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Abstract

This thesis addresses several problems related to generalization in machine learning
systems. We introduce a theoretical framework for studying learning and generaliza-
tion. Within this framework, a closed form is derived for the expected generalization
error that estimates the out-of-sample performance in terms of the in-sample per-
formance. We consider the problem of overfitting and show that, using a simple
exhaustive learning algorithm, overfitting does not occur. These results do not as-
sume a particular form of the target function, input distribution or learning model,
and hold even with noisy data sets. We apply our analysis to practical learning
systems, illustrate how it may be used to estimate out-of-sample errors in practice,
and demonstrate that the resulting estimates improve upon errors estimated with a
validation set for real world problems.

Based on this study of generalization, we develop a technique for quantitative
valuation of training data. We demonstrate that this valuation may be used to select
training sets that improve generalization performance. With a reasonable prior over
target functions, it further allows us to estimate the level of noise in a data set and
provides for detection and correction of noise in individual examples. Finally, this
data valuation can be used to classify new examples, yielding a new learning algorithm

that is shown to be relatively robust to noise.
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Chapter 1

Introduction

Machine learning systems are now quite commonly used to solve practical problems.
Systems that learn from examples can be used to deal with problems for which so-
lutions are unknown or are not mathematically well defined. Learning can also give
efficient solutions (or approximate solutions) when known algorithms are computa-
tionally ineflicient. The theoretical analysis of learning systems is inherently prob-
abilistic and statistical [White 1989], and a great deal of the literature deals with
statistical learning theory [Devroye et al. 1996; Vapnik 1998]. We draw on this sta-
tistical approach to address problems related to the generalization performance of

learning systems.

1.1 Learning Systems

In order to study the nature of machine learning, we must first have a precise definition
of what constitutes a learning system. We begin with a description of the learning
process and introduce the notation that will be used throughout this thesis.

The goal of a learning system is to discover a function f : X — Y. The input
space X and output space Y are known, but f is by definition unknown and is referred
to as the target function. For example, X and Y may be spaces of real numbers, with
the target function being a mathematical relation like f(z) = 2% — 1. Or elements of
X may represent sets of symptoms, with f(z) indicating the presence or absence of

a certain disease.
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The information available to the learning system is encapsulated in pairs of inputs
and outputs (z,y) € X x Y. For each pair, y = f(z) + 7, where 7 is some random
variable and is referred to as noise. These pairs are called ezamples, as they are
(possibly noisy) examples of what the target function does. In general, learning
systems may receive examples sequentially (this model is common in reinforcement
learning [Sutton and Barto 1998]) or may be able to request an example with a
specified value chosen from X (as in active learning [Cohn et al. 1995] or query based
learning [Angluin 1987]). We restrict our discussion to the supervised learning model,
in which a fixed finite set of examples D = {(z;,y;)}}L; is provided to the learning
system. D is referred to as the training set, and it is assumed that the x; are drawn
randomly and independently from some input distribution px over X.

Given a training set, the learning system must select a hypothesis g as a guess
for the target function. The set G of candidate hypotheses is referred to as the
learning model. In general, the learning model may be finite or infinite, countable
or uncountable and may or may not contain the target function f. For example, if
Y = R, then we might choose the set {g(z) = c|c € [0,1]} of constant functions as
our learning model. Learning model selection is ad hoc, and normally is done so that
¢ has a simple parametric representation.

The procedure by which the learning system selects a hypothesis from the learning
model is referred to as the learning algorithm. Figure 1.1 illustrates the entire learning
process. A learning algorithm A takes the training set D and the learning model G
and outputs a hypothesis g € G, usually based on some performance criterion on the
training set. For example, the learning algorithm may attempt to find the hypothesis
in G that minimizes the mean squared error {(g(z) — y)?),.*

In the end, the performance of a hypothesis is measured by a pointwise error
function e : Y x Y — R, however, the exact form of e may or may not be available

to the learning algorithm. For a hypothesis g the mean error on the training set

1We use px(-) to denote the probability distribution for the random variable X. We write Pr[:]
for the probabilities of discrete events. Ex[-] denotes the expectation of a quantity with respect to
the random variable X. When a sample is available, we will denote by (-) g the sample mean taken
over the set S.
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Figure 1.1: The learning process. The information about f available to the learning
algorithm is only what is contained in the training set. Given the training set and a
learning model, the learning algorithm outputs a hypothesis function g.

v(g9) = (e(g(z;),yi))p is called the in-sample error or training error. The expected
performance on the entire input space 7(g) = E;[e(g9(z), f(x))] is called the out-of-

sample error or generalization error, and is the real quantity of interest.

1.2 Generalization

Once we have selected a hypothesis g from our learning model, we are interested in
how it will perform on new data, that is, how it will generalize. The generalization
error cannot be determined exactly without knowing the target function, but we
would like to have an estimate or bound. Unfortunately, it may seem that the only
information available to us is what is contained in the training set, and a hypothesis

that has a low in-sample error is not guaranteed to perform well out-of-sample.

1.2.1 Overfitting

A common problem observed in practice is that of overfitting the data. With a suffi-
ciently complex learning model, we will be able to fit any data set without necessarily

learning anything about the underlying target. This idea is illustrated in Figure 1.2.
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Figure 1.2: Overfitting by polynomials. Noisy examples (marked by +) are generated
from the function f(z) = z (shown as a dotted line). The data are fit with linear
(dashed line) and twentieth order (solid curve) models.

The training set (indicated by -+ in the figure) is generated as noisy examples from
the function f(z) = z. With a linear learning model, the best fit (in terms of mean
squared error) is shown by the dashed line. The error does not go to zero, and the
resulting line does not pass through any of the training data. With a learning model
of twentieth-order polynomials, however, we can fit the data perfectly and can find a
hypothesis that gives zero in-sample error (the solid curve in Figure 1.2). Even with-
out knowledge of the generating function, we would tend to prefer the linear fit for its
simplicity, and suspect that the twentieth order fit cannot generalize to points not in
the training set. This preference for a simple explanation is embodied in Occam’s Ra-
zor, and learning algorithms explicitly based on Occam’s Razor [Blumer et al. 1987]
and information theoretic simplicity [Rissanen 1978] have been developed.

A slightly different but related idea is that of overtraining. For a powerful learning
model, a learning algorithm that does a sequential optimization (“training”) may
perform best if we limit how long it runs. Figure 1.3 shows error curves for training
a neural network on the noisy data from Figure 1.2. In essence, the learning model

is capable of overfitting the data, but to do so a sufficiently powerful algorithm is
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Figure 1.3: Overtraining a neural network. The in-sample and out-of-sample errors
decrease at a similar rate in the early epochs of training. As training progresses, the
in-sample error continues to decrease, while the out-of-sample error increases.

required.

Overfitting and overtraining are difficulties inherent in the machine learning prob-
lem. Expending more effort in the training process may degrade performance. The
in-sample error alone is not necessarily a good indicator of future performance, so
for a learning system to be of practical interest, we must have some further way of

characterizing the generalization ability.

1.2.2 Generalization Theory

There are many heuristics aimed at improving generalization and many theoretical
results relating in-sample and out-of-sample errors.

The worst-case performance analysis ¢f Vapnik and Chervonenkis yields some
important and widely applicable results [Vapnik and Chervonenkis 1971; Abu-Mostafa
1989; Parrondo and Van den Broeck 1993; Vapnik 1995]. This so-called VC theory

provides assurance that the largest deviation between in-sample and out-of-sample
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error will be small with high probability, that is,

Prfsup |7(g) — v(g)| > €] < 6(¢, N, dvc), (1.1)

geG

where dyc is a parameter related to model complexity (called the VC-dimension),
and (g, N, dyc) goes rapidly to zero as N goes to infinity. Because it is a worst-case
analysis, the bound can be applied universally, and for any learning model with finite
VC-dimension, the probability of large deviations can be made arbitrarily small given
enough data. On the other hand, the exact determination of dvc for a given learning
model can be difficult, and the amount of data required to get nontrivial bounds
is very large for even modest dyc (more than 13000 examples when ¢ = 0.05 and
dyc = 100 using the bound from [Parrondo and Van den Broeck 1993]).2

Furthermore, bounding the probability of large deviation might not allow us to
infer low out-of-sample error from low in-sample error. In his “no free lunch” results,
Wolpert showed that, in the absence of any assumptions about the target function,
we can make no a priori distinctions between two learning algorithms when we con-
sider zero-one loss and off-training-set error® [Wolpert 1996b; Wolpert 1996a]. As
a consequence, for certain prior distributions over targets, random hypotheses will
perform as well as those selected by a given learning algorithm, so no generalization
can be expected.

It is therefore necessary to make some assumptions about the nature of possible
target functions. Under fairly general smoothness constraints, asymptotic (as the
number of examples N — oo) relationships can be found describing the relationship
between in-sample and out-of-sample error in terms of a measure of learning model
complexity [Akaike 1970; Moody 1992; Murata and Amari 1999]. By restricting
the target to a specific class of functions, computational learning theory provides

learning algorithms that result in out-of-sample error going to zero with probability

2Lee et al. [Lee et al. 1995; Lee et al. 1997] showed that when X = R", a two-layer neural
network with k sigmoid hidden units has dyc > (k — 1)(n — 1). Thus, learning models used for
practical problems could quite reasonably have dyc > 100.

30ff-training-set error is the expected error over all input points not in the training set.
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approaching one [Valiant 1984; Kearns and Vazirani 1994].
Depending on the assumptions made about the target function, a variety of results
can be obtained. It should be borne in mind that some form of prior information about

the target function is necessary for any useful theory of generalization.

1.3 Contributions

This thesis is concerned with the theory of generalization and the generalization
behavior of learning systems in practice, primarily in the context of classification
problems.

A theoretical framework for the study of generalization is presented, building upon
the model introduced in [Abu-Mostafa and Song 1996] and [Song 1999]. Within this
framework, the full generalization behavior of a learning problem is encapsulated in a
single probability distribution. Using a simple learning algorithm, overfitting is ruled
out in the expectation, even for noisy data sets.

A two-stage learning procedure is introduced to apply the theoretical results to
practical problems using standard learning models and learning algorithms. This
procedure is shown to result in improved generalization error estimates.

The use of a fixed training set under this model is shown to lead to overfitting in
some cases. Further investigation of this phenomenon leads to a method for valuing
individual training examples. We show that data selection based on this valuation
technique can be used to create training sets that result in better generalization.
Furthermore, an analysis of the values of individual examples can be used to estimate
noise levels and identify outliers.

Finally, a variation of the data valuation technique is applied as a new nonpara-
metric learning algorithm. This algorithm is shown to be effective in practice and

quite robust to noise.



Chapter 2
The Bin Model

In this chapter we present a framework for studying the generalization behavior of
a general learning problem. We provide an estimate for the expected out-of-sample
error in terms of the in-sample error without restricting the class of learning models

or input distributions.

2.1 Introduction to the Bin Model

We begin the study of generalization by looking at a simple abstraction of the learning
problem. Consider a collection of bins, each bin containing black and white marbles
(see Figure 2.1). From each bin we are allowed to take a (random) handful of marbles
and observe their colors. We would then like to select a bin that has a large fraction
of white marbles.

A preliminary study of this “bin model” as it applies to the learning problem is
given in [Abu-Mostafa and Song 1996]. The bins represent hypotheses in the learning
model, and the marbles represent points in the input space. We associate white
marbles with points for which the error e(g(z), f(x)) is 0, and black marbles with
points on which the error is 1 (we consider only classification problems with zero-
one loss). We can characterize the generalization behavior of the learning system by
examining the relationship between the observed in-sample error (observed number
of black marbles) and the out-of-sample error (overall fraction of black marbles in a

selected bin).
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Figure 2.1: The learning problem modelled as a set of bins. The fraction of black
marbles in a bin is denoted by 7. We try to select a bin with small 7 observing only
v, the fraction of black marbles in a finite sample.

In order to study a general learning problem, we must move beyond the discretized
bins and marbles, but we have already made an important abstraction. Explicit
knowledge of the identity of the target function is not necessary—the target plays a
role only through its errors with the hypotheses (in fact, only through the average
out-of-sample errors). We extend this simple model to further specify what informa-
tion about the target function is important, and to investigate the qualitative and

quantitative aspects of generalization.

2.2 Exhaustive Learning

In many commonly used learning algorithms, a starting point is chosen and a small
set of hypotheses are explored according to some sequential rule. Gradient based
methods like back-propagation [Rumelhart et al. 1986], for example, typically explore
only a few hypotheses that lie on a path of descent in parameter space. This can
result in a great speed advantage, but is susceptible to getting stuck in local minima.
Global optimization techniques like simulated annealing [Kirkpatrick et al. 1983] are
less efficient, but explore4 a much greater number of hypotheses. The error spaces
corresponding to popular parameterized learning models like neural networks tend to
have many symmetries [Bishop 1995], so there remains the question of selecting from
hypotheses with the same in-sample performance.

For the formulation of the bin model, we consider hypotheses to be selected from
the learning model randomly according to a prior distribution pg. We refer to this as

the ezhaustive learning algorithm, and it is exhaustive in the sense that any hypothesis
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in the learning model may be selected.! The term ‘exhaustive learning’ is due to
Schwartz et al., and was used to describe a framework for studying generalization
that they developed that relied on random hypothesis selection [Schwartz et al. 1990].
Their approach is similar to the one we use here but considers only zero in-sample
errors, and their generalization results can be considered a special case of those given

in section 2.4.

2.3 Terminology

For a specified target function and learning model, the probability of selecting a
hypothesis with a given out-of-sample error is implied by pg. We use p, to denote
the resulting probability density, and we refer to this as the w-distribution. Formally,

the w-distribution satisfies

/0 " pa(s)ds = Prfr(g) < mo] 2.1)

for ¢ selected according to pg.

Certain classes of learning models are of particular interest. For each hypothesis
g we define its complement g(z) = 1 — g(z) for every z. We call the learning model
G set-symmetricif g € G & g € G. We say that G is symmetric under pg if G is
set-symmetric and pg(g) = pe(g) for all g € G. When p¢ is implied, we will often
simply refer to G as a symmetric learning model.

