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ABSTRACT

Symmetric designs with parameters (v, k, \) are very regular structures useful
in the design of experiments, and (v, k, \)-difference sets are a common means of
constructing them, as well as being interesting subsets of groups in their own right.
We investigate (v, k, A)-symmetric designs and (v, k, \)-difference sets, especially
those satisfying v = 4n + 1, where n = k — A\. These must have parameters of
the form (#2 + (¢ + 1), #2, t(t — 1)/2) for t > 1. Such difference sets exist for
t = 1,2. Generalizing work of M. Kervaire and S. Eliahou, we conjecture that
abelian difference sets with these parameters do not exist for ¢ > 3, and we prove
this for large families of values of t (or n). In particular, we eliminate all values of
t except for a set of density 0. The theory of biquadratic reciprocity is especially
useful here, to determine whether or not certain primes are biquadratic, and hence

semi-primitive, modulo the factors of v.

Cyclic difference sets also correspond to (+1)-sequences of length v with con-
stant periodic autocorrelation. Such sequences are of interest in communications
theory, especially if they also have small aperiodic correlations. We find and prove
bounds on the aperiodic correlations of a binary sequence that has constant periodic
correlations. As an example, such sequences corresponding to cyclic difference sets
satisfying v = 4n have aperiodic autocorrelations bounded absolutely by (3/2)n,
with a similar bound in the case of cyclic Hadamard difference sets (those satisfying
v=4n-—1).

Finally, we present an alternative construction of a class of symmetric designs

due to A.E. Brouwer which includes the v = 4n + 1 designs as a special case.
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1. INTRODUCTION AND PRELIMINARIES

1.1. Block Designs

Special examples of combinatorial block designs date back to the first half of
the 19th century. More general classes were studied in connection with finite ge-
ometry, notably by J. Steiner [Ste]. In this century, other classes of block designs
became important to statisticians in the design of experiments (whence the name),
and since then design theory has grown to be one of the major branches of modern
combinatorics. Designs have been investigated in connection with, and found ap-
plications in, finite geometry, coding theory, graph theory, the theory of Hadamard
matrices, digital communications and radar signal design, cryptography, as well as
the design of experiments. A few major references to the theory are [BJL], [HP],
and [L], and some examples of applications and interactions with other fields are in
[AK], [CvL], [SP], [Go], and [St]. An introduction to design theory with nice proofs

of the elementary results below can be found in [vLW].

An important class of designs, particularly in the design of experiments, are
the balanced incomplete block designs ([Y]), defined to be “incidence structures”
consisting of the following:

(a) aset P of size v whose elements are called points;
(b) aset B of size b whose elements are called blocks;
(c) an incidence relation T C P x B such that:

(i) every block is incident with exactly k points;

(ii) every point is incident with exactly r blocks; and

(iii) any two distinct points in P are simultaneously incident with exactly A

blocks;

where the parameters k,r, and )\ are constant. It turns out that the existence of
the constant r in (c) (ii) follows from the other conditions, and the values of the
parameters b and r are given by r = Av — 1)/(k — 1) and b = rv/k, so such a

design is often called a (v, k, A)-BIBD. It is normally assumed that £ < v (this is
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the “incompleteness” part), to avoid degeneracy. Notice that each block determines
a subset of the points, namely those with which it is incident. A design where
distinct blocks are incident with distinct subsets of the points is called simple, and
in a simple design we often identify the blocks with these subsets.

An example of a (13,4, 1)-BIBD on the point set
P =1{0,1,2,3,4,5,6,7,8,9,10,11,12}

consists of blocks identified with the following subsets:

{071a339} {4757730} {778a 10’3} {1071]-,036}
{1,2,4,10} {5,6,8,1} {8,9,11,4} {11,12,1,7} (1.1)
{2,3,5,11} {6,7,9,2} {9,10,12,5} {12,0,2,8} '
{3,4,6,12}.
Notice that indeed any two distinct points 0 < 7,7 < 12 occur together in exactly
one of these blocks.

The complement of a given BIBD is the incidence structure with the com-
plementary incidence relation (P x B) \ Z, or, equivalently, the structure whose
blocks are identified with the complements of the subsets (i.e., blocks) of the orig-
inal BIBD. It can be shown that the complement is also a BIBD. So, for example,

the complement of the (13,4,1)-BIBD above is a (13,9,6)-BIBD.

1.2. Symmetric Designs

Sir R.A. Fisher proved in [F] that for a (v, k, A)-BIBD with k£ < v, one must
have b > v. This motivates interest in the extremal case, where b = v. It turns out
that in this case we must also have r = k, and

(iv) any two distinct blocks are simultaneously incident with exactly A points.
In other words, the dual structure (with point set B, block set P, and the same
incidence relation) is also a (v, k, \)-BIBD. So a BIBD with b = v (> k) is usually
called a symmetric design. Observe that (1.1)is in fact a (13,4, 1)-symmetric design,

since there are 13 blocks (and each point is contained in exactly 4 blocks, and the
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intersection of any two distinct blocks consists of exactly 1 point). Symmetric
designs thus have a lot of regular structure. A symmetric design is necessarily
simple.

The order of a (v, k, A\)-symmetric design is defined to be n = k£ — \, and is
a very useful parameter for classifying symmetric designs, often more so than k or
A. Notice that for any two distinct points of the design, n counts the number of
blocks containing the first, but not the second, of the two points. Likewise, for
any two distinct blocks, n is the size of the intersection of the first block with the

complement of the second.

The most important question about symmetric designs remains only partially
solved: given v,k, A, does there exist a symmetric design with these parameters?
Of course, an answer of “yes” usually involves exhibiting an actual construction of
such a design.

The simplest necessary condition on the parameters of a symmetric design is
easily obtained by counting the pairs of incident points and blocks in two different

ways, and is sometimes called the basic parametric equation:
Ao —1)=k(k-1). (1.2)
This can also be easily expressed in a form involving n = k — X:
Mo +n = k2 (1.3)

The only other known general condition required of the parameters of a sym-
metric design is the Bruck-Ryser-Chowla theorem (see [vLW] for a proof):

BRC Theorem. If a (v, k, \)-symmetric design of order n exists, then

(i) if v is even, then n is a square (actually due to Schiitzenberger);

(i1) if v is odd, then there exist integers z,y, z, not all 0, such that

an + (_1)(v—1)/2)\y2 — 22.
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The complement of a symmetric (v, k, \)-design is a (v, v — k, v — 2n — A)-
symmetric design, since g = v—2n—XA = v—2k+\ is the number of blocks containing
neither of a given pair of distinct points. Notice that the order of the complementary
design is the same as that of the original, since (v —k)— (v =2k +A) =k — A. So
when considering the question of existence, we normally assume that k£ < v/2, and
it is convenient to classify symmetric designs in terms of their order.

If n = 1, then (1.2) implies that the symmetric design must have parameters
(v,1,0) (or the complementary (v,v — 1,v — 2)), and such a symmetric design is

called trivial.

We can use the basic parametric equation to derive nice bounds on v in terms
of n for non-trivial symmetric designs (see [BJL]). Let g = v — 2n — X as above,

then from (1.3) we easily derive that
A+pu=v—2n
Ap =n(n—1).
Now assume that n > 1, so that in particular g, A\ > 1 (from equation (1.2)

and its complementary equivalent). Thus
(k—1D(A-1)20
= pA—(p+X)+12>0
= nn—1)—(v—2n)+12>0
= nP4+n+1>0.
Again assuming that n > 1, we use the arithmetic-geometric mean inequality:

(b4 A)? 2 4p

= (v=2n)?>4nn-1)=2n-1)%* -1

= v—-2n2>22n-—1 since n > 1,

= v>4n-—1.

Thus, in summary, for a non-trivial symmetric design of order n,

dn—1<v<n?4+n+1.



The extremal cases of these inequalities have been much studied. When v =
n? +n + 1 (which occurs if and only if A = 1), the symmetric design is called a
projective plane of order n. These have been constructed when n is a power of a
prime, and for no other values of n. As an example, the (13,4, 1)-symmetric design
(1.1) is a projective plane of order 3. A massive computer search by C. Lam and
others showed that projective planes of order 10 do not exist, the only symmetric
designs that have been eliminated by something other than the necessary conditions
given above.

