
Techniques for Testing Integrated Circuits

Thesis by

Erik P. DeBenedictis

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

1983

submitted 5 May 1982

ii

Acknowledgments

Chuck Seitz and Carver Mead are the persons most deserving of acknowledgment. Chuck

and Carver have worked closely with me on this testing research since 1979, giving me their

ideas and making suggestions about mine. Chuck has also been very helpful in the

preparation of this document, having given extensive suggestions about its technical and

grammatical content.

Please let me express here my appreciation to the ARPA management both for their help in

providing an environment whereby ideas can be shared among the university community, and

for their support of this research. This research was supported by the Defense Advanced

Research Projects Agency, ARPA Order number 3771, and monitored by the Office of Naval

Research under contract number NOOO14-79-C-O597.

iii

Abstract

A language is presented for describing tests of integrated circuits. The language has a

high abstractive capability that enables test specifications to follow the structural or logical

organization of a design. The test language is applied to a number of current design styles in

a series of examples. Methods for designing integrated circuits for testability are

demonstrated. An implementation of the test language through a test language interpreter

and a tester is discussed. Tester designs are presented that will execute the test language

with unusually high efficiency.

iv

Table of Contents
1 . Introduction 1

1.1 A Tour Through the Design of an Integrated Circuit 2
1.1.1 Initial Design and Testing 2

1. 1. 1. 1 Description of the Pins 2
1.1. 1.2 Initial Checkout 3
1 . 1. 1 .3 Common Errors 5

1.1.2 Exhaustive Checkout 6
1.1.3 Testing an Adder as an Arithmetic Array 8
1.1.4 Testing When Embedded in a System 9

1. 1.4 .. 1 Describing an Access Procedure 1 O
1.1.4.2 Testing a Part Through an Access Procedure 11

1 .2 Strategy for the Design of Tests and Design for Testability 13
1.2.1 Primitive Tests 13
1.2.2 Application of Primitive Tests 13
1.2.3 Synergism of Testing and Design 14
1.2.4 Testability 14

1 .3 The Design of Testers 1 5
1.3.1 Test Generation Modes 15
1.3.2 Tester Construction for the Test Language 17
1.3.3 Interface of the Test Language to Simulators 17

1.4 The Value of an Interactive, Non-Embedded Test Language 1 g
1.4.1 ATLAS 19
1.4.2 FACTOR 20
1 .4.3 ANGEL 20
1.4.4 The FIFI Test Language 21

1 .5 Summary 21
2. A Notation for Describing Integrated Circuit Testing 22

2.1 Abstract Elements of Digital Electrical Signa!s 22
2.1.1 Elements of the Algebra 22
2. 1 .2 Ports 24
2.1.3 Equations and Assignments 24

2. 1 .3.1 Assignments 25
2.1.3.2 Expressions 25

2.1.4 Specification of Analog Tests 28
2.2 Organization of DigitaJ Manipulations into Test Mat rices 28

2.2.1 A Restricted Test Language and Testing Efficiency 29
2.2.2 Elements 31
2.2.3 Test Matrices 31
2.2.4 Static Interpretation 33
2.2.5 Dynamic Interpretation 35

2.3 Test Language Procedures 38
2.3.1 Procedure Defining and Calling Notations in Programming Languages 39
2.3.2 Procedure Conventions in the Test Language 39
2.3.3 Sophisticated Interpretation of the Interrogate Action 41

2.3.3.1 Simple !nterpretation of the Interrogate Action 42
2.3.3.2 A More Complex Interpretation of the Interrogate Action 42

2.3.4 Timing 44

V

3. Examples of the Test Language
3.1 Abstraction of a Bidirectional Data Bus
3.2 Performing Complex Data Manipulations
3.3 Testing a 16K Dynamic Random Access Memory
3.4 Multiphase Clocking and the Test Language
3.5 An Example of the Test Generation Technique for Large Systems

3.5~ 1 Testing the Data Path Unit
3.6 Testing a Microprogrammed System with a Data Path

3.6.1 Data Path Part
3.6.2 Microcode Part
3.6.3 State Latch Part

4. Testing of Sequential Systems
4.1 Previous Approaches to Sequential Testing

4. 1 .1 Conventional Testing of Combinational Networks
4.1.2 New Methods for Testing Sequential Devices
4.1.3 LSSD
4. 1 .4 Testing Art
4.1 .5 Other Methods

4.2 Structured Desfgn and Design for Testabmty
4.2.1 The Value of Structured Design
4.2.2 Structured Integrated Circuit Design
4.2.3 Testing Structured Designs with Access Procedures
4.2.4 A Filter Model

4.2.4.1 Controllability and Observability in the Fitter Model
4.2.5 Access Procedures as an Inverse Filter Function
4.2.6 Definition of an Access Procedure

4.3 Using the Test Language to Describe General Behavior
4.3.1 The Actions of a Part Upon a Port

4.3. 1.1 The Actions of a Tester
4.3.2 The Duality of Actions Upon a Port
4.3.3 The Behavior of Groups of Ports
4.3.4 Repetition
4.3.5 Relationships Between Styles of System Descriptions
4.3.6 Examples of Behavioral Descriptions

4.3.6.1 A Four Bit Adder
4.3.6.2 A D-type Flip Flop

4.4 Deriving Access Procedures from Behavioral Descriptions
4.4.1 Accessibility Through Flip Flops
4.4.2 Accessibility Through A Scan Path
4.4.3 A Method for Generating Access Procedures
4.4.4 Matching Access Procedures with Tests

4.5 Controlled Expansion of Test Vectors
4.5.1 Number of Test Vectors in a Test
4.5.2 Asymptotic Dependence of Test Size on Number of Cells
4.5.3 Improvements on Asymptotic Behavior

4.5.3.1 Reducing the Length of Access Procedures
4.5.3.2 Changing the Branching Factor
4.5.3.3 Size of Primitive Cells

46
46
48
49
52
55
56
58
59
61
61
63
63
64
65
66
66
67
68
68
69
70
71
72
73
73
74
74
74
75
76
77
77
79
79
80
80
81
83
85
85
86
86
87
88
88
89
90

vi

4.5.4 Actual Dependence of Test Size Upon Chip Size
4.6 A Perspective on Structured Compositions

4.6.1 Design by Composition
4.6.2 Composition by Concatenation
4.6.3 Design by Recursion
4.6.4 A Numerical Comparison of Testing Strategies
4.6.5 Other Hierarchical Compositions
4.6.6 Serial and Parallel Testing

4. 7 Conclusions
5. The FIFI Test System: A Reality Test

5.1 Test System Commands
5.1.1 !Loading Test Programs: Define Command
5.1.2 Executing Test Programs: Execute and Immediate Commands
5.1.3 !Miscellaneous Commands

5.2 Some Examples of the Test Language
5.2.1 Testing the Adder in a 280 Microprocessor
5.2.2 Testing Instruction Decoding in a 280 Microprocessor
5.2.3 Reading the ROM of an 8041

6. The Design of Test Instruments
6.1 Constrained Tests and Tester Design
6.2 High Performance Test Instruments

6.2.1 Conventional Tester Design
6.2.2 Areas for Improvement
6.2.3 Efficient Use of Test Vector Storage
6.2.4 Interface of the Tester Model to the Test Language
6.2.5 Further Refinements in Tester Design
6.2.6 Analogy of Tester Design to the Design of .Computers

6.2.6.1 Virtual Memory vs the Test Vector Buffer
6.3 Requirements for Test Instruments

7. Conclusions
A. Syntax of the Test Language

A. 1 User Commands
A.2 Procedure Declarations
A.3 Port Declarations
A.4 Typed Value Expressions
A.5 Expressions

Index

91
92
93
93
95
96
98

100
. 101
102
102
103
103
104
105
105
109
111

114
114
115
115
116
117
118
119
120
120
121
123
125
126
126
127
127
128
134

1

1 • Introduction

This thesis describes the results of an investigation into systematic methods for testing

integrated circuits. The central result is a language for describing tests. In the formal

presentation. of the language, in chapter 2, the ability of the language to represent tests of

integrated circuits in the same abstract manner that their designs are visualized is

emphasized. The remainder of this document is an exploration and verification of the

language's ability to solve a number of the problems of testing integrated circuits. In

chapter 1 the usefulness of the language as an interactive tool for the design and debugging

of integrated circuits is illustrated. In chapter 3 the ability of the language to describe test

of real systems is demonstrated through examples applied to integrated circuits designed

with different design styles. In chapter 4 the methods used to generate the examples of

chapter 3 are discussed and their general applicability is explored. Chapter 5 describes an

implementation of the language. Finally, in chapter 6 a tester design is proposed that can

execute the test language more efficiently than conventional testers. The result of this

analysis is general technique for designing integrated circuits and their tests that yields

reliable results with a predictable amount of effort.

The abstractive properties of the language are aimed at formalizing ~he manner of testing

integrated circuits that is in use today. It has been observed that informally generated tests

follow a physical structure (either real or imagined) of the device under test. The

specifications of these tests do not generally appear to h~ve any structure, however. It is

conjectured that the reason the test specifications do not reflect the structure of the

design is that existing test languages do not have the necessary abstractive capabilities.

The test language proposed in this thesis attempts to provide this capability.

2

1.1' A Tour Through the Design of an Integrated Circuit

To gain a perspective into the nature of testing complex integrated circuit systems and as

an informal introduction to the test language, this section will follow the design and testing

of a small portion of a complex integrated circuit. As a demonstration of the test system, let

us follow the development of an interesting part, an adder, in an integrated circuit.

A common technique in the design of a complex system is to design and test many of the

component parts separately and then simply compose them into a much larger system. This

technique can be applied to integrated circuit design: a part, such as a memory cell, error

correction unit, or adder, can initially be designed alone, then tested or simulated with a

prototype integrated circuit, and finally incorporated into its environment in the system.

1. 1 . 1 Initial Design and Testing

In the earliest stages our adder is on a prototype chip with all of the inputs and outputs,

and possibly some test points, connected to pads. The design of this chip must be verified.

1.1.1.1 Description of the Pins

Testing can start off immediately with the prototype chip. Figure 1-1 illustrates such a

chip. The designer would place the chip into the tester and run the test system. Before

testing can begin some preliminary description of the chip must be made: the pins must be

described. This operation might appear as follows:

FIFl}define port a 1 2 3 4;
FIFl}define port b 5 6 7 8;
FIFl}define port c 9 10 "i 1 12;

definitions of pins

An interactive implementation of the test language described here has been constructed

and called FIFI. The FIFI> at the beginning of each line is representative of the prompting

that the test system supplies. The underlined boldface text is the test language input.

a
I I

I I I I

3

V V V V
+---+-+-+-+----+
I I
I +----->
I adder +-----> c
i +----->
I +----->
I I
+---+-+-+-+----+

t t 1' t
I I I I
I I I I

b

Figure 1-1: Illustration of a Prototype Chip

Examples of the test language preceded with FIFI> can generally be typed directly to the

test language interpreter. Descriptive information placed to the right in an italic typeface is

not part of the test language. These commands specify that there are. three logical signals

that go in or out of the chip: a, b, and c. Each of these three signals consists of four wires or

conductors, and the numbering of these conductors is as shown above.

1. 1.1.2 Initial Checkout

At this point the function of the prototype chip can be tested. The designer can imagine

some inputs that will produce understandable outputs. If the chip were an adder, for

example, it might be useful to verify that 2+2 works before an exhaustive functional and

timing test is performed. If 2+2 does not generate 4, then a more comprehensive test will be

worthless. Similarly, if a chip intended to perform error correction failed to recognize

error-free data, then backtracking and carefully inspecting the design would be advisable.

The designer continues his initial testing with:

FIFl>i a<2,b<2;
FIFl>i c!;
c:15--
FIFl>i a<0,b<2;
FIFl>i c!;
c:15--

4

line 1
line 2
line 3
line 4
line 5
line 6

Lines 1, 2, 4, and 5 start with the letter i. The i is an abbreviation of the word immediate

that indicates that the remainder of the line is to be executed immediately. The first line

contains two commands of the form p<e. These commands cause the tester to drive a

voltage into the pins previously defined. The word on the left, p, is the name of a previously

declared port, and the number (in general, an expression e) on the right is a value that will

be driven to the pins. The operator < is like an arrow pointing from the expression to the

port, indicating the direction of signal flow. The second line invokes immediate execution of

the single command c!. Again, the word on the left, c, represents a port declared above, but

the operator ! causes the tester to print the voltage on those pins instead of driving the pin.

The third line is a report of the value of that port.

Although these commands appear to be executed immediately, it is the semicolon at the

end of each line that invokes the test steps. Where no ; appears at the end of a line the

test stap would be deferred until one was encountered, similarly multiple ; 1s on the same line

will cause multiple test steps. The commands are executed in between the time when the

return key on the terminal is pressed and the next prompt is printed.

Notice on the third line that the tester is reporting the value of the c port as 15 (decimal),

meaning that all four pins have a high voltage.

Having observed the result of 2+2, the values 2+0 are tried. The tester responds again

with the result 1 5, or all pins high.

5

1. 1. 1 .3 Common Errors

The 2+2 test did not generate the proper response. The designer then tries 2+0, and

again gets an improper response. At this point the following thoughts pass through the

designer's mind:

1. Both responses were 1 5, and 1 5 corresponds to all wires high. An
unconnected wire will read as high, and therefore perhaps the chip is not in
the socket.

2. If the power supplies were not connected1 not bonded, or corrupted inside the
chip then all the outputs would float, causing the observed response.

3. Perhaps the assumption that a and b are inputs and c is the output is
incorrect, and actually a or b is the output and c is an input. The tester would
then be monitoring an input port and would read high.

After considering these possibilities, the designer checks the chip, the power supplies and

the layout to determine if any of the above is responsible. He discovers that, in fact, the

ground lead is disconnected. The 2+2 test is repeated:

FIFl>i a<2,b{2;
FIFl>i c!;
a:1
FIFl>i a<2,b<O;
FIFl>i c!;
a:O

Considerable success: one of the outputs has been observed in both the high and low_

state in response to changes in inputs. This gives reason to believe that the power supply

is intact and that the output drivers function. Otherwise, however, the outputs are all wrong

(this is an adder and the result of 2+2 should be 4).

Now the designer draws a picture to see what is happening:

2 +
2 =
1??

binary

0 0 1 0
0 0 1 0
0 0 0 1

2 +
0 =
2??

binary

0 0 1 0
0 0 0 0
0 0 1 0

6

This picture looks like addition with the binary order of bits reversed. Therefore, the

designer checks the layout to verify this possibility, discovers the mistake, and then

changes the port definitions with the following commands:

FIFl>define port a 4 3 2 1 ;
FIFl}define port b 8 7 6 5;
FIFl}define port c 12 11 10 9;
FIFl>i a<2,b<2;
FIFl>i c!;
a:4 --
FIFl>i a<2,b<O;
FIFl>i c!;
a:2

conductors reversed

The test system is used like a pocket calculator: short expressions can be entered and

the results can be observed immediately. In the above example, the designer tried 2+2 and

2+0 and received the correct response.

1. 1.2 Exhaustive Checkout

It is now possible to check the adder in considerable detail more-or-less automatically.

Assume that a functional simulation of the device produced a table of inputs and expected

responses in the following form: 1

a<3, b<4, c>7;
a<4, b<5, c>9;
a<5, b<6, c}11;
•.. etc ...

Here, the symbol > indicates that the output of the chip, or port, on the left of the

operator is to be sensed and compared with the value on the right. The value on the right is

not altered; if there is a difference a global check fail flag is set.

1 This is not as contrived as it may seem: it will later be shown that this notation is an
efficient notation to describe simulations.

7

The input output relationship shown here can be applied to the chip by editing the table

shown above to the following form and then executing the following tester commands:

contents of file demo
define procedure demo

a<3,b<4,c>7;
a<4,b<5,c>9;
a<5,b<6,c>11;
... etc ...

end

FIFl>read demo
FIFl>execute demo
[check failed]
FIFI>

declaration
body of procedure

file is read
demo is executed
printed only if bad

The list of inputs and expected responses has been altered in a mechanical way to make

a procedure definition. The procedure definition is read to the test system and the

procedure name ·(demo) is made available as an executable test routine. In the example

shown, at least one of the comparisons (indicated with a >) failed, causing the statement

[check failed] to be printed.

Another technique for functional checkout is to let the tester algorithmically generate a

test. Consider, for example, testing an adder exhaustively.

FIFl>immediate (loop i O 15
FIFI> (loop j O 15
FIFI> a<i,b<j,c>(i+j)&15;))
FIFI>

i takes values O 1 2 ...
13 14 15

& is logical and
no [check fail] printed

Here the two loop statements cause the controlled variables to take values 0-15, and the

third statement performs the test. The third statement uses the loop indices to generate all

possible inputs, and uses the ability of the tester to evaluate simple expressions to

generate the expected response of the adder. Since the message [check failed] was not

printed, the operation of the adder is correct.

8

1 .1.3 Testing an Adder as an Arithmetic Array

The exhaustive test shown above is an efficient test for an adder only if the adder is

very small. A larger adder, say 16 bits, would require over four billion test steps. The key to

developing a more efficient test for an adder is to test each of its parts separately.

Complex devices are generally composed of a number of simpler devices that can be tested

independently. The independent testing of all the simpler devices and the verification that

they are connected properly is a proper test for their composition. Adders are usually

constructed as s.n array of single bit full adders, and this structure will be exploited to aid in

testing.

Figure 1-2 illustrates a four bit adder constructed as an array of full adder stages. Each

adder stage has three inputs, labeled A, B, and ci (carry input), and two outputs, labeled C

(sum), and co (carry out).

V V V V V V V V

+-+--+-+ +-+--+-+ +-+--+-+ +~+--+-+
I A B I I A B I I A B I I A B I
I ci+<---+co ci+<---+co ci+<---+co I
I C I I C I C I C I
+--+---+

I
V

+--+---+
I
V

+--+---+
I
V

+--+---+
I
V

Figure 1-2: Four Bit Adder as an Arithmetic Array

Each stage could be tested as follows if the stage were directly available to the tester:

FIFl)(loop i O 1
FIFI> (loop j 0 1
FIFI> Ooop k O 1
FIFI> A<i,B<j,ci<k,
FIFI> C>O+ j+k)[0],
FIFI> co>(i+ j+k)[1];)))

all combinations of i
j
and k

[n] is bit extraction
[OJ is lsb
[1] is carry

It is not possible to access the ports ci and co directly, however. These ports can only be

9

accessed through the stages before and after the stage under test. For example, the ci

input to stage N can be set to state x by applying x to both A and B of stage N-1. Using this

strategy the following tester code will test all the adder stages except the first and last:

FIFl)(loop x 1 2
FlFI>
FIFI>
FIFI>
FIFI>
FIFI>
FIFI>

(loop i O 1
{loop j O 1

(loop k O 1
A<O<<x)+(k<<x-1),
B<(j<<x)+(k<<x-1),
C}(i+ j+k)< <x;))))

stages 1 to n-1

< < is shift left

The first stage cannot be tested this way due to its not having a carry input. Similarly the

last stage cannot be tested because of lack of carry output. The following code would be

required to test these:

FIFl>(loop i O 1
FIFI> (loop j O 1
FIFI> A<i,B<j,C}i+j;))
FIFl>(loop i O 1
FIFI> {loop j O 1
FIFI> (loop k O 1
FIFI> A<(i< <3)+(k< <2),
FIFI> B<(j<<3)+(k<<2),
FIFI> C)(i+ j+k)[O]< <3;))}

test first stage

test last stage

1.1.4 Testing When Embedded in a System

Once our adder has been verified functionally and tested as a separate part, it will be

incorporated in its system environment. When put into a new environment testing must again

be performed to verify that its composition into the new system is correct, not to mention

production testing when the final system design has been verified.

When the adder is not available on a prototype chip, with all it inputs and outputs

conveniently available, but embedded in a complex system, verification becomes considerably

more difficult.

10

The strategy to test our adder is to develop a set of software tools to effectively remove

the system surrounding the part and then to apply the same tests as before. In other words,

we create a software tool that can transform a test of a part into an equally valid test of

that part when it is embedded in a system.

Let us imagine that our adder is embedded in a system with a structure of a conventional

one-address accumulator computer; that is, one input of the adder is from an accumulator,

and the output always goes to the accumulator. Furthermore, assume that the accumulator

contains a scan path that can be used for testing purposes. This structure is illustrated

below:

lsclk I sin
I V

+----------+ I +--------+
I adder I +--> I I

INP ------------>+ i np a I I I
I out c +------->+ ACC +------+-------->

+-->+ inp b I I I I
I I I +-->I I I
I +----------+ I +--------+ I
I I I I
+-------------------)--------)----------+

I I
lclk V sout

1.1.4.1 Describing an Access Procedure

Considering the particular structure of the device shown, the procedure to apply a set of

stimuli to the b and c inputs and to observe the a output is as follows: load the c input into

the ACC through the scan path, apply the b input to the adder and load the ACC with the

result, then unload the a result from the accumulator through the scan path.

A procedure can be constructed to apply two input values and compare one output value

to the adder:

1 1

FIFl>procedure access line 1
FIFI> var ab c; line 2
FIFl> {loop i O 3 srn<c[i],sclk<1; line 3
FIFI> sclk<O;) line 4
FIFI> INP<b,clk{1; line 5
FIFI> c,k<O; line 6
FIFI> (loop i O 3 sout>a.[i],sclk<1; line 7
FIFI> sclk<O;) line 8
FIFl>end line 9

Lines 1 and 2 declare a procedure with three arguments, a, b, and c. Lines 3 and 4 cause

one bit at a time (indicated by the bit subscript [i]) of the c argument to be shifted into the

accumulator via the scan path. Lines 5 and 6 cycle the system, causing the adder to be

exercised and the result to be put into the accumulator. Lines 7 and 8 unload the

accumulator serially and compare the value with the expected result.

1. 1.4.2 Testing a Part Through an Access Procedure

Having described how to access the adder, the testing can proceed exactly as if the part

were constructed separately. The syntax. and semantics of the test language have been

chosen to allow the same test description to generate tests either of a directly accessible

part, or an embedded part.

The exact syntax required to test the adder when embedded in the system is shown

below:

FIFI>(call access
FIFI> a<3,b<4,c>7;
FIFI> a<4,b<5,c>9;
FIFI> a<5,b<6,c)11;
FlFI> ... etc ...)

line 1
line 2
line 3
line 4
line 5

Notice that the only change to tha code is the inclusion of the text 11(call access" at the

beginning and a 11
)

11 at the end. The first line says that the test language code within the

parentheses will refer to testing through the procedure named access. Within these

12

parenthesis each semicolon causes the procedure to be called. The arguments to the

procedure are passed by assignments to the names of the parameters. For example, the

first call of the procedure access is with a, b, and c having the values of drive to 3, drive to

4, and compare with 72 .

