin electronics. 

3. The change unit. The change unit alters small portions of the test vector 
buffer. 

6.2.4 lnterf ace of the Tester Model to the Test Language 

The application of the test language to the model of a tester just described is 

straightforward.. The lowest level testing routines, those that do not call any others, are 

compiled into groups of test vectors. These test vectors are then loaded directly into the 

vector storage. The remainder of the test specification consists of invocations of the low 

level testing routines and arguments. The test specification would be stored as a series of 

change instructions and execution instructions. 

The effectiveness of this strategy would depend upon the statistics of the test vectors. 

In some cases, such as microprocessor testing, the amount of change information would be 

very small in relation to the total test vectors. In a memory test, however, the address 
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would have to be changed every few vectors, resulting in only a modest information 

reduction. 

6.2.5 Further Refinements in Tester Design 

Several additional refinements can be made in the design of testers to optimize their 

design to the test language. The most significant improvement can be obtained by 

considering the high speed execution of low level testing procedures. 

In most cases a low level testing procedure can be compiled into a static set of test 

vectors and a number of translations. The translations specify operations to be performed on 

the arguments of the procedure and a location in the vectors :to store the result. 

Figure 6-2 illustrates a low level testing procedure and its compiled form. The compiled 

form consists of a rectangular matrix of test vectors with the static portion of the 

procedures, and a translation that specifies how the argument is processed to generate the 

complete testing procedure. 

procedure rectangular matrix translation 
elk control data 

procedure ptos +----------------+ 
var data; I 0 23 I 

{loop i 1 4 I 1 85 X<)-------+ 
clk<0,control<23,data<NULL; I 0 23 I I 
clk<l,contro1<85,data=data[i]; I 1 85 X<)-----+ I 

I 0 23 I I I 
end I 1 85 X<)---+ I I 

I 0 23 I I I I 
I 1 85 X<) -+ I I I 
+----------------+ I I I I 

+-+-+-+-+ 
I I I I I 
+-+-+-+-+ 

data 

Figure 6-2: A Testing Routine and its Instantiation 
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It is not always possible to compile a testing procedure into a rectangular matrix and 

translations. If the procedure uses arguments as bounds in loops, the number of vectors in 

the rectangular matrix may vary. The software that generates the translation must verify 

that the procedure can be compiled. 

6.2.6 Analogy· of Tester Design to the Descgn of Computers 

There are some parallels between the strategy devised here for the design of testers to 

the design of mainframe computers. 

6.2.6.1 Virtual Memory vs the Test Vector Buffer 

In the early days computer programs were very small, say averaging 10,000 bytes, 

because software technology was not very advanced. In those days, memory was 

expensive and hence computers were designed with no more than was necessary, say 

65,000 bytes. In the early days, however, programs were small enough to fit into the 

memory of computers. 

As time passed, computer programs became larger and memory became cheaper. As 

memory became cheaper, existing computers were supplied with more and more memory, up 

to the limit for which they were designed, 65,000 bytes. Programs similarly grew, up to the 

memory capacity of the machines, 65,000 bytes. At this point the the computers had run out 

of memory, and ,other techniques would have to be used. 

One solution to this problem was to use overlays. Overlays solve the addressing problem 

by splitting a program into sections that will fit in the machine. Partitioning a program in this 

way was rather difficult, and hence overlays were never very popular. 

Another soluition was virtual memory. The architecture of new computers was made to 

support an astronomical amount of memory, 4 bi!lion bytes. Of the 4 billion bytes, only a small 
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portion could be used, several million bytes; the remainder was reserved for future 

expansion. Providing memory that would only be used a decade in the future would prevent 

all the programs written for the present machine from becoming obsolete. 

Some of· this story applies to testers. We are still in the early days where testers have 

ve_ry small buffer memories. Unfortunately, the needs of test software exceed the vector 

memory of most testers, and the industry is dealing with overlays of test vectors. The near 

absence of high level test software is evidence that the 'overlays' are not working well. 

What is needed to boost testing to its next plateau is a freedom from the constraints of the 

tester hardware. 

