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Abstract

Let X, X3 be locally compact Hausdorff spaces, F;, E; Banach spaces.

Theorem. T is an operator in L(C’O (X4, Ey), Co(Xa, Ez)) with the disjoint support
property if and only if 3Y open, Y C X; 3Q € C’b(Y, Ls(El,Ez)) dp € C(Y, X1)
such that :

(1) vyeY Q(y) #0.

(2) Ve > 0 Yu € Ey VK compact, K C X; 3F compact, F C Y with the

following property:
yeEY\F, oyeK = |Qul<e

(3) Vf € Co(X1, Ey)

Q) fle(y), ifyey,

(Tf)(y)z{o, ifyeXs\Y.

Let X be a locally compact Hausdorff space, £ a Banach space.

Theorem. {T(t)}icr is a Co-group on Co(X, E) with the disjoint support property
if and only if ¢ a continuous flow, 3Q a continuous cocycle of ¢ such that Vt € R
vz € X Vf € Co(X, E) (T(t)f)(z) = Qe(x) f (we()).

There is a corresponding result about Cp-semigroups on Cy(X, E) with the dis—
joint support property, where semiflows and semicocycles play the roles of flows and
cocycles respectively.

Suppose —c0 < a < b < +00, X is either (a,b) or [a,b], where by [—oo,b] we

mean (—oo, b], and by [a, +0c0] we mean [a, +00).

Theorem. Let {T'(t)}icr be a Co-group on Co(X) with the disjoint support prop-

erty. Then 3U C X, U is the union of pairwise disjoint intervals (a;,b;), i € I,
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where I is either finite or countable and Jyy: U — R such that Vi € [ ¢; =

Yl(a,,b0) ¢ (@s,b;) = R is a homeomorphism and the corresponding group dual
Co(X)® = M(X\U)® LY (U, dy).

The above theorem generalizes the well-known result of A. Plessner that if
f: R — C and Vargr[f] < +o0o, then f is absolutely continuous if and only if
Varg[f(-+t) — f(:)) > 0ast— 0.

The following theorem generalizes the result of N. Wiener and R. C. Young about

the behavior of measures on R under translation.

Theorem. Let {T(t)}:cr be a Co-group on Cy(X) with the disjoint support prop-
erty. Then Vu € M(X)

limsup [|T* () — pl] > 2||palls
t—0

where g is the component of u in Co(X)®%. Moreover, if limsup,_,, |T(t)| = 1,

then the last inequality becomes an equality.
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Chapter 0

Introduction

Let E be a Banach space, s € R, {A(t)}+>s a one parameter family of linear

operators with domains D(A(t)) consisting of linear subspaces of E.

Definition. An evolution equation is a differential equation
u(t) = A()u(t), t>s,

where u(t), t > s is an E-valued function.

If s =0 and A(t) = A is constant, the evolution equation
u(t) = Au(t), t>0

is called autonomous.

In many cases (see [Pa, Ch. 4]) the solution of an autonomous evolution equation
with initial value u(0) = wug is given by u(t) = T'(t)uo, where {T'(t)}:>0 is a Cop-

semigroup with infinitesimal generator A.

Definition. A family {T(t)};>0, where V¢t > 0 T'(t) € L(E) is called a Cy-semigroup
if

(1) V¢, s 20 T(t +s) =T ()T (s).

(2) T(0) =1I.

B) Vue ET(t)u > uast|O0.

The infinitesimal generator A of a Cy-semigroup is defined by

Au = lim Tt)u—u
ti0 t

for all u € D(A), where D(A) is the set of all u € E for which this limit exists.
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D(A) is a norm-dense linear subspace of E, and A is a closed linear operator (see
[Pa, Ch.1]). |

It is shown in [Pa, Ch. 5] that the solution of a non-autonomous evolution equa-
tion with initial values u(s) = u,, s € R is often given by u(t, s) = U(t, s)u,, where

{U(t,s)}t>5 is an evolution family with the property that

-aUE(;, s) = A()U(t, 5), ?_q.%f_). = -Ul(t,s)A(s).

Definition. A two-parameter family {U (¢, s)}+>s, where Vt > s U(t,s) € L(E) is
called an evolution family if

(1) Vt>2r > s U(t,r)U(r,s) =Ul(t,s).

(2) Vse R U(s,s)=1.

(3) The map (t,s) — U(t, s) is strongly continuous for ¢ > s.

In [Ra] René Rau showed that the study of evolution families can be reduced to

the study of semigroups by defining
T )z)=U(z,z~t)f(z—t), z€R,

where t > 0, z € R, f € Cy(R, E). This semigroup has an important property:
Vt > 0 T(t) has the disjoint support property, i.e. it maps functions with disjoint
support to functions with disjoint support. We study operators with the disjoint
support property in great detail in Chapters 1 and 2.

If X is a compact Hausdorff space, E is a Banach space, then operators with the
disjoint support property acting on C(X, E) are classified in [JR]. In Chapter 1 we
extend this result to locally compact Hausdorff spaces.

In Chapter 2 we study semigroups and groups of operators with the disjoint
support property. For the scalar case (E = C) they were classified in [Na, B-I1.3].

We extend these results to the case when E is an arbitrary Banach space.
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Operators with the disjoint support property are closely related to disjointness
preserving operators on Banach lattices. Roughly speaking, a Banach lattice is a
Banach space with two lattice operations V and A defined on it. Also every element
u of a Banach lattice has an absolute value defined by |u| = u V (~u). For an
introduction to the theory of Banach lattices, we refer to [AB| and [LZ].

- Many function spaces are Banach lattices where V and A are defined by

(f Vg)(z) = max{f(z),g(x)},  (fAg)(z)=min{f(z),g(z)}.

Definition. In a Banach lattice two elements u and v are called disjoint or orthog-

onal (in symbols, u L v) if |u| A |v| = 0.
Let E;, E; be Banach lattices, T': E; — E» a linear operator.

Definition. T is called positive if Yu > 0 Tu > 0.
T is called a lattice homomorphism if it preserves the lattice operations.

T is called disjointness preserving if Vu,v € E; (u L v = Tu L Tv).

It can be shown that T is a lattice homomorphism if and only if it is positive
and disjointness preserving. Since every invertible positive operator whose inverse
is also positive is a lattice homomorphism (see [AB, 7.3]), every positive group on
a Banach lattice is a group of lattice homomorphisms. If E; = Co(X;), i = 1,2,
then an operator T' € L(E,, E3) has the disjoint support property if and only if it is
disjointness preserving. Therefore, every positive group on Cy(X) is a group with
the disjoint support property. Positive groups are studied in [dP], [Na], [vN] and
other sources. We deal with groups with the disjoint support property on Cy(a, b)
in Chapter 3.

Given a Co-semigroup {7'(t)}¢>0, the adjoint operators {T*(¢)};>0 also form a
semigroup of operators, i.e. satisfy (1) and (2) in the definition of a Cp-semigroup.

However, this semigroup is not, in general, strongly continuous, i.e. does not satisfy
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(3). [HP] introduced the sun-dual E® which is the subspace of E* on which the
adjoint semigroup is strongly continuous.
It follows from [P1] that Cp(R)® with respect to the translation group is L' (R, dz).
In Chapter 3 we generalize this result for an arbitrary Cp-group with the disjoint
support property on Cy(a,b) and find the sun-duals for such groups.
[dP] showed that for any positive group on a Banach lattice E whose dual E*

has an order continuous norm its sun-dual is a projection band, i.e.
d
E* = E® @ E®¢,

where E©¢ = {u* € E* : Yo* € E® u* L v*} is the disjoint complement of E°.
For instance, for the translation group Co(R)®? is the projection band of singular

measures.

[WY] proved that Yu € M(R)

limsup ||ju: — pf| = 2||pall,
t—0

where VF C R, F Borel p;(F) = u(F —t), pq is the component of u in Co(R)®9.
This result was later generalized in [dP] for positive groups. In Chapter 3 we also

obtain Wiener-Young type theorem for groups with the disjoint support property
on Cy(a, b).
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Chapter 1

Operators on Cy(X, E) with the disjoint support property

Let X be a locally compact Hausdorff space, E a Banach space.

Definition. A function f: X — FE is called vanishing at infinityif Ve > 0 3K C X,
K compact such that Vo € X \ K ||f(z)]] < e.

We denote the space of all continuous functions f: X — FE vanishing at infinity
by Co(X, E), the space of all continuous functions f: X — E with compact support
by C.(X, E), the space of all regular E*-valued Borel measures on X with finite
variation by M (X, E*). For the theory of vector-valued measures and integration

with respect to these measures we refer to [Di.

Lemma 1. Suppose U C X, U is open, u € M(X, E*) is such that ||ul]|(U) # 0,

where ||p|| is the variation of u. Then 3f € C.(X, E) with supp f C U such that
J(f,dp) #0.

X
Proof. Since ||u||(U) # 0, 3A Borel, A C U, such that u(A) # 0. The regularity of

u implies now that 3K compact, K C A such that u(K) # 0. Therefore, Ju € Eq,
llu|l = 1 such that (u,u(K)) # 0. Then € = |(u, u(K))| > 0.

Since ||p|| is a positive regular Borel measure on K, JW open with compact
closure such that K ¢ W ¢ W C U, ||ul|(W) < ||ul|(K) + . Using Urysohn’s
Lemma, we can find g € C.(X) such that g =1 on K, suppg C W and ||g|| = 1.
Define f = g ® u. Then

[itaw = [tr.aw+ [ is.d.

X K WA\K
Observe that

'/“"WI:& ]/<f’dﬂ>'ﬁHMH(W\K)HfH<E.

K WA\K



It follows that | [(f,du)| > 0. n
X

The following theorem generalizes the well-known result of I. Singer ([Si]) about
the representation of the linear functionals on the space of vector-valued continuous

functions on a compact space.
Theorem 2. Cy(X, E)* = M (X, E*).

