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ABSTRACT

The purpose of this thesis is to investigate the development and evolution of
magnetic fields in new active regioné on the sun. The major observations are
digital magnetograms of the line-of-sight component of magnetic fields made with
the high sensitivity videomagnetograph at the Big Bear Solar Observatory, and
Ho filtergrams with the 1/4 A Ha Zeiss filter.

This thesis consists of three themes. First, the separation velocity of emerging
magnetic flux is investigated. I measure the separation velocities of opposite polar-
ities of 24 new bipoles, and compare them with the theoretical values estimated by
the present theory of magnetic buoyancy. The predicted velocities are higher than
those observed. Second, the cooling time scale of growing sunspots is studied. I
define the cooling time scale and derive it from the measurements of intensity and
magnetic field strength of sunspots. The cooling time scales of the ten growing
sunspots studied range from 0.5 to 9 hr. I also estimate the cooling time scale from
two models, the Inhibition Model and the Alfven Wave Model, based on linear
theory. Both models give cooling times of about 0.05 hr. Third, nonadiabatic
effects in convective instabilities in thin flux tubes are examined. I study the
convective instabilities in thin flux tubes by including a nonadiabatic term. I find

that a flux tube is convectively stable for any field strength.



- vii —

TABLE OF CONTENTS

ACKNOWLEDGEMENTS iv
ABSTRACT vi
CHAPTER 1. INTRODUCTION 1
CHAPTER 2. THE SEPARATION VELOCITY OF EMERGING

CHAPTER 3.

CHAPTER 4.

MAGNETIC FLUX 12

THE COOLING TIME SCALES OF GROWING
SUNSPOTS 46

NONADIABATIC EFFECTS IN CONVECTIVE
INSTABILITIES IN THIN FLUX TUBES 72



CHAPTER 1

INTRODUCTION



-9 _

Most activity on the sun is dominated by the magnetic field and its interaction
with the plasma atmosphere. The magnetic field is commonly thought to be
generated by some kind of dynamo mechanism operating in the convective zone.
The azimuthal field, generated by differential rotation, is brought to the surface
by magnetic buoyancy or supergranular flow. The emerging flux always appears
as a bipolar form, with the opposite polarities moving apart during the growth
phase. Most new regiohs stop growing in less than a day, but sometimes magnetic
flux continues to emerge and a bipole grows into an active region. Arch filament
systems, which connect the opposite polarity fields, are observed in large, growing
active regions. Pores or sunspots might be formed over a period of hours or
days through the progressive gathering of small flux tubes into a large tube.
Many questions concerning the development of active regions still lack a complete
explanation, although the above picture is widely accepted. In this thesis, I will
investigate three themes: (1) the problem of magnetic buoyancy, which probably
carries magnetic fields to the surface of the sun; (2) the cooling mechanism of
sunspots; and (3) the nonadiabatic effects in convective collapse, which may be

the mechanism for concentrating magnetic field to kilogauss.

Frazier (1972) proposed a model to describe emergence of magnetic fields. In
his model, magnetic fields are carried up to the surface of the sun by supergranular
flow. This model is based on observations that emerging magnetic fields first
appear near the center of a supergranule. However, it is difficult to identify a
supergranule cell without velocity field measurements because, first, the magnetic
network may not exactly correspond to supergranule cells in active regions; sec-
ondly, even in the quiet sun, there is no one-to-one correspondence between the
magnetic network and the supergranule (Wang 1986). Two or more supergranule

cells may correspond to one cell of the magnetic network. Thus, a dopplergram is
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required to identify a supergranule cell. All previous observations of emergence of
magnetic flux do not have velocity fields taken simultaneously. In six of our eight
emerging regions for which dopplergrams are available, the new flux emerges at
the boundaries of supergranules (Chapter 2). Therefore, the supergranular flow
can not be a major mechanism to carry magnetic field to the surface.

Another possible mechanism to carry magnetic field to the surface is magnetic
buoyancy. Many authors have investigated the theory of magnetic buoyancy.
Parker (1955) first proposed the mechanism of magnetic buoyancy. Parker (1975a,
1979b), Unno and Ribes (1976), Schiissler (1977) and Moreno-Insertis (1983)
calculate the time for a horizontal flux tube, of which radius is assumed to be much
smaller than the pressure scale height, to cross the convective zone by magnetic
buoyancy. Schiissler (1979) considers a flux tube with a radius comparable to or
greater than the pressure scale height. Tsinganos (1980) investigates instabilities
of a buoyant flux tube. Van Ballegooijen (1982) discusses a flux tube rooted in
the stable layer below the convective zone. So far there has been no theoretical
discussion about the emerging velocity of a flux tube in the photosphere and the

chromosphere in which observations are made, and few observations have been

made to test the theory.

In the chromosphere, arch filaments, which trace out flux tubes, are observed
to be fairly low-lying (Roberts 1970). Their summit has blueshifts up to 10 km/s,
while footpoints have redshifts up to 50 km/s (Bruzek 1967, 1969; Roberts 1970).
The common interpretation is that the summit of the flux tube rises, while plasma
falls down along the flux tube due to gravity. But there is no further investigation
of the mechanism which causes the summit to rise with such a high velocity. It
can not be simply caused by buoyancy, since the internal density is higher than

ambient density. Nor can it be due to the lateral motion of the footpoints, since
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the lateral veiocity of the footpoints is only about 1 km/s. Further observational

and theoretical investigations are needed.

At the photosphere, the most direct information about the emerging mech-
anism comes from vertical velocity measurement. Kawaguchi and Kitai (1976)
report an upper limit of 0.2 km/s for the rising velocity of the flux tube. However,
Brants (1985) reports an upward velocity of about 1 km/s near the line of inversion
in emerging flux regions. Harvey and Martin (1973) and Born (1974) measure the
separation velocity of the opposite polarities of ephemeral regions and emerging
flux regions. In chapter 2, I measure the separation velocity and other quantities
(such as magnetic flux and size) of 24 new bipoles. The measured separation
velocities range from about 0.2 to 1 km/s. The fluxes of the bipoles range over
more than two orders of magnitude, and the mean field strength and the sizes
range over one order of magnitude. I also estimate the separation velocity at
the photosphere from the theory of magnetic buoyancy, which is higher than the
observed values. Although the present theoretical values do not agree with the

observed ones, this work serves as a start and provides preliminary information on

the emerging mechanism.

After magnetic flux emerges, pores or sunspots might be formed over a period
of hours or days by gathering small magnetic knots together. The sunspots are
cooler than their surroundings, and have high field strength up to 3500 Gauss.
The mechanism for causing the low temperature of sunspots is one of the oldest
problems in solar physics. Two different mechanisms, the Inhibition Model and the
Alfven Wave Model, have been proposed. In the Inhibition Model, first proposed
by Biermann (1941), the convection which carries energy to the photosphere is
partially inhibited by magnetic fields. In the Alfven Wave Model, thermal energy

is transformed into mechanical energy. In the presence of a magnetic field, if
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the thermal conductivity is greater than the magnetic diffusivity, a temperature
gradient can cause overstable modes of Alfven waves (or more complicated mag-
netoacoustic waves), which can carry a large amount of energy away (Parker
1979a and references cited therein). So far most theoretical work has been time
independent. In Chapter 3, I propose a method to provide dynamical information
on the cooling mechanism of sunspots, which is the cooling time scale.
Observations show that the effective temperature of sunspots is a function of
their field strength (Bray and Loughhead 1964; Deinzer 1965; Dicke 1970). As a
sunspot grows, its field strength increases and intensity decreases. My observations
show that during the growth phase, a new sunspot has a higher intensity than a
stable sunspot of the same field strength. Therefore, it must take time for a
growing sunspot to reach an equilibrium state. From the time history of intensity
and field strength of growing sunspots and the relationship between intensity and
field strength of stable sunspots, I derive the cooling time of growing sunspots.
The cooling time scale is defined as the rate of change of the intensity at a fixed
magnetic field strength. Therefore, it is independent of the mechanism which
causes increases of magnetic field, and it is also independent of whether or not a
sunspot consists of a number of unresolved flux tubes. The cooling time scales of
the ten growing sunspots studied range from 0.5 to 9 hours. I also estimate the
cooling times from two models, based on linear theory. Both models give a time
scale of about 0.05 hour. The discrepancy between theoretical and observed values
may be due to the fact that the observed sunspots are in the nonlinear regime
while the theoretical estimate is done in the linear regime. A calculation better
than the order of magnitude estimate is required in order to make comparisons

with observed values.

One of the most exciting discoveries in solar physics in the last two decades is
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that most phétospheric magnetic fields outside sunspots are concentrated in small
elements with field strength of about 1500 Gauss (see a review paper by Harvey
1977 and references cited therein), while the average field is only a few Gauss over
the entire surface of the sun and about one hundred Gauss in active regions. Two
questions immediately arise: How does a flux tube maintain its equilibrium? What
concentrates magnetic fields to kilogauss in the first place?

Parker (1955, 1975b) points out that an equilibrium flux tube is subjected
to the hydromagnetic exchange instability. Meyer et al. (1977) show that the
magnetic buoyancy can stabilize the exchange instability in the upper, rapidly
flaring part of the flux tube.

