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ABSTRACT

This dissertation is concerned with the dynamical analysis of an
elastic bar whose stress-strain relation is not monotonic. Sufficiently
large applied loads then require the strain to jump from one ascending
branch of the stress-strain curve to another such branch. For a special
class of these materials, a nonlinear initial-boundary value problem in
one-dimensional elasticity is considered for a semi-infinite bar whose
end is subjected to either a monotonically increasing prescribed traction
or a monotonically increasing prescribed displacement. If the stress at
the end of the bar exceeds the value of the stress at any local maximum of
the stress-strain curve a strain discontinuity or "phase boundary" emerges
at the end of the bar and subsequently propagates into the interior. For
classically smooth solutions away from the phase boundary, the problem is
reducible to a pair of differential-delay equations for two unknown func-
tions of a single variable. The first of these two functions gives the
location of the phase boundary, while the second characterizes the dynami-
cal fields in the high-strain phase of the material. In these equations
the former function occurs in the argument of the latter, so that the de-
lays in the functional equations are unknown. A short-time analysis of
this system provides an asymptotic description of the emergence and initial
propagation of the phase boundary. For large-times, a different analysis
indicates that the phase boundary velocity approaches a constant which
depends on material properties and on the ultimate level reached by the
applied load as well. Higher order corrections depend on the detailed
way in which the load is applied. Estimates for the various dynamical
field quantities are given and a priori conditions are deduced which de-

termine whether the phase boundary eventually becomes the leading disturbance.
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INTRODUCTION

The phenomenon of phase changes has lately received increased atten-
tion in continuum mechanics. In the setting of one-dimensional finite
elasticity, for example, the modelling of phase changes involves a strain
energy density which is a non-convex function of the displacement gradient.
This leads to a stress-strain relation which is not monotonic. Consequent-
ly the values of strain where the stress response changes monotonicity
partition the strain axis into distinct intervals. We associate each such
strain interval with a distinct material phase. Under certain loadings of
a body composed of such a material, the possibilityexists that surfaces
emerge across which the strainis discontinous and which separate regionsof
different phase. The present study is motivated by questions raised by
the recent iiterature invoiving solids with such muitiple phases. These
issues are addressed in detail in the following section.

In subsequent sections we formulate an initial-boundary-value problem
associated with the dynamics of a homogeneous, elastic bar whose strain
energy density'is such a non-convex function of the displacement gradient;
the objective is to 1illuminate the manner in which the phase boundaries
are generated and propagated in response to given loading conditions.

In order to avoid the consideration of reflected waves, we consider a
semi-infinite bar which we take to be initially undeformed and at rest.
Two problems are treated: in one, the traction at the end of the bar is
prescribed as a function of time, corresponding to a load-controlled

(or "soft") dynamical testing device; 1in the second —or "hard" —dynamical

problem, the displacement history of the end of the bar is specified.



Conditions are then put on the strain energy density and on the loadings
so as to focus attention on the issue of phase boundary propagation with

a minimum of technical complication. We show how certain loadings ‘reguire
the emergence of a phase boundary at the end of the bar which subsequently
propagates into the interior.

For a subclass of the materials considered, the location of the
phase boundary is governed by a pair of differential-delay equations,
where the delay is unknown. We first present a short-time analysis of
this system in order to describe the emergence and initial propagation
of the phase boundary. We then study this system at large times and
show that —for the problems considered —the phase boundary propagates at
a velocity which lies between the sound-speeds of the "low-strain" and
"high-strain" phases of the material. Here the phase boundary may or
may not eventually become the leading disturbance to travel down the bar.
In either case the speed of propagation of the phase boundary approaches
a constant which depends on the ultimate level reached by the applied
Toad, as well as on the‘material.

A11 of the analysis described above is carried out in detail for the
"soft" device. A summary of results for both the "hard" and "soft" device
is presented in the concluding section. There we also describe the
asymptotic nature of the associated dynamical fields for both short and

large times, as well as discuss other pertinent aspects of the problem.



1. Background

For the one-dimensional homogeneous elastic bar in which the strain
energy density is not a convex function of the strain, the stress will
not be a monotone function of strain. Ericksen [1] has investigated
equilibrium configurations of bars whose stress-strain relation is of
the type depicted in Fig. 1, in which the abscissa, €, is the strain and
the ordinate, o==wf, is the stress. When the bar is free of body forces,
equilibrium configurations are states of uniform, i.e. spatially constant,
stress throughout the bar. The non-monotonicity of the stress-strain re-

lation leads to aninterval (0@,0 ) of possible values of equilibrium

B
stress for which, at any Tocation in the bar, there are three possibie

values of strain. Note that in the interval (ou,q ) there occurs a

B
unique stress level, called the Maxwell stress and labeled oY in Fig. 1,
with the geometric property that the two closed Toops in the stress-strain
curve determined by the Maxwell stress have equal area. In using a tradi-
tional equilibrium criterion according to which the total energy in the
bar is an extremum, we distinguish between the following equilibrium con-

figurations. An equilibrium configuration is termed stable, neutrally

stable, or unstable with respect to some other configuration satisfying

the Toading conditions, if the total energy of the equilibrium configura-

tion is respectively less than, equal to, or greater than the total energy
of the competing configuration. If an equilibrium configuration is stable
with respect to all such competing configurations we say it is absolutely
stable; if it is stable or neutrally stable with respect to all such
competing configurations, we say it is stable. We call the equilibrium

configuration metastable if it is not stable, but if all competing



configurations with respect to which the equilibrium configuration is unstable
have strain fields that are not uniformly close to the strain field of the -
equilibrium configuration. Hence a metastable equilibrium éonfiguration
is either stable or neutrally stable with respect to all configurations
whose strain fields differ only infinitesimally from the strain field of
the equilibrium configuration everywhere in the bar. Finally if a con-
figuration is neither stable nor metastable we say it is unstable. Con-
sequently the type of stability (stable, metastable, unstable) depends on
the size of the class of configurations with which the equilibrium con-
figuration successfully competes as a minimizer of the total energy.
Stable configurations are strong relative minimizers of the energy func-
tional in that competitors need only satisfy the loading condition, so
that any configuration is an eligible competitor provided it is in the
function space in which the solution is sought. On the other hand,
metastable configurations are merely weak relative minimizers of the
energy functional, since the number of competitors is reduced by requiring
in addition thét the strain fields in the competitors be uniformly close
to the strain field of the minimizer. Let Y, <Yy <3 be the three
Maxwell strains as depicted in Fig. 1. For a given equilibrium stress
level o, it is shown in [1] that if c<<0Y (0:>oy) the unique config-
uration with e <y, (e:>y3) everywhere in the bar is absolutely stable.
i1f o lies in the interval [Oa,OB] and o~<0Y(0:>cy) there is one

possible strain ¢ <<y](e]:>y3) and another €, with a25;82<'y3

1
(v, =e,<By). It is shown that a configuration of the bar whose strain
field is piecewise uniform and takes only the two values of €1 and €,

is metastable. If o 1lies in the interval (GusGB) and G<iGY<OZ>Gy),



there is a third possible strain €4 with B1<i€3<<a2; any configuration
whose strain field takes the value €5 at any point is unstable. If
o*=0y, there are no absolutely stable configurations, but any configura-
tion with piecewise uniform strain taking only the values Yy and Y3 is
stable. If o==0Y and €Y, anywhere in the bar, the configuration is

unstable. A particle P of the bar which was originally at x will

be said to be in the low-strain (or first) phase if the strain e(x)

corresponds to a point lying below the first ascending branch of the

2 9
P 1is said to be in the unstable phase, while P is in the high-strain

stress-strain curve (Fig. 1), so that Ose(x)ss]. If 8 <elx) <a

(or second) phase if e(x):zuz.

Consider a bar with one end fixed while the other end is loaded
monotonically and quasistatically. The resulting equilibrium states
will involve uniform stress at each instant. As long as the load level
is below the Maxwell stress one would expect the bar to equilibrate in
the absolutely stable first phase state with a uniform strain lying
below the first ascending branch. However, once the Toad exceeds the
Maxwell stress oy, the configuration in which all particles are in the
low-strain phase is only metastable, and so one would expect to eventually
observe strains at the stabler value lying below the second ascending
branch. Transitional equilibrium configurations would then be character-
ized by a partitioning of the bar into a number of co-existent phases of
alternately higher and Tower strains. As the Toad is increased still
further, the regions of high strain would grow at the expense of the
regions of low strain, leading eventually to the absolutely stable state

in which the bar is everywhere in the high-strain phase. Finally, if



one then conducts an analogous program of unloading, one would expect to
observe portions of the bar in the low-strain phase at some load below
the Maxwell stress. Hence one anticipates a hysteresis loop. The time
at which these phase transistions occur would depend on the actual
physical experiment where a certain unavoidable noise or disturbance
Tevel prevents achieving perfectly smooth loadings and unloadings. If
the disturbance level is high, one expects that the bar would everywhere
jump to the stabler phase at the Maxwell stress. However if it is low,
one expects to be able to preserve the metastable one-phase states almost
until that phase will no longer sustain the given equilibrium stress.
Consequently the size of a measured hysteresis loop would be an indication
of the disturbance level in the experiment.

As yet we have not excluded the possibility that different Tocations
in the bar could change phase at different equilibrium stress levels.
For a homogeneous bar in the envisioned loading experiment, one would
assume that all transitions from Tow to high strain would occur at the same
stress. Hence, in equilibrium, co-existence phases would occur only at some
particular value of stress between Oy and OB. The choice of such a tran-

sition stress under loading would then be a statement about the disturbance

level of the system and amounts to choosing a particular inverse,

€= (W')_](G), to the stress response o=W (e). Ericksen [1] showed that
when this transition occurs at the Maxwell stress, anarbitraryndmber and
placement of alternating regions of high-and low-strain phases at this
stress is consistent with either a specified displacement (hiﬁé) end
condition or a specified load (§9j1) end condition. However, for the

hard condition, the total extent of each phase present is uniquely
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determined from the conditionwhich specifies the total length of the
deformed bar.