Proof. Let X be the one-point compactification of X. We can identify Cy(X, E)
with the subspace of functions f € C(X, E) such that f(co) = 0. Singer’s theorem
cited above implies that C(X, E)* = M (X, E*). Then

Co(X, B = M(X,B) [ % gyt

(see for example [Rul, 4.9]).

Next we will show that Co(X, E)t = {0 ® u* : u* € E* }, where § is the Dirac
measure. The D inclusion is trivial. To prove C, suppose 0 # u € Cy(X, E)*. Then
its variation ||u|| is a positive Borel regular measure on X. Such measures always
have nonempty supports (see [HR, 11.25]). We want to show that supp ||| = {o0}.
Suppose it is not true, i.e. 3z € X Nsupp ||u||. Then for any open U C X such
that £ € U we have ||u||(U) # 0. Applying Lemma 1, we will obtain a function
f € C.(X, E) such that [(f,du) # 0. This contradicts the fact that u annihilates
C(X, E). Therefore, the)i(nclusion C is also proved.

The statement of the theorem follows now from
M(X,E*) = M(X,E*) ® M({c}, E*). |

Definition. A measure y € M (X, E*) is said to have the disjoint support property
if Vf1, f2 € Co(X, E)

IAOIAIROI=0 = | [tfda]a] [t da] =0
X X
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Proposition 3. A measure p € M(X, E*) has the disjoint support property if and

only if 3z € X, Fu* € E* such that p = 6, @ u*.

Proof. NECESSITY. If u = 0, then it is obvious. Let p # 0. We want to show that
supp |||| consists of a single point. Suppose 3x1,z2 € X such that z; # =z, and
z1, T € supp ||p||. Then 3U1,U; open disjoint such that z; € U; and ||u||(U;) # 0,
i = 1,2. Apply Lemma 1 to construct fi, fo € C.(X, E) such that supp f; C U;,

i = 1,2 and [(f1,dp) # 0, }{(fg,du) # 0. Clearly, ||f1(:)]| Alf20)]l = 0 but
X

| [{f1,dp)| A | [{f2,du)| # 0. Therefore, 3z € X such that supp ||u|| = {z}. Let
X

>

u* = pu({z}). Then p =, @ u*.

SUFFICIENCY. Obvious. |
Let X1, X2 be locally compact Hausdorff spaces, E;, E2 Banach spaces.

Definition. An operator T' € L(Co(X1, E1), Co(X2, E2)) is said to have the dis-

joint support property if Vf1, fa € Co(X1, E1)

IFOIAlROI=0 = [(THOIAIT L)l =0.

Let Ls(E;, E3) be the space of all bounded linear operators from E; to E; with

the strong operator topology.

Theorem 4. T is an operator in L(C’O(X 1, E1), Co(Xa, Eg)) with the disjoint sup-
port property if and only if Y open, ¥ C X5 3Q € Cb(Y, LS(EI,EQ)) do €
C(Y, X1) such that :

(1) Vy €Y Q(y) #0.

(2) Ve > 0 Yu € E; VK compact, K C X; 3dF compact, F C Y with the

following property:

yeY\F, oy)eK = 1Q(y)ull <e.



(3) Vf € Co(X1, Eq)

Q) f(ely), Hfyey,

(TH)) = { N ASR

Proof. NECESSITY. Let N = {y € X5 : Vf € Co(X1,E1) (Tf)(y) = 0}. Since
Vf € Co(X1, Eq) its null set is closed, and N is the intersection of all such null sets,
it follows that N is a closed subset of X5. Therefore, Y = X5 \ N is open.

Fixye Y, v* € Ej. Then p =T*(4, ® v*) € M(Xy, EY). Suppose also that

[AOIANF2()11 =0

for some fy, fo € C()(Xl, El) Then

/ (for dut) = / (Tfi,d(6, ®v")) = (TF)@),v*), i=1,2.
X2

Xy

Since T has the disjoint support property,

T )W A INT F2) ()| = 0,

which implies that

(T F1)(w),v*)| A (T F2)(y),v*)| = 0.

It follows that
X1 X1

whence p is a measure with the disjoint support property. Applying Proposition 3,
we will get that
T*(6y ®v*) = 0, Q u*,

where u* = u*(y,v*) € Ef, z = z(y,v*) € X;.
Let Wy, = {v* € Ej : u*(y,v*) # 0}. Then Vy € Y W, # &. To see this,

suppose that W, = & for some y € Y. It implies that Vv* € Ey T*(6, ® v*) =0
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which means that Vf € Co(X1, E1) Yv* € Es f <Tf, Y ® v*)> = 0. It follows
that ((Tf;)(y),v*) = 0. Therefore, Vf € Co(Xl,El) (Tf)(y) = 0. This contradicts
the fact that y € Y.

The next step is to show that z(y,v*) does not depend on v* whenever v* € W,,.
To see this, suppose Jvf,v; € W, v] # v3 such that z; # x5, where z; = z(y, v}),
i =1,2. Let uf = u*(y,v}), ¢ = 1,2. Then Ju;,up € E; such that (u;,u}) # 0,
¢ = 1,2. By Urysohn’s lemma Jg;,92 € C.(X;) with disjoint supports such that
gi(z;) =1,1=1,2. Let f; = g; ®u;, ¢ = 1,2. It follows that

IAONA N0 =

Since T has the disjoint support property, this implies that

IT YDA INT f2) W) =

On the other hand,

(TFi)y),vi) = (us, i) #0, i=1,2,

whence (T f1)(y) # 0 and (T f2)(y) # 0. Contradiction.

If v* ¢ Wy, then u*(y,v*) = 0 and = = z(y, v*) is not uniquely defined. There-
fore, for such v* we can define z(y,v*) = xz(y,vg), where v§ is any vector in W,,.
Hence, o(y) = z(y, v*) does not depend on v*. We conclude that Vf € Co(X1, E;)
Vor € EfVyeY

(THy),v") = (Tf,6,0v") = (f, T*(8,®v")) = (f,5®u*) = (f(¢(y)), u"(y,v")).

Thus, the following formula holds:

(%) ((Th)w),v*) = (Fey), u*(y, v™)).

For each y € Y, u € E; define Q(y)u = (Tf)(y), where f € Cy(X1, E;) is any

function such that f(yp(y)) = u. We have to prove that Q(y)u is well defined.
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Suppose we have two functions f; and f, as above. Let f = f; — fo. It follows from
(+) that ¥o* € B3 (Tf)(y),v*) = 0, whence (Tf1)(y) = (T,)(y). Thus, Q(y)u is
well defined and Vf € Co(X1,E1) Yy € Y Q(y)f(v(y)) = (Tf)(y). This proves (3).

Also observe that Yu € E; ||Q(y)ul| < ||T| || f|l. Since we can always choose f
such that ||| = llul, 1Q(v)ull < ITll lull. Thus, Yy € Y Q(y) € L(E:, Ea).

Suppose Q(y) = 0 for some y € Y. Then it follows from (3) that Vf € Co(X1, E1)
(Tf)(y) = 0. That contradicts the fact that y € Y. This proves (1).

Our next step is to establish the continuity properties of the functions ¢ and Q.
We will start with ¢.

Suppose a net y, — y in Y but ¢(y,) does not converge to p(y). It means that
there exists a subnet {yg} of {yo} U open, ¢(y) € U C X; such that {o(yg)}NU =
@. By Urysohn’s lemma 3Jg € C.(X;) such that suppg C U and g(p(y)) = 1.
Also, since Q(y) # 0, Ju € E; such that u ¢ ker(Q(y)). Let f = g ® u. Then
Tf € C(X,, Ey). Observe that since {yg} is a subnet of {y,},

Qys) f(e(yp)) — Qy) f(e(y))-

However, Q(yp)f(¢(ys)) = 0, Q(¥)f(¢(y)) = Q(y)u # 0. Contradiction. Thus,
p e C(Y, X,).

Now we turn our attention to ). We have already seen that Q is bounded, namely
Yy e Y ||Q(y)]| < ||T||- To prove continuity, suppose again that a net y, — y in Y.
We claim that Q(yo) = Q(y) in Ls(E4, E2). Let U be a neighborhood of ¢(y) with
compact closure. Since ¢ is continuous, we can assume, without loss of generality,
that {p(ya)} € U. By Urysohn’s lemma 3g € C.(X;) such that gl = 1. Let
u€ By, f =g®u. Then

QYa) f(p(ya)) = QY)f ((y))

implies that Q(yo)u — Q(y)u. This proves Q € C,(Y, Ly(Ey, E»)).
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Finally, we must establish (2). Suppose, € > 0, u € E;, K C X;, K is compact.
By Urysohn’s lemma 3g € C.(X;) such that g|x = 1. Let f =u®g, F ={y¢€
Xo: (T F)()|l > }. Then, since T f vanishes at infinity, F' is a compact subset of

Y. Ifye Y\ F and p(y) € K, then since f(po(y)) =, [|Q(y)ul| <e.

SUFFICIENCY. Let f € Cy(X1, E1). From the continuity properties of the func-
tions ¢ and @ it immediately follows that T'f is continuous at each point of Y. Our
objective now is to prove that T'f is continuous on X3 \ Y and that it vanishes at
infinity.

To this end, let € > 0 and suppose that M > 0 is such that Vy € Y [|Q(y)| < M.
Since f vanishes at infinity, 3K compact, K C X, such that ||f(z)|| < 7 Vz & K.
Observe that f(K) is compact in Ey. Let {uy,us,...,un} be an 55;-net for f(K).

Applying (2), we will obtain Fy, Fs,..., F, compact, F; C Y such that
£ .

n
Let F = |J F;. If y ¢ F, then there are three possibilities:
=1

1. y ¢ Y. In this case (T'f)(y) = 0.
2. y€Y, p(y) ¢ K. In this case |Q(y)f(0(y))| < M3z =e.
3. y€Y, o(y) € K. In this case || f(¢(y)) — wil| < 557 for some 4, 1 <4 < n which

implies that

g

1QW) f (el < 1R wsll + 1QW)[F ((y)) — willl < g + Mo =

Therefore, Vy ¢ F ||(Tf)(y)|| < €, which proves that T f vanishes at infinity. Also,

£.