A model G is called degenerate if there exists a ¢ € G with Pr[g] > 0, that is,
if there is a hypothesis that has a positive prior probability. The learning models
G C {f, f} are called strictly degenerate and are not of practical interest. In order to
simplify the exposition, we will assume throughout that the learning models used are

not strictly degenerate.

1In reality, only functions in the support of pg can be selected. For the purposes of exhaustive
learning, if ps(g) = 0 then we consider g not to be in the learning model.
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2.4 Generalization

We are now prepared to analyze the generalization behavior of an arbitrary learning
system under exhaustive learning. Specifically, we look at the expected out-of-sample
error having observed the in-sample error on a random training set.

The input values of the examples in the training set are assumed to be i.i.d.
random samples from the input distribution px. Thus the probability of error on

each input is
Prle(g(z), f(z)) = 1] = Eyle(9(=), f(z))] = 7(9). (2.2)

The errors on our training set can be considered independent Bernoulli trials, and
hence vp(g) is a binomial random variable depending on 7(g) with the distribution

Pelun(s) = wln(e) =] = ( ) 71 = m) Y1 (2.3

when |D| = N. For any given hypothesis g, the expected distribution of the in-sample
error v depends only on m(g). Equivalently, in the conceptual model of section 2.1,
the statistics of the observed colors in a random handful of marbles are completely
determined by the fraction of black marbles in the bin.

A straightforward application of Bayes’ Rule allows us to find the expected gen-
eralization error for an observed in-sample performance, that is E, p[7(g)|vp(g)]. We

write

T(vo) = Bg,p[r(9)|vp(9) = 1) (2.4)

= /0 Sl (s|10)ds (2.5)

_ fol sp.(8) Pr[v = wy|m = s]ds
Prlv = 1)

_ o spals)s™o(1 — 5)VO70ds

 Jy pe(s)sNo(1 — s)NO—)ds
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We refer to the function n(v) described by (2.7) as the generalization curve. Note
that the expectation (2.4) is taken over data sets of fixed size N, and there will be a
different generalization curve for each possible V.

Heuristically, a “good” generalization curve is one for which 7(v) ~ v, which
implies that the observed in-sample error is a good indicator of the expected out-of-
sample error. In fact, we will say that ideal generalization corresponds to the case
m(v) = v for all v € [0,1]. We quantify “goodness” in this sense by measuring the

expected squared difference between v and 7 (v)

An(m,v) = Eqgpy[(voy (9) — 7(9))*] (2.8)
Srfao-3] (50 (2) e

Note that we have made a distinction here between good generalization behavior and
low generalization (out-of-sample) error. What is considered a good level of out-of-
sample error is highly variable and depends on the specific problem. The practical
value of a learning system ultimately depends on a confident estimate of the expected
out-of-sample error. Good generalization in the sense of low Ay(7,v) indicates that
the observed in-sample error for a selected hypothesis provides such an estimate.
Figure 2.2(a) shows a hypothetical m-distribution and Figure 2.2(b) shows the
corresponding generalization curve for data sets of N = 25 examples. According to
this model, when the training error v is zero, the expected out-of-sample error is
actually about 0.17, indicating that this in-sample error is an optimistic estimation
of the corresponding out-of-sample error. The generalization curve is very close to
the ideal generalization curve m(v) = v (shown as a dashed line) for most v, and has
Apn(m,v) = 1.5 x 1073, To put this value into perspective, we can consider a hopeless
learning problem in which every hypothesis has 7 = % (a completely random target

or a learning model of random functions will result in this 7-distribution). In this
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1.5¢

0.51

Figure 2.2: An example n-distribution and its generalization curve. The =-
distribution is symmetric about 7 = 1/2 and has no hypotheses with 7 < 0.1. The
resulting generalization curve for 25 examples shows that an observed v = 0 has an
expected m(v) ~ 0.17.

case,

N 2
N 1 1
A =S (e (i-5) = 2.10
w(mv) 2 (z) (’ 2) 4N (2.10)

For certain m-distributions, we can obtain 7(v) explicitly. As an illustration, we
consider a polynomial distributions p,(my) = (d + 1)n& for nonnegative integers d.

The resulting generalization curve is given by

_ Nv+d+1

Setting d = 0 results in uniform distribution p,(my) = 1 for all wy € [0, 1]. In this case,
a randomly selected hypothesis will have any value of 7 with equal probability. The
resulting m(v) is linear in v and lies somewhere between 7(v) = 1 (no generalization,
Ay(w,v) = 1/4N) and 7(v) = v (ideal generalization, Ay (7, v) = 0) depending on
the amount of available data (see Figure 2.3).

The preceding examples illustrate one of the key points of the bin model frame-

work: the generalization behavior is completely characterized by the m-distribution.
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Figure 2.3: Generalization curves for a problem with uniform 7-distribution. With
only one example (N = 1), 7(v) = (v + 1)/3. As the amount of data increases, 7(v)
approaches the ideal generalization curve.

The identity of the target function and the nature of the learning model only affect
the generalization curve through their influence on p,. In principle p, cannot be
determined without knowledge of the target function, but this abstraction allows us
to analyze the learning problem without explicit dependence on f.

The overfitting phenomenon corresponds to a generalization curve which has a
minimum for some v > 0. That is, the best out-of-sample error is reached for some
nonzero in-sample error, and seeking a lower training error will cause the out-of-
sample error to increase. We demonstrated such a case in section 1.2.1, and clas-
sification problems are not generally immune to overfitting. Under the exhaustive
learning algorithm, however, overfitting cannot occur. This is made precise by the

following theorem.

Theorem 2.4.1 The expected test error w(v) is monotonically nondecreasing in the

empirical error v.?

The proof is deferred to section 2.5.2, where we show this to be a special case of a

2A function F(x) is monotonically nondecreasing (nonincreasing) in z iff z; < z9 = F(z) <
F(z2) (z1 < 22 = F(z1) < F(z2)).
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more general result. Theorem 2.4.1 implies that, with exhaustive learning, further
decreasing the in-sample error always improves the expected out-of-sample error.
Overfitting is commonly ascribed to learning the idiosyncrasies of the training set,
and so is expected to be worse with noisy data. We will discuss the effects of noise

on this result and the bin model in general.

2.5 Noise in the Bin Model

In nearly all learning problems, the available data contain some form of noise. Inexact
or erroneous data may arise for a variety of reasons. The target function may be
inherently stochastic or even undefined on parts of the input space. Data collected
from physical measurements have some variability related to the measurement device
and conditions. If a set of examples is provided by an expert (a human transcribing
speech or a credit agency reporting a credit score, for example), the expert cannot be
considered infallible, and the data will reflect the expert’s best guess and not a ground
truth. Errors and omissions may be further introduced by transmission, transcription
or other processing of a data set.

The effects of noise on a learning system are thus of great interest to theorists and
practitioners alike. We consider the effects of noise on generalization in the context

of the bin model analysis.

2.5.1 TUniform Noise

We first consider the case of noise that affects data points independently. For classi-
fication problems (Y = {0, 1}), uniform noise in the output corresponds to a random
flip of the classification with some fixed probability. This is the same noise model as
that of communication across a binary symmetric channel (BSC) [Cover and Thomas

1991] illustrated in Figure 2.4. If the level of noise in the classification problem is ¢,
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Figure 2.4: A binary symmetric channel. Each bit transmitted across the channel is
received correctly with probability 1 — ¢ and incorrectly with probability &.

then we can define a noisy realization f of the target function

() = f(z)  with probability (1 —¢) . (2.12)

1— f(z) with probability e
The underlying target function f is the same, but our available data are noisy, that
is, for an example (z,v), we now have y = f(z).
This uniform noise model can easily be incorporated into the bin model analysis.
Let 7(g) denote the expected error of a hypothesis g with the noisy target f. We can

write 7 in terms of 7.

7(9) = Exle(g(z), f(x))] (2.13)
— Prly(a) # () (2.14)
= (1 —¢) Pr[g(z) # f(z)] + e Prlg(z) = f(z)] (2.15)
=(1—¢)m(g) +e(1 —7(g)) (2.16)
= 7(g)(1 — 2) +¢. (2.17)

Furthermore, if we know the distribution p,, we can find the distribution of # by a
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Figure 2.5: Effects of noise on the 7-distribution and generalization curve. The solid
curve in (a) shows the p; for the p, shown by the dashed curve under BSC noise with
e = 0.1. The corresponding noiseless and noisy generalization curves are shown in

(b).
change of variables.

x((mo—e)/(1—2¢
P((ol_)Z/E( )] e<my<1l—¢

pa(mo) = (2.18)

0 otherwise

Thus, the addition of uniform BSC noise to a classification problem results in a
linear transformation of the expected out-of-sample errors and a contraction of the
m-distribution. These effects are illustrated in Figure 2.5. The solid curve in Figure
2.5(a) gives an example of a m-distribution, and the dashed curve shows the resulting
distribution of # when we flip classifications with probability € = 0.1. The transfor-
mation of (2.18) effectively squeezes the 7-distribution around 7 = . The result is a
generalization curve with larger deviations when v is close to 0 or 1 (Figure 2.5(b)).

We can quantify the effect of noise on generalization by investigating the change

in Ay (m,v). We define an analogous measure

An(,v) = Egpy [(voy (9) — 7(9))°] (2.19)

The noiseless generalization curve in Figure 2.5(b) has Ay(m,v) = 1.5 x 1073, the



18

0.01

0.008f

0.006r

oAN(n,v)

.004

0.002

0 0.1 0.2 0.3 0.4 0.5
Noise Level

Figure 2.6: Ay(7,v) for varying noise levels. For the learning problem described by
the noiseless w-distribution of Figure 2.5(a), the addition of uniform noise of varying
levels results in An(7,v) values shown. As the noise goes to 50%, the value of Ay
goes to 1/4N = 0.01.

noisy version has Ay (7,v) = 2.4 x 1073, As the noise level ¢ — 1, the n-distribution
goes to py(m) = d(mp — 3), and from (2.10) we know that Ay goes to 1/4N. The
value of Ay (7,v) for varying noise levels for the example of figure 2.5 is shown in

Figure 2.6. As is to be expected, increasing the noise results in worse generalization.

2.5.2 Input-Dependent Noise

In some problems, the noise in the data set may be input dependent. For example,
on experimental measurements, the uncertainty can depend on the characteristics of
the particular instrument used and may change for different measurement scales. We
model this input dependence by writing the noise as a function & = £(z). Once again
we define the noisy target function

. f(z)  with probability 1 — e(z)

flx) = . N . (2.20)
1— f(z) with probability £(z)
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On a specific point in the input space, now
Prlg(z) # f(2)] = e(g(z), f(2))(1 - e(x)) + (1 — e(g(2), f(2)))e(z) (2.21)

and the noisy out-of-sample error becomes

#(g) = Prlg(z) # [ (2)] (2:22)
= Es[e(g(z), f(2))(1 - e(z)) + (1 — e(g(2), f(2)))z(z)] (2:23)
= Esle(g(2), /()] + Eale(2)] — 2Ed[e(g(2), f(2))e(2)] (2:24)
= 7(9) + Eole(#)] — 2Eq[e(g(x), f(2))e(2)]. (2.25)

Of particular interest are noise models which allow 7(g) to be determined given only

m(9)-
Definition 2.5.1 We say a noise model £(z) is regular iff 7(g) = 7(n(g)).

From (2.25) it is clear that e(z) is regular iff E;[e(g(z), f(z))e(z)] is a function of
7(g). In the case of input-independent noise e(z) = &, and (2.25) reduces to (2.17).

We illustrate the input-dependent noise scenario with a simple example. Consider
the learning model that consists of threshold functions, g, (z) = sgn(z—w), w € [0, 1].
Assume that the target function is in the learning model, f(z) = g,(z), and for
simplicity that ; < o < 1. Let the input distribution be uniform in [0, 1] and assume
that exhaustive learning is used with w chosen uniformly in [0, 1].

For this simple scenario, an error occurs (that is, e(g,(z), f(z)) = 1) when either
w<z<aora<z<w. Itfollows that 7(g,) = | — w|. For any noise function

g(z), we can compute the noisy out-of-sample error

3 m(gw) + [, e(@)dz — 2 [Ce(x)dz w <
7(guw) = . . . (2.26)
s m(gw) + [; e(x)dz — 2 [ e(z)dr w > o

Note that when p < (1 —«) there are two hypotheses, go—p and gap, that have 7 = p.

For (1 —a) < p < «, there is only one such hypothesis, and no hypothesis has 7 > a.
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Thus the noise model is regular if it satisfies 7(gy—p) = T(gotp) for all p < (1 —a). If
we assume the noise is regular, we can rewrite the noisy error 7 as a function of the

noiseless error m. Rewriting (2.26) for a regular noise function, we get

(m = 7o) = %(ga—mo) (2.27)

— 1(gu) + /O ' e(@)dn —2 / i e(z)ds. (2.28)

2.5.3 The Effect of Noise on Generalization

For a general learning problem, we would like to characterize the generalization be-
havior for both regular and non-regular noise models. Given a training error v, on
N points, we can determine the noisy and noiseless expected out-of-sample errors,
7(vg) and 7(vp) respectively. The in-sample error is now a binomial random variable

dependent on the mean noisy error 7.

Prv(g) = wlg] = Pr[v(g) = w7 (g)] (2.29)
~ (v JF@" 1 = 7)™ (230
and hence,
7i(vo) = Eg[ft(g)|v = 1] (2.31)
= /0 s pajw(s|vo)ds (2.32)

_ Jo.s Prlv(g) = nli(9) = slps(s)ds

JPrlv(g) = wl#(g) = slpa(s)ds (2.33)

where p; is the distribution of 7(g) induced by pg(g). If we are concerned only with

the noisy out-of-sample error, the result of Theorem 2.4.1 generalizes immediately.