The case v = 4n — 1 corresponds to Hadamard 2-designs with parameters
(4n—1, 2n—1, n—1). These exist if and only if a 4n x 4n Hadamard matrix exists
(and hence they are conjectured to exist for all n). These parameters always satisfy
the BRC condition (with z =y =z = 1).

Symmetric designs with v = 4n have also been greatly studied, and give rise
to so-called regular Hadamard matrices. In this case BRC (i) implies that n = u?

is a square, and the parameters must be (4u?, 2u? — u, u? — u).

Finally, we come to consider symmetric designs satisfying v = 4n + 1. These
have been studied far less than the families described above, and these are the
common theme to this dissertation. We derive their parameters as follows: assuming

k<wv/2, let t =n— A, so that with £k = n + X\ we have
n= (k402 A=(E-0)2
using v — 1 = 4n and equation (1.2) we obtain

dnd=k* —k
= KB-tP=k>—k
= k=t A=t(t-1)/2, n=tt+1)/2, v=2tt+1)+1. (1.4)
Observe that (1.1) is such a symmetric design (corresponding to ¢t = 2), and

t = 1 gives the trivial (5,1,0)-design. We also see that these parameters always

satisfy BRC (ii) (with @ = y = 1, z = t). In fact, these designs are a special



6

case (“h = 2”) of a more general construction of A.E. Brouwer in [Br]; he gives a
construction whenever ¢ is an odd prime power. Another version of this construction
is provided in Chapter 5 of this thesis. In addition, Bridges, Hall, and Hayden
constructed a (41, 16,6)-symmetric design in [BHH] (this is the ¢ = 4 case). No

constructions have been found for other values of the parameter ¢.

Before considering these designs further, however, we turn to one of the most

important construction methods for symmetric designs.

1.3. Automorphisms and Difference Sets

Two (v, k, A)-symmetric designs are said to be isomorphic if there is a bijection
between their point sets and a bijection between their block sets that preserve the
incidence relation. Another way of saying this is that there is a bijection between
their point sets which induces a bijection between blocks by the incidence rela-
tion. Designs with the same parameters can certainly be non-isomorphic; indeed, a
symmetric design need not be isomorphic to its own dual.

An isomorphism of a symmetric design with itself is called an automorphism
of the design. It is simply a permutation of the points that takes blocks to blocks.
A group of automorphisms is sharply transitive, or regular, if for any two distinct
points there exists exactly one automorphism in the group that takes the first point
to the second. It can be shown (see [vLW]) that the number of orbits of points
under the action of the group is equal to the number of orbits of the blocks under
the group action; in particular, if the group is sharply transitive on the points, then
it 1s sharply transitive on the blocks also.

If a symmetric design admits a sharply transitive group G of automorphisms,
we can fix a point ¢ of the design and identify the group G with the point set P by
the correspondence ¢ € G + gzo € P. We can then fix a block D € B, thought of
as a subset of G, so that, under the induced sharply transitive action of the group
of automorphisms on the blocks, the other blocks are simply the left translates of

D in G, i.e., of the form ¢D fora g € G.



The properties of the symmetric design can then be shown without difficulty to
imply that for every non-identity element ¢ € G, there are exactly A pairs z,y € D
satisfying zy~™! = g.

DEFINITION. A (v,k, \)-difference set is a subset D (of size k) of a group G (of
size v), such that for every non-identity element ¢ € G, there are exactly A pairs

1

z,y € D satisfying zy~! = g (or z—y = ¢ if using additive notation). The difference

set is called cyclic (respectively, abelian, non-abelian) if the group G is.
Conversely, given a (v, k, A)-difference set D in a group G, form an incidence
structure with point set G and blocks given by the set {¢D : g € G} of all left
translates of D. This is called the development of D (or devD for short), and is a
(v, k, A)-symmetric design admitting a sharply transitive group of automorphisms
isomorphic to G. Note that each of the translates of D is also a difference set in G.
As an example, identify the point set P of (1.1) with the cyclic group Z;3. Then
the first block, {0,1,3,9}, is a (13,4, 1)-difference set in Z,3;, since each non-zero
element of the group is represented exactly once as a difference of elements in D.
For example, 1 =1~0, 2=3—-1, 4 =0— 9, etc. The other blocks of the design

are simply the translates of this set in Zi3.

Thus the existence of symmetric designs admitting a sharply transitive group
of automorphisms is equivalent to the existence of difference sets. Due to their
algebraic structure and simpler description, the search for the latter is generally
easier than the search for symmetric designs, and difference sets have become one
of the most fruitful sources of symmetric designs. As we shall see in subsequent
chapters, the increased structure also makes it easier to prove the non-existence
of certain difference sets. However, this does not imply the non-existence of all
symmetric designs with the same parameters. For a good survey of the theory of

difference sets, see [J].

The algebraic structure of difference sets is often exploited by using the group
ring formulation. Given a group G, let ZG be the free Z-module with basis G.

For any subset A C G, we abuse notation and also denote the group ring element
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> ,ead by A. For any A = > sec @9 € LG, we write ACD = PR agg™?t.
Finally, in the group ring we use an integer m to denote the element mlg. With
this formalism, the defining condition for a subset D C G to be a difference set is

equivalent to the following equation in the group ring:
DDV = n 4+ )G. (1.5)

This allows the use of algebraic techniques such as character theory; we shall see

some of this in Chapter 2.

Difference sets corresponding to the three cases v =n?+n+1,v =4n—1, and
v = 4n have again been the object of a great deal of study. In fact, interest in dif-
ference sets seems to have been growing recently, and several surprising new results
have been published in the last few years. A considerable amount of attention has

2 — u)-difference

been given to the latter of these three cases, the (4u?, 2u? —u, u
sets, variously called Menon difference sets, Hadamard difference sets, or H-sets.
The existence question seems to be quite complex in this case. Most work in dif-
ference set theory has been done with abelian groups, but constructions of new
examples of these difference sets are being found in non-abelian groups (e.g., see
[Sm]). It is widely conjectured that non-trivial (u > 1) cyclic examples of this case
do not exist. This point is visited again in Chapter 4.

However, very little work has been done in the v = 4n + 1 case. The first
explicit reference is [T], where R.J. Turyn remarks that cyclic difference sets with
parameters (1.4) (namely, (2¢(t + 1) + 1, t2, ¢(t — 1)/2)) exist for t = 1,2, but not
for 3 <t < 11. The only extensive reference is [EK], where the authors have a table
showing the non-existence of these difference sets in cyclic groups for 3 < ¢ < 100,
with the possible exception of ¢ = 50. In [B] I also eliminated the case t = 50,
and observed that no difference set, even non-abelian, exists for 3 <t < 100. The
former result is demonstrated in Chapter 2 of this work.

As a result it seems reasonable to conjecture that abelian difference sets with

these parameters do not exist at all for ¢ > 3. Towards this, we prove in Chapter 3



the non-existence of difference sets with these parameters for a set of values of ¢
having density 1 in the positive integers.

In Chapter 4, we consider the connection of cyclic difference sets with auto-
correlations of finite binary sequences z1, T2, ..., Ty, defined by ¢, = > z;zit,
and p, = Y.._| Z;Tit,, with subscripts read modulo v. We prove a bound on |c,|
given a sequence with constant values of p,.

Finally, in Chapter 5 we return to symmetric designs and present an alternative

to Brouwer’s construction of a family of symmetric designs.
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2. MULTIPLIERS AND DIFFERENCE SETS

2.1. Multipliers

If D is a difference set in G and « is a group automorphism of G, then dev a(D)
is isomorphic as a symmetric design to devD. Two (v, k, A)-difference sets D;, D,
in the same group G are said to be equivalent if there is a group automorphism «
of G such that D, is a translate of (D).
DEFINITION. An automorphism « of G is a multiplier of the difference set D in
G if a(D) is a translate of D. If G is abelian and written additively, and « is
multiplication by an integer z relatively prime to exp(G) (the exponent of G), then
we also say that z is a (numerical) multiplier of D.