X, \ F is an open neighborhood for any y ¢ Y. Since for such y (T'f)(y) = 0, it
means that T f is continuous at y.
Finally, the boundedness of ) implies that T is a bounded operator, and it follows

from (3) that T has the disjoint support property. [ |

As the following example shows, if T" has the disjoint support property, then in

general @ and ¢ cannot be extended to functions continuous on X,.



12
Example 5. Suppose X; = X; = R, E; = E; = C. Define T as follows: Vf €

Co(R)
(signz) f(log|z|), if z #0,
0, else.

@ = {
Let K be a compact subset of R. Then K C [a,b] for some a,b € R. Let F =
[—e?, —e?]Ue?, e’]. Clearly, F is a compact subset of R\ {0} and {z € R\ {0} : z ¢
F,loglz| € K } = ©&. Therefore, by Theorem 4, T is an operator with the disjoint

support property, however neither sign z nor log|z| can be extended to a function

continuous on R.

Corollary 6. T is an operator in L(Co(Xl,El),Co(XQ,EQ)) such that it is in-
vertible and both T and T~! have the disjoint support property if and only if the

following conditions are satisfied:

(1) there exists a homeomorphism ¢: Xy — X.
(2) 3Q € Cy(X2, Ls(E1, E2)) 3R € Cy(X1, Ls(E2, E1)) such that Vy € X2 Q(y)
is invertible and Yz € X1 R(z) = Q(¢ ! (z)) L.
(3) Vf € Co(Xy1, E1) Yy € Xo (TS)(y) = Qy) f(»(y))-
In this case Vg € Cy(Xa, E2) Vz € X1 (T~ 1g)(z) = R(z)g(¢p~ (x)).
Proof. NECESSITY. Since 3T, {y € X, : Vf € Co(X1,E1) (Tf)(y) =0} = 2,
{x € X1 : Vg € Co(X2,E;) (T™'g)(z) = 0} = &. Then by Theorem 4 Jp €

C(Xz,Xl) 3’!/) = C(Xl,Xz) EQ € Cb(XQ,LS(El,Ez)) dR € Cb(Xl,Ls(Ez,El))
such that Yf € Co(X1, 1) Vg € Co(Xy, Ez) Vz € X1 Vy € X |

Q(Y)R(»(y)9((¥ o v)(y)) = 9(y),
R(z)Q(¢(z)) f((po¥)(x)) = f(z).

()

Vuy € Ey Yup € E; Vz € X Vy € X, we can always find f € Cy(Xy, E,),
g € Co(Xa, E2) such that f(z) = f((po9)(z)) = w1, g(y) = g((¥ ° ¥)(y)) = ua.
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Then it follows from (xx) that Q(y)R(¢(y))u1 = u1, R(z)Q(¥(x))us = uy. Thus,
Q)R (p(y)) = Ig,,

R(z)Q((x)) = Iz,

(k%)

Now (%) and (xx*) combined imply that Vz € X; Vy € X, Vf € Co(X1, Ey)
Vg € Co(X2, E2) g((¥ 0 9)(y)) = 9(y), f((po)(z)) = f(z). Since the functions
from Cy(X;, E;) separate points of X;, ¢ = 1,2, it follows that (v o )(y) = y,
(po)(z) =z whence ¢ = ¢~ 1. Let y = p(z). (x**) now implies that

Q(¥(x))R(z) = Ig,,
R(z)Q(¥(z)) = I,
We conclude that R(z) = Q(v(z))L.

SUFFICIENCY. Define the operator T as in (3). To prove that T has the disjoint
support property, we need to verify condition (2) of Theorem 4. To this end, let K
be a compact subset of X;, F' = %(K). Then (Xo\F)N{ye Xa:9(y) e K} = @.
It follows that condition (2) of Theorem 4 is satisfied, hence T has the disjoint
support property.

Vg € Co(X2, E2) Vx € X define the operator S by (Sg)(z) = R(z)g(w(z)). Using
a similar reasoning to the above one, we can show that .S also has the disjoint support
property. Now it is not difficult to see that Vf € Co(Xy, E1) Vg € Co(Xa, Es)
TSg =g, STf = f. This implies that S = T1. |

Remark. If E; = E3 = C, then operators with the disjoint support property are
disjointness preserving, and vice versa (for the theory of disjointness preserving
operators see [AB] and [MN]). Therefore, in this case the condition that 7! has
the disjoint support property in Corollary 6 is redundant since by [MN, Cor.3.1.21]
the inverse of a disjointness preserving operator, when it exists, is also a disjointness
preserving operator. In general, however, this condition is not redundant as the

following example shows.
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Example 7. Let X; = {0}, X5 = {1,2}, E; = E2 = [2. Then X; and X, with
the discrete topology are compact Hausdorff spaces, Co(X1, E1) = 12, Co(Xs, Ep) =
12 x 2. For any f € [? define T': Co(X1, E1) — Co(Xs, E3) by

Tf: ({f17f37f51‘"}7{f2af47f67'"})'

Clearly, T has the disjoint support property. For any (g,h) € I x I? define
S CQ(XQ,Eg) — C()(Xl,El) by

S(g,h) = {g1,h1,92,h2,92,h3,... }.

It follows that S = T~! but S does not have the disjoint support property since
VF e £#0 (£ 00NN, I =0but [(S(f,0)() A NSO, £ #0.

Suppose that X; and X5 are compact Hausdorf.

Corollary 8. T is an operator in L(C(X1, E1), C(Xa, E»)) with the disjoint sup-
port property if and only if 3Q € C(Xz,LS(E]_,Eg)) dp € C(Y,X1), where
Y ={ye Xy:Q(y) #0} such that condition (3) of Theorem 4 is satisfied.

Proof. NECESSITY. Apply Theorem 4 and let Y be as in this theorem. Define
Qly) =0Vy ¢Y. ThenY = {y e X, : Q(y) # 0} and Yu; € E; Vy € X,
Q(y)ur = (T(Ix, ® u1))(y), where Ix, is a constant 1-function defined on Xj.
Therefore, Q(y) € C(XQ,LS(E]_, Ez))

SUFFICIENCY. Define operator T as in (3) of Theorem 4. To prove that T
has the disjoint support property, we need to verify condition (2) of Theorem 4.
Suppose K be a compact subset of X;, F = ¢~ !(K). Since K is closed, ¢ is
continuous, F' is a closed subset of Y. Then F' is compact because X, is. Finally,
(X2\F)N{y € X2 : ¢(y) € K} = @ implies that condition (2) of Theorem 4 is
satisfied. |

Remark. Corollary 8 was first proved by [JR] using a slightly different approach.
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Corollary 8 shows that whenever X; and X, are compact, Q is continuous on
X5 rather than just on Y as in the general case. However, it is still impossible in

general to extend ¢ to a function continuous on X, as the following example shows.

Example 9. Suppose X; = X; = [-1,1], E; = E; = C. Define T as follows:
Vf e Clo,1]
xf(signz), ifz #0,
THe - {
0, else.

Corollary 8 now implies that 7" has the disjoint support property but we cannot

extend signz to a function continuous on [—1,1].

Remark. Corollary 8 shows that the description of operators with the disjoint sup-
port property is nicer when both X; and X, are compact. So in the case where
X; and X, are not compact, one might be tempted to try to extend an operator
T € L(C’O(Xl, E,), Co(Xo, Ez)) with the disjoint support property to an operator
T € L(C(E,El),C()/(\z,Ez)) such that 7" also has the disjoint support property,
where )/(\1 and )/(\2 are compactifications of X; and X, respectively such that any
f € Co(X;, E;) can be extended to f € C’(j(\i,E,-), i = 1,2. The Alexandroff
compactification is an example of such a compactification. When E;, E5 are finite-
dimensional, the Stone-Cech compactification gives another example. Such an ex-
tension of an operator T, however, does not always exist. To see this, we need the

following lemma.

Lemma 10. Let X be a locally compact Hausdorff space, X a compactification of
X such that any f € Co(X) can be extended to f € C(X). Then such an eztension

is unique for any f € C.(X).

Proof. Let supp f C K, K compact, £ € X \ X. Since Xisa compactification of
X, 3h: X — X such that h is a homeomorphism of X onto h(X) and such that

h(X) is dense in X. Therefore, 3z, a net such that {zo} C X and z, — % in X.
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Suppose 3z a subnet of z, such that {zg} C K. Since K is compact in X, 3z,
a subnet of z3 such that z, — = in X for some z in K. h is a continuous map, so
h(x,) = h(z) in X. This contradicts z, — &. |
Therefore, the net z, is eventually in X \ K. Let f be a continuous extension
of f on X. Then eventually f(z,) = 0 and since f € C(X), f(&) = 0. Thus,

Fl x\x = 0. We conclude that the extension is unique. |

We proceed with our reasoning now. Consider the operator T from Exam-
ple 5. Suppose we can extend it to 7' € C(]ﬁ) Then by Corollary 8, 3Q € C(R)
33 € C(Y,R), where Y = {§ € R: Q(9) # 0} such that Vf € C(R)

) (@) = { 2(@)f(¢(@)>, flsyee Y,
Let y € R\ {0}. Clearly, y € Y. Suppose ¢(y) # log|y|. Then by Lemma 10
3f € C.(R) such that f(log|y|) = 1 and f($(y)) = 0, where f is a continuous

extension of f. Therefore,

signy = (Tf)(y) = (Tf)(y) = 0.

Contradiction with y # 0. Thus, ¢(y) = log|y|. As a consequence, we conclude
that Vy € R\ {0} Q(y) = sign (y). This is clearly impossible since  is a continuous
function and sign is not. Contradiction.

Another approach would be to try to extend T to 7" € L(C()/(\l, Ey),C(Y, E»)),
where Y is a compactification of Y. Whether it is possible or not is still an open
question, however, it is clear that the Alexandroff compactification will not work
since if f € Cy(Xa2, Ez), then f|y might not be in Cy(Y, Es).

