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Abstract

Homeomorphiems of the plane onto iiself are studied, subject to
the restriction that they should preserve the sense of orientation
and have no fixed points. The author tries to determine which
mappings in this general class can be embedded in one-parameter
subgroups of the full homeomorphism group of the plane. Such sub-
groups are called flows.

By a theorem of Brouwer, Tnp - w as n - * o for any point p in

the plane, if T is in the general class being studied. As a conse~

€0

quence, it is shown that if T is embedded in a flow then.EzTnA is

-—(x

a proper subset of the plane for any compact set A. The author
suspacts that this property might be shared by all homeomorphisms
in the general class.

It is found that for an arbitrary T there exists a natural
partition of the plane into a collection of "fundamental regions",
with the property that the restriction of T 4o any fundamental
region must be embedded in a flow within that region whenever T over
the whole plane is embedded in a flow. An example is given of a
homeomorphism which, for this very reason, cannot be embedded in a
flow over the whole plane E2.

The author proves that if T satisfies the above condition that

Z;TnA £ E2 and if T has exactly one fundamental region, that being



E2 itself, then T can be embedded in e flow, and indeed is equivalent

to a translation.
Finally, it is shown by an example that even if the restrictions
of T to its fundamental regions are all equivalent to iranslations,

it might still be impossible to create a flow for T over all of E2,



O. INTRODUCTION

The purpose of this dissertation is to investigate homeomorphisms
of the Euclidean plane Ee onto itself, with the object of finding
which of these homeomorphisms are members of cne-parameter subgroups
of the full homeomorphism group of the plane. Such a one-parameter
subgroup, or flow, is a collection of homeomorphisms {Tpp : =0 < p < 4}
with T° = the identity homeomorphism I, T(T°p) = T*"p, and with the
point Tpp € E2 Jjointly continuous in the reel number p and the point p.
We say that the homeomorphism T is "embedded in the flow {TP}v, if
T = T° when p = 1.

Only those homeomorphisms which have no fixed points are con-
sidered here, although fragmentary results have been obtained in the

genereal case.



'. A FEW GENERAL PROPERTIES OF PLANE HOMEQMORPHISMS

It will be shown later that if the homeomorphism T is embedded
in a flow then T must preserve the sense of orientation. Thus we
restrict ourselves at the outset to those homeomorphisms of the
plane onto itself which have no fixed points and which preserve the
sense of orientation.

The notation Cn, where C C'EE, will designate TnC, the n-th
iterate of the set C under the transformation T.

Section I rests on the following theorem of Brouwer (1):

Theorem 1: (Brouwer) Let T be an orientation~preserving homeomorph-
ism of the plane onto itself without fixed points. Let E be a
curve segment in the plane with endpoints p and p' = T(p).

Iet F = E - p' be the half-open segment obtained from E by deletion

of p'. Then F + F' = O implies that F - F* = 0 for all n # O and
40
+that the set z:Fn is a curve without self-intersections.

-00

Brouwer's result has the following consequence:

Theorem 2: Let T be an orientation-preserving homeomorphism of the
plane onto itself without fixed points. Let C be a connected com-
pact set which is disjoint from C!', its image under T. Then

C.C%=0for all n#£O.



Proof: Set Cu = z: D(q,u), where D{(q,u) is the open disc of
qeC

radius y centered at q. C“ is Jjust the set of all points whose

distance to C is less than .

Cu is an open set; because C is connected, Cu is arcwise connected.
Furthermore, any boundary point p of Cu must be a boundary point of
a disc centered in C and having radius . Consequently p can be
connected to C by a siraight line segment contained in Cu’ and we
have shown that all boundary points of c“ are accessible from within

c .
)

!
By compactness and continuity, Cu is disjoint from Cu = T(C“)
1
for sufficiently small p. Let T = l.usbe {p 2 Cu . Cu = 0}. Then
1 ! 1
C. + C_ =0 while X_ - &, £0. Let pe &, + 3, be in the inter-

T T
1 -
section of the boundaries of CT and CT. Then the preimage p ! of
1
p is a boundary point of (J,r because p is a boundary point of CT.
If G » CC £ O for some n £ O, then C contains both q and g~

for some q € C. We draw a simple curve segment F, as shown in

Figure 1; F runs from p"1 1o q to qn 10 p, and is contained in GT

except for its endpoints p and p'. It is possible to construct
such an F precisely because Crr is a connected open set all of whose

boundary points are accessible.