Theorem 2.5.1 For any 7(g), pg(:) and noise e(z), #(v) is monotonically nonde-

creasing in v.
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Proof of Theorem 2.5.1:

Let 0 < k < N. We compare 7(£) and 7(%H).

C(k+1\ [k
7 (T) -7 (N) (2.34)
_ fols Pry|,~,[%—‘§—l|s]pﬁ(s)d$ B folt Prulfr[%ﬁ]p,}(t)dt (2.35)
Jy Proa[E2lslpa(s)ds [y Pryal % |flpa(t)de
_ fsk+2 1 )N —k—1 ( )ds ftk+1 t)N —k ()dt
J k(1 — s)N k- 1p,r( )yds — [tE(1 —t)N- kpw(t)dt
_AO [// k+2 N k— ltk( —t)N—kpﬁ(t)pﬁ-(s)ds dt
/ / (1 = )Nk gL _ )Nkl (5 (5)ds dt (2.37)
k) / / s(s — 1)(1 — £)s5E(1 — sYN=F=1(1 — §)Nk-1p_()p_(s)ds dt  (2.38)

ol / / F— )1 — s)thsE(1 — Y11 — ) N—k=1p (\pa(B)dt ds  (2.39)

(2.36)

o) [ [ (s(s = )(1 = ) +#(t — 5)(1 — 8))x
k(1 — (VA1 — 5)NE e (5)pa (1)) di ds (2.40)
/ [(s =285 = Y F L= Y st ds (2.41)
(2.42)

We use the shorthand Pr,z[a|b] for the conditional probability Pr[v(g) = a|7(g) = b].
In (2.37), the factor

Ao(k) = ( / ST — )Nkl (o) / t'“(l—t)N"“p;r(t)dt>—1 (2.43)

is positive (since the integrands are nonnegative) and finite (since G is not strictly

degenerate, hence 3 0 < 7y < 1 with pz(7p) > 0) for all k. (2.39) is (2.38) rewritten

with a change of variables, and (2.40) is obtained by summing (2.39) and (2.38). Thus
7(0) < (%) <7(%) < ... < 7(1) completing the proof.

We can now use this result to prove Theorem 2.4.1 for the noiseless case.
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Proof of Theorem 2.4.1:
This is a special case of Theorem 2.5.1 with 7(g) = 7(g)Vg.

]

Thus, for any noise model, there is no overfitting of the noisy error 7—reducing

the in-sample error always leads to a reduction of the out-of-sample error observed
under the same noise model.

When the noise distribution is regular, we can write the noiseless and noisy ex-

pected errors in terms of the (noiseless) m-distribution p,. Substituting 7(g) = 7 ()

into (2.30),

N ~ ~Nv
Pilule) = wlre) =m] =y Jilm) (1= (o). @44
This allows us to give conditions under which minimizing the noisy in-sample error

cannot overfit even the noiseless out-of-sample error.

Theorem 2.5.2 If ¢(z) is reqular and 7 () is monotonically nondecreasing (nonin-
creasing) in w then for any p,(-), w(v) is monotonically nondecreasing (nonincreasing)

n v.

Proof of Theorem 2.5.2:
The proof is similar to that of Theorem 2.5.1. Let 0 < k£ < N. We look at 7 (%l) —

™ (%)-

W(k;l)_w(]_/;_) (2.45)
_ Jo s Prua[5slpa(s)ds [yt Pruja[f|6]pe(t)dt (2.46)

A Pfu|w['“—+-1|S]Pw(8)d8 Jy Pruwr[y’“vlt]pw()
_ [ A =R T pa(e)ds RO =R Fpe)dt ) o
J7 (>k+1(1—7r(s>>fv—k~lpﬂ<s>ds [E0% (1—7r(t>>N Ep(2)dt |

0 ([ [ s #6 = R4 = 7)Y O (o)ds

- / / LR — 7)) R ()1 = 7(5)) Vs ()pa(5)ds dt)
(2.48)




= ()M = AO) T py (Bpa(s) ds b (2.49)

) [ / (£ = $)F()(1 — 7(s))7(s)"7(2)
()Y = A ()Y py (e (s)) ds db (250)

A8 [ / s — 8)(7(5) — (D) (1) 7 (s) x
(1 = FE)Y (L = 7)Y pa(s)pa(t)) dit ds (2.51)

(2.52)

is positive and finite for all k£, and the steps are essentially the same as those in the
proof of Theorem 2.5.1. '

If 7 () is monotonically nondecreasing in , then (s —t)(7(s) — @ (t)) > 0 Vs, t, the
integrand in (2.51) is always nonnegative, and hence 7 (v) is monotonically nonde-
creasing in v. Likewise, if 7 () is monotonically nonincreasing in 7, then the integrand

in (2.51) is always nonpositive and 7(v) is monotonically nonincreasing in v.

In particular, the uniform BSC noise model is regular and 7 (given by (2.17)) is
monotonically nondecreasing in . Theorems 2.5.1 and 2.5.2 indicate that even with
uniform noise we should not be concerned with overfitting under exhaustive learning—
our expected noiseless out-of-sample error will be minimized by minimizing the noisy

in-sample error.

2.6 Extensions of the Model

The bin model analysis presented in this chapter deals only with binary classification

problems. The extension to multiclass and regression problems is nontrivial, since
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the relationship between v and 7 is generally not as nice as (2.3), and there is much
more flexibility in the type of noise that may be present in the data.

Nevertheless, some of the important results may be extended to the more general
learning problem. In particular, conditions for monotonicity of the expected out-of-
sample error for real-valued error functions can be derived, and the effects of noise in
regression problems have been studied. These results do not play an important role
in this dissertation, so we only mention them here and refer the reader to [Nicholson

2000] for a more thorough discussion.

2.7 Discussion

The bin model framework allows us to analyze the generalization characteristics of
a general classification problem. Only the 7-distribution is needed to describe the
generalization curve fully, eliminating the explicit dependence on the particular target
function and learning model.

The main theoretical consequence of this analysis is that there is no overfitting in
expectation when an exhaustive learning algorithm i}s used. This remains true in the
presence of input-independent or regular noise.

The major practical shortcomings of the bin model are that the w-distribution
cannot, in general, be known exactly without knowledge of the target function, and
that it relies on the inefficient exhaustive learning algorithm. Even with knowledge of
the m-distribution, the quantitative results cannot be applied directly when sophisti-
cated learning algorithms are used. We will address these practical limitations in the

next chapter.
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Chapter 3

Generalization in Practical
Learning Systems

In this chapter, we investigate the application of the theoretical results of the previous
chapter to practical learning systems. We begin by looking at some specific learning
models that lend themselves to a simple analysis. We then introduce a modified
learning process that allows us to use some of the bin model results for learning

systems that are not restricted to exhaustive learning.

3.1 Linear Models

We provide here an exact derivation of the 7-distribution for a simple class of linear
learning models. Consider classifiers g : R* — {0,1} with a linear decision boundary
that passes through the origin. This learning model can be written G = {gw} where
gw(z) = sgn(w - z) for z,w € R% We assume that the inputs = and weights w
are selected from distributions that are spherically symmetric about the origin. For
target functions in the learning model we can calculate the w-distribution from which
the expected generalization behavior can be determined.

Let the target function be f = sgn(wy-z). By symmetry, we can say w.l.o.g. that
w; = (1,0,...,0). Appealing to the rotational symmetry of the input distribution,
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we have

(gw) = 2 (5.1)

™

where ¢(w) denotes the measure of the interior solid angle (0 < ¢ < =) between W
and w;.! If we write w = (w1, ws, ... ,wq), then ¢(w) = arccos(w;). The region of
weight space for which 7(g) < s is the area of the spherical cap of the unit d-ball in

which ¢(w) < sw. Thus, we can find the cumulative distribution of 7 by calculating

this area.
Pr[n(g) / / / JdB4_o---dO1do (3.2)
({b 0:=0 Og_0=0
=2 7 sin2 o do, 3.3
"5@ /¢ (83)
where
d—3
J =sin*? ¢ ] [sin®? O (3.4)
i=1

is the Jacobean transforming Cartesian coordinates to polar coordinates

(¢,01,0,,...,04 2) on the surface of the unit d-ball, and

27Tk/2

is the surface area of the unit k-ball. Hence
dPr[m < §]
Pa(my) = —————— (3.6)
ds s=0
_Sd-1) . 4
= ——g@—i)——ﬂ' sin®™*(momr). (3.7)

These w-distributions are illustrated in Figure 3.1 for varying d. For d = 2, the =-

distribution is uniform, resulting in linear generalization curves as in Figure 2.3. For

IWe use boldface 7 to denote the constant 3.14159. ...
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Figure 3.1: w-distributions for a linear learning model and target. p, is shown for
d = 2,4,10,20. The distribution becomes more and more peaked around = = 1/2 as
the dimension increases.

d > 3 the generalization curve can be calculated from (3.7), but cannot be expressed
simply. A numerical evaluation of the generalization curve for d = 20 is shown in
Figure 3.2. The generalization is quite poor due to the narrow peak of the distribution.
In this case Ay(m,v) = 6.3 x 1073, which is worse than the 30% noise case in the
example of Figure 2.6 (N = 25 for both examples).

In this section we have demonstrated a class of problems for which the =-
distribution can be computed exactly, allowing a direct application of the bin model
analysis. The results only describe the generalization for uniformly randomly selected
hypotheses and only apply when the target is also in the model, and therefore seem
to be of very little use. We will return to this analysis in Chapter 4, though, where
we show an extension of this analysis to be valuable for data selection and discuss

methods for dealing with noise.



28

0.8r

0.2r

0 0.2 0.4 0.6 0.8 1
v

Figure 3.2: Generalization curve for 20-dimensional linear model. 7 (v) is shown for
the case d = 20 and N = 25. The ideal generalization curve and = = 1/2 are also
shown for reference. The generalization is quite poor and has Ay (m,v) = 6.3 x 1073,

3.2 Neural Networks

Perhaps the most widely used and studied learning models are layered neural networks
(feed-forward neural networks, multilayer perceptrons and variations thereof, see, for
example, [Haykin 1994; White 1992]). Except for the most trivial cases, the complex
functional form of these networks prohibits us from calculating exact m-distributions
as we did for linear models in the previous section, even given the target function.
Nevertheless, we are able to gain some insight into the generalization behavior of
these models by looking at the qualitative characteristics of the learning model.
Consider learning models of the form g(z) = sgn(w - v(z) —t). This is the general
form of a neural network with a linear threshold unit at the output. This model
includes perceptrons (linear threshold functions), multilayer perceptrons and certain

radial basis function networks. Since

9(x) = sgn(w - v(z) — 1) (3.8)
g(z) = sgn((-w) - v(z) — (-1)), (3.9)
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Figure 3.3: Empirical n-distributions. The figures show histograms of the -
distribution estimated from 107 samples from neural network models. In (a) the
model used is a feed-forward neural network, and the model in (b) is a radial basis
function network. In both cases the model is symmetric and a degeneracy is evident
near 7 = 1/2.

these models are set-symmetric when the allowed values of the weight vector w are
symmetric about 0. They may also be degenerate, since ¢t > |w| - |v(z)| = g(z) = 0.
Therefore, if |v(z)| is bounded above and |w/| is sufficiently small with positive prob-
ability, then the zero hypothesis g(z) = 0 (and by symmetry the one hypothesis
g(xz) = 1) will have positive probability under exhaustive learning. Although we
cannot carry out an exact analysis, we can make general statements about the gen-
eralization curve for symmetric models, and we can analyze the effects of degeneracy
on generalization by a decomposition of the learning model.

Some empirical examples of 7-distributions for neural network models are illus-
trated in Figure 3.3. The distributions are for a model of feed-forward neural networks
with tanh hidden units and a model of radial basis function networks with Gaussian
basis functions. These were computed by Monte Carlo simulations with known tar-
get functions and with weights and thresholds drawn from uniform distributions in
[—3,3]. Both distributions appear to be symmetric (p,(my) = p(1 — 7)), as we
would expect, since the weight distribution is symmetric about 0. The degeneracy

of each model is also made immediately evident by the appearance of sharp peaks in
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the observed m-distribution. In both cases the degeneracies appear near 7 = %, which
we would expect for class balanced (that is, Pr[f(z) = 1] ~ Prf(x) = 0]) problems

when the degeneracy is due to the zero and one hypotheses.

3.2.1 Model Symmetry

Many parameterized classifier models used in practice (and specifically the neural
network models described above) can immediately be shown to be set-symmetric
for an appropriate parameter range. In the bin model framework, symmetry of the
learning model leads to some straightforward results. We mention several of these
here, which may seem trivial but will prove to be useful later.

Under a symmetric learning model

Pr(m0) = pr(1 — o) (3.10)
Priv(g) = vo) = Prlv(g) =1 — 1) (3.11)
() =1—m(1 — ) (3.12)
n(1/2) =1/2 (3.13)
Eq[m(v(9))] = Eqlv{g)] = Eqgln(9)] = 1/2, (3.14)
and from the monotonicity of 7(v) and (3.13),
") <3 evs (3.15)

Also, for a single input z, since each hypothesis that classifies z correctly has
a counterpart that classifies x incorrectly (with the same prior probability),
E,le(g(x), £(2))] = 1, and since e(-,-) € {0,1}, Var,[e(g(z), /()] = L.

Note that these results rely on the symmetry of the n-distribution described by
(3.10), rather than the symmetry of the learning model. Therefore, these results still
hold in the presence of uniform BSC noise, since the transformation (2.17) preserves

this symmetry.
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3.2.2 Model Decomposition

Given learning models G; and associated prior distributions pg,, we define the com-
position of these models, written G = Y. o;G; for constants o; with >, =1, to
be the model with G = |, G; and prior distribution pe(g) = >, ipa,(g). We can
write the generalization curve for the composite model in terms of the generalization

curves under the individual models. For the composite model,

m(vo) = Eqglm(g)[v(9) = vo] (3.16)
= ZEg[ﬂV(g) = vy, Gi] Pr|G;i|v(g) = vo] (3.17)
_ >0 Pr[v(g) = v|Gi|Ey[n(9)|v(g) = vo, Gi
= Pr{v(g) = 0] (3.18)
_ >0 Prifv(g) = 1/0]7@(1/0)7 (319)

Pr[v(g) = w

where m;(vg) = Ey[r|v(9) = v, G;] and Pr;[v(g) = v] = Prv(g) = 10|Gs] are respec-
tively the generalization curve and probability of observing in-sample error 14 under
model G;.

