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ABSTRACT

It is shown, for V in a particular class of smooth functions, that the total
binding energy, E(Z), of Z noninteracting Fermions in the potential well
24/3\’(21/3}(), obeys E(Z) = cTF(V)Z7/3+0(ZS/3) as Z — . Here cpp(V)
is the coefficient predicted by the Thomas-Fermi theory. This result is
consistent with the conjectured Scott correction, which occurs at order 22,
to the total binding energy of an atom of atomic number Z. This correction
ia thought to arise only because V(x) ~ —|x|'1 near x == 0 in the atomic

problem, and so V is not a smooth function.
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CHAPTER 1

Introduction

Since the advent of the quantum theory, there have been efforts made to
apply the theory to increasingly more complicated physical systems. This
has, more often than not, made necessary the invention of various
approximation schemes. One of the earliest of these is now generally known
as the Thomas-Fermi theory, and one of its first uses was in the study of
large atoms [24].

For an atom with Z electrons, an infinite mass, point nucleus of charge Z,
and neglecting relativistic effects, we have the quantum mechanical
Hamiltonian or Schrodinger operator

Z Z -1
(1.1) H(Z) = Z[—Ai - |-x—l] + z i —xg
i=1 1<i<j<Z

We consider this Hamiltonian over antisymmetric wave functions in

Z
A L2(IR3;C2) and denote by E(Z) the ground state energy of H(Z). (Our

i=

units are such that m = %, e = A = 1, so our energy unit below is

4
m{ez— = 54.4 eV.) Milne (14] used the Thomas-Fermi theory to show that

(1.2) E(Z) = cZ”3 with ¢ = ¢y = —-308.

(This value of ¢ was a little low due to inaccuracies in the numerical solution

of the Thomas-Fermi differential equation ([24], Equation 1.3). The correct

value is c¢pp = —.3844.) Using spectroscopic data to find E(Z) for
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Z = 2,3,...,9, Young [25] found that the observed values obeyed

7/3 41/1000

E(Z) =~ z for2 <Z <9

®Young

and ®Young = —.288.

It was suspected by Young that the discrepancy between CYoung and SMilne
was due to the numerical difficulties in the evaluation of ®Young® (However,
the correct value CTF makes the discrepancy worse.)

The first improvement on the Thomas-Fermi model of the atom was
proposed by Dirac [S5], who took into account the effect of exchange. As
noted in [19], this adds to (1.2) a term —.111 25/3, which does not improve
the agreement with the observed values. Equation (1.2) was cast further into
doubt by Foldy [6], who found, from the then recent Hartree calculations on

the atom for several Z between 10 and 90, that apparently,
E(Z) = —3 z12/5  ¢or 102z < 90.

One is surprised by this because (1.2) was derived from the Thomas-Fermi
theory, in which the statistical assumptions should hold better for large Z.
This situation was finally resolved by Scott [19], who proposed the

following leading order behavior:

- 7/3 152 5/3
(1.3) E(Z)zcpp 2 + ‘—‘Z —.111Z7°".

The Z2 term is called the Scott correction and arises as a result of the

inability of the Thomas-Fermi theory to describe the electrons near the
nucleus, where the nuclear Coulomb potential varies rapidly. The argument
essentially consists of treating the inner electrons as if they were in Bohr
orbits around a nucleus of charge Z and treating the outer electrons with the

usual Thomas-Fermi theory. (This argument is done very nicely in [18].) This
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derivation suggests that the Scott correction is independent of the presence
of electron-electron repulsion, since the inner—electrons that contribute to
the Scott correction are insensitive to the presence of the other electrons
when Z is large. However, electron-electron repulsion does contribute to the

27/3 25/3 terms in (1.3). In [20] it is shown that numerical fits to

and
Hartree-Fock calculations for various Z are in exceedingly good agreement
with (1.3). (The 25/3 coefficient is actually — .133, because of corrections to
the Thomas-Fermi theory other than exchange effects as discussed in [1].)
Lieb and Simon {13] give a mathematically rigorous justification of (1.2)
(with ¢ = CTF) starting from (1.1), in effect proving that the Thomas-Fermi

theory gives the correct leading-order behavior. Their proof extends easily

to more general Schrodinger operators of the form

Z
_ 4/3 1/3 -1
(1.4) HEZ) = D (-4 +2¥3vE B3]+ 30 x—x
i=] 1<i<y<Z
and shows that
E@ =crpM 273 4+ 0273 as Z ~ o0,
(Vix) = —|J-<l'1 in (1.4) gives (1.1).) Here cTF(V) is the coefficient one

obtains by applying the Thomas-Fermi theory to (1.4) and computing E(Z). As
noted in [13], the proof used cannot be improved so that we could see the
Scott term. The proof basically gives upper and lower bounds to E(Z), and
the method of constructing these bounds makes them differ at order O(ZQ).
Proving that the Scott correction in the atomic binding energy is correct
has remained a challenging open problem. It was shown by Lieb [12] that a
modification of the Thomas-Fermi theory, known as the Thomas-Fermi-von

Weizsacker theory, does produce a 22 correction in the atomic binding
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energy. However, unlike the case of the Thomas-Fermi theory, there is no
theorem that connects the Thomas-Fermi-von Weizsacker theory to the real
quantum problem. There is probably no such theorem because one cannot
simultaneously get the 22 correction conjectured by Scott [19] and the
electron density conjectured by Lieb [12]. Thirring [23] has produced a lower

bound, which says

E(2) 2 erp 273 (14027233

for the atomic problem. Siedentop and Weikard [22] have recently proven the

upper bound

E@ <eppz’® +12° + 029,

The problem treated in this thesis was originally motivated by the results

of Bander [1), where it appeared, at least formally, that if V in (1.4) had no

singularities and was smooth, then E(Z) would be of the ! -m
(1.5) E@Z) = eppWZ73 + 023,

and we would have no “Scott correction” or 7 contribution. In this thesis,
we treat the case of noninteracting particles; that is, we drop the [xi — X I-l
terms in (1.4). Also, we consider smooth potentials in the class ¥, namely,
those V € C*® (R3), which obey

Cle2 < V(x) < CIXI2,
[$vix| < e'ixi

for some ¢, C, ¢’ > 0, and all higher derivatives of V are bounded
everywhere in x. The main result of this thesis (Theorem 7 at the beginning

of Chapter IV) is that, for the Hamiltonian
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Z
HZ) = > (-4 + z¥3vE3x)),
i=1

the ground state energy E(Z) is as in (1.5) when the Fermi level is not at a

critical value of the potential. (The Fermi level is the energy of the highest
occupied single particle state.) This result is of interest because it suggests
that there would be no Scott correction in the atomic binding energy, except
for the fact that the nuclear potential seen by the electrons has a
singularity, which is consistent with Scott’s intuitive argument.

In Chapter II we start by introducing some notation and then prove a
fundamental result (Theorem 1) that tells us, in effect, the “right way” to
approach our problem. Two examples are discussed along the way. In Chapter
[Il we use some recent mathematical methods to prove some facts about two
functions related to the spectrum of —A + 24/3V(21/3x). The proofs are
outlined in Chapter IIl, leaving many of the mathematical details to the
Appendices. Finally, in Chapter IV we put the results of Chapters Il and IlI
together to obtain our desired result. We then discuss the reason for not
allowing the Fermi level to be at a critical value of the potential, and
possible extensions to smooth potentials other than those in the class ¥ .
Finally, a formal calculation is given, suggesting what the Scott correction

might be for certain singular potentials.



