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Abstract

Many boundary value problems whicﬁ arise in applied mathematics are
given in unbounded domains. Here we develop a theory for the imposition
of boundary conditions at an artificial boundary which lead to finite do-
main problems that are equivalent to the unbounded Zomain problems from
which they come. By considering the Cauchy problem with initial data in
the appropriate space of functions on the artificial boundary, we show

i
that satisfaction of the boundary conditions at infinity is equivalent to
satisfaction of a certain projection condition at the artificial boundary.
This leads to an equivalent finite problem. The solvability of the finite
problem is discussed and estimates of the solution in terms of the inho-
mogeneous data are given.

Applicationé of our reduction to problems whose coefficients are in-
dependent of the unbounded coordinate are considered first. TFor a class
of problems we shall term 'separable', solutions in the tail can be deve-
loped in an eigenfunction expansion. These expansions are used to write
down an explicit representation of the projection, which is useful in com-
putations. Specific problems considered here include elliptic equations in
cylindrical domains., .Spatially unbounded parabolic and hypérbolic problems
are also discussed. Here, the eigenfunction expansions must include con-
tinuous transform variables.

We use these 'constant tail' results to develop a perturbation theory
for the case when the coefficients depend upon the unbounded coordinate.
This theory is based on ﬁuhamel's principle and is seen to be especially

useful when the 'limiting' problem possesses an exponential dichotomy. We
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apply our results to the Helmholtz equation, perturbed hyperbolic systems
and nonlinear problems. We present a numerical solution of the Bratu
problem in a semi-infinite, two-dimensional, stepped channel to illustrate

our method.
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Introduction

Many of the partial differential equation problems arising in applied
mathematics are given on unbounded domains. Discrete approximations of
these, suitable for automatic computation, must, however, be given on bounded
domains. One is thus led to consider the possibility of finding finite problems
which are equivalent, or at least approximately equivalent, to the infinite ones.
There are two distinct approaches to this problem. The first is to map the origi-
nal unbounded domain to a bounded cone and solve the often singular new equa-
tion that results from the mapping. The second is to create an 'artificial’ boun-

dary and impose boundary conditions there. Our approach will be the latter.

Various investigators have addressed the analagous questions for the case
of ordinary differential equations. De Hoog and Weiss [28,29] suggest mappings
of semi-infinite intervals to finite ones. They analyze the irregular singular end-
point problem which results from their mapping and develop some numerical
techniques to scive it. Keller and Lentini [32] and Jepson and Keller [30], on the
other hand, introduce an artificial boundary. They prove the existence of a
boundary condition there which leads to a finite problem which is equivalent to

the original. They also present methods of approximating this condition.

Moving on to partial differential equations, we ilote that the Helmholtz
equation has been discussed by many authors. AFor exterior domains, this
becomes the problem of finding artificial boundary conditions which are
equivalent to the imposition of a radiation condition at infinity. Kriegsmann
and Morawetz [33], Goldstein [19], Bayliss, Gunzburger and Turkel [3], Aziz, ﬁorr
and Kellogg [2] and Guderley [21] all develop methods based on the known
representations of outgoing solutions. Guderley's formulation, based on appli-
cation of Green’s theorem in the discarded region, has the advantage that it can
be applied to a wide variety of boundary configurations. Aziz and coworkers

note that if the Helmholtz equation holds throughout the region, the artificial
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boundary can be taken to be the real boundary and expansion coefficients asso-
ciateél \ﬁth basic outgoing solutions can be calculated from the boundary condi-
tions there. They go on to analyze a numerical scheme based on such an
approach. Finally, Bayliss and coworkers develop a hierarchy of local conditions
based on an asymptotic expansion of outgoing solutions. We discuss these in
greater detail in section 5. Generalizations of these methods to problems in
other geometries, where decaying and growing modes as well as radiating ones
might be present, are made by Fix and Marin [17], Goldstein [20] and Bayliss

and Turkel [5].

Another problem which has been the subject of many papers is that of
boundary conditions for hyperbolic equations. Engquist and Majda [15] suggest
that a principle of no reflection be imposed at all artificial boundaries. That is,
that the incoming characteristic variables be set equal to zero. They go on to
develop local approximations to their conditions based on the theory of
pseudodifferential operators. Hedstrom [25] generalizes some of these ideas for
application to nonlinear problems. Gustafsson and Kreiss [23] point out that
non-reflecting artificial boundary conditions do not, in general, lead to problems
which are equivalent to the unbounded domain problems from which they
come.They discuss the form of the correct conditions and suggest a method
based on Laplace transformation which, in some cases, can be used to approxi-
mate them. A practical application of their ideas can be found in Ferm and Gus-
tafsson [16]. Finally, Bayliss and Turkel [4] present boundary conditions for the
wave equation exterior to a body. These are closely related to those they

developed for the Helmholtz problem.

Our purpose is twofold; first, we develop a theory describing the exact boun-
dary conditions satisfied on an artificial boundary by the solutions of a problem

on an unbounded domain and, second, we find computationally useful
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approximations to these theoretical conditions. As such, our work is most
closely related to the work on ordinary differential equations by Keller and Len-
tini [32] and Jepson and Keller [30] and that on partial differential equations by

Gustafsson and Kreiss [16].

In section 1 we consider the Cauchy problem for ordinary differential equa-
tions in Banach space, which we find to be a convenient formulation of the gen-
eral partial differential equation problem in a cylindrical domain. (For us,
cylindrical domains include conés, channels and exterior domains as well as, of
course, cylinders.) An exact reduction theorem is proved for problems on
semi-infinite domains, leading to an artificial boundary condition of projection
type. We develop the notion of a dichotomy for our abstract equation and use it
to analyze the finite boundary value problem resulting from our reduction.
Dichotomies turn out to be very useful in the analysis of the ill-posed elliptic

Cauchy problems that our reduction theory leads us to consider.

In sections 2 and 3 we discuss the use of eigenfunction expansions to
represent our theoretical conditions. We now assume that the problem is auto-
nomous in the unbounded coordinate-the constant tail case. Using some results
of Agmon and Nirenberg [1], we show that such representations are possible for
a wide class of problems, including elliptic boundary value problems in semi-
infinite cylinders. We generalize these results to time-dependent problems in
section 4. Our approach is to Laplace transform in time, use the results of the
preceding sections to find boundary conditions in the transform variable and
invert the transform to obtain a condition in the real variables. We apply these
results to both hyperbolic and parabolic problems. We note that the use of

eigenfunction expansions to find approximate boundary conditions in the con-

stant tail case was first suggested by Gustafsson and Kreiss [16].
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In section 5 we discuss the effect of bounded perturbations of the operator
appearing in our abstract equation. We show that, under certain assumptions
on the unperturbed operator, the functions and operators appearing in our
boundary conditions for the perturbed problem can be expressed as the solu-
tion of an integral equation. From the integral equation we are able to con-
struct general asymptotic expansions of the boundary conditions, This method
is applicable to non-constant tail problems whose limiting problem can be
analyzed by the eigenfunction expansion techniques of the preceding sections.
Their specialization to the case of ordinary differential equations reproduces
many of the expansions of Jepson and Keller [30]. In the final section, we apply
the perturbation theory to nonlinear problems. This leads us to consider non-
linear boundary conditions. To illustrate our methods, we present a numerical
solution of the Bratu problem in a semi-infinite, two dimensional stepped chan-

nel.
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1. Exact Reduction for Linear Problems

We consider abstract boundary value problems in the form:

a) %zA(x)u +f{(z),0<z< =;
b) B,u(0)=7,; (1.1)

c) limBou(z)=vs.
T w
In addition we may impose:

d) ||w(z)| bounded as z » = .

For some Banach space, B, we seek w(z)€B for z €[0,»). We suppose that
A(z), B,, and B, are linear operators with domain in B, to which we also con-

strain the range of A{z). Finally, f(z)<B.

Problems of form (1.1) follow from general partial differential equation

problems in cylindricél domains. Specifically we consider:
o 8| o _
L;opj {’g.x . é—'g} B—x—;’]w =g (.'L‘ ,'!z) (l .2)

on the cylindrical domain
(z.y) €[0,2)xQ, 0 c R,

Homogeneous boundary conditions are imposed on 80 involving w and its nor-

mal derivatives,

{i Bq ; [y —%—1——”% =0. (1.3)
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We further suppose that, subject to these boundary conditions:

exists for all z. This can be loosely described as a condition that the
z =constant surfaces be non-characteristic. Now we solve {1.2) and rewrite it in

the form (1.1) by introducing:

4 4
0"l
Bx™ -1
" Ry
Bx™ -2

F=1 (1.4)

The boundary conditions at z =0 and z == are transformed analagously. The
space, B, is some space of n-tuples of functions on 0 which satisfy the homo-
geneous boundary conditions, (1.3). It is necessary to eliminate inhomogeneous
conditions on 8Q in order to reduce the problem to the abstract form. This can
be accomplished by subtracting a function that satisfies the inhomogeneous

condition. We note that the operators, By ;, affect P, and, ultimately, A(z).
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Returning to (1.1), we choose some finite point, z =7, and attempt to reduce
the infinite problem on [0,~) to a finite one on [0,7). We consider the following

homogeneous Cauchy problem on the tail, [7,2)xQ:

a) %zA(x)v, T < =

(1.5)
b) v(7T)=w,.
Here v(z) is required to be in B. Now we define A(7), the admissible space of
Cauchy data at 7, as that set leading to solutions, v, which satisfy appropriate
conditions at inﬁnity. More precisely we have:
Definition 1.6
The set A(T) C B, the admissible space at z =7, is the set of all v, €B such that

(1.5) has a solution, v (z), satisfying:

limB.v(z)=0. (1.8)
T

If (1.1d) is imposed then we also require
|lw (z)|| bounded as z - =, (1.7)

Note that A(7) is obviously a subspace of B by the linearity of the Cauchy prob-
lem (1.5). It can be used to obtain the following basic reduction theorem.
Theorem 1.8

Problem (1.1) has a solution if and only if the following two problems have éolu—

tions:

There exists a particular solution, u, (z), satisfying:

o) -(fi—q;p-=A(x)up+f(x), TL 2 < o

(1.8)
b) ;EmBmup(x)=7w;



and, if (1.1d) is imposed,

¢} llup(z)|| bounded as z - =,

There exists a solution to the finite problem:

a)%;ﬂx)w +f(z), O<z< T

b) Bw(0) =7, (1.9)
c) w(T) —upy(1) €A(T).
Furthermore, whenever (1.1) has a solution, u(z), then (1.9) has a solution
which is identical to v on [0,7].
Proof:
Assume that a solution, u(z), of (1.1) exists. Then the set of particular solu-

tions in the tail, satisfying (1.8), is obviously not empty. Choose any function in

this set and call it u,(z). By assumption, u(z) satisfies

a) %=A(z)u +f(z), 0<z< T
b) Bu(0)=7,.
On the tail, set
v(z)=u(z)—uy(z), 7<r< =, (1.10)
Clearly, v (z) satisfies (1.5) and (1.6). By definition, then,

v(71) € A(7). (1.11)

Hence, the restriction of » to [0,7] satisfies (1.9).

Now suppose that {(1.8) and (1.9) have solutions. Set
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v{m) =w(7) —up (7).
Since v (1) €A(7), there exists a v (z) satisfying (1.5) and (1.6). Define
ut(z)=v(z)+up(z) T< 2 < .

This satisfies:

+
a) %:A(z)u*+f(z), TL T < oo

b) limB.u*(z) =ve,

¢) ut(n)=w(7n),
and, if {1.14) is imposed:
d) |lu*(z)|| bounded os z - =,

Hence:

w(z) O=z=<n,
ulzr) =
ut(z) 7<z < >,

is a solution to (1.1), completing the proof.

Corollary

Suppose that for all vq€A(7), solutions to (1.5) are unique. Then (1.1) has a
unique solution if and only if (1.8) does.

Proof:

Assuming uniqueness of solutions to (1.1) immediately yields uniqueness for
(1.8). In the other direction, note that the assumption on problem (1.5) guaran-
tees the uniqueness of w*(z). This, combined with the uniqueness of w, implies

the uniqueness of w.
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Note that if there exists a projection operator, @(7), associated with the

admissible space, A(T), it is possible to rewrite (1.9) in the form:

a) %U-=A(x)w +f(z) O<z< T

b) B,w(0)=7,: (1.12)

¢) (=@(M)(w(n)—u(7))=0.

By the projection theorem, @(7) will exist whenever A(7) is closed and B is a Hil-
bert space. Many of our examples fall into this category and, in general, we shall

assume that () exists,

We further note that Theorem (1.8) essentially becomes the reduction
theorem of Jepson and Keller [30] when A(z) is a matrix (i.e. for ordinary

differential equations). Uniqueness is then easily reduced to a matrix condition.

Finally, we note that the theory presentéd above is readily adapted to prob-
lems which are unbounded in both directions; that is, when z € (—w ), It is
simply necessary to choose two finite boundary points, 7~ and 7,, and find the
two admissible spaces and particular solutions associated with the two dis-
carded tails. The basic reduction theorem can be obviously extended to include

this case.

The guestions of existence, uniqueness and asymptotic behavior (or stabil-
ity) for problem (1.5), which are obviously crucial to the reduction program,
have not been answered in such great generality as have the analagous ques-
tions for ordinary differential equations. An exception to this is the case when
the operator A(z) is bounded, which is extensively discussed in the books of
Massera and Schaffer [35] and Daletskiy and Krein [12]. Indeed, this situation is
not much different from the finite dimensional one. For example, existence and

uniqueness can be established by application of a contraction principle. In the
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works above, stability is investigated by use of the familiar concepts from the
study of ordinary differential equations: Ljapunov and Bohl expcnents and ordi-
nary and exponential dichotomies. We find the latter of these to be very useful

in our study of problems with unbounded A{z).

Equations with constant, unbounded A are considered in Hille and Phiilips
[R7]. They use the theory of semi-groups to examine the connection between
existenice of soclutions and continuous dependence on Cauchy data. As such,
their main interest is well-posed Cauchy problems. In many of the important
cases we consider, however, (1.5) is not well-posed. This is true, for example,

when the underlying partial differential equation is of elliptic type.

¥ore applicable to the problems we study are the results of Agmon and
Nirenberg [1]. They, too, study the constant coeflicient case but do not restrict
themselves to well-posed Cauchy problems. Under certain conditions on A4, or
more properly on its resolvent, they develop asymptotic expansions of the solu-
tions in terms of generalized eigenvectors of 4. We discuss these results in

greater detail in sections 2 and 3.

We now study existence of solutions to the finite problem, (1.9), and derive
bounds on its norm. (These bounds are, of course, useful for estimating errors
caused by approximations to u,(7) and @(7).) Throughout we assume that solu-
tions to {1.5) are unique and that the projector, @(7), exists.

The solution operator, S(z,,z54), is defined in the following way:

Definition 1.13

let v, € B. If there exists a solution, v (z), to the problem,

a) -g——z—ail(z)v, T, K TZ 2,07 T1< T < Ty,

—~
(I
—
w

R

b) 'U(xo):'ym
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then
S(z 1.20:A)0, =0 (). (1.14)

Otherwise, v, is not in the domain of S{z,,z,;4).

The linearity of (1.13) clearly implies the linearity of S. The stated unique-
ness of solutions implies the consistency of the definition. Note that the need to
restrict the domain of S certainly arises for ill-posed problems. For proof one
need only consider Hadamard’'s famous example of the Cauchy problem for
Laplace's equation in a half-space. (Garabedian [18]) Whenever S exists, how-
ever, it does have the familiar semi-group properties:

a) S(zyx"A4)S(x" xs.A) = S(21,25;4);

(1.15)
b) S(xyz,A)=1.

The notion of dichotomies is very useful in what follows. First we present
definitions of exponential and ordinary dichotomies. These are adapted from
Daletskiy and Krein [12], with some modifications required by the possible non-
existence of solutions.

Definition 1.16
We say that (1.5) has an exponential dichotomy if, for any z*€[0,=), the space B

can be decomposed into a direct sum of subspaces B_(z*) and B,(z ") such that:

If v € B_(z") then

1) S(z.z":A)v exists forany z>z°

and (1.18)

#) 1Sz .z A= Noe =y
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for some N. and a-= 0,

If v €B,(z") then

i) S(z.x*A)v erists forany z< z°

and (1.17)

@) |S(z.z 4|l Noe )|

for some N, and o= 0.

There exists ¥ > 0, independent of z*, such that

infllus +u)= 7
(1.18)
foru, €B.(x" and |ju.|=1.

(This infemum is typically called the angular distance between B.(z") and

B_(z").) An ordinary dichotomy is defined as above except that o, =0 is allowed.