In order to investigate the effects of a degeneracy on the overall generalization, we
decompose a given learning model G into three components. We let G = G; + Gy +Gs,

where G, is a simple symmetric degenerate model

1
gl = {glam}J y4el (gl) = Pay (ﬁ) = 57 (320)

G, is a model with uniform 7-distribution and Gs can be any model. Any learning
model with p,(m) > € for all my € [0,1] and some € > 0 with a symmetric degeneracy
can be decomposed this way with a;,a; > 0. We analyze the behavior of G; and
G, independently, then look at their influence on the generalization of the composite
model.

For the degenerate model G;, we assume w.l.o.g. that m(¢g1) = v < 1 and that
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v > 0 (G, is not strictly degenerate). Then

PT1[I/(g) — 1,0] — _1_< N ) (,YNuo(l _ ,},)N(l_uo) + ,YN(l—uo)(l _ ,Y)Nuo) (3'21)

2 NI/O
and
N(1—2ug)~1 _ AN(1=209)-1
_ g +(1-7)
m () = 7(1—7) ( AN(=2m) 1 (1 — 5)N(-2) (3.22)
For the model G, with uniform p,,
1
Pra[v(g) = vo] = N1 (3-23)
for every vy, and
Nyy+1
(1) = —— (3.24)

N+2°

Consider the generalization behavior of Gy, G, and G in the limit of large N. As
N — oo, ma(v) — v for all v. In contrast, v < my(v) < 1 — « for all v and N.
Thus, the uniform = model will tend to improve the generalization behavior as the
amount of data increases, whereas the degenerate model will degrade generalization
behavior for v < v and v > 1 — . The influence of each model is mediated by the
corresponding probability of v being observed.

The two terms in expression (3.21) for Pri[v(g) = 1) represent binomial distri-
butions, which, by the central limit theorem, will converge to normal distributions
N(v,7(1 = v)/N) and N(1 ~ v,7(1 — 7)/N). Hence, if vy < v — ¢ for some € > 0,
then Pri[v(g) = 1] goes to zero like vVNe ™™ as N — co. Pry[v(g) = v) goes to
zero like 1/N, and will quickly dominate Pri[v(g) = vp]. Thus, while the presence
of a degeneracy has a negative effect on generalization, this effect quickly becomes

insignificant as the amount of data increases.
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Figure 3.4: Degeneracy of neural network models. The level « of the degeneracy of
the all-zero and all-one hypotheses is shown for neural networks with varying number
of hidden units and varying weight distribution.

3.2.3 Levels of Degeneracy

We have shown that a neural network model may have a degeneracy. We now inves-
tigate with what level (in the notation of the previous section, that is, with what ;)
the degeneracy will occur. For a neural network with tanh hidden units, the output
of each hidden unit is in [—1, 1], so the output from the hidden layer v(z) € [-1, 1]
when there are N, hidden units. v(z) - w is bounded by > |w;|, so the hypotheses
g = 0 and g = 1 will occur at least when Y |w;| < |t|. When w; and t are cho-
sen uniformly in [~Winaz, Winas), this occurs with probability ¢V» /N,!, and the total
weight of the degeneracy is at least 1/(Nj, + 1)!. This is a weak lower bound for the
level of the degeneracy, and in general the true level will depend on the particular
architecture of the network. A qualitative inspection, though, tells us that the chance
of a degeneracy based solely on a bad choice of w and ¢ goes quickly to zero as N,
increases. In fact, this holds for any weight distribution, since, if w; and ¢ are i.i.d,,
then Pr(|t| > |w;|] = Pr(|t| < |wi|] < 1, and so Pr[|t| > max; |w;]] < 27N,
Empirical estimates of the degeneracy of a neural network model are shown in

Figure 3.4. The weights and thresholds for the networks were chosen uniformly from
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[~Winazs Winaz], and W, was varied from 0.2 to 20. Networks with different num-
bers of hidden units were compared, with N, being 5, 10, 20 or 50. For the smallest
network and weight range, the degeneracy has a > 0.75, indicating that more than
3/4 of randomly chosen networks will result in trivial functions. We see that the
dependence on Nj, agrees qualitatively with what we expect from the preceding dis-
cussion, the degeneracy decreasing as IV, increases. An increase in W,,,, also results
in a decreasing degeneracy level.

A larger number of hidden units N, and maximum weight size W,,,, are usually
associated with greater model complexity, which in turn is associated with poorer
generalization. The results of this section illustrate that constraining these parameters
to be small in an exhaustive learning setting can also degrade generalization due to

the increased degeneracy.

3.3 Two-Stage Learning

In the preceding sections we have presented a very rudimentary analysis of some
specific learning models. This analysis falls far short of describing the full general-
ization behavior for arbitrary target functions. Furthermore, it still does not allow
us to benefit from a sophisticated learning algorithm associated with the model. In
real applications, the exhaustive learning algorithm—selecting and evaluating ran-
dom hypotheses—is impractical. For a more practical learning algorithm, though,
the selected hypotheses will depend on the training set in nontrivial ways and the
learning process cannot be cast in the bin model framework. Nevertheless, we can
use an arbitrary learning algorithm and still take advantage of the bin model analysis
through use of a validation set.

Given a data set D of size N, we partition it into a training set Dy of size Nr
and a validation set Dy of size Nyy = N — Np. The training set will be used to select
a hypothesis using a learning algorithm A. This is the training stage, and we can
consider the set of hypotheses produced by A to be the new learning model. The new

distribution over hypothesis is implied by the results of A given random training sets
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Figure 3.5: The two-stage learning scenario. The prior distribution over hypotheses
is now induced by the results of a learning algorithm A on random data sets. Given
this distribution, the Validation stage can be studied with the bin model analysis.

Dr of size Np. This process is illustrated in Figure 3.5. The box labelled Training
now plays the role that the model G alone played in Figure 1.1.

There is now a training set underlying the selection process, but for the purpose
of generalization analysis, the second stage of learning is the same (the box labelled
Validation in Figure 3.5). The hypotheses are produced according to some distribution
pa, and we can find the generalization curve with respect to-the new p,, now using
Dy to compute the in-sample error. We now have a smaller set of examples, but
presumably the hypotheses produced are better.

To illustrate the potential benefits of two-stage learning, we consider a two-
dimensional classification problem. The target function is a linear classifier, and
G is a linear perceptron learning model. Given 20 examples, we consider two different
learning approaches. First, we consider exhaustive learning with all of the available
data. Alternatively, we can use the two-stage learning process, using 10 examples to
train a perceptron model with the perceptron learning algorithm [Rosenblatt 1962,
and reserving 10 examples as a validation set. In the first case, the m-distribution is

the distribution of 7(g) for randomly selected hypotheses (here with a uniform weight
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Figure 3.6: Example of two-stage learning. (a) shows the empirically measured -
distributions for a linear perceptron model under exhaustive learning and using the

perceptron learning rule with 10 examples. (b) shows the corresponding generalization
curves. The exhaustive learning result assumes 20 examples. Using the perceptron

rule with 10 examples, the expected generalization error is lower for all values of v,
even though only 10 examples are available for validation.

distribution), and the generalization curve is given by (2.7) with N = 20. In the sec-
ond case, the 7-distribution now depends on the hypotheses that result from applying
the perceptron learning rule to random sets of 10 points, and for the calculation of
7(v), now N = 10. Figure 3.6 shows the empirically estimated w-distributions and
their respective generalization curves.

The random selection results in a 7-distribution that is symmetric and relatively
uniform. Using a training stage yields a n-distribution that is heavily skewed towards
lower values of w. The result is that the generalization curve shows a lower 7(v)
for all v when we use the two-stage learning process. This example illustrates the
advantage of the two-stage approach—the hypotheses produced in the training stage
have much better performance, on average, than randomly selected ones, yet the bin

model analysis can still be applied to the validation stage. We are thus no longer

restricted to the inefficient exhaustive learning algorithm, but have not sacrificed all
hope for a good out-of-sample error estimate.
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3.3.1 Practical Implementation

The use of a validation set to estimate the out-of-sample error is not a novel idea, but
the usual procedure is to use the sample error on this set directly as the estimate. We
expect to obtain better estimates using the bin model results, but to do so we will
need to estimate the m-distribution. We can accomplish this by sampling hypotheses
produced by the training stage using data sets generated by partitioning Dz or by
bootstrapping [Efron and Tibshirani 1993].

Instead of applying the learning algorithm to the set Dy of Ny examples available
to the training stage, we construct a first stage training set Dy of Ny examples and
a first stage “test set” D; of Ny examples. We then apply the algorithm A to D, to
produce a hypothesis g, and take the sample error {e(g(z),y))p, as an estimate of
7(g). We are free to construct different Dy and D; and repeat the training as often
as we like in order to estimate the distribution of 7(g).

If we take Dy and D; as a partition of Dy, then D; can genuinely be considered
“out-of-sample” with respect to Dy, and the estimate of 7 will be unbiased. Alter-
natively, we can construct Dy and D; by sampling with replacement (bootstrapping)
from Dy. In this case the error (e(g(z),y))p, will be a biased estimate of 7 for a
hypothesis g selected by A, but it is not necessary that Ny + N; < Np.

Having estimated the m-distribution, we can apply A to a final training set Dy. The
resulting hypothesis can be considered to be randomly selected from a distribution
pe that produces the estimated p;.

Unfortunately, the data sets Dy cannot, in general, reflect the true input distri-
bution. Hence we cannot be assured of the accuracy of our estimate of p,, especially
when Np is small. Nevertheless, in the next section we present experimental results

that demonstrate the effectiveness of two-stage learning in practice.
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3.4 Experiments

Two-stage learning eliminates the limitation to exhaustive learning and we have de-
scribed how to estimate the 7-distribution. It is now straightforward to apply our

theoretical results to practical problems.

3.4.1 Artificial Data

In order to illustrate the two-stage learning process, a Monte Carlo simulation was
run with target functions chosen randomly from a class of feed-forward neural net-
works. The input dimension was 34 and 200 data points were available to the learning
algorithm (these were chosen to match the ionosphere data set discussed in the next
section). Ny = 50 examples were reserved as the validation set Dy. The data sets
Dy and D; of size 150 and 50 respectively were constructed by bootstrapping from
the remaining 150 examples. A final test set of 1000 examples was used to estimate
the out-of-sample error. In the training stage, a neural network learning model was
trained on Dy for a fixed number (1000) of epochs of gradient descent, and the mean
error on D; was calculated for the resulting network. This was repeated for 1000
different bootstrapped D, and D;, and the distribution of errors on D; was taken as
the estimate for the n-distribution. An example of this distribution is shown in Fig-
ure 3.7. From this distribution we compute an estimate e () of the generalization
curve.

After estimating the m-distribution and learning curve, a final hypothesis was
selected by training a network on a new Dy. The in-sample (validation) error v on
Dy was reported on this hypothesis. The error on the 1000 example test set was
calculated as an estimate of the out-of-sample error 7. Finally, using the estimate
from the first learning stage, the value of 7 (v) for the observed v was reported. The
average results of these three errors over 50000 runs (corresponding to 50000 different
targets randomly chosen from a neural network model) are illustrated in Figure 3.8.

The dotted line shows v and indicates the error one might expect by taking the

validation set error to be a good indicator of the out-of-sample error (7 ~ v). The
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Figure 3.7: Estimated 7-distribution for a toy problem. The distribution of errors on
D; made by a network trained on Dy is shown for 1000 pairs of bootstrapped data
sets.
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Figure 3.8: Average errors for a two-stage learning process. The dashed curve shows
average out-of-sample errors 7 as a function of the validation error v. The solid curve
shows the average generalization curve e (v) estimated with the two-stage learning
process.
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dashed line shows the mean out-of-sample error as estimated on the 1000 final test
points. It is evident that v is an underestimate of the true out-of-sample error when
the error is small and an overestimate when the error is large. From the sharp peak of
the w-distribution, we would expect that that errors far from the mean are unlikely.
When such errors are observed, they are likely due to random variation in the data,
and we must adjust our expectations of generalization ability. The solid line in Figure
3.7 shows the mean value of 7 (v) calculated using estimates of the n-distributions
from resampling in the first learning stage. It is evident that this estimate is (on
average) a better approximation to the out-of-sample error than the in-sample error

for almost any observed v.

3.4.2 Ionosphere Radar Data

To illustrate the value of our approach for real problems, we ran experiments with the
Ionosphere Radar data set from the UCI Machine Learning Repository [Blake and
Merz 1998]. The data set comprises only 351 examples, each consisting of 17 pairs of
real numbers (associated with radar returns) and a classification as either “good” or
“bad” (suitable for further analysis or not; see [Sigillito et al. 1989] for more details).

For this problem, Ny, N; and Ny were the same as in the previous section, leaving
151 examples for a final test set. The first stage data sets were selected in the same
manner, and the same neural network learning model was trained on Dy using gradient
descent for 1000 epochs. The resulting 7-distribution was estimated based on 5000
pairs of bootstrapped data sets, and an example of this estimate is shown in Figure
3.9. For an additional 10000 choices of Dy, a network trained on Dy was tested on
the validation set Dy and the 151 example test set, and m(v) was calculated based
on the estimated m-distribution. This entire experiment was repeated ten times, each

with a different (random) splits of the data into training, validation and test sets.?