The access procedure can be applied to the other tests of the adder developed

previously. For example, the test of the adder as an arithmetic array would appear as

follows:

FIFI>(call access
FIFI>
FIFI>
FIFI>
FIFI>
FIFI>
FIFI>
FIFI>

(loop X 1 2
(loop i O 1

{loop j O 1
(loop k O 1

A<(i<<x)+(k<<x-1),
B<(j<<x)+(k<<x-1),
C>{i+ j+k)< <x;)))))

stages 1 to n-1

In a sense the procedure access unlayers the design so the adder appears to be directly

available to the user of the test language, when in fact it is not. The concept in the test

language of a port is an abstraction of two concepts: the concept of electrical voltages on

the pins and the concept of information residing on internal electrical nodes of a device. The

concept of the port has the advantages of both the concepts from which it is derived. The

application of a port through a tester is straightforward due to its origins as a operation

performed on the pins of a devic.e. The generation of tests is greatly simplified by specifying

the test in terms of actions on internal nodes. The purpose of the procedure is to implement

this abstraction in each particular instance.

2 The values could also be described as <3, <4, and > 7.

13

1.2 Strategy for the Design of Tests and Design for Testabmty

The test language enforces a distinction between the primitive tests and the methods

that are used to access these parts. Considerable design flexibility is possible because

access proc_edures for subparts are essentially independent of the construction of the

subpart. For example:

- Access procedures for subparts can be specified before the subpart is
designed.

- The design of a subpart can be changed without having to change the test
specifications for the rest of the design.

- The interface between a part and a subpart may be straightforward enough to
allow a division of labor between designers.

1.2.1 Primitive Tests

The criteria for generating primitive tests is more dependent upon the technology and

physical layout than on the logic of an integrated circuit. Some primitive tests may be

devised to assure that all wires adjacent on the silicon are not shorted, or that no wires are

open, or that no gates have a stuck-at fault.

The knowledge required to evaluate the types of faults likely to occur includes a

knowledge of the technology and the exact placement of transistors and wires. The ideal

mechanism for performing this task is a computer program, written with input from physical

layout and having representation of the causes of faults. This program would analyze the

geometry of portions of the design and generate tests for each portion.

1.2.2 Application of Primitive Tests

The procedures that are used to access the internal parts are dependent solely upon the

logical organization of the circuit. The access procedures are a form of a functional

description, but an incomplete one in that they describe only one manner of testing each

14

internal part of the system. It is only necessary, however, to describe one such manner of

testing each part, when there may be many.

Since the specification of the access procedures is only dependent upon the functional

character of the device, the designer is in the ideal position to perform this task. In an ideal

situation, the designer would provide the access procedures at the same time as the register

transfer model, or block diagram, of a design is defined.

1.2.3 Synergism of Testing and Design

If testing is approached as described above, the test generation task can aid the design

task and vice-versa. The access procedures required for testing are functional descriptions

relating stimuli applied to the device to internal conditions (i.e. an internal device is tested)

that can be verified by simulation. Simulation of the access procedures will serve to verify

the functional description. On the other hand, the designer's understanding of the behavior

of the device enables him to efficiently specify the access procedures.

1.2.4 Testability

A testability strategy consists of three parts: (1) the possible augmentation of the

hardware of system to include mechanisms that simplify the application of primitive tests, (2)

methods for applying primitive tests through the augmented hardware, and (3) the actual

generation of the primitive tests.

Previous researchers have formalized some testability strategies. In [Bouricius 71] a

testing strategy c~!led D-calculus is described for generating primitive tests for

combinational logic. The D-calculus computes all tests from the pins of the chip, and

potential simplifications due to the logical structure are not exploited. When the computation

of tests directly from the external pins becomes too difficult, selected internal nodes can be

15

connected to the pins to improve diagnosabli!ity [Hayes 74]. In LSSD, [Eichelberger 77],

the access of internal state is aided by transforming state registers into a serial shift

register. The manner of accessing internal state in LSSD is firmly defined and a designer has

no freedom t~ make changes that would optimize performance.

-The test language allows testability strategies to be formalized. Tests for combinational

logic generated by the D-calculus would be formalized by the test language as tests with no

access procedures. LSSD can be formalized by a very simple access procedure that clocks

the serial shift register. Testability strategies for specific applications would include

descriptions of access of internal state through relatively complex (i.e. more complex than a

single shift register) hardware. The test language is therefore a testabmty strategy

generator.

1.3 The Design of Testers

1.3.1 Test Generation Modes

One test generation mode is the sequential mode. In sequential mode, the test is

generated by the continuous execution of the test language. The output of the test

language system is a series of commands to alter values on pins and perform test steps.

Sequential mode has the advantage that the entire test is never instantiated in storage at

one time, and therefore large test matrix storage is not necessary.

An example of sequential test output is shown below. Each line is a tester command.

Tester commands accumulate until a step command is encountered, and then are all applied

simultaneously.

FIFl>i (loop i 1 2 data<i,clk<1 ;clk<O;)

sequence
I
I
I
V

data<l
clk<l
step
clk<0
step
data<2
clk<l
step
clk<0
step

16

output

Sequential output is used in the tester that is pr~sently interfaced to the test language

system.

A second test generation mode is the rectangular matrix, or timing diagram, mode. In this

mode the test system generates a single large static test matrix. A test matrix consists of

a series of test vectors, each test vector being one row of the matrix. Each test vector

:r

represents the stimulus and response of the different ports of the device during one test

step, and the vertical dimension represents the sequence of the test. The rectangular

matrix mode cf output matches more closely the operation of conventional testers where the

entire test is resident in memory for the entire duration of the test.

The rectangular matrix test mode is illustrated below:

FIFl>i (loop i 1 2 data<i,clk<1 ;dk<O;)

data elk
+-------+-------+
1<1 1<1 I
1<1 1<0 I
1<2 1<1 I
I <2 1<0 I
+-------+-------+

FIFI>

17

1.3.2 Tester Construction for the Test Language

Testers can be made more efficient if they execute this test language. The test language

lends itself well both to dynamic generation of tests and to the simple application of test

vectors stor~d in a memory. Since the size of tests, measured in numbers of steps, grows

astronomically as the complexity of devices increases, a system that needs to store all test

vectors simultaneously has a considerable advantage. The speed at which tests can be

generated sequentially may be much less than is required for efficient testing.

A tester can be constructed to accept sequential commands and store test vectors.

Testing procedures that are short and do not invoke any other testing procedures, called low

level testing procedures, would be executed by storing the rectangular matrix representation

in memory and dumping the memory to the test head when necessary. The low level

procedures contain very few test vectors, but are executed many times. Sequential test

generation can be used for the high level procedures that invoke the low level testing

procedures. Since a complete low level testing procedure is executed between steps of the

high level procedures, the rate of high level execution can be much less.

A tester/test language system of this type would consist of a sequential test generation

unit to generate tests in a very flexible, but slow manner, and a buffer test generator to

buffer the high speed, but simple, tests and invoke them on command of the sequential test

generation unit.

1.3.3 interface of the Test Language to Simulators

The function of the test language in describing electrical signals to be applied to a chip is

very similar to the function of the input description language of a simulator. In this section,

let us consider the possible application of the test language as an input language to a

18

simulator.

Conventionally, simulators have two types of input, a description of the device as an

assemblage of parts, and the description of the stimuli to be applied to the device. Typically,

the response of the simulated device can only be printed for visual verification by the user.

Simulators of this type include circuit level simulators such as MSINC [Young 76], and SPICE

[Nagel 73], and switch simulators such as MOSSIM [Bryant 81] [Bryant 82J and system

level simulators such as the functional simulator in [DeBenedictis 79].

In interfacing the test language to a simulator, most of the functions applicable to testers

retain the same meaning: performing test steps corresponds to running the simulator, the <

and > operations would effectively drive and sense the value at an internal port, etc.

Some possibly subtle differences exist, however. A simulator has access to internal as

well as external ports. It is possible to do a <, >, or ! operation on a port that is completely

internal to the chip. Force operations can have considerably greater flexibility with a

simulator. The simulator may be able to force a port gently, only changing the voltage on a

capacitive port, or may force a port firmly by supplying DC current [Bryant 82].

The test language has the capability of sensing the output of the simulation through >

operations and making decisions concerning the correctness of the simulation. If observing

the output of the simulation manually was desired, the ! operation could be used.

Since siinulation and testing play similar roles in the design process, a common language to

both could be tremendously advantageous. Simulation is performed when a design is partially

completed and limited verification of its operation is desired. Since simule,tions are of limited

accuracy due to approximations about the characteristics of transistors and the layout, true

verification through testing is necessary. In both the simulation and testing of an integrated

19

circuit the information provided and the results obtained are the same: a stimulus is specified

and the results are observed or verified. A common language would give the effort expended

in developing simulations double duty; it could be used for testing also.

1.4 The Value of an Interactive, Non-Embedded Test language

Previous work in the testing field has usually been in the direction of embedded test

languages. Earlier work used a language such as Fortran and embedded commands to

manipulate tester hardware. More recently high level test systems are being developed

wherein test commands are embedded in Pascal. Current work includes interpreters written

in the embedding language which implement a more machine independent test language.

For reasons discussed later in this section, this work is opposed to the strategy of

developing embedded test languages.

1.4.1 ATLAS

The test language ATLAS [IEEE 80] is defined by IEEE as a machine independent language

for testing. Unfortunately, ATLAS is not specific to integrated circuit testing: it is equally

efficient for describing tests for jet engines as adders. ATLAS's generality me.y make

integrated circuit descriptions less compact than desired.

ATLAS is basically a fortran style programming language with a large number of additional

statements related to testing. An example of an ATLAS statement is shown below: 3

M00840 VERIFY, (VOLTAGE), DC SIGNAL, UL +o.sv LL -o.sv,
CNX HI SK 1-A LO SK 1-B $ performs a > operation

ATLAS has the advantage of not being tied to the particular hardware of test instrument.

3 [IEEE 80], page 105.

20

1 .4.2 FACTOR

Another embedded test language is Fairchild's FACTOR programming language [Fairchild

80], the control language for the series 20 testers. The series 20 testers contain a general

purpose computer designed specifica!ly for the tester with interfaces to various electrical

interfaces and a 1 024 vector test memory. The test language is basically Fortran with

statements for manipulating the pins directly and for loading the 1024 vector test memory.

Once loaded, the test memory can be dumped to the pin electronics to perform a functional

test.

The Fairchild tester contains a precision measurement unit, or PMU. The PMU can be

connected to a number of different pins and drive or sense voltages of currents with high

accuracy. The following are example statements to drive a current of -1 uA into pin number

26:4

CPMU PIN 26,;
FORCE CURRENT -1 E-6, RNG 1;

1.4.3 ANGEL

connect to PMU
exponential notation

ANGEL [Snoulten 81] is an example of a test language midway between embedded and

stand-alone. ANGEL is a block structured imperative language with embedded testing

commands constructed for testing. ANGEL differs from other embedded test languages

because the embedding language is original. Like other embedded languages, ANGEL includes

flow control and! conditional statements.

An example of ANGEL code is shown below:

4 [Fairchild &OJ, pages 9-18 and 9-19.

dot=7,12
increment count
if (count .eq. F 'hex) then

set CO
else

clear CO
end if
apply COUNT end CO

end do - ·
I t=[7, 12]

1.4.4 The FIFI Test Language

21

.eq. is from fortran
CO is a port

The FIFI test language is a non-embedded interactive language. By making the language

non-embedded a number of advantages are obtained:

1. The language can be easily interactive. Most embedding languages require a
compiler, and hence cannot be interactive.

2. Test specifications can be much more concise if the syntax of a programming
language is not required.

3. A non-embedded language can constrain tests to have certain regularity and
simplicity properties that may allow the test to execute quickly or on simple
hardware.

4. Portability. An embedded language is unlikely to be adopted as a portable test
specification language because (1) the embedding language is probably not
portable, and (2) there will likely be competition from other embedding
languages.

1.5 Summary

The purpose of this work is to demonstrate that testing can be made into a systematic

task. The testing task described in later chapters interfaces to design and layout in well

defined ways. The generation of tests is partitioned into subtasks corresponding to

different physical or logical parts of the system. This means small changes in a system will

require only small changes in the test specifications.

22

2. A Notation for Describing Integrated Circuit Testing

The test language introduced informally in the previous chapter will now be described

formally. In section 2.1 the meaning of the' digital signals that flow between a tester and a

device is formalized. In section 2.1.2 an algebra is developed for manipulating these digital

signals in an abstract manner. In section 2.2 the assembly of these signal manipulations

occurring at different times into test matrices is discussed. Chapter 3 continues with

examples of the test language.

2. 1 Abstract Elements of Digital Electrical Signals

Electrical information on wires is more complicated than just ones or zeros. Information

flows in a particular direction, or may not flow at all, and has various electrical and timing

properties. A Signal will often be encoded on a number of conductors, or as a sequence of

values separated in time. The test language uses an element of information that is a concise

and understandable way of manipulating electrical signals.

2. 1 • 1 Elements of the Algebra

The testing algebra deals with elements called typed values that are ordered pairs

consisting of a type part and a value part. Figure 2-1 illustrates a typed value.

type part

one of:

force
feel
interrogate
wait
tri-state
undefined

value part)

an:

integer

Figure 2-1: A Schematic Representation of a Typed Value.

23

The value of a digital signal will be represented as an integer. Each conductor in a

multiple-conductor signal will be represented by one bit in the binary representation of the

Integer. The number of relevant bits is determined by the number of conductors, or the

degree of time multiplexing of the signal.

In addition to the value of the signal, the direction of flow is relevant. The obvious

concept that there are two directions, in and out, is too restricted. The algebra utilizes six

directions, or types: force, feel, interrogate, wait, tri-state, and undefined. The physical

meaning of these are described in figure 2-2.

Force: The value part is forced upon the device under test. The tester output
drivers are enabled.

Feel: The outputs of the device under test are compared with the value part.
If there is a difference a global error flag is set.

Interrogate: The outputs of the device under test are sampled and the result is
printed for interactive examination by the operator.

Wait:

Tri-state:

Undefined:

Advancement of the test step is delayed until the outputs of the
device under test are equal to the value part. This action may be
subject to a timeout.

The tester outputs remove drive c3:nd the outputs of the device under
test are ignored.

Causes an error. The undefined type is generated by constants and
must be changed to a 'defined' type before application to pins.
Application of type undefined to a pin indicates a probable user error.

Figure 2-2: Types of Information in a Tester and Their Meanings

The reader may notice two interpretations of the typed values:

- The tagged data interpretation is that the typed values are like data in a
tagged data architecture machine. In a tagged data architecture computer data
has a type part, describing the data as, for example an integer, floating point
number, or procedure, and a value part, such as the bits of the integer or
floating point number, or the address of a procedure. The value of the data is
determined only when absoiutely necessary, either by using the integer or
floating point value, or executing the procedure [Organick 73]. In the test
algebra the available types are force, feel, etc. and the execution of a test
step depends upon the types of the typed values applied to the pins.

- The algebraic interpretation is that the typed values of the algebra are
elements of a mathematical set with operations defined among its elements.
The elements of the set are ordered pairs. The first element of the pair is

24

selected from a set of five types. The second element of the pair is an integer
modulo 2°, where n is predetermined. As will be described later, this
mathematical set has a subfield relating to the value, or integer, part. Other
aspects of the structure are more complicated.

2.1.2 Ports

A port is a group of conductors available to the test instrument. This group of pins is

always referred to as though it were an integer, that is, there is a MSB pin and a LSB pin. In

addition, all pins in the group have the same type, i.e. all are either forced, felt, waited upon,

etc. Figure 2-3 defines a port called addr that consists of 16 conductors. Conductor 5 is

the MSB and conductor 30 is the LSB. The syntax of port definitions is discussed in appendix

A.3.

FlFl)define port addr 5 4 3 2 1 40 39 38 37 36 35 34 33 32 31 30;

Figure 2-3: Example of a Port definition.

2.1.3 Equations and Asscgnments

In general, a typed value assignment is like a conventional assignment statement: the right

hand side is an expression_ that is evaluated and the result is associated with the port on

the left hand side. In the test language expressions are typed value expressions and

evaluate to an ordered pair consisting of a type and a value. The entities that may appear

on the left side of an assignment are carefully controlled. The left side may specify either a

port or a parameter to a testing procedure. A port is a name associated with one or more

electrical conductors of the tester. A typed value assignment to a port is the basic action

used to make a test, and will often be called an action.

25

2. 1 .3. 1 Assignments

The simplest assignment operator is =. The = operator simply takes the typed value

generated by the right hand side and associates it with the entity on the left hand side.

Other assignment operators exist that are Jess general, but more frequently used. These

operators coerce the type of the assignment to their particular type, ignoring the type of the

right hand side. Figure 2-6 defines the different assignment operators and figure 2-4 shows

examples of the different operators and explains their meaning. The exact syntax of

assignment operators is shown in appendix A.4.

name oQerator ~ of result value of result
force x<y force value-of-y
feel X>Y feel value-of-y
interrogate x! interrogate
tri-state x<NULL tri-state
wait x#y wait value-of-y
equal x=y type-of-y value-of-y

Figure 2-4: Examples of Assignment Operators of Different Types

Except for interrogate, which will be discussed later, this interpretation of the type of an

assignment statement is consistent with the original interpretation of the types in typed

values. In all the types discussed associating the typed value with an electrical conductor

of the tester requires additional data. This information will be driven through the output

drivers of the tester if the type ,is force, or compared with the voltages sensed from the chip

is the type is feel.

2.1.3.2 Expressions

The syntax of expressions in the testing algebra is similar to conventional expression

syntax: an expression consists of constants or variables interspersed with unary or binary

operators. Parentheses can be used. Figure 2-5 shows examples of typed value

expressions. See appendix A for a general discussion of the syntax of the test language

26

and appendix A.5 for the specifics of expression syntax.

expression value .L!:! (type,value} notation
{undefined, 4} see note

(type-of-X,value-of-X}
(type-of-X,value-of-X + 4)

a 4
b X
c. X+4

{Note that constants have type undefined.)

Figure 2-5: Examples of Typed Value Expressions

The full meaning of the semantics of the operators is very different from the conventional

interpretation of operators. The differences, however, always involve elements of type

interrogate. We will discuss the conventional interpretation, where the use of interrogate is

excluded. The changes required for type interrogate are discussed later.

Left Hand Identifier Right Hand Expression

+------------+
I I <----------------- Type
I type rule I

Type <------ I I
(see note} +------------+

+------------+

<----------\ /-- Value
\ I
X

I \
Value<------ I I <----------/ \-- Type

I operation I
I I <----------------- Value
+------------+

a

b - does
not exist
for unary
operator

Note: this interpretation does not apply if type is interrogate.

Type ru I e: Input.§. Input e,. Result
undefined p p

Q undefined Q
X X X
y z error

Figure 2-7: Conventional Interpretation of Arithmetic Operators

In the conventional interpretation the evaluation of the type and value parts is

independent. The value of an expression is the result of the indicated operation on the

27

Left Hand Identifier ---------
Operators 11 <11 (force), 11

)
11 (feel},

11 # 11 {wait):

Right Hand Expression

+----------------+
Type <--- operator type

I I
I error check +<- Type
i I
+----------------+

Value<-- Value

Error check:
if input type undefined then no error
else if input type same as operator type then no error
else error

Operator 11 !11 {interrogate) with no right hand side:

Type <---------------- interrogate

Value--> Print

Operator 11 <NULL" Ctr i -state):

Type <---------------- tri state

Value<---------------- 0

Operator 11 =11 (assignment):

Type <-- Type

Value<-- Value

Figure 2-6: Different Assignment Operators

value parts of the two operands. A best guess is made for the type of the result. If one of

the inputs is undefined (perhaps because it is a constant) the result will be the type of the

other operand. If both inputs are of the same defined type than the result will be of that

type. If the inputs are of different defined types then no good guess can be made.

28

2. 1 .4 Specification of Analog Tests

The concept of the typed value has more generality than is exploited here. In addition to

the specification of a digital signal value and direction, the typed value could have

information describing the voltage levels corresponding to a one and a zero, or timing

information describing the relative timing of the signal transition with respect to the start of

the test step. A more complete set of potential attributes of a typed value are listed below:

Type

Value

Voltages

Timing Skew

Glitch Detection

Output Load

One of force, feel, interrogate, wait, or undefined.

Binary information.

One and zero voltage levels for drive and sense. If these four numbers
are not specified then the last specified values are used. If no
voltages were ever specified, the system defaults are used.

Two timing values, one for the transition time for forced values and one
for felt values. If left unspecified, the last specified values are used,
or a system default.

A flag that may assume the values of true and false. If glitch detection
is enabled, hazards encountered during feel operations will cause the
feel operation to fail.

Several real numbers that specify the type of output load to be applied
to a pin. One such number might be a parallel capacitance, and another
might be current load.

The list of possible features that can be included in the typed values is not practically

bounded. Special purpose testing tasks might require testers with special hardware which

could be invoked through additional attributes of the typed value. For this reason, future

test systems should allow special user defined attributes in the typed values, and should

implement only those supported in hardware.

2.2 Organization of Digital Manipulations into Test Matrices

All tests of digital systems ultimately consist of a series of test steps. Each test step is

essentially a typed value assignment to a group of conductors on the device under test. The

changes in the state of the tester outputs for each test step are described by a test vector.

A test consists of many test vectors applied in sequence, and these are termed a test

29

matrix.

Section 2.1.2 describes an algebra for · manipulating information relevant to test

instruments. That algebra is suitable for describing the information to be applied to a single

output of the test instrument. This section describes how to combine many of these to form

a test matrix.

2.2.1 A Restricted Test Language and Testing Efficiency

The test language is capable of generating non-adaptive tests only. A non-adaptive test is

a test where the application of the test does not depend upon any information obtained from

the device under test. Non-adaptive tests are sufficient for testing a large class of

devices, including nearly all currently manufactured chips5 .

An arbitrary non-adaptive test can always be represented as a finite fixed set of test

operations (typed value assignments) associated with the pins of the device under test.

Since the set is finite it can be evaluated, stored, and. manipulated. The test can also be

stored in the high speed memory of a tester and played against the device under test at a

constant high speed.