From now on, we only consider numerical multipliers. Most of the background

information in this section is from [J].

Multipliers are among the most powerful tools in the study of difference sets,
and were first introduced by M. Hall in [H1]. A multiplier puts tremendous restric-
tions on a difference set, making it much easier to construct one (when it exists) or
to prove non-existence (when it does not). One fact that makes them so useful is

the following theorem of McFarland and Rice (see [BJL)):

Theorem. Let D be a difference set in an abelian group G. Then there exists a

translate of D that is fixed by every numerical multiplier of D.

So given a multiplier z of an abelian difference set D, we can always assume
that D is fixed by z. But then this implies that D must be a union of orbits of the
action of multiplication by z, often rendering the existence of D susceptible to a
computer search or algebraic techniques, or both.

What makes multipliers most useful, however, is the fact that it is often not
difficult to show that a difference set has one, by means of one of several multiplier

theorems. One of the most general is the following due to P.K. Menon (see [M]):
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“Second” Multiplier Theorem. Let D be an abelian (v, k, \)-difference set in
G, and let m > X\ be a divisor of n which is relatively prime to v. Suppose that z
is an integer relatively prime to v which satisfies the following condition: for every
prime p dividing m, there is an f > 1 such that z = p/ (mod exp(G)). Then z is

a numerical multiplier for D.

Another one, due to McFarland ([Mc]), is more complicated. We first define a

function M as follows:
M(1) =1, M2)=2-1, M(3)=2-3-11-13, M4)=2-3-7-31,

and for z > 5, M(z) is defined recursively to be the product of the distinct prime

factors of the numbers
2, M(Zz/pQC)a D — 13 p2 - 17 cees pu(z) - 17

where p is a prime divisor of z with p® || z (i.e., p® exactly divides z) and where
u(z) = z(z—1)/2. Notice that the “definition” of M actually depends on the choice
of p for each z.

Then the theorem is as follows:

McFarland’s Multiplier Theorem. For every positive integer z, the Second
Multiplier Theorem remains true if the condition m > X is replaced by the condition

that M(n/m) and v are relatively prime.

As Jungnickel points out in [J], this result is difficult to apply! However, we use it
to eliminate the case t = 50 from Table I of [EK].

It is conjectured that in fact the condition “m > A” can be dropped altogether
from the Multiplier Theorem (this is called the Multiplier Conjecture).

2.2. Use of McFarland’s Multiplier Theorem

In this section we apply McFarland’s Theorem to eliminate the one gap in
Table I of [EK], which shows the non-existence of cyclic (2¢(¢t+1)+1, t2, t(t—1)/2)-
difference sets for 3 < ¢ <100, ¢ # 50. This result has appeared in [B].
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Theorem 2.1. There does not exist a (5101,2500,1225)-difference set.

Proof. The stated parameters are the t = 50 case. We have v = 5101, a prime, (so
G = Zs5101), and n = 1275 = 352 - 17. Let m = 3-17. So n/m = 5%, and M(5?)

has as factors the prime factors of
52, M(1),5 - 1,57 —1,5%% — 1,

since u(25) = 300. But the multiplicative order of 5 modulo 5101 is 425, so M(25)
is not divisible by v = 5101. Moreover,

31988 =17 (mod 5101),

and so by McFarland’s Theorem d = 17 is a multiplier of any (5101, 2500, 1225)-
difference set.

But the non-trivial orbits of multiplication by 17 in Zs10; are all of size 75, so
it is impossible for a union of orbits to have size 2500 and hence no such difference

set exists. ]

2.3. Multipliers and the Group Ring

In [B] it is also shown that there are no non-cyclic difference sets with param-
eters (1.4) in the range 3 <t < 100. These are mostly eliminated with the “Semi-
Primitivity Theorem” (see Chapter 3), but there is one non-cyclic case which must
be handled differently, namely ¢ = 49. In this section, we prove that there is no
non-cyclic difference set when ¢ = 49, using the Multiplier Theorem and the group
ring equation (1.5). The method is analogous to that used by Eliahou and Kervaire
in eliminating the cyclic case (see [EK]).

As described in [B], this result also follows from Theorem 4.18 in [L], which
in turn can be shown to follow from a stronger version of the Semi-Primitivity

Theorem.
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Theorem 2.2. There does not exist a non-cyclic (4901, 2401, 1176)-difference set.

Proof. These are the parameters at t = 49. Since v = 4901 = 13% - 29, the only
non-cyclic group of this order is G = Zj3 X Z13 X Z3g. Its exponent is exp(G) = 377.

We have n = 1225 = 5? - 72. But since 7¢ = 5% = 25 (mod 377), the Second
Multiplier Theorem given above guarantees that 25 would be a multiplier of any
such difference set. (McFarland’s Multiplier Theorem does no better.)

Now assume that we have a difference set D in G with these parameters. We
can assume that it is fixed by the multiplier 25, and hence that it is the union of
orbits of the action of this automorphism.

Represent the elements of G as {(7,7,k) : i,7 € Z13,k € Z3g}. We will also use
integer representatives of ¢, j, k. Then the orbits of multiplication by 25 in G are:

1 {(0,0,0)}
Xy {,3,0), (<i,—3,0)},  for (i,7) £ (0,0)
Y: {(0,0,1),(0,0,—4),(0,0,-13),(0,0,-6),(0,0,-5),(0,0,-9),(0,0,7)}
Y, {(0,0,2),(0,0,-8),(0,0,3),(0,0,-12),(0,0,-10),(0,0,11), (0,0, 14)}
™Y {(0,0,-1),(0,0,4),(0,0,13),...}
;7Y {(0,0,-2),(0,0,8),(0,0,-3),... },
(where we identify X; ; = X_; _]) and another 336 orbits of size 14 each, given by
X, V1, XiYy, X,V X, v for (4,5) # (0,0).

We are abusing notation and identifying subsets of G with their corresponding
elements in the group ring ZG, and so multiplication above is in the group ring.
Observe that Xz(;]) = X;; for all 7, 5.
So since D is a union of these orbits, it can be written in the following form in
ZG:
D =C + AY; + BY; + PY{ 7™V + Qv{™,

where C, A, B, P, () are each of the form

ety i X,
L
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and the coeflicients ¢, z;; are each 0 or 1.

Now by (1.5) we can write
DDV =1225+1176G  in ZG. (2.1)

Let G = G X Gy with G = Z13 X Zq3 and G4 = Zyg, and let m: ZG — ZG,
be the canonical projection onto the group ring of G;.

Then 7(Y7) = n(Y2) = ﬂ'(Yl(“l)) = 7r(Y2(_1)) = 7, so reducing modulo 7 we
have from (2.1),

(DD =x(CCV)=0  inF:G, (2.2)

(where F7 is the Galois field of order 7), since 1225 = 1176 =0 (mod 7).
We also see that C(—1 = C, so from (2.2) we have

W(C)Z =0 in F7G1. (23)

We now need the following lemma:

Lemma. ([vLW], Lemma 28.6) Let G be an abelian group of order v and p a prime,
pfv. If A € ZG and A™ = 0 (mod p,G) for some positive integer m, then A = 0
(mod p, G).

Since 7 does not divide |G| = 132, we apply the Lemma to (2.3) to get
7(C)=0 in F:G4 = C =0 inF;G.
But the coefficients of C are all 0 or 1, so in fact C =0 in ZG. Thus
D = AY; + BY; + PY}"V 4+ Qv 7Y,
and m(D) = 75, where

S:?T<A+B+P+Q>:T+Zsij7r(Xij)

6]
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and the coefficients of S satisfy 0 < r,s;; <4, and S =g,

Now by (2.1) we have m(DD{=1) = 1225 4+ 1176 - 29G, where G1 = 3,5, h
in ZG4, so
S5? =25+ 696G,  in ZG;. (2.4)

Notice that two possible solutions of this equation for S are +(5+2G;) € ZG,
since G? = 169G;. We will show that there can be no more than two solutions,

which will complete the proof, since in that case r = +7, contradicting 0 < r < 4.