2The original order of examples in the data set as available from the UCI Machine Learning
Repository and as used in [Sigillito et al. 1989] has the first 200 examples selected to be balanced
by classification (101 good, 99 bad). This results in the final 151 examples having more than 82%
good examples. The artificial balancing of the training set creates a different input distribution for
the in-sample and out-of-sample data, which is inconsistent with our model of the learning problem.
Therefore, we do not work with this division of the data and our results may not be quantitatively
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Figure 3.9: m-distribution estimate for the ionosphere radar problem. The distribution
of training stage errors for 5000 pairs of bootstrapped data sets is shown.

The dashed curve in Figure 3.10 plots the resulting mean test error as a function
of the validation error. As for the experiments on artificial data, we see that the
validation error is a poor estimate when the observed error is far from the expecta-
tion. In fact, although the observed error ¥ may go to zero, the expected test error
7(v) never goes below 0.2. The solid curve in Figure 3.10 shows the estimated gen-
eralization curve ey () associated with the estimated n-distributions. For nearly all
values of v, the estimate 7 is better than the validation error as an indicator of the
out-of-sample error. We can state this quantitatively by comparing the mean squared
differences A(m,v) = 5.4x107% and A(7, Test) = E,[(m(g) — mest (v(g)))?] = 6.3x 107"

The two-stage learning process allows us to find improved estimates of the out-
of-sample error, but we must sacrifice possibly valuable training data. The result of
a smaller training set is shown in Table 3.1. For a learning system that uses all of
the available data for learning, the in-sample error shown is the final training error
reached, and is a poor indication of the expected out-of-sample error, but no other
estimate is available. For the two-stage learning, the in-sample error corresponds to

v observed in the validation stage, and is, on average, a good estimate of the out-of-

comparable to those of [Sigillito et al. 1989].
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Figure 3.10: Average errors for the ionosphere radar problem. The average test error
7 and expected out-of-sample error estimate 7 are shown for different validation
errors v.

In-Sample Out-Of-Sample
No Validation | 0.0120 £ 0.0002 | 0.2217 % 0.0012
Two-Stage 0.2210 £ 0.0002 | 0.2311 £ 0.0001

Table 3.1: Average errors for the ionosphere radar classification problem. The in-
sample error shown is the training error for the learning system without a validation
stage, and is the validation stage v for the two-stage learning system.
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sample error. The consequence of removing of 50 points from the available training

data, however, is an increase in the out-of-sample error of approximately 0.01.

3.5 Training Set Dependence

In Chapter 2, the major theoretical results (Theorems 2.4.1 and 2.5.1) implied that
there can be no overfitting with exhaustive learning. The experimental 7(v) curves
shown in figures 3.8 and 3.10 are not monotonically nondecreasing. How do we
reconcile the disagreement between theory and experiment?

The binomial distribution of v given in (2.3) is correct for randomly chosen train-
ing sets. It assumes that the errors e(g(z), y) are independent Bernoulli trials with
mean 7(g). For a given, fixed training set, however, dependencies may be introduced
between errors on different data points for a selected hypothesis, or for different
hypotheses on a given data point. We illustrate the possible problems with two
pathological cases.

First, consider a training set D = {(z;, v;)}}*; with N replicas of the same point,
that is (z1,91) = (%2,%2) = ... = (zn,yn). The errors on these points given a
hypothesis g are not independent. In fact, all the errors are the same, and only two

possible values of v are possible, depending on the value of g(z1).

volg) =4 gl@m)=un (3.25)

1 g(z1) #wn

The distribution of ¥ may depend on 7(g), but is not binomial in general. The bin
model analysis does not apply, and in fact, since Pr[v = ﬁ] =0 for 0 < i< N, the
generalization curve is not defined.

Now consider a point z; for which g(z;) = (; for all g € G. Then the errors on
this point for different hypotheses will also all take on the same value, e((;,41). If
the training set consists entirely of such points, so that g(z;) = (; for all g, then only
one in-sample error will be observed, v(g) = N~ °N e(¢, ) for all g. Again the

bin model analysis does not apply, and the generalization curve is not defined.
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These two examples illustrate the extremes of error interdependence, but the ef-
fects may be present to varying degrees. Although the results of the bin model anaiysis
describe the average behavior of a learning system, for a practical learning problem
with only a single training set to consider, anomalies in the generalization behav-
ior (including overfitting) may be observed. In the exhaustive learning formalism of
[Schwartz et al. 1990], this amounts to a violation of the “self-averaging” assump-
tion, and was identified as a problem by Wolpert and Lapedes [Wolpert and Lapedes
1992]. The analysis of the effects of specific training sets and individual points on the

generalization curve is the subject of the next chapter.

3.6 Discussion

The main shortcomings of the analysis of Chapter 2 are its inability to address practi-
cal learning models and the dependence on the exhaustive learning algorithm. In this
chapter we addressed these problems by looking at various practical learning systems.

For a simple linear model, we were able to calculate the exact form of the =-
distribution for targets in the learning model. We discussed qualitative aspects of
the m-distribution that can be inferred for neural network models, and discussed the
effects of symmetry and degeneracy on the generalization curve.

The two-stage learning process introduced in section 3.3 frees us from the inef-
ficient exhaustive learning algorithm. By estimating the 7-distribution in the first
stage, we are thus able to apply the generalization analysis of Chapter 2 to a practi-
cal learning problem. The experimental results of section 3.4 demonstrated that this
procedure gives estimates of the out-of-sample error that are better than validation
error estimates.

We briefly discussed the effects of a finite data sample on the generalization of
a learning system, and showed that the error dependencies that arise in practical
learning scenarios can adversely affect generalization. The dependence of the gener-
alization behavior on particular examples and data sets is studied in much greater

detail in the next chapter.
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Chapter 4

Data Valuation

The results of Chapter 2 describe the expected generalization behavior of a learning
system. In section 3.5 we briefly introduced practical problems related to using a
single realization of the training set. We now look more closely at the question
of which data sets lead to better or worse generalization, and the role played by

individual training examples.

4.1 Overfitting

We return to the issue of overfitting in the context of the bin model analysis. Consider
two data sets D; = {(zi, %)}, and Dy = {(z;,1 — v;)}L, containing examples
with the same input values x; but with opposite classifications. As long as Pr[z €
{z:},] = 0, a learning system that uses D; as the training set (with exhaustive
learning) will exhibit generalization behavior that is quite different from what it will
show using Ds. In fact, the two data sets will result in what is, in a sense, “opposite”

generalization, E,[m(g)|vp,(9) = w)] = Eg[n(9)|vp,(g) = 1 — 1p]. This follows from
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the fact that

VDx(g) = .

=2

Ze(g(xi), ) (4.1)

- ’]1VZ (1 - e(g(z:), 1 — us)) (4.2)
=1 Up, (g) (43)

for all g. If training with D, leads to what we consider to be good generalization
(low v implies low 7), then training with D, will lead to poor generalization and vice
versa. The existence of good data sets implies the existence of bad data sets. We

state this formally with the following theorem.

Theorem 4.1.1 For any N and for any learning system for which the learning curve
mw(v) for data sets of size N is not constant, there exists a data set Dy of size N for

which Eg|m(9)|vpy (9) = vo] is not monotonically nondecreasing in vy.

Proof of Theorem 4.1.1:
If for a data set D the expectation Ey[7(g)|vp(g)] = ¢ is constant, then we must have
¢ = E, j[r|lvp = v] = Ey[x]. Therefore, if E,[7(g)|vp,(g)] is constant for every data

set Dy of size N, then

() = Eqg[m(g)|v(9) = o] (4.4)
= Ep, [Eg[m(9)]] (4.5)
= By[r(9)], (4.6)

which is constant. By assumption this is not the case, so there must be a data set Dy
for which E,[m(g)|vps ()] takes on at least two values. Consider the generalization

curves given D} and its complement

Dy ={(z,1-9y)|(z,y) € Dy} (4.7)
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Since E[r(g)|lvpr(9) = w] = Elr(g)lvp;(9) = 1 — w], we cannot have both
E[r(g9)lvpr(9) = w] and E[r(g)|lvp;(9) = w] monotonically nondecreasing in
vo unless they are equal and constant. Since E,4[m(g)|vps (g)] is not constant by
assumption, at least one of these generalization curves must not be monotonically
nondecreasing.
[
The requirement that the generalization curve is not constant is quite reasonable,
since a constant generalization curve implies that the in-sample error gives us no
information about the expected out-of-sample error. For any problem with nontrivial
generalization behavior, Theorem 4.1.1 ensures us that there are bad data sets, that
is, data sets for which overfitting will be observed to some degree. If our training set
is bad in this sense, then the monotonicity conditions promised by Theorems 2.4.1
and 2.5.2 will be violated.
The existence of bad data sets is perhaps not surprising, since the construction of
the complementary data set in (4.7) requires at least some noise. By no means does
this require a pathological case, as the following corollary of Theorem 4.1.1 makes

clear.

Corollary 4.1.1 For any learning system for which the input distribution is con-
tinuous, and for € > 0 arbitrarily small, there exists a data set Dy of size N for
which Eg[m|vp,| is not monotonically nondecreasing in vp, and for which Dy =

{(zi, f(x:)) YN, where f is a noisy realization of the target function with uniform

3=1

noise with level c.

Many real-world learning problems have inputs that take on continuous values (for
example, the ionosphere radar classification problem of section 3.4.2) and can be
considered to have a continuous input distribution. In such a problem, any positive
noise level, no matter how small, may result in a training set that yields an undesirable
learning curve.

Having established that some training sets will lead to poor generalization, we

would like to have a way to distinguish good and bad data sets a priori. With the
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ability to make such a judgment, given a set of examples we would like to be able to

select a subset that will give good generalization results.

4.2 FError Correlations

Heuristically, overfitting arises with exhaustive learning when the errors on the points
in the training set are bad indicators of the overall error rate. That is, the errors
e(g(z;), yi;) are poorly correlated with the expected errors 7(g). For a data set D =
{(zs, f(z:))}, we denote by p(D) the error correlation

p(D) = corry[vp(g), 7(g)] (4.8)
_ Ey[vp(9)7(9)] — Eglvn(9)]E4[(9)] (4.9)
VVarg[vp(g)[Varg[n(9)]
and for each point x € X, we denote by p(z) the correlation
p(z) = corryle(g(z), f(z)), m(g)] (4.10)

)
_ Eylelo@). F@)n(o)) ~ Bolelo(a), F@NBlr(@)] 4oy
VVary e{g(a), 1 (@) Varglr(9)]

A correlation p(D) very close to 1 indicates a nearly linear relationship between 7(g)
and vp(g) with a positive slope. In this case, we do not expect to observe overfitting.
On the other hand, a correlation p(D) less than 0 indicates that some overfitting must
occur, and for correlations near —1 we expect that increasing vp will almost always
improve 7. For one point z, if p(z) = 0, then the errors on z tell us nothing about the
magnitude of 7 on average. If p(z) < 0, then the hypotheses that classify = correctly
tend to have larger out-of-sample errors than those that make a mistake on z. Thus,
at least qualitatively, p reflects how useful examples at particular input points (or
sets) are for learning. We take p(z) to be a measure of the value of an example with
x correctly classified.

When the learning model is symmetric, we can use the results of section 3.2.1 to
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write
p(z) = C1E [e(g(z), f(z))m(g)] + Co, (4.12)

where C; = 2/+/Vary|r(g)] and Cy = 1/(24/Var,[r(g)]). Looking at the mean square

difference for one example we can write

Aq(m,v) = Eylm(9)’] + Eqlm — 2Eq[e(g(2), f(x))7(g)] (4.13)
= O3 — 2Eqle(g(z), £ (2))7(9)]- (4.14)

Comparing (4.12) and (4.13), we see that a larger p(z) corresponds directly to a better
generalization curve, and the single point z for which p(z) is maximized is the point
for which Aq(m,e(g(z), f(z))) is minimized.

For a data set Dy = {(z;, f(z:)},, we can write p(Dy) in terms of p(z;).

il
¥ Din Eg[e(g(xi), ( i)m(g )] — £ r Byle(g(z:), f(:))]Eq[m(9)]
\/Vﬁrg [vpy (9)]Vary[m(g)]

(4.16)

_L1xn | Varle(g(@), £(z:)
2 ’)\/ Varluo, ()] 0

For a single point, the best choice maximizes p, but (4.17) illustrates a tradeoff in the
choice of best data sets between points with large p (increasing p(z;) in the numerator)
and sets with low variability in v (decreasing Var,[vp(g)] in the denominator).
Consider a simple example, illustrated in Figure 4.1. A target function defined on
X =0,1] is shown in the upper half of the figure. We take px to be uniform and use

a learning model of step functions

G = {sgn(z — a)|a € [0,1]} U {sgn(a — z)|a € [0, 1]} (4.18)
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Figure 4.1: p values for a simple problem. The target function f(z) is plotted in
the upper graph. The value of p(z) for a uniform symmetric step function model is
plotted in the lower graph. The “outlier” near 0.83 has p < 0. The region z < 0.1
also has p < 0, indicating that these points may be detrimental to generalization
using this learning model.

with uniform prior pg(sgn(z — @)) = pe(sgn(a—z)) = 5 for all . With this learning
model, the value of p(z) can be computed exactly, and is plotted in the lower half of
the figure. The single point classified as 0 with 2 ~ 0.83 appears to be an outlier and
has p < 0, correctly indicating that it would form a bad example. All z in the region
0 < z < 0.1 also have p < 0, even though we would not consider them “outliers.”
The complexity of the target function is such that the learning model cannot fit these
points and simultaneously have low overall out-of-sample error, thus these points are
detrimental to generalization under exhaustive learning. It is also apparent that,
unlike more sophisticated learning algorithms, points far from the decision boundary

are more useful for generalization in this context than are points near the boundary.

4.3 Data Set Selection

In this section we demonstrate that the ideas of section 4.2 can be applied to a real

learning problem, and that p based data selection tends to improve generalization.
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Several things hinder the estimation of p in practice. We do not have access to
the true value of 7(g), but can only approximate it by using a validation set. We
cannot generally find the true correlation with respect to py, although we may sample
arbitrarily often from the learning model, and hence may get as good an estimate as

our patience allows.