Since the discovery of concentration of magnetic fields, many mechanisms of
concentration have been proposed. They can be grouped into two categories: the
dynamical mechanism and the thermal mechanisms. The dynamical mechanisms
include: (1) concentration by the convection of granules or supergranules (Parker
1963, 1973a,b, 1979b, 1981; Weiss 1964, 1977; Meyer et al. 1974; Galloway et al.
1977; Pecker and Weiss 1978; Galloway and Moore 1979); (2) concentration by
turbulence and the Bernoulli effect (Parker 1974a,b, 1979b, 1981; Zwaan 1978);
(3) concentration by twisting (Piddington 1976a,b,c; Parker 1981). Parker (1976,
1979b, 1981) has shown that the above dynamical mechanisms fail to concentrate
magnetic fields to kilogauss at the photosphere.

The thermal mechanisms have been shown to be promising means to produce
kilogauss flux tubes by many authors(Parker 1976, 1978, 1979b, 1981; Galloway et
al. 1977; Spruit 1979; Spruit and Zweibel 1979; Unno and Ando 1979; Venkatakr-
ishnan 1983, 1985). The idea of a thermal mechanism is described as follows:
The plasma flowing adiabatically downward within a flux tube is cooler than its

surroundings because the convective zone is superadiabatic. This temperature
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reduction could cause the pressure scale height to be smaller and the density higher
inside the flux tube, which would lead the plasma to continue to flow downward;
that is, an instability would occur in the flux tube. This instability is essentially the
same as the ordinary convective instability caused by a steep temperature gradient.
The difference is that the plasma inside a flux tube is guided along the tube by the
magnetic field, and it does not exchange heat with its surroundings, nor does it
mix with its surroundings; that is, it does not circulate as in ordinary convection.
Instead, it continues to flow along the flux tube. The downward motion would
evacuate the plasma inside the tube and concentrate the magnetic field. Spruit
(1979) and Spruit and Zweibel (1979) use a model of the solar atmosphere to show
that a flux tube with photospheric field strength less than about 1300 Gauss is
convectively unstable, and would collapse into an equilibrium state of higher field
strength. These works demonstrate that magnetic fields could be concentrated into
small flux tubes of kilogauss by the thermal mechanism (convective collapse). The
above calculations are based on the assumption that the perturbation is adiabatic.
Venkatakrishnan (1985) shows that the mechanism of concentration of flux tubes by
convective collapse becomes less efficient when radiative heat transport is included.
In Chapter 4, I consider a nonadiabatic effect caused by the change of the
magnetic field. This is based on the observational fact that sunspots with stronger
magnetic field have lower effective temperature (or less heat content). By including
this nonadiabatic effect, I find that flux tubes of any field strength are stable against

the convective collapse discussed by Spruit and Zweibel (1979).

The radius of a small flux tube is less than 300 km, which can not be resolved
by present observations. The observational results indicating kilogauss rely heavily
on the indirect calculation. Furthermore, it is not clear whether all magnetic fields

at the photosphere are concentrated in small tubes of kilogauss (Simon and Zirker
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1974; Wang et al. 1985; Zirin 1985). My result shows that flux tubes of any field
strength might be stable against convective collapse, although whether or not they

actually exist is a matter to be settled by observation.
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ABSTRACT

We measure the separation velocity of opposite poles from 24 new bipoles on
the sun. We find that the measured velocities range from about 0.2 to 1 km/s.
The magnetic fluxes of the bipoles range over more than two orders of magnitude,
and the mean field strength and the sizes range over one order of magnitude. The
measured separation velocity is not correlated with the flux nor with the mean field
strength. A calculation based on the current theory of magnetic buoyancy shows
that the separation velocity is between 7.4 B a~1/4 cotd and 13 cotf km/s (8 is the
elevation angle of the flux tube at the photosphere, a is the radius), which does not
agree with measurements, unless the flux tubes are almost vertical. The predicted
rising velocity, which is between 3.7 Ba~!/4 and 6.5 km/s, is also higher than the
measured vertical velocity near the line of inversion in emerging flux regions. It is

likely that the current theory is too simplified for application to the sun.
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I. INTRODUCTION

Observations have shown that some magnetic fields on the sun emerge from
below the photosphere. The mechanism responsible for bringing magnetic fields to
the solar surface has long been believed to be magnetic buoyancy, which was first
introduced by Parker (1955). Since then, many theoreticians (Parker 1975, 1979;
Unno and Ribes 1976; Schissler 1977, 1979; Tsinganos 1980; van Ballegooijen 1982;
Moreno-Insertis 1983) have contributed to this hypothesis. But few observations
have been made to provide information for testing the theory. Kawaguchi and
Kitai (1976) report: “ We have not observed the single blue shift of Fraunhofer
lines in the region corresponding to dark lanes in between the developing sunspot
pores; we expect that the velocity of rising loops is not larger than the mean
errors (0.2 km/s) of our measurements of radial velocities.” However, Brants
(1985) reports that an upward velocity of about 1 km/s is found near the line of
inversion in emerging flux regions. Other authors (Harvey and Martin 1973; Born
1974) measure the separation velocities of opposite poles of ephemeral regions and

emerging flux regions.

In this paper, we measure the separation velocities and magnetic fluxes of 24
emerging bipoles, and compare them with the values estimated from the present
theory of magnetic buoyancy to provide preliminary information on the emerging
mechanism. In section II, we discuss the measurements of the separation velocities
and other quantities of 24 emerging bipoles. In section III and IV, we discuss the
present theory of magnetic buoyancy and the buoyant velocity. In section V, we
compare the theoretical values with the observed ones and discuss other possible

theories.
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I1. OBSERVATIONS AND RESULTS

Emerging magnetic fields on the sun always appear as new bipoles, with the
opposite polarities moving apart during the growth phase. The new regions have a
broad spectrum of size, flux and lifetime. Some of these new regions are designated
as emerging flux regions (EFR), which are defined as the first stage of active regions
(Zirin 1972). They might develop into large active regions with flux of about
1022 Maxwell, and last for several solar rotations. Some of these new regions are
ephemeral regions (Harvey and Martin 1973; Martin et al. 1984) with flux of only
108 Maxwell, and last for only a few hours. Even though ephemeral regions may
have some properties (for example, flux, size, numbers and distribution) different
from emerging flux regions, in this paper we consider them as the same entity. We
classify them only by the amount of flux they develop.

We have observed 24 new bipoles with the high sensitivity videomagnetograph
and the 1/4 A Ha Zeiss filter at the Big Bear Solar Observatory. The videomag-
netograph has been described by Martin (1983), Zirin (1985) and Shi (1986). The
digital magnetograms are taken at rates of about 10 to 30 per hour, depending on
integration time. The high spatial resolution Ha pictures are taken at a rate of
about about 4 per minute. The observed quantities of these new bipoles are listed
in Table 1, and explained as follows:

(1) Separations

We define two different separations of the opposite poles of a new bipole. The
first one, the separation of maxima, is the distance between the maxima of the
opposite polarity fields. The second one, the separation of borders, is the distance
between the outer borders of two poles. The separation of maxima can be measured
more accurately than the separation of borders, but the latter has better physical

meaning, because the position of the maxima might be affected by the development
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of a new stronger pole. The velocities derived from the two different separations
will be discussed in (2). The geometric projection has been corrected such that all
regions are transformed to the center of the solar disk for comparison on the same
base. Plots of the separations of maxima versus time of two typical new bipoles
are shown in Figures la and 2a. For some regions (e.g. Figure 2a), the position
of the emerging flux is difficult to define at a very early stage and the measured
separation has a larger error. Otherwise, the error is about 1 to 2 arcsec.
(2) Separation Velocities

The separation increases nearly linearly with time over a certain period. Usu-
ally, the slope of the curve decreases with time. We define the separation velocity
as the slope of a linear fit of the steepest portion of the curve (as shown in Figures
la and 2a). The choice of the steepest portion is made by eye. The variation in
the beginning of Figure 2a is caused by the uncertainty in defining the position of
the emerging flux upon first appearance. This portion of the curve is not included
in the determination of the separation velocity. Because of the high temporal
resolution, the velocity can be determined accurately. The error caused by the
choice of the steepest portion of the curve is usually less than 30%. Both the
separation velocity of maxima (vy,) and the separation velocity of borders (vp) are
measured and shown in Table 1. A plot of v, versus vy, is shown in Figure 3.
They are nearly the same. Hereinafter, we use the “separation velocity” to refer
to the separation velocity of maxima. The separation velocity versus the magnetic
flux (defined in (4)) and the mean field strength (defined in (8)) are plotted in
Figures 4 and 5 respectively. Figures 4 and 5 show that the separation velocity
is not correlated with the flux and the mean field strength of the region. From
the theory of magnetic buoyancy, the emerging velocity, which is related to the

separation velocity, is a function of magnetic field strength and cross section of the
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flux tube. The measured velocities range from about 0.2 to 1 km/s. The fluxes of
the bipoles range over more than two orders of the magnitude, and the mean field
strength and the sizes range over one order of the magnitude. We will discuss the
theory of magnetic buoyancy in Section III and IV.

Some of the bipoles are observed from birth, but we do not find the separation
velocity to be as high as 2 km/s reported by Born (1974), and 5 km/s by Harvey
and Martin (1973). We argue that first, as the bipole first emerges, the position of
the emerging flux can not be accurately defined; secondly, high temporal resolution
is required to accurately measure the separation velocity in the first few minutes
because of the error in the position measurement. Frazier (1972) reports transverse
velocities of 0.1 to 0.4 km/s of 26 magnetic knots in an active region. These
correspond to separation velocities of 0.2 to 0.8 km/s, which are consistent with
our results.