We first find solutions to equation (2.4) in CG;. We use some elementary
character theory.
Let ¢ = €2™/13 be a primitive 13'" root of unity in C. Then the irreducible

characters of G are
Xij: Gy — C*, Xk, 1) =¢*P for 0<4,5 <12

These extend by linearity to maps X;;: CG; — C.
It is not hard to show that

Xoo(G1) = 169,
Xij(G1) =0  for (i,5) # (0,0)
with G; € CG;.
Given S € CG; such that $% = 25 4+ 696G, it follows that
Xoo(S?) = 117649 = 3432,

X;j(§*)=25=5%  for (i,j) # (0,0)

which implies
Xoo(S) = +343,

Xij(§) =5  for (i, 7) # (0,0).

We now consider possible solutions Z € ZG; to equation (2.4). By replacing
Z by —Z if necessary, we may assume that Xoo(Z) = 343.
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One sees that the restriction of X;; to ZG; maps into the ring Z[¢]. We have

a map

$:Z[(] — F13

induced by ¢ — 1 € Fy3, so that

oD e | =) @,
6,J i,
But this is also the image of }_ a;; € Z under the canonical projection Z — Fi3 =
Z13.
So the following diagram commutes:

z¢, X4 g

[ e

mod 13
— Fi3

Now the image of Z € ZG; along the left and bottom arrows is

343=5  inFys,
and since 5 # —5 (mod 13), we must also have

Xij(Z)=5 for all (z,7) # (0,0).

But by the standard Inversion Formula for characters (e.g., see Lemma 3.2 in
[J]) this determines Z uniquely. So, with negation, there are only two solutions to

equation (2.4) in ZG, as claimed. [

Although these multiplier methods are powerful, their use is very dependent on
the specific parameters involved. In Chapter 3 we apply a more easily used theorem

to show that “most” difference sets satisfying v = 4n + 1 do not exist.
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3. SEMI-PRIMITIVITY AND DIFFERENCE SETS

3.1. Semi-primitivity

One of the most powerful theorems available to prove the non-existence of

putative difference sets uses the notion of semi-primitivity.

DEFINITION. A prime p is said to be semi-primitive modulo w with (p,w) = 1 if
there exists some f > 1 such that pf = —1 (mod w). A number m is semi-primitive

modulo w if (m,w) = 1 and each of its prime factors is semi-primitive modulo w.

A rather specialized version of the semi-primitivity theorem, originally due to
H.B. Mann, appears below; for a more general and complete version, see Theo-

rem 7.1 in [J].

Semi-Primitivity Theorem. Suppose an abelian group G admits a non-trivial
(v, k, \)-difference set, with n = k— A, and suppose that for some factor w of v with
w # 1, and some prime pfw, p is semi-primitive modulo w. Then

(i) p does not divide the square-free part of n , say p* || n;

(ii) p! < v/w. In particular, if p is semi-primitive modulo v, then p/n.

Lander has also shown in [L] that under the same hypotheses for any group G,

even non-abelian, conclusion (i) still holds; see Theorem 7.6 in [J].

Now consider the (v, k, A)-difference sets that satisfy v = 4n + 1. As shown in
the introduction, such difference sets must have parameters of the form:
(tz + (t + 1)2’ tzv t(t - 1)/2)’

_ t(t+1) (3.1)

t = 1 gives the trivial (5,1,0)-difference set, and ¢ = 2 gives the parameters
(13,4,1) of the design shown in (1.1). But in [EK] and [B] it has been shown that no
such difference sets exist for 3 < ¢ < 100. A quick look at Table I of [EK] shows that
the great majority of these cases are eliminated by means of the semi-primitivity

theorem quoted above. It turns out that this is not entirely a quirk of small values
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of t. In [EK] Eliahou and Kervaire use the fact that 4n = —1 (mod v) to show
that the semi-primitivity theorem eliminates abelian difference sets with parameters
(3.1) in the following cases:

(i) v is a prime power;

(i1) every prime factor of n divides the square-free part of n.

Unfortunately it is very difficult to know how often the above cases occur for the
various values of t. However, semi-primitivity relations do indeed hold for “most”

values of ¢, as shown in the next few propositions.

Proposition 3.1. Abelian difference sets with parameters (3.1) do not exist for

t=2"ort=2m-1, m>1.

Proof. We first establish some easy relations. From (3.1) we see that v = 2¢? +
2t +1=2(t+1)>—-2(t+1)+1. So

4t +1= (22 +2t+1)(2t° =2t +1) =0 (mod v),

44+ 4+ 1= (2t +1)° -2t +1)+1) (2t +1)°+2(t+1)+1) =0 (mod v).

Thus 4t* = 4(t + 1)* = —1 (mod v). This also follows easily from the alternative
form of the basic parametric equation, Av + n = k%, whence 4t* = 4k* = 4n = -1

(mod v).

Now by hypothesis either t = 2™ or (¢t + 1) = 2™, so the above relations
show that 2¢™*2 = —1 (mod v); i.e., that 2 is semi-primitive modulo v. But
m > 1=>>n =t(t+ 1)/2 is divisible by 2, so by part (ii) of the semi-primitivity

theorem, no abelian difference set with parameters (3.1) exists. O

We now try to establish some more general situations where semi-primitivity
holds. For this we use well-known facts from elementary number theory. First, for
distinct primes p and ¢ we say that p is a quadratic residue modulo g if there is some

2 (mod q), and a quadratic nonresidue otherwise. Similarly we

integer z with p =«
say that p is biquadratic (or quartic) modulo ¢ if there is some integer z such that

p=2z* (mod q).
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FACTS. Suppose that ¢ is odd.
(a) plo=1/2 =1 (mod q) if p is quadratic modulo g;
pl4~1/2 = _1 (mod ¢) otherwise;
(b) if ¢ = —1 (mod 4) then p is biquadratic modulo ¢ iff p is quadratic modulo ¢;
(c) f g=1 (mod 4) and p is quadratic modulo ¢, then
pl4 /%4 =1 (mod gq) if p is biquadratic modulo ¢, and
pl4~D/* = —1 (mod q) otherwise.
So in particular p is semi-primitive modulo ¢ if it is not biquadratic modulo g.

Thus we would like to know necessary and sufficient conditions for a prime p

to be quadratic or biquadratic modulo g. We consider first p = 2.

Lemma 3.2. Let ¢ be an odd prime.
(1) 2 is quadratic modulo ¢ for ¢ = 1 or 7 (mod 8), and non-quadratic for ¢ =
3or5 (mod 8);
(i) Assume ¢ =1 (mod 8), and write ¢ = 2% +4y*. Then 2 is biquadratic modulo
q iff y=0 (mod 4).

See, e.g., [IR] for a proof. In particular, part (ii) occurs as exercise 28 in chapter 5
of [IR], and is also explicitly stated in [G].

Like the first proposition, the next one also uses semi-primitivity of the prime
2, but part (i) of the semi-primitivity theorem instead. Proposition 3.1 dealt with
the case that one of t and t + 1 is purely a power of 2, while the next proposition

considers the case where n is divisible by only one factor of 2.

Remark 3.3. If w, z € Z[i] both have imaginary parts divisible by some integer d,

then so does their product wz.
This follows immediately from (z + yi)(a + bt) = (za — yb) + (zb + ya); if d|y and
d|b, then d|(zb + ya).

Proposition 3.4. There does not exist any (v, k, \)-difference set, with n = k — A,
satisfying v =4n + 1 and n = 2 (mod 4).
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Proof. We show that, under the hypotheses, 2 must be semi-primitive modulo
some factor of v, and so by (i) of the semi-primitivity theorem and the fact that
2! || n, no such difference set can exist (not even a non-abelian one, by Lander’s

result).

We first observe that if q|v, ¢ a prime, then ¢ = 1 (mod 4), since from the

roof of Proposition 3.1, 4t* = —1 (mod ¢) = -1 is quadratic modulo g¢.
p

Now if v has a prime factor ¢ =5 (mod 8), then by Lemma 3.2 (i), 2 is non-
quadratic modulo ¢ and hence semi-primitive modulo ¢. So now assume that ¢ =1
(mod 8) for every prime g|v. If 2 is not biquadratic modulo ¢, then again it is
semi-primitive modulo ¢. So we can now assume that 2 is biquadratic modulo every

g|v, and will arrive at a contradiction.