An analogous situation occurs in the bending of an initially straight,
homogeneous, inextensible elastica with a non-convex bending energy
density [2]. In order to facilitate a discussion of the similarities in
the bar and elastica problems, we shall introduce nomenclature from
classical Gibbsian equilibrium thermodynamics. We identify a conjugate
pair of dependent field variables for each system under consideration in such
a way that the variable which appears in the argument of the energy

density will be called the extensive variable, while the first derivative

of the energy density with respect to this variable will be called the

intensive variable [3]. For the bar and elastica problems, the extensive

variables are respectively the strain and the curvature, while the inten-
sive variables are respectively the stress and the moment. For energy
densities of the type studied by Ericksen [1], Fig. 1 applies, provided
the abscissa is identified with the extensive variable and the ordinate
is identified with the %ntensive variable. Again we say a location in
the body is in one of three distinct phases depending on whether the
extensive variable is in the interval 1ying below the first ascending,
descending, or second ascending branch of Fig. 1. In the body, the ex-

tensive variable may be discontinuous across certain shock surfaces.

When the discontinuity separates values of the extensive variable which
1ie below distinct branches of the curve of Fig. 1, such a shock surface
is simultaneously a phase boundary. In all cases,global equilibrium

requires the continuity of the intensive variable.



Fosdick and James [2] examine two problems for an elastica for which
Fig. 1 now describes the moment-curvature relation. Equilibrated bending
moments are prescribed in one problem, while the other is one of pre-
scribed slope difference between the ends of the elastica. Each problem
is one of "pure bending" in that equilibrium configurations are those
with uniform moment throughout the elastica. By minimizing the total
energy subject to the given end conditions, we distinguish the same $ta-
bility types introduced previous1y.] Once again if the equilibrium value
of the intensive variable—in this case the moment —is not equal to GY,
that unique equilibrium configuration in which the extensive variable —
in this case the curvature —is either everywhere less than Yy or
everywhere greater than Y3 is absolutely stable. If the intensive
variable is equal to Uy, there are no absolutely stable configurations;
but equilibrium configurations in which the extensive variable is Timited
to either Yy or v5 are stable. This case includes co-existent phases
in which the deformed elastica consists of smoothly connected circular
arcs whose curvatures alternate between M and Y3- When the intensive
variable is not equal to oy, such coexistent phases between the two
ascending branchesof Fig. 1 areonlymetastable. Ineverycase, ifat any
point in the body the value of the extensive variable 1ies below the descending
branch, the system is unstable. For stable equilibriumconfigurations,
co-existent phases occur only at the Maxwell moment OY and the number

of alternating regions of different phase, as well as their location, is

arbitrary. Once again, for the hard boundary condition — prescribed

Yrosdick and James in [2] use a different terminology. Our stable and
metastable equilibrium configurations correspond respectively to their
Eulerian and weak Eulerian states.
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terminal slope difference — the total extent of the elastica in each phase

is fixed. No such restriction applies to the problem with the soft bound-

ary condition.

For the problems reviewed above, equilibrium demands that the in-
tensive variab]e be spatially constant. This leads to highly non-unique
stable equilibrium configurations when that constant is the Maxwell
value cy. In more complicated problems, the intensive variable need
not be independent of poéition{ This eliminates much of the arbitrariness
in the stable equilibrium configurations with co-existent phases. For
example, bars where each particle has the same type of stress response as
in Fig. 1., but with material and geometrical-inhomogeneities, admit the
possibility that the transition stress may vary throughout the bar. In
addition if body forces are present, equilibrium configurations need not
be configurations of spatially constant stress. Consequently the stress
in the bar will coincide with the transition stress only at certain loca-
tions. As shown by James [4], this permits certain conclusions to be
drawn about the number énd Tocation of equilibrium phase boundaries.

Another example is provided by an elastica with one end fixed and
subject to an axial compressive force at the other end. Here buckling
becomes a further potential source of non-uniqueness. For nonlinear
moment-curvature relations, the number of available stable buckled
configurations will in general increase at certain values of the applied
Joad. For each such buckled state, the associated finite deformation
provides a variable moment-arm for the applied load, so that equilibrium

configurations will not be those with a uniform moment field. James [5]
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has studied buckled configurations when the moment-curvature relation

js as in Fig. 1. He has shown that when the applied load is sufficiently
large, candidates for stable "first mode" buckled configurations involve
a region of high-curvature phase at the fixed end of the elastica, while
the remaining portion is in the low-curvature phase. The location of

the phase boundary is precisely determined, being further from the fixed
end for larger applied loads.

A three-dimensional example is a problem of the twisting of an in-
compressible homogeneous elastic tube with a non-convex energy density, as
studied by Abeyaratne [6]. By seeking radially symmetric solutions,
Abeyaratne reduces the problem to a one-dimensional one. Here the in-
tensive variable is the shear stress, which is not in general constant for
equilibrium configurations. It is found thatminimizers of the total stored
energy]correspond to a unique configuration for all applied twisting
angles. Some of these solutions are smooth, while others include a
single circular phase boundary.

Knowles and Sternbérg [7] have examined the relationship between
the loss of ellipticity of the governing equations and the emergence of

equilibrium shocks in the two-dimensional problem of plane finite elasto-

statics. It is shown that a necessary condition for the existence of a
straight shock separating two homogeneous plane deformations is that the

equilibrium equations must suffer a loss of strong ellipticity at some

Abeyaratne restricts competitors to be symmetric and also places an Lo
norm restriction on the closeness of the shear between minimizer and com-
petitors. This restriction is weak enough not to unduly 1imit the class
of competitors and, as in [2,4,5] where there are no norm restrictions,
the jump in the intensive variable must occur at the Maxwell value.
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homogeneous deformation which is a convex linear combination of the two
plane homogeneous deformations separated by the shock. This fits in
nicely with the one-dimensional problems reviewed above, where it was
found that in stable and metastable equilibrium configurations the values
of the extensive variable on opposite sides of a phase boundary are sepa-
rated by an unstable branch of the constitutive relation.

The convexity of the relevant energy density plays a central
role with respect to the question of the existence of equilibrium
solutions which minimize the energy functional. For the elastic bar,
Ball [8] demonstrates that if all specified displacement problems are
to have continuously differentiable minimizers of the energy functional,
then the corresponding strain energy density must necessarily be convex.
When it is not, certain problems of specified displacement will have
minimizers only if they admit discontinuous strains. Conversely, con-
vexity of the strain energy is also a sufficient condition for the
existence of minimizers.

Gurtin and Temam [9] have considered the minimization problem for
finite elastostatic anti-plane shear. Here the extensive variable —the
shearing stress —and the intensive variable—the shearing strain—are
related as in Fig. 1. They consider an auxiliary minimization problem
governed by a strain energy density which is the Tower convex envelope
of the original strain energy density. Then the "convexified problem" is
governed by a relation between shearing stress and shearing strain in
which the Maxwell line replaces that portion of the original curve which

lies above the metastable and unstable intervals of ‘shearing strain,
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yj-<e-<y3. Unlike the original problem, the convexified problem is
guaranteed to have a minimizer. The minimum value of the convexified
energy functional is the infimum of the energy functional of the original
problem evaluated at all configurations which satisfy the boundary con- .
ditions. Conversely if minimizers of the original problem exist, they
will be minimizers of the convexified problem.
Forthree—dimensionaninitee1astostatics,Abeyaratne[TO]has shown that
the' equilibrium shock conditions are given naturally by the Weierstrass-
Erdmann corner conditions when piecewise smooth functions are admitted
into contention as possible minimizers of the energy functional. The
traction continuity condition arises from considering variations of the
displacement components. If one thenconsiders variations of the indepen-
dent variables, the spatial coordinates, another vectorial shock condition
is obtained. Continuity of the tangential displacement derivatives across
the shock guarantees that all but one component of this shock condition

is satisfied automatically. One is then left with a supplemental shock

condition requiring an energy-like quantity to be continuous across the
discontinuity surface. For the equilibrium bar problem of Ericksen [1],
this condition is satisfied for a material with shocks if and only if
the constant equilibrium stress in the bar is the Maxwell stress.
Knowles and Sternberg [11, 12] and Abeyaratne [13] have exaﬁined
certain anti-plane shear crack problems with a non-convex energy density
and have found equilibrium solutions with shocks issuing from the crack
tips [11,12] or from points on the crack surface [13] and terminating
in the interior of the body. These solutions do not satisfy the sup-

plemental shock condition. If, however, one considers a one-parameter
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family of equilibrium states corresponding to a quasistatic loading, it
can be shown that across the shocks appearing in the corresponding
quasistatic solutions of [11,12,13] the jump in the supplemental quantity
is of a particular sign (with respect to the direction with which the
quasistatic shock is moving). Thus although the supplemental shock
condition is not satisfied, a supplemental shock inequality is maintained.
Moreover this inequality assures the dissipative character of the shock in
the sense that it precludes quasistatic shocks which allow the body to
store elastic energy faster than the rate at which work is being done.

This dissipativity inequality was originally proposed as an admissibility

criterion for elastic shocks by Knowles and Sternberg [7] and Knowles [14].
It is analogous to the entropy inequality for gas-dynamical shocks.

For the quasistatically loaded bar, this dissipativity inequality
allows the emergence of shocks only if the stress equals or exceeds the
Maxwell stress. Similarly Fosdick and James [2] find that the metastable
equilibrium configurations for the pure bending probiem of the elastica
satisfy an analogue of the dissipation inequality across the curvature
discontinuities. It thus appears that metastable quasistatic proces-
ses are associated with dissipative and hysteretic phenomena, while
absolutely stable quasistatic processes are dissipation-free.

0f course, the quasistatic processesenvisioned above are not in
reality dynamic processes at all, but rather one-parameter families of
equilibrium states. Although it is logical to identify the history
parameter with time, such an approach neglects the effect of inertia and
the consequent wave propagation phenomena associated with dynamical

systems. Studying the emergence and evolution of different phases in a
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fully dynamic theory would seem to be prudent both for experimental
reasons and to better understand the approach to an equilibrium consisting
of co-existent-phases. The latter would presumably help to resolve

some of the questions unanswered by the static theory, in particular

the ultimate location of equilibrium phase boundaries.