(3) Initial Separations and Mean Separations

The initial separation is the separation of maxima we first observe for the
bipole. For the regions that we observe from the very beginning of emergence,
we define the initial separation as when we first can identify the bipolar feature.
For those in which we miss the very beginning of emergence, we simply define the
initial separation as the first observed one. The initial separation indicates how
early we start observing the new bipole. The mean separation is the separation
of maxima averaged over the period in which the separation velocity is defined.
Both are shown in Table 1. There is no apparent correlation between separation
velocity, vy, and mean separation and initial separation.

(4) Magnetic Flux
For some new bipoles, the fluxes of two poles are not equal. The same phe-

nomenon is also reported by other authors (Topka and Tarbell 1983; Wilson and
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Simon 1983; Simon and Wilson 1985). The possible explanations are geometry of
the fields, instrumental limitations and effects, seeing effects, the surface dynamo
(Akasofu 1984; Simon and Wilson 1985), and the cancellation of the flux coincident
with its first appearance (Livi et al 1985). Plots of the fluxes of both poles versus
time for the two regions are shown in Figures 1b and 2b. We define mean flux in
Table 1 as an average over the period in which the separation velocity is defined
for each polarity, and then take the average of two opposite polarities.
(5) Arch Filaments

Some regions show arch filament systems in Ha filtergrams. Table 1 shows
that there is a threshold flux for an arch filament system, which is about 0.5 x
1020 — 1.0 x 1020 Maxwell. Harvey and Martin (1973) suggest that a threshold
of about 0.75 x 1020 Maxwell is needed to support an arch filament system.
(6) Pores

Some regions have visible pores or sunspots in white-light pictures or off-band
Ha filtergrams during the observing period. Table 1 shows that a minimum flux
of about 1020 Maxwell is found for a pore. Since the visibility of pores very much
depends on the seeing, there is the possibility that we miss them in some cases.
A minimum flux of 0.25 x 1020 Maxwell for a pore has been reported by other
authors (Zwaan 1978).
(7) Radii

We define the radius as the average of major and minor axes of the 40 Gauss
field strength contour of each polarity, then we take the average of two opposite
polarities. The geometric projection has also been corrected such that all regions
are transformed to the center of the solar disk. There is no apparent correlation

between separation velocity, vm, and radius.

(8) Mean Field Strength
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(mean)

The line-of-sight component of mean field strength, B /] , 1s defined as

observed flux divided by observed area.

III. BUOYANT FORCES

In this section, we review some points of magnetic buoyancy relevant to our
discussion. In Section IV, we calculate the buoyant velocity at the photosphere.

Magnetic buoyancy brings azimuthal fields to the surface of the sun. For
the deep part of the convective zone, the radius of flux tubes is much less than
the pressure scale height, and therefore, the variations of pressure, density and
temperature across the radius can be ignored. But as a flux tube approaches
the surface, it expands rapidly while the scale height decreases at the same time
(Schiissler 1979). In the upper part of the convective zone, the radius of the tube
can be greater than the scale height. For example, at the photosphere, the scale
height is only about 200 km, while the cross section of an emerging bipole can be
few thousand km. Therefore, we can not ignore the variations of pressure, density
and temperature across the tube. In the following discussion, we consider two

limits: the radius (a) much less than the scale height (A) and a > A.
a)a < A
For a horizontal flux tube, the buoyant force per unit length is proportional to
the difference between external density and internal density:
Fy = wa®g(pe — pi), (1)
where subscripts e and ¢ refer to external and internal, respectively. For a flux
tube of radius a, pressure equilibrium between the flux tube and its surroundings

is established on a time scale, a/ \/Vj + c2, where V4 and cs are Alfven speed
and sound speed, respectively. For a <« A, a/y/ V‘Z +c2 <« AJv, where v is
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the upward velocity of the flux tube, which is less than ¢s and V4. Therefore,

we can assume that at all times the flux tube is in pressure equilibrium with its

surroundings:

Pe = p;i + 3 (2)

By using the ideal gas law, equation (1) can be written as:

Te B2 /87r

2
= x 1____.. _

)b (3)

where AT = T; — T,.

If the flux tube is in thermal equilibrium with its surroundings, that is, AT =

0, then the buoyant force is
a® B?

Fb = WKS_’R' (4)

If the flux tube moves adiabatically, the temperature difference, AT, is (Parker
1979)

are) = [C(Gh - G2

=mHg

)} dz' + AT(z0)

[ el V) = i) VaaD '+ AT(0),  (5)

where V = 0InTe/0Inpe, V|yq = 8InT/dInp|yq, and pe and p; are external
and internal mean molecular weights, respectively. Since the effect of pressure and
temperature on mean molecular weight is small, we assume p = pe = p;. If we

further assume that the initial temperature difference, AT(z,), is zero,
AT(z) = ZHIE / * 8(z")d7, (6)
kB 20

where § = V — V, 4. The temperature difference, AT(z), can be computed from
a model of the convective zone (e.g. Spruit 1974). Since § is negligibly small in

the deep convective zone, AT is not sensitive to the choice of the initial position,
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zo. Using the convection zone model of Spruit and choosing z9 = —5000km, we
calculate AT(z); it is plotted in Figure 6.

In equation (3), both the temperature difference and magnetic field contribute
to the buoyant force. The buoyant force caused by the temperature difference is
just the ordinary convective buoyancy; the buoyant force caused by the magnetic
field is the magnetic buoyancy. From Figure 6, AT ~ 3000K at the photosphere,
and T¢/(Te + AT) ~ 0.6 in equation (3); at a depth of 300 km, AT ~ 900K,
and Te/(Te + AT) ~ 0.93 in equation (3). Thus, the buoyant force caused
by the temperature difference is negligible compared with that caused by the
magnetic field, except at the photosphere. But, at the photosphere, the tube
is no longer thermally isolated, because energy transport by radiation becomes
efficient. Therefore, the buoyant force caused by the temperature difference can

be ignored. In the following calculation, we set AT = 0 for all z.

bya > A

Schiissler (1979) shows that, if (i) there is hydrostatic equilibrium inside and
outside the tube, respectively, (ii) the magnetic field is uniform inside the tube,
(ii1) T3(z) = Te(2) = constant, and (iv) there is pressure balance at the bottom

of the horizontal tube, then the buoyant force per unit length is
1 9 =a a
= - —
F, 4B ael Il(A), (7N

where I is the modified Bessel function of order 1. In the limit a <« A, equation

(7) reduces to equation (4). In the limit A < a,

F~B2\/ﬁ (8)
b_4\/2_7r

Schiissler (1979) shows that equation (4) can be used if a < 0.5A, equation (8) if

a > DHA.



~ 99 _
If the flux tube moves adiabatically, T; # Te. Equation (7) is modified to

- —a =4
F = lB2an% Il(-a—) + 27rapeo{67re Il(i) — M Il(i)}, (9)
4 A; Ae A;

where A; = kT;/umpg, Ae = kTe/umpg, and pe, is the external pressure at the
bottom of the horizontal tube. In the limit a < A; and A¢, equation (9) reduces

to equation (3). In the limit a > A; and A,

B? [Te
F, ~ 4\/2_7‘_\/(11\; + V27 peorfai( Tz - 1) (10)

IV. BUOYANT VELOCITY

The velocity of a horizontal tube is determined by the buoyant and drag forces.

The drag force per unit length of a cylinder can be written as

1
Fy = 5pev’Cy-2a, (11)

where Cj is the drag coefficient, which is well known from experiments for Reynolds
numbers, Re = 2av/v, between 10~1 and 108 (Tritton 1977). If the Reynolds

number is much less than 1, the drag force can be expressed analytically as (Landau

and Lifshitz 1959)
4T pevv
F;, =
4~ 05— v — In(a v/4v)’ (12)

where v ~ 0.577. Therefore, first we have to determine the value of the Reynolds

number.

In the turbulent convection zone, the effective turbulent kinematic viscosity,
vt, can be approximated by vl/3, where v; is the characteristic velocity of turbu-
lence, and [ is the characteristic length scale of turbulence (Parker 1979). Since
the molecular kinematic viscosity is much smaller than the effective turbulent

kinematic viscosity in the solar convective zone and atmosphere, we can ignore
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the molecular kinematic viscosity. The characteristic length scale, I, is different
for different sizes of the tube. We define a. and v, as the size and velocity of

the largest eddies, which are granules. From observations, a, ~ 1000km > A,
ve =~ lkm/s.
a)a < A < aqg

Since eddies of size comparable to the cross section of the tube are the most
effective in braking the motion, we set ! equal to a (Moreno-Insertis 1983). From

Kolmogorov’s law, we can relate the characteristic velocity to the velocity of the

largest eddies,
o = v ()3, (13)
ac
The Reynolds number is

Re ~ ( )'3. (14)

From observations, v >~ 1km/s, v ~ lkm/s, and a, ~ 1000km ~ 5A at the
photosphere. For a < A, Re > 10. The drag force is expressed by equation (11).

From experiments (Tritton 1977), C, is about 1. From equations (4) and (11),
v=Vy- ( )7 ( ) (15)

where V4 = B/\/4npe.

b)a >ac>A

If a is greater than the size of the largest eddies, a., and scale height, A, then

l ~ ac and vy ~ ve. The Reynolds number is

Re ~ 6= = (16)

Ve Q¢

Fora > a, and v =~ v¢, Re > 6. The drag force is expressed by equation (11),
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and Cy is of order 1. From equations (8) and (1 1)

v="Va (5m )Z ( )Z (17)
In the above discussions, we consider the tube to be horizontal. If the tube is
curved, the buoyant force is balanced by the magnetic tension and the drag force.