4.3.1 p Estimation

Here we describe how to estimate p from the data, and how accurate we can expect
it to be. We are restricted to a finite training set D of N points, but, in principle,
we may sample from the learning model as often as we like. We will discuss the
estimation of p using a sample S of N, hypotheses selected randomly (according to
pc) from the learning model.

For each example (x;, f(z;)) in D, we estimate the out-of-sample error on a hy-
pothesis by the leave-one-out error

4
1

vg) =

> elgls), flzs)- (4.19)
g
We then compute an estimate p(z;) of the correlation p(z) by taking the sample

correlation over S, that is,

_ ((9elg(e), /(30)) s — (¥ (9)) (elg(3i), S (@) s

plas) = 5(0(9))5(e(0@), () 420

where 5(v®)(g)) and G(e(g(z;), f(z;)) denote the sample estimates of the standard
deviations of v (g) and e(g(z;), f(z;) taken over S. If we know that our learning
model is symmetric, we can replace the known statistics in (4.20) by their true values.

Applying the results of section 3.2.1, we can write

_ 2(Bgav(9)elg(w), f(2))] — 1/4) (4.21)

) Var, (@)
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for the true correlation, and

for the estimate. For symmetric models (4.22) should provide a better estimate of
p(z;) than (4.20), but it does not represent a true correlation and may give values
outside of [-1,1].

We can make some quantitative statements about the accuracy of our estimates.

The Hoeffding bound [Hoeffding 1963] ensures us that
Pr[[v®(g) — 7 (g)] > €] < 2exp(—2€6*(N — 1)), (4.23)
and therefore that
Pr{max [ (g) — 7(g)| > €] < 2N, exp(—2¢*(N — 1)) (4.24)

when we consider the maximum deviation over the sampled hypotheses. Since we

may select N, to be arbitrarily large, we can instead use the VC bound
Pr[max |[v®(g) — w(g)| > €] < 6e*A(2(N — 1)) exp(—€*(N — 1)), (4.25)
where A(-) is the ‘growth function’ and obeys

= 9k E<d
A(k) = Ve (4.26)
< (e(N —1)/dvc)™ve k> dvc

for a model with VC dimension dyc [Parrondo and Van den Broeck 1993]. The
Hoeffding bound further ensures us that, since 0 < e(g(z), f(z))n(g) <1,

Prl[{e(g(z), f(z))7(9)) — Eqle(g(2), f(@)m(g)]] > €] < 2exp(—2€"N,).  (4.27)

In our estimation of p, we compute the sample mean (e(g(x;), f(z:))v®(g)) in place of
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the expectation E,le(g(z), f(x))m(g)]. A large deviation between these values implies
a large deviation of the type in either (4.24) or (4.27),

[(elg@d, £ (9) - Eqle(g(e), S @))m(a)]| > e
= ( [(e(o(@), £@)(9)) = (elo(@), F@)m(e))| > 5
or [{elg(w), Fw)n(9)) = Bylelg@), F@)n(@ > 5).  (428)

Therefore,

Prl|(e(g(@:), f(z:))vD(9)) — Egle(g(z), f(2))m(9)]| > €]
< 2N, exp(—€°N/2) + 2 exp(—€>N,/2) (4.29)

using (4.24), or alternatively

Prl|(e(g(z:), f(x:))v(9)) — Eqlelg(x), f (@) (9)]| > €]
< 6e‘A(2(N — 1)) exp(—€*(N — 1)/4) + 2 exp(—€>N,/2) (4.30)

using (4.25). The implication of these bounds can be seen by comparing (4.21) and
(4.22). Since Vary[r(g)] and &(v”(g)) may be arbitrarily small (in the presence of
noise with ¢ — %, for example), our error in the estimate of p may be large. With
high probability, however, the numerators of (4.21) and (4.22) will be close, allowing
us to determine the correct sign of p given sufficient data (and provided p # 0). As
we will see in section 4.4.1, under certain conditions it is appropriate to discard all
data with p < 0, so knowing the sign of p is sufficient for data selection.

It should be noted that data valuation based on p(z) differs from active learning
[Cohn et al. 1995], which also attempts to select an example that will be useful for
learning. In the active learning scenario, examples may be chosen arbitrarily, and
the value is ordinarily determined by how well an example will improve a working
hypothesis. In contrast, the p valuation is a priori given the learning model, and our

goal is only to eliminate bad data from a given training set. This selection also differs
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from pure outlier detection, as p values may indicate that examples are detrimental

to learning even in the absence of noise (as in the example of Figure 4.1).

4.3.2 Experimental Results

We demonstrate the effectiveness of data set selection by p valuation using neural
network models and artificial target functions. Given a data set D of N examples, we
wish to construct a training set Dy C D that will yield good generalization behavior.

We showed above that p(z) < 0 can be taken as an indication that (z, f(z))
is a “bad” example. Inspection of (4.17), however, indicated that inclusion of some
examples with p(z) < 0 in a training set may result in a better p(v). Furthermore, we
saw above that an estimate of p < 0 may correspond to a p > 0 when |p] is sufficiently
small. In order to reject bad data without risking good data in the process, we consider
data sets constructed by rejecting points with p < p;, for some appropriate threshold
pr < 0.

To test the effectiveness of this procedure, we ran Monte Carlo simulations with
neural network models with tanh hidden units. The input distribution was uni-
form in [—5,5]?, and the learning model consisted of neural networks with 3 hidden
units. Random target functions were selected from a neural network model with
4 hidden units, and targets for which the classifications were heavily unbalanced
(Pr[f(z) = 0] < 0.4 or Pr[f(z) = 1] < 0.4) were rejected. Data sets D of N = 200
examples were generated and p(z) was estimated for each one based on Ny, = 500
sampled hypotheses. Training sets Dr(p;) were constructed by discarding examples
with p(z) < p; from D for p; ranging between —0.09 and 0. The neural network
model was trained using gradient descent for 1000 epochs D and each of the Dr(p;),
and the resulting mean squared errors between the (continuous) network output and
the target value was reported on a test set of 10000 examples.

The improvement in MSE resulting from the use of Dr(p;) instead of D averaged
over 500 targets is shown in Figure 4.2. When no noise is added to the data, discarding

data always results in a larger error. When there is noise, however, we obtain a better
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Figure 4.2: Generalization error improvement using p based data selection. The
average improvement in out-of-sample error is shown for neural networks trained with
data sets constructed by discarding examples with p < p;. Improvement is relative to
the same model trained with all available examples. The different curves correspond
to different levels of uniform noise added to the data.

out-of-sample error by discarding data for almost all choices of p;. In particular, using
py = 0 results in a significant improvement for all noise levels.

If we have enough confidence in labelling examples as bad that we consider
it appropriate to discard them, then we might instead consider reclassifying them
(z,y) = (z,1 —y). Given a data set D, we construct the reclassified set Dg(p¢) by
replacing each example for which p(z) < p; by its reclassified version. Experimental
results for data reclassification are compared with data rejection in Figure 4.3 for
data sets with 12% noise. Although reclassification is slightly worse than rejection
for p; near 0, the out-of-sample error is lower for networks trained on Dg(p;) than for
those trained on D for every p;.

For these experiments we have used gradient descent and have reported mean
squared errors on the real valued outputs of our neural network model. Valuation
based on p is justified by an analysis based on exhaustive learning, but even in this
complicated learning scenario we find that selection of a training set based on esti-

mates of p results in better out-of-sample performance. This can be seen as a con-
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Figure 4.3: Error improvements with data rejection and reclassification. The solid
curve shows error improvements resulting from data sets constructed by discarding
points with p < p, as a function of p;. The dashed curve shows the corresponding
improvement if we keep all examples but reclassify those with p < p;. Both curves
show results averaged over random neural network targets with 12% uniform noise.

sequence of our valuation identifying examples that are actually outliers—examples
that carry incorrect information about the target function. Rejection (or reclassifica-
tion) of outliers should increase the usefulness of a training set for almost any learning

system.

4.4 Noise

In the definition of p(z), we consider the correlation of 7(g) with the error g makes on
x with respect to the true target value f(z). The assumption of correctly classified
examples carries over into our definition of the estimate p in (4.20). In section 4.3.2
we experiment with noisy data, so this assumption is implicitly violated. We can deal
with this by assuming an observed realization of the noisy target to be the true f,

but it is more convenient to generalize the definition of p to allow for examples (z, y)
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with y # f(z). We write

p(zly) = corrgle(g(z), y)7(9)] (4.31)

for an example (z,y) and form the analogous estimate p(z;|y;) for an example (z;, ;)
from a finite data set by replacing f(z;) with y; in (4.20).

For any z € X and any g € G it is clear that e(g(z),0) = 1 — e(g(x),1), from
which it follows that

p(al0) = (B, [e(9(z), 0)7(9)] ~ Eyle(9(), 0)]E,[m(0)]) /C (432)
= (B[(1 ~ e(g(z), D)m()] = Bl(L ~ eg(a), DBlr(@)) /C (433)
= (~Eqle(9(2), ()] + Eqle(9 =), DIF[n(9))) /C (434)
= ~p(z|D), (4:35)

where C' = /Varg[r(g)]Vary[e(g(z),0)] = +/Vary[n(g)]Vargle(g(x),1)]. Thus, re-
classification of any single example results in a sign change of p. This provides a
justification for the data reclassification used in section 4.3.2. Examples that we con-
fidently consider to be bad (based on p) become examples that we can confidently
consider good by reclassifying. It is also a starting point for studying the effects of
noise.

Consider a learning problem with uniform BSC noise with level €. The noisy
out of sample errors 7(g) are given by the linear transformation (2.17) of 7(g) (with
positive scaling). Since corr[A, B] = corr[aA + 8, B] for constants «, 8 with o > 0, a

noisy correlation

pzly) = corrgle(g(=), y)7(9)] (4.36)

will have the same value as the noiseless p(z|y) under BSC noise. The effect of noise
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on a single example is therefore

plzly) = p(=ly) (4.37)
z = f(x
_ ) @) y=f@) (438)
—p(z) y=1-f(z)
Thus, the addition of uniform noise to the targets does not change the value of
p(x) when z is correctly classified. Points that are misclassified, however, will have

p(zly) = —p(z). (4.38) is quite simple, but its implications for the study of the effects

of noise are significant.

4.4.1 Noise Estimation

Without some prior belief about the possible form of the target function, it is not
generally possible to detect noise in the data or estimate the noise level [Magdon-
Ismail 2000]. Given a prior distribution over target functions, however, analysis of
the p valuations can give us insight into the noise distribution, and can allow us
to detect and reject noisy data with confidence. Assuming a prior distribution over
noiseless target functions, there is an associated distribution p, for the values of p for
randomly selected inputs and targets. The addition of uniform noise with probability
e results in a fraction ¢ of the points having p(z) = —p(z) and the remaining 1 — ¢

having p(z) = p(x). Hence the distribution of j will take the form

pp(r) = (1 = €)pp(r) + epy(—7). (439)

This transformation is illustrated in Figure 4.4. The noiseless p, has a single peak
near 0.3. The addition of noise results in a distribution of p with two peaks, one
near 0.3 (corresponding to unaffected data) and one near -0.3 (corresponding to noisy
data).

Given a suitable prior over noiseless target functions, we can therefore estimate the

noise level by estimating p, from random targets and p; from the available examples.
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Figure 4.4: Noiseless and noisy p-distributions. The solid curve shows a hypothetical
p-distribution and the dashed curve shows the corresponding expected p-distribution
when 30% uniform noise is added.

Since we can only estimate 7 and p from a finite data set, our estimate of p can only
take on finitely many values. For a target prior distribution pr, we approximate the

p-distribution by the discrete distribution described by

Prip = r] = / / pr(s)px (t)ds dt. (4.40)
z€X J{ f|p(x|f(x))=r}

Given a noisy training set, we approximate the noisy distribution p;(r) by the relative
frequency of observing the estimate p(z;|y;) = r. The value of € for which these
distributions most closely satisfy (4.39) can be taken as an estimate of the level of
noise in the data.

The first and second terms on the right side of (4.39) correspond to contributions
to the distribution of p by correctly and incorrectly classified examples respectively.
A comparison of the magnitude of each term for a given p can tell us whether an
example is more likely correctly or incorrectly classified. Given the true a priori

distribution of p, the conditional probability of an example being free of noise given
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its noisy p is

" (1 —&)po(r)
Prly = f(z)lp=r]="—F 1" (4.41)
ps(r)
(4.41) gives the a posteriori probability that an example is correctly classified. This
suggests a solution to the problem encountered in section 4.3.2 of how to select and
appropriate threshold p; for labelling data as noisy. An example (z,y) should be

labelled as noisy when

Prly # f(z)|p = p(zly)] > Prly = f(z)|p = p(zly)]- (4.42)

For an arbitrary p,, the set of p(z|y) may not necessarily be easy to describe. Intu-
itively, we would expect that, given a reasonable learning model and with no noise
in the data, most z should have p(z) > 0, and very few should have p(z) < 0. We

define a certain class of “well behaved” p-distributions that have these properties.

Definition 4.4.1 Define P to be the set of unimodal probability distributions p on
[—1,1] that have p(r) = 0 for all r < —m(p), where m(p) denotes the mode of p.

Qualitatively, a distribution p € P must have a peak for some m(p) > 0 and a tail
on the left that dies off before it gets to —m(p). The distribution in Figure 4.4 is in
P, since it is unimodal with m(p) ~ 0.34 and has p(r) = 0 for all » < —0.25.

The unimodal requirement ensures that p(r) is monotonically nondecreasing in
r for —m(p) < r < m(p). This, in turn, guarantees that p(—r) is monotonically
nonincreasing in r for —m(p) < r < m(p). It follows that, for any p € P and

¢ € [0,1], there is a unique p;(¢) € [—m(p), m(p)] such that
ep(—r) > (1 —¢e)p(r) Vr < p (4.43)
and

ep(—r) < (1 —¢)p(r) Vr> p;. (4.44)
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Thus, while the condition (4.42) describes the general rule for declaring examples as
noisy, if p, satisfies the conditions for membership in P, then we see that a simple

thresholding rule applies, and an appropriate threshold p; solves

ep(—p) = (1 —€)p(py)- (4.45)

We have described a procedure for estimating the noise level, and given the noise
level, a procedure for indicating which points are most likely misclassified. These
require a prior distribution over targets in order to find an estimate of the noiseless

distribution p,.