The following brief discussion of the dynamic behavior of systems
with non-convex equilibrium energy densities will be limited to one-
dimensional problems for bars. Even then there is a wide variety of
dynamic problems which may be related to any one particular quasistatic
problem, since non-equilibrium processes can be governed by an infinity
of constitutive assumptions, all of which reduce in an equilibrium setting
to the same purely elastic constitutive relation.

Determining the ultimate Tocation of phase boundaries makes visco-
elastic theories particularly appropriate, since the inherent dissipation
of a viscoelastic dynamical process can lead to an asymptotic static state
for large time. Dafermos [15] has studied an initial-boundary value
problem for a special ctass of viscoelastic bars for which the constitu-
tive law in the static case is consistent with a non-monotonic equilibrium
stress-strain relation. He considers an initially deformed viscoelastic
bar which is released with some initial velocity and is subsequently free
from body forces and end loads. It is shown that if the viscosity is
bounded above zero the bar will asymptotically approach some stress-free
equilibrium state. Especially significant in light of our review of the
static theory is that the asymptotic deformation gradient will in general
be discontinuous, possibly even unbounded. Moreover, it is not completely

apparent which of the various possible equilibrium configurations is
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ultimately approached.

The motion of a viscoelastic bar is typically governed by a partial
differential equation of order three or more, in which case the well-
developed mathematical techniques for second-order partial differential
equations are unavailable. However the dynamics of a purely elastic bar
are governed by a second-order quasilinear partial differential equation
of mixed type, being hyperbolic when the strain lies below an ascending
branch of the stress-strain curve, and elliptic when the strain lies
below a descending branch. As naturallyoccurring initial and boundary
conditions for dynamical problems lead to well-posed problems for hyper-
bolic partial differential equations but i1l posed ones for elliptic
equations, the dynamic theory itself provides impetus to seek solutions
of the dynamic problem which have strains confined to the statically
stable and metastable phases. With such a restriction the governing
equation is equivalent to a hyperbolic system of two first-order ordinary
differential equations and so the theory of Riemann invariants and
characteristic curves in the x-t plane is at one's disposal. Space-
time curves across which the strain jumps from one branch to the other
are the propagating phase boundaries.

To appreciate the specific dynamical phenomena associated with

non-monotonic stress-strain relations it is helpful to first consider the

simpler theory for themonotonic case. A good account of this theorymay be
found in Courant and Friedrichs [16]. It is well known [17] that solu-
tions for hyperbolic systems with arbitrarily smooth initial data are

not guaranteed to be globally smooth for all time; the elastic bar is

no exception. The type of singularities encountered in this setting



-16-

are associated with the intersection of characteristic curves at some
finite distance from the curve of initial data. At such points the
second derivatives of the displacement become unbounded. The remedy is
to seek weak solutions to the governing equations by introducing shock
curves across which the first derivatives of the displacement are dis-
continuous, but their jumps satisfy two shock conditfons which are
necessary for displacement continuity and momentum balance. As there
may be many such weak solutions,an "entropy condition", due to Lax (18],
may be introduced to select solutions of physical significance. This
has the effect of confining the shock speed to the interval between the
different acoustic speeds on each side of the shock.

It must be emphasized that these types of shocks are to be distin-
guished from phase boundaries, since the latter are not even admitted
into a bar theory with a monotone stress-strain relation. For the non-

monotonic theory both types of shocks become possible. By a conventional

shock we shall mean a shock which arises from the intersectionof character-

istic curves associated with strains lying below a single branch of the
stress-strain relation. Shock curves which separate distinct phases are

referred to as phase boundaries. The term “shock" without an obvious

referent will be used in discussing features common to both types. For
example, as weak solutions require the same relations to hold across all
curves with discontinuous strain, the same "shock" conditions apply in
both cases.

The central role of monotonicity and convexity conditions in general
hyperbolic systems of equations has been explored by Lax [18]. By

applying the methods used in [18] to the equations for an elastic bar
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with a stress-strain relation as in Fig. 1, James [19] has demonstrated
the Tocal existence of classically smooth fields about an assigned

moving phase boundary. James also treats two specific initial value
problems. In the first,a value of strain is chosen from each of the two
intervals Tying below ascending branches of Fig. 1. One value is specified
along the positive x axis and the other along the negative x axis. Hence
the bar initially contains two phases. Two appropriately selected ve-
locities complete the specified initial data. For this problem, two
one-paramteter families of solutions are found, each of which contains

a single constant-velocity phase boundary emerging from the point of
initial strain discontinuity. The second initial value problem treated
in [19] involves a constant value of strain associated with one of the
ascending branches, and zero velocity specified initially all along the

x axis. In addition to the obvious static solution in which the initial
stable or metastable state persists for all time, James establishes a
two-parameter family of §o1utions which contain both a constant velocity
phase boundary moving to the right and to the left. The region between
the phase boundaries experiences a constant strain lying below the other
ascending branch of the stress-strain curve. James points out that this
second problem is naturally associated with necking phenomena,in that
phase boundaries may spontaneously arise in the interior of the bar. It
would however seem that achieving the initial condition of spatially
constant non-zero strain would itself require a quasistatic process. Also
the constant speed of the two phase boundaries depends on the doubly
infinite spatial domain, so that subsequent boundary effects —such as

those due to a Toading device or due to waves reflected from the ends of
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the bar—are not taken into account.

James also addressed the question of admissibility of solutions to
the dynamic problem by alternately considering static, viscous and
entropy rate criteria. Particularly interesting is the "viscosity" cri-
terijon, according towhichan inequality to be satisfied across shocks is
deduced by considering solutions whichare 1imits of viscoelastic solutions
as the viscocity vanishes. For a phase boundary inwhich the traction discon-
tinuity is small —so that the phase boundary is moving slowly and sepa-
rates a region of statically stable phase from a region of statically
metastable phase—the viscoelastic criterion requires that the phase
boundary shall move in the direction that converts statically metastable
phase to statically stable phase. Hence when the traction discontinuity
is small, both the viscoelastic criterion of James and the dissipation
criterion of Knowles allow and exclude the same phenomena. Indeed as
the traction discontinuity vanishes, the phase boundary ceases its motion
and the distinction between the two criteria vanishes.] For the first
initial value problem cénsidered by James, the viscoelastic criterion
allows only one of the two families of solutions found. For the second
problem, the occurrence of the double phase boundaries is possible only

if the constant initial strain is a statically metastable solution.

TCompare (5.39) of [19] and (4.19) of [14].
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2. Governing Equations for the Dynamically Loaded Elastic Bar.
Characteristic Theory when a Single Phase is Present.

A. Formulation of the Problem

We consider a homogeneous, semi-infinite elastic bar which in the
reference configuration occupies the interval - @<x=<0. Motions are

described by a mapping
y(x,t) =x+u(x,t) , (2.1)

where y(x,t) 1is the coordinate at time t of a particle which is at x

in the reference configuration; u(x,t) is the displacement. We assume

the reference configuration to be undeformed.

In the fully three dimensional theory of elasticity the strain energy

density W is a function of the deformation gradient tensor F . When
the above deformation is expressed in a Cartesian reference frame X with

the unit vector g] aligned with the bar, E is described by means of its

matrix £¥':
1+u* 0 O
X .
== 0 1 0 (2.2)
0 0 1

A prime will in general denote differentiation with respect to the argu-
ment and specifically with respect to x if there are multiple indepen-
dent variables. The Piola stress tensor o is given by

o =2 WF) . (2.3)
Yy ny

3k
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For the longitudinal deformation (2.1) of an elastic ban the strain
energy density becomes a function of the displacement gradient —or

strain—which we denote by

e(x,t) =u’ (x,t), (2.4)

so that

A

W(F) = w(e). (2.5)

It is assumed that for this type of deformation W(e) is such that the

only nonzero stress is the normal component along the axis of the bar,

which shall be denoted by o and'accordfng to (2.3) is given by
ole) = W (e) . (2.6)
The Tlongitudinal velocity in the bar is
vix,t) = y(x,t) = ulx,t) , (2.7)

where the superposed dot denotes time differentation.
With no body forces the only nontrivial equation of motion is that

associated with the balance of momentum in the x direction:

ol = == W (u’) = W' (u')u” , (2.8)

9
X
where p, a positive constant, is the density of the undeformed bar.

For a bar that is initially undisturbed and at rest,

u(x,0) =0, v(x,0) =0, - ®<x=0. (2.9)
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We shall consider two different types of loading device. In the
hard - device, the bar is subject to a controlled end displacement uo(t),

so that
u(0,t) =u(t) , t=0. (2.10)

The other, a soft device, subjects the bar to an end load Go(t). Here

the appropriate boundary condition is
W (u (0,t)) = o(t) , t=0. (2.11)

We shall seek solutions u(x,t) which are twice continuously dif-
ferentiable for x=0, t=0 except on at most a finite number of smooth
shock curves, x= si(t). Where wu is twice continuously differentiable,
we require that (2.8) be satisfied. Across a shock curve — x =s(t), say—
we shall require that the displacement shall remain continuous and that
a global balance of momentum be maintained. This will hold provided the
following shock conditions —sometimes called Rankine-Hugoniot conditions —

are satisfied [20]:

sfu]J+[ul=0,

psfa ]+ [W(u)l=0,

(2.12)

where [ ] denotes the jump across the shock (e.g.

[ 1=u (s(t)he) - (s(t) t)).

B. Comments on the Formulation

Many of the equilibrium studies cited in the previous section

[1,2,4,5,10] were formulated in a variational setting. It should be
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mentioned that this problem too has a variational formulation; one
seeks extremals to the appropriate action functional, namely the time
integral of the Lagrangian of the system. This yields (2.8) as the
Euler-Lagrange equation. Moreover, the Weierstrass-Erdmann corner condi-
tion which arises from varying the strain and velocity lead to the shock
condition which expresses the balance of momentum (2.12)2. Variations
with respect to x and t yield two more corner conditions which can
be reduced to (2.12)1, and an extra condition which requires that an
energy-like quantity be conserved across a discontinuity curve. For
static solutions this extra condition reduces to the no-dissipation con-
dition derived in [10].