But the magnetic tension (F}) is negligible compared with the the buoyant force,

which can be shown as follows. The magnetic tension is

F, = ma? - %, (18)
where R is the radius of the curvature of the tube. From equations (4), (8),
and (18), the ratios of the magnetic tension to the buoyant force are A/R and
(2#)1/2(a/A)1/2(a/R) for a € A and @ > A, respectively. In general, A and a
are much less than R. Therefore, we can ignore the magnetic tension, and consider
that the tube is straight locally. The effect of magnetic tension will be discussed
in section V. If a tube has an elevation angle, 8, at the photosphere instead of
being horizontal (see Figure 9), the apparent separation velocity of two poles at

the photosphere is different from equations (15) and (17) by a factor 2- coté (shown

in the Appendix). The apparent separation velocity of two poles is

v = 2cotf - Vy - ( )7 (= )7 (19)
if a < A; and

v = 2cotd - Vy - ( )Z (= )%1' (20)
ifa > A.

V. DISCUSSION

From Table 1, the measured separation velocities range from about 0.2 to 1
km/s. The fluxes of the bipoles range over more than two orders of magnitude,

and the mean field strength and the sizes range over one order of magnitude.
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It is widely held that all magnetic fields in active regions are concentrated in
small kilogauss flux tubes. We assume that each observed bipole consists of a
bundle of small flux tubes of radius about 100 km, and field strength about 1500
Gauss at the photosphere. If the filling factor is much less than 1, each flux tube
moves independently. Since the radius of these small tubes is less than the scale
height, each flux tube has a separation velocity about v ~ 13cotd km/s at the
photosphere from equation (19), assuming that A = 200 km and C; = 1.

If the filling factor is close to 1, the material in between the tubes also moves
with the tubes, with the observed bipole behaving like a single tube. The effective
field strength is the mean field strength of the bipole, and the radius of the tube
is the radius of the observed bipole, which is usually much greater than a. and
A. The separation velocity of the two poles is expressed by equation (20). If we
choose that Cy = 1, A = 200 km, and p, = 3.2 x 107, then from equation

(20) the separation velocity is
1
v = T4Ba 4 cotd km/s, (21)

where B is in units of kilogauss, a is in units of 1000 km, and 6 is the elevation
angle of the tube at the photosphere. The observed B;r/nean) in Table 1 is only
the line-of-sight component, which is smaller than the real mean field strength.
The observed a in Table 1 is greater than the real radius of the tube because of
the geometric projection factor (The geometric projection has been corrected for a
such that all regions are transformed to the center of the solar disk). Altogether,
if we use the observed values of B}r/nean) and a in equation (21), this would give
a lower limit for v. The value of 7.4 B;;nean) a~ Y 4 defined as v, is shown in the

fifth column of Table 1. A plot of vy, versus v, is shown in Figure 7. There is no

apparent correlation between vy, and v,.
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The a.ngle— calculated by equation (21) with observed values of vy, and v, gives

a lower limit for the elevation angle, 6,
9 > tan~1(-2). (22)
Um

The value of tan™1 (vo/vm), defined as Oy, is shown in Table 1. There is no
apparent ‘correlation between 0,,;, and mean separation as shown in Figure 8.

From the measured mean field strength in Table 1, for most of the regions, the
filling factor is about 0.1 to 0.6, which is between the two extremes discussed above.
The separation velocity would be between 7.4 B a=1/4 ¢ot6 and 13 cot km/s; and
the elevation angle of the tube at the photosphere would be larger than 6,,;,.

Compared with the observed values of velocity in Table 1 (columns 3 and
4), the theoretical values (column 5) seem too large; or else the tubes must be
almost vertical at the photosphere for most of the regions. This seems unlikely
because observations show that arch filaments, which trace out flux tubes, are flat
in the chromosphere and the corona (Roberts 1970). Nevertheless, it is possible
that flux tubes are almost vertical at the photosphere, and turn horizontal in the
chromosphere. Furthermore, Kawaguchi and Kitai (1976) report that the velocity
of rising loops is less than 0.2 km/s; and Brants (1985) reports that the upward
velocity near the line of inversion in emerging flux regions, where flux tubes are
horizontal, is about 1 km/s. These are lower than the theoretical values, which lie
between 3.7 Ba~1/* and 6.5 km/s. Altogether, the observed values are lower than
the values predicted by the present theory of magnetic buoyancy.

The possible resolutions for the discrepancy between the theoretical and the
observed values are as follows: (i) The magnetic tension might be important and
partially balances the buoyant force. The magnetic tension can be ignored for

a < A because the ratio of magnetic tension to buoyant force, A/R, usually is
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much less than 1. However, the magnetic tension might be comparable to the
buoyant force for a > A, if the radius of curvature, R, is not much greater than
(2m)1/2(a/ A)1/24. Thus, for the case that the filling factor is much less than 1, the
predicted velocity, 13 cotd km/s, is not changed. But, for the case that the filling
factor is close to 1, the predicted velocity, 7.4 B a—1/4 cotf, could be overestimated,
that is, the theoretical lower limit of separation velocity could be smaller than
7.4 Ba~Y4cotg. This might explain the discrepancy between the predicted and
the observed velocities for the case that the filling factor is close to 1, because
the predicted velocity is close to the theoretical lower limit, which could be less
than 7.4 Ba~1/4 cotd. However, this fails to explain the discrepancy for the case
that the filling factor is much less than 1, because the predicted velocity is close
to the theoretical upper limit, which is 13 cotd km/s and which is much greater
than the observed values. (i) The drag coefficient, Cj, might be greater than 1,
which is adopted above. The Reynolds number estimated in Section IV, which
1s based on the mixing length theory, might be too large. This would cause an
underestimate of the value of Cy. For example, if the Reynolds number is 10,
Cq ~ 3, and the theoretical value of the velocity decreases by a factor of about
1.7; if the Reynolds number is 1, Cy ~ 10, and the theoretical value of the velocity
decreases by a factor of about 3. (iii) The drag force in equation (11), based on
the laboratory data, might not be applicable in the case that the radius of the
flux tube is comparable to the pressure scale height. (iv) The above calculation
is based on the assumption of a circular cross section, whereas in fact the cross
section may be deformed (Parker 1979; Schiissler 1979; Tsinganos 1980). The
deformation may cause an increase of drag force, that is, the rising velocity may
be reduced. (v) The magnetic buoyant force discussed in Section III (equations (3)

and (10)) might not be applicable to flux tubes near the surface of the sun. For
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example, the assumptions made in deriving equation (10) might not be valid for
flux tubes near the surface of the sun. A better theoretical calculation is required.

Van Ballegooijen (1982) estimates the horizontal drift velocity of an adiabatic
flux tube by assuming that the flux tube is rooted in the stable layer below the
convective zone. Our measurements do not agree with his results on two points:
(i) his results show that the horizontal drift velocity is highly dependent on the
flux and the field strength of the flux tube; (ii) his estimated values are smaller
than our measured ones by more than one order of magnitude.

The other possible mechanism to carry magnetic flux to the solar surface is
the motion of supergranulation (Frazier 1972). The horizontal velocity of super-
granulation is about 0.3 to 0.5 km/s (Simon and Leighton 1964; Wang 1986). If
emerging bipoles are moved by supergranular flow and originate at the center of
upwelling of flow, the separation velocity would be twice the horizontal velocity of
supergranulation, which is 0.6 to 1.0 km/s. This agrees with the observed values.
But this mechanism fails to explain the following. (i) For some regions, the opposite
poles move apart more than the size of a supergranule, while supergranules can
carry magnetic flelds only a distance less than their sizes. (ii) In six of eight
bipoles, which are simultaneously observed with the Dopplergraph, the new flux
first appears at the boundary of supergranules. Since the flow is downward at
the boundary of supergranules, it seems unlikely that magnetic field is moved by
supergranular flow.

It is important to mention that preceding spots usually move much faster
than following spots (Kiepenheuer 1953). Following spots usually are motionless
relative to surroundings, or they move very slowly (Zirin 1986). This implies
that something else also controls the rise of flux tubes. A complete model for

the emerging mechanism has to be able to explain the asymmetry of motion of
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preceding and following spots.

This work only provides very preliminary information on the emerging mech-
anism. The sample of 24 regions may not be enough to allow any statistical
conclusion. More direct observations of the vertical velocity field in between
opposite polarities, and better theoretical calculations, such as more accurate
buoyant force and drag force for an expanding flux tube of radius comparable
to or greater than the pressure scale height near the surface for different filling

factors, are needed to test the model of magnetic buoyancy.
VI. SUMMARY

(1) The measured separation velocities of 24 bipoles range from about 0.2 to 1
km/s. The fluxes of the bipoles range over more than two orders of magnitude,
and the mean field strength and the sizes range over one order of magnitude. The
measured separation velocity is not correlated with the flux and the mean field
strength of the bipole, nor is it with any other observed quantity in Table 1.

(2) The separation velocity predicted by the present theory of magnetic buoyancy
is between 7.4 B a~/4 cotd and 13 coth km /s, where 6 is the elevation angle of the
flux tube at the photosphere. The rising velocity of the top of flux tubes predicted
by the theory of magnetic buoyancy is between 3.7 B a~1/4 and 6.5 km/s.