6.3 Requirements for Test Instruments 

There are some tradeoffs between tester designs. These are summarized below. 

Speed and Cost Production testers must be extremely fast, but a higher cost is 
tolerable. Interactive testers must be inexpensive, but reduced 
performance and accuracy are acceptable. 

Flexibility and Speed Production testers do not require flexibility. A go/no-go indication is 
sufficient. Exploratory testers must be as flexible as their operator's 
mind. 

A successful test system should address as many of these issues as possible. 

Unfortunately, some of these requirements conflict. 

Test language systems would be devised to communicate with a tester in a standard form. 

Differences in testers would be handled by a set of parameters describing such 

characteristics as the size of the test vector storage area, the complexity of translations, 

speed, etc. With appropriate choice of parameters and the standard communication protocol, 

a tester of any size could be interfaced to a single test language system. 

An extremely small and inexpensive test system could be constructed by interpreting the 
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test instruction set with a microprocessor. The size of the test vector storage area could be 

as small as one vector, and the maximum number of translations could be zero. This would 

force the test language system to send all vectors to the tester. Timing commands could be 

ignored. 

A large tester, on the other hand, could have generous amounts of all the resources 

described above. 
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7. Conclusions 

We have described a complete test system. The heart of the system is the test 

language. The test language was shown to be capable of representing tests for a number of 

conventional. design disciplines in a natural way. The test language is also easily and 

efficiently implemented, as was demonstrated by the FIFI test system. 

A general philosophy for designing systems in a manner that aids testability was 

presented. The method uses the test language as a manner of formally specifying the 

testability &ttributes of parts of a design. A method was then proposed for composing these 

parts into systems and guaranteeing testability. The result is somewhat more general than a 

conventional design-for-testability strategy; a strategy for designing design-for-testability 

strategies was proposed. 

The test system described has been demonstrated in a number of ways. We have 

implemented an interactive test system. Students at Caltech have used the test system 

interactively to manually characterize some of their IC design projects. We have 

demonstrated the abstractive abilities of the test language. The translation of a list of 

primitive tests for combinational logic into a complete test specification for the logic when in 

a microprocessor has been done, and was illustrated here. 

Several other observations can be made about the test system and its future: a careful 

examination of real tests indicates that test specifications actually do follow the structured 

approach proposed here. A careful look is necessary, however, because there has been no 

tool that can represent the design abstractions in an appropriate way, and hence real tests 

do not look structured! 

For example, Motorola in the 68000 microprocessor employed a structure similar to that 
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depicted in figure 3-1 O. Testability strategies that describe general classes of devices by 

making parameterized libraries of testing routines that can be assembled automatically for 

specific devices fits the flavor of bristle blocks [Johannsen 79] nicely. 
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A. Syntax of the Test Language 

This appendix specifies the syntax of the test language and the FIFI test system. The 

syntax will be described as a production grammar as defined in [Aho 72], page 85. 

In the notation that follows non terminal symbols will be represented in italic type, i.e. 

nonterminal. 

Terminal symbols fall into several types: keywords, identifiers, punctuation, numbers, 

texts, newlines, and endfiletokens. In all cases the terminals will be in boldface type. The 

different types of terminals are described as follows: 

word 

keyword 

identifier 

punctuation 

number 

newline 

text 

endfiletoken 

A word is a sequence of letters or numbers, starting with a letter, and 
terminating with a character that is not a letter or number. In the 
semantic analysis of words, upper and lower case character are 
treated as different. 

A keyword is a word from a predefined set known as the keywords. 
Keywords are represented as 11xxx 11

• The set of keywords includes all 
keywords of the form 11xxx11 in this syntax representation. 

An identifier is a word that is not a keyword. Identifiers are 
represented as ident. 

A punctuation is a single character terminal. The character may be a 
printing character but may not be a letter or number. A character is 
represented as 1# 1

• 

A number is a representation of a numerical value. One form of a 
number is a string of digits. The numerical value of the number is its 
common numerical representation in base 1 O. A second form of a 
number is a string of digits, followed by 'r', followed by a string of 
extended digits. The second form allows numbers to be represented in 
an arbitrary radix. The first string of digits specifies the radix, and the 
string of extended digits is the number in the specified radix. An 
extended digit is a digit with value O through the radix-1 where the 
letters a-z and A-Z represent values 1 0-35. Some examples of 
numbers are: 1 O value 1 0, 16rff value 255. 