The half-open segment F - p is contained in the set CT + p-1,
and T(F~p) is contained in the set C; + p. Because C_ + p-] is
disjoint from C; + P, we can conclude that F - p is disjoint from
T(F-p), its image under T. Brouwer's theorem now tells us that
F - p must be disjoint from all its images T (F-p), but this is
impossible since F - p conteins the points q and qn. Therefore C

cannot contain both g and @n, and C must be disjoint from all its

images C, Q.E.D.



A corollary of Theorem 2 which will be important for our pur-

poses is the following:

Corollary 1: (Brouwer) Let T be an orientation-preserving homeo-
morphism of the plane onto itself without fixed points. Then for

any point p of the plane, pn - asn -+t o,

Proof: If this were not the case, then the sequence {pn} would

have an accumulation point q € EE. Since q # q', there is a smell
closed disc B, centered at q, which does not meet its image B!.

But B contains infinitely many points from the sequence {pn}, hence
in particular it contains two points pn, pn+m for some n, m where
m £ 0. Then B would meet Bm, which contradicts Theorem 2.

By taking C to be a single point, we obtain

Corollary 2: Let T be an orientation-preserving homeomorphism of
the plane onto itself. If T has a periodic point, i.e. Tnp =P
for some point p, then T has a fixed point.

Thus the class of transformations we are studying is invariant
under the operation of forming iterates.

The following corollary is not needed for an understanding of

the rest of the paper, but is included for its own interest.

Corollary 3: (Montgomery) {2) Suppose that U is an orientation-
preserving, measure-preserving homeomorphism of the open unit dise D

onto itself. Then U has a fixed point in the interior of the disc.



Proof: Suppose, if possible, that U has no fixed points. Then
there is a small closed disc B in D which is disjoint from its

image UB, By Thecrem 2, all the iterates of B must be disjoint;
+00

but because U preserves area, the set 3—' U°B must have infinite
bt

00

area. Hence U has a fixed point.

2. OSOME NECESSARY CONDITIONS FOR T TO BE EMBEDDED IN A FLOW
Suppose now that T is a homeomorphism of the plane without
fixed points, and suppose that it is embedded in the flow (Tp }e
We observe the following properties of [Tp}:
1) All the transformations Tp must preserve the sense of

orientation.

Proof: T preserves orientation if T does ; but Ta‘/ n approxi-
o/

o n . .
mates T =1 as n -, Hence T preserves orientation because

I does.

2) TP(p) > « as p » £ = for any p € . In particular, each

homeomorphism T° has no fixed points for p # O.

"

Proof: Otherwise, we would have T P € B, where B is a bounded

set, 0 < Gy <1, and (nk} is an unbounded sequence of integers.

Then we would have Tnkp € Z %3 , which is ifself a bounded set
-1%a<0



by continuity and compactness. Hence p = is a bounded sequence,

contradicting Corollary 1 of Section I, which says that Tnp - o,
The curve {Tpp : —o < p < o}, we call the flow line Fp

passing through p. It is easy to see that if Fp and F_ are two

q

flow lines from the flow (TP}, then either F, = Fgor F_ - F, = O

Observation 2) implies that if Fp is a flow line then
Fp + {=} can be viewed as a Jordan curve on the sphere obtained by
adjoining the point at infinity. By the Jordan curve theorem, the
complement of Fp in the plane consists of two disjoint connected

open sets D1 and D If q € D1, then Fq CZD1, because Fq cannot

X
eross over into D2 without meeting Fp. Therefore each residual
domain Di is left inveriant by each homeomorphism Tp of the flow.
A given transformation T might be embedded in many flows; our
observations thus far in Section 2 have described the flows in
which T is embedded without saying anything new about T itself.