(3) The predicted separation velocities are about one order of magnitude greater
than the observed velocities, or else the flux tubes are almost vertical for most
regions. There is no correlation between the measured separation velocity, vm,
and the theoretical value, v, (7.4 B a1/ 4), as shown in Figure 7.

(4) The predicted rising velocities are also significantly greater than the observed

upward velocities.

(5) A complete model of the emerging mechanism has to be able to explain the
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asymmetry of motion of preceding and following spots.

This work is done is cooperation with Haimin Wang.

APPENDIX

Consider a flux tube with an elevation angle, 6, at the photosphere (Figure
9). Only the component of F} perpendicular to the tube, which is F}cosf, can
move the tube; the component parallel to the tube moves material along the tube.
Since all regions have been transformed to the center of the disk, as the tube
moves upward (from DE to GH), the apparent displacement of the tube at the
photosphere is AB, which is equal to CB/sinf. Therefore, for each leg of the
tube, the apparent horizontal velocity is different from equations (15) and (17) by

a factor cotf. The apparent separation velocity of two legs is twice the horizontal

velocity of each leg, so

T % a.l
v = 2cotf - Vy (2Cd) (A) , (A1)
ifa < A; and
i3 Al
v = 2cotf - V4 - (ﬂ)i’ . (-a-)z’ (A2)

if a > A.
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TABLE 1
Date Flux Vim Vi v, Radius B;’;"" Ini. Mean Arch Pore (2.
Sepa.  Sepa.
(10'®*Mx) (km/s) (km/s) (km/s) (km) Gauss (km) (km) (degree)
04/08/84 694.0 0.28 0.36 5.03 4700 1000 17500 21900 Y Y 87
06/21/84 198.0 0.75 0.67 3.18 3300 579 17900 22000 Y Y 77
07/12/83 122.0 0.31 0.57 3.65 2500 621 14200 17200 Y Y 85
12/17/81 110.0 0.60 0.43 3.30 2500 560 5100 9700 Y N 80
06/21/84 57.0 0.36 0.33 2.28 2200 378 11400 13600 Y Y 81
10/14/85 43.0 0.88 0.98 1.72 2200 283 9000 11000 N N 63
10/14/85 32.0 0.66 0.69 1.28 2200 210 11000 14000 N N 63
07/12/83 30.0 0.44 0.35 1.88 1300 295 4000 5900 N N 77
07/21/81 30.0 0.30 0.32 2.45 1600 373 5500 8000 Y N 83
07/22/85 30.0 0.34 0.51 0.60 3000 106 3700 8500 N N 60
06/22/85 21.0 0.69 0.64 1.04 2000 167 6500 12000 N N 56
10/15/85 20.0 0.44 0.49 1.25 1800 196 7500 9700 N N 71
06/22/85 20.0 0.80 0.85 1.43 1700 220 3500 5400 N N 61
06/22/85 15.0 0.24 0.38 1.66 1400 244 5500 6400 N N 82
10/15/85 14.0 0.92 0.74 2.66 1100 368 5000 7000 N N 71
08/29/84 13.0 0.19 0.17 0.39 2500 66 5000 7500 N N 64
06/21/84 12.0 0.20 0.46 1.87 1200 265 4800 8100 N - 84
07/12/83 11.0 1.07 1.18 1.72 1200 243 2200 3400 N N 58
10/15/85 10.0 0.83 1.0 1.56 1200 221 4000 9200 N N 62
10/15/85 8.0 0.88 0.52 1.05 1300 151 5000 7800 N N 50
06/21/84 7.9 0.55 0.39 1.50 1100 208 6000 8300 N - 70
10/15/85 7.2 0.61 0.59 0.51 1700 79 5500 9200 N N 40
06/22/85 5.5 0.49 0.64 1.29 1000 175 4000 5300 N N 69
06/22/85 3.3 0.98 0.81 2.46 600 292 5500 7400 N N 68
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FIGURE CAPTIONS

FIG 1.—(a) Separation of opposite poles versus time for the nineteenth bipole
in Table 1. The error is about 1000 km. The straight line is a least-square linear
fit of the steepest portion of the curve, which is chosen by eye.

FIG 1.—(b) Magnetic flux of two poles versus time for the nineteenth bipole
in Table 1.

FIG 2.—(a) Same as Figure la, but for the sixth bipole in Table 1. The
variation in the beginning is caused by the uncertainty in defining the position of
the emerging flux at the very early stage.

FIG 2.—(b) Same as Figure 1b, but for the sixth bipole in Table 1.

FIG 3.—Separation velocity of borders, vy, versus separation velocity of max-
ima, vm.

FIG 4.—separation velocity of maxima, vm, versus magnetic flux.

FIG 5.—separation velocity of maxima, vy, versus line-of-sight component of

(mean)

mean magnetic field, B /] .

FIG 6.—Temperature difference, AT, as a function of depth below the photo-
sphere, calculated from Spruit’s convection zone model. The initial position is set
at a depth of 5000 km.

FIG 7.—Measured separation velocity, vm, versus vo, which is B;'/nean) a4,

FIG 8.—Minimum elevation angle, 8,,;,, versus mean separation.

FIG 9.—Schematic picture of a flux tube at the photosphere. The lower part
is a close view of a segment near the surface. The flux tube moves from (from DFE
to GH) as it rises. The apparent displacement of the tube at the photosphere is
AB, which is equal to CB/sin#.
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CHAPTER 3

THE COOLING TIME SCALES
OF GROWING SUNSPOTS

To be published in The Astrophysical Journal
Volume 312, 1987
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ABSTRACT

We study the evolution of brightness and magnetic fields of growing sunspots.
Growing sunspots are found to be brighter (or less dark) than stable sunspots with
the same magnetic field strength. From comparison of brightness and magnetic
fields of a growing sunspot with those of stable sunspots, we obtain a dynamical
parameter, the cooling time, of the growing sunspot. Ten growing sunspots are
studied, and cooling times of 0.5 to 9 hr are found. Two models, the Inhibition
Model and the Alfvén Wave Model, give cooling times of about 0.05 hr, based on
linear theory. The discrepancy between theory and observation may be due to the

fact that the observed sunspots are in the nonlinear regime.
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I. INTRODUCTION

The low temperatures and strong magnetic fields of sunspots constitutes one
of the oldest problems in solar physics. Two models, the Inhibition Model and
the Alfvén Wave Model, have been proposed to explain the darkness of sunspots.
In the Inhibition Model, first proposed by Biermann (1941), the convection which
carries energy up to the photosphere is partially inhibited by magnetic fields. In the
Alfvén Wave Model, thermal energy is transformed into mechanical energy. In the
presence of magnetic fields, under certain circumstances, a temperature gradient
can cause overstable modes of Alfvén waves (or more complicated magnetoacoustic
waves) which can carry a large amount of energy away (Chandrasekhar 1961;
Danielson 1965; Savage 1969; Parker 1974a,b, 1975; Cowling 1976a). The criterion
for occurrence of overstability is that the thermal conductivity be greater than the
magnetic diffusivity. On the Sun, this criterion is satisfied at a depth of less than
2000 km (Meyer et al. 1974).

Several authors have provided much theoretical and observational evidence for
or against these two models (Danielson 1965; Savage 1969; Moore 1973; Parker
1974a,b, 1975, 1977; Cowling 1976a,b; Roberts 1976; Beckers 1976; Beckers and
Schneeberger 1977; Boruta 1977; Thomas 1978; Galloway and Moore 1979; Gal-
loway and Weiss 1981; Spruit 1978,1981). Most of this work, however, is time
independent. In this paper, a method is proposed to provide dynamical information
which is the cooling time scale of growing sunspots.

In these two models, the intensity of a sunspot should depend only on the
magnetic structure and field strength in the equilibrium state. If the mechanism
to reduce the intensity of a sunspot operates only in a shallow region, for sunspots
above a minimum size, the intensity of a growing sunspot should be a function only

of its observed photospheric field strength. This dependence can be determined by
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observing the intensities and magnetic fields of stable sunspots which have already
reached their equilibrium states. This means that a unique I versus B (intensity

versus fleld strength) curve can be obtained from observations.

During the transition period before a sunspot reaches an equilibrium state,
growing sunspots have higher intensities than stable sunspots with the same mag-
netic fleld strength. As the sunspot cools, the intensity decreases and the magnetic
field increases as both approach the equilibrium values, which lie on the I versus
B curve obtained from the stable sunspots. Therefore we expect that, in the I - B
plane, the track of a growing sunspot will be located above the I versus B curve of
the stable sunspots. The cooling time of a growing sunspot is obtained from the

rate of approach of its track to the I versus B curve of the stable sunspots.

II. OBSERVATIONS AND DATA ANALYSIS

The digital magnetograms of the line-of-sight component of solar magnetic
fields are made with a videomagnetograph at the Big Bear Solar Observatory
(BBSO). The videomagnetograph at BBSO has been discussed by Martin (1983)
and Zirin (1985). The calibration of magnetic fields is done by the standard
method of BBSO. The line-of-sight component of the magnetic field of a sunspot is
measured by averaging over 3 by 3 pixels at the center of the sunspot. The scale is
approximately one-half arcsecond per pixel. It is assumed that the magnetic field
at the center of a sunspot is perpendicular to the surface of the Sun, so that the
line-of-sight component can be transformed into the magnetic field strength.