Invoked by the user terminating the line. Represented by newline. 

A string of characters surrounded by double quotes. Texts may not be 
more than one line in length; a newline will take the place of the 
second quote. Represented as text. 

The indication from the operating system that no more input will be 
available from a file. Represented as endfHetoken. 

Productions are represented in the following form: 
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loopfcn -> 1
(' 

11 loop11 ident expr expr tvexpr 1
)

1 

The sentence symbol is command. 

A. 1 User Commands 

command 

command 

command 

command 

command 

command 

command 

command 

command 

command 

command 

command 

command 

command 

command 

command 

-> 11define11 matdecl newline 

-> 11define11 pindecl newline 

-> 11set11 11z8011 newline 

-> 11set11 15timing11 newline 

-> 11set11 11trace11 newline 

-> 11set11 11debug11 newline 

-> "read" ident newline 

-> 11read11 text newline 

-> uimmediate" tvexpr newline 

-> 15quit11 newline 

-> endfiletoken 

-> 11execute11 ident newline 

-> "print" 11procedure 11 ident newline 

-> 11print11 "procedure" newline 

-> 11print11 11port11 ident newHne 

-> 11print11 11port11 newline 

A.2 Procedure Declarations 

matdecl 

matdecl 

varlist 

var/ist 

varsublist 

varsublist 

-> 11procedure 11 ident varlist tvexpr 11end 11 

-> 11procedure11 ident tvexpr nend11 

-> 11var11 varsublist 1
;

1 varlist 

-> 11var11 varsublist 1
;

1 

-> ident varsublist 

-> ident 



A.3 Port Declarations 

pindec/ 

pinlist 

pinlist 

-> 11port11 ident pinlist 1
;

1 

-> number pinlist 

-> number 

A.4 Typed Value Expressions 
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Typed value expressions are formed from the operators below and exprs in a normal 

expression syntax. The mixture of the exprs, which are expressions themselves, into a 

higher level expression syntax is somewhat unusual. 

lowest 
precedence 

highest 
precedence 

tvexpr 

tvplus 

tvplus 

tvsemi 

tvsemi 

tvsemi 

tvsemi 

tvcomma 

tvcomma 

tvparen 

tvparen 

tvparen 

tvparen 

tvparen 

tvasgn 

tvasgn 

tvasgn 

tvasgn 

tvasgn 

OPERATORS 

operator 
+ 

' ( ) 

-> tvp/us 

-> tvsemi 

unary/binary 
binary 
binary 

postfix unary 
binary 

-> tvplus 1+1 tvsemi 

-> tvcomma 

-> tvsemi 1+1 tvcomma 

-> 1
;

1 tvsemi 

-> tvsemi 1
;

1 

-> tvparen 

-> tvcomma 1
;

1 tvparen 

-> 1
(' tvexpr 1

)
1 

-> tvasgn 

-> 1
(

1 "loop" ident expr expr tvexpr 1
)

1 

-> 1
(

1 11step 11 expr 1
:

1 tvexpr 1
)

1 

-> 1
(

1 11 cann ident tvexpr 1
)

1 

-> ident '<' expr 

-> ident 1>1 expr 

->ident •=•expr 

-> ident 1!1 

-> ident '<' 11NULL 11 expr 

name 
plus 
semi 
semi 
comma 

parenthesis 
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A.5 Expressions 

In summary, expressions are formed of the operators below and ident:s or numbers in a 

normal expression syntax. 

lowest 
binding 
priority 

highest 
binding 
priority 

expr 

expr 

typxor 

typxor 

typand 

typand 

typleft 

typleft 

typright 

typright 

typlus 

typlus 

typmul 

typmul 

typsubscr 

typsubscr 

typsubscr 

typatm 

typatm 

OPERATORS 

oeerator unar!:f/binar!:I name 
I binary or 
1' binary xor 
& binary and 
<< binary shift left 
>> binary shift right 
+ binary plus 
... , binary multiply 

[e] postfix unary bit sub scr i pt see note 
( ) parenthesis 

(Note: thee in bit subscripting is either a type 
value expression or two typed value expressions 
separated by 11

:
11 and represents bit subscripting.) 