CHAPTER 11

A Fundamental Result

As motivated in the Introduction, we are interested in the ground-state

energy of the quantum mechanical Hamiltonian

z
Q.1 HZ) = D (-4 + Z¥3v(z!3x)

i=1

Z
over antisymmetric wave functions in _/\1 L2(1R3; Cq). We choose units so
1:’2

that A = 1 and m = % This ground-state energy is given by

E(Z) = e;(Z),

.
My
—

eJ(Z) = jth eigenvalue (counting multiplicity) of —A +Z4/3V(Zl/3x)
over Lz(]R3; Cq).
By rescaling energy by 2'4/3, and distance by 2'1/3, and defining

h = 2'1/3, we obtain (tolerating a common abuse of notation)

z-43E(Z) = E(h),

where
h?
2.2 E(h) = eJ-(h),
=1
p] .
(2.3) e.(h) = ,jth eigenvalue (counting multiplicity) of —h“A + Vix)

over L2(1R3; Cq) .
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It must be stressed that h = 2'1/3 is not related to k, which is impli.it
in {(2.1). We use this notation because it is traditional in the work of Chapter
IIl and because h — 0 is suggestive of a semiclassical connection, which will

be seen later.
Whereas before, we were interested in the asymptotic form of

E(Z) as Z — o, with this change of variables, we are now interested in the
asymptotic form of E(h) as h — 0. From the discussion in the Introduction,

we anticipate that

(2.4) E(h) = ¢;h™3 + c2h'2 +0mYl) ash -0

where Cy» Co are constants depending on the potential V. It is the primary

point of this thesis to show that for a class of smooth potentials there is no
“Scott correction;” i.e., ¢y = 0in 2.4).
Now we must introduce some notation. We only consider potentials V,

and

whose positive and negative parts, V+ and V__, satisfy V+ S L2(R3)10c

V_ €L2 (]R3) + L°°(R3). For such potentials, the Hamiltonian
H=H, = —h%A +V

is self-adjoint. (See [16], sections X.2 and X.4.) Let ej(h) be the eigenvalues
(if any) of Hy as in (2.3). Make the definitions

(2.5) Nh(e) = #{j: eJ.(h) < e} = the number of eigenvalues of

Hh that are < e;

(2.6)  Nele) = (2‘;)3 [[ a3 d% = g%z ] e=vin¥iadk.
Y pV(x)<e "oV(x)<e

We further restrict the potentials under consideration by requiring that

there be 1y € R and ¢ > 0 so that Ne(ug) = 1 and Ne(ug+e) < 4o This
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restriction on V says that Hh has at least h’3(=Z) eigenvalues at the
bottom of its spectrum. (This is necessary for (2.2) to make sense, and
physically it means that V is a deep enough well for (2.1) to bind Z
particles.) To see this, note that h'3Nc(e) is the semiclassical estimate for
Nh(e), and it is known ([17], Section XIII.15) that

lim h3Ny (e) = Ne(e)
fore < K + €. Since
Ny (ug+e) = h3Nc(e) (1 +o(h)) esh —0
and Nc(uo +¢€) > Nc(uo) = 1, we have
Np(eg +¢€) > n-3
for h sufficiently small.
Next, define
2.7 Ky = min {e : Nh(e) > h'3} = Fermi level that results
when the lowest hs3 =z energy states in the
potential well are occupied,
and

e

(2.8) ¥y (e) = [ Np(e) de’.

-0

The need for ‘Ilh will become apparent momentarily. Since Nh(e) is right

continuous and non-decreasing in e, it defines a measure on R and we have
h-3

E(h) : = Z e;(h)

J=1

- I © aNp(e) — (Nplay) = 17y
=00, Ly,

(the second term may be thought of as a correction to the first term, which
over-counts if Nh(uh) > h'3; this may happen if the Fermi level Ky has a

multiplicity greater than one)

= n3y - j“o’; N, () de
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after an integration by parts. In deriving this result, we had in mind that

h'3 = Z = integer number of particles, but

(2.9 E(h) = h3uy — ¥y (up)

makes sense for all h > 0, and we will henceforth take (2.9) as our

definition of E(h) for all h > 0.

To understand the motivation for the following theorem, it should be
noted that Nh (e) — h'3Nc(e) may oscillate with increasing magnitude ~ h'2
as h — 0. (This will be the case in the two examples to be discussed after
the theorem.) It might be expected that this behavior carries over to E(h);
that is, E(h) — ¢ h":*x might oscillate with magnitude ~h'2 as h — 0. Hence,
there would be no c2h’2 term in (2.4), which is the term of primary interest
to us! The following theorem shows that the asymptotic form of E(h) may be
smoother than Nh as h — 0, and motivates the study of the asymptotic form

of \Ph for small h.

First, define n(e,h) so that
(2.10) Np(e) = h™3Nc(e) + h™2reh).

This function n(e,h) describes the error made in approximating Nh(e) by

h™3N¢ (e).

Theorem 1: Suppose there are Ko € R and e, hy, nmax > 0 such that:
(2.11) Nc(uo) =1,

(2.12)  Nc(ug+e€) < +oo, and

(2.13)  |n(e,h)| < npax for e — 1| < €, h e (0, hyl.
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(2.14)  Then E(h) = pyh™> — ¥, (ug) + 0(h™)) esh - 0.

The following two examples illustrate Theorem 1, which is then proven
next. The examples also show that Theorem ! is optimal in the sense that
one does not generally have smoother asymptotics on Nh as input, nor can

one generally conclude smoother asymptotics on E(h).
Example 1 (“Bohr atom™): Let Vi{x) = — |x1'1. The eigenvalues of —h2A + V

are then known to be

2 =123, ...
_ 4 =01, .., nl
€nems™) 4h%n?’ { m=-¢-¢+1,..,¢
s=12..,q
By direct computation, for e < 0
n-1 [4 q [v] R
SEEEED D D DD DRSS DRt
nel2,30 =0 m=-€ s=1 n=1
n<
2h\ -e
- a(iw? + L + L),

1

where U = TV and [x] = greatest integer < x. Define § = é(e,h) =

v —[v]; then one finds

Ny (e) = h™3Nc(e) + h™?n(eh),

where Nele) = & (—e)% and n(eh) = a(}—6) 725 + (1 —s+69

h
24 ey =

2N-e

5§ 8% 6,2 . ,
(_é +§ ——3-)h ] Note that, since 0 < é(e,h) < 1, In(e,h)l is bounded for

h e (O,ho], e < e, where ho and —eq are any positive numbers.

By similar calculation, one finds

(V]

o= 3 el - k)

n=<l
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q q -1
= - = + h w (e;h ’
12h°%\-e 8h? )

where |w(e,h)| is bounded for h € (O,ho], e < eg. The Theorem then gives,

with gy = ——[214]2/3,
1/3_2/3 A
(2.15) Em = =23 03 4+ 302 4 om).
With q = 2 for electrons, we get the usual “Scott correction” in these units.

An exact calculation of E(h) shows that the term O(h'l) in (2.15) oscillates
with amplitude ~ hlash -0 (see “model (a)” in [21]). In this sense, (2.14)

gives the best possible asymptotics for E(h).

Example 2: Let V(x) = |x|2. As in example 1, the eigenvalues are known
explicitly:
eEmns(h) = h(2¢+2m+2n+3); £€,mmne€{0,1,2,...}, s =1,2,...,q.

Direct calculation gives

Np(e) = h™3Nc(e) + h™2n(e,h),  Nele) = 13

3

and ¥ (e) = h73 L e% 4 hl y(e,h). Again, [n(e,h)], [¥(e,h)] are each bounded

for h € (O,ho], e € [O,eo], where h,, ey are any positive numbers. The

theorem gives
(2.16) E(h) = g [§]1/3 h-3 + O(h‘l),

In this case we have no “Scott term.” A direct calculation of E(h) shows that

(2.16) gives the best possible asymptotics for E(h).