The description of an arbitrary adaptive test will require a general purpose language, i.e. a

language capable of computing all computable functions. A test program written in a general

purpose language may produce an infinitely large test. Infinitely large tests cannot, of

course, be stored and manipulated. The evaluation of an arbitrary computable function may

require an arbitrary number of machine steps, and hence the test cannot necessarily be

5 A sufficient condition for a chip to be testable with a non-adaptive test is that the chip
have a reset sequence [Seitz 71]. An example of a chip that is not testable with a
non-adaptive test is a chip containing a counter that can neither be reset nor loaded.

30

generated at a fixed rate.

The restrictions in the test language over general purpose programming languages are as

follows:

1 . There are no conditionals. Conditionals could be of two types: (1) dependent
upon information returned from the device under test, and (2) dependent only
upon program variables. Conditionals of type 1 would result in an adaptive
test

6
and conditionals of type 2 can be eliminated by macro expanding the

test •

2. There are no variables to represent tests. Tests can only be created, they
cannot be stored. The test language could, as an optimization, recognize
repeated tests and store them, but it is not possible for the test language to
require that this be done. This gives the test language the ability to handle
arbitrarily large tests with a finite memory.

3. Information flow is toward the device under test only. Information cannot be
returned from the device under test except in very special, restricted, ways.
Information return is limited as follows: (1) there is a go/no-go flag, and (2)
interrogate operations cause information to be returned to the operator. This
allows reasonable physical design of testers.

The test language is really a weak programming language: there is no floating point, no

I /0, no conditionals. It is impossible to compute prime numbers using the test language. In

fact, it is impossible to do anything with the test language except generate tests.

It is important that the language be viewed 'as a notation for describing tests, rather than

as a programming language adapted to testing. These restrictions of the language will force

the test designer to specify tests in a particular programming style. This style is enforced

by the limitations on the choice of constructs available. The single allowable programming

style emerges as the most structured and efficient to execute.

6 The typed value operations previously described have a considerable power that, in
other languages, would require conditionals. In a sense, the test language does not eliminate
conditionals, it merely confines them to primitive operations on the defined data types.

31

2.2.2 Elements

Description of a matrix always begins with a description of its elements. In the test

language the elements are typed value assignments, or actions.

Figure 2-8 illustrates some examples of typed value assignments. Notice in figure 2-8,

line 4 that the word 'addr' appears twice. The occurrence on the left refers to port, and the

occurrence on the right is a variable.

FIFl>define port elk 6;

FIFl>def port addr 5 4 3 2 1 40 39 38 37 36 35 34 33 32 31 30;

FIFl)clk{1;

FIFl>addr<addr[0:6];
FIFl>addr<addr[7: 13];
FIFI>
FIFI>
FIFl>clk<1,clk<O;

port elk driven high

line 4
port addr driven to

low and high parts
of variable addr

undefined, error condition

Figure 2-8: Illustration of Pin and Variable Assignments

The last line in figure 2-8 illustrates the condition where the same port is assigned

different values in the same test step. This action corresponds to an incorrectly formed test

and is a user error.

2.2.3 Test Matrices

There are two interpretations that can be applied to tests generated by the test

language, the static interpretation and the dynamic interpretation. Each of these

interpretations is the best view in some circumstances: the static view allows the most

abstract visualization of large tests, and the dynamic view has greater flexibility in

describing complex manipulations within a test.

The static interpretation is based upon the test matrix. A test matrix is an array of typed

32

values specifying a typed value for each pin of the device under test for every step. Figure

2-9 illustrates a small test matrix 7 •

logical pins--->

I<----------- data bus db --------->I
elk dbS db4 db3 db2 dbl db0

+---+
test 1 I <1 <NULL <NULL <NULL <NULL <NULL <NULL I
sfeps 2 I <0 <NULL <NULL <NULL <NULL <NULL <NULL I

I 3 I <1 <NULL <NULL <NULL <NULL <NULL <NULL I
I 4 I <0 <NULL <NULL <NULL <NULL <NULL <NULL I
V 5 I <1 <0 <0 <0 <0 <0 <0 I

8 I <0 <0 <0 <0 <0 <0 <0 I
7 I <1 <0 <0 <0 <0 <0 <1 I
8 I <0 <0 <0 <0 <0 <0 <1 I
9 I <1 >0 >0 >0 >0 >1 >0 I

10 I <0 >0 >0 >0 >0 >1 >0 I
+---+

Figure 2-9: A Test Matrix

Figure 2-9 is a complete test consisting of 1 0 steps. The first four steps cycle the clock

twice and the data bus is ignored by the tester. Steps 5-8 force the values 0 and 1 to the

data bus in two clock cycles. Steps 9 and 1 0 feel the data bus values for the integer 2

while cycling the clock.

The dynamic interpretation is based on the continuous production of teste~ commands by

the test language system. These tester commands are illustrated in figure 2-1 0.

Figure 2-1 0 shows two types of commands: commands specifying operations to be

performed on ports, and a command to perform a test step. Test vectors are delimited by the

word step in figure 2-1 0. Typed value assignments between the steps are included in the

same test vector.

7 1n future illustrations <t,JULL will not be printed, but the space will be left blank.

33

clk<l
step
clk<0
step
clk<l
step

sequence clk<0
I step
I clk<l
I data<0
I step
V clk<0

step
clk<l
data<l
step
clk<0
step
clk<l
data>2
step
clk<0
step

Figure 2-10: Continuous Stream of Tester Commands

2.2 .. 4 Static Interpretation

A test can be viewed as a test matrix. The elements of the matrix are typed values to be

applied to the physical conductors of the chip. The horizontal axis of the matrix is calibrated

in the physical conductors, or ports, and the vertical axis in test steps. Figure 2-11 includes

a picture of the test matrix representation.

The following notation is used in representing a test matrix: each entry consists of a

typed value pair depicted by the assignment operator corresponding to that type, and a

constant representing the value. For sake of appearance, ports that are ignored by the

tester, ports that would be represented as <NULL, are left blank.

The syntax of the test language representation of a test matrix is constructed according

34

Test Matrix Representation Textual Representation

conductors ->

elk data
+-----------------------+

sequence I <1 clk<l;
·I I <0 clk<0;
i I <1 clk<l;
V I <0 clk<0;

I <1 >54 clk<l,data>54;
I <0 >54 clk<0;
I <1 clk<l,data<NULL;
i <0 clk<0;
I <1 clk<l;
I <0 clk<0;
+-----------------------+

Figure 2-11: Simple Test Matrix and Representation.

to the following rules:

1. Each force, feel, etc. on a port is described by a typed value assignment,
discussed previously.

2. Multiple actions performed on the same step are separated by commas, and
form a test vector.

3. Each test vector is terminated with a semicolon, and conversely, semicolons
separate test vectors. A number of test vectors separated by semicolons are
called a test matrix.

A convenient manner of organizing this representation into lines of test is to pface each

test vector on a separate line, and to end each line with a semicolon. Figure 2-11 shows an

example of a test matrix and its representation.

Some comments are in order:

- When a test step is performed the action occurs first on the force operations,
later on the feel operations, and last on the interrogate operations. The test
system follows this convention and actions not written in this order will be put
into this order by the test system. Execution of an typed value assignment
then consists of scheduling an operation to occur at the appropriate phase of
the test step.

- When a test step occurs and a particular port is not specified as the
destination of any typed value assignment, then the port state is retained. This
means, for instance, that if the purpose of a test step is merely to change a

35

clock, only the change of the clock need be specified, and the states of afl the
other ports that will not change need not be respecified. On the other hand, if
the outputs of a port are to be sampled .only once then the feel condition must
be explicitly withdrawn or the comparison will occur (and possibly fail) later.

- The last vector of a test matrix according to this representation must end with
a semicolon. Lack of a trailing semicolon means that the test step is not yet
complete. This concept is subtly useful but is described only with the dynamic
interpretation.

Other operators exist:

- The plus operator combines test matrices, overlaying them row by row and
aligned at the top. The length of the resultant test matrix is the maximum of
the lengths of the original matrices.

- The comma operator, previously described as operating on typed value
assignments, can operate on matrices also. Two matrices separated by
commas result in a matrix that is the concatenation in sequence of the two
matrices, the leftmost matrix occurring first. (The semicolon operator operates
similarly, except it produces an empty test step at the point of concatenation.)

- In addition, some labor saving constructs exist. There is a looping construct
that when applied to a test matrix will repeat the matrix a number of times.
There is also a step construct that generates a specified number of empty test
steps.

Figure 2-12 illustrates these operators.

The static interpretation is useful because it allows test matrices to be instantiated and

stored for fast execution. Test matrices may be larger than the memory available in the test

system, and hence use of this interpretation is limited to small test matrices. Larger test

matrices are executed dynamically.

2.2.5 Dynamic Interpretation

The static interpretation makes a distinction between test matrices and typed value

assignments, and also a restriction that all test matrices end with a semicolon. The dynamic

interpretation, while being more complex, eliminates these irregularities and allows grea.ter

flexibility in describing tests.

36

{loop I 1 5 clk<l;clk<0;} (data<3; data<4;} ,
(loop I 1 3 data<5;data<6;}

elk data elk data
+------------------------+ +------------------------+
1<1
I <0
I <1
I <0
I <1
I <0
I <1
I <0
I <1
I <0

I <3 I
I <4 I
I <5 I
I <6 I
I <5 I
I <6 I
I <5 I
I <6 I
+------------------------+

+------------------------+
(loop I 1 5 clk<l;clk<0;) +

{data<3;data<4;}, (loop I 1 3 data<5;data<6;}

elk data
+------------------------+
I <1 <3 I
I <0 <4 I
I <1 <5 I
I <0 <6 I
I <1 <5 I
I <0 <6 I
I <1 <5 I
I <0 <6 I
I <1 <6 I
I <0 <6 I
+------------------------+

Figure 2-12: Illustration of operators.

Execution of a test is nothing more than the evaluation of a sequential/parallel

expression. For optimization, some portions of the expression will be compiled into the

special purpose format of the tester (the test matrix), but this will have no effect on the

behavior of the test.

This sequential/parallel expression consists of executable parts and control parts. The

executable parts are the typed value assignments described previously and the control

37

parts are the operators comma, semicolon, plus, and various constructs such as looping.

Typed value assignments, or typed value assignments separated by operators, possibly with

parentheses, form a matrix expression, according to the following rules:

1. A typed value assignment is the simplest matrix expression, and its evaluation
is immediate. Evaluation consists of scheduling the action to occur during the
appropriate phase of the next test step.

2. The comma operator is a sequential asynchronous operator. The matrix
expression on the left is evaluated and upon completion the matrix
expression on the right is evaluated. Upon completion of evaluation of the
matrix expression on the right the comma is said to have completed. The
previous discussion about the order of force/feel actions still applies, of
course.

3. The semicolon operator invokes a test step. The matrix expression on the
left is evaluated, then a test step occurs, then the matrix expression on the
right is evaluated. Upon completion of evaluation of the matrix expression on
the right the evaluation of the semicolon is said to have completed. (A special
case exists. A semicolon operator need not have a right term. In this case
the left part is evaluated, a test step is performed then the semicolon
terminates.)

4. The plus operator performs a concurrent fork. Both the matrix expressions on
the left and right are evaluated in parallel. Test steps in both forks remain
synchronized, however. When both matrix expressions have been evaluated,
the plus is said to have completed.

5. A construct called looping exists. The looping construct specifies a loop
count and a matrix expression to be repeated. All such special constructs
are entirely within parentheses, hence there is no question about order of
evaluation.

6. A construct exists to skip steps, called the step control clause. The step
control clause skips the number of steps specified by its argument and then
executes its matrix expression.

Note that a typed value assignment is also a matrix expression. Therefore, all operators

can be viewed as operating on matrix expressions. The plus operator is commutative. Other

operators are not. The three operators group left to right and can therefore be interpreted

as list separators.

Note that this interpretation is consistent with the static interpretation. A procedure

would consist only of elements, commas and semicolons. Furthermore, a procedure always

38

ends with a semicolon. It is clear that the comma, semicolon, and plus operations described

for test matrices are the same here. The looping construct, when the term to be repeated

ends with a semicolon, is identical to that in the previous interpretation. The syntax of

matrix expre~sions is discussed in appendix A.4 and the syntax of procedure declarations is

discussed in appendix A.2.

The dynamic interpretation has the advantage of minimal test matrix storage. Dynamic

generation of tests may be slow, however. Off line generation of static test matrices is

desirable when speed is critical and memory is sufficient.

2.3 Test Language Procedures

As in all programming languages it is necessary to have a subroutine, procedure, or macro

construct. Such a construct exists in the test language.

Procedures will often be used to access the internal state of a device. To make the

procedure best represent the intentions of the test designer, a slightly unusual syntax

exists. Recall that the primitive tests are specified in the following form:

primitive
test

inp<1,fcn<2,addr<3;
~lk<1; --

out>4, cond>S, inst>6;
clk<O;--

A major goal of test language procedures is to apply such a primitive test to a device

embedded in a more complex system. In the example the procedure will accept values

corresponding to the words inp, fen, addr, out, cond, and inst. The procedure will then

perform whatever manipulations are necessary to implement the primitive test shown above.

The implementation of procedures in the test language is highly restricted. Since

conditionals are not allowed, there is no reason for a procedure to return any value. Without

39

returned values, there is no need for functional forms. The test language tailors the syntax

and semantics of procedures to aid in the particular type of accessing of internal ports

encountered in testing.

2.3. 1 Procedure Defining and Calling tJotat~ons en Programming Languages

The following is presented as an alternative to the normal, functional, procedure ca!llng

convention found in most programming languages:

- each argument has a name, and

- the value of an argument is specified by an assignment to the argument name.

This syntax is illustrated below:

procedure
declaration

invocation

conventional test syntax

PROCEDURE P(a,b,c} procedure P
var a b c;

P(l,2,3) Cea I I P a=l, b=2, c=3)

In both cases procedure P is invoked with argument a 1, b 2, and c 3.

2.3.2 Procedure Conventions in the Test Language

A procedure call in the test language consists of the name of the procedure and a matrix

expression. The interpretation ?fa matrix expression in a procedure call is different from its

normal interprets.tion. The differences etre as follows:

- The typed value assignments, instead of assigning to ports of the tester,
assign to named variables of the called procedure.

- Semicolons, instead of causing advancement of the test step, cause the called
procedure to be invoked .

.. In the called procedure the variables are available for use in typed value
expressions.

A procedure declaration in the test language consists of a header part and a matrix

40

expression. The header part identifies the name of the procedure and includes a list of

variables. The matrix expression is the body of the procedure. Execution of the procedures

consists of evaluating the matrix expression with the variables supplied by the call.

Each procedure will have a name associated with it. This name will be used to invoke the

procedure, or to identify a top level test program.

The new syntax for describing when procedures are to be invoked is the ca// control

clause. The calf clause takes the name of the procedure to be used and a matrix expression.

Within the expression typed value assignments cause assignments to variables of the

procedure, and semicolons cause the procedure to be executed. The new syntax is quite

different from most programming notations. Here the declaration is made that a particular

procedure will be called, and it will then be invoked by default with each new set of

variables. See appendix A.2 for details of the syntax.

There is a syntax for describing formal variables of a procedure. A procedure may have

parameters, known as vars. The var statement is like a declaration statement in a

programming language (but no commas). Figure 2-13 illustrates a var statement that

declares the identifiers pc, ace, q, x1, x2, x3, and cy as parameters. See appendix A.2 for

details.

FIFl>var pc ace q x1 x2 x3 cy; note no separators

Figure 2-13: Example syntax of the var statement.

Using these conventions, a procedure declaration and invocation are written as shown in

figure 2-1 4.

Notice the (intentional) similarity of the call syntax to the primitive test. The arguments of

the procedure specification are textually similar to the result of the procedure. This

define procedure access
var inp fen addr out cond inst;

... matrix expression ...
end

(call access
inp<1,fcn<2,addr<3,
out>4,cond>S,inst>6;)

41

procedure declaration

procedure call

Figure 2-14: Skeleton of Routine to Perform State Access

similarity will be later exploited as a significant mnemonic in understanding test

specifications.

Notice that no ambiguity arises due to the scope of variable/port names. Within a call the

only names allowed on the left hand side of a typed value assignment are the variables of

the called procedures. Outside a call the only names allowed are port names. In general,

variables defined on the same level as an assignment are allowed only on the right hand side

of that assignment.

2.3.3 Sophisticated Interpretation of the Interrogate Action

The interrogate operation is normally used as an interactive version of the feel operation.

In an automatically generated test the accuracy of the fabrication of the device under test

is verified with feel operations comparing the outputs of the device with specified expected

values. In an interactive characterization of a device a human operator will prefer to know

the actual values occurring on internal nodes, rather than just specify expected values. The

interrogate action can be substituted for the feel action in these cases.

Sampling the value of a data bus of a microprocessor is a simple example. An automatic

test might expect the value 243 to be on the data pins; the typed value assignment

data>243 tests for this. The typed value assignment data! specifies an action of type

42

interrogate for the pins and the value on the pins is printed interactively. In this simple

example, the interrogate assignment operator (which does not need a right hand side)

generates a typed value with type interrogate and an irrelevant value. When the tester

performs the interrogate action, the value is printed on the operator's console.

2.3.3.1 Simple Interpretation of the Interrogate Action

In the simple interpretation, the association of a typed value with type interrogate causes

the value sensed to be printed interactively for the operator. This situation can arise in one

of two ways: (1) a typed value assignment with the ! operator, or (2) a typed value

assignment with the = operator and a right hand side that has type interrogate.

2.3.3.2 A More Complex Interpretation of the Interrogate Action

While the simple interpretation of the interrogate action is very useful for ! assignments,

the interpretation for = assignments (of type interrogate) is overly simplistic.

A more sophisticated scenario might involve passing parameters to testing procedures of

type interrogate. For example, a procedure may take an argument called data that

represents the value of a multiple bit (16 bit) accumulator. The procedure may transform this

parameter to a bit serial form by performing repeated bit subscripting operations. Each of

the bit subscripting operations extracts a single bit from the parameter. The bit would have

the same type part as the parameter and associate it with a serial data pin of the device

under test. An = assignment operator can be used to associate the parameter with the pin

.
of the tester. Whatever type of action is specified by the parameter would be repeated 16

times.

If the simple interpretation of the interrogate action were used, and the parameter were

of type interrogate, the operator would be presented with a sequence of 16 one-bit numbers

43

that were sensed by the test system. The operator would have to assemble these 16

results into the desired number.

In a more sophisticated interpretation, the interrogate operations sense the value on the

pins and store the value into the expression on the right hand side. In the example, the

se_rialized values would be stored individually into the appropriate bits of the parameter

repeatedly until the complete value of the accumulator were assembled. The complete value

could then be printed as one number for the operator.

In order to generate a parameter of type interrogate in a testing procedure, there must be

an ! operator with a parameter on the left hand side at a higher level. When an ! operator

occurs in a procedure call, the value of the parameter (changed by the procedure) is printed

after the procedure returns.

The necessary action by the test system is to determine algebraically that the values of

the independent variables in the expression must be for the value parts on both sides of the

assignment operator to be the same. This action may require sophisticated programming.

It is not always possible to determine the values for the unknowns in the right hand side.

If the right hand side contains more than one independent unknown, or is too complex8 then

this task is impossible. The interpretation in the test language is to allow solution only when

there is one unknown (variable of type interrogate) in the expression. This provides a

solution that works in most useful cases and is implemented efficiently.

If only one operand to an operator contains unknowns then it may be possible to

8 consider the right hand side being a polynomial: if of degree less than 4 it can be solved
by general but possibly very complex techniques, if of degree 4 or more it cannot be solved
in general.

44

determine the value of the unknown operand by use of the inverse of the operator. For

example, if the value of the expression X+5 is known to be 6, then it is possible to

determine the value of X to be 1 by knowing that subtraction is the inverse of addition. The

operator inverses are illustrated in figure 2-15.

0Qerator
C a I b
C = a 1' b
C = a & b
C = a << b
C = a >> b
C = a + b
C = a -1, b

0Qerator
c = a [e]
c = a [el: e2]

2.3.4 Timing

Inverse

a =

a =
a =
a =
a

lf. left
none

C 'f' b
none

C >> b
C << b
C - b
C I b

unknown

Inverse

Inverse lf. right unknown
none

b = c 1' a
none
none
none

b = c - a
b = c / a

put c into eth bit of a
put c into bits el to e2 of a

Figure 2-15: Reverse Evaluation of Operators

All practical test systems must have control over timing.· The test language has bypassed

this issue in an attempt to simplify the description and implementation. An important aspect

of timing in tests is the rate that test vectors are applied. In the •simplest case, this

corresponds to test vectors being applied at fixed intervals, such as 200 ns. In more

complex cases, an overall interval may be fixed, but within there will be several subintervals.

An example of the latter case is a multiphase clocked system where the first phase is 67 ns

and the second is 1 33 ns; the two phases always alternate for an overall cycle time of 200

ns. The generalization that is suggested here is to allow each test step to have an

associated time.

We propose a~sociating two time intervals with each test step. These are described

below:

Minimum Step Time The minimum step time is normally the time from the beginning of a test

45

step until the beginning of the next step.

Step Timeout If a test step contains operations of type wait, then the test step wm
be delayed until the specified condition is satisfied, or until the step
timeout interval is exhausted. The step timeout is necessary because
without a timeout, a defective chip could cause the tester to hang.

The incorporation of the timing specifications into the test system will be as two sets of

phantom pins. The minimum step time will be controlled by assignments to a pin called time

and the step timeout through the pin timeout. When a value is associated with these pins,

the value part becomes the time interval in nanoseconds. For example, the following -

generates a 1 /3 duty factor clock (such as required by an 8086):

FIFl>i (loop i 1 5000000
FIFI> tirne=67,clk<1;
FIFI> time= 133,clk<O;)

runs for one second
67 ns high
133 ns high

Below is an example of manipulating a four cycle request-acknowledge system. The

tester applies a request and expects an acknowledge. The tester continues when the

acknowledge occurs, but the tester will timeout after 1 00 us and report a failure.

FIFl>request<1;
FIFl>timeout= 1 00000,acknowledge#1;
FIFl>request<0;

apply request
wait on acknowledge but

timeout after 1 00us

46

3. Examples of the Test Language

This chapter is aimed mostly at describing how the test language developed in previous

chapters can deal with existing system design and test design strategies. The novelty in

this chapter is not in the systems or in the approach to developing the tests, but in the

manner in which the tests are formalized by the test language.

The reader should be particularly aware of the natural way in which the test

specifications of the examples fit the natural structural partitions of a design.