The intensity is observed in the Ca I line (6103 A) with an effective bandpass
of 0.5 A(FWHM) for convenience because the magnetic field is observed at this
wavelength. The FWHM of this Ca I line is about 0.15 A. Because the bandpass

is much larger than the line width, it is a good approximation that the observed
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intensity in the line is proportional to the intensity of the continuum. Therefore the
observed ratio of sunspot to photospheric intensity in the line is equal to that in the
continuum. The intensity of a sunspot is also measured by averaging over 3 by 3
pixels at the center of the sunspot. The scattered light at the center of a sunspot is
corrected by measuring the intensity outside the limbs (Maltby 1971). A different
correction is applied to each sunspot according to its size. The correction is about
0.14 I,, if the diameter of the sunspot is 1500 km and the observed intensity is 0.7
I,; 0.06 I,, if the diameter is 7000 km and the observed intensity is 0.3 I,, where

I, is the photospheric intensity.

a) Stable Sunspots

We define a stable sunspot as one that has lived at least one day and whose
magnetic field and intensity do not change significantly during the observing time.
It may be a very slowly decaying sunspot.

We have studied fifteen stable sunspots. Their magnetic fields and intensities
are plotted in Figure 1. Some sunspots have more than one point in the I — B
plane because they were observed at different times. The error bars in Figure 1
indicate only the random errors in the intensity and field strength measurements.
The random and systematic errors due to the correction of stray light are not
included.

Figure 1 shows that all stable sunspots fall within a narrow belt in the I — B
plane. Therefore, it is reasonable to assume that the intensity of a stable sunspot
is determined only by its magnetic field strength. A third-order polynomial curve

which fits the data is used to represent the relationship between the intensity and

the magnetic field.

From Figure 1, the I versus B curve is not very dependent on the size of
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sunspots. Therefore, we use one curve for all stable sunspots.

b) Growing Sunspots

Ten growing sunspots in emerging flux regions and active regions have been
studied. Their intensities and magnetic fields are shown in Figure 2. Compared
with the stable sunspots, the growing sunspots have significantly higher intensities
for the same magnetic field. Two typical growing sunspots (numbers 1 and 8) are
shown in Figure 3. Their magnetic fields versus time are shown in Figure 4. The
track of a growing sunspot in the I — B plane approaches the I versus B curve of
the stable sunspots. This suggests that a new sunspot requires time to cool down
and reach the equilibrium state. The cooling time is calculated in section III.

It is important to determine whether the growing sunspots reach the curve of
the stable sunspots. Unfortunately, a few hours’ observation is usually not long
enough to observe this happen, and the growing sunspots are very difficult to
identify the next day. Only one spot (number 9) can be identified easily the next

day. It does reach the curve of the stable sunspots. This is shown in Figure 3.

III. COOLING TIME SCALES

Since the brightness of growing sunspots is higher than those of stable sunspots
with a given magnetic field, it takes time for the growing sunspots to cool down
and reach the equilibrium state. The cooling time scale of interest is the time
scale which a sunspot takes to reach the equilibrium state at a fixed magnetic field
strength . If constant magnetic fields are turned on in a certain region, what is
the time scale for the system to cool down and reach the equilibrium state? We

define this cooling time 7 as:

1 9ln(l;—I)
r ot B’ @
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where I is the intensity of a growing spot and Is the intensity of a stable spot.
As it grows, the magnetic field of the sunspot also increases. The increase might
be due to either the external forces or feedback from the cooling of the sunspot.
The apparent change of In(I; — Is) can be split into two terms:

din(I,—I,) _ 8ln(I, - L) dln(l,—I,)| 0B @
dt = ot gt " aB I ot

The apparent change, d In(Iy — Is)/dt, can be obtained from the track of the

growing sunspot and the curve of the stable sunspots in the I — B plane. Since
aIg(B)/aB|t =0,

2 ln(Ig _ Is) _ _aIS(B)/aBlt (3)
0B : (Ig—I;)

We obtain 0 I3(B)/0B|; from the curve of the stable sunspots. Observations also
provide 0 B(t)/0t .

Therefore, the cooling time scale of a growing sunspot can be determined
purely from observation. The cooling time is a function of the magnetic field
strength. The plot of the cooling time versus magnetic field is shown in Figure 5
for spots 1 and 8. If we assume that the B-dependence of the cooling time can be

approximated by a power law

r « B¢, (4)

for each growing sunspot, the index, a, can be determined. For each of the ten
growing sunspots, the index, «, and the cooling time scales are listed in Table 1.
The average of a over ten growing sunspots is —0.9 £ 0.4. However, note from
Table 1 that there appears to be little dependence of T on the value of B averaged
over different sunspots. But difficulties in comparing directly different sunspots

should be noticed.
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IV. ESTIMATIONS OF COOLING TIME SCALES FROM MODELS

a) The Inhibition Model

According to this model, the convection which carries thermal energy upward
is partially inhibited by magnetic fields. The time scale for the convection to
be stopped (or reduced) is of the order of the turnover time of a convection cell
(Galloway and Moore 1979; Galloway and Weiss 1981). The size of convection
cells is of the order of scale height, which implies 7 ~ ¢; - H/v, where H is the
pressure scale height, v is the velocity of the convection and €; ~ o(1). Therefore,
H/v is depth dependent. The value relevant to the cooling time is the smallest
one, because if the convection is stopped in one layer then energy can no longer be
transported. The quantity, H/v, is calculated by using Spruit’s data (1974) and
is plotted in Figure 6. The minimum of H/v which occurs at a depth of 50 km is
about 0.05 hr. When the energy transport is stopped in this layer, the remainder
of energy above this layer is carried away by radiation in a time scale 12 /&, where
%, the thermal diffusivity, is about 3 x 1012 ecm2/sec (Meyer et al. 1974). If I
is taken to be 50 km, then 12/19 ~ 0.002 hr, which is much shorter than the
minimum turnover time of 0.05 hr. Therefore we adopt 0.05 hr as the predicted
cooling time. The coefficient, €, might decrease as the magnetic field increases,
but the exact dependence is unknown. This needs further investigation in order

to make comparisons with the observations.

b) The Alfvén Wave Model

If the thermal conductivity is greater than the magnetic diffusivity, the temper-
ature gradient can cause overstable modes (Chandrasekhar 1961; Danielson 1965;

Savage 1969; Moore 1973; Parker 1974b; Roberts 1976; Cowling 1976a). The
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amplitudes of these modes can increase exponentially in the linear regime, then
settle down to the stable value in the nonlinear regime by nonlinear processes. The
energy flux transported by these modesis J = % pv? V4. v is the amplitude of the
Alfvén wave and V is the Alfvén speed. If v is significantly large, these modes can
carry a lot of energy. If 80% of the photospheric energy is transported by Alfvén

waves, v ~ 8 km/sec is required for B = 1000 G. The cooling time scale is

e e (4N 1 fdle\Th 1 %)
T\ = T2\ ~ 22

where Ty is the e — folding time of the amplitude of the velocity of the overstable
mode. From work of other authors (Roberts 1976), 7, ~ d/V},, where d is the
vertical scale of the system in which the thermal conductivity is greater than the
magnetic diffusivity. From Meyer et al. (1974), d ~ 2000 km. The Alfvén speed
V4 = B/+/4rp is roughly constant with depth if the temperature deficit is small.
For B(z = 0) = 1000G and p(z = 0) = 3.2 x 10~7 g/em3, V4 = 5km/sec. If

€2 = 1, then 7 = 0.06 hr. Since V4 « B, wefind 7 B~ and therefore & = —1.

Both the Inhibition Model and the Alfvén Wave Model give 7 ~ 0.05 hr. This
is about two orders of magnitude lower than the observed value. But one must bear
in mind that the estimates are based on the linear theory, while the observations are
beyond the linear regime, because the intensity deficit is usually greater than 0.1.
We can see this as follows: for the Alfvén Wave Model, if I/1, ~ 0.9, an oscillation
amplitude of v ~ 3km/sec is required. Then éB/B ~ v/V4 ~ 3/5 ~ 0.6, if
B = 1000 G. This is well beyond the linear regime. Therefore €; and €3 might be
greater than o(1).
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V. DISCUSSION

a) Comparison of the I versus B Curve with Results of Others

The relationship between the intensity and the magnetic field has been given
by other authors (Bray and Loughhead 1964, Deinzer 1965, Dicke 1970). It is
shown in Figure 7, where T and T, are effective temperatures of a sunspot and
of the photosphere, respectively. In their papers, it is not mentioned whether all
sunspots are stable or not. Presumably all sunspots they observed are stable.
To compare our results with these, we have transformed I1(6103 A) into effective

temperature T by assuming there is LTE:

I ehe/AKTo _ 1
I, = ehe/ KT _ 1 (6)

where T, = 5800 K and )\ = 6103 A. The Bray and Loughhead data are indirectly
derived from temperature versus umbral size and magnetic field versus umbral size.