Proof of Theorem 1: First define ul(h) so that uy = uy + hul(h). Using
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this with (2.8), (2.9) and (2.10),

I

217 E(h) = h3ug +h2uy () — ¥y () — JLTPHIN, (o) de

= h-3 Ko — Wh (I-l-o)
-3 uo+hu1 . -2 fMothu,
+ 07 [ (1 —Ne(e))de —n7% [0 n(e,h) de

We show that these last two terms are O(h'l) as h — 0 to obtain the desired

result.

To this end, we first show that ul(h) is bounded for h sufficiently small.
From (2.6) we see that Nq(e) is continuous and strictly increasing for those e
such that 0 < N¢(e) < +oo. From our hypotheses, 1 < Nel(ug +€) < +oo,
so we may choose § € (0,3:,) sufficiently small so that Ngl([1—6,1+6]) C

[“0_3’“0+2] Let h; = mm{ho, i——}. Recalling (2.7) and (2.9), we have
Ly = min{e : Nc(e) + hn(e,h) > 1},
which gives, for h € (O,hl],

(2.18) #h € NEI([I — hnmax, 1 -+ hnmax]).

Taking the derivative in (2.6), we find that Ng(e) exists and is finite,

continuous and nondecreasing for — < e < ug + % Also, N¢(e) > 0 when

Nc(e) > 0. Using this with (2.18) yields

B ]
|4n — #o| < Bmax TR

or

(2.19) |l®)| < sy for b € @l
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For the last term in (2.17) we have the bound

(2.20) |h‘2 j“"”““ h) de

< b7 |u1 I"max

for h € (O,hl], and so this term is O(h'l) as h — 0. The second-to-last term

in (2.17) is bounded by

(2.21) lh'3 [Ho*Bis (] _ Ne(e))de lh'3 [4 (Nelig) — Nelig +e))de

h
< h-3(IO|“1| .

de) max  Ng(un+e)
lel<hju,| < O

< b7l Juy () Ne(up+) for h € (0,hy].

Equations (2.17), (2.19), (2.20) and (2.21) give the desired result (2.14) for

h € (0,h,].
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CHAPTER III

Spectral Asymptotics for a Class of Potentials

This chapter is devoted to determining the asymptotic form of the
functions Nh and \Fh as h — 0 for a class of potentials, ¥, to be described
shortly. The functions Nh and Wh were introduced in Chapter II. Our goal
here is to prove that Nh satisfies the hypotheses of Theorem 1, and then to
prove that \Fh is of such a form that E(h) has no “Scott correction” for
potentials in class .

An outline of the arguments will be given in this chapter, leaving the
details of the proofs to Appendices A and B. Also in this chapter we shall let
q = “number of spin states of the fermions” assume the value q = 1. This
is because q appears only as a multiplicative factor in Nh and Wh; It should
be noted that E(h) does not depend on q in this simple manner.

The methods used in this Chapter are those of Chazarain [4] and Helffer
and Robert [7]. The new content here is in evaluating the “second term” in
the small h asymptotics and the straightforward extension of their methods
to Wh .

First we shall define the class of potentials to be considered (see [4]). Let
¥ be the set of all real valued, C®-functions V on R" which satisfy as |x} —
+o0:

2—|al) for 0 <lal<?2

VX)) = 0(x
(3.1 {
XVix) = 0 for |a| > 2

and
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(3.2) Vix) > clxl‘?for some ¢ > 0.

For our purpose of outlining the arguments in this chapter, (3.1) will not
appear in what follows. It, along with (3.2), will be used in Appendix A to
produce bounds on the phase, S, and amplitudes, 8, in a geometric optics
expansion, which will be introduced later in this chapter. The primary
consequence of (3.2) to be used in this chapter is that Nh is a tempered
distribution. Finally, in this chapter we will work with potentials V(x) for
x ERM. Although we are primarily interested in the n = 3 dimensional case,
the case of more general n > 3 is no more difficult.

For all V € ¥, H = —h2A+V is self-adjoint and has a spectrum

(s ]

composed of eigenvalues {ej(h)}Jg1 that obey e.(h) - 4o as j — o for each

J
fixed h > 0. We may apply the Cwikel-Lieb-Rosenbljum bound (see [17],

Section XIII.3) to Nh(e), defined in (2.5), to obtain

- /2
(3.3) Np(e) < cph™ jv(x)ge (e —V(x))"V < dMx.

Equations (3.2) and (3.3) then show that Nh(e) < ¢’h™Me™. Thus, we may

think of Nh € ¥’ as defined by

[ <]

(Npof) = [ Np(e) f(e) de
for all f € f. The derivative Nil is ti.en in ¥’ and may be written as a sum

of é-functions

(3.4) hle) = D sle—ejh).

The function Ni] is often called the density of states for the quantum

Hamiltonian H. Furthermore, the Fourier transform Nﬂil is in ¥’. We thus cee
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that the trace of the (quantum mechanical) propagator is a tempered

distribution, because formally,

~ & _; . -ite,(h)
(3.5) Npt) = [T et N e de = D e
=1
= tr e"itH,

To get at N’h, which will ultimately enable us to get information on Nh
and \llh, we shall consider a convolution N’h * eh. Since we are interested in
the asymptotics as h — 0, it would be nice if eh" é§-function as h — 0. In

particular, we put

S Y
(3.6) Op (1) = iz B(—1),

S

where p € C%°(]R) will be chosen later. We require p(0) = 1, which makes 6h
have unit weight; that is,

w —3 —
(3.7) j_w 6, (t) dt = p(0) = 1.

For technical reasons in the proof of Proposition 5, we require, as in

{7], Section 5, that p is even, » > 0 and there is some 6y > 0 so that

(3.8) plo) >0 for o€ [—8y, 8yl

(To construct such a p, start with p; € C8°(]R) with p; even, p;> 0 and

_ (p1*91)(t)

0, th = ——,

Since a convolution is equal to the inverse Fourier transform of a

product of Fourier transforms, we have



(3.9) (N'h*Bh)(X) = = e h(t) Bh(t) dt
- 1 eit)‘p(th)tre'itHdt
-0

eit)\/h -itH/h dt.

1 [« o]
>xh I_oo p(t) tr e

(Chazerain’s (4] notation I+(h) = (27rh)(Ni1*6h)(—‘r) in the notation used
here.)
To make further ©progress, we must determine the propagator

U(t) = e'itH/h, which is the unitary group that solves the Schroddinger

equat:on. That is, if

(3.10) ihd, »(t,x) = HY(t,x),
then

vitx) = e itH My — Uwox).

To this end, consider the effect of applying the propagator to a plane wave
of momentum 7. Make the definition

(3.11) Ay (t’x,n)exs(t,x,ﬂ)/h _ -itH/h _i7x/h

Clearly, there is some freedom in choosing Ah and S, and the choice we make

is that S does not depend on h. Putting (3.11) into the Schrodinger equation

(3.10) gives

(3.12) 3, S + [3xSP + V(x) = 0, S©Ox7) = 7x;

The first of these (3.12) is just the Hamilton-Jacobi equation from classical

mechanics. The second (3.13) is usually solved by making the expansion
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N
(3.14) AN xm) = Dl ajtxim,
Jj=0
where the amplitudes 8 satisfy the transport equations (which derive from
(3.13)):
0 =0 1,
(3.15) + 204S - axa + (AS) ‘ {an“ i>1 },

aO(O,X.Tl) =1, GJ(O,X,U) =0 forj > 1.