3. 1 Abstraction of a Bidirectional Data Bus

Consider the testing of devices utilizing a memory bus. Memory buses are bidirectional

channels that communicate data to or from a particular bus device. There are two types of

memory bus cycles: read and write. Both cycles often have identical timing, the difference

being that one cycle transfers data from the bus device and the other transfers data to it.

It would be convenient to be able to describe a bus cycle once in general, and have this

specification describe both read and write cycles.

The procedure to specify the bus cycle has two parts. One part describes the

miscellaneous timing that is ~he same for all bus cycles. The other part would transfer data

to or from the bus device depending on the type of the cycle. The data transferred would be

an argument to the procedure, and hence a typed value. The type part of the typed value

could represent the desired direction of the transfer.

Figure 3-1 illustrates the operation of a generalized memory access state of the RCA

1 802 microprocessor [RCA 76]. The operation of the 1 802 consists entirely of cycles eight

clock periods in length. These cycles are of one of three types: memory read, memory write,

and idle. The procedure in figure 3-1 will test the chip for any of the three different cycles

47

depending on the type of the parameter data: if data is feel a memory read, force a memory

write, and tri-state an idle state.

When procedure mcycle is called in figure 3-1 the type of parameter addr is irrelevant

(because its type is overridden with the > operator) and the type of parameter data

determines the direction of information flow for the cycle. If the type of addr is feel or

undefined the type will be changed by the feel operator. If addr is of another type, an error

condition exists. The type of parameter data is important, however because it is used with

the equal operator, which does not effect type.

FIFl>define port elk 1;
FIFl}define port addr 32 31 30 29 28 27 26 25;
FIFl>define port data 8 9 10 11 12 13 14 15;

FIFl}define procedure mcycle
FIFI> var addr data;
FIFI> (loop i 0 7
FIFI> clk<O;
FIFI> clk<1 ;) +
FIFI> (step 4: addr)addr[8: 15];) +
FIFI> (step 6: addr>addr[0:7];) +
FIFI> (step 8: data=data;) +
FIFI> (step 15: data<NULL;)
FIFl>end

FIFl>define procedure test
FIFI> (call mcycle
FIFI> addr=O, data<16r5 i;
FIFI> addr= 1, data>12;
FIFI> addr=2, dataOJULL;)
FIFl>end

address and data
8 clock periods

skip 4 steps then
apply address

data force/feel
shut off data

read cycle
write cycle
idle

Figure 3-1: Procedure for Memory Cycles of an 1802

48

3.2 Performing Complex Data l\1anipuiations

Consider a device where data is transferred serially. It would be convenient to continue

to refer to its registers as typed values even though the bits are not transferred

simultaneously.

One method of manipulating serial data is to use the bit subscripting operator multiple

times when applying the data to the pins.

Consider the accessing of a data register in a device that transfers data serially. This

concept will be illustrated with a device that transfers a 16 bit binary value in or out through

a single pin on 16 clock cycles. A single procedure is presented that will allow the transfer

in either direction. Figure 3-2 i!lustrates a test for such a device.

FIFl}define port elk 1 ;
FIFl>define port data 2;

FIFl}define procedure cycle
FIFI> var data;
FIFI> (loop i O 15
FIFI> clk<0,dats=data[i];
FIFI> clk(1 ;)
FIFl>end

FIFl>define procedure test
FIFI> •.. etc ...
FIFI> (call cycle data(16r55aa;),
FIFI> ... etc ...
FIFI> (call cycle data}16r55aa;)
FIFl>end

bit subscripting

calling program
specify a write
write 55aa hex
specify a read
compare

Figure 3-2: Parallel Serial Translation

49

3.3 Testing a 16K Dynamic Random Access Memory

This example will describe a portion of a test of an Intel 21179 . The 2117 is a

conventional 1 6K dynamic RAM. The RAM has 1 4 address bits that are applied in two steps to

7 address lines. The falling edges of two signals, RAS and CAS, clock the two portions of the

address bits into the ram. Simultaneously with the application of the second group of

address bits, a negative write enable, WR, is sampled. If the cycle is a write, the data input,

DIN, is sampled, and if a read the data output, DOUT, provides the contents of the memory

location.

This example will show a procedure that will access all of the locations in the memory and

read or write a one or zero in each location. This fragment of a complete test would be

called by a procedure to write different patterns in the memory. A more complete test will be

described later.

Figure 3-3 illustrates the physical connections of the RAM to the tester. · Figure 3-5

shows a test language program that will read all locations in the RAM. Figure 3-4 shows the

operation of the test in rectangular matrix form.

A real test of a dynamic RAM would test the address decoding logic and pattern sensitivity

of the memory array. Let us discuss an exhaustive test of the decoding logic.

A test of the RAM decoding logic verifies that each memory location is addressed uniquely.

Such a test can be accomplished by writing a unique pattern to each memory location and

then reading all locations and verifying that their contents are correct. If a memory location

were to be enabled by more than one address, at the conclusion of the writing phase it would

9 see [Intel 80], pages 1-26 to 1-37.

50

+--------------------+
7

ADDR ======I=======> address
1

RAS------/-------> -ras
- 1 2117
CAS ------/-------> -cas

1
WE------/-------> -we

1
D ------/-+-----> data data -----+/------>

1 I
I
I

in out

+--------------------+
I
I
I

+-----------------------------------+
Figure 3-3: Illustration of a 2117 Dynamic RAM

ADDR RAS CAS DIN WE □OUT value of!.
+--------------------------+

. .
<127 <1 <1 <1 16381
<127 <0 <1 <1 16381
<125 <0 <0 <1 16381
<125 <0 <0 <1 >1 16381
<125 <1 <1 <1 16381
<127 <1 <1 <1 16382
<127 <0 <1 <1 16382
<126 <0 <0 <1 16382
<126 <0 <0 <1 >1 16382
<126 <1 <1 <1 16382
<127 <1 <1 <1 16383
<127 <0 <1 <1 16383
<127 <0 <0 <1 16383
<127 <0 <0. <1 >1 16383
<127 <1 <1 <1 16383

+--------------------------+
Figure 3-4: Square Matrix Representation of 211 7 Test

FIFl>define port RAS 4;
FIFl>define port CAS 15;
FIFl}def ine port D 2;
FIFl}define port WE3;

51

FIFl)define port ADDR 13 10 11 12 6 7 5;

FIF!>define procedure access
FIFI> var we d;
FIFI> WE<we;
FIFI> (loop IO 16383
FIFI> ADDR<I[13:7];
FIFI> RAS<0;
FIFI> ADDR<l[6:0],CAS<0;
FIFI> D=d;
FIFI> RAS<1,CAS<1,D<NULL;)
FIFI> end

FIFl>define procedure test
FIFI> (call access we<0,d<1 ;)
FIFl>end

Figure 3-5: Test Language to Test a 2117 RAM

have the correct pattern for only one of the addresses.

An obvious unique pattern to write into each memory location is simply its address. At first

observation, there is a problem: 16K RAM addresses are 14 bits, but each location can hold

only one bit. The problem is solved, however, because the 14 bit address can be loaded and

read from the ram in 1 4 separate tests, each using one of the 14 address bits.

Informally, a complete decoder test would consist of writing and verifying the following

patterns:

pattern

I
I
V

Address ...
0123456789
0101010101 .. .
0 0 1 1 0 0 1 1 0 0 .. .
0 0 0 0 1 1 1 1 0 0 .. .
0000000011 .. .
0 0 0 0 0 0 0 0 0 0 .. .

... etc ...

Notice that the columns of bits to be written to and read from each address form a binary

52

number that is the address of the location.

The test code shown in figure 3-6 illustrates this testing strategy.

FIFl>define port RAS 4;
FIFl}define port CAS 15;
FIFl}define port O 2;
FIFl}define port WE3;
FIFl}define port ADDR 13 10 11 12 6 7 5;

FIFl>define procedure access
FIFI> var we d n;
FIFI> WE <we;
FIFI> {loop I O 16383
FIFI> ADDR<i[13:7];
FIFI> RAS<O;
FIFI> ADDR<1[6:0],CAS<O;
FIFI> D=dtBLnJ;
FIFI> RAS<1,CAS<1,D<NULL;)
FIFI> end

FIFl}define procedure test
FIFI> (loop i O 1 3
FIFI> (call access we<O,n<i,d<O;),
F!FI> (call access we<1,n<i,d}O;))
FIFl>end

ascending addresses

xor with d allows bit
reversed testing

once for each bit
write enable, data forced
no write enable, data fee/ed

Figure 3-6: Decoder Test of a 2117 RAM

3.4 Multiphase Clocking and the Test language

Existing testers and test systems have facilities for testing devices that utilize

multiphase clocking. In this seetion the facilities of the test language to describe tests of

multiphase devices will be examined.

Conventional testers solve the multiphase testing probiem by providing special hardware

support for generating the clock or clocks, and for adjusting the phase of the timing signals

relative to these clocks.

The approach in the test language is very different. In the proposed implementation the

53

tester will generate the clock signal just like any other signal. Software means are used to

generate the clock and specify the sequences of data signals relative to the clocks.

As an example an imaginary device with a three phase clock and two data phases will be

discussed._ Figure 3-7 illustrates the timing of this device. In this device the data ports are

used in a multiplexed fashion. During the phase 1 time the data signals have one meaning

and during phase 2 time another. Phase 3 of the imaginary device has no interaction with

any externally accessible ports. The data ports are physically known as A and B. The A port

is used only during the phase 1 time, v11hereas the B port is used as 'an address during phase

1 and data during phase 2.

+---+ +---+
phase 1 I I I i

+---+ +-------------------+ +-------------------+

+---+ +---+
phase 2 I I I I

+-----------+ +-------------------+ +-----------+

+---+ +---+
phase 3 I . I I I

+-------------------+ +-------------------+ +---+

+----\+/---------------------\+/--------------------+
a ports A A

+----/+\---------------------/+\--------------------+

+----\+/-----\+/-------------\+/-----\+/------------+
b ports addr data addr data

+----/+\-----/+\-------------/+\-----/+\------------+

Figure 3-7: A Three Phase Clocking System

The strategy for specifying this timing would be to write a procedure that would generate

the clocks and perform the multiplexing. The parameters to the procedure would be the

states of the (virtual) ports A, addr, and data. Figure 3-8 illustrates this procedure.

FIFl)define port clk1 1;
FIFl}define port clk2 2;
FIFl)define port clk3 3;
FIFl)define port A 4;
FIFl}define port B 5;

FIFl>define procedure threephase
FIFI> var A addr data;
FIFI> elk 1 <1;
FIFI> A=A, B=addr;
FIFI> elk 1 <O, A<NULL, B<NULL;
FIFI> clk2{1;
FIFI> B=data;
FIFI> clk2<0, B<NULL;
F~FI> clk3<1;
FIFI} clk3<0;
FIFl>end

FIFl>define procedure test
FIFI> (caH threephase
FIFI> A<1,addr<2,data<3;
FIFI> A<4,addr<5,data<S;
FIFI> __ etc ...)
FIFl>end

54

A is only phase on A
addr is only phase B

dat.a is on B lines

clock only, no signal

apply 3 phase eye/ es

Figure 3-8: Multiphase Clocking Procedure

Notice in procedure test of figure 3-8 that the bulk of the body is written with the same

syntax as if the lines A, addr, and data were directly available as ports ·of the tester. The

similarity of the syntax in this instance is an example of the abstraction of the details of the

clocking scheme. The changes necessary to implement this abstraction are to write a

procedure to translate the abstract notation referring to a device with ports A, addr, and

data to the reaJ1 device with ports A, B, and three clocks. It is only necessary to place the

text "(call threephase" and 11
)

11 around the body of the test.

55

3.5 An Example of the Test Generation Technique for large Systems

This section is intended to establish the usefulness of the test language as a tool for

describing systems of realistic complexity. The system in this section is similar to

commercially available microprocessor products, although simplified in some details. The

problem addressed is to test a system that defies all measures of testability. The section

illustrates the transforming of the testing problem for a large untestable system into the

generation of tests for three smaller testable systems. The three testable systems are a

rom, a memory, and a combinational logic ALU.

The test language code presented in this section to simplify the testing problem is about

one page in length, illustrating the power of the language. To actually test the device it

would be necessary to supply primitive tests for the various parts. The primitive tests are

not included here for two reasons: (1) the methods for developing rorn, memory, and

combinational logic tests are known, and are automatic, and (2) the size of the required

primitive test code for a realistic system might be very large, say 1000 pages.

The next two examples illustrate the hierarchical approach to test generation supported

by the test language. An imaginary system is to be tested that is illustrated in figures 3-9

and 3-10. It is assumed that tests can be devised for the low level parts, such as the ALU,

register file, microcode ROM, etc. The first example concerns the testing of a data path unit

constructed of primitive elements such as an ALU, register, memory, etc. The second

example extends the testing to a complete state machine.

sel
I
V

+--------+

56

16 I sel I
l!:!E. ---------/-------->lsel=l I

rfout

~
I
I
V

I I 16 abus

I MUX QI-----+--------/-------+
1 I I

+--->lse1=0 I I
I I I
+--------+ I I

I I
~ I I

I I I
V V I

+------------------+ I
I en D I I

elk -->lclk ACC I I
I Q I I
+------------------+ I

I I
I 16 I
+--/-+ I
ace I I

V V

cond
1' .
I

+-------------------+ QB.
I

+--------------------+ I
I addr out I
I I

elk --->lclk register I
I f i I e I
I in I
+-------------------+

1'
I

I A B I I
I I I I
+--->lop

I
ALU ++>

I
I Q I
+--------------------+

I
V

+~------------------------------------> out

Figure 3-9: A Model Data Path Unit

3.5. 1 Testing the Data Pa.th Unit

We will be provided with a series of primitive test vectors for the more complex parts. We

will also be provided with the following list to test the ALU:

FIFl>op< 1,abus<2,acc<3,out>4;
FIFl)op<2, abus<3, acc<4, out>5;
F!Fl> ... etc ...

57

These are combinational tests, and can be applied in any order. The tests for the register

file will be of· the following type:

Flfl}addr<1,out<5;
FlFl}addr<2,out<6;
FIFl)addr<1,rfout>5;
FIFl>addr<2,rfout>6;
FIFl> ... etc ...

These are memory tests, and must be applied in the given order.

The following test procedure will aid in performing the test of the ALU:

FIFl>define procedure ALUTEST
FiFl>var op,abus,acc,out;
FIFI> sel<1,inp<acc,en<1 ;clk<1;
FIFI> clk<0;
FIFI> sel< 1,inp<abus,op{op,out>out;clk<1;
FIFI> clk<0;
FIFl>END

This procedure invokes two clock cycles of the data path unit. On the first cycle the inp

fines are loaded into the accumulator. On the second cycle the inp lines are routed to the

abus inputs of the ALU. The ALU has as inputs the value previously loaded. into the

accumulator, the value of the inp lines, and outputs its result to the out lines.

The code entered to the test system would consist of the definition of ALUTEST, shown

above, and the following:

FIFI>(call ALUTEST
FIFI> op< 1,abus<2,acc<3,out>4;
FIFI> op<2,abus<3,acc<4,out>5;
FIFI> ... etc ...)

58

The following test procedures will aid in performing the register file tests: (Note: we

require that the ALU have an input code that causes the outputs to be equal to the abus

inputs. This input code will be called NOP.)

FIFl>define procedure RF\NRITE
FIFl>var reg,out;
FIFI> seK1,op{NOP,reg<reg;clk<1;
FIFI> clk(Oi;

FIFl>define procedure RFREAD
FIFl>var reg,rfout;
FIFI> sel<O,op<NOP,reg<reg,out>rfout

Two procedures are required, one to write into the register file, the other to read from it.

The write procedure trans-fers the data to be written through the multiplexor and ALU to the

data inputs of the register file. A clock cycle does the writing. The read procedure routes

the output of the register file through the multiplexor and ALU to the outputs, where it can be

analyzed. Reading does not require a clock.

The procedures above and the code below are a register file test for the data path part:

FIFl>(caU RFWRffE
FIFI> reg<1,out<5;
FIFI> reg<2,out<6;),
FIFl>(call RFREAD
FIFI> reg<1,rfout>5;
FIFI> reg<2,rfout>6;),
FIFI> •.. etc ...

3.6 Testing a Microprogr2.mmed System with a Data Path

Figure 3-1 O rnustrates a microcoded system containing a data path unit that could be the

data path unit described in the previous section. This example will extend the primitive

tests from the data path level to the system level.

59

8
+--------------/---------+

V
+-----------------------------+
I addr I
I I
I microcode I
I I
I out I
+-----------------------------+

I 1
I +---------/----+

addr inst /16 I I
V V I

+-----------------------------+ I
tclk ---)-------->ltclk d d I I
si -----)-------->lsi latch (srl) I I
so -----}-------->lso q elk q I I

+--------------t--------------+ I
I I I I

+--------------------+ I I I
I I I

elk-----------------------------+ /9 fen lcond
I I I
I I I
I V I

+------------------------¥------------------------+
I elk control I

16 I I 16
in -I-> I bus in data path bus out I -/->

I (with memory) I out
I I
+---+

Figure 3-10: A Model Digital System

3.6.1 Data Path Part

Let us first consider the data path part. We will assume that a set of primitive test

vectors is available to test the data path part if it were not embedded. Assuming that the

device contains two-input arithmetic elements, the tests could all be of a two-clock-period

form. The first phase wouid load the first operand into the accumulator, and the second

would perform arithmetic on the accumulator and a new input and transfer the result to the

60

output. Each test would consist of six numbers: the function code, inputs, and outputs for

each of the two clock periods. A possible set of primitive tests is shown in figure 3-11.

primitive
test #1

primitive
test #2

etc.

(possibly
thousands
of tests)

inp<1, fcn<2,addr<3;
--clk<1;

out>4,cond}5,inst>6;
clk<O;--

inp<2, fcn<3,addr<4;
~lk<1; --

out)5,cond}6, inst> 7;
clk<O;--

inp<3, fcn<4,addr<5;
--clk<1;

out>6,cond>7 ,inst>S;
clk<O;-- --

inp<4, fcn<5,addr<6;
--clk<1; ---

out> 7 ,cond>S,inst>9;
clk<O;-- --

Figure 3-11: Primitive Tests

The difficulty in applying this test when the part is embedded is that the function code is

not directly accessible. It is necessary to generate the effectively arbitrary sequence of

function codes specified by the given primitive tests, without any extraneous intervening

system clock c}rcles.

A procedure can be devised 'tor this. The function codes can be shifted serially into the

state latch between each cycle of the system clock. The full procedure to apply one

primitive test \Mould be:

1. clock the test clock a number of times while shifting the function code into
the state latch,

2. apply the input values,

3. cycle the system clock, and

4. analyze the outputs.

61

3.6.2 Microcode Part

The primitive tests for the microcode consist of a series of addresses and the

corresponding contents of the microcode location. Testing consists of a series of cycles

that load an address into the state latch, cycle the system clock, and then shift the output

of the microcode from the state latch. Shifting in the next address can be performed when

shifting out the output of the microcode, thus halving test time.

3.6.3 State Latch Part

The state latch will be automatically tested by this process. Any defective shift element

in the state latch \"✓ ill change the shift in and shift out sequences and will probably be

detected on the first use of the state latch as a shift register. The only other problem that

can occur in the state latch is for a parallel input or output to be defective. This will,

however, appear as a fault in the inputs or outputs of the microcode or data path.

The first step is to develop a procedure that will access the ports of the data path that

are not available externally:

FIFl>procedure access
FIFl>var inp,out,cc,addr,inst;
FIFl>var reg,sel,en,op;
FIFl>((loop i 1 N
FIFI> si<((addr<<9) + (reg<<S) + (sel<<4) +
FIFI> (en<<3) + op)[i];
FIFI> tclk<1 ;tclk{O) +
FIFI> inp<inpJ, clk<"i;
FIFI> clk<O;
FIFI>(out>out + (loop i 1 N
FIFI> so>((inst<<1) + cc)[i];
FIFI> tclk<1;
FIFI> tcfk<O)), clk<1;
FIFI> clk<O;

The following procedures, ALUTEST, RFWRITE, and RFREAD, will produce a set of stimuli to

be applied to the inputs of the data path part. We have already described a procedure,

62

access, that will apply stimulus to the data path part from the inputs of the system. we

must direct the test system to use procedure access by placing cails to access in the

procedures ALUTEST, RFWRITE, and RFREAD. These procedures must be edited as follows:

FIFl)define procedure ALUTEST
FlFl>var op,abus,acc,out;
FIFI> (call access
FIFI> sel<1,inp<acc,en<1 ;),
FIFI> (call access
FIFI> sel<1,inp{abus,op{op,out>out;)
FIFl>END

FIFl>define procedure RFWRITE
FIFl>var reg,out;
FIFI> (can access
FIFI> sel<1,op<NOP,reg(reg;)
FIFl>END

FIFl>define procedure RFREAD
FIFl>var reg,rfout;
FIFI> (caU access
FIFI> sel<0,op(NOP,reg<regiout>rfout;)
FIFl>END

63

4. Testing of Sequential Systems

The test language incorporates a certain model of testing in which the abstraction of the

design hierarchy may be represented in the procedural abstraction of the test language. In

this chapter this model of testing is formalized and analyzed.

The formalization of the model has some of the characteristics of a design-for-testability

strategy. The reader should be warned, however that the subject of this discussion is more

abstract than conventional design-for-testability strategies. The formalization o-f the testing

model provides a manner of describing a wide range of design-for-testability strategies,

including most existing ones. At no point, however, is a particular implementation discussed.

The notation for the testing model is exactly the test language developed earlier. The

significance of this point is that the formalization is not only a useful notational tool for

discussing testability strategies, but is also an executable language.

4.1 Previous Approaches to Sequential Testing

The problem of generating tests for complex systems has two parts: specifying the test

that is to be applied to the transistors and wires of the parts of the system, and determining

a method of applying these tests from the access points of the system. In the jargon of the

testing literature, the former is related to a fault model and the latter to the combination of

the actions of controllability and observability. This section will review different techniques

and the tradeoffs involved.

The testing problem has its origins ultimately at the transistor and wire level. At the

transistor and wire level a fault model is adopted and a set of primitive tests is developed to

64

detect these faults. These faults will be simple, limited to defective transistors or wires 1 o.

A set of primitive tests can be developed from the set of faults: such a test might consist of

verify that wire A and wire B are not shorted. The meaning of these tests to the system is

also obvious: in this example the required test is drive A and B to opposite states and verify

that they are indeed sensed in opposite states. The difficulty in test generation is to cause

the test stimuli to be applied to the appropriate parts, and for the result of the test to be

observed from the access points of the system.