Our next theorem, however, will imply that if T has no fixed points

and is embedded in a flow, then, for any compact set A in E2,

4o
}ETmA is disjoint from some nonvoid unbounded connected set.

- CO

Theorem 3: Let T € {Tp}; let F_ be a flow line from {Tp}. Suppose
that a compact set A is contained in B?F; = Fo + D+F0, the closure

of one of the residual domains of Fo' Then a flow line Fp can be
(o]
found in D'F for which F_ + A # O and yet D'F_ - A = O, where D'F
° pO pO pO



is that residual domain of Fp which does not meet Fo.
o

Proof: For any q ¢ A let D'zgal be that residual domain of F, which

meets Fo' For p and q € A we say that Fp < Fq if end only if
D—Fp c D'Fq. The relation < is a partial ordering: since F, ST,
and F < Fp imply that D"Fp =DF o Ve can conclude that F, = Fy
where we have used that part of the Jordan curve theorem which
asgserts that a Jordan curve is the boundary of each of its
residual domains.

The proof will be complete when we have found a point P, € A

whose flow line is maximal in the partiel ordering. The situation

will then be as in Figure 2.

Figure 2




Let [F&} be a totally ordered set of flow lines. Then

{A - 5*5;} is a nested collection of nonvoid compact sets, and

hence a point q € A can be found for which q £ D-F;,for all a.
Then Fq is disjoint from D-Fa, and D‘Fa is contained in a re-
sidual domein of Fq, in particular the one that contains FO.
Therefore Fq > Fa for all o, and we have shown that every totally
ordered collection has an upper bound.

By Zorn's lemma, let F_ be a maximal element from our
o]

partially ordered collection of flow lines. Then A - D+Fp =0,
Q

or else we could find a flow line surpassing F_ in the partial
o

ordering. Fp meets A itself because P, € A, and we have proved
[0}

the theoremn.

Remark: Even if part of A were fo lie in D”FO, D+§b would stiill
o]
be an unbounded connected set not meeting any iterate of A. The

writer suspects that T must have this property even if T is not
embedded in a flow, l.e., that if T is an orientation~-preserving

homeomorphism without fixed points of the plane onto itself, or
00
of a closed half-plane onto itself, then.EZTnA for a compact set A

-=CO

fails to meet some unbounded connected set in the plane, resp.

half-plane.
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3. THE FUNDAMENTAL REGIONS OF A HOMEOMORPHISM

We have seen that, if T ¢ {Tp}, then every point p ¢ E2 can
be connected to its image p! by a curve C = {Tpp :0<p <1y,
where C has the property that ¢" - @ as n - * w, (We say in
general that the sequence of sets {En : =0 < n < 4w} "divergest
if any compact set A meets En for only finitely many n.) Thus,
when we are studying a homeomorphism T which is not known to be
embedded in a flow, it is natural to ask which pairs of points
P,q can be conmnected by a curve whose iterates diverge. We frame
this idea in the form of an equivalence relation: for p and q € E,
we say that p ~ q if and only if p and q are endpoints of some
curve segment whose iterates diverge.

The verification that ~ is an equivalence relation is
elementary, except for reflexivity, where one must apply the fact
that pn »® gg n->=*

Thus the plane is partitioned into a collection of equi-
valence classes; we call these equivalence classes "the fundamental
regions of T." By definition, each fundamental region is an
arcwise connected set.

Example 1: Consider the homeomorphism defined in Figure 3.
Each point p lies on a straight line or a curve; we define Tp to
be a point lying on the same line or curve and separated from p

by an arclength of 1.