It can also be shown that (2.12) are the discontinuity conditions
associated with the canonical weak formulation of this problem [19].
Whitham [21] points out that different weak formulations may yield the
same partial differential equations in regions where the fields are suf-
ficiently smooth, but may lead to different shock conditions. Realizing

this, it is not difficult to discover that smooth solutions to

1 <2

3 y ‘ e O (Sl (2.13)
g (7 ou” +W(u')) = = (uk’ (u))
are solutions to (2.8) where u #0. If u 1is not differentiable, the

canonical weak formulation of (2.13) yields (2.12), and the extra energy-

1
1ike shock condition, but does not yield (2.12)2. Hence we defer to the
physics of the problem—in this case the balance of momentum—to require

(2.12) as the only shock conditions which solutions must satisfy.
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C. Smooth Solutions with One Phase Present

We shall consider materials with a non-convex strain energy density

W and, in particular, we assume that:

(i) W is twice continuously differentiable on [0, ), 1
(2.14)

(ii) w(0) =0, W {(e)>0 fore>0, Jf

(111) there exists B,, o, with B, <a, and R

r — é _
W (B]) = W (uz) =0,
W’ (e)>0 for Ose<81, €>a, , > (2.15)

W (e) <0 for B <e<a, ;

W,
and
(iv) 1im W(e) = @, (2.16)
£+
whence there exists BZ:>d2 with
1j¢ = ¢ =
W (B,) = W(By) = op . (2.17)

This leads to a stress-strain relation of the type discussed in the pre-
ceding section and depicted in Fig. 1.

When ¢ Tlies in the interval 0O=<e< 61 or e>>a2 , the governing
equation (2.8) is hyperbolic; it is elliptic when B]<<€<<a2. Conse-
quently if we assume that the loading conditions (2.10) or (2.11) lead
to a first phase strain field with Osfa<81 for all x=<0 and t=z=0,
then any smooth solution to (2.8), (2.9) and (2.10) or (2.11) can be
found by the theory of Riemann invariants and characteristic curves. A

full account of this theory may be found in [16]. Define the local
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acoustic speed by

cle) = : . 058581 . (2.18)

and let
s(c) = fc(sads, 0sc=g, . (2.19)
0
From (2.18) it follows that ¢(e) 1is strictly increasing on O=e< B

Let &(z) be the inverse of ¢ defined on 05§2<<¢(B1). Then by (2.18)

and (2.19), & 1is differentiable with

o (2) = <-} W (0(2)))7 (2.20)

We note that if Wec([0,8,)), then ced2([0,8,)), ¢€d([0,6))),

and ¢>€C”'1([O,¢(B1))).f0ne finds that (2.8) is equivalent to

dv de _ dx _
a‘;:' C(E)H—f =0 on EE = C(€) s
(2.21)
dv de _ dx _
-d—f'l' C(E)a‘f— 0 on ajt- -C(E) .

These equations in turn imply the existence of two families of characteristic
curves. In the first family (2.21)1, each member-curve has posftive slope

in the x-t plane. We parametrize this family by the variable C+ .

The second family (2.21)2, whose member-curves have negative slope, we
parameterize by C_ . It now follows from integrating (2.21) that

there exist functions K+ and K~ such that



-25-

v-ole) = K+(C+) on curves of constant C, given by === cle), 1

(2.22)
v+o(e)= K (C) on curves of constant C_ given by dx = _e(e).

Since %%>() on each curve C+, all curves C+ originate on t=0,

x=<0 and terminate on x=0, t=0. On the other hand curves C_ origi-
nate on either t=0, x<0 or x=0, t=0 and propagate into x<U0,

t >0, Hdhaﬁng K on t=0, x<0 one infers from (2.4), (2.9),

(2.19) and (2.22); that K" =0, whence
v = ¢(e) . (2.23)
Then on each curve C_, (2.22) and (2.23) yield

v;%K‘(c ), e = @(% K'(C)) . (2.24)

Moreover (2.22). and (2.24)2 show that each curve C_ 1is a straight ray.

2

If we further assume that a unique ray C_ passes through each point

(x,t), x=0, t<0, then there is a simple geometrical construction of
the solution. Consider first the soft device governed by (2.11). The
first assumption O<§e<<8i, together with (2.15), implies that the end-

load induces a unique end-strain  €{0,t) =eo(t) such that

Wie (t)) =o (t) , t=0 |, (2.25)
and

Oseo(t)f:[?)1 . (2.26)

By (2.15) and (2.26) it is possible to solve (2.25) for eo(t) if and

only if
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osGo(t)<w'(51)=o t=0. (2.27)

B 9
Consider the ray C€_originating at x=0 and t=71. This ray,

which we denote by C_(t), has sTope g%-= -c(eo(T)). Consequently

a particular (x,t) 1ies on C (1) if and only if

X = -C(EO(T))(t-T). (2.28)

Since € and v are constant on each ray C_, it follows that when (2.28)
holds, e==eo(1). Also by (2.23) it follows that v==¢(eo(1)).
Now consider a particular (x,t) which 1ies on a ray C_ originat-

ingon t=0, x=0, so that
X«<-c(eo(0))t. (2.29)

The constancy of e and v on C_ rays together with the initial condi-
tion (2.9) then indicates that e=0 and v=0. Physically, the rays C_
propagate information about the end loading with speed. c(e). Conseguently
(2.29) characterizes the region of the bar in front of the leading disturbance.

Summarizing these results, we have:

(i) e=0, wv=0 for x<-deJOHt
(2.30)
(ﬁ)€=€JTU;U), v=¢kbh%mtﬂ fm‘xz-deJOHt

where t(x,t) is given implicitly by (2.28). We shall refer to (2.30)
as the formal solution for a material in the first phase loaded by a soft

device. The geometry of the rays C_ 1is depicted in Fig. 2.
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Recall that in arriving at (2.30) we made two assumptions, the
first being that Ose:<B] throughout the bar for all time, and the
second that a unique ray C_ passes through each (x,t) in x<0, t>0.
We now examine what these assumptions entail. According to (2.30), the
bar wf]] be everywhere in the first phase with e <B if the same is
true of the induced end-strain eo(t). Hence (2.27) 1is 'both
a necessary and sufficient condition for our first assumption. We note
that if (2.27) is not satisfied, then by (2.11) and (2.15) the end load
Go(t) cannot be sustained by an end-strain less than the value B8,.
Consequently,the formal representation (2.30) would then itself be mean-
ingless since c(e) and ¢(e) are only defined for €<B, . Indeed an
attempt to extend the definitions (2.18) and (2.19) into the statically
unstable strain interval B]'<e<<u2, results in c(e) and ¢(e) becoming

imaginary. Most of this paper will be concerned with the consequences of

smoothly loading the bar in such a way that eventually (2.27) no longer

holds. In this endeavor it will be convenient to have (2.30) available
to us when ¢< 81; consequently it is essential that we also examine our
second assumption.

Denote the disturbed and trandui1 regions of the bar by Rp and

R~ where

T

RD={U;ﬂlt20, -deJOHtSXsO},
(2.31)
Ry ={(x,t)]t=0, x<-c(e (0))t] .

0
In RT, all the characteristic rays C_ originateon x<0, t=0, so that by

(2.9), (2.4) and (2.21)2 they all have slope %%—= -c(0). This guarantees
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that the rays - C_ form an unambiguous cover for RT; in other words
they span RT and do not intersect each other.

In Ry> the rays C_ will also form an unambiguous cover, provided
(2.28) is uniquely invertible for t(x,t) whenever (x,t) ERD. From the
construction of the rays C_ as depicted in Fig. 2., this will occur
provided C(EO(T)) is a continuous and monotonically decreasing function
of T for t1=0. If co(t) is continuous or differentiable, it follows

from (2.25), (2.4) and (2.14) that eo(t) has the same degree of

smoothness. When oo(t) is differentiable

e (t) = o, (t)/w (e (t)). (2.32)

Suppose then that

o (t) e<:1([o,a>)) s

° 3 (2.33)
W(e) €C°([0,8))) .
It then follows that C(EO(T)) is monotonically decreasing provided
£ cle (1) =32-p'%(w"(eo(t»‘“%wm(go(t))c’;o(t)so ,t20 . (2.34)
By (2.15) this is equivalent to
W (e (t))o (t) <0, t=0 . (2.35)
Since the bar is loaded from an undeformed rest configuration, it is
natural to consider
6 (t)=0, t=0, (2.36)
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whereupon (2.35) becomes

W’”(eo(t))so , t=0. (2.37)
This in turn will be true if

W (e)=0 , O<e<p, . (2.38)

Materials for which (2.38) holds are said to be non-hardening in the first

phase. We have thus shown that (2.33), (2.36) and (2.38) are sufficient
to guarantee that C(EO(T)) is a monotonically decreasing function of

T, so that (2.28) is uniquely invertible on Rp-
Finally, the rays C_ form an unambiguous cover for all x=<0,

t >0, provided

RyUR = R= {(x,t)] x=0, t=0], RyNRr=¢ (the null set). (2.39)

By (2.31) and the remarks immediately following it, (2.39) will hold

provided c(so(Q)) =c(0), which in turn will hold if
e (0) =c (0) =0 . (2.40)

Physically, (2.40) is a condition that the initial loading be nonimpul-
sive. In summary, conditions sufficient to ensure that a unique ray

C. vpasses through each (x,t) € when O<e<g, 1is that (2.33), (2.36).
(2.38) and (2.40) are satisfied. We shall refer to these conditions as
those for smooth monotonic loading of a bar whose material is non-hardening

in the first phase.
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D. Discussion

For completeness we shall briefly discuss the phenomena associated
with the violation of any one of conditions (2.33), (2.36), (2.38) or
(2.40). This is instructive not only for its own sake, but will also lead
to a better understanding of the dynamic phase changes associated with
the vioTatfon 6f (2.27), which we will soon consider.

We have seen that a unique ray C_ passes through any point (x,t)
in Rp. Simply put, the importance of (2.33), (2.36) and (2.38) lies
solely in that they are sufficient to ensure that C(EO(T)) 1sva con-
tinuous and monotonically decreasing function of T, which by (2.28)

guarantees that a unique ray C_ passes through each point (x,t) in

Ry. It is then (2.40) which provides that any point (x,t) in R is
either in RD or RT, but not both.
Condition (2.33) ensures the differentiability of c(e (1)) and

)
so reduces the investigation of the monotonicity condition to an examina-

tion of the signs of derivatives. Consequently one can sacrifice (2.33)
provided c(eo(r)) reméins monotonically decreasing. Of course dis-
carding (2.33) would affect the differentiability of the solution (2.30).
We cannot, however, weaken (2.33) too much since then the continuity
of C(EO(T)) is threatened. The continuity of C(EO(T)) can be at-
tained by securing the continuityof the constituent functions ¢ and e .