4.1.1 Conventional Testing of Combinational Networks

The problem of accessibility has received a great deal of attention for simple devices. In

combinational networks, where any internal point can be controlled and observed in one

operation, the problem has largely been solved [Bouricius 71]. Test generation techniques

for combinational networks will be briefly summarized:

The progress of the test generation is represented by a complete list of the possible

faults and an indication of whether each has been tested. When a primitive test is proposed

it is simulated and all faults that are detected by that test are flagged as being tested. This

method exploits the ability of a single test to test a number of faults.

Often a test will begin with a few completely random test vectors. The fault simulator will

apply these test vectors to the network and record the faults that are actually tested. The

Justification for using the random test vectors is that a very few test vectors will test a

large fraction of the faults [Agrawal 75]. In a sense, the random test vectors test the

'easy' faults.

1 OThe industry standard is a stuck fault model, where faults consist of wires that exist at
a fixed logical level independent of outputs driving them.

65

Tests for the remaining faults must be determined individually by tracing through the

gate-level representation of the network. In general, a test for a single specific fault will

not require use of all the inputs or outputs of the network, thus allowing one to combine the

tests for several faults into one test vector. The result of these two steps can be a

complete test set for a particular fault model.

If a reasonable fault model is chosen the computational effort required to generate the

tests is tolerable. Algorithms for stuck faults in combinational networks have been shown to

be of polynomial complexity [Ibarra 75], but in practice are relatively efficient.

It is assumed here that generation of tests for combinational logic is presently no more

than a time consuming process for a computer.

4.1.2 New Methods for Testing Sequential Devices

Switching theory has studied means of generating tests for sequential systems. The

results have been general and broad, but_ the necessary computational effort required to

generate the tests can be extremely large [Seitz 71], i.e. exponential with the size of the

system, and in practice are hard to program.

Each fault in a sequential system will alter the behavior of the system from the behavior

of the desired machine, in effect creating a new machine. The problem of testing is

equivalent to the problem of distinguishing between the desired machine and all of the new

machines that could be created by a fault.

Given the state diagrams for a correct and an altered machine a difference can be located

and the presence of this differer.ce in a real device can be tested. The procedure for

generating a test for a difference in the state diagram is to (1) put the machine into a known

state (homing experiment), (2) operate the machine through a transition that may be

66

corrupted by a fault, and (3) determine whether or not the corruption occurred (distinguishing

experiment).

Several hard problems arise in the implementation of this method. First, the number of

faults in a large system is large. Second, the size of the state diagram for a machine may be

exponential in the number of bits of state in the machine. Third, the methods for generating

distinguishing experiments may involve graph manipulations on the whole state diagram. As a

result these techniques can be applied in general only to devices with less than about 1 oo

gates.

4.1.3 LSSD

LSSD [Eichelberger 77] is an example of two phase testing where the accessibility is

well defined and easy. LSSD augments the hardware of a chip by incorporating all the state

variables into a parallel/serial shift register latch (SRL), where the serial mode is used only

for testing. The remainder of the chip consists solely of combinational logic. In LSSD

accessibility always consists of shifting the desired state serially in or out with a test clock.

Accessibility is the same for all chips, even to the extent of providing identical pin Placement

for the test functions. The task of gaining accessibility was done once years ago when the

LSSD scheme was proposed and special testers were built. Defining test patterns for the

combinational lo,gic in a system is the only additional work now in generating test for LSSD

system.

4.1.4 Testing Art

Test pattern generation for devices designed without any special testability scheme are

very intensive in the accessibility part and sparse in the combinational testing.

Consider generating tests for the register memory of an 1802 microprocessor [Timoc 81].

67

At the primitive level the test consists of writing marching patterns of ones and zeroes into

the memory and verifying that they can be read back intact. The only way this test can be

performed is by the processor executing instructions that transfer data between the data

bus and the accumulator and between the accumulator and the registers of the processor.

Each read or write of the memory consists of 24 clock periods, only one of which is used for

the memory access.

In addition, the 1802 microprocessor uses one of the registers as a program counter, and

as the memory is tested, this register is incremented. This causes the generation of the test

to become much more difficult! This example is derived from a project undertaken at JPL to

develop a highly reliable set of vectors for the RCA 1802 microprocessor, described in

[Timoc 81]. The budget for the project at JPL was around one million dollars, and this figure

does not include post-engineering work done at RCA. The test set made at JPL achieved a

mere 85% coverage of faults from a realistic model of circuit failures. Needless to say,

RCA's investment in the design of the 1802 _was substantially less than the cost to generate

the tests.

4.1.5 Other Methods

Other very different techniques have been proposed. One of the most promising is the

self test methods best represemted by BILBO [Konemann 80]. In this type of self test,

hardware is added to the design to generate pseudo random test vectors, apply them to the

network, and perform data compression on the result. The technique has the advantage that

there is no need to compute test vectors, but the disadvantage is that there is no way to

control the test vectors.

The theoretical analysis done on this subject indicates that under some circumstances

68

testability is assured. In [Savir 80] rules are discussed for making combinational networks

which can be tested by applying an exhaustive set of test vectors and performing a simple

data reduction on the output. This thesis does not address this type of testing.

4.2 Structured Design and Design for Testabmty

.In this section a design technique will be discussed that applies both to the design of

integrated circuits and tests for those integrated circuits. The technique is called

structured design and its application to the design of integrated circuits is well known

[Mead 80], [Rowson 80]. The integration of testing into the structured design process,

however, is new.

4.2.1 The Value of Structured Design

A structured organization in performing tasks is based on the divide-and-conquer strategy.

Testing is a task where both organization and work are required. As the task becomes larger,

the amount of work becomes larger proportionately, but in addition the organizational task

becomes more complex. In very large designs, the organizational task may become dominant.

It is therefore advantageous to have techniques wherein a larger problem may be divided

into a number of smaller problems. If the smaller problems are of similar difficulty, and the

amount of work required to partition the problem is reasonable, the method reduces the total

effort.

In testing based upon structured design, the strategy is to divide a large system into

progressively smaller parts and test the parts. When the divisions are made it is necessary

that the parts be proportionately easier to test and that it is possible to test the smaller

parts when assembled in the composition. These activities correspond to generating

primitive tests and generating access procedures. Testing can then proceed on each of the

69

parts of a ls..rger system in sequence, testing them one at a time.

4.2.2 Structured Integrated Circuit Design

The integrated circuit depicted in figure 4-1 is designed in a structured manner. The parts

shown in figure 4-1 can be formally defined as follows:

element

part

system

external environment
+---+

+-------+
lpa&t 0 I
I P I
+-------+

+-------+
I pa1 t 1 I
I P I
+-------+

+-------+
lpart B I
le1 9mentl
I P I

system

glue

+-------+
+---+

Figure 4-1: A Hierarchical Design

An element is a group of transistors and wires in a structure that is not
considered to be a COll)POSition, i.e. a primitive.

A part is either an element or a composition of other parts connected
by glue. Usually the glue will simply be wires, but may be more
complex.

A system is a distinguished part in which all other parts are contained.
The definition of system is relative to the context of the discussion. A
system can be combined with other systems to create a larger system.
If this occurs, the original systems are no longer distinguished and can
be referred to only as parts.

In figure 4-1 a system is illustrated consisting of three parts. Notationally, the different

parts of a system will be identified with pre-st.!perscripts, such as Op, 1 P, and 8P. Two of

the parts, named Op and 1 P, are compositions of parts themselves. The third pa.rt, named 8P,

is explicitly identified as an element.

In real systems more than one level of structure may be used. The highest level in a

system is the system level, where a system is described as a composition of parts. Each

70

part may then be described as a composition of parts at a level one lower than the original

part. After some number of levels have been traversed in this recursive manner, all of the

parts will be elements. Usually, the level where all parts are elements is known as level o,

and the other levels are level 1, 2, 3 •.• n.

4.2.3 Testing Structured Desfgns with Access Procedures

In testing a system composed of a number of parts, two testing tasks are required: (1)

each of the parts must be tested, and (2) the composition of the parts must be verified (i.e.

test the glue). If some of the parts are com~ositions, the testing task is applied recursively.

Without loss of generality, it can be assumed that each system that is a composition has

exactly one internal part. This transformation of a system is accomplished by assuming that

all other parts in the composition become part of the glue. Complete testing of such a

system is accomplished by independently testing each of the internal parts sequentially.

Access procedures are used to test the parts of a system. An access procedure is a

method by which a test for a part can be transformed into a test for that part when

embedded in a system. Figure 4-2 illustrates the action of an access procedure.

external environment
+---+

externa 11
------>I
test I

I
I
I

+-------+
I I
I I
+-------+

internal +-------+
-------->I part 11
test 1A I I

+-------+

+-------+
I I
I I
+-------+

system

glue

+---+
Figure 4-2: A Hierarchical Design

In figure 4-2 part 1 of the structured design is tested. The test that must be applied to

71

part 1 is known (or can be recursively determined) and is called the internal test. In order to

test part 1 when it is embedded in a system it i_s necessary to apply test vectors, called the

external test, to the system in such a way that the desired internal test is app[ied to the

part. In general, the external test will not be the same as the internal test.

When discussing an access procedure for a particular part of a system, all of the other

parts are considered to be part of the glue. As illustrated in figure 4-2, Op and Bp are no

longer distinguished as parts.

4.2.4 A Fifter Model

Figure 4-3 illustrates the testing problem as one of manipulating filters. A test called T2

is applied from an external environment to a system S. The behavior of system S modifies T2

into an internal test T1 by the transfer function H2. This internal test becomes the external

test for a second level of composition. The second level modifies T1 into test TO. At the

lowest level of the composition, an element is tested, called E. The test TO is applied to this

part and should correspond to the required primitive test.

+-------+
I H2 I

T2 ->+ S
I

+- Tl
I

+-------+

T0 = Hl H2 T2

+-------+
I Hl I

->+ ap +-
I I
+-------+

+-------+
I I

T0 ->+ E I
I e I ement I
+-------+

Figure 4-3: Filter Representation of a Test

The testing task for part E consists of two parts, (1) determining a primitive test TO for

that part, and (2) determining the inverse of the transfer functions H2 and H1, and computing

the test T2 that can be applied to the system directly. If part 2 of this task is too difficult,

the designer can change the behavior of the system to simplify the inverse function or

72

reduce the size of the test.

4.2.4.1 Controt~abmty and Observabmty in the FHter Model

In figure 4-3 the flow is indicated as left-to-right. In a simple interpretation, the flow

would be int$rpreted as signal flow. If the flow were only conventional signals, it would be

possible only to pass control in a rightward manner, and it would be impossible to observe the

response.

Figure 4-4 illustrates the left-to-right flow of test vectors. If a testing device performs a

force action on wire A, the buffer will apply a corresponding force operation to wire X. The

force operation flow~ left-to-right in the direction of signal flow through a buffer.

+---------------------------------------+
I
I I\ +---------------+
I A I \ X

---1-----1 +---------!--------+
I I / I I
I I/ I
I I \ /
I I \ /
I /I I 0
I B

---1-----+
I
I
I

/ I Y I I
1---------1--------+

\ I I
\I +---------------+

+---------------------------------------+
Figure 4-4: Propagation of Force and Feel Operations

Reca!I the definition of a feel operation: The outputs of the device under test are compared

with the value part. If there is a difference a global error flag is set. If a testing device

performs a feel operation on wire B, the buffer will cause a corresponding feel operation to

be performed on wire Y. The feel operation flows left-to-right through the buffer in the

reverse direction of signal flow.

73

4.2.5 Access Procedures as an Inverse Filter Function

In figure 4-3, T2, T1, and TO are tests. The parts' in figure 4-3, S and ap, have filter

transfer functions H2 and H1. The syntax of filter transfer functions is right-associative

function application, as in electrical engineering. Unlike electrical filters, the filter transfer

functions operate on tests, rather than real functions, and function application is not

commutative. An access procedure is also a function, but the syntax of its application is

different from that of a fitter transfer function. Let A be an access procedure with argument

x. The application of A to x is written (call A x).

Access procedures are, in a very general way, the inverse of the filter transfer function.

In figure 4-3, let part ap have transfer function H1, an access procedure A, then TO is H1

T1. It then follows that the result of applying the access procedure to T1 produces TO, i.e.

TO is (call A T1). In the test language, this interpretation is subject to numerous abstractions

and special cases, but is generally true.

4.2.6 Definition of an Access Procedure

An access procedure is defined as having two parts: an external and internal test. The

external test is a description of a test that can be applied to the external ports of the part.

The internal test is the behavior that results on the internal ports when the external test is

applied.

An access procedure, as defined above, represents one input and one corresponding

output of the inverse filter function. To completely describe the inverse filter function of a

part a set of access procedures would be used; there would be one access procedure for

each distinct internal test (the number of access procedures would be billions or more). In

using access procedures for testing, the inverse filter function is not completely specified.

74

The test designer will provide access procedures only for the particular internal behaviors

that are required (usually resulting in one to three access procedures).

Parameterization of the external and internal tests is allowed, and almost always done.

Access procedures are allowed to have parameters that are typed values. These

parameters can change any of the values in the test vectors of the external test or internal

test, but cannot change the timing. Usually, however, all test vectors have identical timing

but different values, making a single access procedure unexpectedly powerful.

4.3 Using the Test language to Describe General Behavior

The test language was developed as a language to describe the action of a tester upon a

system. The necessary tools required to describe the behavior of a device are slightly

different. The test language will be adapted to describe response.

4.3.1 The Actions of a Part Upon a Port

A port is an intangible interface between two parts. Each of the two parts connected to

the port can perform an action upon the port. The following actions are sufficient to

describe the behavior of digital devices:

force

feel

The part forces the port to a specified value.

The part senses the value on the port. The value is then available for
further processing.

undefined The part either ignores the port, or forces the port in a.n undefined
manner.

4.3.1.1 The Actions of a Tester

The actions that a tester performs upon a part are consistent with the actions described

above to the extent that they are defined. In particular:

1. When a tester performs a feel operation on a port, the value sensed is
compared with the expected value. If the comparison fails, a global error flag
is set and the device is discarded.

75

2. When the tester is performing the undefined action on a port, it will take the
course of action that requires least effort and is consistent with the
description above. Usually this means if the tester were performing a feel
operation, the tester ignores the port. If the tester were performing a force
operation, the tester continues the force operation.

3. The interrogate operation is a variation of the feel operation.

4.3.2 The DuaHty of Actions Upon a Port

Each of the two parts connected to a port perform one of the three actions described

above at every instant in time. Furthermore, in a proper description of a properly formed part,

only certain combinations of the actions will occur. Pairs of actions that may occur at the

same time on a port are considered to match. The following three rules describe all matches:

1 . A force action matches a feel action and the value parts are the same. This
is the situation where one part has an output that drives a signal to an input
in another part.

2. A force action matches an undefined action and the value parts are irrelevant.
This is the situation where a part with an output is driving a signal to another
part that is not receiving the value.

3. An undefined action matches an undefined action and the value parts are
irrelevant.

In some cases the matching requirements stated above cause the actions performed by

the two parts connected to a port to be synchronized. For example; consider one part

performing a feel operation with value O and then changing to a feel operation with value 1.

If the description is correct, the other part must initially be performing a force operation with

value O and must change to a force operation with value 1. For the matching rules to be

valid, the two actions must occur at the same instant. Figure 4-5 illustrates this behavior.

In some cases, however, synchronization between actions is not required. If one part has

a port in an undefined state, the other part ce.n perform actions on the part without

restriction. Figure 4-6 illustrates this.

Other Part
I

76

One Part
I

+-------¥-------+ +-------¥-------+ sequence
I a<0 1-----------1 a>0
+-------+-------+

I
+-------¥-------+
I clk<l I
+-------+-------+

I
+-------¥-------+
I clk<0 I
+-------+-------+

I

+-------+-------+
I
I
I
I
I
I
I
I
I

+-------¥-------+ +-------¥-------+
I a<l 1-----------1 a>l
+-------+-------+

I
V

+-------+-------+
I
V

Figure 4-5: Synchronization of Actions

Other Part One Part
I I

I
I
V

I +-------¥-------+ sequence
I I a<NULL I I
I +-------+---~---+ I
I I V

+-------¥-------+ I
a<0 1-------------------X

+-------+-------+ I
I I

+-------¥-------+ +-------V-------+
I clk<l 1-----------1 clk>l
+-------+-------+

I
I
I
I
I
V

+-------+-------+
I

+-------¥-------+
I a>0 I
+-------+-------+

I
V

Figure 4-6: Non-Synchronization of Actions

4.3.3 The Behavior of Groups of Ports

77

The behavior of actions on a group of ports is represented as a partial ordering of actions

on the ports. (The reader will be familiar with most of the notation from knowledge of the

test language. An additional operator is used, however, and the notation will therefore be

summarized.) Actions, or groups of actions, are ordered by several operators, each with a

precedence, as shown below. Lowest binding precedence is first, and highest last:

II

+

()

4.3.4 Repetition

Shuffle. The actions, or groups of actions, separated by the shuffle
occur concurrently and are unsynchronized.

Plus. The actions, or groups of actions, separated by the plus occur
concurrently and are synchronized.

Semicolon. The actions, or groups of actions, separated by a semicolon
occur sequentially.

Comma. The actions, or groups of actions, separated by a comma occur
simultaneously.

Parenthesis. Parenthesis can alter the normal binding order, and hence
allow the construction of somewhat arbitrary sequence dependencies.

The behavior of many devices is best represented as the cyclic repetition of a single

characteristic behavior. In describing such repetition the notation * [] will be used. The

description within the brackets is assumed to be repeated.

4.3.5 Relationships Between Styles of System Descriptions

A behavioral description conveys information about the operation of a part in the same

way as a functional description or a direct observation of the operation of a part. These

three manners of characterizing a part are points in a spectrum of styles of system

descriptions.

A functional description describes the operation of a system under all possible inputs and

outputs. In general, a functional description will have conditional statements which allow the

behavior to change in an arbitrary manner in response to different inputs and outputs. Timing

78

can be included in the functional description to model the behavior of the part under all

inputs.

The behavioral descriptions used here describe the outputs for only a small class of

inputs. The descriptions have no conditional statements, and hence the timing (or sequence)

behavior of the part must always be the same. Parameterization is allowed, however,

allowing a single description to describe a number of different instances of behavior. A

behavioral description, however, can be obtained from a functional description and some

knowledge of the input by evaluating all the conditionals. The behavioral description

describes the sequential depend9ncies of actions, and could (not presently implemented)

describe some timing dependencies (such as propagation delay). The behavioral description

does not generally constrain the timin"g dependencies of the environment.

Observations of the operation of real systems describe the outputs of a system for

exactly one instance of input. All timing behavior is described. An observation of an

operating system gives no information of the algorithms performed internally to translate

input to output. Timing relationships determined by the device and those determined by the

environment are not distinguishable.

The reason the behavioral descriptions were defined in the particular manner that they

were for testing is that the other representations have undesirable properties. Functional

descriptions, while containing all the necessary information for testing, have a great deal of

additional information making them unstructured and difficult to manipulate. Functional

descriptions may also be inefficient to execute, an important concern for testing that must

occur at high rates.

Observations of the operation of a part do not allow any abstraction of the behavior of a

79

device. A test specifying the actual operation of the tester would be just a matrix of ones

and zeroes to be applied and sensed at particular times.

The behavioral descriptions give a somewhat general description of a part without

incurring the difficulties of a full functional description. The methods of parameterization of a

behavioral description are efficie_nt and satisfy most of the requirements for testing.

4.3.6 Examples of Behavioral Descriptions

Two simple examples will be presented to clar;fy the concept of the behavioral

description.

4.3.6.1 A Four Bit Adder

A behavioral description of a 4 bit binary adder is shown below:

*[
a>x1 , b}x2;
c<(x1 +x2)&15 ;
a<NULL , b(f\JULL , c<NULL ;
]

* [] is infinite repeat

add inputs mod 24

inputs and outputs become
undefined at the same
time

In the first step the adder receives the two values from its environment to be added, x1

and x2. The inputs may contain spurious transitions because the input ports are in an

undefined state before the feel. The feel operator will be satisfied only after the inputs

have stabilized. Following the stabilization of the inputs, the outputs will change to the sum

of the inputs. The notation accounts for hazards that may occur at the outputs because the

outputs are in an undefined state before the force. After the inputs and outputs have been

valid for some time, one of the inputs may start to change to a new value.

The third step states that three events occur at the same instant: 1) and 2) the inputs

become undefined and hence are allowed to change, and 3) the output becomes undefined

and the adder may change its value. The first step placed the inputs in a feel condition, and

80

these inputs are not allowed to change until another step (such as the third step) occurs to

release them from the feel condition. Therefore, step three must occur before either input

changes. The third step therefore states that the output becomes invalid at the instant that

either input starts to change.

4.3.6.2 A D-type Flip Flop

A behavioral description of a D-type flip flop is shown below:

*[
d)x1;
clk>1;
(clk)O II q<x1 II d<NULL);
]

* [] is infinite repeat
input becomes defined
input sampled
output changes inputs

become undefined

The first step of the description consists of the d input being sensed. In the second step

the cloclc is asserted. Spurious transitions are allowed on the d input because the input was

in an undefined state previous to the operation. Spurious transitions are not allowed on the

clock because the clock was in a defined O state previous to the feel. The second step

consists of three asynchronous operations separated by the II operator. The operations

consist of the clock being returned to zero, the q output changing to the sampled input value,

and the d input becoming invalid. These three operations are concurrent because they may

occur in any order separated by arbitrary amounts of time.

4.4 Deriving Access Procedures from Behavioral Descriptions

The access procedure for a part in a system is a direct consequence of the behavioral

description of the system. In using a system to apply a test to a part, the ports a.re divided

into two groups. Some of the ports are the external access points of the system, either

being physical conductors accessible to the tester or internal nodes accessfole through

other access procedures. The other ports are called rnternal ports, and are the external

ports of the part.

81

On the first group of ports the tester is performing action on the system, whereas the

behavioral description describes the action performed on the tester. If the sense of the

actions on these ports is reversed, the result is the actions the tester must perform to

invoke the behavior on that set of ports. On the second group of ports, the behavioral

description describes the actions performed on the part connected to those ports.

The complete definition of an access procedure consists of two parts:

1 . An external test.

2. An internal test.

Both the external test and internal test are behavioral descriptions of a sequence of

actions on ports. The external test is actually not a test, it is a test with the sense of all

the actions reversed.