In the definitions above no ’continuity’ of the spaces as functions of z° is
required. In general we impose a sort of continuity in the form of the following
‘no-mixing’ condition:

Definition 1.19

The dichotomy (1.16-1B) satisfies the no-mixing condition if whenever
o) Q(z)1is the projection operator into B.(z)
and
b) S(zy,z4A)v exists, (1.19)
then

¢) @(z1)S(z 1204l =5(21,7,:4) (%, )v.
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]Fgw we can state and prove an existence theorem for the finite boundary
value problem (1.12).
Theorem 1.20
Suppose that:
a) solutions to all Cauchy problems for (1.5a) with data given at
z €[0,7) are unique
and that
b) (1.5a) has a non-mixing ordinary dichotomy on [0,7) with projector,
@(z), into B_(z). (B_(7) =A(7), the admissible space).
Then (1.12) has a solution for arbitrary f (z), up(7) and v, in the range of B, if

and only if the operator

(I=-Q(0))u
Pu = (1.20)
Bu

has an inverse with domain containing all vectors of the form:

[0], v € Range (B,). (1.21)
7

Proof:
We use the ordinary dichotorny defined by @{z) to solve certain initial value

problems. Let

wi(z) =Sz, A - Q(T))uy(T)
(1.22)

z

+ fS(x aw AT - @(w))f (w)dw.

T

This exists for all z on [0,7) by the definition of &. If we seek solutions to (1.12)

in the form
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wu(z)=u.(z)+u_(z) (1.23)

then w is a solution if and only if w_ solves

@) T Ao+ Q@) (=),
b) Bou-(0) =7, —Bpou+(0); (1.24)

¢) (/-@(1)Hu_(r)=0.

We write u_(z) in the form:
u_(z)=S(z.0;A)u_(D)+{S(x,w;A)Q(w}f (w)dw. (1.25)

The right-hand side again exists by the definition of &, so that this representa-
tion is valid for any solution of (1.24a). By (1.19c¢) and (1.24c) we have:
0=/ -Q(m))u_(1)=S(1.0:4)(I -Q(0))u_(0). (1.26)
which, by the uniqueness of solutions to the Cauchy problem, implies:
(/- @(0))u_(0)=0. (1.27)
Hence, we can find a solution to {(1.24) if and only if we can simultaneously solve:

(/=@(0)u_(0)=0.

Byu(0) =7, —Eau+(0),

which, in vector form, is:

du_(0)= (1.28)

Yo ~B,u.(0) '

completing the proof. Note that when this (restricted) inverse is unique and
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bounded, the boundary value problem (1.12) is well-posed.

We note the similarity of the condition given in (1.20) and (1.21) to that for
well-posedness of the mixed initial-boundarAy value problem for hyperbolic sys-
tems. Then, & is a projector into an ’incoming’ characteristic space and our
condition is that the incoming variables can be calculated from the outgoing
ones. For a more detailed discussion of the hyperbolic problem, including char-
acterizations of these conditions in terms of Fourier variables, the reader is

referred to Hersh [26].

The final topic in our consideration of the general finite problem (1.12) is
the development of estimates of the solution in terms of the inhomogeneous
data. These, in turn, can be used to estimate the errors which result from inac-
curate evaluation of @(7) and u;{7). We now state the basic theorem.

Theorem 1.28
Assume that problem (1.12) satisfies the hypotheses of Theorem (1.20). Assume

further that:

a) ||S{zw;A)Qw)||z K (zw), Osw=sz< 1

b)) ||S(zwAYI-Qw)||g K (zw), Oz w= T,
(1.29)

0
c) II‘P"I[ ]Ils K ll7ll. 7 < Ronge(B,).

5

d) ||Bll= £.

Then we have:

z

e ()1l K .0) Kellyoll + max IIF (=il [ Kfe )

r

+ max ||f (:r:)H(fK,,(x,w)dw +K.(x.O)K,,K,,fK+(O,w)dw) (1.30)

ze[0.7) p

+ (K2, 7) + K(2,0)Kp Ko K (0,7)) [up ()]
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Proof:

Note:wt;.hat
w(z)=u,(z)+ulz),

where u,(z) is given by (1.22), w_(z) is given by (1.25) and =»_(0) is given by

(1.28). Using (1.29b) we have:

I (2= Kulz Dllup (DI + 21151[%?5]”)’ () f Koz w)dw,

By (1.29a) we have:
e (z)l= K-(x-D)Hu—(O)II+z1§1[%§]ﬂf (@)l f Kz w)dw.

Finally, by (1.29¢,d) we obtain:
e (Ol = Kollyoll + Kp Ko [l (O)]].

Combining all these results in (1.30).

We specialize these results to estimate the errors caused by approximations
to @(7) and u,{7). Suppose we solve the following finite problem instead of

(1.12):

a) %%?-=A(z)ua+f(x), o<z<
b) B,ugs(0)=1v,; (1.31)
¢) (I=@"(MNua(m) =(7 =@ (M))uy (7).

where @°(7) and w, (1) differ from @(7) and u, (7). We define the error, e(z), by

e(z)=ulx) —uy,(z).
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We find that:
a) %=A(z)e, O<z< 7
b) B,e(0)=0;
) (I=@(m)e(n) = - Q1)) up (1) —p5(7)) (1.32)

+(Q(1) = @ (T (up (1) —ua (7))

= A7),

Note that A(7), by construction, is in the range of (/—@(7)). (We assume of

course, that u,(z) exists.) Therefore we have
(7 =@(M)A(n) =A(7).
Problem (1.32) is now in the form of (1.12) and we use (1.30) to write:
lle (z)ll= (Ki(z 1) + K(z,0) K K K (0.7)]IB(T]. (1.33)
Further specializing to the case of an exponential dichotomy this becomes:
le(@)li= (Nae ™ 4 N_e K, K, Nue YA (1.84)

That is, the large part of the error decays exponentially off the artificial boun-

dary.
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2. Problems with Constant Tails: Abstract Theory

In this section we examine the situation when the operator, 4, of equation
(1.1) is independent of z in the tail. We show that, for many important exam-
ples, explicit representations of the projection operator, @(7), and particular
solution, 'u,p(z), can be found in terms of the eigenfunctions of A. We begin with
a basic definition.

Definition 2.1

The operator, A{z), is called separable in the tail if

a) There exists 7€[0,=) such that A(zx)=A. for z= T, A, independent

of z.

(b) There exists a countable set of pairs, (Ap,un ), With A, € {, u, €B and
0 not an accumulation point of {A,} and there exist adjoint pairs,
(A vy ) with v, € Dual (B), satisfying:

1) Awlp = Apln;

1) Aevpn =ApUp; (2.1)

1) (U Un) =Omn-

(c) Any function, # €B, can be uniquely written in the form:

U= Y Cplp)

n=1
(2.2)
Cn =(v,u).
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Note that this is the obvious generalization of the usual notion of separabil-

ity as it allows us to write solutions to (1.1) in the tail as:
{2.3)

u(z)= ijlcmm.

Now we use an expansion like that of (2.3) to construct the admissible

space, A(T). Recall we are now considering the homogeneous problem in the tail.

Also, we retain the boundedness condition, (1.14d).

a) gy‘:A‘,,,'u, T £ < o0

dx
b) ii}l}vav =0; (2.4)
e) ll(z)]] bounded as z » =.
Representing v (z) in an eigenfunction expansion:
> (2.5)

v(z)= Zlcn(x)un

n=
and taking the inner product of (2.4a) and an adjoint eigenfunction, v,, yields

(for v o B):

dzx
En At (2.6)
which can be trivially solved:
cp(z) = g™t —T)cn (7). (2.7)
Hence, we have
3 (2.8)

v(z)= ) cn('r)ek"(z'_'r)un, TE T < oo,

n=1
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Before solving (2.4b,c), we write B as the direct sum of three closed sub-

spaces:
a) B=B*"®B @B

b) B*= {spa’n u, with Re, > D}:
(2.9)
¢) B = {spa’n U, with ReA, < D};

d) B°= {spcm u, with Re), =O}.

that B is the direct sum of these subspaces is obvious. Their closure follows
from the fact that any Cauchy sequence of elements of B must have a Cauchy
sequence of expansion coefficients by formula (2.2). We further divide B® in the

following way, assuming each eigenvalue has finite multiplicity:

Y

Bl = ¢ span u, with M:ia,;}; (2.10)
o; real, o; # oy fori# 7.

Finally, we relate the nullspace of B. to the important subspaces we have
defined above. |

Definition 2.11

Let A. be given with associated spectral representation satisfying (2.1) and (2.2)
and let the subspaces B*, B~ and B be defined by (2.9) and (2.10). Then, if
N(B.)c B is the nullspace of B., the A.-restricted nullspace of

B.,NR(B.:A.) C B, is given by:

NR(B.;A.) = Z(BPn N(B..)). (2.11)
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Using this definition we obtain:
Theorem 2.12
If A(z) is separable in the tail, then the admissible space, A{7), determined by

the homogeneous problem (2.4), is given by:
A(7) =NR(Bo:A-)®B_. C(2.12)

First we prove a lemma which will also be used in the proof of theorem (2.27).
lemma 2.13

Suppose that the series

is absolutely convergent and that

lim ) "M w; = I, (2.13)

i=1
for some sequence

oy, with o; # op for j # k, (o] bounded away from zero.
Then

a) L=0.
: (2.14)
b) w;=0, 7=1.2, - .

Proof:

For arbitrary real t, integrate equation (2.13) from z to x +£. This yields:

— se M = It +e(z)t,

j=1 %y

where |le{z)||»0 as z-» <. As the original summation was absolutely convergent
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and the ¢;'s are bounded away from zero, the norm of the left-hand side of the

equation above is bounded independent of £ by some constant, X,. That is,
K, +tlle(z)]|= tIL]].

which implies

IZll= ==+]le(z)l.

-3

letting £ and z tend to infinity then implies 7. =0;

)< Jim "+ lle @l =o.

-*éakz

To derive (2.14b) simply multiply (2.13) by e and note that this implies

Application of the first part of the proof then yields the desired result.
Proof of Theorem 2.12:

We write an arbitrary solution to (2.4a) as

v(z)=vi(z)+v(z) + Lvi(z),
i

where
v*(1) € B,
v (r)eB,
vi(7) €B;.

The boundedness requirement, (2.4c), combined with (2.7) clearly implies that

v*(7) and, hence, v*(z), is identically zero. (2.7) also implies that the rest of
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v(z) is bounded and that

limv~(z)=0.

T*w
Hence, we have
limBav (z)=HmY) Bovi(z)
nd 4 Trwo
i

=L R B

If v €N(B.) then the limit is clearly zero. Otherwise, the inequality of the oy's
and lemma (2.13) show that the limit cannot exist. Hence, (2.4) is satisfied if

and only if
v (7)€ NR(B-:A.)®B",

comnpleting the proof.

We can now represent @(7), the projection operator into A(7), in terms of
our eigenfunctions. As the subspace B} is finite dimensional, the projection
operator for (Bfn N(B.)) has a finite matrix representation in the space of

expansion coefficients for elements of By. That is, if
Bf= ¢ span (u§dugd, .-, °JJ)} (2.15)

then there exists an n;Xn; projection matrix, 7, such that

.,

a) ul= 3 cupde (B n N(B.))
k=1
if and only if (2.16)
Cy
on| €21 -
b) (I_Qj) M a3
Cn.

]
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We use this to write the following corollary to theorem (2.12).
Corollary

The projection operator, &(7), for the admissible space, A{T), is given by:
(T = 3 dpity, (2.17)
n=1

where
a) d, =0 if u, €B*;

b) dp=(vpu) if up, €B
(2.18)

B ;
C) dn‘—-: d;ﬂ: 2 (Q’f)flc(ulg"!u)

k=1

if up = u;'i€B$.

It is the representation (2.18B) or, more properly, approximations to it which

we use in computations. We note that more complicated conditions of the form,

al:i_.n}uB,,(x)u(x)=O.

can be included in our analysis. Then it may be necessary to include parts of B™
in the restricted nullspace, NR. Also, {2.4¢) could be dropped, giving rise to even

more possibilities for NR.

Eigenfunction representations for the particular solution, uy(z), can also

be found. Recall that Uy satisfies

a) %=A,up +f(z), T<x <=,
b) Ii_’mBmup(:z:) =Y (2.19)

¢) |lup(z)|| bounded as x-» .
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We assume that ||f (z)]] is integrable and Lipschitz continuous on [T=) and f

has an eigenfunction expansion:
F(x)= ) Fnlz)un. (2.20)
n=1

The integrability and Lipschitz continuity of f(z) imply the integrability and
continuity of f,(z). Any solution of equation (2.19a) can be written in an eigen-
function expansion. In particular, if u,(z), the solution of (2.19), exists we write

it as:

a) up(z) = 3 oB(z )tn:

rn=1
where the coef ficients, cf, must satisfy: (2.21)
dep
b) d:: =X+ fa(x), T< 2 < 00,

The general solution of (.21b) is

c2(z) =cB()e™® T+ [eMC Pr (pYdp. (2.22)
T

Formula (2.22) has different implications for coefficients of eigenfunctions
in the different subspaces B*, B~ and B°. For u,&€B", that is ReA, > 0, the

boundedness condition {2.18¢) requiras
z
e (ep (1) + fe"}‘“(p "My (p)dp) bounded as z- .
This implies:

B(m+ fe™® V5 (p)dp =0. (2.23)
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Hence, (2.22) can be rewritten:
cB(z)=— [e™® P (p)dp. when Re, > 0. (2.24)
T

For absolutely integrable f,(z), (2.22) and (2.24) clearly yield bounded c?(z).
The boundedness of uy(z) further requires a certain decay in n of the expan-
sion coefficients which, in turn, restrains the initial data. This restraint is
stated in the following theorem.

Theorem 2.25

Suppose that for some aa> 0, > 0 and positive integrable K(z):

', uniformly on T< £ < o

2y Ln®)] w[;ﬂ}

K(=z)
(R.25)
b) |eR(7)] =O[_1F]' n-+w=, Reh,< 0.
n
(cZ(7) is given by (2.23) for Re),, > 0.)
Then cf(x) given by (2.22) and (2.24) satisfies
a) |eB(z)|= 0[-—1—7—] n-o, uniformly on 7< x < =,
n
(2.26)
b) y=min(a,p).
Proof:
We first consider the case of ReA, < 0. Then, from (2.22) we have:
oBE) = 1o+ max | 226 T
3 = |Cp | se['r.no)| K(S‘) / p)op.
From (R.25b) the first term is 0{;}5-] and from (2.25a) the second is O[;%a—]

yielding the desired result.
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For ReA, > 0, we use (R.24) to write:

IFals)f

leB(=)ll= max 22 fff(p)dp

ax
se[r=)

completing the proof.
Finally, we state a theorem on the existence of solutions to (2.19).
Theorem 2.27
There exists a solution, uy(z), to problem (2.19) for absolutely integrable
Lipschitz continuous f (z) and 4. with a spectrum satisfying (2.1) and (2.2) if

and only if there exists w, satisfying:

a) w, € N(4x);

(R.27)
b) BoWy="e.
If so, one particular solution, u,(z), is given by:
a) up(z)= Y of(z)u, +w,;
ReX, # 0
(2.28)

4

— [P r (p)dp, Rehp= 0, Ap # 0
b) af(z)=

<
fe)‘"(z —p)fn(p)dp, ReA, < 0.
-

\

Note that u, () satisfies (R.22) and (2.24).
We begin by proving a lemma.
lemma 2.29

The function
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w(z)= Y cB(z)un

n=1
with cE(z) given by (2.22) and (2.24) satisfies
) lim{u(z)-u,(z))=0;
T vw

where
(2.29)

b) U (z)= Y ci(x)un;
Re)\:=0

o) ) =e™E TV (eB(n) + f e ™7 (p)dp).

Proof:

Let
e(x)=u(z) —u(x)

= Y en(Z)uy.

n=1

By (2.22), (2.24) and (R.29b,c) we have:

—[ ™" Pz (p)dp, Rer=0;
g (z)= ? (2.30)

z
™ N ep(n) + o7 T ra(p)dp). Rern< 0.
T .
The continuity and absolute integrability of f,(z) implies that
lim | £ (2)] =0,

which allows us to conclude that the first integral in (2.30) approaches zero as

x>, For the second term,
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lime™® —T)cﬁ('r) =0

T o

is obvious. For the integral part we have:

ez =) fe ™ 1 (p)dp | =

Z, z
o —zo)] fe)‘“(”° —P)fn(p)dp [ +sg%f§)|fn(s){fe>“ﬂ(” -p)dp
T 0

Zp

~z,) 1
< &™) L1700 |dp + 5=, max /a(s)]; for z, <[r.).
T ar

n SE€

Hence

lim [e™® 77 fe ™ (pydp | = - max [fa(s)].

zrw Ap s €[z,

As |\, ] is bounded away from zero, choosing z, sufficiently large we can make
the limit as small as we choose. Hence, the limit is zero. We have now shown
that |le(z)||» 0 as z - =, completing the proof of the lemma. We now prove the
main theorem.

Proof of Theorem 2.27:

We first assume that w, exists and let w,{z) be given by w(z) of (2.27). By use

of lemma (2.28) we see that

limu, (x) =w,.

ZTr
This immediately yields that

im Bty (2) = BuWs = Ve

o=

Now we suppose that u,(z) exists. By lemma (2.29) again we have:
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lim By, () =£‘LmB,.uo(x).
Trw -+ 5o

Hence, we have

- el

im Y e VB (cB(r) + fe ™ T (p)dp)

Aﬂimggmary
+ 3 BulcB(+ f folp)dp)
Aﬂn=0 T

=lim 3 ™ _T)B,,'wn + By =Yw

;- ad-]

n
A, imaginary

where w, = cB(7) + fe.}\"(p —T)fn(p)dp,
T

we= Y (BN + [ fn(p)dp) e N(4a).
A, =0

(2.31)

By lemma (2.13) and the assumption that the left-hand limit in (2.81) exists we

have:

Hence, (2.31) becomes

BoW, =Y.

completing the proof.