(N)

Formally, we expect Ah — Ah as N — oo for small h. In Appendix A we will

(N)

construct Ah by solving the transport equations (3.15) for small times t and

then will study how well the operator E(t) defined by
316 (EWNx = (7)™ [[AN (xS ED =TV ¢4 an

approximates the operator U(t). This method of constructing an
approximation E(t) to U(t) is known as the geometric optics expansion.
Merely to outline the arguments, in this chapter we will assume we can

solve (3.12) and (3.13) in some neighborhood of t = 0 and will write formally

i(S(t,x,7)-1-y)/h

(3.175 (U@)F)(x) = (27h)™" ”Ah(t,x,n)e f(y)dydn.

A way to think of (3.17) is that the integral over y deccmposes f into its
. i7-x/h )

plane wave constituents e , and the integral over 7] superposes the

solutions (3.11) for the time evolution of the plane waves.

Returning to our discussion of the convolution N’h*eh, which is a smooth

approximation to N’h, we obtain from (3.9) and (3.17)

Y,
(3.18) (N %8, )(\) = (27h)™ 1” j (DA (tLx,)e iSx M=%/ g
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The small h asymptotics of the integral in (3.18) may be determined by the

method of stationary phase. The phase function

(3.19) o(t,x,7,\) = S(t,x,77) — x-17 + At

is stationary at the points (t,x,7), for which

(3.208) 9,6 = 3,S + \ =0
(3.20b) 3x® = xS — 1 = 0
(3.20¢) 36 = 3,S — x = 0.

Equations (3.20a) and (3.20b) with (3.12) say that

(3.21) MR + Vix) = A,

Equation (3.20c) implies that (t,x,7) are the period, initial position, and initial
momentum, respectively, of a closed periodic classical trajectory. (This point
will be made clearer in Appendix A.) Note that from (3.12) all trajectories of
period zero {(t,x,7) :t = 0, (x,7) € R2n} satisfy (3.20c).

At this point we exercise our freedom in choosing o € C8° (R). Make the

definitions:
L = set of periods of periodic classical
trajectories of energy T;
(3.22) & = U £+, for an interval | C R.
T €l
(Note that our £+ = L_; in [4].) In the hypotheses of the next theorem
these definitions will appear, because what is desired is to take p(t) = O
outside a small neighborhood of t = 0, and this neighborhood shall not

include any periods, other than zero, of closed periodic classical trajectories
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with energy 7 near A. (That this may be done is left to Appendix A.) This
condition on p means that in the integral (3.18) we need only concern
ourselves with those points of stationary phase with t = 0. This set of

points of stationary phase lies on the compact (2n —1) - dimensional manifold
(3.23) Wy = {((tx7) € R¥™ .t =0, 1P + V() = A},

Compactness of W)\ follows from (3.2).

If we further assume that A is not a critical value of the potential V,
then the phase ¢ in (3.19) will be nondegenerate over the manifold W, . That
is, the matrix S?t’x’n) ¢ will not have determinant zero anywhere on W)\. We
can now use the method of stationary phase (discussed in Appendix B) to

calculate the small h asymptotic behavior of the integral (3.18). We obtain:
Theorem 2: Suppose ()\0 —-eo,)\o +50) is a bounded open interval such that

V has no critical values in “‘0 _60’)‘0 +eo] and that

(3.24) supp p N L()‘o‘eo'ko‘eo’ = {0).
Then
(3.25) (N; %6, )A) = (27h)™ vol(W,) + 0(h®™)

as h — 0 for A € ()\O—eo,ko-f—eo). Moreover, the term O(hz_") is uniform

for A € ()\0-—60,)\0+50). (9h is related to p in (3.6) and W)\ is given by
(3.23).) The first term in (3.25) appears in [7], Theorem 3, and for one value
of X\ (instead of A\ in an interval) in [4], Theorem 2.

Although not part of our argument here, it should be mentioned that the
effect of the presence or absence of periodi¢c closed classical trajectories of

periods other than zero on Ni] or Ny has been well observed. (See [3], {4}, (7),



-21-

(10], [11), and [15].) They determine the detailed structure of Nh(e), that is,
the oscillatory behavior of the function n(e,h) appearing in Theorem 1. Here
we want only to obtain that n(e,h) is bounded as h — 0, and it will not be
necessary to consider the periodic closed classical trajectories of periods
other than zero.
Now we move on to computing Nh*eh and wh*eh. Since

I e) de,
we have
(3.26) (Np*8)(N) = jfoo (N} %8, )(7) dT.
Using (3.18) in (3.26) and recalling (3.19) then gives

(3.27) (Nh*eh)(x)=(2wh)'“'1ﬁ jj [ ataytxme XM 4y 45 ana-.

Apply the method of stationary phase (modulo a technical point to be

mentioned shortly) to the integration over (t,7) in (3.27). The phase is
stationary for

(3.28a) °,¢ = 3 S+T = 0;

(3.29b) G8+¢ = t =0.

Equations (3.28a and b) combined with (3.12) give

(3.29) (4,7 t=0, 7 =|7F + Vx)

as the stationary point of the phase ¢. The method of stationary phase then

yields:

Theorem 3: Under the same hypotheses as Theorem 2,

(3.30) (N *6;)(\) = (27 h)™ [[  axdn + om!™™
M+ VIx) <A

as h — 0 for A\ € ()\O—eo,)\0+eo) Moreover, the term 0{ h1 ™ is uniform in

A. (The result (3.30) appears in [7], Proposition 5.1, for a single value of A.)
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For wh*eh, note that from (2.5) and (3.26),

A
(3.31) W0\ = [N —7)(N} %0p)(7) d7,

which gives, using (3.18),

-n-1 A oo
(3.32) ¥y %0p) ) = @ray ™" l{! [ 0=mew
- Ay xR g4 gy an ar.

Applying the method of stationary phase as in the case of Nh * Gh, but
calculating to higher order in h, yields:

Theorem 4: Under the same hypotheses as Theorem 2, for
A E ()\0—60,)\0+€O),

(3.33) (¥, *8,)(\) = xh)™" [f (N =7 = V(x)) dxdn + 0(h2™™)
|7 F+V(x) <\

as h = 0.

Several technical points that will be dealt with in Appendix A should be

N in (3.14) in

pointed out. As has already been indicated, we will be using A
place of A, in the integrals (3.18), (3.27) and (3.32). This error will be shown
to contribute at an 6rder of h higher than we are interested in for N
sufficiently large. Also, the conve.rgence of these three integrals needs
attention.

In the integrals (3.27) and (3.32) there is a “sharp edge” on the (t,7) region

of integration at T = A. The method of stationary phase that is discussed in
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Appendix B cannot be applied in such situations because everything must be
smooth. We will also have to consider the region of negative T separately.
To remedy this, we take three smooth functions to make these cuts. For

N € (A\g—€gihgteq) fixed, choose Xy, X5, X3 € C*°(R) so that

supp Xy C (—oo, —1]

supp Xy C[—2,A—5]

(3.34)
supp X3 C [\ —¢, + )

X{{(T)+X5(T)+Xx3(T) =1 for T €R,

where ¢ > 0 is sufficiently small so that A\ —e¢ > )\0——60, where

()\0 —eo,>\0+e0) is as in Theorem 2. We put (3.34) in the integrands of (3.27)
and (3.32). The Xy terms will be treated separately in Appendix A and will

contribute O{h +oo

Jas h — 0. The X terms are treated using the method of
stationary phase (now the integrands are smooth) as we have just described.
The X3 terms will be computed by integrating the result of Theorem 2 for
7T € (A —¢€,M\]. In the sum of these terms, the x-functions will drop out and
we obtain Theorems 3 and 4. This is the reason we need Theorem 2, which is
shown by a different application of the method of stationary phase than is
used in Theorems 3 and 4.

At this point we need to recover the small h asymptotic form of Nh and
\lfh, which are of primary interest to us, “rom the small h asymptotic forms

of Nh * Bh and \lfh * Gh, which we were able to compute. The following

result makes this connection.