Some examples of behavioral descriptions and their transformation into access procedures

are shown below:

4.4.1 Accessibmty Through Flip Flops

Consider testing a device consisting of the parts shown in figure 4-7.

+------------+ +-----------+
Al ID f I i p f I ops I A2 I in terna I I

------>+ dl ql +------>+ a device I
Bl I I B2 I I

------>+ d2 q2 +------>+ b I
Cl I I C2 I I

<------+ q3 d3 +<------+ c I
I I I

elk
+-----'!'------+

I
-------------+

+-----------+

Figure 4-7: System Consisting of Fiip Flops and an Internal Part

The functional behavior of the flip flop section is as follows:

82

*[* []is infinite repeat
A1>a, B1>b, C2>c;
clk>1 ;
(A2<a; II B2<b; II C1 <c; II
A 1 <fJULL; II B 1 <NULL; II C2<NULL; II clk>O;)
]

The internal and external ports can be separated with the following results:

*[
A1)a, B1>b;
clk)1 ;
(C1 <c II clk>O) ;
]

*[
C2>c;
A2<a, B2<b;
]

external ports

no need for a1 <NULL, etc.

internal ports

The separated port notation above formalizes the structure and results of the access

procedure. The external test received by the ports is reversed in sense to specify an

access procedure acceptable by the test language:

FIFl}define procedure access
FIFl>var a b c;
FIFI> A1<a, B1<b, clk<1
FIFI> C1 >c , cik<O ;
FIFl>end

Notice that the internal test indicates that a feel operation occurs and then later two

force operations occur. If the part were, for example, an and gate, the primitive tests would

specify that the force operations should occur first and the feel operations later. By

applying the access procedure twice the internal test becomes feel-force-feel-force,

containing the desired force-feel sequence. The desired behavior can be obtained by

performing the access procedure twice, first for the force operations and later for the feel

operation. The test language appropriately captures this characteristic of the system.

83

4.4.2 Accessibmty Through A Sc~n Path

Consider testing the device illustrated in figure 4-8.

lsclk I sin
I V

+----------+ I +--------+
I adder I +-->I I

INP ------------>+ inp a I OUT I I ACC
I out c +------->+ ACC +------+-------->

+-->+ inp b I I I I
I I I +-->I I I
I +----------+ I +--------+ I
I I I I
+-------------------}--------)----------+

I I
lclk V sout

Figure 4-8: Shift Register Accessed System

The functional behavior of the shift register is as follows:

var ab c;
*[
(loop i 0 3

sin>b[i];
sclk> 1 ; sclk.>0 ;),

lr\lP<a , ACC<b ; elk> 1 ;
OUT>c , clk>0 ;
ltJP<NULL , ACC<NULL , OUT<NULL ;
(loop i 0 3

]

sout<c[f] ; sclk> 1 ;
sclk}0 ;)

* [] is infinite repeat

The internal nodes and external ports can be separated with the following results:

var ab c;
"'[
(loop i 0 3

sin>b[i] ;
sclk> 1 ; sclk>O ;),

INP>a ; elk> 1
clk>O;
INP<NULL;
(loop i O 3

]

"[

sout<c[i] ; sclk>1 ;
sclk.>O.;)

- INP<a , ACC{b ;
OUT>c;
INP<tJULL , ACC<NULL , OUT<NULL ;
]

84

external ports

internal ports

The external test received by the ports is reversed in sense to specify an access

procedure acceptable by the test language:

F[Fl)define procedure access
FIFl>var a b c;
FIFI> (loop i 0 3
FIFI> sin<b[i] ,
FIFI> sclk<il ; sclk<O ;), .
FIFI> INP<a , elk< 1
FIFI> clk<O ;
FIFI> (loop i O 3
FIFI> sout>c[i] , sclk<1
FIFI> sc~k<O ;)
FIFl>end

Notice that the test applied to the adder consists of alternating forces or feels and

undefined states. In reality the desired test pattern is shifted serially through the

accumulator, ca1Using inputs to the adder to change during this shifting. In the specification

of the behavior, this shifting corresponds to undefined states. If the part were not an adder,

but rather a sequential device the access procedure (and probably the system in general)

would not be suitable. This suitability follows from the access procedure and the primitive

tests, however. The access procedure is described as only capable of generating tests with

85

embedded undefined states, and the tests for a (combinational) adder are compatible. If the

part were sequential, then the primitive tests would not include undefined states, indicating

incompatibility.

4.4.3 A Method for Generating Access Procedures

The method used previously to generate access procedures can be formalized:

1. A test sequence that can be applied externally is (manually) proposed for a
system.

2. The behavior of all the internal and external ports of the system in response
to the test is computed and named the general description.

3. The general description is divided into an internal test, consisting only of
actions performed on internal ports, and an external test, consisting only of
actions performed on external ports.

4. The external test is transformed into a test language procedure by reversing
the sense of all the force and feel operations.

5. The complete description of the access procedure consists of the external
test and internal test. The external test can be applied through a tester by
reversing the sense of all its actions.

4.4.4 Matching Access Procedures with Tests

As described up to this point, the application of access procedures is an algebraic

process. The variables for the access procedure are merged with the parts of the primitive

tests and the result is suitable for testing. At this level access procedures are suitable for

machine implementation. The test language does exactly this: the procedure calling

conventions specify the arguments to be applied to the access procedures and when they

are to be executed.

In practical systems there may be a number of access procedures for each part of a

structured composition. in such cases it may become necessary to carefully match the

internal test of the access procedures with the primitive testing operations. In a more highly

automated implementation it would be necessary for the machine to examine the internal test

86

part of the access procedures and match with the external test part specified for the

primitive tests. This is no longer an algebraic task.

The suitability of an access procedure for a particular primitive test can be determined by

examining the internal test part of the access procedure and the primitive test. If a match

exists between the internal test and the primitive test, the access procedure is suitable.

Some machine methods are known for solving this part of the problem, i.e. pattern

matching and theorem proving. In pattern matching, the internal test and the primitive tests

would be treated as patterns. The machine would locate the access procedure that matched

the primitive tests. In theorem proving, the access procedures would be theorems. The

theorems allow the external test to be substituted for an instance of the internal test in a

primitive test. The theorem prover would be directed to perform substitutions of access

procedures until all inaccessible ports disappear.

4.5 Controlled Expansh;m of Test Vectors

In the previous discussion of access procedures the emphasis was on limiting the amount

of test language specification required for a test. The total number of test vectors

generated by such a specification was not discussed. An analysis is presented here to

estimate the number of vectors. Methods will be demonstrated tha.t can limit the number of

vectors to a reasonable value.

4.5.1 Number of Test Vectors in a Test

In this analysis it is assumed that all of the parts at each level of the system will have

identical testing behavior. In reality systems will not have this property. If we let the

properties of the canonical part that we are studying be representative of the average of

the properties at each level, our analysis will be fairly accurate. Exceptions to this will be

87

pointed out as they occur.

Consider a system with n levels, named Ho to Hn. Ho represents the elements, such as a

memory or combinational logic. H
0

represents the entire chip. There is a branching ratio, B,

that represents the number of parts within each part at the next higher level. Assume

fu~hermore that an access procedure is written for each of the Hj (except H0) and that

these access procedures require some number of vectors, k, to be applied externally for

each vector applied internally. Finally, each of the elements require T vectors to test.

level branching ratio total parts expansion at total vectors
this level per HO element

n B 1 k k"T
n-1 B B k kn-1T

.
2 B 8n-2 k ic2 T
1 B sn-1 k kT
0 none s" none T

4.5.2 Asymptotic Dependence of Test Size on Number of Cells

An asymptotic dependence of the number of test vectors upon the total number of

elements can now be computed. Let S represent the total number of elements, S=Bn, and V

represent the total number of vectors. The total number of test vectors required to apply

one step to level O is kn. The number of primitive tests required to test each element at

level H0 is T, hence the number of test vectors required to test each H0 element is Tk0
• The

total number of Ho elements is Bn, hence the number of test vectors required to test the

chip is V=BnTk". Performing algebra:

V = BnTkn
V = STkn
V = TSx where
x = 1 + log k/log B

88

x is the exponent of the polynomial dependence of the number of test vectors upon the

number of elements in the system. In a typical system, designed without a priori knowledge

of the results of this analysis, values can be estimated for k and B. Assume that each

access procedure requires 1 00 external steps for each internal step, or k= 1 00. The

branching ratio will be 10, or 8=10. Hence cubic dependence of test vectors upon number of

elements:

x = 1 + log 100/log 10 = 3
v = rs3

4.5.3 Improvements on Asymptotic Behavior

Third power dependence on S is intermediate in the spectrum of known test vector

behaviors: LSSD exhibits O(N) behavior, this exhibits O(N3), general switching theory

exhibits O(eN). In practice, a discipline can be adopted which reduces the N3 behavior.

Three possibilities exist: (1) the effective test step increase factor, k, is less, (2) the

branching ratio, B, is larger, and (3) the relationship between S, the number of elements, and

N, the complexity of the chip is different.

4.5.3.1 Reducing the Length of Access Procedures

The number of test steps in the access procedure is a very soft figure; the designer can

•
reduce this· number by proper selection of a design discipline. Cleverness in reducing the

number of test steps by careful test language coding in an access procedure pays off by

asymptotically reducing the size of the test (remember the exponent was x=1 +log k/log B).

A technique to reduce the number of vectors in an access procedure exploits state in the

glue of a system. Consider, for example the system shown in figure 4-9. Figure 4-9

illustrates a bus organized system where there are four parts connected to the bus. One of

89

-----------+
I

+------+------+
----> latch I

+------+------+
I

+------+------+
I select
I 0 1 2 3
+-+--+--+--+--+

I I I I
+-----------------+ I I +--------------------+
I +----+ +-------+ I
I I I I

+---+---+ +---+---+ +---+---+ +---+---+
I part 01 I part 11 I part 21 I part 31
+---+---+ +---+---+ +---+---+ +---+---+

t t 1' t
I I I I
V V V V

BUS-------+---------------+---------------+---------------+------

Figure 4-9: Composition Cell with No Test Vector Expansion

the four parts is connected to the bus as determined by the output of the selector. The

testing strategy for such a system is to select the appropriate bus part once and then test

the part directly. The effect on the number of test vectors is that the exponent on k is

reduced to unity. In the typical analysis, where k=100, the number of test vectors is

reduced by nearly a factor of 100.

4.5.3.2 Changing the Branching Factor

If a special access procedure is written for two (or more) levels of the hierarchy,

improvements may be possible. By composing several related levels of hierarchy into one,

the number of levels is reduced and the effective branching ratio increases.

As an example of testing through two levels of hierarchy, consider the system shown in

figures 3-9 and 3-1 0. In these examples, two levels of access procedures were written,

one to apply general tests to the data path unit, and one to test the parts of the data path

90

unit. The access procedure for the data path unit was general; it allowed complete

read/write access of the data path and the microcode memory above. If a special single

access procedure for the individual parts of the data path were made, it would not need to

generate as many vectors. In this case, the simplification is that the tests of the data path

require only that a function code be written into the pipeline latch; it is not necessary to

read from the latch. By eliminating the reading or the scan path, the test is nearly cut in half.

4.5.3.3 Size of Primitive Celis

The straightforward analysis of the dependence of test vectors upon size was based

upon the assumption that the size of the elements is constant as the total size of the

system scales.

In practice, however, elements consist of such parts as memories and ALUs, which

increase in size as the system becomes larger. Consider, for example, real (not single chip)

computers. A certain small computer consists of a 16 bit CPU 11 and a memory that is 2 16

words of 1 6 bits. As described the system has a single level hierarchy of two parts. The

natural successor to such a computer might be a machine with a 32 bit CPU and a memory of

2 24 words of 32 bits, with a special floating point unit. The larger system has a one level

hierarchy with three parts. Notice, however, that the size of the component parts increased.

If the size of the elements of a design were to expand without any increase in the number

of parts in the system, the test time would only linearly expand. If the size of each part

expanded from an average of t transistor to t 1 transistors, the number of vectors would be

given by:

11 We are assuming that the entire 16 bit CPU is a element. Generally it is constructed as
a repetition of 1 6 single bit sections, but efficient testing will test all 16 sections
simultaneously.

91

V = (t'/t) TSx

In applying this example to the theoretical analysis it becomes evident that the

assumption. all elements are of the same size is not quite correct. When the size of a design

doubles, it appears that the number of new and different parts does not double, but the

average size of the parts increases. In addition, the effect of this on the asymptotic

behavior of the design will be to reduce the exponent.

4.5.4 Actual Dependence of Test Size Upon Chip Size

The original naive analysis of the scalability of the access procedure concept revealed

that test time did not scale very well. The exponent of the asymptotic dependence was

very design dependent, however. It was then shown there were systematic ways of

violating each of the assumptions which could reduce the asymptotic growth in the number of

test vectors. What is the result? Does growth drop from n3 to n 1 •5 or even n 1?

The actual number of test vectors required for testing a given function will be part of a

tradeoff. It was shown in section 4.5.3.1 that the number of extra test vectors can be

reduced to a constant by adding extra hardware, but of course the extra hardware

increases fabrication cost. In section 4.5.3.2 it was shown that extra effort by the test

designer can reduce test size, but the cost of the test designer must be considered.

Let us apply the results of this analysis to present testing practice. Similar results would

make the analysis more credible. Consider a 16 bit microprocessor. Chips manufactured

today generally have shallow hierarchies, microprocessors perhaps the most complex

typically using one level. Using the typical figures given earlier, system the total increase in

test vectors would be 1 00 for a one level. Each primitive test vector can test for up to 16

92

bits of information (i.e. the data bus is used in parallel), but will also be used often to test

one bit. We will assume that each primitive test extracts 5 bits of information from the

design. If we assume that testing such a chip requires 50,000 bits of information (i.e.

several bits for each transistor) the total number of test vectors is 12 106 . At a test

application rate of 1 MHz this corresponds to a test time of 1 second. This is close to real

statistics for microprocessor testing.

In large systems with many levels of hierarchy it is expected that the lower level parts

will be designed for efficiency and the higher level parts would be designed for easy test

access. In the lower level parts often repeated the extra hardware required to reduce the

complexity of the access procedure would be reproduced many times. At the higher levels,

the extra hardware can be amortized over a great deal of hardware. It will probably never be

necessary to optimize all the levels of the design. Even for the very largest chips the

number of transistors is small compared to the number of t~st vectors that can reasonably

be applied during testing, anc_f hence a factor of k in the range of 1 00 will be tolerable.

4.6 A Perspective on Structured Compositions

There are basically three classes of design-for-testability strategies available now.

These are classified here in terms of their behavior when parts are composed into larger

parts or sys.terns.

- The most primitive is the conventional design discipline where no special
attention is given to testability. Systems are combined without any concern for
the testability characteristics of the result. This type design is called
composition. An example of this type of design is the composition of a latch
and a rom to make a state machine.

- A refinement of this type of design is when designs are composed in a manner

1 2 so,ooo bits of information/5 bits per test = 10,000 tests. Each primitive test requires
100 test vectors, for a total of 106 vectors.

93

that guarantees access to all the internal state of the composition. Scan path
testability methods utilize this technique. Usually the state variables in each
part are chained into a parallel/serial shift register where the serial mode is
used only for testing. When parts are composed, the shift registers are
concatenated. The result allows access to all the internal state by shifting the
internal state in and out through a single shift register chain. This type of
composition is called concatenat.ion because testing is done by concatenating
the tests for all the parts of a system.

- A refinement of design by concatenation is recursive design, the testing of
which is proposed here. In recursive, or structured design parts are composed
but considerable independence is retained. The relevant aspect of this to
testing is that access can be obtained to any part without effecting the other
parts. An example of this type of design is the combination of a processor and
memory into a computer.

4.S.1 Oescgn by Composition

Switching theory indicates that the difficulty in devising tests for general networks may

be exponential in the number of gates. It therefore follows that the number of vectors

required to test a composition of two general systems is bounded only by the product of the

number of vectors required to test each separately.

As a general tool for building large systems, general composition is unreasonable. Direct

composition is the normal tool for generating elements of a system because it allows the

most compact design. If the elements are small the exponential behavior is not dominant.

4.6.2 Composition by Concatenation

Testability by concatenation is the basis for scan path testability techniques. The

technique for testing is to make an access procedure that can access all of the internal

state of the part at once. In the most common implementation, LSSD, all the internal state is

contained in shift register latches (SRLs) and can be accessed by serially shifting the state

through the device. In LSSD the shift register is one bit wide, but the scalabHity of testing

does not depend upon this; the relevant characteristic is that all parts are tested

94

simultaneously. Figure 4-1 O illustrates a concatenated composition.

--+
r

+-----------+
I T0 vectors!
I n0 bits I
+-----------+

I

max{T0 ,T1 ,T2,Tn) vectors
n0+n1+n2+nn bits

+-------+
internal I I test
+-----· -----+ +-----------+
I T1 vectors!
I n1 bi ts I

I T2 vectors!
I ~2 bits I

+-----------+ +-----------+
I I

external
test

+-->
I

+-----------+
I Tn vectors!
I nn bits I
+----------. +

I
+-------+ +-------+

Figure 4-10: Scan Path Testability

In LSSD systems this type of concatenated composition is extremely good. LSSD systems

are made of SRLs and combinational logic. Since the combinational logic is in a system with a

fixed clock rate, the number of levels and the fan-in and fan-out are limited. These

limitations have the property of making the test for any particular fault involve only a few of

the state variables. By judicious combination of tests that involve independent sets of state

variables the number of complete scans becomes quite small. It has been observed that the

number of complete scans is about 300 regardless of the size of the system [IBM 80].

When a number of LSSD systems are composed, the effect is to make the scan path

longer. The number of complete scans does not increase, however, beyond the maximum of

any of the parts. Since test vectors are scanned in and out serialfy the time to perform one

complete scan becomes proportional to the number of SRLs in the system. The number of

test vectors for a sy3tem of n SRLs becomes 300n.

Concatenated composition systems become less attractive when devices other than

conventional combinational logic are used. Consider a concatenation of memory elements,

roms, and conventional combinational logic, such as might be found in a real design. The

95

number of test vectors required for each of the parts is described below:

Combinational Logic 300. 300 test vectors is an average number, independent of the size
of the system, for conventional combinational logic.

ROM Depth of the ROM. A ROM is tested by reading each of its entries and
verifying the contents.

Memory n log n, n the number of locations in the memory. A n log n vector test
is the minimum required to verify that the decoding circuitry is
functional.

For a typical system with 1 024 words of memory, 20,480 test vectors are required

(10,240 for reading and 10,240 for writing) to test the memory. It would then be necessary

to perform 20,480 complete scans to test the memory. Of these 20,480 vectors, 300 will

also test the combinational logic. The total number of test vectors will then be 20,480n.

The problem is that it is not possible to test the parts independently and, as a result, one

difficult to test part makes everything else difficult to test. Analytically, in comparison to

the recursive testing case, the maximum function is applied to the tests of the parts rather

than weighted average. If all the parts are of similar testing complexity, the two systems

will be similar. If one part is much more complex to test than the others, the concatenation

testing strategy is poor.

4 .. 6.3 Design by Recursion

In a recursively designed system each part can be tested independently of the others.

Consider a system consisting of n parts, numbered j = 0, 1, 2 ... n-1, each requiring a test Tj

vectors in length and each test vector being n j bits wide. This structure is illustrated in

figure 4-11 .

In testing such a design with access procedures, the total number of vectors will be:

f
externa I I test

V

96

+-------------+-------------+
1 k(Te+T1+T2+Tn) vectors I
I max(n0 ,n1,n2 ,nn) bits I
+-+-------+-------+-------+-+

f f f t
I I i I

+-----------+ I I +-----------+
I +---+ +---+ I
I I internal I I
V V tests V V

+-----------+ +-----------+ +-----------+ +-----------+
I T0 vectors! I T1 vectors! I T2 vectors! I Tn vectors!
I n0 bi ts I I n1 bi ts I I n2 bi ts I I nn bi ts I
+-----------+ +-----------+ +-----------+ +-----------+

Figure 4-11: Recursive Test Composition

It was demonstrated earlier that the factors k are controllable, and if testing were to

become a problem, could be made unity. If this is done, the test size for a system then

becomes the sum of the test sizes for the elements.

A spectrum of testing difficulty becomes apparent, however. Unconstrained compositions

require the most vectors to test, i.e. the number of vectors required to test a system is the

product of the numbers of vectors required to test its parts. If accessibility is guaranteed

by a concatenated access sequence, the number of vectors is related to the maximum of the

number of vectors in any part times the number of parts. If independence is assured, the

number of vectors is the sum of the vectors in the parts.

4.6.4 A Numerical Comparison of Testing Strategies

The scalabirity of design by composition, concatenation, and recursion will be

demonstrated in this section. The ideal scalability of a system is that the amount of test

time increases linearly with size. Linear scaling corresponds to a constant amount of test

97

time for each part, regardless of whether the part is buried in a system. The figure-of-merit

that will be developed here will be a representation of the amount of work required per part

as a function of the size of the total number of parts. Linear scaling corresponds to a

constant figure-of-merit.

_The size of the testing task will be represented by two factors that scale with the size of

the system: number of vectors and size of each vector. The difficulty of the task can be

represented as the product of the number of vectors and the size of each vector. The

distinction between the two factors is included to make the analysis of scan path systems

easier. Tests of scan path systems are typically visualized as a relatively small number of

tests of the entire scan path. The size of each scan scales, however, and must be included.

Consider the composition of n parts. Each part, 1 P ... "P, requires T 1 ... T n test vectors and

each test vector is L bits in length. Let T"' represent the average of the Tj. Assume for

recursion that the n parts are in an m level hierarchy.

attribute composition

number of vectors

size of each vector

size of test

test size per part exp n

concatenation

max(T 1 ,T 2 , ... T n)

nl

nl max(T 1,T 2 , ... T n)

max(T 1,T 2 , ... T n)/T
)I(

recursion

km(T 1 + T 2+ ••• T n)

L

Lkm(T 1 + T 2 + ... T n)

km

The entries under test size per part are factors indicating the scaling of the test size

)I(

normalized to the number of parts. Note that the factor max(t1 ,T 2 , ... T n)/T for scan path

systems may be as small as unity if all the parts require the same number of primitive tests,

Tf The scaling of hierarchically designed tests uses the factor km, which can also be made

as small as unity by careful design.