(2.32)

We note that the solvability conditions on 7. would be altered if the integra-

bility and continuity conditions on f {z) were replaced by a simple boundedness

requirement. In particular, the B* and B~ components of U4, (z) might no longer

approach zero as - = and, hence, might contribute to the limit of Bou,(x).
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The eigenfunction expansions discussed above can also be used to
represent the solution operator, S{z,,z,:4.). for the constant operator, A,. It
is:

a) S(z,z,4)u =), e""(z‘_z")cnun;

n=1
(2.33)
b) cn=(vnu).

The spaces B*, B~ and B° can be used to define dichotomies for the equation

dv _
o =Aev, T< £ < o, (R.34)

In particular we have:

Theorem 2.35

a) If B® is the empty set; that is, if A» has no eigenvalues with zero real
part, then (2.34) has an exponential dichotomy. The spaces B,(z") and B_(z ") of
definition (1.18) are given by:

B,(z")=B"

(2.35)
B_(z")=B".

b) If B° =B{@B? then (2.34) has an ordinary dichotomy. The spaces B,(z")
and B_(z ") are given by:
B.(z") =B*®B%
(2.36)
B_(z*) =B ®B°
Proof:

The definition of the solution operator, (2.33), combined with the definitions of

B*, B~ and B’ immediately yield the inequalities of (1.16-18).
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We have shown that an extensive analysis of the constant tail problem is
possible whenever the operator, A., has a complete set of eigenfunctions. We
now present a discussion of problems where this does not hold. The main
results come from the work of Agmon and Nirenberg [1]. We only consider the
case where Bis a Hilbert space, though they also prove weaker theorems in the
Banach space setting. Restating the problem to conform to their situation, we

write:

du _ .
'&-'I——ZAU. 0< < (2.37)

and seek solutions which decay at infinity sufficiently fast that
e (z)]| € La([0,)). (2.38)
Let B(\) be the resolvent operator associated with A:
R\ = (AT —-4)1L. (2.39)

Recall that the poles of 7 as a complex function of A occur at the eigenvalues of
A with residues equal to eigenfunctions (or generalized eigenfunctions). For
technical reasons involved with the reduction of higher order equations to first
order, we use Fg()A), the restriction of F to a closed subspace, S, of B in the
statement of the theorem. For our equation {1.4), S would be the image of B

under the matrix projection operator

P« I =
DR o I |

Lastly we associate an eigenfunction expansion with an L, solution, 2 (z), in the
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following way: let v(z) be such that

d . _ .
(E—;—%A)?} = fesS;

v(0) =0;

u(z)-viz)=0z> 1,

Assume that such a v can always be chosen which satisfies

IF ll= «lfel]

for some « independent of u. Since u, and, hence, v for z > 1 satisfies (2.37), f
vanishes for x> 1 and its Fourier transform, f{A), is an entire function of
exponential type. The exponential solution, u;{z), associated with the eigen-

value A; is given by:

u;(z) = VA1 Residue(explirz 3RO F). (2.40)
|

An eigenfunction expansion of « is then given by:

U~ Zuj(z) (.41)
i

which need not be convergent. Note that this is an expansion in the eigenfunc-
tions and generalized eigenfunctions belonging to the eigenvalues of 4 with posi-
tive imaginary part. These, of course, are the eigenvalues of i4 (the analogue of
our A,) with negative real part. Here, without proof, is the fundamental
theorem.

Theorem 2.42 (Agmon and Nirenberg [1,p.155])

Suppose that Fg(A) is meromorphic in ImA> 0 and satisfies:

IBs(N)[|=0(1), [A[=ee,
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in every strip 0< ImA< a. Then, if u(z) is a solution of (2.37) and (2.38), the
eigenfunction expansion (2.41) is an asymptotic expansion of = in the following

sense;

If v (z) is an exponential solution of index m,; then, for any £> 0

(R.42)
< oo,

Note that (2.42) does not tell us what the admissible space, A(7), actually is.
However, it does show that the space spanned by the eigenfunctions and gen-
eralized eigenfunctions associated with the eigenvalues of A with positive ima-
ginary part does approximate the image under S(7,0:i4) of A(0) for z > 0. It is
also used to show that all Lp solutions decay exponentially. Applications of this

result to elliptic and parabolic partial differential equations are given in Section

3.

We close the section with a discussion of some problems which do not have
constant tails, but for which eigenfunction expansion techniques of the sort dis-
cussed above can lead to exact expressions for @(7) and u,(z). The first prob-

lem we shall consider is:

-3%=x°‘A,,u +f(z); TSz < =, (2.43)

which has the associated homogeneous problem

%=2“va; TSz < e (2.44)

We assume that A. is separable in the tail. Representing v in an eigenfunction

expansion, (R.5), we derive the following analogue of equation (2.8):
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de,

=z, ¢, (2.45)

which has the seolution:

( - )a+1
gatic Cn (7), a# =1,

cn(z) = (R.486)

An
%:_—] en(T), a=-1.

Assuming, for example, that B° is null, we have that B* and B~ induce an ordi-
nary dichotomy for (2.44) which, for a> -1, is an exponential dichotomy. For
o= -1, all bounded solutions decay at infinity and @(7) is given by (2.18a,b).
Integral formulas like (2.22) can also be derived for use in the calculation of
Uy ().

Another non-constant case where we can obtain exact results is that of

equations whose operator, A{z), is periodic. Specifically we consider:

%—:—=A(z:)u +f(z), TE < =,
(R.47)
Alz + T)=A(z);
and its associated homogeneous problem,
L Az, =z < (2.48)
dzx ' '

We reduce consideration of the behavior of solutions of (2.48) to the considera-
tion of an eigenvalue problem by use of Floquet theory. An account of Filoguet
theory for ordinary differential equations can be found, for example, in Cesari
[7]. while a generalization to the Banach space setting is made by Daletskiy and

Krein [12]. Here is the basic theorem.
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Theorem 2.49
Suppose that solutions to (2.48) are unique and let S(z,.z,.A) be the solution

operator for z,, z;= 7. Let

M =5(r+ T.TA). (2.49)

Then, for allz> T,

S(z +T,1A)=S(z,mAM. (2.50)

Proof:
The proof follows immediately, as in the ordinary differential case, from the

semigroup properties of S and the fact that

Sz + T 1+ T A)=S(z,1:4).

Corollary

Let z = 7be given by

z=pgTl+e+T O0=e< T,

then

S(z m.A)=S(e + T mA)M™ (2.51)

From an analysis of the Floquet operator, M, we develop an exact theory of
the behavior of solutions of (2.48) We make:
Assumption 2.50

The operator M is separable with spectrur bounded away from the unit circle.

We now prove that (2.48) has an exponential dichotomy.
Theorem 2.51

Suppose that ||S(z1,%,:4)%,] is bounded by K, for 0< z, -z, < T and v, € B (z,)
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and is bounded by K_ for 0< z, —z;< T and v, € B(z,). An exponential dicho-

tomy for (2.48) is induced by B*(z) and B~ (z) given by:

B*(x) = Image under S(v+e,T+T4A) of BY(7);

(2.52)
B (z) = Image under S(t+e,T+T,A) of B (1),
where
z=aT+e, O0=se< T,
B*(7) = span {un; [An]> 1}; (2.53)
B(r)= span {u,,,;m: < 1].
Proof:

We immediately have the following estimates:

15(21.70:4 0ol = Kym 2% |, |

for v, € B¥(z,), z,=z,+aT +e;
and

1S (2 1,20: A 00|l K_m & [ugl:

for v, € B (z,), z,=z, +aT +e;
where
m,= in ,
' M{IIMI

m_= sup [A,].

A<l
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These yield
~logm (z" —2:1)
1S(z 1.20:4) 0 ll< Kle T Jwall:
forz,= z,, v, €BY{(z,);
and
( 1—23)
—logm _
HS(Z:-%ZA)%HS K:e T ”'Ua”.
for z,> z,, v, €B7(z,):
where

completing the proof.

From this, a representation of @{7) in terms of the eigenfunctions of ¥ is
possible. Calculation of the particular solution would require a knowledge of S

over a period.
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3. Problems with Constant Tails: Applications

We now apply the general results of the precedmg section to some specific

problems. We begin by mentioning two simple cases.

The theory of ordinary differential equations with constant tails on semi-
infinite intervals is developed by Lentini and Keller [32] and Jepson and Keller
[80]. In this case the Banach space, B, is finite dimensional and the operator
A, is a matrix. The problem is 'separable’ in our sense whenever A, is diagonal-
izable. Then their theory is the same as ours., They are able to extend their
theory to the more general case-that is, when the Jordan form of A. has non-
trivial Jordan blocks. Here we could apply the Agmon-Nirenberg results, at least
when no eigenvalues have zero real part {The Lentini-Keller and Jepson- Keller

results, however, are exact, not asymptotic).
Moving to the realm of partial differential equations, we consider a problem
of parabolic type on a bounded spatial domain.

du

E:Lu, (t)eQ x[0=), O CRY (3.1)

where L is a formally self-adjoint 2mth order elliptic operator. The function

is also supposed to satisfy the following boundary conditions:

3 baj('g)a"u =0, §=1,-,m;

lal < 2m )
(3.2)
yeol,

where

60‘1 6“2 aa}’
S I

2y, ayé"a dyp® =1

(o))
Q
W
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Then, if the boundary conditions cover L, (see Berezanskii [6,p.207] for a
deﬁn-iﬁt.iAon) and various smoothness conditions on the boundary and the
coefficients are met, an expansion in the generalized eigenfunctions of L is com-
plete in Zp(Q). (Berezanskii [8,Ch.6]). That is, the problem (3.1,2) is 'separable’
in the sense of the preceeding section. Furthermore, all eigenvalues, A,, are real
and all but finitely many are negative. Hence, if A=0 is not an eigenvalue of L,
there is an exponential dichotomy with a finite dimensional (perhaps null) space

of initial data leading to exponentially growing solutions.

Although this parabolic example nicely fits our theory, it is the mixed
initial-boundary value problem rather than the boundary value problem on the
cylindrical domain which most often arises in applications. A more important
application of our results is made in the case of elliptic boundary value prob-

lems in cylindrical domains.

The question of reduction of such problems to finite domains, as a prelude
to numerical approximation, has been discussed by other authors. The most
general work is that of Kreiss and Gustafsson [23], who describe a method which
is essentially the same as ours. A later paper by Goldstein [20] dealing with the
Helmholtz equation for cylindrical waveguides proposes conditions which are
specializations of these. Also, Bayliss and Turkel [5] give some idea of the gen-

eral approach. Their work is discussed in greater detail in section 5.

We begin with the following problem, with conditions at infinity so -far

unspecified:

a) ux_,+\7.5u+m(y)u =f(z.y):

~

b) (z.x)€[0,=)x0Q, O CRY (3.3)

¢) u=0,ycd; ao(Yus +bo(yu =go(y). z =0
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where V 7 is the lLaplacian in R*. Rewriting the problem in first order form we

have:

= put B
(3.4)
0 -VZ-a(y)
“J:{%]'A:[l 0 ~}'E=[ﬁ'

where we choose B to be the Hilbert space of 2-vectors with components in the
closed subspace of Lx(Q), L§(Q), with zero Dirichlet data. From the standard

theory of elliptic operators (see, e.g.,Courant-Hilbert [11]), we know that:
There exist {A,}, A\, real and ¥ > 0 such that A, > O forn > ¥.

There also exist u, € L3 (0 ) such that:
a) =V Eup o (Yun = A,
b) (un,um)L% o= Orm: (8.5)

c) fu,} complete in L3(Q).

We use this expansion to develop an eigenfunction expansion for A. Sup-

pose that:

Ui _ |1
Then we have
Uy = AUg;

~(V 2+ e (y))uz=Nu,.

~

From (3.5) we see that



A=, (3.6)
That is
A=+, (3.7)
with eigenfunctions
+ VAqUn
. (3.8)
un

We use the expansion theorem, {3.5b), to show that, under certain conditions,
the eigenfunctions of A are complete in B.

Theorem 3.2

If A=0 is not an eigenvalue of {3.5a), then the eigenfunction expansion associ-
ated with A with eigenvalues and eigenvectors given by (3.7) and (3.8) is com-
plete in B.

Proof:

Let

€B.

pr——

Uz

Then, by (3.5}, we have

ui= Y clun
n=1
Up = Z Crtl,



Hence

Ur_ < J\/Xjuj _{-—\/A_,-u,-]
= C + C; ;
{ug] jz;‘l ? l Uj i=1 ’ U
where
(3.9)
’ 2vVA;
2
om= VNG -cj
’ RVA;

Note that the coefficients c;/* are determined by taking inner products with

adjoint eigenfunctions.

o B )
2\/7\} 2 U, .
Cji = dy, {310)

~

0 Uz

where the adjoint eigenfunctions are given by:

uj
“ 2V
2/ Ns
i AR (3.11)
2
and satisfy
RPN T JO 3.12

Hence, 4 is separable in the sense of section 2.

We briefly mention the excluded case where there are zero eigenvalues. For
simplicity we assume that one eigenvalue of (3.5) is zero. The two-dimensional

subspase of B which is associated with the corresponding eigenvalue of A is
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spanned by

0
ua

uO
O ’

where

’(V § +a ('E))uo =0, (ua vua) =1.

is a generalized

Only [5 } however, is an eigenfﬁnction of A. The other, {%"
2

eigenfunction satisfying:

AZ

Ug| _
0}—07

That is, the restriction of 4 to this finite dimensional subspace leads to a matrix
which is not diagonalizable, but which has a non-trivial Jordan form. This possi-
bility could be included in our analysis. The algebra would be similar to the case

of ordinary differential equations (Lentini and Keller [32]).

Further analysis of problem (3.3) requires additional knowledge of the spec-
trum of (38.5). There are two district cases we shall consider: firstly, the case

when A, > 0 for all n and, secondly, the case when finitely many A, are negative.

We begin, then, with the assumption
>\n> Dl n= 1r21 e : (3'13)

which can be shown to hold, for example, whenever rz('g) is strictly negative.
(This is a consequence of the variational principle for the eigenvalues. See

Courant-Hilbert [11]). The eigenvalues of A, given by (3.7), are, then, all real.
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Applying Theorem (2.35a) we have that the spaces B* and B~ given by:

Bt= {span i\fu“]},
L n
(3.14)
—_ '—\/X;un .
-l 5]

induce an exponential dichotomy for (3.3). Hence, by Theorems (2.12) and (2.26)

the only boundary conditions of our form which can be applied are:

e (z)]| bounded as x>, (3.15)

The admissible space, A(7), is B for all T and its projector, @(7) is given by:

() ’,,j;] = {3;] (3.16)
where

v= Y chu,

n=1
w; = ild:;um (3.17)
1

2 2 |fed) _[a

-1 1 |[ef] T |2
2VAn R

Similarly, Theorem (2.28) can be used to write down a particular solution for

absolutely integrable, Lipschitz continuous inhomogeneous term, f (z .gN/).

Now we drop the assumption of equation (3.18) and suppose that finitely
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many A, are negative. That is,

A<0 n=12, - m;

(3.18)
M>0, n=m+1im+2,---
The operator, A, now has not only the real eigenvalues,
A=+ VA,, n=m+1m+2,- - (3.19)
but, also, the purely imaginary eigenvalues.
A=tiv=A,, n=12, ' m. (3.20)

By Theorems (2.12) and (2.28) we now see that, in addition to the boundedness

condition (3.15), an additional condition of the form:

lim Bou (z)=0, (3.21)

T

can be imposed. This can be, by (2.12), only a condition on the (finite dimen-
sional) subspace spanned by the eigenvectors of eigenvalues with zero real part.
Assuming, for simplicity, that the negative eigenvalues are distinct, we have that
the spaces, B?, of definition (2.11) are one dimensional and spanned by the vec-

tors:

if

wy

[:t N =

un ]l n =1l2' e Imv (3:22)

Hence, we are allowed to set the expansion coefficients associated with any of
the eigenfunctions w,f to zero at infinity, The expression for @(7) will be as

given (3.16) and (3.17) for A, > 0. For the finite set of of negative A, the projec-
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tion matrix of equation (3.17) is replaced by

¢

c 0
z) |g 0} if both modes are sef to zero;
10
b) |g 1| if neither is setf to zero; (3.23)
1 1V=A,
v i ve———
2 2 - .
c) +d 1 if w," is set to zero but w, is not.
v, 2

In any case, the admissible space, A(7), and it is complement induce an ordinary
dichotomy for (3.3) by Theorem (2.35b). Note that our freedom in choosing the
boundary condition at infinity is restrained by the conditions for solvability of

the finite problem given in Theorem (1.20).