Figure 3
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T is obviously one-to-one, bicontinuous, onto, preserves orientation,
and has no fixed points.

This particular transformation has three fundamental regions:
G, = {(x,y) : x < -1}, G, = {(x,y) ¢+ -1 <x <+1}, and G3 =
{(x,y) : +1 £ x}. It is easy to verify that any two points of Gy
are equivalent under the relation ~ . But no point of G1 cen be
equivalent under ~ %o a point of G,, by the following reasoning:

the iterates of any compact set can be confined between two vertical

lines; any curve meeting G, and G, must possess two points which
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approach infinity in the opposite y-directions under positive
iteration of the curve; therefore each of the positive iterates
of the curve must cross the x-axis between the same two vertical
lines. Hence the iterates of our curve cannot diverge. In like
manner, no point of G2 is equivalent to a point of G3, by arguing
on the negetive iterates of T.

Concerning the fundamental regions Gi of a transformation T
there is a certain dichotomy relation: each Gi ig either invari-
ant under T, TGi = Gi’ or else is disjoint from its image,

TGi . Gi = 0. To see this, note that if q € TGi . Gi then p € Gi
implies that p ~ q and p' ~ q, hence p ~ p!' for all p € G and
IG; = G;.

Of course, if T is embedded in a flow, then the first
alternative must hold for all the fundamental regions of T.
Indeed, every fundamental region Gi must be invariant under every
homeomorphism ™ of any flow in which T is embedded. In parti-
cular, the boundaries and interiors of all fundamental regions
must be preserved by any flow in which T is embedded. This implies
thet if p € int Gi then p can be connected to p! € int qiby an arc
contained in int Gi' The same stetement holds for Eﬁi, the boundary
of the fundamgntal region Gi'

Therefore, if T is embedded in a flow, then each fundamental
region Gi of T satisfies

1) G; is invariant under T,
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2) the connected components of int G, are each
invariant under T, and
3) ‘the arcwise connected components of EGi are each
invariant under T.
It is immediate {that if some fundamental region of some homeo-
morphism fails to satisfy one of the conditions 1)-3), then
that homeomorphism cannot possibly be embedded in a flow. Indeed,
examples can be given of homeomorphisms which violate 1), 2),
or 3).
Example 2: We construct a homeomorphism T which violates

condition 2) and hence cannot be embedded in a flow.

-2 -1
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If p is on a line or a curve, Tp is separated from p by two units
of arclength; if p is in the crosshatched region G then Tp is one
unit south of p.

The fundamental regions of T are just G__Q, G_1 » Go, G1 , and
G2, by the same technique as in the previous example. But int GO

has infinitely many connected components, none preserved by T.

4, SUFFICIENT CONDITIONS FOR T TO BE EQUIVALENT TO A TRANSLATION,
AND THUS BE EMBEDDED IN A FLOW

The simplest exemple of an orientation~preserving homeomor-
phism without fixed points is the translation which takes the point
(x,y) into the point (x + 1,y). We call this translation L, and
we note that L is embedded in the flow {Lp}, where Lp(x,y) =
(x + p,¥).

We would like to determine those mappings whose structure is
the same as the structure of L. Thus the homeomcrphism T is
tequivalent to a translationt if T = ULU"1 where U is some homeo-
morphism of the plane onto itself. Naturally, T must then be
exbedded in the flow {17} = (urfu™ ).

What happens when we compute the fundamental regions of T,
where T is equivalent to a translation? We f£ind that T has only
one fundamentai region, that be:’_.ng the entire plane Ee.

Let us agree that a 'half-plane® in E2 is one of the two

residual comains of a simple curve which is a Jordan curve when
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viewed in the sphere; if L leaves a closed half-plane invariant, L
has the property described in the Remark at the end of.Section 2,
namely, that for any compact set A in the half-plane there exists
an unbounded connected set B in the half-plane which does not meet
any iterate of A. This property is shared by any homeomorphism T
which is equivalent to L.