Proposition 5: Under the hypotheses of Theorem 2, we have

(3.35) Ny () — (N, *6,)(\) = 0(nl™™)
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as h — 0, uniformly for )‘E()‘O"_%O’AO'*'%O)‘ Also,

(336) W) — (¥ =8I = 0(h%™) for N € (hg — 20 + ).

Combining Theorems 3 and 4 with Proposition 5 gives the desired result of

this chapter:

Theorem 6: Suppose V € ¥ and that >‘O is not critical for V. Let € > 0 so
that V has no critical values in [)‘0 _60’)‘0 +60]. Then

(3.37) Ny = @rm™ [ dxdn + ol
In+V(x) <A

as h — 0 and O(hl'") is uniform for N € ()\O—e—zo,xo—f-%c). Also, for

€0 €
A€ (g —F 0+

(3.38) ¥, (\) = (27h)™ (=N — V(x)) dxdn + 0(h2"™).
h
[MF+V(x) <\

In Chapter IV we conclude that if the semiclassical Fermi level, Ko

defined in (2.i1), is not critical for V € ¥, then E(h) in (2.2) has no “Scott

correction.”
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CHAPTER IV

Conclusions

In this final chapter we present our main result as Theorem 7. We then
discuss extending this result to a larger class of potentials and the difficulty

encountered if the potential is singular.
Theorem 7: Let the number of dimensions n = 3, V € ¥ and Lg be as in

2.11).If Kq is not a critical value of V, then for E(h) in (2.2
(4.1) E(h) = ¢;h™> 4+ 0(h’}) esh — 0,

where the constant ¢y is as predicted by the Thomas-Fermi model. In terms of
Z = h'3, this says that the ground state energy of the Hamiltonian H(Z) in

(2.1) is given by
(4.2) E@) =273 4+ 02%3) as 2 = 4o,

and so there is no “Scott term.”

Proof : This is an immediate corollary to Theorems 1 and 6 with

@3 o = ug — 2m3g [ =P —vx) da*x a*n.
[N+ VI(x) <o

That ¢y is as in the Thomas-Fermi theory is all that needs comment. The

Thomas-Fermi energy functional for the Hamiltonian (2.1) is (after the

changes of variables made in Chapter II)

(4.4) §(p3h) = h°3{§7 IpS/B(X) a3x + [ox) V(x)d3x},

3

where h™~ p(x) is the particle density that must satisfy

4.5) [ otx)a3x =1
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2
and ¥ = [6—CI7L]2/3. Minimizing (4.4) with the constraint (4.5) gives

/2

(4.6) x) = L (x — vix)¥e,

p(x) Py ( (X))+

where A is a Lagrange multiplier. From (4.5) we must have A\ = K - Using

(4.6) in (4.4) then gives

@D sleih) = 07 {uy - 2 . )I (g — V(x)>'? a3}
X) < Mo

Thus, (4.7) and (4.1) agree to leading order if we do the integral over 7 in
(4.3). This completes the proof of Theorem 7.

A few words are in order on the physical meaning of the hypothesis that
the semiclassical Fermi level, Mg, is not critical for V. If Ko were critical for
V, then the phase ¢ in (3.19) would be degenerate at some points on the
manifold W“‘O in (3.23). In the evaluation by the method of stationary phase
of N'h * Gh, the successive asymptotic terms would decrease by h6 for some
6 < 1. This would carry over to Nh gnd \l/h and would finally give
E(h) = cTFh'3 + O(h_3+26). This last term means that E(h) may oscillate
more widely about CTE h'3 than if Loy were not critical for V.

It should be possible to extend the results of Chapter I[II, and hence
Theorem 7, to potentials that do not grow at infinity, by using the functional
calculus developed by Helffer and Robert [8]. They extend Theorem 3 to a
broad class of smooth potentials, which includes, for example

Vix) = —(1 + 1xP4, 4 <o.
They are able to do this by using their functional calculus to smoothly
truncate the operator H below the continuous spectrum and then by
proceeding similarly to Chapter IIl.
For potentials that have singularities, for example,

(4.8) V(ix) = —|x[8, 0 <a <2,
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one has the immediate difficulty that V is no longer smooth or bounded.
The assumption that V is smooth and bounded is often used in Appendix A in
the proofs of the results of Chapter III. Worse still, formal calculations of
N, and ¥, in terms of V, such as those in [1], give asymptotic series that
decrease in powers of h2. That is, we might compute something like

Ny ) = b 3A0 + nlBoy + oo

(4.9) 5 1
¥, 00 = h3co) + n7lpy 4+

I

Thus, if V is such that for some § > 0,

(4.10) E(h) = epp h™3 + eph ™18 4

then D(uo) in (4.9) is found to be infinite. This is not surprising, but knowing
D(ug) is infinite does not then tell us what § should be in (4.10). Here lies
the main difficulty in finding, even from a formal calculation, the first
correction to E(h) if it is less that two orders in h down from the leading
term, which may be the case for a singular potential (e.g., V(x) = —lxt'1 in
Example 1 of Chapter II).

We now present a very rough calculation that perhaps sheds some light

on the origin of the Scott correction in the case of singular potentials. Let V

be of the form given in (4.8). Then the eigenvalues ej(h) of H = —th +
V are given very approximately by inverting
h™3Ne(e;(h) = j, i = 1,23...,

which gives, using (4.8) and (2.6)

(4.11) ) eJ-(h) ~ — h’3bj'b,

where b = 3T22-£-'{) . We then have



h3 h
(4.12) E(h) = Z ej(h) ~ —p-3b Z b

—smn® + Lo 40w, §<a<20rb >

where ¢ is the zeta function, ¥ = .5772 is Euler’s constant, and

m
YB) = lim ( Z B _ fg‘ n™8 dn].

n=1

Note that for a = 1 (Coulomb potential) we have, from (4.12),

E(h) ~ (—3h73 + 245072 + ),
which is of the right form, although the ratio of the coefficients is not quite
right.

The point in computing (4.12) is to point out that what we would naturally
call the “Scott corrections” are the h-3b terms. This suggests that the Scott
correction for potentials of the form (4.8) is of the same order in h as that
of the energies in (4.11). If V(x) were of the form (4.8) only for |x| near zero,
then we would still expect the Scott correction to occur at order h'3b,
because the lowest states would still scale as in (4.11), and they would be the
dominant terms in the sum (4.12). This is just an extension of Scott's
intuition to the more general singularity considered here. If this idea is true,
namely, that the Scott correction depends on h (or Z) in the same manner as
the ground state in a singular potential, then it is an accident of the
particular form of the atomic potential singularity (it is Coulomb) that one

-1/3

obtains in (1.3) what looks like an asymptotic series in h or Z . That is,



-29-
the Scott correction might occur at a different order than 22 if the nuclear
potential singularity were other than Coulomb.

Finally, we mention that it may be possible to find a way to combine the
methods of Siedentop and Weikard [22] with the methods of this thesis to
produce an upper bound for the multinucleus or molecular Scott correction
problem. It is tempting to try to cut the problem into two parts, treat the
nearly spherically symmetric nuclear Coulomb singularities with the ideas in
[22], and then treat the electrons in the unsymmetric but smooth potential
away from the nuclei using the ideas in this thesis. But it is not at all clear

how to make this “cut.”
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APPENDIX A

Mathematical Detail

The purpose of this appendix is to review the results of Chazarain [4]
and Helffer-Robert [7], and to extend their methods to compute the leading
small h asymptotic form of \Ilh to two orders. A discussion of the method of

stationary phase follows in Appendix B.