An example of a problem of the type discussed above is that of the

Helmholtz equation in a cylindrical waveguide:

—(VE+ERu =7, (z,m)€[0,2)xQ;

@ =0, 'QEBQ:

which is extensively analyzed by Goldstein [20]. A natural condition at infinity is
to demand "outgoing" radiation; that is, to set to zero at infinity the coefficients
of eigenfunctions whose imaginary eigenvalues have negative real part. Applica-
btion of such a condition results in the projection matrix of equation (3.23c).
Goldstein applies condiﬁons which are specializations of ours to the case f =0,
as he assumes that the support of f is contained within the finite, computa-

tional domain.

We finally note that all of the considerations discussed above go over to the

case of more general boundary conditions on 8Q. All that is necessary is that
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the coﬁlpleteness assumption on the cross-sectional eigenvalue problem, (3.5),

still holds.

There are various possibilities for the use of (3.16), (3.17) and (3.23) in
combination with an appropriate expression for u,(7), such as (2.28), in a com-
putation of problem (3.3). (Of course, we are considering a computation on a
finite domain with the right boundary condition, (1.12¢).) One possibility is to
expand the solution at the boundary in the eigenfunctions, u,, and directly
apply the various formulas above. A drawback of this approach, though it is the
approach which w;e use, is that one must be content with using only finitely

many of them. That is, we approximate the operator @{t) by @°(7) which is given

by:

wof-o)

o0

w= 3 chun,

n=1
(3.24)
L
W= Y diy

n=l

@n [" ]

n
2
Cn

1
=[3}], n=12,",L;

where @, is the projection matrix of {3.17) or (3.23). Similarly, u,(7) must be
approximated by a 'u.p' (7) involving only these first I eigenfunctions. By the error

analysis of section 1, the resulting errors depend linearly on:

up (1) ~up (|
and (3.25)

Q7Y = @7 (7)) (up (1) ~ug ()]

where 4, (7) is the solution to the approximate boundary value problem. We use
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this to prove the following theorem.
Theorem 3.26
Suppose that u4,(x) is a solution of the approximate problem, (1.31) {coming
from (3.3)), with @ and u, given above. Then, if

hod
a) u(1)= 3 of*wn':
n=1

(3.26)

wi =

+ \/X;un]

un
and
b) c2*=0(n"%), noe;

and the expansion of the particular solution, u,(z), satisfies a similar estimate

with exponent g, then the error, e(z) = u(z) —uy(z), satisfies

= e 0
zrg[%?%lle(x)ll O(L™), L-w=;

(3.27)
y=min(e-1,-1).

Proof:
By equation (1.33) we need only estimate ||A(7)|| which, in turn, requires that we

estimate (3.25). However,

2wy (7) —u(7) = 53“ oPs (D,

n=l+1
which implies that
llup (1) = (T = O(LF¥1), Lo,

while

(90 =@ N (D —ua (N = 5 oF* (@i

n +1
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which yields

Q1) = @ (M(up (1) —ua (M= O(LT4*), L.

Combining these gives the desired result. Note that the decay rates depend on
the smoothness of the solution and the dimension of the cross-section. They

increase with increasing smoothness and decreasing dimension.

In some cases the cutoff approximation, (3.24), to the projection operator,
Q(7), might be unnecessary. From (3.17) and (3.23) we see that, for

wi(y) € LE(Q),

Q(T)[z;]= f Q(yp7) z;gg]dg (3.28)
[}
where
Qlyp7) = ijlun(y)un(g)%(ﬂ- (3.29)

Hence, if (3.29) could be evaluated exactly, so could (3.28). However, this is not

possible in general.

We note that, no matter how it is applied, the boundary condition, {1.12¢c),
is non-local. This does nbt, though, significantly increase the computational
effort. Suppose, for example, we were solving our finite reduction of problem
(3.3) by a centered finite difference method and that the dimension of Q0 was
one. Then, if we ordered the points in a typical fashion, an interior row would

look like this:

(0 ---0a,0 o faasa 50 o Q0e,0 -+ 0),

where g4 is the diagonal element and n is the number of grid points in a cross-

section. Application of standard, local boundary conditions preserves this
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structure at the ends. Our condition can be represented in the form
Q1 (7) = Qoul7) +g. (3.30)

where %, (7), %(T) are n-vectors of values of u (1Y) and u(7y) at the gridpoints
and @, and @, are nzn matrices. Choosing 7 half-way between our last two grid-

points in the z direction and differencing the derivative we write:

UN +1 —UN Un+1+UN

1 (xN-l‘l._xN) =QE 5 +_2. (381)

This fills the last 2n columns of the last n rows. The system can be solved, for
example, by combining a standard Laplace solver with a bordering technique
for the last n rows and columns. The added work is, then, swamped by the work
needed to invert the 'big" part of the Laplace matrix, which is unaffected by the

boundary conditions.

Elliptic problems in conical domains can also be treated by the theory of
section 2. Consider the following problem:

[1 8, ,0uy, 1 1
——— o . hd - .
ey {z ax)+ p: (L™ +a(g))u|=0;

(3.32)
(z.0)e[T=)xQ;

where L' is the Laplace-Beltrami operator for the o dimensional cross-section

and gare the angular coordinates. Consider the change of variables

O
w,=x%——;
oz

'w2=x°‘—lu.
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This tansforms (3.32) to
? |w; _1 ¢ —-L'-zz
oz |wz| =z |l -1

which is of the form (2.44). Using the results presented there, we can represent

w‘]: (3.33)

the admissible space in terms of the eigenfunctions of:
{0 =L*-a
1 a=1 I (3.34)

This, in turn, leads us to consider an analogue of (3.5) where the Laplacian is

replaced by the Laplace-Beltrami operator, Z°.

The eigenvalue problem, (2.1), for problems arising from partial differential
equations can, in general, be written in the form of a partial differential equa-
tion eigenvalue problem-though not so simple a problem as (3.5). Specializing

(1.2) to problems which are independent of z, we see that (2.1) becomes:

—Pn_lpn -1 —Pn_lpn -2 7 _Pn—lpo :w_i(ﬂ -1) wi('"' -1)
1 0 ’ ' ' 0 wl(n -2) _ wl(n -2) i
0 1 ; ; o | e |
; : : o I wo® e

Solving this we have:

[ 3. -
a) ZPj(y,-é—)Ag]w.;:O, yel;
j =0 4
{3.35)
6) [ 20 0 E) s =0, yean
i=0 SEAL AP E] el 4 '

That is, we consider the eigenvalue problem arising from Laplace transformation
in z. (The Laplace transform approach is also suggested by Gustafsson and

Kreiss [23] as a generalization of the direct separation of variable method). The
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applicability of the formulas of the preceding section depend on the complete-
ness properties of the eigenfunctions of (3.33); properties which are not known
in general. Whenever they are complete, however, the computational considera-

tions we have just discussed are valid for this more general case.

Lastly, we present some results of Agmon and Nirenberg [1]: applications of
their general asymptotic expansion theorems, Theorem (2.42) and its variants,
to partial differential equations. Again, we give the theorems without proofs, for
which the reader is referred to their paper. We begin with a definition of the
class of problems to be considered.

Definition 3.34 (Agmon and Nirenberg, [1,pp.202-204])

The boundary value problem:

241 o, 1 alluz

a) Au = let-—J y,ay 77 8z7 %Tﬁxlj

b) (zye[0=)x0; (3.36)

c) Bily -aﬁ—)u=0, yeodl,j=1,--m;

is called a regular weighted elliptic boundary value problem of order type (2m.l)

if the following hold:

i) Ae(y ) is a differential operator of order 5, with:
s =2m;
.-
ii)If AF (¥ 5%——%—-5—6;) the weighted principal part of 4, is given by:
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Rm;
where Af_ 5 is that part of 4; _; which is exactly of order 7 2, then

At (yg7)# 0

for all real vectors (§7) and yeQ.
iii}B; is a normal differential operator of order m;; m;< 2m —1, principal
part, Bf, satisfying:

The polynomials in s
ij(g’rg-*—sy' .7 =1l T,

where £is paralle! to 80 and yis normal, are linearly independent modulo

the polynomial:
m
[1 (s =s&Em:
k=1

where s (£7) are the m roots of Af (y.£+sy7) with positive imaginary
parts,
iv) The coefficients of the various operators and the cross-sectional

domain, ), are bounded and sufficiently smooth.

Note that a regular weighted elliptic boundary value problem of order type
(2m 2m.) is simply an elliptic boundary value problem. Problems of different
order type include some parabolic equations, also. The authors go on to show
that such a problem, when reduced to abstract form, satisfies the conditions of

their asymptotic expansion theorems.

Recall that (3.36) can be written in abstract form:

U
1ldu
U _sap: v=| 9| (3.37)
dx :
1 dl-ly

,il*‘l dxl-l
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A solution, u(z ,Q) is said to be of the class L,:,'q for somereal w and 1< g< o« if

its companion, U(z), is such that
e¥*||U(z)|i€ Ly (0,=).

for each u in this class associate a formal eigenfunction expansion,

[T ZQk (388)
k
in the following way;
¢ ek 3\
1 deg
g :dx = E.(z)
1 di7le
?:1' -1 dx‘ -1
(3.39)

F(z)=exp(izez) P (x) =£Q£R(A;A) U(0).

Then we have:
Theorem 3.40 (Agmon and Nirenberg [1,p.215])
Let w(z) be a solution {3.34) belonging to some class Lyq. then

i) 2 as a function of z with values in Hom,1,(Q :[B; 1), (the subspace of the
Sobolev space Hzml,(Q) satisfying the proper boundary conditions, (3.34c¢)), is
analytic z > 0. Morever, there exists ¢> 0 depending on 4 so that v can be

analytically continued into the angle |arg z | < 6.

ii} The eigenfunction expansion, {3.38), is an asymptotic expansion in the
following sense: Let a > w and AyAg, * -+ Ay be the eigenvalues of A in the strip

w<ImA<a, Let £> 0 be such that ImA\,<a —¢ for k=1, --- ,N. Then, for
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z > 1, the following holds:

I )= L stz o=

(3.40)

constant x (lil I M

i=0 aZ'j ]’Zm(l—.'!"_':.l_)l’)ezp ('—(ﬂ "8)2:),

for all . The constant is independent of w.

For A with eigenvalues bounded off the real axis, the theorem above estab-
lishes the exponential decay of bounded solutions. Then, the image under S of
the admissible space, A(0), is approximated, for z sufficiently large, by the span
of the eigenfunctions (and generalized eigenfunctions) associated with eigen-
values of 14 with positive imaginary part. Application of this result in numerical
computations leads to the same considerations as for the other examples of this

section.

We finally note that, in our discussion of numerical approximations, we
have ignored the problem of finding the eigenvalues and eigenfunctions. For a

non-standard problem of the form (3.33), this might be difficult,
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4. Time Dependent Problems on Unbounded Spatial Domains

The theory of time dependent problems on unbounded spatial domains

presents more difficulties than the spatial problem discussed in the preceding

sections. The reduction to first order, abstract form given in section 1 requires

the cross-section, {1, to include the unboundedness (for non-periodic problems)

of the time variable. This, combined with the fact that an initial value problem

rather than a boundary value problem is posed, often leads to operators, 4,

which do not have the nice spectral properties used above.

In this section we eschew the abstract formulation and pursue, instead, a

more direct one based on Laplace transforms. (The formulations are, in fact,

equivalent.) For simplicity we begin with a problem in one space dimension, but

later generalize to higher dimensicnal problems.

Consider the following mixed initial-boundary value problem on the tail:

Define:

tu Sl 8 Bu . )
a) P +j§OL§(at Py =f(z.t); T< T <=, t>0;
B = oul
Oy A
(£.1)
Blu _ _
c) Yol (z.0)=gi(z), L=1, " m—1;

d) 7%iﬁrgu(:z,t) =0.

T(z.s)= fetu(z t)dt. (4.2)
0
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Then, from (4.1), 2 satisfies the following ordinary differential equation in z:

A= pig
)] + ——
@7 Bzn EOL’(S)axﬂ
6
j=0lk =1 2,']
(4.3)
TE 2 L >=;

b) lim<Z(z s)=0.

T

(This reduction is, in fact, valid in greater generality than is the Laplace

transform formula (4.2). For details see Mikusinski [36].)

An operator function, g (s), is called a logarithm if there is a solution to the

operator differential equation:

dw
T Es)=gshwiz.s)
in which case the solution is given by:
w(z,s)=edb)= (4.4)

(The reader is referred to Mikusinski [36,Ch.2] for details.)

The formal solutions of the homogeneous problem associated with (4.3a)

are given by:
wy(z,5)= eap(s)z; (4.5)

where o, (s) is a root of the characteristic equation:

n—1 )
o + ‘ZOL,-(s)ag =0, (4.8)
J =

The question of whether or not a,(s) is a logarithm is answered by the following
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theorem of Mikusinski [36,pp.310-311], which we state without proof.
Theorem 4.7

The n roots, &, (s), of equation {(4.6) can all be written in the form:

k k-1
o (s)=BPsT+BP_1s T + - +BFs+B, +1L; (4.7)

where k& is a non-negative integer, g is a positive integer and L can be
represented as a convergent series of integral operators (powers of 14). The

root a, is a logarithm if,

a) BP=0, —> 1;
and (4.8)

b) BPis real, 1;;=1.

We suppose that all solutions of (4.6) are logarithms and that, for each p,
least one $%, k > 0, is non-zero and the coefficient of the highest power of s is
real. Then, fixing s as a complex number with real part sufficiently large, the
theory of Keller and Lentini [32] for ordinary differential equations yields that

@ {z,s) is a solution of (4.3) if and only if:

g~ 1l
fx™ 1
Bes)=| : |;
T
satisfies:
(I = Q))lr.s) = (T = Qs B (Ts). (4.9)

Here, @(s) is the nzn matrix projection operator into the invariant subspace
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generated by the eigenvalues with negative real part of:

~Ln-1(s) =Ln-a(s) -+ —L(s)
1 0 C
Als)= 0 1 ; :
: ‘ 1 0

Note that the eigenvalues of A(s) are the roots of the characteristic equation,
(4.8), and those with negative real part (for |s | sufficiently large in a right half-
plane) are the ones whose leading coefficient, 8¢, is negative. The particular solu-

tion vector g, (7.5 ), is given by:

{
g%s)
0

.
’

B (1s) == [ eAO-P)([ —g(s))

(4.10)
- n-1 m k—1 87
Flzs)= flz.s)+ 31 g (Y s(’c"l"”iz—(f—)—-)}.
i=ole=1 1=0 oz’
Using these we have the following theorem.
Theorem 4.11

Assume that:

(i) All solutions, a,(s), of (4.6} are logarithms.

(ii) The expansion, (4.7}, for each o, is such that some g%, £ > 0 is non-
vanishing and the non-vanishing coeflicient with highest index, k, is real.

(iii) The functions g,{z), I =1, ---,m, are absolutely integrable and

Lipschitz continuous and e ™! f (z,f) is absolutely integrable and Lipschitz con-

tinuous in £ uniformly in £ for some v.

Then if w(z,t) with exponentially bounded growth in time (uniformly in z)
is a solution of (4.1), its Laplace transform, @(z,s), satisfies (4.3) and (4.9).

Proof:
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The equivalence of (4.1a,b,c) and (4.3a), whenever the partial derivatives of the
inver.s‘ebtransform of T(z .s‘) appearing in (4.1a) exist, is established by Mikusin-
ski [36,p.308]. Hence, if w(z,t) solves (4.1) and has (uniform in z) exponentially
bounded temporal growth, its transform must satisfy (4.3a). Furthermore, as

there exists some 7 such that

lime ™ u(z,t)=0

Z
uniformly in time, then

limd{z,s)=0

T

uniformly in the half-plane Res > 7. Therefore, €{z ) satisfies (4.9).

It is somewhat unsatisfying that the conclusion of the preceding theorem is
given in one direction only. In general, to check that the inverse transform of a
solution, ¥(z,s), of (4.3) and (4.9) satisfies (4.1), it is necessary to check that its
partial derivatives are continuous and that (4.1d) is satisfied. This might be
accomplished by direct inversion or by application of the inversion theorems

appearing in Churchill [8,Ch.8].

We note that direct application of (4.9) in the time domain requires the

Laplace inversion of the known functions of s, b(s) and 15, (7.s). This yields:

¢ t
{(I—Q(t —2)wTp)dp ={(f~ Q(t —p )P (.p)dp
(4.11)
= B(t).
The implementation of (4.11) in a numerical computation requires that #{7.t),
(w(T.t) and its first n-1 partial z derivatives), be stored for all time. Note that
the form of the condition is that of an integral over time, the cross-section vari-

able, which is similar to the form found for spatial problems. Lastly, we mention
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that the analysis above is easily extended to systems of equations. The only
difference is in the form of the first order ordinary differential equation to

which the Keller-Lentini theory is applied.

Hyperbolic Problems

We now examine some applications of the preceding theorem. We first con-

sider a hyperbolic system:

E”ly--!&aw+zv.7 < x Koo
oz ot MR TSI

(4.12)
w(z,0) =g(z).