0

This in turn is guaranteed by requiring

o (1) €C([0,m)) ,
(2.41)
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the second of which was an original requirement on the energy density
(see (2.14)). Violations of either of (2.41) are not necessarily physi-
cally unreasonable; discontinuities 1in co(t) are associated with im-
pulsive loading, while isolated failures of (2.41)2 involve piecewise
differentiable stress-strain relations.

Let us suppose that C(EO(T)) is monotonically decreasing, but
that (2.41) fails, so that C(EO(T)) js discontinuous for some t=t,,
say. Then the characteristic rays abruptly change slope at x=0, t==td,
so that the region between the rays parametrized by CF(t;) and C_(t;)

consists of points (x,t) for which (2.28) cannot be solved for t(x,t).

Hence we must extend the partial solution (2.30) to the wedge-shaped

region enclosed between C_(t;) and C_(tg). Consider first the case
where W”(e) has an iselated discontinuity at €=gy- Then the charac-
teristic rays abruptly change slope at 1=t , where oo(td) =w’(ed).

On both C_(t;) and C_(t}), (2.30) implies that e=e (t,) and

d) d
v==¢(eo(td)). Hence the solution is completed by defining s==so(td)
and v==¢(so(td)) in the region enclosed between C_(ta) and C_(t;).
It may be mentioned that this solution for a kinked stress-strain curve
can be generated as the 1limit of solutions with smooth stress-strain
curves whose slope rapidly changes over a small strain interval, Fig. 3.
Now we consider an isolated discontinuity in co(t) at t=t,. This
prompts a discontinuity in so(t) at t=t,. Consequently e and v have
different constant values on C_(ta) and C_(t;). To extend (2.30) into
the region enclosed between these rays one may consider end-tractions

which are continuous but have large derivatives on some finite time

interval. By computing the solution via (2.30) and taking the limit as
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the interval-length vanishes, it may be verified that the traction-dis-
continuity leads to the well-known centered simple waves [16], Fig. 4.
Similarly a failure of (2.40) also gives rise to a centered simple wave.

In these traction-impulse constructions, a subtle but important point is

that if W'(e) is linear between e=e(t;) and e=e(t;) —i.e., in {2.38),
W(e)=0 for €o(t8) se:seo(tg) — then all the characteristic rays in

the centered simple wave have the same slope. Accordingly the simple wave
degenerates to the single characteristic C_(td), across which v and ¢
are discontinuous. Courant and Friedrichs [16] remark] that such a degen-

erate simple wave "...does not deserve the name 'shock’'...". Nevertheless,

it may be verified that the shock conditions (2.12) are satisfied across

such a degenerate simple wave. It is, however, a particularly well-behaved
shock in that, as the 1imit of classically smooth solutions, it is the
1imit of solutions for which (2.23) is satisfied. Accordingly (2.23)
remains satisfied on both sides of such a shock, so preserving straight
Tine characteristics throughout Rp» each of which still propagates a
constant value of v and €. We shall see that such a fortuitous situation

is not maintéined in either the conventional shocks we now consider, nor

in the propagating phase boundary.

We have so far examined conditions in which the constructed solution
(2.30) 1leads to regions of R devoid of anyrays C_. A contrary
state of affairs occurs when c(eo(t)) is increasing on some interval
in t. Then (2.28) has multiple solutions in some region of Rp. This
can occur if either c(e) 1is increasing on some interval or if do(t)

p. 242.
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is decreasing on some interval. When (2.33) holds, these eventualities
are associated with a violation of (2.38) and (2.36), respectively. In
either case, the result is that the rays C_ may intersect each other.
Not surprisingly, in those regions of Rp where (2.28) has multiple
solutions, the remedy is to discard all but one such solution. Presumably
fhis can be accomplished by introducing within R a finite number of
conventional shock curves x =si(t) separating regions with classically
smooth solutions to (2.8). Across these curves ¢ and v have jump
discontinuities restricted by (2.12).

We note that in the x-t plane, the first conventional shock
X =s](t) so generated must 1ie to the right of the Teftmost envelope of
intersecting characteristics C_. The solution (2.30) will continue to
hold for «x <s](t) provided T(x,t) is taken to be the minimum positive
root of (2.28). In x:>s](t) the argument Teading to (2.23) is no Tonger

valid since we cannot integrate (2.21) across s](t) without using (2.12)

wn

o match integration constants. Suppose we introduce N shock curves.

Then all we can conclude from (2.21) is that there must exist 2N

. + Lt + - - :
functions, K2, K3"'KN+1’ KZ""KN+1’ such that if
si_](t)<x<s1.(t), i=1,..., N; or s.(t) <x<0, i=N, (2.42a)

then C+ is constant on curves obeying

I = cle), v-ole) =Ki(c,), (2.42b)

and C_ s constant on curves obeying
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= cle), v+ole) =K(C) . (2.42¢)

It must be remembered that the number and location of these conventional
shocks x =si(t) are part of the unknowns in the problem. After the
introduction of these shock curves, any point (x,t) €R should Tie on
the intersection of unique C_ and C+ characteristic curves. Moreover,
as the shocks were introduced to eliminate multiple characteristics C_
through certain points in R, we expect that the shocks themselves
should not give rise to additional characteristics C_. In other words
all curves C_ should intersect either t=0 or x=0. Indeed the
requirement that all curves C_ should originate on initial or boundary
data is a special case of an admissibility—or entropy—condition formu-
lated by Lax for more general hyperbolic systems [18].

So far we have dealt exclusively with the soft device governed by
the traction boundary condition (2.11). The results for the hard device
governed by the kinematic boundary condition (2.10) are also quite similar

for the case where e(x,t)<81 . For convenience we define
v (t) =a(t) , t=t . (2.43)
Then smooth solutions to (2.8), (2.9) and (2.10) are given by

=0, v=0 for x<-d@wom>nt . (2.44)

which is the tranquil region in front of the leading disturbance. While

vy (elat)) L =y (1)) (2.45)
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in the disturbed region

X 2-c(@(vo(0)))t . (2.46)

Here t(x,t) s given implicitly by

x=-c(®(v0(1)))(t- T) . (2.47)
The stipulation that e(x,t) 1is less than thevalue 6]w111 hold provided
v (t)<olp) o t=0 , (2.48)

while (2.47) will have a unique solution in the disturbed region provided

both

VO(O)=0 s (2.49)

and c(@(vO(T))) is a continuous and monotonically decreasing function
of T . If we consider materials which are nonhardening in the first
phase —so that (2.38) holds —then a condition sufficient to ensure the

above monotonicity condition is that vo(t) be differentiable and

\‘/O(t)zo ) (2.50)

When (2.38), (2.49) or (2.50) are violated, one encounters difficulties
similar to those of the specified-load problem. In these instances
analogous remedies are invoked.

Finally, we remark that the consideration of compressive end-loadings
from an initially undisturbéd rest. state would require the stress response

to be known for negative strains. If
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W (e)>0 , W”(e)=0 for e<0, (2.51)

the associated dynamical fields are smooth provided there is no unloading,
in contrast to the behavior encountered in the analagous piston problem

of gas dynamics [16].
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3. Characteristic Theory when Two Phases are Present.

So far we have only considered loadings which permit the material
to remain in the first phase throughout the bar for all time. We now
consider the consequences of end conditions that lead to e:>B1, SO
that solutions are not restricted to the initial hyperbolic regime of

strain OSe<B].

A. Formulation of the Two-Phase Problem for the Soft Loading Device.

We now return to the traction problem governed by (2.8), (2.9),
(2.11) and (2.12). As in the situations Teading to conventional shocks,
phase boundaries arise even with arbitrarily smooth data. To focus

attention on the specific phenomenon of phase changes, we shall assume
W(e) €c® ([0,0)), o (t) €C” ([0,m)). (3.1)

As in the previous section we further assume that (2.36), (2.38) and

(2.40) hold. For convenience we collect these together below:

(3.2)
ii) W (e) =<0 , Ose<B]
We have already shown that if, in addition, (2.27) holds, then there
is a classically smooth solution (2.30) with e< B] throughout the bar

for all time. Thus we only need consider the case where co(t) attains

or exceeds the value W (g,) = og - Let t; be the time for which
(2.27) is first violated so that t=tg is the minimum value of t
satisfying

o(t) =0 (3.3)
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Now (2.15) still guarantees the existence of a unique function éo(t)

defined on the interval O<t<t such that

B
W (e (t)) = o (1), (3.4)
and
Ose (t) <B; . (3.5)

If we examine the previous solution (2.30) with eo(t) defined through
(3.4) and (3.5), we find from (2.18), (2.15) and (3.3) that c(eo(r(x,t)ﬂ

approaches zero as Tt(x,t) approaches the value tB . As a result,

the rays C_ in the x-t plane become infinitely steéep as their

t-- intercept approaches tB . Moreover the set of rays C_ form a

nonintersecting cover of ‘ﬁ?\\{(O,t)ltEitB}; see Fig. 5. Thus if we

append the restriction T<tB to (2.30), we obtain a smooth solution

everywhere except for points (x,t) with x=0 and tz:tB.