We intend to show that these two conditions are also suffi-

cient.

Thecrem 4: Suppose that T is an orientation-preserving homeomor-
phism, without fixed points, of the plane onto itself. Suppose
that
1) T has exactly one fundamental region, and
2) 1if T leaves a closed half-plane E invariant, then
the iterates of any compsct set A € E fail 1o meet
some unbounded connected set B ¢ E,

Then T is equivalent to a translation.

Note: We do not know whether condition 2) is necessary.

Theorem 4 is proved by reducing it to the following theorem

of Sperner:

Theorem 5: (Sperner) Let T be an orientation-preserving homeo-
morphism, without fixed points, of the plane onio itself. If the
iterates of A diverge, whenever A is compact, then T is equivalent

to & translation.
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Reduction of Theorem 4 to Theorem 5: Let T satisfy the hypotheses

of Theorem 4 Then T'A » = as n —  « for any compact sel A.

Proof': Choose p ¢ E2, and let p be comnected to p! by a curve C
for which {Cn} diverges; C may be chosen to be simple. Consider
the subsegments of C whose endpoints correspond under T. For
example, C itself is such a segment. Let F be a minimal sub-
segment in this class. Then F « F!' consists only of the one end-
point of F, for otherwise a smaller subsegmeni could be found

inside F whose endpoints correspond under T. By Theorem 1 (Brouwer)
40
and by the fact that (Fn} diverges, we see that E;Fn is a Jordan

=00

curve on the sphere and is left invariant by T. Let us represent
Z:F in our figures as the x-axis, and let us suppose without loss
of generality that T(x,0) = (x + 1,0).

Because T preserves orientation, the two half-planes are each
invariant under T.

To show that the iterates of any compact set must diverge,
it is sufficient to show thet A » A" is nonvoid for at most
finitely many n if A is compact. Our constructions can be carried
out equally well in both half-planes, so we content ourselves
with showing that A . A" = O for sufficiently large n if A is
any closed half-disc in the upper half-plane. The situation

is depicted in Figure 5.
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Figure 5

x~-axis —

First we apply hypothesis 2) and find an unbounded connected
set B which does not meet any iterate of A. Then by 1) we connect
a point of B to a point on the x-axis by a curve whose iterates
diverge. Let C denote a subsegment of this curve which is con-
tained in the upper half-plane and which still connects B to
the x-axis.

Let N be a positive integer large enough so that m > N implies
that ¢+ A =0, ¢ - 4 =0, ¢ meets the x-axis to the left
of A, and ¢™ meets the x-axis to the right of A, We will argue
that A - A2m = 0.

The situation is as implied by Figure 6.
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Figure 6
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B" + C" is disjoint from A because 8" never meets A for any n, and

because m is large enough to ensure that . A=o0.

Likewise, B + C" is disjoint from A=® because B™ + ¢™ is
disjoint from A. By our requirements of left and right, ¢™ meets
the x-axis between A and AEm.

If A - Aam were nonvoid, a simple curve segment S could be
drawn in A + Aam which would meet the x-axis only in A and in Agm.
A Jordan curve would then be formed by S with the asppropriate
segment of the x-axis. But 8" + ¢" is an unbounded conmected set
having points in the interior domain of this Jordan curve at the

same time as it fails to intersect the Jordan curve itself, and

we have a contradiciion. (.E.D.
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Proof of Sperner's Theorem:

(The following proof follows a different line from that given by
Sperner in (3), and Kerékjarto in (L).)

If pand q € Eg, we say that p is congruent to q, written
p = q(T), if pn = g for some n. Let I be the collection of all
congruence clagses.

Define the function P : E2 - I to be the identification map.
Then I is a topological space if we take the open sets in I to
be those sets whose inverse images under P are open sets in E2
(i.e., the identification topology). We call I the “identifi-
cation space of the homeomorphism T.!