Some preliminaries

Let

D ={y € Lz':Az()EL2 and |x|2w €L2}.
For any potential V € ¥, the operator
H=—h%a +V
is self-adjoint on P, positive, and is an isomorphism from D to L2. The
spectrum of H consists of a discrete set of positive eigenvalues of finite
multiplicity {ej(h)}. Let {¢,j) be the corresponding set of orthonormal
eigenfunctions of H; then ¢J~E £(R™) all j. (For these results, see [2],

Section 7. Use ©(x,¢) = 1, ®(x,¢) = (1 +x° +[¢[)?

_ o—itH/h

as weight functions.)
The unitary group generated by H is U(t) and is a bounded
operator on Lz. The unitary group solves the Schrodinger equation (3.10),
and we may write the explicit formula

(=] .

—ite,(h)/h _
(UWw)x) = > e o;x) [ &v) wly) dy
J=1

for v € L2. The distribution tr e-itH/h = tr U(t) is defined as follows for

6 € S(R):
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(tr U(t), 8(t)) = tr UG’
where
—[ 8(t) Ut

To see that the trace is finite, note that

O

. —ite (h)/h —
(Cp¥)(x) Z @;(x) [ ¢i(y)¥(y)dydt

i

j=1

y)] ¥(y) dy,

::J‘I‘b

because the sums converge absolutely. Thus,

[e o]
~ e
tr Uy = ZB(H)

i=1
is finite since 8 € 7. Moreover,
(A.1) (tr Ult), 8()) = (Nj (e), B(£))
= (N} (&), 8(t)
h h H 1/
from which we see that Ni,l(;—l) = tr e_itH/h, which we used in (3.9).

Solutions to the Hamilton-Jacobi equation and the transport equations

We will later need an estimate for &,S, where S is the solution of the
Hamilton-Jacobi equation (3.12). From the general theory of first-order partial
differential equations, we can solve (3.12) for S, once we know the soluticns
(x(t,y,7),€(t,y,7)) of the characteristic equations (which are just Hamilton's

equations of motion):

3,x = 3llef+vm) = 2, x(0,9,7) = v
(A2) ,
36 =  —%EF+V) = —8V(x), €0y ="

Since the energy is constant

(A.3) I + Vix) = |n]F + V()
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and V(x) — +4oco as |x| — -, the solution (x,6) of (A.2) exists and remains
bounded for all t € R.

From the equations (A.2), and making use of the hypotheses on V in (3.1)
and (3.2), it is shown in [4], Section IV, that (3.12) has a C* solution S(t,x,7),

(t,x,/) € [—T,T] X R2n for some T > 0, and we have

dx S(t,x,1) = &(4,x,7);
(A.4)
onS(tx,7) = y(tx7m).

It is shown that

(A.5) peStxm| 2 € M2 xm)
for C > o independent of |[t| < T and where \(x,7) = (1+|xi2+|77|2)1/2.
Also, one has
(A.6) 8P 8% 35 S(txm = 0P (xm))
forp + lal + [B8] > 1.

The transport equations (3.15) are solved for [t| < T in {4], Section V, by
a clever change of variables and by integrating along the characteristics
given by (A.2). It is then shown that
(A7) 3 8% 37 a;(tx,) = 0P (x,1)

forp + lal + |8 >0 end |t] < T.
Error made in using E(t) in place of U(t)
For some integer N, which may be chosen at our convenience, define E(t)

for |t| < T by the expression (3.16) for all f € F(R™). Let F(t)=E(t) —U(t).

As discussed in [4], Section VI,

sup JE(W)],, 2,2 = 0(1);
Itl<T 2(L%L%)
sup [F(t)] o™ T2,

ltlgT L(L29L2)
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and so E(t) and F(t) may be extended to bounded operators over all of
L2(R™).
For 6 € C8°((—T,T)), define the bounded operator
- I 6(t) E(t) dt.
The kernel of EB is then in f(RnXR ) ([4], Proposition 7.1}, and we may
then define tr E(t) as a distribution over C8°((-—T,T)) by
(trE(t), 6(t)) = tr Eq.
Define FG and tr F(t) in a similar manner. One then has

Proposition: ([4], Proposition 9.1) For all integers M, one may choose the

integer N in (3.14) so that there is a constant C such that

(A.8) |trF(t), td] < ¢ WM sup le(” {

0<j<2n
for all 8 € C(°)°((——T,T)').

This proposition tells us the error made in replacing U(t) by E(t) in the

calculation of N’h*eh, Nh*eh and wh*eh.

Proof of Theorem 2: From (3.9) and (A.l)

(Np*8p) () = 5i= ¢tr UGr), p(v) B
and so, from (A.8),

(A.9) (N, () — Lo tar B, ov) o)
<caM-1 o o) (p(t)e——itk/h>l.
o<j<an 't
The sup above is bounded since p is fixed and \ is in a bounded interval. By
choosing N large enough in (3.16), we may then use E(t) in place of Uit} in our
calculation of Nil*eh’ because the error committed in this replacement is at

a higher order in h than we are interested in.
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Now

1 itA/h
m(tf E(1), o(t) e )

(A.10)

i(S(t,x,7M) —x - +At)/h

= )" [ o a®™ e xme dtdxdn

which, as just noted, is a good approximation to (3.18). The phase in this

integral is stationary at those points (t,x,7) satisfying (3.20). From (A.2) and

(A.4), the graph of the classical Hamiltonian flow for |t| < T is
{xAxS (LM 3pS(Lx,M),7) : (x,7) € R*").
So (3.20b and c¢) tell us that t must be a period of a periodic classical

trajectory. The condition (3.24) tells us that the only such period we need to
be concerned with in evaluating (A.10) is t = 0. The point (x,7) must also be
on the M\ energy surface (3.21), and so we have a manifold of points of
stationary phase Wk given in (3.23).

At a given point (0,x,77) € W,, we have, for the phase (3.19)

M-8,V —3yV  —27
¢ = —3yV 0 0
—2n 0 0

The subspace perpendicular to W)\ at (0,x,7) is
span{(1,0,0;, (0,3xV, 277)}.

On this subspace ¢’/ is the 2 X 2 matrix

217 -3V —[ax VF —4|nf

- —|ax V[ —4|7f 0

and



-35-

det ¢ | = —(|3xVP +4[7[)°.
This may be zero only if 7 = 0 and 94V = 0, and so, by (3.21), A would have

to be critical for V. Thus, ¢”_L is nondegenerate for all (t,x,7) € W)\ and

N € [Xo—eo,)\0+eo]. Also, both Pet ¢“_1_ I_l/2 and Hq&”_L— are bounded

uniformly for (t,%,77) € W, and X\ € “‘0—€0’>‘0+60]’
To evaluate (A.10), it is convenient to work in new coordinates

(t,75w) € RXR ><]R2n'1, where t is the same as before, 7 = |77|2 + V(x) and

w denotes the remaining {(2n—1) coordinates. (It may be necessary to make a

partition of unity over U W)\ and choose the coordinates w in
Ae [Ng-€g,Ao+€g]

each partition, in-which case we proceed in each partition as in the following,

and then sum over the partition.) In these coordinates,

Wy ={(t,7,w) : t = 0,7 =\, all w}, and on W,

a‘ ‘S - 1
¢/I J—
+ -1 0

The integral (A.10) may then be evaluated using the results of Appendix B

-n-1 (N), o o 16(LTWN)]B0x,1)

(27”1) n J‘J‘J‘ p()A (t,7,w) e 8(7—,(.4)) dt d7 dw
-n AN oy o 30T 2-

= @rh)™ [{a0 AT 0w |25} dw + 0,

where the term 0(h2-n) is uniform for \ € (Xo—eo,ko—f—eo). To see that the

O(hl'"} contribution is zero, apply the result from Appendix B and use (3.7),

(3.15) and note that the reculting integrand is odd in 7. Finally, for the

leading term, we have
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a(x,m) _
507,0)| =) dg) = vol(Wx).