4.5 Application to Image Denoising

We illustrate the use of p valuation for noise estimation and outlier detection with
an example of black-and-white image denoising. The pixel data can be interpreted as
examples of target functions in a learning problem, and noise in the data corresponds
to degradation of the image. Restoration of digital images has been widely studied
and has applications in many scientific disciplines [Banham and Katsaggelos 1997].

We can consider the rows of an image to be functions of the horizontal pixel
position. For a black-and-white (one bit) images, the output (pixel color) can be
represented by {0, 1}, and the row can be considered a binary classifier. To make this
precise, we represent a row of an image by a function f : {1,2,...,Nx} — {0,1},
where N is the horizontal dimension of the image (the number of pixels in a row)
and f(z) = 0 if the pixel at location z is black, and f(z) = 1 if the pixel is white.
Figure 4.5(a) shows one such function with Nx = 240.

For our learning model G, we use the set of functions represented by the rows of
a set of natural images. For the experiments described in this section, the learning
model consists of 1470 hypotheses, corresponding to the 1470 rows of the images

illustrated in Figure 4.6.) The set of functions corresponding to the 400 rows of

!The images used for the learning model are black-and-white thresholded versions of images
provided with the MATLAB Image Processing Toolbox.
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Figure 4.5: Black-and-white image row target function. One row of a black-and-white
image defines a binary target function in (a). The input is discrete in {1,2,...,240}
and corresponds to the position of a pixel. The addition of BSC noise with probability
0.2 results in the noisy function shown in (b). Application of a denoising procedure
based on p to (b) yields the row shown in (c).

the image shown in Figure 4.7(a) were used as target functions. Since an image
row provides a classification for every point in the discrete input space, the study
of learning and generalization is of little interest. We look instead at the problems
of noise detection and image restoration. To do so, we add BSC noise to the image
uniformly with varying intensity. Figure 4.5(b) shows the single function of 4.5(a)
with 20% noise added, and Figure 4.7(b) shows the result of adding 30% noise to
each target row. The pixel data for each row in the noisy image corresponds to the
value of f (x) for each point in the input space, and the in-sample error v is exactly
the noisy out-of-sample error 7.

For each target row, we can estimate the value of p(z) for each pixel location as

pla) = corrgegle(g(2), f(z)), 7(9)]. (4.46)

Following the analysis of section 4.4, we consider points with p < p;(¢) to be outliers
and reclassify them.
We consider the learning model to be an appropriate prior distribution over pos-

sible target functions. Using uniform distributions over the input space and learning



Figure 4.6: Natural image row learning model. The set of rows of five black-and-white
images was used as a learning model for noise detection experiments.

model in (4.40), our approximation to the p-distribution becomes

Prlp=1] = g 3 3 flelai(o). (4.47)

The approximate noiseless p-distribution is shown in Figure 4.8. We can use this
p-distribution and (4.45) to find appropriate p;(e) for varying noise levels. (This
distribution does not completely satisfy the conditions of definition 4.4.1, but there is
one dominant mode, and so, to a reasonable approximation, a single p;(¢) suffices for
outlier detection.) For 0 < € < %, Figure 4.9 shows the resulting thresholds. When
the data is noiseless p; = —1, indicating that no data should be discarded. As ¢ — %,
p: — 0, indicating that any point with p < 0 is most likely misclassified.

Given an estimate of the noiseless p-distribution and thresholds p; for any given
noise level, we are left with the task of estimating the noise in the data. We find
the distribution of p for the examples of the given targets, and find the value of ¢
for which the noisy distribution p; given by (4.39) most closely matches the observed
distribution (in the sense of mean squared difference). An example is shown in Figure

4.10. The distribution of p occurring in the image with 20% noise is plotted as a solid
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Figure 4.7: Clean and noisy targets for image denoising experiment. The 400 rows
of the image on the left are used as target functions. On the right is the image with
bits flipped with probability 0.3.
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prior over targets, the resulting p distribution is shown as a histogram.
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Figure 4.9: p, as a function of noise level. Thresholds for outlier detection were
determined by finding the minimum p; satisfying equation (4.45) for the p-distribution
of Figure 4.8.
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Figure 4.10: Estimation of the level of noise in the image. The solid curve shows
the distribution of p observed with the targets with 20% noise added. The dashed
curve shows the closest approximation of the form (4.39), giving a noise estimate of
e =0.22.

curve. The closest approximation (shown as a dashed curve) is for the estimate
€ = 0.22. The noise estimation was repeated for varying levels of added noise, and
the estimates produced by this approach are plotted in Figure 4.11 as a function of
the true added noise level. The original targets are estimated to have 4% noise with
respect to the learning model, and in general this results in a slight overestimate when
¢ is small. For large noise values, the estimates become poor. This is not surprising,

given that the estimates of p from the data become poorer as the noise level increases.

To assess the results of this denoising approach, we compared the results to
smoothing with a median filter. Since we have considered image rows independently,
only one-dimensional information is used in the p-based approach. Accordingly, we
have compared our results to those using a 5 x 1 filter. The results of applying these
two techniques to the noisy image in Figure 4.7(b) are shown in Figure 4.12. The one-
dimensional constraint manifests itself as horizontal streaks in the images. Although

perhaps less visually appealing, the p-based approach does a better job of cleaning
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Figure 4.11: Noise estimates as a function of actual noise level. The solid curve shows
estimated noise levels for images with noise ranging from 0 to 50%.

up the noise in large contiguous regions of color.?

To be of practical interest, it is perhaps foolish to ignore the two-dimensional
information in the image, and therefore we also compare to results using a 3 x 3
filter. The comparative results for all three denoising strategies are shown in Figure
4.13. Following [Banham and Katsaggelos 1997] we measure the noise reduction in
terms of improvement in signal-to-noise ratio (ISNR). For target f, noisy target

and restored version g, the ISNR is given by

S (f (=) - f<x>>2) | (4.48)

ISNR =10 - log, ( ~
Y (f(2) — 9(2))?

For all noise levels, the two-dimensional filter outperforms the one-dimensional filter.
Both median filters outperform the p-based approach when the noise level is low. The
use of a median filter results in a smoothing of the image, which works well when
the noise is sparse. The p-based approach uses a prior based on the learning model
and continues to perform relatively well for higher noise levels. It outperforms the

one-dimensional filter for ¢ > 0.3, and also outperforms the two-dimensional filter

2Some large regions that are uniform in two dimensions appear to be well restored, but the
algorithm considers each row independently.
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Figure 4.12: Images restored by p cleaning and median filtering. The image on the
left shows the image with 30% noise after p-based denoising. On the right is the same
imaged smoothed with a one-dimensional median filter.
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Figure 4.13: SNR improvement for image denoising techniques. The curves show the
improvement in the signal-to-noise ratio for image denoising with varying noise levels.

when £ > 0.4. Although the peak performance is lower, the p-based approach shows

much more uniform results, indicating a robustness to noise.

4.6 Linear Models and Financial Data

The noiseless p-distribution plays an important role in the noise estimation and cor-
rection procedures described in section 4.4 and illustrated in section 4.5. Building on
the analysis of section 3.1, we are able to derive an expression for p(x) for all z under

this model, from which p, can be computed.

4.6.1 p-Distributions for Linear Models

We computed the 7-distributions for linear classifiers with decision boundaries that
pass through the origin in section 3.1. When the input has dimension d,

_S(d-1)

Pr(8) Td)w sin(rs). (4.49)



Figure 4.14: Evaluation of p(z) in two dimensions. For a hypothesis g, with normal
at angle ¢(g2) from wy, gy and g, disagree on points in the shaded region.

If we assume that pg is a good prior over target functions (in this case, since pg is
symmetric this is equivalent to the assumption that f € G), then we can also compute
the expected noiseless p-distributions.

For gi(z) = sgn(w; - z) chosen from the learning model, we find the distribution of
p(z, g:(z)). In the computation of p we take the expectation over choices of go(z) =
sgn(wy - ). We can say w.lo.g. that w; = (1,0,...,0) and by symmetry, it is

sufficient to consider |ws| = 1. In order to compute p, we need to find

Eg,[m(g2)e(g2(2), 91(2))]- (4.50)

We begin by analyzing the two-dimensional case, then generalize to higher dimen-
sions. The scenario is illustrated in Figure 4.14. We fix g;, then consider its errors
on a particular zy with all hypotheses go. For zj at an angle ¢, from the decision

boundary of ¢;,
00 S @(92) _<_ ¢m7 7r+¢z < ¢(92) S 2w

e(g1(%o), 92(20)) = (4.51)
1 ¢s < ¢(g2) ST+,
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when ¢, < =, and e(g1(xo), g2(z0)) = e(g1(—x0), g2(—2¢)) when ¢, > .
Recall from (3.1) that n(gs) = ¢(wy)/m. If we have a spherically symmetric

weight distribution, then the distribution of ¢(ws) is uniform, and we can compute

1 T ¢ 1 T+ Py o — ¢t
Ey,[7(g92)e(g2(z), g1(2))] = Q;r_/¢ ;dt + 5 —

:i( _%—<1—%)2). (4.53)

Furthermore, in two dimensions the 7-distribution is uniform, and hence

dt (4.52)

By le(01(2), 92(2)] = By lr(ga)] = 5 (4.54)

and

Varg,le(g1(2), g2(z))] = %, Var,,[m(g2)] = 115 (4.55)

Substituting (4.53) into (4.21), we get

plds) = V3 (1 _ % (1 - fﬁ)Q) . (4.56)

w2 g

If the input distribution is spherically symmetrical, then ¢, is also uniformly dis-

tributed, giving the cumulative distribution

Prlp < 7] = 2Pr[¢, < (1 — y/1 — 2r/V/3)] (4.57)

for0<r<+3 /2. The p-distribution is therefore given by

3—12\/3% O<p< lé_g
po(r) = : (4.58)

0 otherwise

We generalize the previous analysis to the multidimensional case. In higher di-
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2o/ =T[2+ ¢y
@M:

Region of error

Figure 4.15: Evaluation of p(z) in d dimensions. ¢g; and g, disagree on zg in the shaded
region, which includes the area with ©; > Oy (¢) for /2 — ¢, < ¢ < w/2 + ¢, and
0< 0, <7forp>mn/2+ ¢,

mensions we can still use symmetry arguments to say w.l.o.g. that

wi = (1,0,...) (4.59)
zo = (cos(¢y), sin(¢y),0,...) (4.60)
twy| = 1. (4.61)

In order to compute the p distribution, we need to compute Eg,[e(g:(x), g2(z))m(g2)]
for the d-dimensional model. Still restricting ourselves to the surface of unit d-ball,

the region in which e(g;(x), g2(z)) # 0 is the hemisphere opposite z. As illustrated in
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Figure 4.15, if z = (cos ¢, sin ¢,, 0, ... ), then the region of interest is that for which

X'W2<O

COS ¢ €08 P(ga) + sin ¢, sin P(gz) cos O1(gz) < 0

O1(wo) < arccos(— cot ¢, cot ¢(gz))-

We denote the minimum O for which e(g1(x), g2(x)) = 1 by

@M(¢) = { arCCOS(-—— C;)t ¢m cot ¢) z i {fz: - ¢:m 12{ + ¢z]
2

Since 7(g2) = #(g2)/,

Eg,[e(g1(x), 92(x))7(g2)

~ S(d / / . / 2304 s...d0:ds
p=r/2-g0 JO,2011(6) ed =0T

) / T i@ sin@3 @, dO;dé
7S(d) Jujo-g. On(4) L

Sd-1) [7 . (d—2
¢sin*2) ¢ d,
7T8(d) T2+ g

(4.62)
(4.63)
(4.64)

(4.65)

(4.66)

(4.67)

(4.68)

which is greatest for ¢, = 0, monotonically decreasing in ¢,, and has minimum

1
s (d—2) doé = =
sin® g dg = -

when ¢, = 7/2 for every d.

Since these models are symmetric,
1 1
Eyle(g1(2), gla))] = 5. Vargle(gi(z), g())] = 7,

and hence

2(Eg, le(g1(z), go(2))(g2)] ~ i)-
Vary[n(g)]

p(z) =

(4.69)

(4.70)

(4.71)
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— d=2 ---d=2
--- d=20 —— d=20

Figure 4.16: p-distributions for a linear model. (a) shows the expected p-distribution
for linear targets and d = 2,20. No points are expected to have p(z) < 0. Empirical
measurements of the distribution of p are illustrated in (b) for d = 2,20 with random
linear targets and for 10000 training examples

We can evaluate Vary[m(g)] given (4.49) and can compute p(z) by substituting (4.68)
into (4.71). Since Eg,le(g1(z), g2(z))m(g2)] > 1/4 for all z and all d, every point has
p(z) > 0 when there is no noise. Thus, every point can be considered a “good” data
point, and the appropriate cutoff p, for rejecting noisy data will be 0 for every positive
noise level.

The cumulative distribution of ¢, is given by the surface of the spherical cap

(compare with (3.3))

Prig, <t = 8—(8%)& /¢ . sin?~2 ¢ de. (4.72)

Using this distribution, we can numerically invert (4.71) to compute the distribution
for p. We have carried this procedure through to yield the distribution for p with
d = 20 shown in Figure 4.16(a). Also shown is p, for d = 2 from (4.58). Figure
4.16(b) shows histograms of empirical estimates p for linear targets and models based
on 10000 training points.

We have demonstrated how it is possible to compute the expected p-distribution

for simple linear models in arbitrary dimensions. Linear regression has been widely
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studied, and we do not concern ourselves with extracting a linear target from noiseless
data. Rather, we will motivate the preceding derivation with practical problem for
which the input distribution is (approximately) spherically symmetric and for which

the extraction of any information from very noisy data can be considered a success.