-> typxor 

-> expr 'I' typxor 

-> typand 

-> typxor •t• typand 

-> typleft 

-> typand 1& 1 typleft 

-> typright 

-> typleft 1<1 1<1 typright 

-> typ/us 

-> typright 1>1 1>1 typ/us 

-> typmul 

-> typ/us 1+1 typmul 

-> typsu bscr 

-> typmul 1*1 typsubscr 

-> typatm 

-> typatm '[' expr 1
]

1 

-> typatm '[' expr 1
:

1 expr 1
]

1 

-> number 

-> ident 
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typatm -> 1
(

1 expr 1
)

1 



[Agrawal 75] 

[Aho 72] 

[Bouricius 71] 

[Bryant 81] 

[Bryant 82] 

[DeBenedictis 79] 

[DeBenedictis 80] 

[DeBenedictis 82] 

130 

References 

Agrawal, P., and Agrawal, V. 
Probabilistic Analysis of Random Test Generation Method for lrredundant 

Combinational Logic Networks. 
IEEE Transactions on Computers C-24:695-700, July, 1975. 

Aho, A., and Ullman, J. 
Prentice Hall Series in Automatic Computing. : The Theory of Parsing, 

Translation, and Compiling. 
Prentice Hall, 1972. 

Bouricius, W., Hsieh, E., Putzolu, G., Roth, P., Schneider, P., and Tan, C. 
Algorithms for Detection of Faults in Logic Circuits. 
IEEE Transactions on Computers C-20: 1258-1263, November, 1971. 

Bryant, R. 
A Switch-Leve/ Simulation Model for lntegrat.ed Logic Circuits. 
Technical Report MIT /LCS/TR-259, Massachusetts Institute of 

Technology, March, 1981. 

MOSSIM II: A Switch-Level Simulator for MOS LSI, User's Manual 
Caltech Computer Science Department, 1982. 

DeBenedictis, E. 
Multilevel Simulator. 
Master's thesis, Carnegie-Mellon University, May, 1979. 

DeBenedictis, E. 
A Preliminary Report of the Caltech ARPA Tester Project. 
Technical Report 4061, Caltech Computer Science Department, April, 

1980. 

DeBenedictis, E. 
FIFI Test System User's Manual. 
Technical Report, Caltech, 1 982. 



[Eichelberger 77] 

[Fairchild 80] 

[Hayes 74] 

[Ibarra 75] 

[IBM 80] 

[IEEE 80] 

[Intel 80] 

[Johannsen 79] 

[Konemann 80] 

[Mead 80] 

131 

Eichelberger, E., and Williams, T. 
A Logic Design System for VLSI Testability. 
In Proceedings of the 14th Design Automat.ion Conference, pages 

462-468. IEEE/ACM, 1977. 

Series 20 FACTOR Programming Language Reference Menual 
Fairchild Test Systems Group, Customer Services, M/S 36-07 /57, 1725 

Technology Drive, San Jose, California 95110, 1980. 

Hayes, J. 
On Modifying Logic Networks to Improve their Diagnosablility. 
IEEE Transactions on Computers C-23:56-62, January, 197 4. 

Ibarra, 0., and Sahni, S. 
Polynomial Complete Detection Problems. 
IEEE Transactions on Computers C-24:242-249, March, 1975. 

An IBM representative. 
Miscellaneous discussion. 

IEEE Guide to the Use of Atlas 
Institute of Electrical and Electronics Engineers, Inc, 1980. 

Component Data Catalog 
Intel Corporation, Literature Department, 3065 Bowers Avenue, Santa 

Clara, CA 95051 , 1 980. 

Johannsen, D. 
Bristle Blocks: A Silicon Compiler. 
In 16th Design Automation Conference. IEEE/ ACM, 1979. 