J

This completes the proof of Theorem 2.

Proof of Theorem 3: We start with (3.26) and use our partition of unity

satisfying (3.34). Thus,
—1
(A1) (N8 )N = [ 7 xq(T)(Np*8,)(7) d7

J‘)\—e/Q

)

x2(7) (Niq*eh)(ﬂ dr

A
+ [ xam) (Npxey)(7) dr

We now show that the first integral is 0(h+°°), evaluate the second by the

method of stationary phase, and use Theorem 2 to evaluate the third
integral.
Concerning the first integral in (A.11), we note
o0

(N8, )(T) = ﬁ Zl b[eJ(r;l)-v] ’
J=

where we have used (3.4) and (3.6). Since p € f(R"), for each integer M > 0

there is a constant CM such that

(=5

< M fejm) —7| ™M
for 7 € (—oo,—1]. From (3.3) we have
e < cn

and so
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—M/2

e;(h)+1

e (h) —'r| < |-l |‘M/2

e
M/2n , —M/2

i

—M/2 (—M/2n_

< (C) 171

Thus, for each integer M > 2n + 1 there is a constant CM such that

(o]

=1

We finally conclude that, for each integer M > 2n + 1, there is a Ci\’A such

that

-1 ) . o M/2—1
“_w Xl(T)(Nh*Gh)(T)dtl < Ciy b

and so see that the first term in (A.ll) is 0(h+°°). Note at this point, for

use in the proof of Theorem 4, that the same argument gives

147 M/z—l
< Cyh )

(A.12) | [ mo—m (N =8, ) (Tt

For the second integral of (A.ll), we use (A.9), and up to negligibly high

order in h, we write

i(S(t,x,7) —x -N+Tt)/h

@rn) T T [ xo(m) e Ny (tx,me drdrdxadrn.

First we show that the integration over distant regions of (x,7) contributes

0(h**). By (A.5) there is an R > 0 so that
pS+7| 25 for Nxm >R and T €[22 —%].

&~

Choose some Ky, Ky € C®(R) so that

supp K, - [R, o)
supp K, C (—o0,2R]

Kl +K2 = 1..
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Since —-ih(atS +7)'18tei¢7/h = ewT/h, repeated integrations by parts gives
a1 @rh) =L [[[[xym) o) AL txm & (i, e OEF T Rt ar axan
— ern) "Xk [[[[ {38 +1 K a0 AN (xm )
Xy e N 2T Bt ar axan.

The term in {--} times Icl()\(x,ri)) is bounded via (A.6) and (A.7) (the
integration over t then gives a convergent integral in (x,7) as in the argument
showing that EQ has kernel in J(R"XR™M), and so (A.13) is O(hk—n—l) for
any integer k > 0.

Thus, we need only compute
7 { ”
(A1) @xn) P L[[[[xy07 (\}(t,x,n)fc2()\(x,77))ew(t’x’ BT B4t a7 dx dn.
The phase ¢ is stationary in (t,7) at the point (3.29), at which

2n-0.V 1

2
a - ¢ =
(t”) 1 0

Thus, is bounded uniformly over the

2 —1/72 _ 2 —1
det a(m,) ¢‘ = 1 and ﬂa(w) ¢ ]

(x,77) region of integration. Evaluating (A.14) by the method of stationary

phase then gives the result
(A.15) @7n) 7" [ xy(InP +V(x) dx dn + ol 7M.
Using Theorem 2 for the third term in (A.11) gives the result

(A.16) 7)) TN __ X3(7) vol(W,)d7 + 0(h2~ ™)

= (2xh)~ [] X5 |F +V(x) dx 47 + 0tk T,
I7E+Vix) <A
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Combining (A.15) and (A.16) proves Theorem 3.

Proof of Theorem 4: Start with (3.31) and proceed similarly to the proof of

Theorem 3, except that we evaluate to the first two orders in h.

Wp*8) ) = [T x (I —T)(Npx8y)(7) d7

-0

+ [ST2 =) (Np 0 ) (1) d

+ J‘)\ -€ X3 YN— T)(Nh*eh)('r)

The first term on the right side above is O(h +°°). The second term is

(a1 e ™[] (P V) =1 —V(x) }] Inl2+v(x)dxd77

+ ohe—My,

The O(h1 —M) term is zero as in the proof of Theorem 2.

Using Theorem 2 on the third term gives the result

(A.18) @) =" [X, x3m) A =7) vol(Wp)dT + 0(h® ")
— em" [ PV A= Vi) dx dn + 0T,
Inf +V(x) <X

Add (A.17) and (A.18) to complete the proc’ of Theorem 4.

Proof of Proposition 5: We shall show

Lemma 5.1: Under the hypothesis of Theorem 2, there exists a constant

CO >0 such that

n—1
(A.19) Np(A+7h) — Ny V)| < Coh? T +ITD
o i and T € R.
for A E()\O A0+2,, € (0,1] and T
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Given this result, consider for A € [)\0 —%—0,)\0 -}-62—03,

(Ny*8p) () — Ny = [° Ny (61 =Ny ()8, (A —0)do .

Make the change of variable c = A+7Th and use (A.19) to get

n+1

(4200 |(Np*8,)(N) =N, (W] < Coh! 7™~ (147" Tro (—rh)har
: |(Np*ey, nM| < Co . h

oo

= con! ™ L % " T,

-0
where we have used (3.6) and p > 0. Since » € f(R), equation (A.20) gives

(3.39).

From the definition of ¥ in (2.8), we have
A
VO 47h) — ¥ = RNy + [3 TN () — Ny )

Make the change of variable 4 = A\ + hv and use (A.19) to get

2—n A +IT?-1
(A.21) I\lfh(>\+'rh) — ¥, — 'rhNh(x)I < Cyh 3
) . 1 (e o] -
Now, using (3.6 and 7) and —ip’(0) = = I To(T)dT,
27 -
(A.22) (Wh*eh)(K) — \Ph()\) + ihp’(O)Nh(X)

[e )

= 5= [ (¥ (\+7h) — ¥ () — ThN, (V) B(T)dT .
Equation (3.36) follows from (A.21), (A.22) and the fact that p’(0) = 0. Given
Lemma 5.1, this completes the proof of Proposition S.

Proof of Lemma 5.1: Suppose T > 0. We have three cases.

Case 1: Suppose hT < 60, where 60 is from (3.8). Then
Np(A+7h) — Np(h) = [MTP N )4
h h N h'\# ek
~ L =N ,
< C (520 Ny (wde

= 27C h(Nj*8,)(N),
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where Cl > 0 so that é— < plo) for o € [—60,60]. Theorem 2 then says
1

that there is a C2 > 0 such that
INR+TR) — NyY| < Cyhl =M

for N\ € (ko——eo,)\o+eo) and ht < 60.

Case 2: Suppose hT > 529 Then, using (3.3),
[Ny +7h) — Ny)| < [Ny +7h) + NV
< C'h T+ AT,
Since h_—1 < %—Z, h <1,and N\ € (ko—eo,)\0+eo), there is a constant C3 >0
such that
[Ny +7h) — Ny )| < c3h1—“(1+|7|)“+1.
Case 3: Suppose 60 < hTt < %. Choose the integer k so that

ké'o <ht <(k +1)60. Then

|Nh(>\-+-‘rh) - Nh(k)l < |Nh(>\-+—'rh) — Nh(x+k60)|

k-1
+ D |Np+ (€+1060) — NyN+280)].
=0
For N € ()\0—%0,)\0 +%—3), each term above may be bound by Case 1, because

N+ 260 € ()xo—eo,)\o—}-eo) for each £ = 0,1,--,k. So in this case,

1—n €0 1—n
|Nh(x+v—h) - Nh()\)l < kCyh < 55 C5h

for )\E (>\0_5291)\0 +%'9)'

Putting the three cases together then gives that there is a CO > 0 such
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that (A.19) is true for 7 > 0. The proof is similar for 7 < 0.