Suppose X is a locally compact Hausdorff space and E is a Banach space.

Definition. An operator T € L(CO(X, E)) is called local if Vfi, fo € Co(X, E)

AONANTLON=0 = ITAOIAILON=0.
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Clearly, every local operator has the disjoint support property. Therefore, we

can apply Theorem 4 to get the following theorem characterizing local operators.

Theorem 11. T is a local operator in L(Co(X, E)) iff 3Q € Co(X, Ls(E)) such
that Vf € Co(X,E)Vz € X

(T5)(x) = Q(z)f ().

Proof. NECESSITY. Again let Y be as in Theorem 4, and define Q(y) =0 Vy ¢ Y.
Then Y = {z € X : Q(z) # 0}. We have to show that Vz € Y ¢(z) = z.
Suppose this is not true, i.e. 3r € Y such that ¢(z) # z. Using Urysohn’s lemma,
we can construct g,ge € C.(X) such that suppg; Nsuppg: = @ and ¢;(z) = 0,
91(p(z)) =1, g2(x) = 1, ga(ep(x)) = 0. Since Q(x) # 0, Ju # 0, u & ker(Q(z)). Let
fi=g:®u,i=1,2. Then ||f1(-)]| Al f2(:)|| = 0. However,

(THi)(x) = Q=) frlp(z)) = Qz)u # 0,
f2(z) =u#0.

This contradicts the fact that |[(T'f1)()|| A || f2()]| = 0.

The only thing which remains to be proved is that @) is continuous outside Y.
Now that we know that ¢ = id, this can be done in the same manner as we proved
the continuity of @ in Theorem 4.

SUFFICIENCY. Obvious. |

Proposition 12.

(1) Local operators form a closed subalgebra of Ls(Co(X, E)).

(2) If T is local and invertible, than T~! is also local.

Proof. (1). The only nontrivial part is to show that local operators form a set

closed in Ls(Co(X, E)). Suppose that Vf € Co(X,E) T,f — Tf, where Vn € N T,
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is local. Let fi, fo € Co(X, E) be such that ||f1(-)]] A ||f2(-)|]| = 0. Since ¥n € N
T, is local, ||(Tnf1)()ll Al f2(-)|] = 0. Then since by [AB, 11.1] the operation A is
continuous, ||(Tf1)(-)[ A llf2(-)| = 0.
(2). By Theorem 10 3Q € Cy(X, Ls(E)) such that Vf € Co(X,E) Vz € X

(TF)(z) = Qz)f ().

Let S=T"1, z€ X,u€ E. Then 3f € Cy(X, E) such that f(z) = u. Let g = Sf.
Then

| u=f(z) = (Tg)(z) = Q(z)g(x)-
Therefore, Q(z) is onto.

Suppose that Q(z)u = 0 for some wu, ||u|| = 1. Since Q € Cy(X, Ly(E)),Vn € N
3Un, Uy is a neighborhood of z such that Vy € U, ||Q(y)u|| < 1. By Urysohn’s
Lemma, 3¢9, € C.(X, E) such that ||g,|| = 1 and supp g, C U,. Let f, = g, @ u,
hn =Tfn. Then Vy € X

hn @)l = 1T F2) @) = l9n®)Q)ul < -

Thus, Vn € N ||h,|| < 1 and ||Sh,|| = || fa]l = 1 contradicting the boundedness of
S. Hence, we may conclude that Q(z) is 1-1.

We have proved that Vx € X Q(z) is a bijection. Let R(z) = Q(z)~!. Then
by the Open Mapping Theorem Vx € X R(x) € L(E). Therefore, Vf € Co(X, E)
Vee X

(Sf)(z) = R(z)™" f(z).
Using the argument similar to the one at the end of the necessity part of the

proof of Theorem 4, we conclude that R € Cy(X, Ls(E)). Thus, by Theorem 11,

the operator S is local. |

Suppose that X is again a locally compact Hausdorff space but E is now a Banach

lattice.
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Theorem 13. T is an orthomorphism on Co(X, E) iff 3Q € Cp(X, Ls(E)) such
that Vo € X Q(z) € Orth(E) andVf € Co(X,E)Vr € X

(T5)(z) = Q(z)f ().

Proof. NECESSITY. For each z € Y, u € E define Q(z)u = (Tf)(x), where f is
any Co(X, E) function such that f(x) = u. We have to prove that Q(z)u is well
defined. Suppose we have two functions f; and f; as above. Let f = f; — fo.

[AB, 15.5] implies that |T'| < ||T||I which means that

0 < (ITlfN(=) < T fl(=) = 0.

We conclude that (|T||f])(z) = 0. Since |Tf| = |T||f| (see [AB, 8.6]), it follows
that (T'f)(xz) = 0. Thus, (T'f1)(z) = (T f2)(z). Therefore, Q(x) is well defined and
Vf e Co(X,E) Ve € X (Tf)(z) = Q(z)f(z). It is also easy to see that Vr € X
|1Q(x)|l £ |IT)|. In the same manner as we proved the continuity of @ in Theorem 4,
we can prove that Q is continuous at any point z € X. Thus, Q € Cy(X, Ls(E)).

Finally we have to show that Vx € X Q(z) € Orth(E). Let u;luy for some
u1,uz € E. Choose g € Cy(X) such that g(z) = 1. Let f; = g®u;, 1 = 1,2. Then
fiLf2. Since T is an orthomorphism, T f, L fo which implies that (T'f;)(z)Lf2(z)
whence Q(z)ujLug. This proves Q(z) is an orthomorphism on E.

SUFFICIENCY. Obvious. n
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Chapter 2

Co-semigroups with the disjoint support property

Let X be a locally compact Hausdorff space, {Y; C X : t > 0} a collection of
subsets of X, II = {(t,z):t >0,z € ¥} }.

Definition. {Y;} is called a collection of decreasing open sets if
(1) Yo=X.
(2) Vt,ssuch that 0<t<s,Y, CY;.

(3) II is open in [0, +00) x X.

Lemma 1. {Y;} is a collection of decreasing open sets if and only if

(a) Vt >0 Y; is open.
(b) If we definel, ={t>0:z€Y;},z€ X, thenVx € X Ja 0 < a < +oo
such that I, = [0, a).

Proof. NECESSITY. (a) immediately follows from (3).

IfVt > 0z €Y, then I; = [0,400). Suppose this is not the case. Then (1)
guarantees that I, # @, (3) that I, is open in [0, +00), and (2) that I, is connected.
We conclude that (b) is true.

SUFFICIENCY. (1) and (2) follows immediately from (b).

Suppose (t,z) € II. (b) implies that I, = [0,a), where t < a < +o0o. Let
a=t+1,ifa =400 and a = f—“g—“, otherwise. Then a € I;. (a) implies that Y,
is open, therefore, 3U open neighborhood of z such that U C Y,. It follows from
(b) that Vs 0 < s < a Vy € U y € Y;. We conclude that [0,a) x U C II. Since
[0,a) x U is open in [0, +00) x X and (¢,7) € [0,a) x U, (3) is true. [ |

Let {Y:} be a collection of decreasing open sets.
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Definition. A mapping ¢: II — X is called a partial semiflow if
(1) Yt 2 0 ¢ € C(Y;, X).

(2) wo =1idx.
(3) If z € Y;45 for some t,s > 0, then ¢;(z) € Y and ¢;(p:(z)) = pi1s(T).

Definition. A partial semiflow ¢ is called continuous if ¢ € C(II, X).

Example 2. Let X = (0,+00), ¥; = (V/t,+00). Vz > v/t define ¢;(x) = V2% —t.
It follows that I, = [0,2%) and {Y;} is a collection of decreasing open sets by
Lemma 1. Straightforward calculation now shows that ¢ is a continuous partial

semiflow.
Let ¢ be a partial semiflow, F a Banach space.

Definition. A mapping Q: II — L,(FE) is called a partial semicocycle of ¢ if
1) Vt >0 Q; € Cyp(Y;, Ls(E))-

V(t,z) € IT Q¢(x) #O.

(1)
(2)
(3) Vx € X Qo(z) =1I.
(4)
(5)

4) If x € Yy4 s for some ¢, s > 0, then Q;44(z) = Q:(x)Qs(p:(2)).
5) If t,s >0, z € Y}, pi(x) € Y, then either z € Yii 5 or Q1(2)Qs(p:(x)) = 0.

Definition. A partial semicocycle Q is called continuous if Q € C(II, Ly(E)).

Example 3. Let X, Y; and ¢ be as in Example 2. Let also E = C. Vx € Y; define
Q:(x) = e~ V= ~t, Observe that Vr > /¢

t
T—Vi—t=——oouo-——
T+ Vz?—t

Therefore V¢t > 0 Q; € Cy(Y:). It is now easy to verify that Q is a continuous partial

<towu
T

semicocycle of .

Definition. A Cy-semigroup {T(t)}:>0 on Co(X, E) is said to have the disjoint

support property if Vt > 0 T'(t) has the disjoint support property.
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Theorem 4. {T(t)}t>0 is a Cy-semigroup on Co(X, E) with the disjoint support
property if and only if I{Y;} a collection of decreasing open sets, 3o a continuous

partial semiflow, 3Q a continuous partial semicocycle of ¢ such that
(1) Vt > 0 Q; and p; satisfy condition (2) of Theorem 1.4.
(2) 36 >03M >0 such thatVt 0 <t < d Ve Y, ||Q(x)]| < M.
(3) Vi>0VfeCo(X,E)

Qi(x)f(pe(z), fzely,

T = { 0, otherwise.

Proof. NECESSITY. Theorem 1.4 implies that 3{Y;} a collection of open sets Jp:
Il - X 3Q: I — L,(E) such that ¥t > 0 ¢, € C(Y;, X), Q: € Co(Y3, Ly(E)),
V(t,z) € II Q¢(z) # 0 and such that (3) is satisfied.

Our first step is to show that Y; is a collection of decreasing open sets.

The semigroup property T'(0) = I implies that {z € X : Vf € Co(X,E)
(T(0)f)(z) =0} = @. It follows that Yy = X.