Expand v = t? + (¢ + 1)? into its Gaussian prime factors in Z[i]. Each prime
q|v can be factored as ¢ = (z + 2y1)(z — 2y1), say. By Lemma 3.2 (ii), we have y = 0
(mod 4).

But v can also be written as v = (¢+(¢+1)i)(t—(¢t+1)i). The factor t+(¢t+1)i
is a unit (i.e., &1 or +1) times a product of Gaussian primes = + 2y¢, with each y = 0
(mod 4). By Remark 3.3, we observe that any product of these Gaussian primes
will still have its imaginary part divisible by 8. So by induction on the Gaussian
prime factors of ¢ + (¢ + 1)i, we conclude that either t =0 (mod 8) or (t+1) =0
(mod 8). But in either case we then haven = t(¢+1)/2 =0 (mod 4), contradicting
the hypothesis. U

We note that n = 2 (mod 4) iff t = 3 or 4 (mod 8), and that in some sense

this eliminates one quarter of all putative difference sets with parameters (3.1).

We now use a biquadratic approach for odd primes p. However, this will require

more preparation.

3.2. Biquadratic Reciprocity

The law of biquadratic reciprocity goes back to Gauss, although Eisenstein
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published the first proof. All of the number-theoretic information in this section

before the lemmas is drawn from Chapter 9 of [IR].

As usual we define the norm on the Gaussian integers Z[z] as N(a+bi) = a® +b2.
Let 7 be an irreducible in this ring. Then the quotient ring Z[:]/(7) is a field with
N(7) elements.

Now also let @ € Z[s], with 7/« and assume N(7) odd. Then X(a), the

biquadratic character, denotes the unique element of {1, —1,7, —2} such that

o NM=D/4 = x (a) (n).

Then it is easy to check that X (af) = Xr(a)X-(f), and that X (a) = Xz(@).
Let ¢ be an odd prime. Since we only consider the case that ¢ divides v =
t2 + (t + 1)%, we assume that ¢ =1 (mod 4). Let ¢ = A\, where A\ = z + 2yi is a
Gaussian prime. For p € Z, notice that
Xap) #1=p™ D £1 (3)
= pl V£ 1 (g)
= p is not biquadratic modulo ¢

= p is semi-primitive modulo gq.

We say that a non-unit @ = a+bi € Z[¢] is primary if eithera =1 (mod 4),b=0
(mod 4), or a = 3 (mod 4), b = 2 (mod 4). For any non-unit & with N(a) odd,

there is a unique unit u such that ua is primary.

Biquadratic Reciprocity Law ([IR], Chapter 9, Section 9). Let = and A be

relatively prime primary elements of Z[i]. Then

Xw()\) = XA(TF)(———-1)((N(’\)“l)/‘l)((N(‘n‘)—-—1)/4)

We now derive (relatively) useful criteria for determining when an odd prime

p is biquadratic modulo ¢ =1 (mod 4).
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For a complex number z, let R(z) and (z) be its real and imaginary parts,

respectively.

Lemma 3.5. Let p = 1 (mod 4) and ¢ = 1 (mod 4) be distinct primes, with
q = A\, where \ € Z[i] is a primary Gaussian irreducible. Then X(p) = 1 if and
only if J(AP~1/4) =0 (mod p).

Proof. Write p = 77 where 7 is a primary irreducible in Z[i]. Then
Xa(p) = Xa(m)Xa(T) = X2 (A)X7(A)

by the Biquadratic Reciprocity Law. So Xa(p) = 1 if and only if

X=(A) = X=(A)
= Xr(A) = Xx(N)
s \p—1)/4 Ex(p_l)/‘l ()
s APD/4 X7V (7
« \Pp-1)/4 = YD/ (p)

> APV =0 (mod p).
0

Lemma 3.6. Let p = 3 (mod 4) and ¢ = 1 (mod 4) be primes, with ¢ = A},
where A € Z[t] is a primary Gaussian irreducible. Then X,(p) =1 if and only if

APT=D/4 = (_1)(e=D/4 (mod p).

Proof. In this case, —p is a primary Gaussian irreducible, and N(p) = p?. Then

by the Biquadratic Reciprocity Law,
Xa(p) = XA(=1)Xa(-p)
= (-1 DX (A)
= (~1) V)
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So then Xx(p) = 1 if and only if

() = (-1

e \P*-1)/4 = (=1)e=D/% (mod p).
O

We remark that the condition given by Lemma 3.6 for Xx(p) = 1 is equivalent
to the following:
(1) IAPTV/4) =0 (mod p) ifg=1 (mod 8),
(i) ROAPHD/4) =0 (mod p) if =5 (mod 8).

3.3. Main Non-existence Theorem

Theorem 3.7. Let n = t(t+1)/2 and suppose that p is an odd prime dividing the
square-free part of n. Then there does not exist a difference set with parameters
(3.1) in the following cases:
(i) p=3 (mod 8) and either
(a) nis even, andt ort+1=p (mod 2p), or
(b) nis odd, andt ort+1 =0 (mod 2p);
(ii) p=5 (mod 8) andt ort+1=p (mod 2p);
(iil) p=7 (mod 8) and n is odd.

Proof. By the semi-primitivity theorem it suffices to show that p is semi-primitive
modulo some factor of v, and so it suffices to show that p is not biquadratic modulo
some factor of v. We assume the contrary and arrive at a contradiction. Recall that

the prime factors of v are congruent to 1 (mod 4).

Consider first the case p =1 (mod 4).

Suppose that p is biquadratic modulo every prime factor ¢ of v, and write

g = A, where ) is a primary Gaussian irreducible. By Lemma 3.5, we have

ISPV =0 (mod p).
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Now, as in the proof of Proposition 3.4, we write the factor ¢t + (¢ + 1) of v as a
product of a unit and Gaussian irreducibles A. So (¢t + (¢t + 1)2’)(*’0"1)/4 is a product
of a unit and factors A(P~1/4 each of which has imaginary part divisible by p. By
Remark 3.3 and the fact that each A is primary, each of these factors also has even
imaginary part. So again by Remark 3.3, we see that any product of such factors
has imaginary part divisible by 2p. Unfortunately, the presence of an unknown unit
in the factorization of ¢ + (¢ + 1)¢ undermines this knowledge. But we can at least

conclude that either
R ((t Lt 1)¢)<P'1>/4) =0 (mod 2p), or

3.2)
3 ((t Lt + 1)2')“’"1)/4) =0 (mod 2p). (

Since p|n, one of t or t + 1 is divisible by p, and of course one of them is even.
This allows four possibilities modulo 2p.

First suppose that tort+1 = 0 (mod 2p). Then (¢ + (¢ + 1)2')(1[’—1)/4 = (p-1)/4
or (=1)=1/% (mod 2p), which does not contradict (3.2).

If instead, without loss of generality, t = p (mod 2p), then

(t+ (¢ + 1)) P~/ = {#=D/A - (;mod p),
(t+ (t+ 1)) D/4 = 16-D/4 (;10d 2),
which can only satisfy (3.2) if (p — 1)/4 is even, i.e. p=1 (mod 8).

Sofor p=1 (mod 4), we get a contradiction exactly under the hypothesis (ii).

In particular, the case p =1 (mod 8) gives us no contradiction at all.

Now consider the case p =3 (mod 4).

By Lemma 3.6, we have
A\PP-1)/e = (=1)= D% (mod p)

for every prime ¢ = A\ dividing v.
As usual, write the factor ¢ + (¢ + 1); as a unit, say u, times a product of

Gaussian irreducibles. Since ¢ and t + 1 are relatively prime, exactly one of A and A
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must appear in this product for each prime ¢ = AX dividing v, counting multiplicity.

So we have

(t+ (t+1))® DA ==/ TI(-1)@ D4 (mod p)
qlv
= (P D/4 (=)™ (mod p); (3.3)

the last equivalence follows from the observations that (¢g; — 1)/4 + (g2 — 1)/4 =
(12 —1)/4 (mod 2) and (v —1)/4 =n.