Here wis an n-vector and A and ¥ are nxn matrices. The matrix A is given by:

— A+ 0 -
A - D A— 1
Y=diag g xe)[ M1 AT=diagxp[-AT] (4.13)

AE > 0 and distinct, k +1 =n.
The vector w can be written:
w= M (4.14)
where ' is a k-vector of ’incoming’ variables and w is an l-vector of ’outgoing’

variables. We impose the boundary condition at infinity:

limwH(z £)=0 (4.15)

F el

That is, there are no incoming waves at infinity.
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The constraction of artificial boundary conditions at z =7 for such prob-
Iems‘has been considered by other authors. Engquist and Majda [15] develop a
general theory of non-reflecting conditions. These are designed so that no
incoming waves propagate from the point z =7 into the region =z < 7. For (4.12)

this becomes:
wH(rt) =0 (4.18)

Gustafsson and Kreiss [23] point out, however, that the non-reflecting condition
(4.18) is not in general, equivalent to the condition, (4.15), at infinity. They sug-
gest a method for constant coefficient problems to which ours reduces in that

casge,

The transformed equation corresponding to (4.12) is:

%: (sA+ M)D-Ag. (4.17)

As pointed out by Gustafsson and Kreiss [23], for Res sufficiently large the

matrix
sA+ M

will have k& eigenvalues with positive real part and I with negative real part.
Hence, the boundaryvcondition in s-space, given by (4.9), will consist of & rela-

tions. In general it can be written in the form:
WH(r.s)=B(s){rs)+{7s); (4.18)

where B(s) is a & x I matrix. Inverting the transform yields:

t
w(T.t) ={B(t —p)w(rp)dp +q(7t). (4.19)
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The integral term measures the contribution to the incoming waves made by all

the outgoing waves at previous times. It would be absent if the coupling matrix,

M, were zero (or of some special non-coupling form.) The function g(7.t}, gives

the contribution of the initial conditions in the tail.

In cases where g(z) (or its asymptotic structure) is simple and the dimen-

sion is not too large, it should be possible to calculate B and g exactly. As an

example we specialize to the following problem:

- |w*
)
[t o
A=lo -1

glz)=0
0 a)
M=y oj-

The projection condition, (4.7), then becomes;

s +Vs?4+0b a D, [0}
b —s +VsP+ab|w_| \O)

or

—Vs® +ab
—— D

Des, )= 5 D_(s,7).

Inverting (4.22) yields:

' T (NEB (t -
w+(t‘7-)=_.\/;b_i_{rfl( b (t p))‘w'(p.‘r)dp.

(t-p)

(2.20)

(4.21)

(4.22)

(4.23)

We note that, as a tends to zero, the ingoing and outgoing variables decouple

and (4.23) becames the no-refiection condition, (4.186)
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li‘g_r the general problem, {4.12), the Laplace inversion step leading from
(4.18) to the boundary condition in the time domain, (4.19), might be difficult to
perform analytically. It is pointed out by Gustafsson and Kreiss [23], however,
that an asymptotic expansion of the solutions of (4.17), valid for large |s |, can
be easily obtained. The inversion of such an expansion leads to a small time
expansion in the time domain. We state the following theorem on this which can
be found, for example, in Smith [38,p.97].

Theorem 4.24 |
Suppose f (t) has a Laplace transform, }(s), and satisfies:
tPf(t)=a,+aq it + -0 e, P HERA (L),

(4.24)
[Ap ()| =< Afor O< t<t,.

Then

}j §(p+k)s Pk 14 BsP 14 O(e ),

(4.25)
B= (p+n)iA.

Hence, if we assume that f has an expansion of the form (4.24), we can
invert, term by term, an expansion of the form (4.25) for its transform. Given

the assumed distinctness of the eigenvalues of A, the ”perturbed"‘ matrix,
A+ %—M , will have eigenvalues and associated eigenprojections which are holo-
morphic functions of (1/) for |s| sufficiently large. (See Kato [31,Ch.2].) This
implies the holomorphicity of the eigenvectors of A + —i——M and its adjoint and,

hence,the existence of a holomorphic diagonalizing similarity transformation.

Using this fact, we outline a procedure for finding expansions in 1/s of the pro-

jection operator, 22(5), and the eigenvalues of A + i—M. These, in turn, could be



-87 -

used to generate expansions of 4, (s,7) using (4.10).

We suppose that T(s) is a matrix which is non-singular in some neighbor-

hood of infinity and which also satisfies:

T(s)A + ;LM) T Ys)=D(s), dicgonal

(4.26)
lim T(s)=1
s |+
We write T(s) in the form:
_ 1 1
T(s)=I+ =T+ =T+ - ; (4.28)
s s
which can be inverted to give:
171 1 (2
Tl=l—=T1+—5(Tf - Te)+ -~ . (4.28)
S s

Substituting (4.27) and (4.28) into (4.28) and noting that D(s) must have an

expansion:
- 1 1
D(s)-A+—-D1+—-§-D2+ v, (4.29)
s s

we have a hierarchy of equations:
T\ A-AT +M=D,,
Toh ~A Tz +AT?

(4.30)
+ Ty —MT—TiA Ty =Ds,

These can be solved in order. The first, for example, yields (where \; =A\{", i< k;

AN=-A\, i=p+k):
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(T)a (Ag =N} + My = ()64
which implies:

1
Ty = __X:_’)Mij:
=

(4.31)
d; = Mﬁ.
The ith eigenvalue becomes:
1 1
M+ =M+ 0("2"’) (432)
g s

The projection matrix, &(s), is given by

- 0 0
Qs)= T—I{O I(Lxl)] 7(s)

b2 el ) o3

+0(;lz—).

If we write # and T, in the form:

M_[Mekxk) Mgcxt)} T> _[Tll T%]
- M(Bzxk) Mﬁxl)' = T? T?

we have

=)= {O I] + ;{Tls 0 + 0( -;2—). (4.34)
Specializing to the case of zero initial data in the tail, we use (4.34) to approxi-

mate the boundary condition, (4.19), by:

¢
wt(rt)==T¢ fw (rp)dp + O(t?). (4.35)
4]
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Equation (4.35) shows (for small £) how the value of the incoming variable on
the boundary depends on the coupling term, #%, which is connected to T? by

(4.31).

Parabolic Problem

Our method is not, of course, restricted to equations of hyperbolic type. As
an example, we apply the general construction to the one dimensional heat

equation. The relevant problem in the tail, [7,=), is:
Q) U =Uze +f(z,t), T< T < 0

b) u(z,0)=g(z), 7< < =; (4.38)

¢) limu(zx,t)=0,
T

We assume, as usual, that f and g are Lipschitz continuous and absolutely
integrable in z and further assume that these hold uniformly in ¢ for the func-

tion f. The characteristic equation, (4.8), for this problem is:
A —-5=0;

which has multivalued solution:

A=s*.

1

By (4.8), this solution is a logarithm. Denoting by + V5 the branches of s? with

non-negative and non-positive real parts, condition (4.19) becomes:

w7 (1.5)]

o~

wE(1s))

Vs

4
L

VB [, (m.s)]
1 | 2(rs) |~

(2.37)

1 1
L L
Vs Vs
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where, by (4.10):

o 1
D (rs)= fes PN F(p,5) +g(p))dp,

-~ 1 .
wE(rs)= —\/—s;'wﬁ’ (r.s).
Inverting this yields:
1
—_—u_(T,p)dp + EY=b(t);
[ e trp)dp +u(r) =5 ()

where b (s ), the Laplace transform of b(t), is given by:

© L
b(s)= == [e=*=P)(F(p.s) +g (0))dp.

(4.38)

(4.39)

(4.40)

In this case, the condition measures the contribution of what has, in the past,

diffused out the boundary into the tail and of the initial conditions there. Its

computational implementation is similar to the implementation of the hyper-

bolic conditions.

Higher Dimensions

We now generalize our method to problems in more than one space dimen-
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sion. Specifically we consider:

a)

s Ly T p 2 yt), g elre)x0it= 0
8x™ =0 U ot 'y‘ ag axg % Q

i} g, _ & 8\ 0°
al
c) mﬂxym =gi(z gy, I=1,-  m-1 (4.41)

d) Bou(z yt)=0, ycaQ;

e) limu(z,yt)=0.
4o ~

Introducing the temporal Laplace transform of w(z,y,) as in (4.2), we derive, in

analogy with (£.3), the following partial differential equation:

a‘n"- n—1 a
u+EL(y5ﬂ T =

Bx™ j=0

a)

~

(zys)+ z[; oy 2T 541 029, g)]}

(z ,y) e[ro)xQ; (4.42)
b) Bpu(z.ys)=0, y€dQ;

¢) limd@(z ys)=0.

Tt

For fixed s in an appropriate right half-plane, problem (4.42) can be treated by
the methods discussed in the preceding sections. In particular, equation (3.33)

leads to the following generalization of the characteristic equation, (4.8):

n-—1 8 .
a) A+ Y Lj(8|§’v§§)?\'3]wi(g's)=o' yell
j=0 <

(4.43)
b) Bpwi(ys)=0, ycal.
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That 1s we consider an eigenvalue problem in the spatial cross-section. Assum-
ing that the eigenvalues defined above are logarithms when considered as func-
tions of s and that the eigenfunctions satisfy certain completeness properties,
the results of section 2 can be combined with those of this section to yield a
boundary condition at z =7. We note that this will be a condition on functions of

y and £, involving integrals over Q x[0,t).

We do not attempt to discover genefal conditions which guarantee that the
method outlined above gives cof‘rect conditions. Even if it does, the general
solution of the s-dependent eigenvalue problem, (4.43), might be difficult to
obtain. Gustafsson and Kreiss [23], however, point out a class of problems
where this is not the case. For our general equation, (4.41), this class
corresponds to equations which satistfy:

Assumption 4.44
The operators a; ;(y, EQE—) satisfy:
o, ; = constant, k or j # 0. (4.44)

Equation (4.43) than becomes:

a) AP+S LN+ S o * b (g5)
k=1

i=1
)
+ao.o(y--a-y—)wi(y,8)=0. yel; (4.45)
b) Bow(ys)=0, ycoQ.

Then, if (7p,w,(Y)) are the eigenvalue-eigenfunction pairs satisfying:

b
Qg o (Y. gg)wp (y) =7pwp(y), ye:

(4.46)
anp (’g) =0, yE 80 ;
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equation (4.45) is reduced to the algebraic equation:

n—1 . m
AP+ Y Li(sIM + ) o os® +9, =0, (4.47)
i=1 k=1
This has n solutions:
Ai(8yp), T=1,- 0 . (4.4B)

Expanding 7 (z,s ,y) in sums of the eigenfunctions, w, (g}, leads to an uncoupled,
infinite sequence of one-dimensional problems of the type considered at the

start of this section. That is, if

0

Z(z,5.Y) =L¥16;(x S Yw(y): (4.49)

and the operators A\(s,7;), given by (4.48), are all logarithms, we use (4.9) to

write:

n-14
B c;

— {(1,5)

(I-@(s)) =(I - Q,(s )F(r.s). (4.50)

G (s

Here %P(1,5) is given by (4.10) with§ (z,s) replaced by:

R - n-1{ m LSSl
Gi(z.8) = (wily). flz.ys)+ T Y oes( L s® 70—z )y,
j=0lk=1 1 z

=0

Inverting the transform finally yields:

™ "l
; (wy (), a;c—,_r:‘l*\‘rv'g.?))n
JU-a¢ -p) oo dp
0 (w () u(Ty2 )

(2.51)
=F(Tt), 1=1,23, " .
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Here F; is the inverse Laplace transform of the right-hand side of (4.50). If
(4.47) is simple enough to be solved analytically and the functions f (z y.t) and
gi(z.y) are also sufficiently simple, (4.48) can be solved numerically to yield

approximations to (4.52).

We close the section by mentioning the work of other authors. Guderley
[22] develops conditions for linearized subsonic flow equations. In particular, he

analyzes:
Pz +¢yy +t 02z —BM(l —Mz)_lfpzt -(l _Mz)—lfptt =0.

His conditions are based on application of Green's theorem in 4-dimensional
space-time. As such, he is free to choose the shape of his artificial boundary.
He needs to use basic exact solutions at infinity and assumes zero initial data in
the tail. If his region were of the cylindrical shape we consider and his artificial

boundary of our form, the methods would be equivalent.

In many numerical calculations, time-dependent problems are solved in
order to find time-independent (or steady) solutions. For such cases, steady
boundary conditions such asg those discussed in sections 2 and 3 might be
appropriate. Ferm and Gustafsson [18], for example, calculate steady solutions
of the Euler equations in a two-dimensional channel using steady boundary con-

ditions of the type we have previously discussed.
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5. Perturbation Theory and Asymptotic Boundary Conditions

In the previous three sections we found useful representations of the pro-
jection operator, @(7), of the admissible space and of the particular solution,
uy(x), for equations of the form (1.1) with constant tails. In the present section
we relax this assumption and replace it.with:

Assumption 5.1

limA(z)=A. (5.1)

T

We proceed to show that if the constant tail problem with operator 4. posseses
an exponential dichotomy, then useful representations (for large 7) of the pro-

jection operator and particular selution for the perturbed preblem in the tail,

3x—u=A(z)u +f(z), T< z < =;
(5.2)
2lci_,n'n,b(:x:)=0;

can be obtained. We then apply our results to various particular problems,

including some where the dichotomy is absent.

Abstract Perturbation Theory

It is known for the case of ordinary differential equations that an expoﬁen—
tial dichotomy is stable under small perturbations of the coefficient matrix. A
proof which allows the unperturbed matrix to be unbounded is given by Coppel
[10,Ch. 4]. We adapt his methods to prove the following theorem.
Theorem 5.3
Assume .that the operator A.(x) posseses a non-mixing exponential dichotomy

as given by Definition {1.16) with @.(z) a projection operator for B7(z). Assume
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furthgr that

a) A(z)=A.(z)+B(z)
(6.3)
b) ||B(z)|l< e, 7<= x <eo,
Then, if ¢ is sufficiently small and f{(z) is absolutely integrable and Lipschitz
continuous, the projection operator, &{7), for the admissible space and the par-
ticular solution, 'u?,(x). for problem (5.2) exist and are given by the solutions of

the following integral equations.

a) Yy(z)=5(2,T4e) Q= (1) + [ S(z 7:4.)Qu(r)B(T) Y (r)dr

= [ Sz 1AL = Qu(T))B(T) Y (r)dr;

z

) Q(7)=Y1(7); (5.4)

T

¢) up(z) = [S(2714a)Qu(r)(B(r)up(r) +f (r))dr

= [ S(z 4 )T = Qu(r)(B(r)up (r) + f (r))dr.

Before proving the main theorem we state, without proof, the following lemma.
Lemma 5.4 (Coppel [10,p.292])

Let ¢(z) be a bounded, continuous real valued function such that
plz)< Ke#= Dt oq f eIz Plp(p)dp, z> 7
T

where K, o, and @ are positive constants; < -é— Then

plz)< pKe P -7, > 1
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where_

L
2

B=o(1-26)F, p=o{1 —(1~26)F),

Proof of Theorem 5.3

We recall that, by (1.18), for some positive constants K and ¢,

g) ||S(z.74.)0 (7)< Ke™=-T), 2> r;

B) |IS(z.7:4.)J0 = Qu(T))| Ke 7 -2) r> g

(5.5)

lLet M be the Banach space of bounded operator valued functions of z with norm

given by
Y11= supl| Y ().

Let Y(z)< M and define O(Y(z)) by:

0(Y(z)=S(z 114=)Qu=(N + [S(z7:4.)Qu(T)B(r)Y(r)dr

= [ Sz 1A= Qu(T))B(r)Y(r)dr.

Then, using (5.5) we have:

RKs
o

lo(Mi= K+ ==i|7li

2Ke

lo(n -o(vylls Eeyy-y.

Hence, 0(Y)<€H and is a contraction mapping if

In this case O has a unique fixed point which we denote by Y;(z).

(5.8)

We note that
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the continuity and differentiability of S(z,r;A.) imply the continuity and

differentiability of ¥;. By Duhamel’s formula, ¥, is an operator solution of the

homogeneous differential equation

dd};l =A(z)Y,, TS T <. (5.7)
Therefore, if S(z,1A(z)) is the solution operator for (5.7), ¥, satisfles:
Yi(z) =Sz mA(z))Y1(7)
(5.8)
= Sz, A(z))Q(T).

Left multiplying equation (5.4b) by @.(7) and using the no-mixing condition we
have:

Q= (NQ(7) = Q= (7).

Hence, Y;(z)Q(7) is also a fixed point of O, which implies:

R(nNa(n) =a(n).

That is, @(7) is a projection operator. From (5.4a) we also have
172(2)= Koo 7+ (E2yq feete =l y,(r)ar;
T
which, combined with Lemma (5.4) and equation (5.B) yields:

1¥1(x)|< pKe BE-7, z> T,

That is, @(7) projects into the admissible space for (5.2). We must also show

that the range of @(7) includes all the admissible space. Let v(z) be a solution
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of the homogeneous problem which satisfies:
limv (z)=0;
F2ad]

(- (n)=v(7).

Then define p(z) by
plz)=v(z)+ [ Sz 1A = Qu(r))B(r)u(r)dr

—f S(z.74e)Qu(T)B(r)u (r)dr.

The function p(z) is a solution of the unperturbed equation. From its definition

we conclude

limp(z)=0.
T
This implies

(I =Qu(m)p(7T)=0.