Let 0 < s <t, z € Y:. Suppose z ¢ Y;. Then Vf € Co(X,E) (T(s)f)(z) = 0.
In particular, Vf € Co(X,E) (T'(t)f)(z) = (T(s)T(t — s)f)(z) = 0. Since z €
Y}, it follows from (3) that Vf € Co(X, E) (T(t)f)(z) = Qi(z)f(p(z)). Yu € E
we can always find an f € Co(X, E) such that f(p(z)) = u. Thus, Q:(z) = 0.
Contradiction. |

Suppose (z,t) € I and U is an open neighborhood of ¢(z). Since Q:(z) # 0,
Ju € E such that ||Q.(z)u|| = 1. By Urysohn’s lemma 3f € C.(X, E) such that
supp f C U and f(p¢(x)) = u. The strong continuity of {T'(¢)};>o implies that
Je > 0 such that J C I, and Vs € J ||T(s)f — T(t)f|| < 3, where J = [0,¢), if
t=0and J=(t—¢,t+¢),ift>0. Let V={yeX:|(TtSf)(®)| > 1} Then
V is an open neighborhood of z. It follows that Vs € J Yy € V (T'(s)f)(y) # 0.
(3) now implies that Vs € J Vy € V y € Y,. Thus, J x V C II. Therefore, since
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J x V is open in [0, +00) x X, II is open in [0,4+00) X X and we conclude that Y;
is a collection of decreasing open sets.

Note also that Vs € J Vy € V Qs(y) f(ws(y)) # 0, whence f(ps(y)) # 0, whence
vs(y) € U. We conclude that ¢ € C(I1, X).

We turn our attention to @ now. Suppose (t,z) € I, u € E. Since II is open in
[0, +00) x X, 3K, a compact neighborhood of z, 3K; a compact neighborhood of
t, such that K; x K; C II. The continuity of ¢ implies that if K = ¢(K; x K,),
then K is compact in X. By Urysohn’s lemma 3g € C.(X) such that g|g = 1. Let
f = g®u, € > 0 arbitrary. Since T(t)f € Co(X,E), 3U open, z € U C K, such
that Yy € U ||(T(t)f)(v) — (T(®#)f)(z)|| < §. The strong continuity of {T'(¢)}:>0
implies that 3J open in [0, +00), t € J C K; such that Vs € J ||T(s)f—-T(t)f|| < %.
Therefore, Vy e U Vs € J

(T (8)F)(y) = (T(&) ()]l
<IT(s)F) (@) = TOH N + T @) F)(y) — (T(E) ()l

£ g

<§+-2-=6.

Since flx = wu, it means that V(s,y) € J x U ||Qs(y)u — Q¢(z)u|| < e. Thus,
Q € C(IL, Ls(E)).

The next step is to prove that ¢ and @Q are partial semiflow and partial semic-
ocycle respectively. Yu € E Vx € X 3f € Co(X, E) such that f(po(z)) = u. The
semigroup property T(0) = I implies that Vz € X Vu € E Qo(r)u = u. In other
words, Vz € X Qo(z) = I. It follows that Vf € Co(X,E) Vz € X f(po(z)) = f(z).
Since continuous functions on a locally compact Hausdorff space separate the points
of the space, Vr € X ¢o(z) = z. In other words, g = idx.

Let t,s > 0, ¢ € Yi;4,. Suppose that ¢i(z) ¢ Y;. Then Vf € Co(X,E)
(T(s)f)(¢e(z)) = 0. The semigroup property T(t + s) = T(t)T(s) combined with
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(3) now imply that Vf € Cyo(X, E)

Qtrs(x) f(prrs()) = Qe(z)(T(s) f)(pe(x)) = 0.

Fix u € E. By choosing an f € Cy(X, E) such that f(p;+s(x)) = u, we conclude
that Vu € E Q¢4s(x)u = 0. Therefore, Q;4s(x) = 0. Contradiction. Thus, ¢;(x) €
Ys.

Assume now that t,s > 0,z € ¥}, p1(x) € Yy, and z ¢ Yi4s. ThenVf € Co(X, E)

Q:(2)Qs(p:(2)) f (ws(pt(2))) = (T(R)T(s)f)(z) = (T(t + 5)f)(z) = 0.

Fix u € E. By choosing an f € Cy(X, E) such that f(ps(¢:(z))) = u, we conclude

that Yu € E Qi(z)Qs(pe(x))u = 0.
Suppose again that £,s > 0, x € Y;,,. It follows that Vf € Cy(X, E)

(%) Qi+5(2)f (#r+(2)) = Qe(2)Qs(01(2)) f (05 (2 (2))).

By choosing an f € Co(X, E) such that f(p+s(z)) = f(ws(pe(x))) = u, where

u € F is fixed, we conclude that

(%%) Qt1s(z) = Qi(2) Qs (1 (x)).

If we could show that ¢ is a partial semiflow, this would prove that Q is a partial
semicocycle of .

Now we must show ¢ is a partial semiflow. If not, then 3t,s > 0 3z € Y;,, such
that p4(x) # ps(pe(x)). Since z € Yits, Qirs(x) # 0, therefore, Ju € E such
that Q¢4.¢(x)u # 0. Hence, it is possible to find g € Co(X) such that g(ps4s(x)) =0
and g(ps(pe(z))) = 1. Let f = g ® u. Then it follows from (*) and (*#) that

0= Qt+s(x)f(pr4s(z)) = Qt+s(z) f(ps(pe(x))) = Qt+s(z)u # 0.

Contradiction.
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Finally, we have to prove (2). Since {T'(¢)}+>0 is a Cp-semigroup and therefore
locally bounded, it follows from ||T'(¢)|| = sup{ ||Q:(z)|| : z € Y} }.

SUFFICIENCY. Theorem 1.4 implies that V¢ > 0 T'(¢) has the disjoint support
property. Also it is clear from property (2) of a partial semiflow and property (3)
of a partial serﬁicocycle that T(0) = I.

Let t,s > 0,z € X, f € Co(X, E). Then there are four possibilities:

1. z € Yiys. In this case (T'(t +s)f)(z) = (T'(t)T(s))f(z) follows from property (3)
of a partial semiflow and property (4) of a partial semicocycle.

2. 2¢ Yiys, z €Ys, pr(x) €Y. In this case (T'(t+ s)f)(z) =0 = (T{#)T(s)f)(z)
follows from property (5) of a partial semicocycle.

3. 2¢ Y, z €Yy, pi(x) € Ys. In this case

(TT(s)f)(x) = Qu(2)(T(s)f)(pe(x)) = 0 = (T(t + s) ) ().

4. = ¢ Yits, ¢ ¢ Y;. In this case Vg € Co(X, E) (T(t)g)(z) = 0. In particular,
(T@)T(s)f)(x) =0=(T(t+ 5)f)(z).

Therefore, {T'(t)}+>0 is a semigroup. We have to show now that it is a strongly
continuous one. Let f € Co(X, E), p € M(X,E*), t, | 0. Suppose ¢ is as in (2).
Without loss of generality we may assume that {t,} C [0,d). Fix z € X and let
J = I;N[0,d). Since ¢ and Q are continuous and t,, € J for n large enough, it follows
that Q:, (z)f(¢¢,(z)) = f(z). In other words, (T'(t,)f)(z) — f(z). Also, by (2),
vVt € [0,6) ||T'(t)]] < M. The Dominated Convergence Theorem for vector-valued

measures (see [Di, Th. I1.8.3]) now implies that

s > [ (s,

We conclude that {T'(t)}:>o is a weakly continuous semigroup, and by [Da, 1.23] it

is also a strongly continuous one. |
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Corollary 5. If {T(t)}:>0 is a Co-semigroup on Co(X) with the disjoint support
property, t,s > 0, then x € Y, if and only if x € Y; and ¢i(z) € Yy, where Y; and

@ are as in Theorem 4.

Proof. Necessity follows from the definition of a partial semiflow. To prove the
sufficiency, suppose x € Y3, ¢1(x) € Y, but = ¢ Y;4s. Following the proof of Theo-
rem 4, we conclude that Q.(x)Qs(¢:(z)) = 0. By definition of a partial semicocycle
Y(t,z) € II Q¢(x) # 0. Therefore, since Q is complex-valued, Q;(z)Q,(w:(x)) # 0.

Contradiction. |

Remark. 1t is still an open problem whether the conclusion of Corollary 5 is true in
general. If the answer is positive, we can modify the definition of partial semiflow
and semicocycle in the following way. In the definition of a partial semiflow we can
change (3) to (3'):
(8') If t,s > 0, then = € Y;4, if and only if z € Y; and ¢;(z) € Ys.
In this case @:45(z) = ¢(z)(ps(z)) and in the definition of a partial semicocycle
we can get rid of (5) entirely.

As the following theorem shows, we can get rid of condition (2) in Theorem 4
under the assumption that X is a compact Hausdorff space. Whether condition (2)
in Theorem 4 is superfluous or not in general is an open problem.

Let X be a compact Hausdorff space, E a Banach space.

Theorem 6. {T'(t)};>o is a Cy-semigroup on C(X,E) with the disjoint support
property if and only if 3Q € C(X x [0,+00), Ls(E)) such that V; = {z € X :
Qi(z) # 0}, t > 0 form a collection of decreasing open sets, Ip a continuous
partial semiflow such that Q| is a continuous partial semicocycle of ¢ and ¥t > 0

Vf € Co(X, E)
Qi(z)f(pe(z), ifrels,

0, otherwise.