Proof of Theorem 6: If Ay is not critical for V, then there is an ¢; > 0 so

that no value in [\j—e¢y,Ag+€q] is critical for V.

Lemma 6.1: The point {0} is isolated in LO\ €ohotes)”
_— 0=Coiro 0

Given Lemme 6.1, we may find a p € C3°(R) satisfying (3.8) such that

supp p N L(Xo-éo)\cﬁéo) = {0}.
Then Theorems 3 and 4 and Proposition 5 prove Theorem 6.

Proof of Lemma 6.1: We must show, for classice periodic trajectories of

period t = 0 and energies in (Ao—eo,ko+eo), that there is a g > 0 such

that |t| > ty- This would prove that {0} is isolated in L(Ko'ﬁo,*o*’ﬁo)'

The trajectories obey (A.2) and (A.3). Define, for fixed (y,7) € R2M with

energy [1[° + V(y) € (hg—€qrg +eg)
D(t) = (x —y)-€ — (€ —7)-9xVix).
Then D(t) = O for a periodic trajectory starting at (y,7) and having period t.

Since

D = py) = 2l + [axV[E — (x—y)-BxV + 2 —7) -9xxV ‘€

we see that D’(0) = 2[77|2 -+ |8,,:V(y)|2 > d’ > 0, for some d° > 0 depending

only on >\0 and €0 (otherwise V has a critical point in [Xo-eo,ko—i»eoj,
contradicting our hypotheses). Furthermore, from (A.3) and (3.2) the
trajectory is bounded, and from (3.1) the quantities |[3xV| and laxx V| are
bounded on the trajectory. Using these facts and (A.2), we obtain the lower
bound

D’(t) > D’(0) — dltl,
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for some d > 0 depending only on )\O and € - Since

D(t) = [§ D't dt > DO)It] — L dltf?,

1
2

we see that the zeroes of D(t) for which t = 0 obey |[t| > ty = @d—@—)>0.

This completes the proof of Lemma 6.1, and hence Theorem 6.
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APPENDIX B

The Method of Stationary Phase

In this appendix we review several results on the method of stationary
phase which we need in order to evaluate the small h asymptotics of

integrals of the form
(B.1) I a(x)ew(X)/h dMx,

where a € C8°(Rm), ¢ € C°(R™) and ¢ is real valued.
Suppose for the moment that |V¢| > O on supp a. If supp a is
sufficiently small that ¢ may be used as a coordinate in a new coordinate

system {Yu(xl.....xm)}g=1 over supp a (take y,(x) = ¢(x)), then we have
I a(x)el¢(x)/h dmx — "' r(yl)elY1/h dy1 _ f[:};l],

a(x)

where f(y;) = f a(x(y)) 3

dy, --- dyp. Since f € C8°(]R), we conclude
that the integral (1) is O(h +°°) as h — 0. We can always reduce to this case

by use of some partition of unity over supp 8.
A result of Hormander (9], which is proven by clever integrations by
parts, gives uniform bounds.

Theorem 8 ([9, Theorem 7.7.11): Let K C R™ be compact, X an open

neighborhood of K, and k a nonnegative integer. If a € C8°(K), ¢ € C=(X)

and ¢ real valued, then

. 91
“ a(x)em(xvh dx| < Chk Z suplDaal ]V¢|lal =k
laj<k

for h > 0. Here C (which depends on ¢, but not a) is bounded when
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> ,Da¢, stays bounded.
i<k +1

This theorem tells us that (B.l1) vanishes rapidly as h — 0 when the
phase ¢ has no stationary points in supp a. By a stationary point of ¢, we
mean that V¢ = 0 at that point.

Now consider a simple case wherein the phase ¢ has a stationary point.

Let the dimension m = 1, put ¢(x) = %xz, and let a € CB"(]R). The phase ¢
P2
. . . . ix?/2h .
is stationary at x = 0. Since the Fourier transform of e is
2/2
(27nh)1/2 —ihg , we may compute (B.1)
.2 2/2
(B.2) Jae™/2Rax =L [a2min)!/2e ™ the™ 4¢.

Using elt — Z (it) /J' < Itlk/k! for t € R in (B.2) gives

(B.3) [axel® /gy — 2riml/2 Z (—m/")J 22 (o)
i=0
N —ihg?/2[K

< L [lswammt2| ZHealt

2k +1
k+3 j

cen ™ 3 fodal .,

J=

In the right-hand side of (B.3) the following bound was used
[la@l ek de = [la@ | el 1 +1eh (1+leD? ae

2 s} N
(Jla@a+1ep™ a0l (o4 jeh2ae) 2

2k +1 2k +1
<o S sl = Z el ..
i=0

So we see from (B.3) that (B.2) is not O(h °°) as h — 0. This is due to the

presence of the point of stationary phase in the integral at x = 0. As (B.3)
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shows, we can compute the small h asymptotic beha;/ior to any order we
desire, and the result depends on the value of a and its derivatives at the
location of the point of stationary phase.

This last example can be extended to higher dimensions in a

straightforward manner, yielding:
Theorem 9 ([9, Theorem 7.7.3]): Let A be an m X m real symmetric non-

degenerate matrix. Then for every integer k > 0 and integer s > m/2,

[facel ®AR20 gy 5 n)

< cdlatfn™2 R ST |p%a|
joe <2k +S

L2

for h > 0 and where

Sy (h) = (27h)™/2 |det A[1/2 T SenA/4
k—1.
(—ih/2)’

22 (p, D)y a(0).

=0

Finally, we consider the more general case where ¢(x) is stationary, but
not degenerate, at a point x = Xg - Since
B(x) = B(xg) + 5((x—x0),8" (xg)(x—x0)) + &x,(X)

where
(B.4) Bx, (X) = #(x) — ¢(x0) — %((X—XO),tﬁ“(xo)(x——xO)).
We then write for (1),

e1¢>(xo)/h J’ {8 (x) eigxo(X)/h } ei((x _XO) o¢"(x0) (x —x,;;)‘) /h dx

and apply Theorem 9 (with the quantity in braces replacing a there). One

obtains

Theorem 10 ([9, Theorem 7.7.5]1): Let K C R™ be compact, X an open
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neighborhood of K and k a positive integer. If a € C8°(K), ¢ € C=(X),

¢’(x0) = 0, det ¢”(x0) 7 0 and ¢'(x) = 0 for x € K \ {xo), then

| | ., k=]
®.5) |[ax)e® P Pax — @72 |det o (xp[ /26 TNV S

J=0
< Chm/2+k sup|D°‘a|.
foe | <2k
Here C stays bounded when > sup'DaqsI and H¢>”(x0)’1n stay bounded
Ja| <3k +1
in X. The LJ-a are given by
Lpg = > (2% (D07 xp DY (k2 (xg).
V—u=]
20>3u

There is no problem in extending this to the case where ¢ and hence XQ
may depend on some parameters y [9, Theorem 7.7.6], as long as

> suplD%Mx,y)l and H¢xx(x0(y),y)'lu stay bounded for x € X and
lal <3k +1

all y of interest. For reference, we list Loa and Lla explicitly:

(B.6) Lga = a(xg
La = —i[} ®@.BDarxy
+ %(Da,BD(D,BDM)(XO)

L((D,BD)?¢)(x) & (xg)

+
on

Jon

(D(D,BD)¢,BD(D,BD)¢)(xy) a(xg)],

_4
[\9)

4

where the matrix B = ¢“(x0)'1 .

In the proofs of Theorems 2, 3 and 4 we use the results of (B.5) and

(B.6).
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