However,
(1= Qu(MP(N=(I = Qu(Mv(N + [ S(z7:4)I = Qu(r))B(r)v (r)dr

=(J - @M (1) + [ S(z.m4)I = Qu(r))B(r)v(r)dr

=p(7).
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Hencg we conclude that p is identically zero. The definition of p then yields:
max|v(z)||= maxllfs(x T AN = Qu(T)B(r)Yu (r)dr||
T=T =T z

+max| [8(z 742)Qu (r)B(r)u (r)dr|

< o maxlu @),

This can only be true if
v(z)=0.

We use similar arguments to establish the formula for the particular solution.
Let N be the Banach space of bounded B-volued functions which tend to zero at

infinity. We define P(w(z)) by:

Plw(z)) = [S(zriA)Qu(r)(B(r)w(r)+f (r))dr

- fS(x T AN = Qu(r N(B(r)w(r) +f (r))dr

T

— wl(2)+ [ S(zriAe) @B (YW (r)dr

~ [S(z ri4)(J = Qu(r V) B(r)w (r)dr.

P4
The function P(w) € N whenever w(z) is. The operator P satisfies:

RK&

1Py - Pwl|< 2

llw =2 ],

Hence, P is a contraction mapping and a unique fixed point, uy(z), exists.

Differentiating (5.4c) yields that u, is a solution of (5.2). This completes the
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proof.

Equation (5.4) can be used to calculate iterative approximations to @(1)

and up(z). For example, consider the following scheme based on (5.4a):

g) Y3(z)=5(z.TA) Q= (T);

b) YT*(z)=5(z,md=)@u () + fzS(-’z 7Ax)@a(T)B(r) YT (r)dr (5.9)

- [S(z7iA)(J = Qu(r))B(r) Y (r)dr.

z

By the contraction properties of the operator, 0, Y7 converges to Y, and the

error at the nth iterate is given by

max||V3(z) - 71 (=)= &

1
1 — |
T —max| ¥} (z) - R} (=)]

——ymax|[ Y] (z)]l

where

_ BKs '
6=="= (5.11)
In particular, (5.10) applies to our nth approximation to @(7),
qr(m) = YT () .
(5.12)
1Q(m) — g™ (7)< lmdmaxI!Y‘{ (=)= X
-0 z>7 1—6

Using (5.4c) in an analagous fashion to approximate u,(z), we find that A(7), the

term appearing in the error estimates, (1.33) and (1.34), satisfies:

la(n) = 0(5*), 6-0. (5.13)
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Using the spectral representations of section 2, approximations to the
iterates defined by equation (5.9) can be calculated. For example, assume that

A, is constant and separable and that B(z) is given by:

B (@) < e
Further assume that the limiting equation,

gv

- =AU, T T < o0} (6.14)

has an exponential dichotomy. Then, if the spectral representation associated
with A« is given by definition (2.1), we define matrix elements, By, of the opera-

tor B, in the following way:

Byu = 2 (ZanCn)um:

(5.15)
e, = (vp,u).

Note that the boundedness of 5, implies the boundedness of its matrix ele-
ments. Using (2.18) and {2.33), we begin the iteration described in (5.9). The

first term is given by:

T
Yi(z)u= Y g ® —T)cnun + Y Y BpnCrlin fex"‘(z “Tghalr —T);l)—dp
n m n T

Uy, €BT Uy €EBu, EBT
= T T Buntatm [T g, (5.16)
n z

m
¥y, €BY u, €B”

en = (unu).
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Using integration by parts, the integrals can be approximated to yield:

Yi(z)u= Z e)‘n(z —T)cn'u'n(l +E7m1°g'§‘)

m
U, €B”

By Caiy [ 7 oMmle 7

+
% 2 )\n "")\m

p - (5.17)

Brpn Cpp, ¢ (z =) 1
+ . +0(=);
§ 2 Ar = Am T (72)

Note that although the correction to the diagonal term, B,,log (-f_—). is large com-

pared to one for large z, it gives a O —17_—) correction in the maximum norm;

Ap(z —'r)l E_
max| ™" Tlog ()

Higher order corrections could be calculated in the same manner. Note that the

( -=-) correction requires both the next approximations to the integrals in

(5.16) and first order approximations to Y;{z). Formula (5.17) assumes that
the A, are distinct. If not, more logarithm terms are introduced. From (5.17)

we obtain the following approximation to @(1):

Qu= T opup+ DY "‘“c"””‘w\;z—):

k13 n )\ —h
u, eB” umEB"'un eB”
(5.18)
Cp =(upu).
Similarly, we approximate u,(z). Let f (z) be given by:
1 ., 1
Flzy==fl+ —=F%+ ,
v (x) f 22
(5.19)
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(This_ J does not satisfy the integrability conditions previously required.
Nonetheless, the results of theorem (5.4) still hold.) The first approximation to

Uy is given by:

z
- o)1
wiz)= ¥ ciu, fe™" P)p—dp
T

n
u, €B”
(5.20)
- ¥ chupn, fe""‘(z =) -l—dp,
m z p
u,, €B*
Integration by parts yields:
i (z-7)
] = . C;L‘un { e}‘n —_— .l.
u (=) %; A T x)
u, €B”
(5.21)

C Uy, 1
- % oz +0('13)-

m
uy, Bt

We can now combine (5.18) and (5.21) in an approximation of the boundary con-
dition (1.1R¢). The error term, A(7), appearing in (1.33) and (1.34) is 0(-’%2—-). We

note that more terms in the expansion could easily be calculated. Furthermore,
the expansions of B(z) and f (z) need only be asymptotic and could be of a
different form. In the latter case, of course, the formulas above would be

altered.

We now extend these methods to problems whose limit at infinity does not
possess an exponential dichotomy, but has, instead, an ordinary dichotomy. We

consider

o %ZAw(z)u +B(z)e +f(z), T< x < =;

(5.22)
b) limB.,u(z)=0;
z
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where f (z) is absolutely integrable and Lipschitz continuous. We assume that

the unperturbed, homogeneous problem:

dv _ .
a) pp =A(z)V, T< Z < o}

(5.23)
b) lim Bev (z)=0;

has an ordinary dichotomy with @.(z) the projector for a space of initial data
which can be propagated forward. We further assume that solutions, v, of

(5.23a) satisfying (5.23b) must also satisfy:
(I-@Q.(m)v(T)=0. (5.24)

That is, €. is a projection operator for the admissible space. We note that we
are now assuming that the boundary condition at infinity is compatible with the
unperturbed operator. For a characterization of this compatibility condition
for separable problems, the reader is referred to section 2. We replace the con-

dition on the perturbation, (5.3b), with:
S1B(z)]d=z < = (5.25)
.

We now prove an analogue of Theorem (5.3).

Theorem 5.26

Suppose that A.(z) has an ordinary dichotomy as given in definition (1.18) with
constant, K. Suppose further that the space, B7(z), is also the admissible space

for (5.23) and has projection operator @.(z). If £ defined by (5.25) satisfies:
6= 2Ke< 1; (5.28)

then the projector, @(7), for the admissible space of problem (5.22) and a par-

ticular solution are given by (5.4).



- B8 -

Proof:

Deﬁr;irig the operator, 0, as in the proof of Theorem 5.3, the same contraction
estimates can be obtained by use of (5.28). The solution of the integral equation
(5.4a) is now an operator solution of the homogeneous part of {5.22) by applica-
tion of Duhamel’s formula. All that remains is to show that (5.22b) is satisfied.

We note that

Im||BeS{z 7:14Ax) 0= (T)]|=0, 1< 7, 7 fized.
T :
Hence, we have the following for any z, > T

lim||B.. ¥,(z)l|= ;grg{uﬂ.,sm 42) Qo ()]

+ max THB,,S(:; TihAx) Qo (7')1182133(” Y (z)]]

TS 2,5

+2||B.||Kmax] V()] f 1|B<x>ndz}

]

=2||B.[Kmaxl|Yy(2)l| f 1 B(z)lldz.

Choosing z, sufficiently large, we can make the remaining integral arbitrarily
small, leading to the desired result, that the limit is zero. The same arguments
can be applied to establish the expression for the particular solution. Finally,
we show that the range of Q(7) contains thé entire admissible space. Suppbse

that w (z) is a solution of the homogeneous part of (5.22) which also satisfies:
(I-@(Mw(7)=w(n).

Define p(z) by:

plz)=w(z)+ [S(z.r4)Qu(r)B(r)w(r)dr — [ S(z.mA.)J = Qu(r))B(r)w(r)dr.



-B7 -

Then, p is a solution of {5.23). Using the no-mixing properties of the dichotomy

and the fact that

(I=Qu(TN(I-Q()={-Q(7)
we have:

0=(I =@~ (1)p(7)
=p(7) =p(z);
which implies:

max|tw (z)[|< émaxfw(z)]]:

yielding

w(z)=0.

This completes the proof.

This theorem justifies the use of the iteration scheme, (5.9), for the calcula-
tion of approximate boundary conditions in the case when the limiting equation

has an ordinary dichotomy. The error estimate, (5.13), is unchanged. The
integrability requirement for the perturbation, (5.25), prohibits O(i—) terms of

the type analyzed in the dichotomous case. If this requirement is met, however,
it is always possible to choose T sufficiently large that the contraction inequality,
(5.28), holds true. To illustrate the result, we assume that the operator A. is

constant and separable and that the perturbation is of the form:

We further assume B, to have the matrix representation, (5.15). Now A. has
eigenvalues with positive, negative and zero real part. Let the spaces B*, B™ and

B? be defined as in (R.9) and (2.10). The projection operator, @.(7)., for the
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admissible space is given by (2.17) and (2.18). Incorporating all of this into

equation (5.9) yields the following O( %?) correction:

_ Ay
YHzyu= 3 ™ 0w+ T o™ ”kz (@) ot
n [3 n =1

u, €8 u, €Bf
AL o o AEz-n, 1 1 ¢
+ T T T L @) Bem (@) miliune (=== (527)
i n m Lb=ll=1 T pos
Uy, € Bluy, €BY
< o Az -7
DI IEDY (7 = @) rie Bem { @) muC10m e T
i n m k=ll=1
Uy, € Bt €Bf

The projector @(7) becomes:

Q(Nu= 3} Cnunz > kél( i Cic U

n

Uy € B vy €B)
1 o Ty
t Yy Y Y (=@ Bem (@) miCitUn
A n m k=1l=1
Uy, € Biupy, € B/
(5.28)
1
+ O( =),
=

Cp = (U ).

The universality of the forms of the expansions given above makes their
automatic implementation a practical possibility. We also note that there are
many circumstances not discussed above when formula {5.4) is valid. Later in
the section we analyze such a problem, the Helmholtz equaticn exterior to a
finite, two-dimensional body.

Applications
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Speciﬁc applications of these results include those problems whose "limit"”
at infinity is one of the difierential equations discussed in section 3. For ordi-
nary differential equations, the general problem of finding asymptotic expan-
sions on semi-infinite intervals is addressed by Wasow [39]. Jepson and Keller
[30] find expansions of the projection operator, §(7). In the finite dimensional
case, our expression reduces to theirs.

Another application is to elliptic partial differential equations in cylindrical
domains. For example, replace the function a(y) in problem (3.3) by a(z.y)

satisfying:
Bz~ @)+ Targ+ e, z>> 1

Then, if the cross-sectional eigenvalue problem
a) -V g-aa(g)Yn = 0 Ypi
b) (Yn'ym)zg(m =0pm;
c) {Y,} complete in L3(Q);

has only positive eigenvalues, the limiting problem possesses an exponential
dichotomy and the formulas above can be applied. In particular, the first

correction to @(7), given by equation (5.18), becomes:

u(ry)|_ & [~V
Q(7) 'ZL(T.’@ "nz::lcn[ 1 an(g)
(5.29)
1l & & BrnCn, '\/—&;;
—?mglngi\/&;"i'\/&;( 1 ]Ym(g)’
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Here the coeflicients are given by:

Cn = Qf u (1Y) Yo (Y dy;
(5.30)

B = —hfa ) Y3 () Yo (y)dy.

Note that the numerical implementation of the new conditions adds no new non-
zero elements to the Laplace matrix; the correction term affects only the bot-

tom right-hand block which was filled by the first order approximation.

The theory can be at least formally applied to the time dependent problems
of section 4. In particular, we apply it to a perturbed version of the transformed
problem, (4.42), for fixed complex number s in an appropriate right half-plane.
The applicability of the results depends, of course, on the behaviour of the error
terms as functions of s. As the upcoming discussion of hyperbolic problems will

show, we can not expect the expansions to be uniformly valid in time.

We begin with an analysis of the following hyperbolic system:

ag@_[A* 0 }6@ 1[M1 b

_—= —— : [ 1
il IS vt s PP A A (5.31)
where
A*=diag NSNS, AL AT=dieg AT AZL - Aok +p =ng Af > 0, distinct.
For simplicity, we take
]
[ro
lim|y ou=.)=0
(5.32)
wWx,0)=0

Problem (5.31) is similar to problem (4.1%); the difference is that the coupling
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between the incoming and outgoing variables decays, in this case, as =z
approaches infinity, while in (4.12) it did not. Hence, we expect the absorbing

boundary condition,

wWTt)=0 (5.33)

I0
00

to be a first approximation to the exact condition. Letting {z.s) denote the
temporal Laplace transform of u(x ,t), we have, by (4.3):

dif _ sAY 0 | q|MY BF|

dz | 0 —sA %" T lme pf¥

(5.34)
lim(z,s)=0.
Tt

where s is taken to be a complex number with positive real part. The limiting
problem at infinity is given by:

e [sA* 0 ]A
_|Z

= -lo =sa (5.35)

The constant tail problem, (5.35), clearly has an exponential dichotomy, with

@(T,s ), the projector for the space of initial data of given by:

Q(rs)= [8 ?.] (5.36)

This yields a first order approximaticn to the boundary condition at £ =7 which

is given by the absorbing condition above. The first correction to tQ\’T.S), given by
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(5.18), is:
- 00 110 M?]
Ams)=lo 7f* 5710 o
(5.37)
M2
M.z v —-——_ﬂ.—-——;
M2y AS A
where the error is O( 821 = ). The approximate boundary condition in time is:

t
Ue(Tt) = -};f M3y (1p)dp; {5.38)
4]

where %, is the k-vector of the first ¥ components of v and % is the p-vector of
the last p. We note the similarity of condition (5.38) and condition (4.35).

Higher order approximations te (5.38) have the form:

t
w(rt)= ¥ T Culrp)(t -p) “idp; (5.39)

) in terms of the Laplace

where (; is a £ Xxp matrix. The error is O(W

variable,

From the form of the error, we see that our expansions in transform space

are valid only for s7 sufficiently small. Hence, we expect the boundary condi-

tions, (5.39), to be valid for 7 large and ¢ small; that is é—smau. Suppose our

error in transform space were proportional to Then, in real space we

1
(s’
would have:

£9 -1

-2
i

[@(7.2) = Gop. (T.E)]] (5.40)

That is, our approximation degrades in time. An heuristic approach to this
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problem would be to take time derivatives of the boundary condition, as such
derivatives decrease the power in time with which the error grows. For equation

(5.38) this yields:

8 Lo (.
W.F(T,t)— TMO'LL.(:,Z'). (54‘1)

We discuss this possibility later on.

A problem of physical interest which can be put in the form (5.34) is the
two-dimensional wave equation exterior to a finite body. The tail problem, writ-
ten in cylindrical éoordinates, is:

Pp 108 1 2P0 _ 2P -
67‘2+7'3T+7~2 pycllvR T<T <o, £>0,0[0,27m);

(5.42)
@(r,0,6)=0; p periodic in 6, ¢ outgoing of infinity.
Note that (5.42) satisfies assumption (4.44). Then if ¢, (7 .f) is defined by:
1 2n I . o
- sinn
¥, Satisfies:
az¢n 1 0¢r n? 625"7&
o Ty oy T EPnT e TIT< = >0
(5.43)
¢n(r.0)=0, ¢, outgoing at infinity.
If we make the change of variables:
Up,
Wn =T
e 2
(5.44)
0 0
U, =T n +7 i +wy,;
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equation (5.43) becomes

4n? -1
O Pl .-
_a_vn=[1 0)afun), 1| £ [
or{wn| |0 —1ljat|\wn| 1 =1 Jjw,|
limw,(r,t)=0; (5.45)

T =

v (7,0) =w, (r,0)=0.

Using formula (5.38), our first two approximations to the boundary condition

are:

a) v (rt)=0;
(5.48)
1—4n?
b) vn(Tt) = -l; (-—-gp-—)wn(?-p)dp'
0
Transforming back to the original variables these become:
Oy
a) ——(m (T + 2pa(Tt) =0;
(5.47)
By —an? |
b) T t)+ (-rt)+——¢n(ft>— Sz #n(TP)dp.
0

Equation (5.47b) can be replaced by its time-differentiated version:

) 8P pn 82pn 1 6‘;971..,,_* (4n?—1) _
b) 37 B (T.t) + PvE: (‘r,t)+27 T () + oz en(T,t) =0.

It is not necessary to make the transformation (5.44) in order to derive (5.47).

We did so to illustrate the general results.