98

General compositions have the practical advantage of being easy to design and efficient

in operation. The upper bound on the number of test vectors required to test a general

composition is extremely high. Scan path systems can have a linear limit. If the variance in

the T's is small, the scalability of the total effort in testing a system will become linear. In

practical cases, however, the variance in the T's is not small causing large factors to be

introduced in the test size. Recursive test design scales linearly, but with a factor for test

vector expansion. It was demonstrated that additional hardware could reduce the text

vector expansion if necessary.

4.6.5 Other HierarcMcal Compositions

It is important to understand that scan path systems and hierarchical systems are not

necessarily mutually exclusive. Historically, one of the most elegant testability strategies,

LSSD, is both a scan path system and is not hierarchical. Varie.tions on the scan path

concept are possible. Consider the scan path system in figure 4-12.

select stn sout sclk
I I t I
I V I V

I +-------+---+---+-------+
+-->+ switch I

+-+-+-+---+-+-+---+-+-+-+
I 1' I I 1' I I 1' I

+-------------+ I I I I I I I +-------------+
I +-----------+ I I I I I +~----------+ I
I I +---------++-+I +-+ +---------+ I I
V I V V I V V I V

+---+---+---+---+ +---+---+---+---+ +---+---+---+---+
I sin sout sc I k I I sin sout sc I k I I sin sout sc I k I
I part 1 I I part 2 I I part 3 I
+---------------+ +---------------+ +---------------+

Figure 4-12: A Hierarchical Scan Path System

The select input controls a switch that connects the scan path controls of one of the

parts to the external scan path. If the parts can be constructed in the same manner the

99

system has recursive independence, as well as having a scan path. The resultant device

would differ from a conventional scan path system in that a single part could be tested

without disturbing the other parts. The number of test steps required to test a part is not

increased by the hierarchy, except that the switches must be set properly. The scalability

of the test length is reduced to linear.

Another example of a hierarchical system with a scan path is shown in figures 3-9 and

3-10. In these examples, the scan path is used only for the access of the microcode

address latch. Scaling of these systems would be accomplished by mal~:ing the data path

more complex, while the microcode word would increase in size very slowly. These examples

do, however, illustrate the disadvantage of using a single bit serial scan path. Each test of a

microcode word requires 25 clock cycles; 8 to clock in the address and 1 7 to unload the

microcode data.

Pipelined systems are another example of design by concatenation. In order to access

any part of a pipeline it is necessary the shift the test, or the response, through the entire

pipeline. It is assumed that such systems have the ability to pass a test through the

pipeline without significant alteration. Without this ability, test[:ig becomes more difficult. A

pipelined digital filter is shown in figure 4-13.

Accessibility of the pipeline in figure 4-13 is straightforward: test patterns are loaded

into and unloaded from the pipeline by shifting them while applying the values of zero for a1

and a2. Although the data path may be 1 2 or i 6 bits wide, the system must be tested as a

concatenation because all le..tches must be loaded to do any testing.

100

clock
--------------------+------------------------+------>

I I
+-------+ +---v---+ +-------+ +---v---+
I I I I I I I I

--->+ add +-->+latch+--->+ add +-->+latch+-->
I I I I I I I I
+---+---+ +---+---+

t I
I V

I +---+---+
I I I
+-------+ mul I

I I
+---+---+

t
I
al

+---+---+ +---+---+
t I
I V

I +---+---+
I I I
+-------+ mul I

I I
+---+---+

t
I
a2

Figure 4-13: A Digital Filter

4.6.6 Serial and ParaHel Testing

An objection to testability strategies utilizing a single external pin for loading and

unloading tests is that the bandwidth available at the pins is not utilized. Scan path systems

typically have two pins for the scan path; a serial input and a serial output. Such chips often

have a 16 or 32 bit data path that is unused during the shifting of the scan path.

In most cases the advantage of using a multiple pin bus for tests over a single serial scan

path is to reduce the number of test vectors by the number of pins in the bus. Recall,

however, that in the original analysis the number of test vectors required in a hierarchical

test was related to the factor k, the number of steps in the access procedure. According to

this analysis, the decrease in the length of the access procedure that would result from

using a parallel data bus would change the asymptotic behavior of the testing system. In the

hierarchical scan path system shown in figure 4-12 the penalty for using one pin instead of a

bus is again limited to the bandwidth difference between one pin and a bus.

101

In conclusion, the advantage in using a bus to gain access to a device is limited to

reducing the number of test vectors by the size of the bus. In some cases the resultant

factor of 16 or 32 might be significant. In other cases the design may be simplified

considerably by having only a one bit serial path, and the number of test vectors may be

small enough either way.

4.7 Conclusions

The testability strategy developed in this chapter is a method that can be implemented by

a human to design a chip and its test together in a balanced manner. The strategy has the

advantage that the human effort applies to c!asses of designs, rather than individual chips.

The method can be considered a testability strategy generator, rather than a test generator.

An alternative application of the method is to develop a catalog of composition systems

and to study and record their access procedures and properties. If chips are constructed

using only the cataloged hierarchical designs, in proper compositions, then the resulting

designs is guaranteed testable, and tests can be generated automatically.

A designer could also customize the design of all the parts in his system. The testability

formalism developed here would aid the designer in partitioning the design task, aid in

documentation, and provide an efficient manner of testing the system.

If a system is not testable, or if the test designer does not know an efficient manner of

testing a system, these methods will not help. The method described here merely provides a

manner of formally describing the testability attributes of a design. The designer must

understand the testability attributes before they can be formalized.

102

5. The FfFI Test System: A Reality Test

The notation developed in the previous chapters is implemented in a test system. This

chapter describes a few details about the test system and then illustrates its operation with

examples.

The purpose of this chapter is not to be a complete user's manual for the test system.

Commands and examples are developed only to give the reader an idea of the context in

which the test language is used. Readers interested in more details are referred to the real

user's manual: [DeBenedictis 82].

5.1 Test System Commands

The FIFI test system is an interactive system. The test system processes commands

immediately when they are entered. Interactive commands may involve storing a sequence

of commands to be executed automatically at a later time, or taking commands from a file.

Figure 5-1 illustrates the test system operation. In illustrations of interactive use all

computer typeout is in boldface. Descriptive information is in an italic type face. User input

is underlined. Nian-underlined text is output by the test system as a prompt or the output of

a command. Refer to appendix A.1 for details of the syntax.

In figure 5-1 the user is exercising the set command.

FIFl>set trace
trace mode
FIFl>set timing
timing diagram mode
FIFl>set z80
z80 tester modle
FIFl>s t
trace mode

traces test steps

generate timing
diagram

uses Z80 tester

set trace abbreviated

Figure 5-1: Illustration of Interactive Use of the Test System

103

5.1.1 Loading Test Programs: Define Command

Test programs are loaded into the test system with the define command. The test system

maintains lists of the definable entities: procedures and ports. When a procedure or port

definition is processed, the input is checked for syntax only, semantic checking is done later.

Figure 5-2 illustrates a define command.

FIFl>define port elk 1;
FIFl>define procedure frog
FIFI> (loop i 1 100 elk< 1;

new port named elk
def !nitions

may be more than
one line in length

procedure frog
FIFI> clk<O;)
FIFl>end
FIFI>--

Figure 5-2: Examples of the Define Command

5.1.2 Executing Test Programs: Execute and Immediate Commands

The effect of executing a test program depends upon the mode. Each different kind of

tester will require different input from the test language system and may only implement

some of the features of the test language. There are also some modes that do not actually

operate on a device. The modes and their effects are described below:

trace mode In trace mode the port operations are printed when they are executed.

timing diagram mode In timing diagram mode the execution is assembled into its rectangular
matrix representation. When the command is finished, the rectangular
matrix is printed.

z80 tester mode In z80 tester mode commands are generated to drive the 280 tester.
It is assumed that the user is at a tester console and a chip is
connected to the tester.

The command to invoke a main test program is execute. The execute command takes one

argument that is the name of a defined procedure 13.

13There is no distinction between a testing procedure and a main test program. A .main
test program is written as a test procedure, but it is never called by any other procedure.
The user will invoke the main test program by its name. The test language is Hke the C
programming !anguage in this respect: a main program in C is a procedure with name 'main'.

104

The immediate command interprets, compiles, and executes a one line test language

command. The immediate command is used for interactive debugging of test programs.

Figure 5-3 shows an example of the execution commands. Refer to appendix A.1 for the

syntax cf the execution commands.

FIFl>set timing
timing diagram mode
FIFl}define port elk 1;
FIFl>define procedure frog
FIFI> (loop i 1 2 elk< 1 ;

timing diagram

new port named elk
definitions

may be more than
one line in length

procedure frog
wiggles elk 2 cycles

FIFI> clk<O;)
FiFi>end
F(Fl>eiecute frog
elk

+-------+
1<1 I
1<0 I
1<1 I
1<0 I
+-------+

timing diagram

FIFl>immediate (loop i 1 4 clk<i[O]); does same thing
elk

+-------+
1<0 I
1<1 I timing diagram
1<0 I
1<1 I
+-------+
FIFI>

Figure 5-3: Example of Execution Commands

5. 1 .3 Miscel!aneous Commands

A few other commands exist and are described below:

read

print port

print procedure

The read command takes input from a file rather than the terminal.
When the file is complete control returns to the terminal.

If the name of a port is provided then the definition of the port is
printed, otherwise a listing of all defined ports is printed.

If the name of a procedure is provided then the definition of the
procedure is printed, otherwise a listing of all defined procedure is
printed.

105

quit Test system exits.

Figure 5-4 illustrates the commands described above by showing a terminal session.

@type testfile
define port a 1 2 3;
define port b 4 5 6;
define port c 7 8 9;
define procedure x a<1,b}2;c<3; end
@fifi
FIFi>read 11testfile11

FfFl>print port
Ports:
C

b
a
FIFl>print port a
port a 1 2 3;
FIFl}p pr x
procedure x
a<1,b}2;

c<3;
end

FIFl>quit

will be read later

test program started
filename in quotes
list of ports printed

port a printed

print proc. x abbr.

exit to monitor

Figure 5-4: Illustration of Miscellaneous Commands

5.2 Some Examples of the Test language

This section demonstrates examples and gives explanation of the test language. The

purpose is to illustrate some of the abilities of the language, and demonstrate some tricks

that may not be obvious initially.

5.2.1 TesUng the Adder in a Z80 Microprocessor

How to test an adder if the inputs to the adder are directly available is well known, see

section 1.1. It is much more difficult to test an adder if it is embedded inside a complex or

irregular device. One purpose of this demonstration is to show how the parts of the 280

106

microprocessor that surround the adder can be stripped away. This will allow exercising the

adder as though it were directly accessible.

This demonstration also illustrates some of the abstractive nature of the test language.

In an abstract interpretation the 280 processor has three basic cycles; instruction fetch,

read, and write. The instruction fetch has a different number of clock periods and different

timing from the read and write. The read and write are identical, however, except for the

direction of data flow during the cycle.

In this demonstration, the similarities of the read and write cycles are abstracted. There

is a single cycle, called a mcycle, that can perform either a read or write cycle depending

upon the type of the argument provided.

First the definitions of the pins. Only those pins relevant to the demonstration are

required. The first two pins, power and gnd, are not used by the test system, but instead

are present to remind the technician setting up the test fixture of manual connections that

must be made. (Also, these commands could be properly interpreted by a more sophisticated

tester.)

FIFl}define port power 11 ;
FlFl}define port gnd 29;
FIFl}define port addr 5 4 3 2 1 40 39 38 37 36 35 34
FIFI> 33 32 31 30;
FIFl}define port data 13 10 9 7 8 12 15 14;
FiFl}define port elk 6;
FIFl}define port reset 26;

The following is a procedure to reset the processor. It takes a var null due to an

oversight in the design of the language. In the language at present there is no way to

invoke a procedure without passing at least one argument.

FIFl)define procedure reset
FIFI> var null;
FIFI> reset<O;
FIFI> (loop I 1 10 clk{1 ;clk<O;), reset<1;
FIFI> (loop I 1 2 clk<1 ;clk<O;), cik{1;
FiFl>end

107

The ifetch procedure performs an instruction fetch cycle for the microprocessor. The

necessary parameter in an instruction fetch is the opcode that the machine will execute.

This procedure accepts this opcode as the parameter named opcode.

FIFl>define procedure ifetch
FIFI> var opcode;
FIFI> (loop I "i 4 clk<1 ;clk<O;) +
FIFI> (step 1: data<opcode;) +
FIFI> (step 1: m1 }0;) +
FIFI> (step 5: m1)1 ;) +
FIFI> (step 6: m1 <~JULL;) +
FIFI> (step 8: data<NULL;)
FIFl>end

step N skips N steps
apply opcode
m 1 should be low
m1 goes high
m1 goes low
shut off data bus

The mcycle procedure performs both the read and write cycles for the microprocessor.

Although the read and write cycles generate different sequences of transitions on the mreq,

rd, and wr lines, these signals are not necessary to exercise the internal parts of the

processor. The direction of data transfer in this procedure is determined by the type of the

argument ::!_:. The type of~ may be force, feel, or interrogate.

FIFl)define procedure mcycle
FIFI> var d;
FIFI> (loop I 1 3 clk<1 ;clk<O;) +
FIFI> (step 5: data=d;) +
FIFI> (step 6: data<NULL;)
FlFl>end

either read or write
shut off data bus

The following three procedures build rnacroinstructions upon the cycles ifetch and mcycle.

The rnacroinstructions are to load the accumulator, store the accumulator, and add to the

accumulator. Each of these instructions are two cycles. The first applies an opcode to the

processor, and the second reads or writes data.

108

The last operation performed in ea.ch procedure is to change the elk pin to 1. This puts

the processor into a static state. With the elk pin in the O condition, the internal ports of the

processor are subject to dynamic discharge and would change after about 15 seconds at

room temperature. This is undesirable in interactive use of the language wherein a 15

second delay is not uncommon.

F!Fl>define procedure load
FIFI> var va!ue;
FIFI> (can ifetch opcode<16r3e;),
FIFI> (call mcycle d<value;), clk<1;
FIFl>end

FIFI >define procedure add
FIFI> var vaiue;
FIFI> (caU ifetch opcode{16rc6;),
FIFI> (caH mcycie d<va!ue;),clk<1;
FIFf>end

FIFl>define procedure store
FIFI> var valu:e;
FIFI> (call ifetch opcode<16r02;),
FIFI> (caU mcycle d=vatue;), elk< 1;
FIFl>end

Id a,nn instruction

add a,nn instruction

Id (bc),a instruction

The following procedure is a top level test program that is invoked by the command

execute entered interactively. The procedure will add two numbers, 23 and 1 and examine

the result. Since the result is examined with a feel operation, the user will receive no

response from the test instrument if the processor is working properly. Only if the value 24

is not sensed on the outputs will any response occur.

FIFl}define procedure tp
FIFI> (call reset null<O;),
FIFI> (caH add value< 1 ;),
FIFl>end

(call load value<23;),
(call store vaiue>24;)

Figure 5-5 is a log of a terminal session using the file just discussed. The session uses

the tp procedure to load the accumulator with 24. The add and store procedures are then

invoked manually.

109

Demonstration Run of the FIFI System

@fifi
FIFl> ... etc ...
FIFl>execute tp
FIFl>i (call store value!;)
24
FIFl>i (can add value<12;)
FIFi>i (call store value!;)
36
FIFI>

previous input
executes but no print

Figure 5-5: Output From a Sample Run of the FIFI System

5.2.2 Testing Instruction Decoding in a 280 Microprocessor

The instruction decoding logic in a 280 microprocessor is very irregular sequential logic

designed without any testability in mind. In this example this logic is exercised in an attempt

to locate possible problems.

The strategy used in this example is to make the microprocessor execute each opcode

and to verify that the time required is correct. If there were a problem in the instruction

decoding or in the timing of memory or arithmetic cycles, this problem might cause an

instruction to become longer or shorter by some number of clock cycles.

This is an example of testing art. It is expected that this testing strategy will be good at

locating a wide variety of problems, but there is no way of verifying this assertion. Because

the testing does not make use of any special design features that enhance testability (there

probably are none) the efficiency of the test is low. Since it is assumed that the instruction

decoding logic is combinational logic with 8 input wires, it should be testable in 256 steps.

This strategy requires one instruction execution, consisting of a number of steps, to test

each of the 256 combinations.

110

The first step is to determine the number of clock cycles required for each instruction to

execute. This information is available from the manufacturer. The execution time of

conditional jump instructions and two opcode instructions are dependent upon more than just

the opcode, and hence cannot be tested by this method. All other opcodes can be tested.

An excerpt of this table is shown below:

opcode
00
01
02
03
04
05
06
07
08
09

mnemonic
nap
Id bc,nn
Id @bc,a
inc be
inc b
dee b
Id b,nn
rlca
ex af,af
add hl,bc

number of cycles
4
10
7
6
4
4
7
4
4
11

The next step is to construct a testing procedure that applies a given opcode to the z80

and verifies that the number of cycles is correct. The procedure below performs this

function.

FIFl)define procedure inst
FIFI> var opcode eye;
FIFI> (eaH ifeteh opcode{opcode;),
FIFI> (loop i 5 eye
FIFI> clk<1;
FIFI> clk<O;),
FIFI> clk<1;
FIFl>end

eye is length of instruction

may execute O ti mes

clock high to prevent
dynamic discharge

The procedure ifetch and mcycle have been previously described. The verification that an

instruction uses the proper number of cycles is performed by ifetch on the next instruction

fetch.

A test program to test the instruction lengths is shown below:

FIFl>define procedure length
FIFI> (call reset null<O;),
FIFI> (call inst
FIFI> opcode<O,cyc<4;
FlFI> opcode{1,cyc<1 O;
FIFI> opcode<2,cyc<7;
FIFI> opcode<3,cyc<6;)
FlFI> opcode<4,cyc<4;
FIFI> opcode{5,cyc<4;
FIFI> opcode<6,cyc<7;
FIFI> opcode<7 ,cyc<4;
FIFI> opcode<S,cyc<4;)
FIFI> opcode(9,cyc<11 ;)
FIFI> opcode<O,cyc<4;)
FIFl>end

The test program is invoked as follows:

FIFl>execute length
FIFI>
FIFI>

5.2.3 Reading the ROM of an 8041

111

reset processor
multiple calls

separat.ed by
semicolons

check last instruction

no [check failed]
because it worked

The following is a very simple example illustrating use of the test system as a general

purpose interface between the world of programming notations and the world of electronics.

The problem addressed in this example is reading the ROM of a one chip factory programmed

microprocessor, the Intel 8041 [Intel 80].

The Intel databook describes a method of reading the ROM that involves about a dozen

functions which must be performed for each byte in the ROM. One method of performing this

task would be to build a special purpose machine that would perform these dozen functions

and send the results to a computer. Such a special purpose machine would involve an

expenditure of time that would not be justified except in extremely high volume applications.

In this example the test system is set up to perform this task. The total effort involved

was to write the program shown, and to interface the chip to the tester.

112

Interfacing, in this case, involved some unusual tasks. To read the ROM it is necessary to

apply + 12 volts to a certain pin. The solution to this was to disconnect that pin from the

tester and connect it to a +12 volt power supply. Another problem is that the specifications

indicate the processor should have a 3 MHz clock running during the process. Since this

implementation of the test instrument was not capable of that speed, the clock pins were

removed from the tester and a crystal was connected.

The first section is the pin definitions. The first five are reminders for setup. gnd and vcc

are connected to standard power supplies. v12pullup is connected ,to +12 volts through the

specified pullup resistor. phi1 and phi2 are connected to a crystal. -- --
FIFl)define port gnd 20;
FIFl>define port vcc 40;
FIFl)define port v12puliup 7;
FIFl)define port phi1 2;
FIFl}define port phi2 3;
FIFl>define port: ea 7;

power connection
power connection
special +12v supply
crystal
crystal

FIFl)define port a.bus 22 21 19 18 17 16 15 14 13 12;
FIFl)define port dbus 19 18 17 16 15 14 13 12;
FIFl>define port reset 4;
FIFl>define port to 1;
FIFl>define port t1 39;
FIFl}define port cs 6;
FIFl}define port aO S;

The following procedure reads from ROM location addr and performs the function specified

by the type of data.

FIFl}define procedure mread
FIFI> var addr data;
FIFI> reset<0:1 tO<O,cs<1,aO<O;
FIFI> abus<addr;
FIFI> reset<1:,t0<1;
FIFI> abus<NULL;
FIFI> dbus=data;
FIFI> reset<O:, tO<O;
FIFl>end

The main program procedure does the read function for each location in ROM. It specifies

113

the interrogate function that prints the answer on the terminal. The output of the test

program can be logged and the contents of the ROM can be extracted.

FIFl>define procedure x
FIFI> (caH mread
FIFI> (loop IO 1023 addr<l,data!;))
FIFl>end

114

6. The Design of Test Instruments

There are different types of testing with different requirements on the test instrument

and test software. It would be desirable to have a series of compatible testers available,

each optimized to a particular phase of the testing process.

For example, the process of characterizing a device and developing a production test set

is a slow process with much human interaction. There is no need for the test instrument be

extremely fast or accurate, so it would be expected that the test instrument for this phase

be inexpensive, but what about the computer behind it? On the other hand, production

testing must be performed with high speed and accuracy. Since the test instrument for this

application is efficiently utilized, its cost can be higher. For such a set of testers to be

useful, however, it is necessary to have assurance that a test developed on one tester will

be valid when executed on another.

We will describe a general design strategy for testers. By implementing only some of the

parts described, specialized testers can be constructed. By implementing the parts in

different architectures and technologies, the speed and cost of the test instrument can be

varied. Any such tester will be able to execute the same test specification and achieve

valid results.

6.1 Constrained Tests and Tester Design

The test language developed previously has supported only non-adaptive tests sequences.

A non-adaptive test can be executed by a pipelined tester. Such a test would consist of

the stimulus and expected response of the chip. All comparisons can be performed in the

test head and would effect only the state of a fault flag.

An adaptive test requires that the output of the chip be fed back to the test pattern

115

generator. During the time that the test pattern generator is interpreting the response of

the chip the remainder of the tester would be idle. If the tester were pipelined, each value

returned from the chip would require that the pipeline be flushed.

The proposed manner of constructing test systems includes both highly pipelined hardware

and feedback from the chip. In production testing feedback from the chip would not be

required, and the test would be executed at pipelined speeds. Other uses of the tester,

such as exploratory testing uses, require information returned from the chip be displayed. In

non-production testing high speed is less important, and less efficient use of the pipeline

would be tolerable.

6.2 High Performance Test Instruments

In practice, the number of vectors in a high fault coverage test for a large integrated

circuit may be astronomical. Conventional testers, where the entire test must be

instantiated in storage, must be provided with an huge amount of storage. Exploitation of

the structure of the test language can yield a tester design where storage requirements are

minimized.