Any point 5 € I is contained in a neighborhood homeomorphic
4o a disc in the plane, for we need only choose a representative p
from the congruence class 5, and let p be contained in a small
disc Dp in the plane which is disjoint from all its iterates
under T. Then every a € T has at most one representative in D_,
and the restriction of P to D is a bicontinuous one-to-one
mapping onto a neighborhood of p.

Because A" 5 » for compact sets, I is a Hausdorff space. For
let 5 and E‘be two-distinct points in I, and let p and q be repre-
sentatives in EE; we have p # g(T). Now p and g are contained in
some large open disc D for which D + D" = O when |n} > N. Let

P € QP C D, where QP is a disc small enough so that q is not in
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+N +eo
+the closure of z Q;l Then g is not in the closure of Z Qg,
~-N -0

because for |n| > N we have Qg c D" vhich does not meet D, in
which q is located. Hence g is contained in some disc Qq where
Qq meets no iterate of Qp' Therefore P(Qp) and P(Qq) are dis-
Joint neighborhoods of p and q in I.

We have shown that I, the identification space of T, is
a Hausdorff space and is locally homecomorphic to E2. These
observations, together with the obvious facts that I is connected
and has a countable base, imply that I is a two~dimensional
menifold.

In showing that I is locally homeomorphic to E we actually
showed that each point of I is contained in a neighborhood N for
which P-l(ﬁ) is a disjoint countable collection of homeomorphic
images of N. Therefore P is the projection mapping of & covering
of I by E2, and because E2 is simply comnected it is the universal
covering manifold of I.

Now it will appear that the properties of T are reflected in
corresponding properties of I. For example, if we had assumed
that T were n times continuously differentiable, then I would be
ac® manifold. We actually have assumed that T preserves orient-
ation; therefore I is an orientable manifold. To see this, let
J be a sufficiently small Jordan curve in I. Then J has infinitely

many disjoint preimages [Jn] in E2 under P. As a poini travels
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around a curve J° in the clockwise sense, each of the iterates under
T of this point must travel around each of the other curves J& in
the same clockwise manner, because T preserves the sense of orient-
ation. Thus, a given sense of orientation in J gives rise to one
and the same orientation, say clockwise, for each of its preimages
in E2.

Let the curve J be moved through I, and let it return to its
starting place. Then the preimages of J move from place to place
in Ee, but they always preserve their clockwise orientations. When
J comes back to its starting place, the preimages of J return,
perhaps in a permuted order, to their starting places. But each
preimage had the same orientation at every step of the way, and
so J must have the seme orienmtation et the end of its journey as
it had at the beginning. Therefore a consistent orientation can
be defined on I, and I is an orientable manifold.

We would like to know the fundamental group “1(1)‘ This group
is isomorphic to the group of covering transformations of the uni-
versal covering of I. But E2 is the universal covering of I, and
the covering transformations of E2 are just the iterated powers
of T. Therefore the fundamental group of I is infinite cyeclic
with one generator.

We have ﬁroved that I is an oriented two-manifold whose
fundamental group is cyclic. It is proved in the Appendix that
these facts are sufficient to guarantee that I is an infinite

eylinder.
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Let z and o be coordinates on the cylinder, where (z,6) and
(2,6 + 1) refer to the same point of the cylinder., Let Z be a

straight line along the cylinder, and let the angular coordinate

be measured from Z, as indicated in Figure 7.

Figure 7
' < U(Z,G)
A ———— b — 1 E2
9 Tp
P

AL I

N

{ (\} Y5 ¥ (lz,8) o | {} I
[ ) /
¥ ,/ (Z,O) //'/I z

Let H c:E2 be one of the preimages of Z under the projection P.