Problem {5.42) has been considered by other authors. Engquist and Majda

[15,p.837] derive a hierarchy of absorbing boundary conditions. The first two on
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their list are:

8 9 1 _
a) (67' + o7 + BT)fp(‘r,t,e)-D.
(5.48)
8% 88 1 8 1 8° 1 9
b + - + = +
) (aratz 6t3 27° 8teek  RT 8t?  27° 868

Yo (1.t,6)=0.

Bayliss and Turkel [4] also treat (5.48). Their conditions are based on the fol-

lowing expansion of outgeing solutions:

=, fi{t =7.6)
p(r.t,6)~ —_— T >> 1. (5.49)

They suggest a sequence of boundary conditions based on the term-by-term
annihilation of the expansion (5.49). In particular, their first two conditions

are.

0 0 1
e) (o—+ o+ 5—;)rp(’r,t,e)=0.

d8r Ot
(5.50)
&5 8 5.8 8 1 _
) (5t ar T e ot ar T o ¥t 0 =0.

The connection between the Bayliss-Turkel conditions, (5.50), and ours can be
developed in the following way. An asymptotic expansion of the Laplace
transform of ¢,(r,t) is given by:

> = T _o-rs Z..?’_:_];_ e 1
e {r.s) — §1+ — I, rs>> 1.

This is simply the expansion of the modified Bessel function of order n, K,(rs),
which is the solution of the transform of equation (5.42) which decays as 7
approaches infinity. A projection condition, such as we use, must relate the r-
derivative of the solution with the solution itself. In fact, the relation derived by

differentiating the expansion above leads to our condition. Note, however, that
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the expansion can also be annihilated term-by-term by the operators:

P O 4k -3
B,= H(ar +s = ).
Inversion of these leads to the Bayliss-Turkel hierarchy. We note that their con-

ditions are local. This is possible because the form of the expansion of K, is

independent of n. Our conditions, (5.47), could also be made local by replacing

2
n? b -5%—2—. In general, this step is impossible. Localization can only be

achieved by use of pseudodifferential operator expansions as suggested by
Engquist and Majda [15]; a procedure which can introduce smooth, but not

small, errors.

We now compare the various conditions. Note that all of the first approxi-
mations are the same. This is simply the absorbing condition for a purely
cylindrical wave. Note that the second absorbing condition, (5.4Bb), is just the
second time derivative of (5.4Ba) in the absence of angular dependence. We
recall that an outgoing sclution of (5.42), which is independent of angle, is given
by:

0O t<7r
p(r.t)= ; (5.51)

1
(tz_TZ)"z— t>r

Tabulated below are the residuals which are left after applying the various
approximate boundary conditions to the exact solution, (5.51). We assume that

t > r and let
w=t -7,

In the left-hand column we give the equation number of the condition to which

the rest of the row refers. We present both the maximum error for w > 0 and



-97 -

. w
an expansion of the error for - small.

Table (5.52)

|Condition | Residual: w/4 Small | Maximum Residual |

[sara) | Y7 <
e 267
. 3
| (5.a7b) | aﬁ)‘: ’ |
43@ ¢
(amy| WA 0%
qr?ls r3
} |
(5.48D) | ——= g | —— |
(B W
3/.
| (550b) | S N

€S c2 ool 3

We note the change in the 7 dependence of the residual for (5.50b), the Bayliss-

Turkel condition, as w goes from being O(1) to O(r). From the form of (5.49),

8.
we would expect the O(1/ %) estimate to be valid for all time. The degradation

is a manifestation of the non-uniformity in time of the expansion, as suggested
by the form of the expansion in the Laplace variable. This loss of accuracy has

not been noted in the literature. Similar considerations also hold for conditions
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(5.47_;1_.1?.b'). We note that our differentiated condition, (5.47b’), appears to have
superior error characteristics to {5.47b). However, the residual can be a
misleading measure of the accuracy of a condition. From the results of section
1. we know that it is the subspaces into which boundary data is projected that is
important. Hence, for example, the Engquist-Majda condition, (5.48b), can not

be better than (5.47a), though their residuals are much different. Consider the

following ordinary differential equation.

d?u 1 du 1
L ——— - oo
122z ——duxz 0, 1< 2< o=;

limu({z)=0; «(1)=1.

T+
Its solution is:
_ 1
u ==,
x
Let the following hierarchy of boundary conditions be applied at = =T; note the
decay of the residual resulting from their application to the exact solution.
1) w(1)=0;, Residual =47}

i) %%(7) =0: Residual = —77%:

“u (1) =0, Residual = 2775,

i1
) dzx?

The solutions to these approximate problems are, respectively:

1 z
i) -
x(l__?@g__) -1
i) 1 + —=
m(l—!-i:z—) THL
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Note _there is little difference between the firgt and the second and that the

third, coming from the condition with the smallest residual, is completely wrong.

Our last topic in this section is that of radiation boundary conditions for
the Helmholtz equation exterior to a finite, twe-dimensional body. The relevant

problem in the tail, written in cylindrical coordinates, is:

Pu 10w 1 %

ar®e T or R geR

+E%u = f (r,06);

(5.53)
T< < =, €[0,27);
We impose the boundary conditions:
) u periodic in 6,
(5.54)

. ou | .
—+iku)=0,
b) ll_{]’i 7 ( P e )
and also require:

1
r2f (r,6) absolutely integrable.

Using {5.54a), we immediately reduce (5.53):to an infinite system of ordinary

differential equations by introducing:

7
1
co(r) = -é-;{%(r,e)de,

™
cn(r) _ 1 cosng .
dp(r)~ n{u(r,a} sinne?® ™ =1 '
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The problem for the expansion coefficients ¢, (and d,) is:

d®c, 1dc, n?
L T L%, = .
a) o + P 3 Cn +kFc,=f(r), T< 7 < w;

(5.55)
. de, . _
b) }1_{&7'( = +ike,) =0.
We rewrite (5.55) in first order form:
de,
d
w, = C:
dw, |0 —k® 11710 1 |0 nf In
o Sl1 o [¥t o Owﬂ+:§'D 0 [wWat g (5.56)

li1 ik
Lm7?|; . lw, =0,

Toew

Note that (5.56) does not fit the specifications of the various perturbation
theorems we have stated. In the first place, the boundary condition at infinity
depends on 7, although this causes only a slight modification to the theory of
section 1. Secondly, the limiting problem has an ordinary dichotomy, but the
first perturbation term is not integrable. Hence, if we are to apply any of the
preceeding theorems, it is necessary to try to include the {14 ) term in the lead-

ing order operator, We therefore seek an asymptotic solution of the form:

. X
o |xtk+ —
,wyf: = Qg kT 1 r

The function w,f satisfies the differential equation:

.2_0_{_ -2 Kaz_'*‘_al ]
v 2
r

r
=14 0 wi . (5.57)

+

dw,;
dr
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As we are trying to match (5.56), we choose a= -%—l- We take (5.57) to be our lim-
iting equation. From (5.56) the perturbation is:
—An R —
0 4nc—1
1 4 /
;"_2— O D . \5-58)

The solution of the limiting problem, (5.57), which satisfies the boundary condi-
tion at infinity, (5.55b), is w,; (). Hence, the first approximation to the projec-

tor into the admissible space, A(r), is given by:

-k - = -—Icg-—-—lé—
i _T 4T
Qu(r) = = e (559)
1 —ik + =
- 8r

We now apply the ideas of the first part of the section. We note that our new lim-

iting problem does not possess a dichotomy. The operator

S(rpida)I=Qu(p), p=7>m

1
has a norm which increases like p ? as p increases. However, the perturbation,

B(r). is O(=5), so that the combination
T

S(rp;A)I—Q-(p))B(p)

is integrable. This allows us to apply our contraction argument for 7 sufficiently

large. The first approximation to the boundary condition is given by:

de, 1
o (ik + =)o, =
3+ oo)en

(5.60)
L
2

[t P ,i(r-p) Sk 4+ e Y -
'{r % ,r%" Fral@ ) 5 Zp) P
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Note that the integral exists by the assumption made on the integrability of f.
We can now apply the iteration scheme, (5.9), to approximate the solutions of

(5.4). For example, the next approximation to @(7) is:

o1 e 1 i 4’n —-1 _ 2(471
o —ik oy k . . (1 =il Y{(———) (—ik —k°)( pye )
TS — -—
Rk . 1 4kR 1-—4-'n 1 - 471
1 ik + = _— —
2T 47 ~tk( )

When f is zero, the formula above leads to the following approximation to the

boundary condition:

de, | . Cn 1 —4n? _

o O+ 5+ >~ ¢, =0. (5.61)
Bayliss, Gunzburger and Turkel [3] develop a hierarchy of boundary condi-

tions from problem (5.53-54). There approach is much the same as the one

used by Bayliss and Turkel [4] in their analysis of the wave equation. They note

the asymptotic expansion of the outgoing solutions;

wiro)~ Etra(e+ L8, (5.62)

7'2

This can be annihilated term-by-term by the operators:

.8 . (4a1-3),,
-aI;[X(ar+zk- o Y: (5.83)

which are their suggested boundary operators. A comparison of these condi-
tions and ours is similar to the comparison made in the case of the wave equa-
tion. As before, the locality of their conditions is due to the special nature of

the problem, and could be extended to our conditions by the replacement.:
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Formula (5.83) can be derived from a separation of variables solution and is
based on the asymptotic expansion of the cylindrical Hankel functions. QOur
method can be derived by using this expansion to relate the solution and its r

derivative; theirs comes from annihilating the expansion term-by-term.

Another work which develops boundary conditions for the exterior
Helmholtz equation is that of Guderley [21]. His conditions are based on an
application of Green’s theorem in the tail. In fact, he works in three dimensions,
but his methods are easily specialized to two. Let I' be the artificial boundary

and w~ an outgoing solution. Then, any outgoing solution, ., must satisfy:

dw ™ ou _
‘I[( on on )ds =0.

In the special case that I' is a circle, this condition is formally equivalent to

ours.

Finally, Fix and Marin [17] look at the Helmholtz problem in three dimen-
sions with axial symmetry. Their method is based on asymptotic expansions of

proper solutions at infinity. For their problem, our conditions reduce to theirs.
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6. Applications to Nonlinear Problems

In this section we extend our theory to include some nonlinear problems. A
general account of the stability theory of nonlinear differential equations in a
Banach space can be found in Daletskiy and Krein [12,Ch. 7]. They restrict
themselves, however, to the case of bounded linearized operators. Halilov [24]
removes the boundedness restriction, but requires a well-posed linearized Cau-
chy problem. Domslak [13,14] examines the connection between the solvability
of inhomogeneous problems associated with well-posed homogeneous Cauchy
problems and the existence of dichotomies. He goes on to apply this to non-
linear problems. | It is the assumption of well-posedness which we wish to

remove,

Perturbation Theory for Nonlinear Problems

The problem we shall consider is:

du _ -
a) iz =F(u), T< z <,

b) limu(z)=uUe; (6.1}

Trw

c) Flu,)=0;

where u{z) is an element of some Banach space, B, and 7 is a nonlinear opera-

tor with domain and range in B. Letting v =« —u., we rewrite (6.1):

a) -3—:—=F’,,(u.,,)u +FR(v), T< z;

) Rv)= Flue+v) —F,(u,)(u,)v.

We generalize the notion of the admissible space to be applicable to problem

(6.2).
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Definition (6.3)
The set A(7)C B, the admissible set at z =7, is the set of all v, €B such that

there exists a solution to {8.2) satisfying:
v{1) =,. (6.3)

The set A(7) is no longer a subspace of B. We do not, in general, expect to be
able to characterize it by a projection type operator. However, if |lv] is
sufficiently small, {8.2d) implies ihat (6.2a) is nearly linear. We treat this case
with the perturbation theory of the preceding section, finding useful representa-
tions of the intersection of A(7) with neighborhoods of the origin in B. Note that
by (6.2b), all solutions of (8.2) are eventually arbitrarily small and must, hence,

satisfy the conditions we derive.

We make two additional assumptions. The first is that the operator F,(u,,)

is such that the linearized problem in the tail,

dw _ -
= =F,(ux)w, T< < =, | (6.4)

has an exponential dichotomy. We denote the projector into B_(z) by @.(z). We
also assume that there exists 7, > 0 so that, if v, and vy are elements of B with
norm less than or equal to y, we have, for some monotone increasing real-

valued function c¢:

a) [[R(v)ll < o (Dl
) 1B () = R(wll < c (7)1 —vell

(6.5)
¢) e(y)-0, 7-0;

d) y=max (|[v,|lvall).

Problems which satisfy this assumption are sometimes referred to as
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quasilinear.
We now state the basic theorem.
Theorem 6.6

Given the assumptions made above, there exists 6> 0 and idempotent, nonlinear

operator @(7) such that any v (z) satisfying (6.2a) and

2) [w(nl<é
(6.8)
6) maxl ()] < 6°(6);
satisfies (6.2b) if and only if:
(=@M (n=0. (6.7)

(The constant ¢° will be defined in the proof. It satisfies 6= 0(6).) Further-

more, &(7) is given by the solution of the following integral equation:

a) Yi(z) =S(x.'ﬂfu(uw))Q»(‘r)+fS(2 T Fu(Ue)) @u (T)R(T) Yy (r)dr

= [ S(z i F(ua))(I = @u(r ) R(r) Y, (7 )dr. (6.8)

T

b) @(7) =Y (7).

Proof:
For any ¢ > 0, define M, as a Banach space of bounded operators on the subset

of elements of B with norm less than or equél to ¢. For Y €M, ||Y]| is defined by:

1Yl = sup lI¥2]
pli=e

Let ¥ be the Banach space of M,~valued functions on [7,=) with the norm:

¥ = supllY (@),
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Define the operator O by:

OY(z)=S(z. 7.Fy(u.))@u (1) + f.S'(:z: T Fu (o)) B (PYR(T)Y(r)dr

= [ Sz riFua))I = Qu(r))R(r) Y(r)dr.

By (6.5) and the dichotomy inequalities (1.16-18), we have the following:

i
1Yz )= 6°, 6°< 7,
then
a) I0Yy]l,= Ko+ %&(5‘)5'; |
(6.9)
b) 0(¥: - Yo)llp= EXe (671171 - Vel
Choose ¢ by:

(1- e (o) .

®= max
0<6'57° K

We note that this maximum must be attained for positive §° which also satisfies:
gaic(d‘) < 1.

Hence, for this pair of ¢ and §°, (6.9) implies that O maps elements of M, with
norm less than or equal to ¢* to other elements whose norm satisfies the same
inequality and is a contraction mapping for this closed subset. This further
implies the existence of a unique fixed point, Y {z)cC Mq,', with norm less than or

equal to 6°. By the definition of O, ¥, satisfies (6.Ba) and is an operator solution
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of (6.2_a). Application of lemma (5.4) yields:
1Y1(z)|l< 6°e~FE=-7, g> 0.
That is, if v (z) is given by:
v(z) =Yy (z)v,;
(6.10)

lwoll= o

then v is an exponentially decaying solution of (6.2a,b). Furthermore, for all
v, €B with |jv,||< ¢ and ||@(7)v,]|< ¢, the arguments used in the proof of

Theorem (5.3) can be applied to yield:
QIT)Q(T)u, = @(T)vs.

From the fixed point equation we have, again for any v, with norm less than or
equal to ¢,

Klwoll__
_RK (8)

]l ==
o

(v ll=

Hence, with domain taken as the set of all v, satisfying:

a) [lwll< &
(6.11)

(1-2£c6my)
aK "

b) 6=

the operator @(7) is idempotent. We have now shown that if v, satisfies (6.11a)

and
Q(T)ve =, (5.1%)

then there exists an exponentially decaying solution of (6.2) with initial value v,
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and having norm which is always less than or equal 6°.

Now suppose that w(z) is any solution of (6.2) with llhw(z)]|< 6 and

[lw{m] < 6. Let w’(x) be the solution satisfying:
w*(7) = @(T)w (7).

Let p(z) and p"(z) be defined by using w(z) and w *(z), respectively, in:

o 2w @) + [ Sz iFy(wa)) I - Qulr DR wr)dr

- ]:S(x T iy (Uw)) @ (T )R (T Yw (N (r)dr.

Using Duhamel’s formula and the differential equation satisfied by w(*) they are
both decaying solutions of the linearized problem as, therefore, is their

difference. This implies:

0 =(J = @u(T))(p(T) =0 (7))

=7 = @=(M(w () —w’(7)

oo

+ [ SrriFu))T = Qu(r))(Bw — Fw)dr.

By definition,
w () —w*(r) = (7 = Qw7
and we also have:
(I = QM = Q) = (/- @()).

This yields:

0=(w(n)—w M+ [ S(rriFu(u)){I - Qulr))(Rw — Rw )dr.
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Since the expression above is simply equal to p(7) —p°(7) and solutions to the

linear problem are unique we have:
0=p(z)—p"(x)

=(w(z)-w'(z)) - [S(zrFu))@u(r)(Fw — Rw)dr

L]

¥ [ Sz riFuwa)) - Qu(r))(Rw - Fw )dr.

z

From (6.5b) we derive the estimate:

@) -w'(z)ll= ZEEL max oo (z) (2]

Since EK‘; ) . the factor on the right-hand side, is less than one, this implies:

wiz)=w(z);

completing the proof.