We also have t or t + 1 divisible by p, which gives two possibilities for the
left hand side of (3.3). But what about u? Recall that each A is chosen to be
primary, so that in particular it has even imaginary part. So by Remark 3.3, the
product of the Gaussian primes dividing t+(¢+1): has even imaginary part, whence:

t odd <= wureal.

Now we specialize further to p = 3 (mod 8). Then p? = 9 (mod 16), and
(p? —1)/4 =2 (mod 4). So (3.3) reduces to:

p|t = i* = u*(~1)" (mod p)
pl(t+1) = (—1)? =w2(=1)" (mod p).
Combined with the previous observation, we have: if ¢t = 0 (mod p) and n even
then u is imaginary, which implies ¢t = 0 (mod 2p), and if n odd then u is real,
so t = p (mod 2p); similarly, if ({ + 1) = 0 (mod p) and n even then u is real,
sot+1=0 (mod 2p), and if n odd then u is imaginary, so t + 1 = p (mod 2p).
But these are exactly the cases which contradict the hypotheses given by (i) in the

statement of the Theorem.

Finally, consider the special case p = 7 (mod 8). Then we have p> = 1
(mod 16) and (p? —1)/4 =0 (mod 4). So (3.3) reduces to:

1=(-1)" (modp)

(since u* = 1). This obviously implies n is even, which contradicts hypothesis (iii).

L
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The following corollary spells out a little more explicitly which values of ¢ are

eliminated by Proposition 3.4 and Theorem 3.7:

Corollary 3.8. Let t > 1. Then a difference set with parameters (3.1) does not
exist if: t = 3 or 4 (mod 8), or if p?*1 || n for an odd prime p and one of the

following holds:

(i) p=3 (mod 8) andt=p,2p—1,2p, or 3p—1 (mod 4p);
(ii) p=5 (mod 8) andt=por p—1 (mod 2p); or
(iil) p=7 (mod 8), andt =0 o0r 3 (mod 4).
This follows easily from the statements of Proposition 3.4 and Theorem 3.7

using the fact that n even <= t=0o0r 3 (mod 4).

This description of eliminated cases is amenable to a search by computer. The

consequences of such a search are presented in the next section.

3.4. Consequences of the Theorem

In this section, we show that Theorem 3.7 is successful in eliminating “most”

of the difference sets with parameters given by (3.1). In particular, we prove:

Proposition 3.9. The set of values of t > 1 for which difference sets with parame-
ters (3.1) are eliminated by Theorem 3.7 has density 1 in the set of positive integers.

That is,
number of t < z eliminated by Thm. 3.7 1

lim
-0 xr

We actually show that the values of ¢ eliminated by case (ii) of Theorem 3.7

already have density 1 in the positive integers.

Lemma 3.10. Fix an odd prime p. The set of values of t for which p divides the
square-free part of n = t(t +1)/2 has density §, = 2/(p+ 1) in the positive integers.

Proof. We first calculate the density 6,(j) of values of ¢ for which p*'~! || n, for a
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fixed j > 1. This condition occurs if and only if

t=p¥7t 227 or (p—1)p¥ "t (mod p*), or

t+1=p¥1 2pY 1 or (p—1)p¥ ! (mod p¥).

This accounts for exactly 2(p—1) residue classes modulo p??, so 6,(j) = 2(p—1)/p?.
Thus

6p = Zép(j)

i>1

=2(p—-1)) 1/p¥

i>1

B (2(sz 1)) (1 - 11/192>

2
T (p+1)

O

Now for a fixed prime p = 5 (mod 8), what fraction of the values of ¢ are
eliminated by Theorem 3.7 (ii)? The set of ¢ for which p divides n = ¢(¢t +1)/2 is
equally partitioned into four subsets, according to whether t or ¢t +1 is divisible by p
and which one is odd. Theorem 3.7 explicitly eliminates two of those classes, so that
the set of ¢ eliminated by part (ii) of this Theorem with respect to the prime p has
density (1/2)6, = 1/(p+ 1) in the positive integers. Note that the same conclusion
can also be reached for a prime p =3 or 7 (mod 8), since 3.7 (i) eliminates four of
eight classes and 3.7 (iii) eliminates one of two.

Now we find the density of the union of the sets of values of ¢ eliminated with
respect to primes p = 5 (mod 8). Consider the complements of these sets, with
densities 1 — 1/(p + 1). Now the membership of ¢ in one of these complementary
sets is determined only by the reduction of ¢ modulo 2 and a power of p in such
a way that, by the Chinese Remainder Theorem, the intersection of these sets has
density given by the product of the densities of the individual sets. So the density
of the union of the sets of ¢ that are eliminated by Theorem 3.7 (ii) with respect to
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primes p =5 (mod 8) is given by

1

1 - ” l———F].
pprime< p+1>
p=5 (mod 8)

Proof of Proposition 3.9. We need to show that the product given above diverges

to 0. Equivalently we want to show that

1

p prime
p=5 {(mod 8)

But log(1 — G—}FT)) <—-1/(p+1), and
1 -1 1 1
<-P = - =
p+1 P P p
1
2 — —_— o —00
Z p+1

p prime
p=5 (mod B8)

pP—-1<p® = —

by Dirichlet’s theorem ([D, p.36] or [S]) and the fact that > (1/p*) converges. [I

Proposition 3.9 tells us that the fraction of the set of values of ¢ < z which
are not eliminated by Corollary 3.8 approaches 0 as z — oo. We did a computer
search to get an idea of how quickly this happens, and obtained the following results

(where Spr = the number of ¢ < M which are not eliminated):

Table 3.1
M S Syu/M
10 6 0.6 ~1/2
100 36 0.36 ~1/3
1000 248 0.248 =~1/4
10,000 1978 0.1978 = 1/5
100,000 16,702 0.16702~ 1/6

As the table shows, the fraction of values of # not eliminated by these results

only slowly approaches 0 — apparently like 1/log M.

These results lend strong support to the following conjecture:
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Conjecture 3.11. There do not exist any abelian (2t(t + 1) + 1, 2, t(t — 1)/2)-
difference sets for t > 3.

I would not necessarily conjecture the non-existence of non-abelian difference
sets, since much less is known about these than abelian difference sets, and for other
parameters non-abelian difference sets have been found where abelian difference sets

do not exist.
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4. AUTOCORRELATIONS OF FINITE BINARY SEQUENCES

4.1. Autocorrelations

The study of correlations of binary sequences has important applications in
digital communications and radar signal design. For example, see [Go], [SP], and
[T]. The basic idea is that a signal in the form of a finite sequence of 1’s and —1’s
(or of 0’s and 1’s) is transmitted, and it is desired that it should not closely resemble
other such sequences or time-shifted versions of itself. A nice way of computing such
a resemblance is with a correlation function. A correlation of one sequence with
another is called a crosscorrelation. However, in this chapter we concern ourselves
with autocorrelations. These are of use, for instance, when a signal can reach
its destination by several different paths at once (as in the case of radio signals),
creating so-called multipath noise. Since some of these signals can arrive with a
time-lag compared to the others, there may be interference between the signal and
time-shifted versions of itself. It is desired to keep this to a minimum, and this in

turn means keeping the autocorrelation function small.
In fact, we define two autocorrelation functions. Most of the terminology fol-

lows [EK]. Let z1,...,, be a binary sequence (each z; = £1).

DEFINITIONS. For 1 < r < v — 1, we define the rtt aperiodic correlation of the

sequence to be
v—-T
Cr = E TiTi4r,
=1

and the r*! periodic correlation to be

v

Pr = § TiTitr,
i=1

where the subscripts are read modulo v.

The following simple relations hold:

Pr = Cr + Cy—r, pr=v (mod 4). (4.1)
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We now show a connection between binary sequences and cyclic difference
sets. To every binary sequence there corresponds a subset D of the cyclic group
Z, ={1,2,...,v} (and vice versa), given by D = {i : z; = —1}. For example, the
sequence — — + — + + + corresponds to the subset D = {1,2,4} of Z.

We then have the following equivalence:
pr = 7 a constant Vr <= D is a (v, k, A)-difference set in Z, with y = v — 4n.