We see in Figure 7 that the T versus B curve has roughly the same slope
but T varies by 30% among the different authors. Our result is in the middle.
The discrepancies of the T versus B diagram among various authors might be
caused by different calibrations of magnetic fields and different corrections for stray
light. Differences in observed wavelengths might also contribute the discrepancies
because layers of various depth are observed. Despite the difference, the data of
each author fall within a narrow belt. Therefore it is reasonable to use a unique I

versus B relation for all stable sunspots.

b) Comparisons of Intensities of Growing Sunspots and Stable Sunspots

Our data on the growing and stable sunspots are observed with the same
system. Magnetic fields are calibrated by the same method and stray light is also

corrected in the same way. Even if the calibrations and stray light corrections might
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not be accurate, the results are consistent. The measured magnetic field strength
in some of our sunspots is less than 1000 Gauss. Those measurements agree well
with those at KPNO (Table 2) for the same sunspots. It is widely held (Beckers
1981; Zwaan 1981; Zwaan and Brants 1981), but not proven, that all sunspots have
fleld strength greater than 1000 Gauss. Whether this is true or not does not affect
our argument, since we compare sunspots of the same measured field strengths.
Whatever the ratio of true to observed fields may be, one must map into the other,
that is, our observed relative field strengths form a consistent sequence; and it is
the relative field strength that matters in this paper. If all sunspots are indeed
stronger than 1000 Gauss, then the positions of sunspots in Figure 1 and Figure
2 would simply be shifted to the right; each observed value would correspond to
some ”"true” value. It should be pointed out that, for the sunspots of the same
size, the effect of stray light should be the same. Our observations show that,
for the sunspots of similar size, the growing sunspots are brighter than the stable
sunspots of the same observed magnetic field strength. This is independent of the
value of that field strength. Therefore, the result that the growing sunspots have

higher intensities than the stable sunspots for the same magnetic field strength is

convincing.

Because a larger stray light correction would increase the field strength and
decrease the brightness for both the growing sunspots and the stable sunspots, the
curve of the stable sunspots in Figure 1 and the tracks of the growing sunspots in
Figure 3 would not change much and the derived cooling time scales of the growing
sunspots would be only slightly changed. The growing sunspots start out brighter
than the stable sunspots, then march toward the curve of the stable sunspots,
while the stable sunspots stay on the curve for a long period, although they might

move from one point to another point along it.
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¢) Cooling Time Scales

The cooling time scale is defined as the rate of change of the intensity at a
fixed magnetic field strength. Therefore it is independent of the mechanism which
causes increases of magnetic fields, and it is also independent of whether a sunspot
consists of a number of unresolved flux tubes or not. The cooling times of the ten
sunspots studied range from 0.5 to 9 hr. There is no apparent correlation between
the cooling time and the umbral size for the same magnetic field, nor is there one
for the index « and the size.

We have shown, from the linear theory, that both models give a similar cooling
time 7 2~ 0.05 hr which is far shorter than the observed value. The discrepancy
between theory and observation may be due to the fact that the observed sunspots
are in the nonlinear regime. For the Alfvén Wave Model, the nonlinear interaction
could restrict the growth of overstable modes. This causes the time scale of growth
to be longer than that of the linear theory. For the Inhibition Model, the convective
speed is decreasing. Therefore the turnover time might increase significantly. This
leads to the cooling time being longer than that estimated above.

The measured index « usually has a large error because of the errors in the
cooling time and the field strength. The standard deviation in Table 1 includes
only the random errors in the intensity and field strength measurements. If the
random and systematic errors due to the undercorrection of stray light are taken
into account, the index a could have a larger error and the value of |a| could
be larger. The range of the measured a is from —5.0 to +0.2. The mean of
—0.9 + 0.4 is close to —1, which is estimated from the Alfvén Wave Model by
assuming the overstable modes are pure Alfvén Waves. In a real situation, the
overstable modes are the more complicated magnetoacoustic waves since the Alfvén

speed is comparable to the sound speed. The time scale 7, in equation (3) might
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not be simply proportional to VA_I. This means that « is not simply equal to —1.
More realistic theoretical work on the Alfvén Wave Model is needed to determine
7(B).

In the Inhibition Model, stronger magnetic fields should inhibit convection
more quickly. This means that « is negative. But the exact dependence of T on
B is difficult to understand.

The difference between observed and predicted cooling times is so large that
it cannot be due to observational error, nor can it be used to distinguish models,
because they have nearly the same cooling time. Rather, the model calculations

need to be improved. Numerical model simulations which extend to the nonlinear

regime should give more realistic results.
d) Significance of I versus B Diagram

Since the anomalous intensity of magnetic features on the Sun is usually caused
by magnetic fields, the I versus B diagram can provide a lot of information on
magnetic features. For example, the distribution of sunspots and faculae in the I -
B plane could help us to understand the mechanisms which cause these anomalous
intensities. The evolution of individual features in the I - B plane could give

dynamical information, as we have applied here to sunspots.

VI. SUMMARY

(1) We found that growing sunspots are brighter than stable sunspots with the

same magnetic field strength.

(2) We defined and calculated cooling times of ten growing sunspots. They range
from 0.5 to 9 hr.

(3) The average of index « of the power law, 7 « B¢, over ten growing sunspots,
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is —0.9 + 0.4; However, the cooling time, 7, is little dependent on the value of B
averaged over different sunspots.

(4) We estimated the cooling time 7 and index o from two models based on linear
theory. Both models give 7 =~ 0.05hr. The Alfvén Model gives a ~ —1.

(5) The discrepancy between theoretical and observed cooling times may be due

to the fact that the observed sunspots are in the nonlinear regime.
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FIGURE CAPTIONS

FIG 1.—Intensity of stable sunspots, in units of photospheric intensity, as a
function of magnetic field strength. The solid curve is a third-order polynomial fit.
The sizes shown in the upper right corner are the diameters of sunspots, within
which the intensity is 80% of photospheric intensity.

FIG 2.—Intensity of growing sunspots, in units of photospheric intensity, as a
function of magnetic field strength. The curve is the same as in Figure 1.

FIG 3.—Same as Figure 2, but for growing sunspots 1, 8, and 9. The curve is
the same as in Figure 1.

FIG 4.—Magnetic field strength versus time for growing sunspots 1 and 8.

FIG 5.-——Cooling time versus magnetic field strength on a logarithmic scale for
growing sunspots 1 and 8.

FIG 6.—Ratio of the scale height to the convective speed as a function of depth
below the surface of the sun, based on Spruit’s model (Spruit 1974).

FIG 7.—Temperature of stable sunspots, in units of photospheric intensity, as

a function of magnetic field strength, from various authors.
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CHAPTER 4

NONADIABATIC EFFECTS
IN CONVECTIVE INSTABILITIES
IN THIN FLUX TUBES

Submitted to Solar Physics
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ABSTRACT

We study the stability of thin magnetic flux tubes in the solar convection zone.
We assume that the decrease of the temperature of a thin flux tube is proportional
to the increase of its field strength, based on the observational fact that sunspots
with stronger magnetic field have lower effective temperature. By including this
nonadiabatic effect, thin flux tubes of any field strength are stable against the

convective collapse discussed by Spruit and Zweibel (1979).
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I. INTRODUCTION

A stellar atmosphere is convectively unstable if the superadiabaticity, § (=
OInT/0Inp — 8 1InT/O Inplyg), is greater than zero. The magnetic field has a
stabilizing effect on convection; Gough and Tayler (1966) show that in the presence
of a uniform, laterally unbounded, magnetic field, a sufficient condition for stability
is

B?/4r
B2/Am + 4p

> 4, | (1)
throughout the region, where B is the vertical component of magnetic field. Webb
and Roberts (1978) show that this condition also holds in a slender flux tube,
provided the magnetic field is constant with depth. Since the magnetic field of a
thin flux tube in the solar atmosphere is not constant with depth, this condition
does not determine whether a flux tube in the solar atmosphere is stable. Spruit
and Zweibel (1979) show that the condition for stability of a thin flux tube in the
solar atmosphere is # < 1.83 (4 is the ratio of the gas pressure to the magnetic
pressure), provided £ is constant throughout the region, and that the perturbation
is adiabatic. This implies that a flux tube with photospheric field strength less
than 1083 G is hydrodynamically unstable by assuming an external pressure of
1.32 x 10° dyne/cm? at the photosphere. Unno and Ando (1979) obtain a different
value for the critical field strength by using different boundary conditions. Spruit
(1979) shows that if the instability starts as upward motion, it behaves like normal
convection in a weak dispersed field. If the instability starts as downward motion,
the flux tube collapses into a new equilibrium state with stronger field strength and
lower energy. This may explain the formation of small flux tubes of field strength

over 1000 Gauss in the photosphere.

The above discussion is based on the assumption that the perturbation is
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adiabatic. Venkatakrishnan (1985) shows that the mechanism of concentration of
flux tubes by convective collapse becomes inefficient when radiative heat transport
is included. In this paper, we consider a nonadiabatic effect caused by the change
of the magnetic field. This is based on the observational fact that sunspots with
stronger magnetic field have lower effective temperature (or less heat content). By
including this nonadiabatic effect, we find that a flux tube is always stable against
convective collapse.

There are two schools of thought on whether flux tubes of field strength below
1000 Gauss may exist in the photosphere. Stenflo (1973) and Harvey (1977) present
evidence that all fields are stronger than 1000 Gauss. Simon and Zirker (1974),
Wang et al. (1985) and Zirin (1985) present evidence for weaker fields. Our result
shows that weak fields can be stable, although whether or not they actually occur

is a matter to be settled by observation.