It is natural to ask whether the set of such points with x=0 and

r

t::tB could form some sort of stationary "end-shock". For this to be

the case $(t) =0, so that (2.12), and (2.30) would now imply -

t=t ° (3.6)

W (00,8)) = (e, (<(07,0))) = 0, t=t,

This, with (2.11), necessitates that (3.3) must hold for all times

t greater than the value tB' One also sees that if co(t)

is maintained at the value g for some interval, say tBs;ts;tK, then

we may extend (2.30) smoothly onto x=0 and tBSt:StK by e(0,t) = B

and v(O,t)==¢(B1) for toststy . We are, however, faced with the

problem of not being able to construct a solution by this method for the
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set of points x=0 and t:>tK. Consequently such stationary end-shocks

are precluded if co(t) exceeds the value OB. For simplicity we shall

suppose that t=t_, is the only root of (3.3). Then it follows from

B

(2.11), (2.15) and (3.2), that

1

a(O,t)>B2 . t>t6 . (3.7)

Now (3.4) and (3.5) ensure that €(0,t)< 81 is consistent with the
loading condition (2.11) for t<<t8. The relations (2.15), (2.17) and

(3.3) show that €(0,t_ ) may take on either the value B, or the value

B
82. Hence it is natural to seek solutions where €(0,t) jumps from
B] to B8, at t='tBe Once one concludes that the induced end-strain
must be discontinuous, it is clear that a jump from the first to the
second ascending branches of the stress-strain curve could occur at
the end of the bar for any t 1in the interval [ta’tB]’ where (see

Fig. 1),

Gé(ta) = Oa<:08=:co(t8) , (3.8)

In the face of this nonuniqueness, we opt to seek solutions for which
the end-strain lies below the first ascending branch for as long as
feasible, as there is no mathematical need to introduce a second phase
until the loss of hyperbolicity is imminent at t= tB . Consequently we

shall define a particular inverse for W(e), denoted by T(-), such

that
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T:[O,(D) -+ [O,B]]U (Bz:m) s

T(W (e)) = ¢ for Osess] , E>B, -

By (3.1), T is differentiable to all orders except at g where T is

discontinuous (Fig. 6). With this choice of inverse, the induced end-

strain is given by

g, (t) = T(o (t)) , t=0. (3.10)

We note that eo(t) js discontinuous at t==tB." For all other t=0,

eo(t) is differentiable to all orders, with the first derivative again
given by (2.32). Moreover, since W”(B]) =0 and w”(BZ) >0 it follows
that the right hand 1imit of all derivatives of -eo(t) exist at ¢ =tgs

whereas these derivatives become unbounded as t approaches tB from the left.

Since a stationary end-shock is incompatible with an end-load greater

than the value o it follows that the high-strain phase will not be

g
confined to the end of the bar, but that a phase boundary will emerge at
the end of thebar at time tB and subsequently travel into the interior.
In front of this (unknown) phase boundary, which we denote by x=s(t),
the strain and velocity fields are still given by (2.30), while for

s(t) <x<0 we seek solutions with £>B, .

Note that for our'particu1ar choice of inverse to the stress response,
the phase boundary is not genearated at the Maxwell stress OY’ which in
the equilibrium case is the stress where the configuration loses absolute
stability. Instead the phase boundary emerges when the end-load reaches

o which in the equilibrium setting is the stress at which the config-

8’
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uration loses metastability. Consequently we are assuming a type

of "superstraining" analogous to the superheating a liquid undergoes
when heated above its boiling point. This would seem reasonable for a
smoothly applied end-loading; in this case we regard the phase-boundary
as emerging in response to the incipient loss of hyperbolicity.

We now extend the definitions (2.18) and (2.19) to the high-strain

phase by writing

_ [
cle) - . OsegB] s €20, (3.11)
and

€
J c(s)ds , O=e<B8,
0

¢(e) = . (3.12)
d)(B])"‘J c(slds , e=za,

%2

Once again ¢(e) is monotonicon its domainof definition, so that we canex-
tend the previously defined inverse & to the range of ¢ as given by

(3.12). o(z) 1ds continuous on its domain O=<z<1im ¢(e), and by (3.1)
, £>®

is differentiable to all orders except at z==¢(6]) (=¢(a2)). At
z=<¢(61), the one-sided derivatives of &(z) exist from the right but
are unbounded from the left. &' (z) and the higher derivatives may still
be found from (2.20)

Denote by R] and ﬁ2 the regions in the low- and high-strain phases

respectively, so that
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Ry = {{x,t)]{x=0, ’tstB)U(x<s(t), t>t8)} ,
(3.13)
R, = {(x,t)|s(t) <x=0, t>t6} .

We shall refer to ﬁﬁ as the region in front of the phase boundary and
R2 as the region behind the phase boundary.

In Ry, the dynamical fields are still given by (2.30) with the
restriction that T‘itB. In crossing the phase boundary, we require
that the shock conditions (2.12) be satisfied. In Ry s the extension
of ¢ and ¢ into the second hyperbolic regime of strain allows us to
adopt a scheme 1ike that discussed in the preceding section for finding
solutions behind conventional shocks.

In R, we shall parametrize the positively=sloped characteristic

2
curves by the time at which they intersect x=0. This is accomplished
+

(

by letting T (x,t) be the time at which the positively-sloped character-

jstic curve passing through the point (x,t) in Ry terminates on x=0.
Notice that from this définition follows 1 (0,t) = t. Similarly

let 1 (x,t) parametrize the negétive]y-s]oped characteristic curve in
R, which originateson x=0 at t=171. Under the extended définition

of c(e), (2.21) continues to hold in R,. As before, these equations

o
may be integrated to yield the Riemann invariants KZ and Ké s where

v(x,t) - alelx,t)) = K3 (' (x,1)), (3.14a)
on curves  parametrized by T+(X,t), for which

g% = clelx,t)) , TH(0,t) =t . (3.14b)
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Similarly,

vix,t) +olelx,t)) = K (7 (x,t)) (3.14c¢)

on curves parametrized by 1t (x,t), for which

dx

gt = ~clelx,t)) , t(0,t) =t . (3.14d)

Here

+ -
T Ry,>[t,, @), T :R,>[t ,0), (3.14e)
? B ?

B’
+ - .
Giltgm)> R, K:[t,0)+R, (3.14¢)

constitute unknowns to be determined. There is a final unknown, namely

the phase boundary location s{t). We have seen that

s(t)<0 for tztB, s(t.)) =0 . (3.15)

We shall seek s(t) EC?([tB,a>))IWCa)((t8,a))) . The shock conditions

(2.12) become
[e(s(t),t)Is(t) + [v(s(t),t)]=0, [V(S(t),t)]§(t);+%~[W'(S(s(t),t))] =0

for tz’cB . (3.16)

Here e (s(t) ,t) and v(s(t) ,t) are given by (2.30) with r(s(t),t)<t8.

We must also satisfy the boundary condition

e(O,t)=€0(t) . t2t8 . (3.17)

For (x,t) in Ry > (3.14) shows that the velocity and strain are given

by
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(3.18)

We may use (3.14) and (3.17) to eliminate Ké as follows:

4

26(e, (1)) = 20(e(0,)) = K5 (7 (0,8)) - K3 (<" (0,8)) = K3(t)

- K;(t), (3.19)

so that

Ky(t) = Ky(t) +20(e (£)) . (3.20)
Thus (3.18) becomes

vix,t) =

) =03 K, 0) + 3 K (7 (x,8)) + oleg (27 (x,1)))

Collecting our results so far, we may summarize the problemas follows:

When W(e) and co(t) are subject to (2.14), (2.15), (2.16), (2.17),
(3.1), (3.2), and with eé(t), cle), ole), o(z) defined through (3.10),
(3.11), (3.12), we seek four functions KZ(Z), T (x,t), T (x,t) and s(t),
such that:

(1) s(t) ec ([tz,0)) NE® ((tm)), s(t)=0, s(ty)=

and s(t) partitions R into R, and R, as defined by (3.13);

1 2
(ii) In Ry e(x,t) and v(x,t) are given by (2.30)with the restric-

i <t 3
tion T 8

(iii) In Ry e(x,t) and v(x,t) are given by (3.21);
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(iv) e R2-+[t6,a)) . T+(0,t) =t and ' is constant on curves

. dx _ .
for which g = clelx,t))s

(v) T-:FR2-+[tB,a)) , T (0,t) =t and T is constant on curves

for which %%-= —e(elx,t));

(vi) The jump conditions (3.16) are satisfied.
(3.22)

Solutions to (3.22) give a single phase boundary preceding a region
of high-strain material phase and propagating into a region of low-strain
material phase. In both of these regions the strain and velocity fields
are classically smooth solutions to (2.8). It should be emphasized
that the existence of such a smooth solution behind the phase boundary is
by no means guaranteed. In this regard recall that the material condition
W’ (e)<0 for ()<e:<31,15’necessary for the existence of smooth fields in

front of the phase boundary, whereas we have not as yet imposed a comparable

conditon on W {(e) for €20,.

B. Statement of the Two-Phase Problem for the Hard Loading Device.

Before investigating (3.22) further we shall give a statement of

the corresponding free boundary problem for the hard device governed by

(2.10). Here we again define c(e), ¢(e) and @(z) by (3.11) and (3.12). If

we consider a non-impulsive, smooth loading of a bar of material that is

non-hardening in the first phase, we are assured that (2.38), (2.49) and

(2.50) hold. It is then possible for the bar to remain everywhere in

the first phase until time tB s Where t==tB is the largest root of

v (t) = 6(8;) - (3.23)
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We shall only consider the case in which (3.23) has a unique root, rather

than an interval of roots. For t:>tB near the end x=0 1t is neces-

sary that the material be in the high-strain phase. If x=s(t)

denotes the resulting propagating phase boundary, we seek three addition-
+
(

al functions K;(z), T (x,t), and T (x,t) such thats

(1) s(t) ec' (g ) nc®(te@ ), s(t)<0, s(t)=0 and s(t)

B
partitions R into R, and R, as defined by (3.13);

(i1) In Ry e(x,t) and v(x,t) aregivenby (2.44), (2.45), (2.46) and

(2.47) with the restriction T<<tB H

(iii) In Rys e(x,t) and v(x,t) are given by

(x,1)) = 5K (17 (x,8)) +v (7 (x,1)),

e(x,t) = (-3 K5 (r7(0,1)) - K5 (27 (x,8)) + v, (< (x,))s

+
B,oo), T+(O,t) =t and T is constant on curves

for which g%~;=c(e(x,t));

(v) T-:R2—+[t6,a)), 7(0,t)=t and T 1is constant on curves

R dx _ .
for which 4 = —c{e(x,t));

(vi) The jump conditions (3.16) are satisfied.

(3.24)
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4. A Special Class of Materials.