(T F)(e) = {
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Proof. NECESSITY. Let Q be as in Theorem 4. Extend it to X x [0,+00) by
defining it to be zero outside II. The only thing that needs to be proved is that
Qe C(X x[0,+00),Ls(E)). Let z€ X,t>0,u e E, ¢ >0. Since {T(t)}+>0is a

Cop-semigroup, 3J open neighborhood of ¢ in [0, +00) such that Vs € J
€
ITET®u) - T(s)(I®u)]| < 3.
Also since T'(¢t)(I®wu) € C(X, E) 3U open neighborhood of z in X such that Vy € U

T@HA®w))(z) = (TE(L® u)(y)ll < g

Therefore, Vs € J Vy € U

(T (s)(T®w))(y) — (TE) (T u))(z)]|
<IT(s)(T@w)(y) — (TE(T@u) ()l

HIT@H (T @ u))(y) - (TE (T w) ()|

It is easy to see that Vt > 0Vz € X (T'(¢)(I®u))(z) = Q¢(x)u. Thus, V(s,y) € IxU
1Q:(z)u — Qs(y)u|| < . Hence, Q € C(X x [0,4+00), Ls(E)).

SUFFICIENCY. Corollary 1.8 implies that V¢ > 0 T'(¢) has the disjoint support
property.

Since @ € C(X x [0,1], Ls(E)) and X x [0,1] is compact, Vu € E 3M > 0 such
that Vt € [0,1] Vz € X ||Q:(z)u|| < M. Therefore, by the Uniform Boundedness
Principle, 3C > 0 such that V¢ € [0,1] Vz € X ||Q:(z)|| < C.

Now we can proceed as in the sufficiency part of Theorem 4. n

We turn our attention to Cp groups with the disjoint support property. Let X

be a locally compact Hausdorff space, E a Banach space.
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Definition. A mapping ¢: R x X — X is called a flow if
(1) po = idx.
(2) Vt,s € RVz € X @s(pt()) = pr+s(2)-
A flow ¢ is called continuous if p € C(R x X, X).
Definition. A mapping Q: R x X — L (FE) is called a cocycle of ¢ if
(1) Vt € R Q: € Cp(X, Ls(E)).
(2) Vz € X Qo(z) = 1.
(3) Vt,s ERVT € X Qu44(z) = Qu(z)Qs(0:())-
A cocycle Q is called continuous if Q € C(R x X, L;(E)).

Lemma 7. If ¢ is a flow and Q is a cocycle of ¢, then Vt € R ¢; and Q; are
invertible and Vz € X ¢;'(z) = p_i(z), Q7 ' (z) = Q_+(pe()).

Proof. It follows from the definition of a flow that Vi e R Vz € X

o-t(pt(2)) = pi(p-t(x)) = po(x) = =.

It follows from the definition of a cocycle that Vi e R Vz € X

Qt(z)Q-+(p:(z)) = Qo(x) = 1,
Q-t(p1(x))Q:(x) = Q_t(0e(2)) Qe (e () = Qo(p(z)) = I. u

Definition. A Cy-group {T'(t)}+er on Co(X, E) is said to have the disjoint support

property if Vt € R T'(¢t) has the disjoint support property.

Theorem 8. {T'(t)}scr is a Co-group on Co(X, E) with the disjoint support prop-
erty if and only if Ip a continuous flow, IQ a continuous cocycle of ¢ such that

VtER Vo € X Vf € Co(X, E) (T(t)f)(z) = Qe(x) f(pe(x))-

Proof. NECESSITY. This part of the proof can be obtained by mimicking the neces-

sity part of the proof of Theorem 4. Since Vt € R T'(t) is invertible, {z € X : Vf €
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Co(X,E) (T(t)f)(z) =0} = @. Thus, Vt € R Y; = X. This considerably simplifies
the necessity part of the proof of Theorem 4.

SUFFICIENCY. Let ¢t € R. Corollary 1.6 guarantees that T'(¢) is invertible and
both T'(t) and T'(t)~! have the disjoint support property. The fact that T'(t) is a
group follows easily from the definitions of a flow and a cocycle.

Observe that Vt € R ||T(t)|| = sup{ ||Q¢(z)u|| : z € X, u € E, |Jul| < 1} and
Vu € B, |lul] <1 ||Qi(z)ull € C(R). Since the supremum of any collection of lower
semicontinuous functions is also a lower semicontinuous function (see [Ru2, 2.8.c]),
Vvt € R ||T(t)|| is a lower semicontinuous function. In particular, it is measurable.
Also, since {T'(t)}+cr is a group, log||T'(¢)|| is a subadditive function. Thus, by
[HP, 7.4.1], ||T(t)|| is bounded on compact intervals of R. Hence, condition (2) of
Theorem 4 is satisfied and we can complete the proof as in the sufficiency part of

the proof of Theorem 4. [ ]
Now we are going to extend the notion of locality to unbounded operators.
Definition. An operator A on Cy(X, E) with the domain D(A) is called local if

Vfl & D(A) sz € Co(X, E)

IAOIAIRONI=0 = I(AL)OIA LI =

Theorem 9. If {T(t)}:>0 is a Co-semigroup on Co(X, E) with the disjoint support

property, A its infinitesimal generator, then A is local.

Proof. Let t >0, z € X, f1 € D(A), f2 € Co(X, E), [|f1()I| Al f2(-)]| = 0. Then

ML ) gy 4 V2N ”fl( L r @)

MRS \yrey fy) () — pofap + QAN ey 1))
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AT () f2)(z) - fa(2)]
<I(T (@) f2)(2) = fa(=)]-

_IT @) H) =)
t

Co-continuity of {T'(t)}:>o implies that ltif{)l I(T'(¢t) f2)(z) — f2(z)|| = 0. Since A is a
continuous opération (see [AB, 11.1]), it follows that ||(Af1)(z)|| A ||f2(z)|| =0. W

Definition. A Cy-semigroup {T'(t)}+>0 on Co(X, E) is called local if Vt > 0 T(t)

is local.

Corollary 10. A uniformly continuous semigroup on Co(X, E) with the disjoint

support property is local.

Proof. Let {T'(t)}+>0 be a uniformly continuous Cy-semigroup on Cy(X, E) with the
disjoint support property, A its infinitesimal generator. Then by Theorem 9 A is
local. Also since {T'(t)}+>0 is uniformly continuous, A is bounded (see for example
[Pa, 1.1.4]). Thus, by Theorem 1.11, 3Q € Cy(X, Ls(E)) such that Vf € Cy(X, E)
Ve € X (Af)(z) = Q(z)f(x). Again using [Pa, 1.1.4]), it follows that V¢ > 0
T(t) = e'4. In other words, Vf € Co(X,E) Vz € X (T(t)f)(z) = (!9 f)(z), i.e.
T'(t) is local. [

Proposition 11. Let {T'(t)}:>0 be a Cy-semigroup on Co(X, E), A its inﬁm’tesimal
generator. Then the following are equivalent:

(1) {T(t)}t>0 is local.

(2) R(A, A) is local for some X € p(A).

(3) VA € p(A) R(\, A) is local.

Proof. (1)=-(2). Let wp be the growth bound of {T'(t)};>o. Then [Pa, 1.5.4] implies
that if A > wp, then Vf € Cy(X, E)

RO\ AS = /0 = e MT(t) fdt.
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By Proposition 1.12(1) local operators form a closed subalgebra of L;(Co(X, E))
and since V¢t > 0 T'(t) is local, it follows that R(A, A) is local.

(2)=(3). Let u € p(A). The resolvent equafion ([Yo, Th.VIII.2.2])
R(\, A) — R(u, A) = (u — MR\, A)R(u, A)
implies that
R(p, A) = (I + (= NR( 4)T'R(X, A).

By Proposition 1.12(2) (£ + (u — A)R(\, A)) ! is local, therefore R(u, A) is local as
well.

(3)=(1). [Pa, 1.8.3] implies that V¢t > 0 Vf € Co(X, E)

T(#)f = lim [ER(g,A)]n f.

n—+oo LE

Again using the fact that local operators form a closed subalgebra of L;(Cy(X, E)),
we conclude that V¢t > 0 T'(¢) is local. [ ]
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Chapter 3
Co(a,b)® with respect to Cy,-groups

with the disjoint support property

Throughout this chapter —co < a < b < +00, X is either (a,b) or [a,b], where
by [—o0, b] we mean (—oo, b], and by [a, +00] we mean [a, +00).

Let {T'(t)}+cr be a Cp-group on a Banach space E.

Definition. The group dual of E with respect to {T'(t)}:er, denoted E® and pro-

nounced E-sun is defined in the following way:

®© _ * * 12 * *_ ¥ =
E°={u"€E th_ff(l)“T (tu* —u*|| =0}

[vN] is an excellent source of information about the semigroup and group duals
of Banach spaces and related subjects.

Let {T'(t)}+er be a Co-group on Cp(X) with the disjoint support property. It
follows from Theorem 2.8 that Jp: R x X — X a continuous flow 3¢: R — C,(X)
a continuous cocycle of ¢ such that V&t € R Vf € Co(X) Vz € X (T(t)f)(z) =
q:(z) f (0s())-

In [Na, B-I1.3.21] W. Arendt characterized all continuous flows on X. For the
sake of completeness we list this result here providing a somewhat more detailed

proof than the original one.

Theorem 1. ¢ is a continuous flow on X if and only if the following conditions
are satisfied:
(1) 3U C X, U is the union of pairwise disjoint intervals (a;,b;), i € I, where
I is either finite or countable.
(2) J: U — R such that Vi € I ; = 9|(a,,): (as,b;) = R is a homeomor-

phism.
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(3) VteR
7 (Yi(x) + 1), ifz € (as,by),

#i(@) = { z, frdU.

Proof. SUFFICIENCY First we will establish that ¢ is a flow on R. Let z,s,t € R.
Then either z € U or x ¢ U. If z ¢ U, then ¢i(x) = ps(z) = pres(x) = = and

therefore ¢;(ps(z)) = vrys(x). If z € (a;, b;) for some i € I, then

ee(ps(@) =" (¥ (7 (Bi(2) +9)) +8) = 97 (%i(2) + ¢+ 8) = prp(2).

It is also clear that Vz € R vo(z) = z.
The next step is to prove the continuity of ¢. It is fairly clear that if z € U or
z ¢ U, then Vt € R ¢;(z) is continuous at (t,z). Suppose z € U \ U, ¢t € R. Since

wt(z) = x, we have to prove that
vs(y) o zasylz, st and vs(y) > rasytz, st

We will prove only the first fact of the above two. The second one can be proved
in the same manner.