Konemann, B., Mucha, J., Zwiehoff, G. 
Built-In Test for Complex Digital Integrated Circuits. 
IEEE Journal of Solid State Circuits SC-15:315-319, June, 1980. 

Mead, C. and Conway, L. 
Addison-Wesley Series in Computer Science. : Introduction To VLSI 

Systems. 
Addison-Wesley, 1980. 



[Nagel 73] 

[Organick 73] 

[Pereira 78] 

[RCA 76] 

[Rowson 80] 

[Savir 80] 

[Seitz 71] 

· [Snoulten 81] 

132 

Nagel, L., and Pederson, D. 
Simulation Program with Integrated Circuit Emphasis (SPICE). 
In Proceedings of the 16th Midwest Symposium on Circuit Theory. IEEE, 

1973. 

Organick, E. 
ACM Monograph Series.: Computer System Organization: The 

B5700/B6700 Series. 
Academic Press, 1973. 

Pereira, L., Pereira, F., and Warren, D. 
User's Guide to DECsystem-10 Prolog 
1978. 
Documentation file on Caltech DEC-20. 

RCA Integrated Circuits 
RCA, RCA Solid State, Box 3200, Somerville, N.J. 08876, 1976. 
Pages 692-698. 

Rowson, J. 
Understanding Hierarchical Design. 
PhD thesis, Caltech, April, 1980. 

Savir, J. 
Syndrome-Testable Design of Combinational Circuits. 
IEEE Transactions on Computers C-29:442-451, June, 1980. 
Corrections published in November issue. · 

Seitz, C. 
An Approach to Designing Checking Experiments Based on a Dynamic 

Model. 
In Kohavi, Z., Paz, A., editor, Theory of Machines and Computations, pages 

341-349. Academic Press, 1971. 

Snoulten, 8., and Peacock, J. 
ANGEL - Algorithmic Pattern Generatio:1 System. 
In Proceedings of the 1981 International Test Conference, pages 

484-488. IEEE, 1981. 



[Stanford 81 ] 

[Tl 80] 

[Timoc 81] 

[Young 76] 

133 

Newkirk, J., Mathews, R., Watson, I. 
Testing Chips using ICTEST Version 1. 
Technical Report VLSI 020281, Stanford Information Systems Laboratory, 

November, 1981. 

The TTL Data Book 
Texas Instruments, Marketing Information Services, P. 0. Box 5012, MS 

308, Dallas, Texas 75222, 1980. 
Page 7-53. 

Tirnoc, C. 
Lunch-bunch presentation, fall 1981. 

Young, T., and Dutton, R. 
MINI-MS/NC: A Minicomputer Simulator for MOS Circuits with Modular 

Built-in Model. 
Technical Report 5013-1, Stanford Electronics Laboratory, 1976. 



Index 

Action 24 

Buffer test generator 1 7 

Call control clause 40 
Comma 34, 36 
Composition design 92 
Concatenation, design by 93 
Controllability 63 

Dynamic interpretation 31 

Elements 31 
Execution 34 

Fault model 63 
Feel 23 
Force 23 

Interrogate 23 

Level of structure 69 
Loop control clause 35, 37 

Matching of actions 75 
Matrix expression 37 
Minimum step time 44 

Non-adaptive test 114 
Non-adaptive tests 29 

Observability 63 
Ordered pair 22 

Phases of a test step 34 
Plus 35, 36 
Port 24 
Port's state 34 
Primitive tests 63 

Recursive design 93 

Semicolon 34, 36 
Semicolon special case 37 
Sequential test generation unit 1 7 
Static interpretation 31 

134 



Step control clause 3 7 
Step timeout 45 

Tagged data architecture 23 
Test vector 34 
Test matrix 28, 31 , 33, 34 
Test step 28 
Test vector · 1 6, 28 
Translations 11 9 
Tr~-state 23 
Type part 22 
Typed value 22, 33 
Typed value assignment 24 
Typed value expression 24 

Undefined 23 

Value part 22 
Var 40 

Wait 23 

135 