II. NONADIABATIC PROCESSES

For a thin flux tube (shown in Figure 1), whose radius is much smaller than
the pressure scale height, we can ignore the transverse component of velocity and
magnetic field (Roberts and Webb 1978). The equation of motion is

dvv  Op
P = —3, ~ PY (1)

where v is the velocity of internal material along the flux tube. The equation of

pressure balance between the inside and the outside of the flux tube is
B?
= = 2

where p. is the external pressure. The equation for the conservation of mass and

magnetic flux is

5+ (05 =0 Q



The equation of state is
p=—: (4)

Consider small perturbations from equilibrium

p = pPo + P1,
P = po + p1,
B = B, + By,
v = v + vi,
T =T + Ty,

where vy = 0. The schematic picture of a flux tube is shown in Figure 1. Equi-
librium variables inside the tube are denoted by a subscript 0, and perturbations

by a subscript 1. The linearized versions of (1) - (4) are

Ovy ,
Poay = —P1L ~ P19, (5)
BoBl
p1 + i 0, (6)
9 OB
Bo—apt'l‘ — Po 3t1 + (Bop:) - B:;Po)vl + PoBovll = 0, (7)

p1 pr , In
—_ = = 4 — 8
Do Po To ( )

where the prime denotes partial derivative with respect to the vertical coordinate
2.

Observations (Deinzer 1965; Dicke 1970; Chou 1987) show that sunspots with
stronger magnetic field have lower effective temperature. The mechanism to cause
the low temperature is still unknown, although several possibilities, such as the
Alfvén wave model, the inhibition model, and downward flow, have been proposed.

Here we apply this observational fact for sunspots to thin flux tubes by assuming
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that the temperature of a thin flux tube decreases if its field strength increases,

even the mechanism to cause it is not clear,
Ty = a- By, (9)

where a = g%, which is assumed to be determined from the T versus B curve of
sunspots. In the language of the Alfvén wave model, the temperature is assumed
to be adjusted according to equation (9) by emitting and absorbing Alfvén waves.
The increase of magnetic field could make Alfvén waves carry more energy away,
and cause the temperature to decrease. Here we have assumed that the time scale
to cause the temperature change by the perturbation of the field strength is much
shorter than the time scale of the perturbation of the field strength. Equation (9)
and the equation of state describe the local property of the perturbation. The

perturbed pressure, density, and magnetic field can be related by

_ _po (2 olnT,
_ Po é olnT,

where the value of 'g'%%% is negative from the observations of sunspots. The sign

of p; and p; are the same locally if 2/8 > —-g—llrrl%%, different if 2/8 < —g—%%%.
Combining equations (5), (6), (7), (8) and (9), we eliminate p;, p1, T1, and Bj,

and obtain an equation for the Fourier component v; of frequency w on assuming

v] x e, This equation is

v](2) + A1(2)vi(2) + {42(2) + A3(z)w?} v1(2) = 0, (12)

where

11 1 Pe 28'/8% — e (1/y — 6 —1/2) /A
Al*__(§—6_§+_2')+ T+ 2/8 — e !



2 / — e s
1 (% - o= %) ' {M/ﬁz 1 15147,3 —66 1/2)/A}

A= _ 8lnpo)—1
0z ’
— CP
Y = C_v,
Po
b= B2/8x’
5= QT _ 9InT
~ dlnp, dlnp ¥
e = —qZe
I,
_ 9InT,
T 9B,

The quantity, 8'/8, caused by the temperature difference between the flux tube

and the exterior, can be written as (Webb and Roberts 1978)
F__9
g N

T, =T
(D)
B2/8n\’
Pe
If the initial temperature of the flux tube is close to surrounding temperature,

where

© < 1. We will adopt this assumption in this paper.

Equation (12) can be written in the canonical form

#(2) + (w? — wi(2)) 43(2)01(2) = 0, (13)

by a transformation, v; = ¥; exp{—f(41/2)dz}, where

GBe) = o {5410 + 7470 - 42} (19)
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With the boundary conditions, 91(21) = ¥1(22) = 0, there exists a set of
discrete solutions w? (1 = 1,2,3,...), for given values of 8 and ¢. From the Sturm -
Liouville theory, all of w?’s are real. The flux tube is unstable for any negative
w?. If all of w?’s are positive, the flux tube is stable. As the first mode has the

lowest frequency, w%, the stability of the flux tube is determined by the sign of w%.

The flux tube is stable if w% is positive, unstable if w% negative.

III. NUMERICAL SOLUTIONS

To solve the eigenvalue, w%, of equation (13) numerically, we need to know
the equilibrium value of A, v, and § of the flux tube. We assume that, in the
equilibrium state, the quantities, A, v, and §, are the same inside and outside the
flux tube at each level. We use the Harvard Smithsonian Reference Atmosphere
(Gingerich et al. 1971) for z > —33km, and Spruit convective model (Spruit
1974) for z < —33km (z = 0 at the photosphere and positive upward), to
calculate the equilibrium value of A, v, and é for the flux tube. We also assume
that, in the equilibrium state, temperature is the same inside and outside the flux
tube at each level. This corresponds to 3 constant with depth.

The surface value of € can be estimated from the curve of effective temperature
versus magnetic field of sunspots (Deinzer 1965; Dicke 1970; Chou 1987) by
assuming that the temperature in gllg—g% is equal to the effective temperature.
It ranges about from 0 to 0.5, if § > 1. For simplicity, we assume that € is

constant for all z.

To get solutions appropriate to the sun, we have to choose the boundary
conditions that ¥1(—o0) = ©¥1(c0) = 0. Since superadiabaticity, which is the
only factor causing convective instability, is not negligibly small only in a region

of a few hundred kilometers below the photosphere, in practice, we can choose the
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boundary conditions to be that #1(21) = 91(29) = 0, where z; and z9 are far
from the main convective region. The result would not much depend on the choice
of z1 and z9, if they are far from the main convective region (Spruit and Zweibel
1979). Here we choose that z; = 420 km, where § < 0, and z9 = —5000 km,
where § ~ 3 x 10™%. Both z; and z; are far from the main convective region.
Different boundary conditions have been used by other authors in studying the
adiabatic perturbation. Unno and Ando (1979) used the boundary condition that
prescribes a relation between the velocity and its derivative at the top of the flux
tube. They found that the flux tube is more unstable than one with zero velocity
at the top studied by Spruit and Zweibel (1979). Venkatakrishnan (1983) also
found that a flux tube with the boundary condition of nonzero velocity at the top
is more unstable than one with zero velocity. Our conclusion that a flux tube is

stable might change if different boundary conditions are adopted.

The eigenvalue, w%, versus f for various e's is shown in Figure 2. The
eigenvalue, w%, are positive for all 3; that is, the thin flux tubes of any field

strength are stable against the perturbation of motion along flux tubes.

IV. DISCUSSION

Observations show that sunspots with stronger field strength have lower tem-
perature. Although the mechanism to cause the lower temperature is still unknown,
we expect that the same mechanism also operates in thin flux tubes. In this paper,
we consider a vertical thin flux tube in which the motion of the plasma is only along
the flux tube; and that all internal thermodynamic variables are the same as the
external ones in the equilibrium state. In the perturbed state, the decrease of the
temperature of the flux tube is assumed to be proportional to the increase of its field

strength. With the boundary condition that v1(420 km) = v1(—5000km) = 0,
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we show that the perturbation of vertical motion is stable against the convective
collapse discussed by Spruit and Zweibel (1979) for any field strength. This is
different from the Spruit and Zweibel result that the adiabatic perturbation is
unstable if the field strength of the flux tube is less than a critical value, 1083 Gauss.
In the adiabatic case, the plasma flowing adiabatically downward within a flux tube
is cooler than its surroundings because the convective zone is superadiabatic. This
temperature reduction could cause the density higher inside the flux tube, which

would lead the plasma to continue to flow downward; that is, an instability would

occur in the flux tube.

In the case of ¢ = 0, which corresponds to the isothermal process, the tem-
perature of the plasma flowing downward is the same as the external temperature,
and the internal density is lower than the external one. Therefore, the flux tube is
stable. Figure 2 also shows the expected result that the stronger the field strength
is, the more stable the flux tube is (the higher the frequency is). For the case of
e # 0, the process is more complicated and difficult to visualize. Since the sign
of p1 and By are the same for 3 > 2/e from equation (10), the frequency would
be lower if the field strength is stronger for § > 2/e. For § < 2/e, the sign of
p1 and B; are different, and the frequency would be higher if the field strength
is stronger for # < 2/e. Therefore, we expect that the lowest frequency would
occur at B = 2/e. This is consistent with Figure 2, where the lowest frequency is

between 8 = 10 and § = 20 for ¢ = 0.1, and at oo for ¢ = 0.

We have shown that flux tubes of any field strength are stable against the
perturbation of motion along the flux tube, with a particular prescription that the
decrease of the temperature of the flux tube is proportional to the increase of its
field strength, and with the boundary condition that the perturbed velocity is zero

at the both ends of the flux tube. However, if the transverse motion is taken into
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account and magnetic field is not strong to inhibited the transverse motion, the
flux tube might be convectively unstable. Moreover, the nonzero velocity at the
top of the flux tube might allow the perturbation to grow as well.

The radius of a small flux tube is less than 300 km, which can not be resolved
by present observations. The observational results indicating kilogauss rely heavily
on the indirect calculation. Furthermore, it is not clear whether all magnetic fields
at the photosphere are concentrated in small tubes of kilogauss. My result shows
that, if the decrease of the temperature is proportional to the increase of the field
strength, thin flux tubes of any field strength are stable against the convective
collapse discussed by Spruit and Zweibel (1979), although whether or not they

actually exist is a matter to be settled by observation.
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FIGURE CAPTIONS

FIG 1.—Schematic picture of a flux tube. Equilibrium variables inside the tube
are denoted by a subscript 0, and perturbations by a subscript 1. Variables outside
the tube are denoted by a subscript e. Boundary conditions are that velocity inside
the tube is zero at 21 and 23.

FIG 2.—Square of frequency, w?, as a function of B for various e’s.
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