6.2.1 Conventional Tester Design

The average general-purpose IC tester consists of two parts: a Von-Neuman type

computer and a high speed test vector buffer. The computer is used for making low-speed

measurements (DC parametric testing) and manipulating the high speed vector buffer. The

high speed vector buffer is capable of storing from 500-500,000 test vectors for application

at 1-100 MHz.

In the testing of a chip the computer will perform several thousand parametric tests at a

rate of about 1 per millisecond. The reason for the slow speed of 1 mS per test is twofold:

116

the computer is slow, and parametric tests require accurate analog measurements that take

a long time to perform.

The test vector buffer is totally under the control of the computer. The computer loads

test vectors. from secondary storage (disk.) and instructs the test vector buffer to dump its

contents to the device under test. Usually the test vectors are dumped at a fixed rate, but

possibly with a number of clock phases. In the event that a test is larger than the size of

the test vector buffer, the test must be broken into smaller sections and executed

sequentially.

An additional duty of the computer is to configure the test head. The physical conductors

leading to the device under test are usually (although not always) connected to the tester

electronics though a crossbar switch, allowing all pins to be the same. A tester will have a

supply of drivers of different types: a clock, inputs, outputs, input/output combinations, and

special measurement units. Setup consists of allocating drivers to the pins of the chip.

Sometimes there will not be as many drivers of a particular type on the tester as required by

the chip. In this case the solution is to buy a bigger tester.

The conventional design of testers has the advantage of extreme simplicity, but is quite

irregular to program.

6.2.2 Areas for Improvement

Al.though a test could reasonably consist of a billion test vectors, there is a great deal of

redundancy in the test vectors that can be exploited. A memory test, for example, can be

expressed in fess than one page with the test language, but expands to millions of test

vectors.

There are two strategies for the efficient storage and generation of test vectors:

117

1. Elimination of redundant information in the test vectors by either bit
compression of the instantiated test vectors, or by storing the test vectors
before they are fully instantiated.

2. Algorithmic generation of test vectors. Simple algorithms such as generating
count and shift sequences, and substitution of small amounts of data into
otherwise static groups of test vectors are sufficient.

6.2.3 Efficient Use of Test Vector Storage

The great majority of the test vectors in a large test consist of repetitions of a few

vectors many times. Some examples are: groups of vectors that cause an instruction to be

executed in a microprocessor, or an access sequence for an ALU in a microprocessor, or a

memory cycle. In each of these cases the test vectors are applied many times and changed

in only very minor ways each time. The vectors that execute an instruction are different in

the opcode and data each time, but are otherwise the same. Similarly for an access

sequence. Memory accesses are different in address and data, but have identical timing.

An (intermediate) test language can be made to represent tests compacted in this way.

Such a test language would consist of statements of the following types:

Fully Instantiated Test Vectors
Fully instantiated test vectors to be applied many times.

Execution Instructions
Instructions for the test vector buffer to apply groups of test vectors
to the device under test. This statement would carry two test vector
numbers, like apply vectors 23 through 87.

Change Instructions Instructions to alter small portions of the test vector buffer memory.
This statement would have information to store, a vector number, and a
position in the vector, such as: store 03 into vector number 23,
positions 15, 9, 12, 6, 3, 11, 13, 14.

A tester to execute this intermediate form would have the appearance of figure 6-1.

Figure 6-1 does not show the source of test vect?rs, they may come from a computer or

from more advanced test generators. There are three new functions in the hardware:

1. The test command interpreter. This device split.3 the stream of test
commands into three streams: one to the sequencer, one to the test vector
buffer, and one to the change unit.

118

+-------------------+
I test 1

+--------->+ output I
I I sequencer I
I +---------+---------+
I I
I V
I +---------+---------+

+-----------+ I I I +--------+
I test +--+ I test +<--->+ pin I

->+ command +------------>+ vector I drivers!
I interpreter+--+ storage +--------+
+-----------+ I +---------+---------+

I t
I I
I +---------+---------+
I I change I
+--------->+ unit I

I I
+-------------------+

Figure 6-1: Buffered Test Generation Unit

2. A test vector sequencer. The sequencer generates vector addresses for
transfers from the test vector storage to the pin electronics.

3. The change unit. The change unit alters small portions of the test vector
buffer.

6.2.4 lnterf ace of the Tester Model to the Test Language

The application of the test language to the model of a tester just described is

straightforward.. The lowest level testing routines, those that do not call any others, are

compiled into groups of test vectors. These test vectors are then loaded directly into the

vector storage. The remainder of the test specification consists of invocations of the low

level testing routines and arguments. The test specification would be stored as a series of

change instructions and execution instructions.

The effectiveness of this strategy would depend upon the statistics of the test vectors.

In some cases, such as microprocessor testing, the amount of change information would be

very small in relation to the total test vectors. In a memory test, however, the address

119

would have to be changed every few vectors, resulting in only a modest information

reduction.

6.2.5 Further Refinements in Tester Design

Several additional refinements can be made in the design of testers to optimize their

design to the test language. The most significant improvement can be obtained by

considering the high speed execution of low level testing procedures.

In most cases a low level testing procedure can be compiled into a static set of test

vectors and a number of translations. The translations specify operations to be performed on

the arguments of the procedure and a location in the vectors :to store the result.

Figure 6-2 illustrates a low level testing procedure and its compiled form. The compiled

form consists of a rectangular matrix of test vectors with the static portion of the

procedures, and a translation that specifies how the argument is processed to generate the

complete testing procedure.

procedure rectangular matrix translation
elk control data

procedure ptos +----------------+
var data; I 0 23 I

{loop i 1 4 I 1 85 X<)-------+
clk<0,control<23,data<NULL; I 0 23 I I
clk<l,contro1<85,data=data[i]; I 1 85 X<)-----+ I

I 0 23 I I I
end I 1 85 X<)---+ I I

I 0 23 I I I I
I 1 85 X<) -+ I I I
+----------------+ I I I I

+-+-+-+-+
I I I I I
+-+-+-+-+

data

Figure 6-2: A Testing Routine and its Instantiation

120

It is not always possible to compile a testing procedure into a rectangular matrix and

translations. If the procedure uses arguments as bounds in loops, the number of vectors in

the rectangular matrix may vary. The software that generates the translation must verify

that the procedure can be compiled.

6.2.6 Analogy· of Tester Design to the Descgn of Computers

There are some parallels between the strategy devised here for the design of testers to

the design of mainframe computers.

6.2.6.1 Virtual Memory vs the Test Vector Buffer

In the early days computer programs were very small, say averaging 10,000 bytes,

because software technology was not very advanced. In those days, memory was

expensive and hence computers were designed with no more than was necessary, say

65,000 bytes. In the early days, however, programs were small enough to fit into the

memory of computers.

As time passed, computer programs became larger and memory became cheaper. As

memory became cheaper, existing computers were supplied with more and more memory, up

to the limit for which they were designed, 65,000 bytes. Programs similarly grew, up to the

memory capacity of the machines, 65,000 bytes. At this point the the computers had run out

of memory, and ,other techniques would have to be used.

One solution to this problem was to use overlays. Overlays solve the addressing problem

by splitting a program into sections that will fit in the machine. Partitioning a program in this

way was rather difficult, and hence overlays were never very popular.

Another soluition was virtual memory. The architecture of new computers was made to

support an astronomical amount of memory, 4 bi!lion bytes. Of the 4 billion bytes, only a small

121

portion could be used, several million bytes; the remainder was reserved for future

expansion. Providing memory that would only be used a decade in the future would prevent

all the programs written for the present machine from becoming obsolete.

Some of· this story applies to testers. We are still in the early days where testers have

ve_ry small buffer memories. Unfortunately, the needs of test software exceed the vector

memory of most testers, and the industry is dealing with overlays of test vectors. The near

absence of high level test software is evidence that the 'overlays' are not working well.

What is needed to boost testing to its next plateau is a freedom from the constraints of the

tester hardware.

6.3 Requirements for Test Instruments

There are some tradeoffs between tester designs. These are summarized below.

Speed and Cost Production testers must be extremely fast, but a higher cost is
tolerable. Interactive testers must be inexpensive, but reduced
performance and accuracy are acceptable.

Flexibility and Speed Production testers do not require flexibility. A go/no-go indication is
sufficient. Exploratory testers must be as flexible as their operator's
mind.

A successful test system should address as many of these issues as possible.

Unfortunately, some of these requirements conflict.

Test language systems would be devised to communicate with a tester in a standard form.

Differences in testers would be handled by a set of parameters describing such

characteristics as the size of the test vector storage area, the complexity of translations,

speed, etc. With appropriate choice of parameters and the standard communication protocol,

a tester of any size could be interfaced to a single test language system.

An extremely small and inexpensive test system could be constructed by interpreting the

122

test instruction set with a microprocessor. The size of the test vector storage area could be

as small as one vector, and the maximum number of translations could be zero. This would

force the test language system to send all vectors to the tester. Timing commands could be

ignored.

A large tester, on the other hand, could have generous amounts of all the resources

described above.

123

7. Conclusions

We have described a complete test system. The heart of the system is the test

language. The test language was shown to be capable of representing tests for a number of

conventional. design disciplines in a natural way. The test language is also easily and

efficiently implemented, as was demonstrated by the FIFI test system.

A general philosophy for designing systems in a manner that aids testability was

presented. The method uses the test language as a manner of formally specifying the

testability &ttributes of parts of a design. A method was then proposed for composing these

parts into systems and guaranteeing testability. The result is somewhat more general than a

conventional design-for-testability strategy; a strategy for designing design-for-testability

strategies was proposed.

The test system described has been demonstrated in a number of ways. We have

implemented an interactive test system. Students at Caltech have used the test system

interactively to manually characterize some of their IC design projects. We have

demonstrated the abstractive abilities of the test language. The translation of a list of

primitive tests for combinational logic into a complete test specification for the logic when in

a microprocessor has been done, and was illustrated here.

Several other observations can be made about the test system and its future: a careful

examination of real tests indicates that test specifications actually do follow the structured

approach proposed here. A careful look is necessary, however, because there has been no

tool that can represent the design abstractions in an appropriate way, and hence real tests

do not look structured!

For example, Motorola in the 68000 microprocessor employed a structure similar to that

124

depicted in figure 3-1 O. Testability strategies that describe general classes of devices by

making parameterized libraries of testing routines that can be assembled automatically for

specific devices fits the flavor of bristle blocks [Johannsen 79] nicely.

125

A. Syntax of the Test Language

This appendix specifies the syntax of the test language and the FIFI test system. The

syntax will be described as a production grammar as defined in [Aho 72], page 85.

In the notation that follows non terminal symbols will be represented in italic type, i.e.

nonterminal.

Terminal symbols fall into several types: keywords, identifiers, punctuation, numbers,

texts, newlines, and endfiletokens. In all cases the terminals will be in boldface type. The

different types of terminals are described as follows:

word

keyword

identifier

punctuation

number

newline

text

endfiletoken

A word is a sequence of letters or numbers, starting with a letter, and
terminating with a character that is not a letter or number. In the
semantic analysis of words, upper and lower case character are
treated as different.

A keyword is a word from a predefined set known as the keywords.
Keywords are represented as 11xxx 11

• The set of keywords includes all
keywords of the form 11xxx11 in this syntax representation.

An identifier is a word that is not a keyword. Identifiers are
represented as ident.

A punctuation is a single character terminal. The character may be a
printing character but may not be a letter or number. A character is
represented as 1# 1

•

A number is a representation of a numerical value. One form of a
number is a string of digits. The numerical value of the number is its
common numerical representation in base 1 O. A second form of a
number is a string of digits, followed by 'r', followed by a string of
extended digits. The second form allows numbers to be represented in
an arbitrary radix. The first string of digits specifies the radix, and the
string of extended digits is the number in the specified radix. An
extended digit is a digit with value O through the radix-1 where the
letters a-z and A-Z represent values 1 0-35. Some examples of
numbers are: 1 O value 1 0, 16rff value 255.

Invoked by the user terminating the line. Represented by newline.

A string of characters surrounded by double quotes. Texts may not be
more than one line in length; a newline will take the place of the
second quote. Represented as text.

The indication from the operating system that no more input will be
available from a file. Represented as endfHetoken.

Productions are represented in the following form:

126

loopfcn -> 1
('

11 loop11 ident expr expr tvexpr 1
)

1

The sentence symbol is command.

A. 1 User Commands

command

command

command

command

command

command

command

command

command

command

command

command

command

command

command

command

-> 11define11 matdecl newline

-> 11define11 pindecl newline

-> 11set11 11z8011 newline

-> 11set11 15timing11 newline

-> 11set11 11trace11 newline

-> 11set11 11debug11 newline

-> "read" ident newline

-> 11read11 text newline

-> uimmediate" tvexpr newline

-> 15quit11 newline

-> endfiletoken

-> 11execute11 ident newline

-> "print" 11procedure 11 ident newline

-> 11print11 "procedure" newline

-> 11print11 11port11 ident newHne

-> 11print11 11port11 newline

A.2 Procedure Declarations

matdecl

matdecl

varlist

var/ist

varsublist

varsublist

-> 11procedure 11 ident varlist tvexpr 11end 11

-> 11procedure11 ident tvexpr nend11

-> 11var11 varsublist 1
;

1 varlist

-> 11var11 varsublist 1
;

1

-> ident varsublist

-> ident

A.3 Port Declarations

pindec/

pinlist

pinlist

-> 11port11 ident pinlist 1
;

1

-> number pinlist

-> number

A.4 Typed Value Expressions

127

Typed value expressions are formed from the operators below and exprs in a normal

expression syntax. The mixture of the exprs, which are expressions themselves, into a

higher level expression syntax is somewhat unusual.

lowest
precedence

highest
precedence

tvexpr

tvplus

tvplus

tvsemi

tvsemi

tvsemi

tvsemi

tvcomma

tvcomma

tvparen

tvparen

tvparen

tvparen

tvparen

tvasgn

tvasgn

tvasgn

tvasgn

tvasgn

OPERATORS

operator
+

' ()

-> tvp/us

-> tvsemi

unary/binary
binary
binary

postfix unary
binary

-> tvplus 1+1 tvsemi

-> tvcomma

-> tvsemi 1+1 tvcomma

-> 1
;

1 tvsemi

-> tvsemi 1
;

1

-> tvparen

-> tvcomma 1
;

1 tvparen

-> 1
(' tvexpr 1

)
1

-> tvasgn

-> 1
(

1 "loop" ident expr expr tvexpr 1
)

1

-> 1
(

1 11step 11 expr 1
:

1 tvexpr 1
)

1

-> 1
(

1 11 cann ident tvexpr 1
)

1

-> ident '<' expr

-> ident 1>1 expr

->ident •=•expr

-> ident 1!1

-> ident '<' 11NULL 11 expr

name
plus
semi
semi
comma

parenthesis

128

A.5 Expressions

In summary, expressions are formed of the operators below and ident:s or numbers in a

normal expression syntax.

lowest
binding
priority

highest
binding
priority

expr

expr

typxor

typxor

typand

typand

typleft

typleft

typright

typright

typlus

typlus

typmul

typmul

typsubscr

typsubscr

typsubscr

typatm

typatm

OPERATORS

oeerator unar!:f/binar!:I name
I binary or
1' binary xor
& binary and
<< binary shift left
>> binary shift right
+ binary plus
... , binary multiply

[e] postfix unary bit sub scr i pt see note
() parenthesis

(Note: thee in bit subscripting is either a type
value expression or two typed value expressions
separated by 11

:
11 and represents bit subscripting.)

-> typxor

-> expr 'I' typxor

-> typand

-> typxor •t• typand

-> typleft

-> typand 1& 1 typleft

-> typright

-> typleft 1<1 1<1 typright

-> typ/us

-> typright 1>1 1>1 typ/us

-> typmul

-> typ/us 1+1 typmul

-> typsu bscr

-> typmul 1*1 typsubscr

-> typatm

-> typatm '[' expr 1
]

1

-> typatm '[' expr 1
:

1 expr 1
]

1

-> number

-> ident

129

typatm -> 1
(

1 expr 1
)

1

[Agrawal 75]

[Aho 72]

[Bouricius 71]

[Bryant 81]

[Bryant 82]

[DeBenedictis 79]

[DeBenedictis 80]

[DeBenedictis 82]

130

References

Agrawal, P., and Agrawal, V.
Probabilistic Analysis of Random Test Generation Method for lrredundant

Combinational Logic Networks.
IEEE Transactions on Computers C-24:695-700, July, 1975.

Aho, A., and Ullman, J.
Prentice Hall Series in Automatic Computing. : The Theory of Parsing,

Translation, and Compiling.
Prentice Hall, 1972.

Bouricius, W., Hsieh, E., Putzolu, G., Roth, P., Schneider, P., and Tan, C.
Algorithms for Detection of Faults in Logic Circuits.
IEEE Transactions on Computers C-20: 1258-1263, November, 1971.

Bryant, R.
A Switch-Leve/ Simulation Model for lntegrat.ed Logic Circuits.
Technical Report MIT /LCS/TR-259, Massachusetts Institute of

Technology, March, 1981.

MOSSIM II: A Switch-Level Simulator for MOS LSI, User's Manual
Caltech Computer Science Department, 1982.

DeBenedictis, E.
Multilevel Simulator.
Master's thesis, Carnegie-Mellon University, May, 1979.

DeBenedictis, E.
A Preliminary Report of the Caltech ARPA Tester Project.
Technical Report 4061, Caltech Computer Science Department, April,

1980.

DeBenedictis, E.
FIFI Test System User's Manual.
Technical Report, Caltech, 1 982.

[Eichelberger 77]

[Fairchild 80]

[Hayes 74]

[Ibarra 75]

[IBM 80]

[IEEE 80]

[Intel 80]

[Johannsen 79]

[Konemann 80]

[Mead 80]

131

Eichelberger, E., and Williams, T.
A Logic Design System for VLSI Testability.
In Proceedings of the 14th Design Automat.ion Conference, pages

462-468. IEEE/ACM, 1977.

Series 20 FACTOR Programming Language Reference Menual
Fairchild Test Systems Group, Customer Services, M/S 36-07 /57, 1725

Technology Drive, San Jose, California 95110, 1980.

Hayes, J.
On Modifying Logic Networks to Improve their Diagnosablility.
IEEE Transactions on Computers C-23:56-62, January, 197 4.

Ibarra, 0., and Sahni, S.
Polynomial Complete Detection Problems.
IEEE Transactions on Computers C-24:242-249, March, 1975.

An IBM representative.
Miscellaneous discussion.

IEEE Guide to the Use of Atlas
Institute of Electrical and Electronics Engineers, Inc, 1980.

Component Data Catalog
Intel Corporation, Literature Department, 3065 Bowers Avenue, Santa

Clara, CA 95051 , 1 980.

Johannsen, D.
Bristle Blocks: A Silicon Compiler.
In 16th Design Automation Conference. IEEE/ ACM, 1979.

Konemann, B., Mucha, J., Zwiehoff, G.
Built-In Test for Complex Digital Integrated Circuits.
IEEE Journal of Solid State Circuits SC-15:315-319, June, 1980.

Mead, C. and Conway, L.
Addison-Wesley Series in Computer Science. : Introduction To VLSI

Systems.
Addison-Wesley, 1980.

[Nagel 73]

[Organick 73]

[Pereira 78]

[RCA 76]

[Rowson 80]

[Savir 80]

[Seitz 71]

· [Snoulten 81]

132

Nagel, L., and Pederson, D.
Simulation Program with Integrated Circuit Emphasis (SPICE).
In Proceedings of the 16th Midwest Symposium on Circuit Theory. IEEE,

1973.

Organick, E.
ACM Monograph Series.: Computer System Organization: The

B5700/B6700 Series.
Academic Press, 1973.

Pereira, L., Pereira, F., and Warren, D.
User's Guide to DECsystem-10 Prolog
1978.
Documentation file on Caltech DEC-20.

RCA Integrated Circuits
RCA, RCA Solid State, Box 3200, Somerville, N.J. 08876, 1976.
Pages 692-698.

Rowson, J.
Understanding Hierarchical Design.
PhD thesis, Caltech, April, 1980.

Savir, J.
Syndrome-Testable Design of Combinational Circuits.
IEEE Transactions on Computers C-29:442-451, June, 1980.
Corrections published in November issue. ·

Seitz, C.
An Approach to Designing Checking Experiments Based on a Dynamic

Model.
In Kohavi, Z., Paz, A., editor, Theory of Machines and Computations, pages

341-349. Academic Press, 1971.

Snoulten, 8., and Peacock, J.
ANGEL - Algorithmic Pattern Generatio:1 System.
In Proceedings of the 1981 International Test Conference, pages

484-488. IEEE, 1981.

[Stanford 81]

[Tl 80]

[Timoc 81]

[Young 76]

133

Newkirk, J., Mathews, R., Watson, I.
Testing Chips using ICTEST Version 1.
Technical Report VLSI 020281, Stanford Information Systems Laboratory,

November, 1981.

The TTL Data Book
Texas Instruments, Marketing Information Services, P. 0. Box 5012, MS

308, Dallas, Texas 75222, 1980.
Page 7-53.

Tirnoc, C.
Lunch-bunch presentation, fall 1981.

Young, T., and Dutton, R.
MINI-MS/NC: A Minicomputer Simulator for MOS Circuits with Modular

Built-in Model.
Technical Report 5013-1, Stanford Electronics Laboratory, 1976.

Index

Action 24

Buffer test generator 1 7

Call control clause 40
Comma 34, 36
Composition design 92
Concatenation, design by 93
Controllability 63

Dynamic interpretation 31

Elements 31
Execution 34

Fault model 63
Feel 23
Force 23

Interrogate 23

Level of structure 69
Loop control clause 35, 37

Matching of actions 75
Matrix expression 37
Minimum step time 44

Non-adaptive test 114
Non-adaptive tests 29

Observability 63
Ordered pair 22

Phases of a test step 34
Plus 35, 36
Port 24
Port's state 34
Primitive tests 63

Recursive design 93

Semicolon 34, 36
Semicolon special case 37
Sequential test generation unit 1 7
Static interpretation 31

134

Step control clause 3 7
Step timeout 45

Tagged data architecture 23
Test vector 34
Test matrix 28, 31 , 33, 34
Test step 28
Test vector · 1 6, 28
Translations 11 9
Tr~-state 23
Type part 22
Typed value 22, 33
Typed value assignment 24
Typed value expression 24

Undefined 23

Value part 22
Var 40

Wait 23

135