The application of characteristic theory leading to the formulation
(3.22) requires that a unique member of both families of characteristic
curves should pass through each point (x,t) 1in R. For portions of the
bar in the low-strain phase, we were able to use the initial conditions
(2.9) to show that the Riemann invariant associated with the positively-
sloped family of characteristic curves vanishes identically (see the
discussion ' preceding (2.23)). However, it is necessary to stipulate that
W (e)<0 for 0= e<B, -in order to guarantee that the negatively-sioped
family of characteristic curves (here rays)forms an unambiguous cover of
R]. We now inquire as to what requirement (if any) on W(e) and its derivatives
in € >0, will quarantee that each of the two families of characteris-
tic curves will unambiguously cover -RZ. Should these covering proper-
ties fail, T+ or T would either be undefined or multi-valued at
certain locations in Ros and the problem governed. by (3.22) would not
be well-posed. For example, multi-valuedness of T+ or T would sug-
gest the presence of coﬁventiona] shocks in the high-strain phase portion
of the bar. Unfortunately we do not know of a-priori conditions that
are both necessary and sufficient for T+(X,t) and T (x,t) to be

both defined and single-valued for all (x,t) G&%. However,in what follows

we give a condition on the material sufficient to ensure the existence

and single-valuedness of 7 oand 1T throughtout Ry -

We shall henceforth consider only materials with the property that

there exists a strain &, a2‘<6‘<62, such that

W% (¢)=0 for e=6 . (4.1)
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Thus there are constants E>0 and D such that
W (e)=Ec+D for e=26 . (4.2)

In other words, we shall deal only with energy densities for which the
stress is a linear function of strain for values of strain greater than
§, where § 1lies below the second ascending branch, but is less than
B,. A diagram of such a stress-strain curve satisfying (2.14), (2.15),

(2.16), (2.17), (2.38), (4.1) and (4.2) is found in Fig. 7.

A. Reduction of the Problem to a Pair of Differential-Delay Equations.

From (4.2), (3.11) and(3.12) it then follows that for such a material

c(e) =\/’%- . e=6 , (4.3)

¢(€)=¢(6)+\/§(e-6), =6 , (4.4)

o(z) = \@z - \[gcb(s)ﬂs, z2¢(8) . (4.5)

Turning our attention to the hard-device problem in the form (3.22), we

and

have by (4.2), (3.9) and (3.10) that

e (t) =

o (oo(t)-D)>62 for t>t, . (4.6)

B

i

We seek solutions which are in the Tinear range corresponding to the
high-strain phase, i.e. €>6. The constant acoustic speed (4.3) in
R, then allow us to integrate (3‘22)iv and (3.22)v and solve for

T (x,t) and TT(x,t). The result is



T(x,t) = t- ,\/gx , 1
: (4.7)
T (x,t) = t+ \/%rx ‘J

Thus for (x,t) €Ry » (3.21), (4.4), (4.5) and (4.7) yield

v(x,t)=%—K;(t-\féx)+%K;(t+\/—%x)+\/_—§eo(t+\/—gx)-\/——E—Sﬂb(é),
| (4.8)
e(x,t) = -12— JgKg(t— \/Ex)ﬂL]?K;(H \/—-g-x)+ so(t+ gx ).

It is convenient to define the new function f in terms of K; by

() =3 [BK - [B2)-For g [Reto), (4.9)
whereupon (4.8) becomes
vix,t) = \/Ef(x—\/g—t)+\/_—g—f(-x-\/—%t)+ \/geo(ﬁ\/gx),
(
e(x,t)=-—f(x-\/—§t)+f(—x—\[-—gt)+eo(t+\/€—x) .

That e(x,t) and v(x,t) are each linear combinations of functions

of the variables x+ ‘f%t and x - ﬂ/-g-t is a consequence of the fact

that, for the linear portion of the stress-strain relation, (2.8) becomes

4.10)

2 2
3 u E 2 u

_ £ =0 . (4.11)
5t2 P ax?

Differentiating (4.11) one shows that € and v also satisfy (4.71). Con-
sequently we have simply retrieved a form of D'Alemberts solution to the

classical wave equation. Note also that in Ry both families of
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characteristic curves are straight rays with the respective slopes
\/E?and - \/g-. Here, however, neither family of characteristic rays
propagate constant values of € or v.
Before we describe how the results of this analysis simplify the
formulation (3.22), we make a few observations. From the jump conditions

(3.16) we see that the square of the phase boundary velocity is given by

N1 (4.12)

and so for a normalized density (p=1) is given by the slope of the
secant line to the stress-strain curve between e(s(t)+,t) and
e(s(t)",t). On the other hand, by (3.11), the square of the acoustic

speed at any location is

2( W (e(x,t)), (4.13)

c“(e(x,t)) =

and so,for a nermalized density, cz(e) is given by the slope of the
stress-strain curve at e(x,t).

in the problem we are considering, the stress-strain curve for a
strain associated with R, has slope E, which is necessarily greater
than the slope of a secant 1ine projected back to a point on the first
branch when e(s(t)+,t) is near Bs and e(s(t) ,t) is near By - Hence

(4.12) and (4.13) imply that for some A>0,

Ié(t)!<c(s(s(t)+,t)=J—g, tpststo+d . (4.14)

For the above time interval the phase boundary is subsonic with respect to

the material behind it. In this investigation we shall restrict attention
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to phase boundaries for which this is true for all time. Hence we impose

the condition

lé(t)l<c(e(s(t)+,t)=\/§_, t2t, (4.15)

‘an important consequence of this restriction being the lower bound

E ®
-\/;:<s(t) , tEt . (4.16)

Integrating (4.16) and using the conditions (3.15), we arrive at

By (3.13), we further have

2
E [E /E : /E [E
S(t) - \/-;1:, <X - ats- X - BtS-S(t)' Ets‘ BtB

for  (x,t) R, -

(4.18)

| Hence f(z) need only be defined on zs-‘jE;tB, which we shall hence-
forth take to be the domain of definiton for f. This could have been
predicted from (4.9) and (3.14f). Notice also that the bound (4.16)
assures that, for increasing t, s{t) intersects members of the negatively-
sloped family of characteristic rays in R which arise progressively
later on x=10, tz’cB .

We can incorporate the initial conditions (2.9) into the resulting

end-strain by setting eo(t) equal to zero for t<0. Then by (3.10)

and (4.6) . N
0 t<0 s
%(ﬂ = < 'Ho&tn OStStB, L (4.19)
1
L 3 (Oo(t)-D) ’c>tB )




~52-

Note that eo(t) is continuous everywhere except at t='tB and con-
tinuously differentiable to all orders except at t=0 and t= tB. We
also define oo(t) =0 for t<0 so that (3.10) holds for all time.
Finally we define t(x,t)=0 for (x,t)€R, . These extensions allow
us to use the same formulation in both the disturbed and undisturbed
regions of the bar.

By means of (4.10) the problém formulated in (3.22) is reduced to

finding functions s(t) and f(z) for which

(1) s(t) e ([tym)) ne® ((tg@)),  s(t)=0 and

s(tg.) =0 (4.20a)
(1) #2): (-o , - \/gtBJ—HR , (4.20b)
(i11) [els(t),t)1s(t) + Iv(s(t),t)]=0 for t>tg, (4.20c)
and
[v(s(8),6)I3(6) + LW (e(s(£),£))] =0 for t>tg, (4.20d)
where
C[v] = [v(s(t),t)] =
\/g‘f(sm-\/g'm\/%f( \/— \fg t+\/— £)) - ¢le (1),
(4.20e)

[e] = [e(s(t),t)] =

s(t) —\/-%-t) +f(-s(t) -\/%—t) +€0(t Jr\/gs(t)) - EO(T) . (4.20F)
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(w1 = W (e(s(t),t))] =

—Ef(s(t)-‘JE;t)4-Ef(-s(t)-\j%;£)+-Eeo(t4\j%?;(t))-+D-w'(eo(r)), (4.209)

and t=71(s(t),t) is the unique root less than tB of

s(t) = -c(eo(T))(t-—T) . (4.20h)

In summary, for an induced end-strain given by (3.10) the problem

formulated in (4.20) completely characterizes the phase boundary

and dynamical fields associated with the smooth monotonic loading

(in a soft device) of a bar of material that is non-hardening in the

first phase and satisfies (4.2). The system (4.20) consists of two

differential-delay equations for the unknown functions f(z) and s(t).
Notice that s(t) appears in the retarded argument of f so that the
amount of delay constitutes part of the solution..

It will be convenient to consider the following 1inear combinations

of (4.20c) and (4.20d):

\/-—;é[é]+(\/%'+§)[v]+%[W’]=O , (4.21a)
\/gé[e]+(\/g—§)[v]-%[w,']=0 ) (4.21b)

Upon substitution from (4.20e,f,g) into (4.21), we arrive at

2\/%6(1:) +\/;E;)f(-s(t) -\/gt) +T1(§(t),s(t),t) =0, (4.22a)

and



2, —§(t)+\/%-)f(s(t,) —\/%t)ﬂ"?(g(t),s(t),t):O tzt, (4.22b)

-\/'géeo(ﬂs,t))-m E)ole (xls,))- Loy (els,t)) ,  (4.23a)

)
and
rp(d,s,t) =22 -\/’g—éeoms,tn + (3 —\/%_M(soﬁ(s,t)))
1
+ B-GO(T(S,t)). (4.23b)

We shall use (4.22) and (4.23) in the forthcoming asymptotic analysis.

B. An Alternative Formulation Involving an Integral Equation.

It is also possible through (4.22) and (4.23) to eliminate f by
recasting the problem as an integral equation for s(t).