If in this case v = —1,0,0r 1, then we call the sequence a periodic Barker sequence.

If v =0, it is also called a perfect binary sequence.

DEFINITION. A Barker sequence has |¢,| <1for 1 <r <wv-—1.

Every Barker sequence is in fact a periodic Barker sequence, with v determined
by v mod 4 (see [TS]; this follows from the relations (4.1).)
That is, “Barker sequence of length v” = “cyclic (v, k, A)- difference set with

v—4n=~=-1,0,0r 1.7

For example, — — + — + + + is a periodic Barker sequence with v = —1 but
is not a Barker sequence since ¢s = —2. On the other hand, + + + — -4+ — is a

(true) Barker sequence since ¢, = 0 or —1 for every r.

Turyn and Storer showed in [TS] that Barker sequences of odd length v can
only exist for v = 3,5,7,11,13. The only known Barker sequences of even length
occur at v = 2,4. It is conjectured that there are no others. A stronger conjecture is
that are no perfect binary sequences of even length greater than 4; this is equivalent
to the conjecture that there are no non-trivial cyclic (4u?, 2u? — u, u? — u)-difference
sets.

In the next section we prove a general bound on the aperiodic autocorrelations

of a periodic Barker sequence.
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4.2. Bound on ¢, for Periodic Barker Sequences

We assume we have a periodic Barker sequence ¢4, ..., z, with p, = v = v—4n,
a constant, for 1 <r <wv-—1.

For now, consider only the case v = 0. Then the following inequality is easy to
prove: |¢,| < 2n for all r. This is because |¢;| < 4n — r by the triangle inequality,

and ¢, + c4n—r = pr =0, s0 |¢| < min{r,4n — r} < 2n. We improve this to:

Theorem 4.1. |c,| < &n for all r.

Proof. Fix r # v/2. (Note that ¢,/ = 0 necessarily.) Define

v—r-+a

cr(a) = Z TiTigr fora=1,...,v
1=14a
where here and everywhere else subscripts should be read modulo v. This is the rtt
aperiodic correlation of the sequence “rotated” by a places (which corresponds to a
translate of the cyclic difference set in Z,; see the table in the Appendix for a list

of aperiodic correlations of the translates of the (13, 4, 1)-difference sets.)

We first have

v v—r+ta

FACT 1. icr(a) = Z Z TiTitr =(v—r) ixixi_{_r =(v—r)p,=0.
a=1 =1

a=1 i=1+a
Now define
ér(a) =c¢r(a) —cr(a—1)
v—1r+a v—r+a—1
= Z TiTijtr — Z TiTitr
i=a—+1 i=a

=Typ—r+ala — Talg+r

= aja(xa—r - xa—{-—r)-

So

R == A
§r(a) = {0, PO (4.2)



Let
a=Ha:6.(a) =0, B=a:6(a)#0}.
Soa+ 8 =v=4n.

Now (42) = a — ﬂ = 2221 LogmrTgdr = Z;:l TjTj42r = P2r = 0.
Therefore a = § = 2n.
Also clearly >0 _, 6:(a) = Y._,(cr(a) —cr(a—1)) =0, so

FACT 2. Ha:é.(a) =42} =|{a:6(a) =2} =n
{a:ér(a) =0} = 2n.
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Now let ¢ = ¢, = ¢,(v), for convenience. So the sequence ¢,(1),¢,(2),...,¢.(v)

is given by
c+6,(1), c+6(1)+6:(2), ..., c+6(1)+ -+ 6:(v) =c.
Thus FACT 1 implies
ve+ v (1) + (v —=1)6(2)+ - +26(v—1)+6.(v) =0

which implies
ve = —[vb(1) + - + &,(v)].

So finally FACT 2 guarantees that

jvel S +2[(0) + (V= 1)+ o+ (v —n+ D] = 2n+ (0= 1) 4o+ 1]

= 2[3n|n since v = 4n
= 6n?,
which implies

o< 2
o< 3m

as claimed.
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An analogous argument in general (r # v/2, and v = 4n 4 ) gives the bounds

3 (n+r)y <3 (3n—r)y
i 2 L e < 2 22 T
2TV T Ty, S Syt T

Indeed, FACT 1 becomes

Z (v —r)pr =(v—r)7,

and FACT 2 becomes

{a:ér(a) = +2}| = [{a: ér(a) = =2}/ =n
[{a:6-(a) =0} =2n + 7,

and the rest of the proof is similar to that of Theorem 4.1.

Unfortunately this bound suffers from being too general and weak. It would be
desirable to show that given a periodic Barker sequence, there exists a sequence with
very good (small) aperiodic correlations. In particular, if the existence of a Barker
sequence could be deduced from that of a periodic Barker sequence this would be
a big step in showing the non-existence of the corresponding cyclic difference sets.
Indeed, in the case of v = 4n + 1, the result of [TS] would show the non-existence

of a cyclic difference set with parameters (3.1).
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5. CONSTRUCTION OF SYMMETRIC DESIGNS

5.1. A.E. Brouwer’s Symmetric Designs

In this chapter we return to general symmetric designs. As mentioned in the
Introduction, A.E. Brouwer has constructed symmetric designs in [Br] of which the
v = 4n + 1 designs are a special case (these designs were first known to R.M. Wil-
son, as pointed out by Brouwer). Brouwer’s construction is given in terms of the
incidence matrices of symmetric designs; an incidence matrix is a (0, 1)-matrix with
rows indexed by the points, columns indexed by the blocks, and a “1” in row z and
column B if and only if z € B. We present a different formulation of the construc-
tion, suggested by Wilson, using the designs themselves. For this construction we
need to use several different types of structures, so we begin by introducing these
ingredients.

Hadamard 2-designs were described in the Introduction as (4n—1,2n—1,n—1)-
symmetric designs. We remark here that if ¢ is an odd prime power, then Hadamard
2-designs with parameters (2¢+ 1, ¢, (¢ — 1)/2) are known to exist (see Chapter 18
of [vLW]).

Another type of BIBD can be found in the affine geometry AG(h,q) which is
any h-dimensional vector space over the finite field F, along with its subspaces.
The point set simply consists of the ¢® points of AG(h,q), and the blocks are
the hyperplanes (cosets of the (A — 1)-dimensional subspaces), with the incidence
relation being inclusion of the points in the hyperplanes. Any two distinct points
lie in exactly (¢"~' —1)/(g — 1) blocks. Notice that the blocks of this BIBD can be

naturally partitioned into parallel classes of mutually disjoint blocks.

Now the dual of the affine points and hyperplanes design in AG(h,q) is a
structure called a A-transversal design (see [BJL]). Its points are partitioned into
equivalence classes commonly, but confusingly, called “groups,” each of size g. Two

points in the same “group” do not lie on a common block. This A-transversal design
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has i
-1
g%_T)) points
q —
h
-1
((q—l)) points per block
q pe—
(qh—l -1

points in any two distinct blocks

(¢—1)
g" blocks
g"~* blocks on any one point

¢" 72 blocks on any two points from distinct “groups.”

Note that consequently any block intersects each “group” in exactly one point.

Finally, we need a balanced weighing matriz, denoted BW (w, m). Thisis a w x
w (0,1, —1)-matrix M = ((m;;)) that satisfies MM* = mI and whose “underlying”
(0,1)-matrix ((|m;j|)) is the incidence matrix of a (w, m, A)-symmetric design. In
other words, it is the incidence matrix of a symmetric design that has been “signed”
in such a way that distinct rows are orthogonal. When w = (¢" — 1)/(¢ — 1) and
m = ¢"!, then the complement of the points and hyperplanes design of the so-

called projective geometry PG(h—1,¢q) is a (w, ¢*™1, ¢* 71 —gh=2)-

symmetric design
which is known to have a “decomposition” of its incidence matrix into a balanced

weighing matrix (see [GS]).

Theorem 5.1. Let ¢ be an odd prime power and let h > 1. Then there exist

symmetric designs with parameters

(" -1
(¢—1)

(Note: h = 2 gives the parameters (1.4) of v = 4n + 1 designs.)