Let € > 0. Then there are two possibilities: either (z,z+¢) C U or (z,z+¢) ¢ U.
Let us consider the second case first. Then 36 0 < § < € such that z+ 6 ¢ U. Let
r<y<z+d. Ify¢ U, thenVs € R p,(y) = y and therefore z < p,(y) < z + ¢.

If, on the other hand, y € (a;, b;) for some i € I, then
z<a; <y<b<r+d<zx+e.

Note that Vs € R ¢,(y) € (ai,b;) and therefore z < p,(y) < z + .
Assume now (z,z +¢) C U. Then 3i € I such that a; = z < z+¢ < b;.
Since 1); is a homeomorphism, without losing generality we may assume that it is a

decreasing function. Let

§ =7 (i(x +e) +|t|+1)—z > 0.
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Thus, ¥;(z + ) = ¥i(z + €) + |t| + 1. Therefore, Vy € (z,z + J), V|s| < |t| + 1
Yi(y) + s> Yi(z+8) — |t| — 1 = ¢i(z + ¢).

It follows that = < ¢,(y) < +¢. This concludes the proof that ps(y) > z asy | z,
s —t.

NECESSITY. First we will prove that Vi € R ¢, is a strictly increasing function.
Assume this is not true. Then 3t € R 3z,y € X, z < y such that ¢i(z) > p(y).
Since ¢ is a continuous function and since ¢ = idx, 3s € (0, t] such that p,(z) =
ws(y). Contradiction with the fact that ¢, is a homeomorphism.

Let K = {z € X :Vt € R gt(z) = z}. Clearly K is a closed set. Also if
X = [a,b], it is easy to see that a,b € K. Therefore, U = X \ K is open in R and
thus is a union of of pairwise disjoint intervals (a;, b;), i € I, where I is either finite
or countable.

Let i € I, z € (a;,b;), B(t) = ¢pi(x). We claim that (3 is an injection. Suppose
this is false, i.e. 3r,s € R such that ¢,(z) = () which means that p,_,(z) = .
Scaling by ¢, if necessary, we may assume that ¢;(z) = z. Let y = py/5(x). It
follows from the definition of a flow that ¢, /5(y) = . Since as we showed above
¥1/2 is a strictly increasing function, we conclude that z = y.

Using a similar argument, we can show that ¥n € N ¢;/5(z) = z and thus
Vm € Z P on(x) = x. Since numbers {m/2"},en, mez are dense in R and since ¢
is a continuous flow, it follows that Vt € R ¢i(z) = z, i.e. £ € K. Contradiction
with z € (a;,b;). Thus, 8 is an injection.

Our next claim is that 8 maps R onto (ai,bi.). Suppose ¢i(x) ¢ (a;,b;). Then
ds € (0,t] such that y = ¢s(x) € K. From the definition of K it follows that
¢_s(y) = y and thus z = y € K. Contradiction with z € (a;, b;). We conclude that
the image of 3 is contained in (a;, b;). Thus, 8: R — (c, d) is a homeomorphism and

(c,d) C (a;,b;). Without loss of generality we may assume that 3 is an increasing
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function. Therefore, 3(t) — d as t — +oo. Let s € R. Then

s(d) = o lim e(2)) = lim @s(pe(z)) = lm ¢pis(z) =d.

t—r+00

Hence, d € K and thus d = b;. Analogously ¢ = a;. This establishes the claim.

Finally, let ; = 871, y € (as,b:), s = ¥i(y), i.e. ¥y = @q(z). Then

et (y) = 0(0s(T) = Pras(x) = ;7 (s + 1) = ¥ 1 (¥s(y) +1). ]

Remark. If ¢ is a continuous flow, then Vn € Z ¢, = T, i.e. p, is the nth iterant
of the function ;. Theorem 1 shows that the functions {¢; }+cr are the continuous
iterants of @1 in the sense of Abel, i.e. there exists a function 1 such that ¢, satisfies
the Abel equation ¥(p1(z)) —¢(z) = 1 (see [Ku, Ch.VII]), and consequently Vt € R
Vz € X ¢(pe(x)) — ¥(z) =t

Suppose u is a nonnegative Borel measure on X, t € R. VF C X, F Borel define
pe(F) = u(p—¢(F)). By [DS, II1.10.8] 4, is a nonnegative Borel measure on X and
VF C X, F Borel Vf € Cyp(X)

() P[fdm / foondu.

Pt (F)
It can be also easily seen that if 4 € M(X), then so is y; and the above equality

holds as well.

Suppose p € M(X),t € R. VF C X, F Borel define

pe(F) = /Qt 0 Yt dyy.
o

Since ¢; € Cy(X), [DS, II1.10.4] implies that y; € M(X) and VF C X, F Borel
Vf e Co(X)

(%) P[fdu2=/qt°<p—t-fdut= /qt-fowtdu-

F p—t(F)
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Lemma 2. Vt € R Vu € M(X) pp = T*(t)p.

Proof. It follows from above that Vt € R u;, € M(X) and Vf € Co(X)

_/T(t)fdu=/qt-focptdu=/fdﬂi- | n
X

X X
Lemma 3. If u € M(X) and u|ly =0, then p € Co(X)® with respect to {T(t)}1er.

Proof. Suppose t € R, F C X is Borel. Then

pi(F) = / Gt X, (F) -
X

Since ply =0, p(p—(F)NU) = 0 and therefore

pi(F) = /Qtch_t(F)\U dp.
X

Since ¢_; is a bijection and since ¢_¢(U) = U, p_(F)\U = p_+(F \ U). Also
since p_¢|x\v = Hdx\v, p-¢(F \U) =F \ U. We obtain:

pe(F) = /QtXF\U dp = /QtXF dp
X X
since u(F NU) = 0. Thus,
p(F) — p(F) = /Qt — L)xr dy.
X
Let F be the set of all partitions {F;} of X. Then Vt € R

g — pll = ;}11;?2 [(py — 1) (F5)

< sup Z/lqt—lle,du /Iqt—lldu

Since {T'(t)}+er is a Cy-group, it is locally bounded. It is not very difficult
to see that ||T(t)|| = ||g:||. Hence, 3D > 0 such that V|t| < 1 ||| < D and
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therefore |lg; — 1] < D + 1. Since by the definition of a cocycle go = 1 and since

(D + 1)xx € LY(X, ), it follows from the Dominated Convergence Theorem that
/‘Qt~1|du—->0 as t— 0.
b's

Hence, ||u; — p]] =& 0 as ¢ — 0. Since by Lemma 2 pj = T*(t)u, it follows that
p € Co(X)®.. u
Lemma 4. Supposei € I, a € L((ai,b;),dv). VF Borel, F C X define

b;

p(F) = /axF dy,

a;

where v is as in Theorem 2. Then p € Co(X)® with respect to {T(t)}ter.-

Proof. di is either a nonnegative or nonpositive measure on (a;, b;). Without loss
of generality we may assume it is nonnegative. Suppose (¢, d) C (a4, b;). Since 7; is

a continuous function, dy(c,d) = ¥(d) — ¢¥(c). Then Vt € R

(d)e(c, d) = dp(p-¢(c), p-t(d)) = Y(p-+(d)) — P(p-t(c))
= P(d) —t —¢(c) +t = 9(d) — Y(c) = dy(c, d).
It follows that VG C (a,b;), G open (d):(G) = dy(G). [Ru2, 2.18] implies that
both dyy and (d), are regular. Thus, VF C (a;,b;), F Borel (dy)¢(F) = dy(F)
which means that V¢ € R (dy); = di on (aj, b;).
Let F C X be Borel, t € R. Then by () and (+)

b; b
(= 1)F) = [aax_ry dv = [axrdy
a; a;
b,’ bi
=/Qt CY_t QOY_t*Xp_,(F)© P—t At — /aXF dy
a; a;

by
z/(Qt oYt aop ¢ —a)xrdy

a;
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since (dy); = dv on (as,b;), X_,(F) 09—t = XF. Using the argument similar to the

one in the proof of Lemma 3, we conclude that V¢t € R

b;
I — il < /iqt ot 00wy — ol di.

a;

We have shown in the proof of Lemma 3 that 3D > 1 such that V|¢t| < 1 ||¢]| < D.
Let ¢ > 0. Since a € L((aj,b;),dv), 3g € C.(as,b;) such that

Since (dy): = dy on (a4, b;), it follows from (*) that V|t| < 1

£

by b;
€
/l‘hmp-t'ao@—t—Qt°<P—t'9°¢—tld¢=/}qta—qtg|d¢§D3D =3

a; aj

Let K =suppg, K’ = (K x [~1,1]) C (a4, b;). Since ¢ is a continuous flow, K’
is compact. Suppose z € (a;,b;) \ K'. It means that Vy € K V|t| <1z # ¢p_,(y)
which implies that ¢;(z) # y. Hence, p:(z) ¢ K and g(ps(z)) = 0. It follows that
V|t| <1 supp(gowr —g) C K’'. Therefore, V|t| < 1

lggow_t-gop_s—g|l < |gll(D+1)xk.

Since xx+ € L*((ai,b;),dv), the Dominated Convergence Theorem implies that
36 > 0 such that V|t| < &

by
€
/IQtOSO—t‘QO‘P~t“g‘d'¢< 3

a;

Hence,

by
/Iqtogo..t-aogo_t—aldz/)
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S/]CIt090~t'aOSO—t"QtOSO—t'QOSO—t!d?/J

1 bi
+/'Qt°‘P—t‘g°‘P—t_9[d¢+/]a"9’dw

<z+-—+-=c

<
3

wim

£
3
Combining all the results, we obtain that V|t| < § ||u} — u|| < €. Thus, tlix% =

ﬁ
and p € Co(X)® with respect to {T'(t) }scr. [ ]

Lemma 5. Co(X)® Cc M(X\U) @ LY(U,dv).