4.6.2 Financial Time Series

In analysis of financial time series, it is common to assume a lognormal random walk

for asset price S
dS = pSdt + o SdW (4.73)

where 4 and o are constants and dW is a Wiener process (see, for example, [Wilmott
et al. 1995]). As a result, the logarithms of proportional successive price changes are
normally distributed.

We look at foreign exchange rates between the U.S. dollar and the German Mark.
For this particular time series, we can make use of a symmetry hint [Abu-Mostafa
1995] to augment any available data set, ensuring that z has zero mean and that
the classifications are balanced, that is, Pr[f(z) = 0] = Pr[f(z) = 1] = 3. For this
series, then, we can assume that sequential log price changes are i.i.d. normal random

variables
& ~ N(0,0%). (4.74)

Then if we use a d-step price history z; = (0;-1,0;—2, ... ,d;—q) as the input, the inputs

can be considered multivariate normal random variables
z; ~ N(0,0°1,) (4.75)

where O is the zero vector and I; is the d X d identity matrix.
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We assume that the target function is a thresholded linear function of the data
f(z) =sgn(w; -z +6). (4.76)

The symmetry hint cited above also implies that # = 0. We therefore choose a
learning model containing hypotheses of the form gy, = sgn(w - z) with |w| = 1. Of
course, such a simple relation does not exist for real foreign exchange rates. For the
sake of argument, however, we can attribute any deviation of the data from what is
expected from (4.76) to noise in the data. The noise will be overwhelming, but using
the techniques of section 4.4 we might hope to extract some sort of salient relationship
from high dimensional data.

When the hypothesis prior distribution pg is such that w ~ A(0, 02), this learning
problem fits into the model analyzed in sections 3.1 and 4.6.1. We are therefore able

to compute the noiseless 7- and p-distributions for this learning problem exactly.

4.6.3 Experiments

From historical quotes of the U.S. dollar/German Mark exchange rate we computed
sequential log price changes, constructed inputs of 20-tick histories, and applied the
symmetry hint to produce data that can be expected to be distributed as (4.75). The
output classification was determined by the direction of the price movement over the
following 5 minutes, being assigned 0 if the price 5 minutes in the future was lower
and 1 otherwise.

From this data, we selected 10000 examples for the training set. We computed
p(z) for each input based on the training data. The distribution of the observed values
of p is shown in Figure 4.17. Estimates of the noise level were obtained using (4.39).
Using the prior p-distribution illustrated in Figure 4.16(a) and using the experimental
p-distribution of Figure 4.16(b) resulted in noise estimates of £ = 0.499 and € = 0.496
respectively.

Thus, considering the exchange rate prediction to be a noisy linear function implies

that the “noise” almost completely obscures the signal. As we might expect, the data
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Figure 4.17: Empirical distribution of p for foreign exchange data. The histogram of
p values for 10000 examples from the USD/DEM foreign exchange data is shown.

seems to be extremely noisy (with respect to our simple model), so, although we can
compute the m-distribution and generalization curve, exhaustive learning is essentially
hopeless. We would expect that extraction of any information from the data will be
very difficult. For predicting financial time series, though, any level of performance
that is statistically significantly better than random can be very lucrative.

We trained a two-layer neural network with 20 hidden units with tanh activation
functions on the training set. The network was trained for 5000 epochs of gradient
descent on squared error using sequential back-propagation [Rumelhart et al. 1986],
with the goal of fitting the {0, 1} classifications with a real value in [0, 1]. The resulting
network was used to classify a test set of 10000 examples, giving a classification of
sgn(y — 1/2) for the real network output y. The resulting training and out-of-sample
errors are shown in Table 4.1. Average and extreme cases are shown for 10 runs,
corresponding to different random weight initializations for the neural network. The
results fall in a very narrow range, and the training error never drops far below 0.25,
which would be observed with random guessing.

Selecting data based on p, = 0 results in the rejection of 4788 of the 10000 training

examples. A neural network of the same architecture trained on the remaining 5212
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All Data | p Selected | Randomly Selected
Examples | 10000 5212 5212

Training Error:

Minimum | 0.2443 0.0060 0.2400

Average | 0.2456 0.0068 0.2412

Maximum | 0.2467 0.0084 0.2424
Out-Of-Sample Error:

Minimum | 0.4803 0.4802 0.4836

Average | 0.4880 0.4812 0.4878

+/—] 0.0018 0.0003 0.0011

Maximum | 0.4981 0.4832 0.4938

Table 4.1: Comparison of errors for p-based data selection.

examples was consistently able to reach a training error less than 0.01. Although
the best observed performance was almost identical, the average performance on the
truncated data set dropped to approximately 48.12%.

To ensure that these results do not just reflect smaller training set size, we also
trained the neural network on a data set of 5212 examples randomly selected from
the available data. While the training error was noticeably lower with this set than
with the full data set, it did not go below 0.24. The mean out-of-sample error was
slightly lower than that for the full training set, but the difference was not statistically
significant. The error bars on these estimates of the mean are shown in the table row
labelled ‘“+/—.

The use of linear classifiers to model foreign exchange rate movements seems like
a futile task. In fact, our estimate of the noise under this model is above 49%.
Nevertheless, data set selection based on p valuations resulted in training sets that
could be fit more closely by a neural network model, and using this model resulted

in a statistically significant improvement in the out-of-sample classification error.

4.7 Discussion

In this chapter, we introduced a procedure for evaluating training data. The main

new idea is that training points have a priori different values in terms of selecting a
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hypothesis that generalizes well. Training data selection based on empirical estimates
of p(z) was shown to yield training sets that improved generalization.

An analysis of the effects of noise led to procedures for noise estimation and
outlier detection. These techniques were applied to image denoising and proved to
be fairly robust to noise, with a one-dimensional p-based method outperforming one-
and two-dimensional filters at high noise levels.

We demonstrated how the expected distribution of p could be computed for a
simple linear model of arbitrary input dimension. Under this model we found that
no inputs had p < 0 in the absence of noise. We demonstrated that a financial time
series prediction task could be studied with this model, but that the effective level
of noise was very close to 50%. Nevertheless, data selection based on p valuations
estimated with the linear model resulted in generalization improvements for this task.

In the various experiments in this chapter, the learning model played several
different roles. From the introduction of p, we might expect p valuation to be useful
only for exhaustive learning systems. In section 4.3.2, however, we used p-selected
data to obtain improved generalization after training. In section 4.6.3 we evaluated
examples based on a linear learning model and showed a generalization improvement
training neural networks with the selected data. In section 4.5 we never selected
hypotheses from the learning model to approximate the targets. Instead, the learning
model was only used to provide a p valuation for each example, and the classification
was done based on p. For the image denoising problem, examples were provided
for every input, so the reclassification was considered to be noise correction. In the
absence of some data, however, the same approach could have provided classifications
for unlabelled inputs. In the next chapter, we will extend this last idea to obtain a

novel learning process.
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Chapter 5

p Learning

The data valuation technique described in Chapter 4 has immediate application as
a practical learning paradigm. New inputs can be assigned a classification without

explicit selection of a hypothesis function.

5.1 The p Learning Idea

The idea behind p learning is quite simple. For any input value = we can consider
the two possible valuations p(z|0) and p(z|1) independent of a particular concept of
noise. By (4.35), if p(z]|0) = ro, then p(z|1) = —rq. For p, in P (definition 4.4.1),
pp(r) > py(—r) for all » > 0, and hence a correctly classified example is more likely to
have p > 0. In fact, we showed that, for the linear model of section 4.6.1, no point has
p(z|f(z)) < 0. p learning relies on the assumption that this concept can be extended
to an arbitrary learning problem, that is, that given an appropriate learning model
(depending on the target function), p(z|f(x)) > 0 for every z.

Given an unlabelled input to be classified, we can consider p(z|1) and p(z|0) and
choose the classification which gives a positive value. Based on the results of section
4.3.1 and (4.38), we can expect that given enough data, our estimate p(z|1) will have
the same sign as the true p(z|1) with high probability, and hence, by the p learning
assumption, that classifying z as sgn(p(z|1)) will result in the correct classification.
If we denote by R(z) the classification of z produced by p learning, then the possible

scenarios are shown in Table 5.1.



fl@)=0] f(z)=1
p(zl0) |+ -
plzll) | - +
plll) | - +
R(z) 0 1

Table 5.1: Possible scenarios for p learning. + indicates a positive value, — indicates
a negative value. With high probability p will match p. Assuming p(z|f(z)) > 0,

R(z) = sgn(p(z|1)) = f(z).

The p valuation is defined in terms of a learning model, but we do not select a
hypothesis from the learning model as a guess for the target. Based on a statistic
dependent on the whole learning model (or in practice a large sample of hypotheses),
a classification R(z) is produced for each input. In this way, p learning is not a
learning system as described in section 1.1, and is akin to ensemble or aggregate
methods [Dietterich 2000]. The resulting function R(z) is implicitly dependent on

the learning model, but is not, in general, equivalent to some g € G.

5.2 [Edge Detection Example

We illustrate p learning and compare it to an alternative learning algorithm for a
simple edge detection task. In one dimension, we can consider an ‘edge’ to be a step
function g,(z) = sgn(z — a) or g4(z) = sgn(a — ).

As in section 4.2 we we take px to be uniform and we use the learning model of

step functions
G = {sgn(z — a)|a € [0,1]} U {sgn(a - z)|a € [0,1]} (5.1)

with uniform prior pg(sgn(z — a)) = pe(sgn(a — z)) = 1 for all a.

We choose a target function randomly from the learning model, and generate
a data set of NV examples with uniform noise level e. We consider p learning in
comparison to the learning algorithm that selects the step function that most closely

matches the training data. Since there is ambiguity in this choice, we resolve it as
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Figure 5.1: Performance comparison for an edge detection task. Noiseless out of
sample error rates are shown, averaged over 1000 noisy data sets of N = 10 examples.

follows. If the best step function has a threshold that must lie between z; and 41,
then we use (z; + x141)/2 as the threshold. If the best step function classifies all of
the examples as 0 (or 1), then we use g(z) =0 (or g(x) = 1) as the hypothesis.
Figure 5.1 compares error rates for the two different learning approaches. For
these experiments we used only 10 training examples. p learning for this problem
is slightly worse for low noise levels, but performs noticeably better for ¢ > 0.2. In
this example, the target function is in the learning model, and our benchmark is
the algorithm that does an exhaustive search for a hypothesis that minimizes the
in-éarﬁple error. Remarkably, this does not perform as well as p learning for noisy

data sets.

5.3 Financial Time Series Prediction

The main advantage of the applications of p valuation discussed so far is an apparent
robustness to noise. The example of the previous section indicates that this appears
to be true for the p learning approach as well. We investigate the use of p learning for

financial time series prediction, since, as we saw in section 4.6.3, these data sets can
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be extremely noisy. We again look at the U.S. Dollar/German Mark foreign exchange
rate prediction task.

On the same data set as in section 4.6.3, we used the p learning idea to classify
points in the test set. For each new input z, the value of p(z|1) was computed using
the 10000 examples in the training set and z was classified as R(z) = sgn(p(z|1)). The
resulting classification made 4810 errors on the 10000 test points. We can be confident
that this performance is not due to pure luck, since the probability that random
guessing results in an error that deviates this far from the mean is approximately
1.5 x 107, This error rate is not as low as the best result for the neural networks
trained in section 4.6.3, but is lower than the average error rate for any of the training

sets considered there.

5.4 Discussion

The data valuation developed in Chapter 4 was intended to help select a good hypoth-
esis from a learning model. The noise detection results, however, showed that this
valuation could be used to determine the correct classification for individual points.
In this chapter we use the learning model for data valuation, and use the valuation
for classification. The hypothesis selection step is eliminated, and so no learning
algorithm is required.

We illustrated the p learning approach with a simple example and a practical task,
and found it to be competitive with (and in some cases better than) more conventional

learning systems.
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Chapter 6

Conclusion

In this thesis, we addressed the general learning problem from a probabilistic per-
spective, with the goal of describing and improving generalization performance. The
the theoretical bin model framework was introduced in Chapter 2 and serves as the
foundation for the subsequent results.

We showed in section 1.2 that generalization cannot be expected without any
assumptions about the learning task at hand. An immediate result of the bin model
analysis is the characterization of a learning problem in terms of its w-distribution.
Given a m-distribution, we can describe the generalization behavior fully, without
explicitly relying on a particular form of target or learning model.

In Chapter 3, we showed how the practical obstacles facing the bin model analysis
could be (at least partially) overcome. A two-stage learning process that isolates the
learning algorithm from error estimation allows us to apply the bin model results to
more sophisticated learning systems. By estimating the m-distribution from the data,
we can adjust error estimates on a validation set to be more in line with the true
out-of-sample error.

The implications of fixed training sets for the preceding results led to a concept
of data valuation described by the error correlation p(z). The ideas that individual
examples have a priori values with respect to generalization performance and that
it may be appropriate to discard even noiseless data are novel in this study, as far
as we know. An estimate of the p distribution, which can be obtained given a prior

distribution over targets, allows us to estimate the level of noise in a data set. We
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are then further able to construct good training sets by exclusion or reclassification
of selected examples.

Reclassification based on p can be viewed as error correction, and was demon-
strated to be useful for data denoising. An extension of this idea yields a new ap-
proach to learning. The new p learning concept introduced in Chapter 5 directly
produces a classification rule given a learning model and data set, thus assuming the
role of both learning model and hypothesis function.

These results, like any in machine learning, require certain assumptions about the
problem at hand. As a result, there will be scenarios in which these techniques do
not apply, and, in fact, the motivation for Chapters 3 and 4 was an investigation
of exactly such situations for the preceding results. We have included experiments
and practical examples throughout the thesis demonstrating the applicability of the
major results to real learning problems, and hopefully convincing the reader of the

potential for better generalization through their use.
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