To every ordered pair of numbers (z,8) we assign a point U(z,0) e 7
by the following procedure: {(z,t8) : 0 <1 < 1) is a curve wrapping
around I, and it can be lifted into E° in such a manner that the end-
point (z,0) is lifted into H; we define U(z,8) to be the other end-

point of the lifted curve, the one that corresponds to (z,6). One
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can verify that U(z,8) is a homeomorphism from the z,8-plane
onto E2.
Any curve {{z,8 + %) : 0<t <1} in I is a generator for
the fundamental group of I. Therefore the endpoints of a lifting
of this curve must correspond under a covering transformetion
which is a generator of the group of covering transformations.
Hence the endpoints of & lifting must correspond under T itself.
Let us campare U(z,8) end U(z,6 + 1). They are the endpoints
of a lifting of {(2,0 + ) : 0 <t < 1}, therefore they correspond
under T. Thus we have TU(z,6) = U(z,8 + 1) or T"TU(z,e) = U{z,0 + 1);
by continuity a particular one of these two alternatives, say the
first, must hold everywhere. But then U'1TU(z,9) = L{z,8), and we
have shown that T is equivalent to a translation, the conclusion

of Sperner?ts theorem.

5. CONCLUSION

One might try to infer from the translation theorem and the
results on fundemental regions that to embed e homeomorphism T
in a flow, one need only consider the restrictions of T to each
of its fundamental regions and then show that T is in fact equi-
valent to a transletion in each of its fundamental regions. One
would then try to synthesize these translations over subsets of
E2 into a flow over all of Ee.

Our conecluding example shows that this synthesis may be im~

possible.
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Example 3: T is defined by reference to Figure 8.
Figure 8

(0<r<1)

$Tp /‘
T,

N

w3 -2 -
=—1 L7 L® ot o0 b 23 b5 6 T g

L - {(x,y) | z = Trkm}

The transformation T maps Lk isometrically onto Lk"'2 for all

integers k. The amount of displacement in the y-direction is as

L 7

suggested in the figure: Lo, La, L ,es., as well as L3, L5, Liyeee,

are displaced one unit northward in their passage from Lk o

Lk*g. All other Lk are displaced one unit to the south.
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For x < ~1 we set T(x,y) = (x,y - 1) and for x > +1 we set
T(x,y) = (x,y + 1). It only remains to define T between the lines
Lk. Let this be done in such a manner that T over the whole plane
is one-to-one, bicontinuous, orientation-preserving, and without
fixed points.

One sees that T has the three fundamental regions x < -1,

-1 <x<+1, and +1 < x. We will show that T cannot be embedded
in a flow, despite the fact that the restrictions of T to its
three fundemental regions are equivalent to translations.

For suppose, if possible, that T were embedded in a flow
{Tp}. Then the lines x = * 1, being the boundaries of fundamental
regions, are left invariant by the flow; but this can only mean
that these lines are actually flowlines for {Tp]. We know that
T(~1,y) is south of (-1,y); therefore T'(-1,y) is south of (-1,y)
for all positive y. Likewise, T'(+1,y) is north of (+1,y).

We will show that {Tp] in -1 < x < 1 cannot possibly be defined
s0 as to sgree with what {Tp} mist do on both the two lines x = = 1
(although a flow can be made to agree with one line or the other).
For let p e Lo. For some v in the range O < v < 1 we have TTp € L1,
because the flowline from p to Tp has to cross L1 in going from
P eLo'toTp eLe.

If TTp is more than one unit north of p, then Tn‘wp is always
more than one unit north of Tnp as n -» -», Hence there are points
near x = -1 which are moved at least one unit north by T'; this

opposes the behavior of T¥ for points actually on the line, which
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is to move south. Thus we say that the point p has an irregularity
near x = -1,

it ‘l‘Yp is less than one unit north of p, then we see by the
figure that TH'Yp is more than one unit south of Tp. As n - 4w,
Tn+Yp is always more than one unit south of Tnp , and we have an
irregularity near x = +1.