This theorem justifies the use of an iteration scheme analagous to (5.9) for
the nonlinear problem; where B is replaced by X. The error estimates now come

in powers of g which is defined by:
a=%ff—c(a’). (6.13)

We note that the expression for the boundary condition, (6.7), given above holds
only for v sufliciently small. Translated to the original problem, we require the
solution, «, to be close to its asymptotic value, ©.. Hence, in practical compu-
tations, we must choose 7 large enough that this is true. Furthermore, since ¢
decreases with ¢°, the error in our approximations also decreases as u

approaches ©.. These considerations will be viewed more concretely when we do
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some specific examples, We also note that the theorem above reduces to one
very similar to that of Halilov [24] in the case of a well-posed linearized Cauchy

problem.

We now use the spectral representations of section 2 in conjunction with
the perturbation theory developed above. We assume that (6.4) has an exponen-
tial dichotomy and that 7, (u.) is separable and has a spectral representation

given by definition (2.1). We also assume that R can be written in the form:
R~ A +4vvu + - - - |lv]lg< 1.
In terms of the eigenfunction expansion this yields:

Ry =Zum(22a¢’?cjci +Zzgﬁ{ﬁec€cjck
j i J

m 7
+on)s (6.14)

cp = (upv).
Equation (6.14) indicates that ¢(y) appearing in (8.5) is linear in ¥ with a con-

stant depending on the ceoefficients oF. Applying (5.9), our first approximation

to ¥Yy(z) is:

z
Yigw= 3 ™, + Y afeicsun [l P e
'"’ T

mi.J
u“EB_ umlinEB_
- Y Y afociun [T N e gy (6.15)
m .7 z
Uy, €BYyy ;€ BT
cn = (vp ).

We have only used the first term in (8.14) since the :form of the expansion indi-
cates an error of O(|w|?). The next approximation should include both the

second iterate defined in (5.9) and the contribution of the second term in (8.14)
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to the first iterate. The integrals can be done exactly. The final expression for

the opérator @(7) which appears in the boundary condition at Tis:

m
aij C,',Cj

A=Y cnun- T
Uy EBT umEB+WJEF
(6.16)
an(vnvu)'

Again, the form of the expansion suggests an error on the order of the cube of
the norm of v. From the discussion of linear problems with periodic opearators
which appears at the end of section 2, we note that our method could be

applied to nonlinear problems with periodic solutions at infinity.

We apply the results above to nonlinear elliptic equations in cylindrical

domains. Specifically, we consider:
0) Ugp +V ?u ta(yu=r{uy). @y clrne)xn;
b) limu(z.y) =ua(y) (6.17)
c) Bou =0, y€dQ.

We require that:

Vire +o(YPte =1 (usy), Y<Q;
) (6.18)
Bpu. =0, y€al.



-113 -

Finally, we assume that the cross-sectional eigenvalue problem:
H') -V EYn -i(y)yn =0p Yns
b) (Ynnym)Lgm) = Onm;
(6.19)
c) {Y,} complete in L3(Q);

d) d(y)=a(y) —f.(u-{y).y):

has only positive eigenvalues. Thén, by the results of section 3, the linearized
problem has an exponential dichotomy and the formulas above can be applied.

The first correction to @{7), given by (8.18), is:

- e
(v = 3] Cn[ 1 " Yn(%’)
n=1
(6.20)
SRR o5'CiCy \/&Z]
- Ym(y)-
m?iugugl Vo + o+ | L TR
The coefficients are given by:
Cn = _(,If u (1Y) Ya(y)dy
(8.21)

@ = 5[ wuue YR G Ta(y).

Note that the implementation of these conditions in a numerical computation
using Newton's method does not lead to any more nonzero elements in the
Laplace matrix than the linear conditions did. The general form of the expan-
sion makes its automatic computation possible. The main limitaticn is the
increasing cost of evaluating the additions to the Jacobian which result when
higher order approximations are used. An existence theory in the tail for two-

dimensional nonlinear elliptic problems is developed in appendix A. Estimates
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of the constants appearing in the constraints on v, (8.8), are made.

The remainder of the section is devoted to the application of the theory
presented above to the numerical solution of the Bratu problem in a semi-

infinite, two-dimensional stepped channel. Specifically we consider:
~Ugy — Uy, =A™, (8.22)
on a variety of domains of the type shown below:

v<[0,1], z> 0;

yela,l], -8<z< 0

W-g

Azo

The boundary conditions are as shown in the drawing. The tail is always taken

to have width one. At infinity we require:

a) limu(z.y)=ua(y)

b) =-\e ~; (8.23)
€) Uo(0)=u.(1)=0.

This problem is clearly one of the form discussed above.
Before proceeding to the numerical results, we discuss the theory of the
Bratu problem in further detail. We note that the nonlinearity is of positive,

monotone type. Problems of the form:
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~Iu =Af (u) (8.24)

on a finite domain with L a second order uniformly elliptic operator and f a
positive, monotone function of © are extensively discussed by Cohen and Keller
[9]. They mention various applications to equilibrium problems in the theory of
nonlinear heat generation. Cohen and Keller present results on the existence of .
positive solutions on finite domains. We state, without proof, two of their
theorems.

Theorem 6.24 {(Cohen and Keller [2])

Suppose a positi\}e solution of (6.24) exists for some positive A, on a finite

domain, {1, and satisfies the Dirichlet boundary conditions:
u =0, gof}.

Then a positive solution on (2, satisfying the Dirichlet conditions, exists for all
O< A< A,

Theorem 6.25 (Cohen and Keller [9])

A positive solution to (8.24) exists on the finite domain Q satisfying Dirichlet
boundary conditions on 80 if and only if the sequence {u,{A;z)] defined below

converges,

U, =0
Ly, 1 =M (un), 2€Q; (8.25)

Up1=0; g€0Q.

When it converges, it converges to the minimal positive solution.

In particular, the theorems presented above apply to the one dimensional
problem for the asymptotic state, (6.23b). In fact, (6.23b) can be solved analyti-

cally. For A< A;, A, =3.51 -+ -, two positive solutions exist, while for A> A, there
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are none. It can also be shown that the linearized eigenvalue problem, (6.19),
associated with the minimal solution has only positive eigenvalues while the
problem associated with the other solution has one which is negative. Hence, we

shall always take the minimal solution as our %e.

As we are interested in solutions on a variety of domains, we establish
some facts concerning the behavior of the critical value of A, A, as the domain,
(), varies. {The value of A, is the least upper bound of the set of all A for which
positive solutions exist.) This résult is for the Dirichlet problem on a finite
domain.

Theorem (6.26)
Suppose that Q'c . Then if A is such that a positive solution exists to tl‘le

problem
—Iu=7\f(u), z€;
w =0, g€d,

there also exists a positive solution to the problem:
=Lu=Af(u), g
u=0, z€dQ".

Proof:
Let fu,(\;x)! be the sequence defined by‘(6.25) for the domain Q and let

fun(Az)} be the sequence for the domain Q'. Let

Wn (ZA) =un (TA) —va(TA), z€Q"
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The fgpction w, satisfies:

—Lw,=Af (4) =N (v,) =0; €0

wy=wuy, €8O,

Since #; is non-negative, the maximum principle implies that w; is non-
negative. (See Protter and Weinberger [37,Ch. 2] for a discussion of maximum

principles.) Now suppose that w, is non-negative. Then 1, ,, satisfies:

'"Lwni-l:}\(f (un)"'f ('Un))- ze"

Wr +1=Up, £E0"

Since w, is non-negative and f is monotone, the right-hand side of the equation
for w, 4+, is non-negative, as is its boundary value. The maximum principle again
implies that w, ;; is non-negative. Hence, by induction, w, is non-negative for

alln. That is:

Up < Uy,

Therefore, the sequence (6.25), for the v,’s on (', is bounded above and must
converge to the minimal positive solution by Theorem (6.25). This completes the

proof.

We now present some results from our computations. All were performed
on a rectangular domain obtained from the original domain by a Schwarz-
Christoffel transformation. A uniform mesh was employed and derivatives were
approximated by three-point centered differences. The nonlinear difference
equations, including when applicable the nonlinear boundary conditions, were
solved by Newton’s method. The solution of the linear system combined the
IMSL banded matrix solver with a bordering technique as discussed in section 2.

The asymptotic solution, %., was also found by a finite difference solution of
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(6.28‘?). It was then used in a finite approximation of the cross-sectional eigen-
value problem, (6.19). The number of gridpoints in a cross-section, the number
used to calculate u., and the number used to solve (6.19) were always the same.
Approximations to the boundary condition at z =7 were made up to second
order, employing formulas (6.20) and (6.21). In the mapped plane, the left and
right boundaries are curved. Therefore, it was necessary to use interpolation to
apply the conditions there. Single precision arithmetic was always employed
and the Newton iterations were judged to be converged when the absolute value
of the residual was less than 107° All of this was done on the timesharing VAX

of the California Institute of Technology.

We solved (6.22) on a variety of domains for many values of A and orders of
approximation to the boundary condition. As suggested (though not, of course
guaranteed) by the theorems earlier discussed, solutions exist whenever the
step goes into the channel (g > 0). The choice of boundary condition had no

apparent effect on the number of Newton iterations required.

We present two sequences of calculations to illustrate our results. The first
is for A=3.4 and a step size equal to .4 times the channel width. Figures (6.27-
31) show u=constant curves for calculations in the domains shown. In the
mapped plane, the left boundary was located at -3.0 and the right boundary at
2.0, 1.0, 0.5, 0.25 and 0.1 respectively. In the unmapped plane, this yields a left
boundary location of -1.57 and right boundary locations of 2.26, 1.26, .764, .520
and .3C01. The step coordinate is -.0055. The mesh size was .05 yielding grids of
19X101, 19X81, 19X71, 19X88 and 19XB3 respectively. The values of u on the
plotted contours range between .025 and .894. All of these calculations emgploy

the approximation to the right boundary condition given by (6.20).

A comparison of figures (6.27-31) yields that the solution is little changed

by moving the artificial boundary towards the step. That is, we can solve the
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problgm on the semi-infinite interval almost as accurately with the boundary at
0.1 as we can with the boundary at 2.0, with a resulting decrease in the size of
the grid. This conclusion is supported by figure (8.32), which shows the superpo-
sition of (6.27) and {6.31). Figure (8.33) shows the superposition of {(6.27) and a
solution on the small domain using a zeroth order approximation to the
artificial boundary condition, %.(7) =0, The error is relatively large near the
boundary, but decays as one moves inside., This behavior is in line with the
linear error analysis for problemé with exponential dichotomies given in section
1. Finally, table (6.34) lists the maximum absolute errors as calculated using
the solution on the largest domain. The approximation of order zero is u.{7) =0
while those of first and second order are the linear and quadratic approxima-
tions given by our theory. The quadratic approximation is consistently the best,
but the simpler, linear condition is not too much worse. Note that both yield
approximations on the smallest domain that are superior to the zeroth order

approximation on the largest.

Figures (6.35-41) and table (8.4R2) show the same things for calculations in a
slightly different domain and for A near the critical value, A=3.51. The step is
now .3 times the channel width. The left boundary has been moved from -3.0 to
-1.0 in the mapped plane, while all else has remained the same. The grids are
now of the sizes 19X81, 19X41, 19X31, 19X26 and 19X23. In the unmapped plane,
the left boundary is at -.512, the step at -.062 and the right boundaries at 2.2,
1.2, .71, .40 and .32 respectively. The resulis are not significantly different from
the preceding example. However, we do see the effect of the near-zero eigenvalue
as manifested in larger errors for the small domain calculations and much

slower decay of these errors off the boundary.
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Figure (6.29)
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Figure (6.31)
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Figure (8.33)




-127-

Table (6.34)
i 3 iOrder i Ju-Ual,., i Maximum i
i (mapped iof | at the i Absolute ;
| plane) {Approximation| Boundary ! Error '
v 1.0 i 0 i .076 i .0743 i
i 1.0 i 1 i .076 i .0030 i
i 1.0 i 2 i .076 i .0015 i
v 0.5 i 0 v 17T i . 1472 i
i 0.5 i 1 S Vi i .0082 i
i 0.5 i 2 L 1TT i .0018 i
v 0.25 i 0 i .2069 i .1936 i
i 0.25 i 1 i .269 i .0154 i
i 0.25 i 2 i .269 i .0051 i
i 0.1 I 0 I . 341 i .2131 i
i 0.1 | 1 P 341 i .0213 i
i 0.1 i 2 [ .38 i .0105 i
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Table (6.42)
! At Order ' 1 14 - U B i Maximum i
! (mapped jof { at the i Absolute H
! plane) {Approximation| Boundary i Error H
i 1.0 t 0 i . 106 N i
i 1.0 i 1 i .106 i .029 i
i 1.0 ‘ 2 i . 106 i .0018 i
i 0.5 i 0 i .232 P .183 i
I 0.5 | 1 Po.232 i .059 i
i 0.5 i 2 i .232 P .04 ;
v 0.25 i 0 i .334 i .224 i
i 0.25 i 1 i 334 1 .083 i
i 0.25 i 2 i .334 P .027 i
i 0.1 i 0 i .H09 i <242 i
i 0.1 i 1 i .409 v .097 i
P 0.1 t 2 7 .4H09 i .039 |
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Appendix A: Existence of Solutions for Some Second Order Problems

In this section we develop an alternative theory to the one presented in Sec-

tion B for the following problem on the tail:
8) Up +uy ta(y)u=F(uy) zelr=) yc[01];

b) oguy +Bosu =0, ¥ =0,1; (A1)

¢) limu(z.y)=ua.(y).

The function u. satisfies:

(Ua)yy e (Yo =F (uay), ¥y <[0,1];
(AR)
O(g_lumy +ﬁg'1uw =0, Y =0,1.

We also assume that the eigenvalue problem, (6.19), has only positive eigen-
values and the eigenfunction expansion is as given there. We then have the fol-
lowing theorem.

Theorem A3

Suppose there exists a K> 0 such that, for d sufficiently small
Juu(Uw +d y)< K

Then there exists £> 0 such that for any sufficiently smooth v,(y) satisfying the

boundary conditions (A1b) ¥,(z,y), the bounded solution of the linear problem
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on the tail:
Tozz +Voyy + (2 (¥) = Fultey))d, =0;
To (1Y) =vo(y):

0g.1Uoy + Bo1¥s =0, ¥ =0,1;
also satisfying

max |7, | < g,
ZTEC|T.>
¥ €10,1

there exists a solution, »(z,y). to problem (A1). This solution satisfies:

a) u(Ty)=u-{y) +v,(y)

1 1
0) [ay Grira) Taly) =—Va [y v () Ta(w)

—fdse V(s ’)fdyR(u,,.v.y)Y(y) n=1---:  (A3)

¢) v(zy)=ulz.y) —u-(z.¥);

d) Rluev y)=f (Ue+v.y)~f{uay)—Ffu(uay)v

The constant, &, is defined by:

1
= ——— K = maXx d+u,,,
= kKD o ‘d‘szlfuu( Yy
y €[0.1]
(A4)
E — K= max | Y (y) ]
n=l y €[0.1]

Note that (A3b) is equivalent to the condition resulting from (6.8). The
existence of finite K; and K, is guaranteed by the results of Sturm-Liouville

theory; see, for example, Levitan and Sargsjan [34].
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Proof:
We seek a solution of the form v (z,¥)=7,(z,y) +U(z¥). We have that ¥,(z,y) is

given by:

Tz y)= Y en(m)e VT, (y);

n=1

G(r) = 3 cn(n % ().

n=l

We represent 7{z,v ) in the form:

hd

T(zy)= ) 6(=) Y (y);

n=1

where the expansion coefficients must satisfy:

d36, 7 S
2) —— —nfn = [y R(T,+Ty) Yaly);
¢}
(A5)
b) & (1) =0.
We define the operator F(7(z y)) by the following:
F(o(zy))= ) F(d(zy)) Yaly):
n=1
oz =1) __~fEle ) 1
-~ . -e - -~ -~
R@Ey) ==t J s ™0 [ay Ra, +7) %ay) (48)
Vo z-1) %

+ —— e ).
N J Y = (Y)

We note that a fixed point of 7 is simply a Green’s function solution of (A5). For
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T(z ,y_) bounded in the maximum norm, we can estimate the expressions above:

K
max | F,(7)| < =2 max |R(T, +Ty)|;
z € [1,) fxnzss Bo;

v .

-~ o~ K ) o~ -~ o~
max | Fp(01) =Fp(0p) | < =2 max | R(7, +T1y) - R(T, +Toy) .
z € [T,) (s 9 :E ‘sml’}
¥ '

Similarly, from the definition of R we have:
max | R(7, + Ty ) | € —max(F, +7)?,
z.y R =zy
max | R(T, + 01y ) — BT, + 02,y ) | < K,max| (7 +Tp) +7, |max |7, —7%].
zy z.y z.y

Using these and supposing that we are restricting ourselves to the set of func-
tions whose maximum is less than g, the contraction requirement becomes:

1

£l —
2K, K, K2

Also, the condition that # maps functions of norm less than & to other such
functions is:
1
e,
RK,K K%
Hence, the condition on ¢ in (A4) suffices to guarantee the existence of a solu-

tion. The boundary condition (A3b) is obtained by differentiating the Green’s

function representation, which completes the proof.
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