1

7.):2q +1a k:qh7 :'éqh*l(q_]')'

Proof. Let w = (¢" —1)/(¢ — 1). First, take w many Hadamard 2-designs with
parameters (2¢ + 1, ¢, (¢ — 1)/2). Call them (and by abuse, their point sets also)
X1,...,Xw and identify them at a point co. That is, let X; N X; = {oo} for all
i # j. Let X := U¥,X;; this will be the point set of the (v, k, A) design D.

Let {A%” :1 < j < ¢} be the blocks of X; that contain the point co.
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Let {Bgi) :1<j < g+ 1} be the blocks of X; that do not contain oco.

Now we will construct the blocks of D that contain co. We will use the dual
of the affine points and hyperplanes design in AG(h,q), which is a A-transversal
design as described above.

Impose the structure of this design on the set of objects {Ay) 1 <1 <
w, 1 < j < ¢} such that the “groups” of the transversal design are exactly the sets
{Agi) :1<j<gq},fori=1,...,w. Soeach block of the transversal design consists
of w different A;i)’s (one for each 7). Form a block of D for each block L of the
transversal design by letting Az be the union of the Agi)’s that lie on L. We thus
get g" blocks Az, each of size (¢ — 1)w + 1 = ¢", that contain the point co.

Now we must describe the blocks of D that do not contain co. For this part
we need a balanced weighing matrix BW(w, ¢*~1), called M = ((my;)).

Define the following notation:
() ._ g
(+1)B;” := B;",
() ._ (x. (i)
(—1)B;” := (Xi\{oo})\B; ",
(0)BY” := 0.
Then for each 1 < 7 < g+ 1, 1<t < w we define the block Bj; of D as

follows:

B]‘t = U:U:__lmztB§2)

We now check that there are v blocks of D, that they all have the right size,
and that any two of them intersect in the right number of points. By Theorem 19.10
of [vLW], this suffices to prove that the structure is a symmetric design.

To begin with, there are ¢* = (¢ — 1)w + 1 blocks Ay and (g + 1)w blocks By,
for a total of 2qw + 1 = v blocks.

As mentioned above, the blocks Ay each have size k = ¢*. To find the size of
a Bj;, we note that 1(—{—1)3]@) = ’(—1)3;0' = ¢ and that for each t exactly ¢"!

values of ¢ give non-zero m;¢, so ]Bth =gt lg=¢" =k
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Consider two blocks of D of the form Ar, and Ay, for distinct blocks L; and
L, of the transversal design. Their intersection is the union over 1 < ¢ < w of
Ag? N Agi). This latter intersection has size ¢ if Ag? = Ag-i) € L; N Ly, and size
(¢ — 1)/2 otherwise. Since |L; N Ly| = (¢"~! — 1)/(¢ — 1), and taking into account
the common point oo, we find that 'ALl NAz,| =(g-1)(¢" 1 -1)/(¢—1)+ ((¢—
D/2-1)((¢" -¢"N/(a-1)+1=¢"""¢-1)/2= X

Now consider two blocks of D of the form Bj ¢ and Bj,: for j; # jp. Their
intersection is the union of mitBJ(f) N mith) over 1 < 1 < w. But these latter
intersections have size (g — 1)/2 for mi; = £1, so |B;,: N Bj¢| = ¢"1(g—1)/2 = \.

Two blocks Bj,¢, and Bj,s, with t; # t; correspond to two distinct columns
of the balanced weighing matrix M = ((m;;)). As above, mitle) N mitng)
has size (¢ — 1)/2 if mi;, = my, # 0; it has size ¢ — (¢ — 1)/2 = (¢ + 1)/2 if
mis, = —mi, # 0. Because M is a BW(w,¢"™ 1), these cases each occur for
half of the number of times that m;;, my, # 0, that is, (¢" ™! — ¢"~%)/2 times. So
|Bives NBjyt, | = (a=1)(¢" ' =¢"72) /4 +(g+1)(¢" T =" 2) /4 = (¢" =" ) /2 = \.

Finally, we consider two blocks of the form Bj; and Ar. For 1 < ¢ < w,
the set Agi) N mithi) has size (¢ — 1)/2 if m;; = £1 (because oo ¢ (—1)B§i)), so
| AL N Bj| =¢" (g —1)/2= L

We make one more interesting observation. It is known (see [GS]) that a
necessary condition for a BW (v, k) to exist when v is odd is that k is a perfect
square, and if the BW (v, k) is regular (i.e., has a constant number of —1’s per row)
then A is even. But the parameters of the v = 4n + 1 designs given by (1.4), i.e.,
the case h = 2 of Theorem 5.1, have the property that k is always a square both
for the design and its complement, and either the design or its complement have A
even. This leads to the question of whether or not the incidence matrices of these
designs can be signed to produce balanced weighing matrices. To the best of my

knowledge, this has not yet been done.
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APPENDIX

Aperiodic Autocorrelations of Periodic Barker Sequences of Length 13

The table on the next page is a listing of the aperiodic autocorrelations ¢, for
the periodic Barker sequences of length 13, that is, the cyclic (13,4, 1)-difference
sets under the correspondence described in Section 4.1. In the left column are the
cyclic (13,4, 1)-difference sets; in each of the two groupings the difference sets are
translates of each other. That is, they correspond to rotations of the first sequence.
For each r, the value of ¢, is listed for the corresponding periodic Barker sequence.

For example, the difference set {0,1,3,9} corresponds to the binary sequence

—— 4+ttt -+t

The translate {1,2,4,10} corresponds to the cyclic rotation of the first sequence by
one position:

+——+ -+ttt -+t

Observe that ¢, + ¢,—, = +1 always (where v = 13), and that within each
grouping the sum of the entries in the r*® column is v — r, as explained in the

remarks following the proof of Theorem 4.1.
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Table A.1

r = 1 23 4 5 6 7 8 9 10 11 12
{0,1,3,9} 2 32 1 0 3 -2 1 0 -1 -2 -1
{1,2,4,10} 0 14 -1 0 3 -2 1 2 -3 0 1
{2,3,5,11} 6o 12 -1-2 3 -2 3 2 -1 0 1
{3,46,122 2 1 0 3 2 1 0 3 4 1 0 -1
{4,5,7,0} 210 -1 0 -1 2 1 2 1 0 -1
{5,6,8,1} 0 10 -1 03 4 1 2 1 0 1
{6,7,9,2} o0 -10 1 0 -3 4 1 0 1 2 1
{7,8,10,3} 010 1 2 -1 2-1 0 1 2 1
{8,9,11,4} 0 10 1 4 -1 23 0 1 0 1
{9,10,12,5} 2 1 2 3 2 -1 2 1 -2 1 0 -1
{10,11,0,6} 2 -1 0 3 2 1 0 -1 -2 1 2 -1
{11,12,1,77 2 10 3 2 3 2 1 2 1 0 -1
{12,0,2,8} 0o 30 3 0 3 -2 1 -2 1 -2 1
{0,2,6,5} 21 2 1 0 1 0 1 0 -1 0 -1
*x{1,3,7,6} 0o 1.0 1 0 1 0 1 0 1 o0 1
{2,4,8,7} 0 -1 0-1 2 3 21 2 1 2 1
{3,5,9,8} o -1 -2 1 2 3 -2 -1 0 3 2 1
{4,6,10,9} o0 -1 0 12 1 0 -1 0 1 2 1
(5,711,104 0 1 2 1 0 3 =2 1 0 -1 0 1
(6,8,1211} 2 3 2 1 2 1 0 -1 0 -1 -2 -1
{7,9,0,12} o 3 2 -1 2 -1 2 -1 2 -1 -2 1
{8,10,1,0} 2 3 0-1 0 -1 2 1 2 1 -2 -1
{9,11,2,1} o 3 0 1.0 -1 2 1 0 1 -2 1
{10,12,3,2} 2 1 0 1 0 -1 2 1 0 1 0 -1
{11,0,4,3)} 2 1 2 3 0-1 2 1 2 -1 2 -1
{12,1,5,4} 2 -1 2 1 -2 -1 2 3 0 -1 2 -1

* Notice that this corresponds to a (true) “Barker sequence”. The binary sequence
here is:

e e
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