Proof. Suppose p € M(X). Then
p=v+> w,
icl
where v|y = 0 and Vi € I pi|(x)\(ai,b;) = 0- Let A be the infinitesimal generator
of {T'(t)}+cr, wo the growth bound of {T'(¢)}tcr, A > wo. Since by [vN, 1.3.1]
Co(X)® = D(A*), it suffices to prove that R(\,A*)v € M(X \ U) and Vi € I
RO\ A% s € LMU, dy).
Let f € Co(X). Then it follows from [Pa, 1.5.4] that Vz € R

+00

(R(\A)f)(z) = / e g,(2) f(pu(x)) dt

0

Hence, since v|y = 0 and ¢¢| x\v = tdx\v

(R(X, A%y, f) = (v, R(\ A)f)

:/d 7 gt(z) f(z) dt = /f(:z: H)(z)dv(z),
X 0

where

+o0
= ‘/hA(t,x) dt, ha(t,z) = e_)‘tqt(a:).
0
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Let ¢ = (A — wp)/2. We have mentioned in the proof of Lemma 3 that Vt € R

|IT(t)]| = ||g:||. Then 3B > 0 such that V¢ € R ||¢;|| < Bet“ot¢) and Vz € X

+o0 +oo
Ym@NS/WAMNﬁSB/eﬂﬁzg.
0 0

Thus, if VF C X, F Borel we define
§(F) = [ Hu(@)dvo),
F

then by [DS, I11.10.4] £ € M(X) and § = R(A, A*)v. Also since v|y =0, &|y =0
as well.
Let ¢ € I. Without loss of generality we may assume that 1 is nondecreasing on

(i, b;). Then

b; +00
(R(\ A%)ps, f) = (#i>R(>‘7A)f>=/dﬂi($) / e () (¥ (Y(@) + 1)) dt.
a; ]

Suppose t = 1(s) — ¥ (z). Then by [DS, I11.10.8]

by +co

/ dyi(x) / e () f (¥7 ((2) + 1)) dt

a; 0
by

by
= / dps(z) / ha((s) — w(x), ) f(s) dp(s).

a;

Applying Fubini’s Theorem, we will get:

b; b;
/ e / ha((s) — (), 2) f(s) dip(s)

bs s
- / £(s) dip(s) / Pa((s) — $(2), 2) dpa(z)

ag

by

=/E@ﬂ@wwx

a,
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where .

Fi(s) = [ ma(@(s) - ¥(s),) di(a).

a;

We need to show that F; € L'((a;, b;),dv). Again using Fubini’s Theorem and [DS,
IT1.10.8], we will obtain:

7 E(s)] d(s) < / / ha((s) — (@), 2)] dlus| ()

7d|#z|($ /Ih,\ —¥(z),z)| dy(s) = 7d|,u,-|(a:) +/oo|h)\(t,m)]dt

S“g'#i'(ai,bi) < +o00

+ 00
since Vz € X [ |hi(t,z)|dt < B/e.
0

Hence, Vi € I R(\, A*)u; = v;, where VF C R, F Borel
b;

vi(F) :/FiXF dy,

which means that v; can be associated with a function from L!((a;, b;), dv)). [
Theorem 6. Let {T(t)}:cr be a Cy-group on Co(X) with the disjoint support
property. Then 3U C X, U is the union of pairwise disjoint intervals (a;,b;),
i € I, where I is either finite or countable and 3Y: U — R such that Vi € T
Vi = Y|(a, .6, (@i, b;) = R is a homeomorphism and the corresponding group dual
Co(X)® = M(X\ U)o LY U, dv).

Proof. Follows from Lemmas 3, 4 and 5. |

Remark. If U = @&, then Vt € RVf € Co(X) Vo € X (T(t)f)(z) = ¢ () f(=), i.e.

T'(t) is local, and as the result shows in that case {T™*(t)}:cr is a Cp-group.

Remark. The above theorem generalizes the well-known result of A. Plessner ([Pl))
that if f: R — C and Varr[f] < +00, then f is absolutely continuous if and only if

Varg[f(-+t)— f(-)] > 0ast— 0.
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The following theorem generalizes the result of N. Wiener and R. C. Young

([WY]) about the behavior of measures on R under translation.

Theorem 7. Let {T(t)}1cr be a Cy-group on Co(X) with the disjoint support

property. Then Vu € M(X)
limsup [|T* () — pll > 2||palls
t—0

where g is the component of p in Co(X)®?. Moreover, if limsup,_,, ||T(t)|| = 1,

then the last inequality becomes an equality.

Proof. First we will prove that
limsup || T*(t)u — pl| = limsup [|T*(t)pq — pal|-
t—0 t—0

Suppose that ¢ and ¢ are the flow and the cocycle of {T'(¢)};cr. Then it is not
difficult to see that |T'(t)| also has the disjoint support property with the flow ¢
and cocycle |q|. Thus, by Theorem 6 both groups {T'(¢) }+er and {|T'(¢)|}:er have
the same Cp(X)®.

Observe that V& € R {T'(t)}+cr is a positive disjointness preserving group. Since
M(X), being an AL-space, has an order continuous norm (see [AB, p. 187]), it
follows from [vN, Th. 8.1.6] that C5(X)® is a projection band in M(X). Thus,

M(X) = Co(X)® @ Co(X)®%.

Suppose p € M(X). Then there exist unique po € Co(X)®, pg € Co(X)®? such
that g = po + pq. We claim that V& € R Cp(X)® and Co(X)®? are invariant under
T*(t).

Since T™*(s)ug — po as t — 0, it follows that T™(¢)T™*(s)uo — T*(t)pe as t — 0.
Hence, T*(s)T*(t)uo — T*(t)po as t — 0 and T*(t)uo € Co(X)®. Since T(t)

is disjointness preserving, so is T*(t) (see [MN, 3.1.21]). Therefore, since Vt € R



43
Vv € Co(X)® T*(=t)v L pg, v L T*(t)uqg and T*(t)ug € Co(X)®?. Thus, the
claim is established.

It follows that Vt € R
(T™ ()0 — po) L (T ()psa — pa)-
Since M (X) is an AL-space, we conclude that

limsup [|T*(t)u — p|
t—0

= limsup |[(T™*(t)po — po) + (T (t) a — pa)|]

t—0

= Lm || T (t)po — poll + limsup [T (¢)pa — pal|
t—0 t—0

=limsup ||T*(¢)pq — pall-
t—0
Next step is to prove that
limsup ||T*(t)pa — pall = limsup [[T*(¢)uall + || pall-
t—0 t—0

Let m be the Lebesgue measure on R. Since {|T'(¢)|}+cr is a positive Cyp-group, it
follows from [dP, 2.3] that Vu in Co(X)®¢ |T'(t)|*u L pu m-a.e. on R. It follows from
[MN, 3.1.21] that both T™*(t) and |T'(¢)|* are disjointness preserving, and therefore
by [AB, 8.6] [T*(¢)u| = [T (¢)||u| and |T()[*|ul = [|T(t)|*xl|. Since by [MN, 3.1.21]
|T*(¢)| = |T(¢)|*, we obtain:

IT* @l = [T* @Ol = ITE ul = 1T@)[ -

Therefore, |T'(t)*u| Au| = ||T(¢)[* | A |p| = 0 which implies that T(¢)*x L u m-a.e.

on R. Again using the fact that M(X) is an AL-space, we conclude that

limsup ||T*()pa — pal| = limsup [|T (¢) uall + ||all-
t—0 t—0

The only thing left to show that

limsup || T* () — ]| > 2] pql|
t—0
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is to prove that limsup;_,q ||T*(¢)ud|l > ||all- Let € > 0. Then 3f € Co(X) such
that

lall = & < |(ua, £

Since {T'(¢) }+cr is a Cyp-group,

(T (@) pa, F)| = Kpas T@)F)| — [{pa, f)| as t—0.

Thus, 3§ > 0 such that V|t| < §

IT* (@) pall 2 KT @)a, ) > [{pa, £l — € > |lpall — 2¢.

It follows that limsup,_,q ||7*(t)pall > ||pall-

Finally if limsup,_,q ||T'(¢)|| = 1, then the inequality becomes an equality since

limsup ||T™ () pal| < limsup [|T*(¢)]| || pall = [|pall- u
t—0 t—0

Corollary 8. Let {T'(t)}:er be a Co-group on Co(X) with the disjoint support
property such that one of the following two conditions is satisfied:

(1) {T(t)}+er is a contraction group.

(2) X is compact.
Then Vu € M(X)

limsup || T* () — pll = 2||uall,
t—0

where pgy is the component of u in Co(X)®9.

Proof. The only thing we need to prove is that limsup,_,q ||T'(¢)] = 1.

Case (1). In the proof of Theorem 7 we showed that limsup,_,, ||T(t)| > 1.
However, since {T'(t)}:cr is a contraction group, limsup, ,, ||T(¢)|| < 1. Thus,
limsup,_,q |T(¢)]] = 1.

Case (2). Since [-1, 1] x X is compact, |q| is uniformly continuous on [—1,1] x X.

Thus, Ve > 0 3§ > 0 such that V|t| < d Vz € X ||g:(z)| — 1| < €. In other words,

l-e<|g(z)| <1+e.
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It follows that

l-e<|gll<1+¢

and therefore limy_,¢ [|g:]| = 1. It is not difficult to see that V¢t € R ||T(¢)|| = |lg|-

Hence, lim;_, || T(¢)|| = 1. |

Remark. Let {T'(t)}:cr be a Cy-group on Cp(X) with the disjoint support property
such that sup,cg [|IT(t)]| = supser llgtll = M < +oo. Vf € Co(X) define ||| f||| =
supger [|T(¢) [l Then (see [Pa, Th. 1.5.2]) V¢ € R Vf € Co(X) [If]l < [IIflll <
M]||f|| and [|[T'()f]|| = ||| f|l|. Hence, by Theorem 7

limsup |||T™(t)p — pll| = 2{||ualll,
t—0

where p4 is the component of u in Co(X)®¢.
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