Therefore each point on 1° has an associated irregularity on
one side or the other. Let {pk) be a sequence of points in 1°
tending to infinity in the -y direction, where each Py has an
irregularity on the same side, say near x = +1. Then for each
P, there is a vy, 0 <1, <1, for which TYk(pI]:) is at least one
unit south of p;; as n » +x (we have written pg = Tnpk). Then,
as in Figure 9, there is a sequence of points {qk} tending to a
limit point g on x = +1, where each G is some positive iterate

of some point Py

Figure 9
"TTq
qk-ol\.)Jq
‘Y‘ .
k
| T q.k « D

X=+41
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But Tan is at least one unit south of a, for some y in the
range 0 < vy < 1, while TYq is north of g for all positive y. Thus
the continuity has been violated, and we must conclude that T can-

not be embedded in a flow.



APPENDIX

Let M be a 2-manifold which
a) is orientable,
b) is noncompact,
¢) has no boundaries,
d) has for its fundamental group the infinite cyclic
group with one generator,

Then M~ is an infinite eylinder.

Proof: By a result of Radd (5), M can be triangulated. Any
finite submenifold K is a sphere with crosscaps, handles, and
holes, by the surface classification theory. But no crosscaps
can oceur because M is orientable. 1If a handle H were fo appear,
then M would have the appearance of Figure 10, where M* = R + H,

and R - H = C.

Figure 10
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By van Kampen's theorem (&),

{a,b} * “1 (R)
= , T, € n](R).

aba~ o) - r,

ﬂ1(Mé) =

But this group is homomorphic to é%:%é and thus cannot be infinite
cyelic with one generator; we have proved that no handles can occur.

A finite submanifold K must therefore be a sphere with holes.
4 chain of adjacent triangles not in K can meet only one boundary

of K, or else a handle would be formed. Therefore M has the form

of Figure 11.

[e]
We have M = Z + R1 + R2 4 e 4 Rn where Ri . Rk = 0 and

Z'EL_k:Bk'

If By is of finite order m in ﬂ1(Rk) then Bi is homotopic to

a constant in Rk’ and hence the boundary of an integer 2-chain Ck'
Ck must have the same value up to sign for each triangle in Rk’

hence Rk is a finite submanifold with one boundary and no crosscaps

or handles, and Rk is a cell.
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Among +the Rk there cen be at most two which are not cells.

For suppose that R1 s R2, and R, are not cells; then BI’ B2, and

3
By are of infinite order in =, (31), ., (112), and n1(R3). By

van Kempen's theorem,

o () - n(Ry) * 1y (Ry) * -- % my(R)
B1B2-00Bn = 1

u (Mm) is homomorphic to the group in which all the groups
, (RLL)"' have been set equal to the identity. Then the sub-

and B. has the single relation

group generated by B1, B2, 3
B.B,B, = 1. But this group is hamomorphic to m——————— . Hence
17273 B1132=]32B1

zr1(M°°) could not be cyelic with one generator, and at most two
of the Rk are not cells,

If X contains a generator of 1 (Mm) then exacily two of the
R

k
1o the identity.

are not cells, for otherwise the generator would be homotopic

Let K be a finite submanifold containing a generator of
n1(M°°). Let M1 be cobtained from K by adjunction of all those Rk
thet are cells. We have shown that M1 is a sphere with two
noles, i.e., a compact cylinder. Let 1{2 be obtained from M1 by
adjoining those triangles of M~ which meet the boundaries of M'.
Both boundaries of M1 are in the interior of K2 because M~ has
no boundaries. M2 is obtained from K2 just as M1 was from K‘ :

all holes except iwo are filled in by cells, and Me is a compact

cylinder.
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M~ can be written as a nested union of compact cylinders
M2 < M3 o Mh C +e« « The cylinder M is homeomorphic to thai
part of the z,6-cylinder which lies between z = ~n and z = +,
by the mapping U L2 S&y. The {Un} can be defined so as to agree
on the intersections of their domains, and the complete set

{Un} gives a homeomorphism of M~ onto the z,0-cylinder for

—°°<Z<+°°.



(1)

(2)

(3)

()

(5)

(6)
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