Define

Y(t) = Jt f(-\jgfs)ds for t;ztB . (4.24)
B

Then (4.22a) can be written as

2%-(%Y(\[%s(t)+t)+F1(§(t),5(t),t)= 0 for txt, . (4.25)

Integrating (4.25), using VY(t,)=0 and S(tB) =0, we find

g)
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t
2E v %s(t)+t)+J r,(i(e),s(e),a)ds =0 for tat, . (4.26)
tg
Similarly (4.22b) leads to
‘ t
2Ev - feswrenrs | rlie)se a0 gor ezt (42)
tg
By (4.15), both - %s(t) +t and ‘%s(t)i-t are continuous and

monotonically increasing. Thus for any t=z=t, , there exist times ta

B

and tb such that

-+
i
mjo

- /o '
s(ta)+ta and t =- -Es(tb)-Ptb . (4.28)

Note that

tathtbztB . (4.29)

Evaluating (4.26) at ta and (4.27) at tb we may eliminate VY(t) to
obtain

t ‘tb

J aF (s(s),s(s),s)ds - J T (s(s),s(s),s)ds=0 . (4.30)
g, ] g °

To simplify (4.30) we note that by (4.28) and (4.23a), the first term in

the integral on the left is
t t

2 [P \/E \/E _2
= th(s(sh p)Oo(s+ Es(s))ds p[to(s)cls ) (4.31)
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With the help of (4.23), (4.29) and (4.31), (4.30) yields the following
equation for s(t):

t tb t
pledte = [ 7 T(3le)sto)soldo + [ T (L) s(a), 0hee,

_LJ
Ca 8 b

tzt_, (4.32a)

Here

o (t(s,t)) , (4.32¢)
2/pE ©

and ta='ta(t) and t,_=1t,(t) are the roots of

b b

o =t=- (B
\/;js(ta)-fta t F s(tb)+tb . (4.32d)

Notice that we canevaluate the left-hand side of (4.32a) as well as the
first terms in the integrals on the right-hand side. For an induced
end-strain given by (3.10), system (4.32) also completely characterizes
the phase boundary and dynamical fields associated with the smooth
monotonic loading (in a soft device) of a bar of material that is non-
hardening in the first phase and satisfies (4.2). Of the two
formulations (4.20) and (4.32), we shall consider only (4.20) in the



-57-

asymptotic analysis carried out in the next two sections. We shall,

however, comment further on (4.32) in the final section.
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5. Emergence of the Phase Boundary.

We now study the behavior of solutions of the system (4.20) near

t==tB, at which time the phase boundary first appears. Since

—

t ) =0, we have

B
s(tB)-\/gt6=-s(tB)-\/E—-t6=—\/§t8 . (5.1)

S

so that at the initial time tB , the two arguments of f 1involved in
(4.20) are the same. Differential-delay equations whose arguments

coalesce initially are called singular, and in general they permit the
specification of only the initial values of the unknown functions; see

[22]. In our case, the initial value of s is given: s(t,)=0 . More-

B

T in (4.20) to determine f( - \/Ejtg). Recalling

over, we may let t-t

B V
that eo(t) js discontinuous at t=‘tB , we have
s P - +y
t1:$+ eo(t+\/;s(t))--eo(tB)--B2 s (5.2)
B
ttj?+ EO(T(s(t),t))==eo(tB) =By (5.3)
B8

so that (4.20e)-(4.20g) s when evaluated at t==t8, become

_ E E E :
[v]tB—Z\/gf( -\/;tg) +\/;82- o8, (5.4)

[f:],CB = B,- By s (5.5)
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We may then infer from (4.20c) and (4.20d) that

(82-81)§(t8)+2\/§f( -\/gtg)\/%_sz- o(By)=0 (5.7)
E E E .
(2\/;( -\/-—;tg)+\/;—-82-¢(81)>s(t8)=0 . (5.8)

These equations imply that

=0 , (5.9)

E. y.1
f(—\/-—gtg)——f(\/-gtcb(B])-BZ). (5.10)

We observe that, from (5.4) and (5.10), [v]t =0, so that at time tB
the jump conditions (4.20c) and (4.20d) reducs to the corresponding
conditions for the equilibrium problem as given by Ericksen [1].
Although there are local existence and uniqueness theorems for
nonsingular differential-delay systems and for singular systems with
known delays [22], these do not apply to (4.20). We shall therefore
take for granted the existence of a solution to our system. Moreover,

we shall assume that, near t=t,, the unknowns s and f are asymptot-

B
ically characterized by
o M
s(t) v} s (t-tp) , (5.11)
k=0 8
f(z) ~ f +OZO f (-z—.Et )nk (5.12)
0 ey K R

where the constants sk, m fk and o which are to be determined, must
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be such that

m >1, n
0

_1 o) 1
'|>03 SO<03 'Fo—'é—(J-'Ejd)(B])_Bz), (5.]3)

m>m nj>h for >k . (5.14)

We shall determine mos Nys S, and f] explicitly, so that the dominant
terms for t-t in (5.11) and (5.12) will be known.

B
For simplicity, we restrict attention to loadings for which

)>0, (5.15)

and materials such that

W (8,) <0 ; (5.16)

the latter of these conditions ensures that the stress-strain curve is

locally parabolic (rather than, say, auartic) near e= By . We have

2] as  tot, . (5.17)

Y =
Oo(t, o ] 8

o Syt (£ ) +OL(t-t

B B

Then by (3.9) and (4.19), the discontinuous function eo(t) is given

near t=t, by

B
( -20,(tg) | - 3 ; -
B-I - Wm—(—é—]—)— (tB-t) +O[(t8-t) ] as t+t6 s
Eo(t) = < (5.18)
o (tg)
o' B +
. B, +— (t-t6)+o(t—t8> as t—>t8 .

gee (5.10)
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For use in (4.20e), we require the appropriate approximation to

¢(e) for e—*B{ . From (2.18) and (2.19),

: 1 81 .
ole) = o) - L [T wte) e, (5.19)
/o e

so that making use of (2.15) and (5.16) we obtain

s
pe) = 0(8y) - 5 JW ()70 (8;-¢) +o[(81-€)%] as e+B . (5.20)

Since t(s(t),t) occurs as an argument in (4.20), we require its
behavior for t—+té . To this end, one first observes that, by (4.20h),

(2.15), (5.16) and (5.18),, near t=t.

'ls 8 9
s(t)v- k(b= i), (5.21)
where the constant K1 is given by
. i
-2W (8y)0 (t,)
Ky = 1 0 8 >0 . (5.22)
1 p2

A detailed analysis, making use of (5.11), (5.21) and (5.22),shows that
the dominant behavior of t(s(t),t) depends on the value of the unknown

exponent m_ in (5.11) as follows: as t-+tg .
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( -s_ 5/4 4m /5 4m /5

tg=(7) {t-t)  wol(t-t) © 1 if m<5/4,

B-X(t-t6)+o(t-t6) if m0=5/4

4m -4 dm -4

4 0 o} .
tB-(—K—]—) (t—tB) +o[(t-t6) 1 if my> 5/4 .

(5.23)

Here the constant A 1is the unique positive root of

S
Wby 0o (5.24)
For convenience, we define constants q==q(m0) and K2==K2(mo,so) by

( 4m /5 for m < 5/4
0 )

q = 1 for m =5/4 (5.25)
fmy-4  for m > 5/4
and
((—sO/K1)5/4 for m <5/4
Ky, = < 2 for m =5/4 , (5.26)
\(—SO/K])4 for m >5/4

Then (5.23) can be written as

)91 as t-t . (5.27)

t -t=K(t-t,)%+0[(t-t ;

B 2 B B

Since by (5.13) we have m, >1, it follows that
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q>4/5 . (5.28)

We are now able to determine the behavior near t= tB of the functions

W'(EO(T)), eO(T), ¢(€0(T)) and eo(t-+\[§ s{t)) which occur in (4.20):
W (e (1)) =0 (1) =05 - 0 (tJK, (t - tB)q+ot(t -t )9, (5.29)

12500t -t )27, (5.30)

° 444 %
(1) =1-[-20ft 0K, /W (8,)] (t-tg 8

go 0R 2

6(eg (1)) = 0(8,) - 2/3(-W (e 073 (25 (¢ ),) (1t - 1,39/
+ol(t-1,)%9% (5.31)
| % tg) o Mo
eo(t+\/§s(t)>=gz+ o (t—t8)+\/:3 EACRICEES
Mo . 2
+ of(t-t,) °T+ol(t-t )71 . (5.32)

Furthermore, (5.11), {(5.12) together with the binomial expansion then

yield

+2f2(\[§)n2 (t - tB)nZ*'O[Ft— tB)min{n1+mo-1,n2:ﬂ (5.33)
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n +m —1

-1
-f(S(t)-\/Et)w“f(-s(t)-\/—E 21-‘]n1s0 \/—) (t- tg 1

n,-1 n,+m, -1 N,=-1 m +n,-1
,E " 1M ,E 2 0 "2
+2f]n]s]( ) (t-tB) +2f2n250( 5) (t-tB)

i min{n,+m,-1,2m_+n.-2,m_+n,-1}

vol(t- tg) 1 o 1 o 2 }

I - i ] i
m1n{3m0+n1 3,m]+n2 1,mo+n3 13

+0 (t—tB)

(5.34)

buca

Equations (5.33) and 5.34) make it possible to determine the behavior
of the various physical quantities which suffer jumps across

near t=tB
the phase boundary. Thus from (4.20e),(5.33), (5.32) and (5.31)
) F n]+1 N E n2+1 n,
[v]l=2( 5—) f1(t-t8) +2( p) fz(t- tB)
o (t,) :
b 0B (et )+ 2o (g R (25 (£ 0Ky (1 - 1)
5T B bg 8
min{n,+m -1,n,,1,3q/4}
[(t t,) 170 272 } (5.35)
while (4.20f), (5.34), (5.32). (5.30) and (5.11) give
. mo-1 m1 -1
[els = (B, - 8y)m s (t-tg) +(32-s])m1so(t tg)

v S 3\ a/2 +mg-1
+m.s <—200(tB)K2 W (61)>2(t-t8) 0

min{n,+2m -2,m_} min{n,+m -1, q/2+m _-1,m -1}
O[(tt) 1o O}o[(t-‘t) 2 .
B B
(5.36)

From (4.209),(5.34), (5.32) and (5.29) we have
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min{n,+m,-1,2m _+n,-2,m +n,-1,m_,q}

min{3m_+n,-3,m,+n,-1,m _+n -1}
+O[(t—t8) o 172 o3 ] : (5.37)

Finally (5.35) and (5.11) give

1 n,+tm -1 iy +] n,+m; ~1
. EMT 1" [e\M o™
[v]s—Zmoso(\/%) f](t-te) +2my s, ( -5) f(t-tg)

n,+1 n+m -1 mso (t,) m
+2m s (\/——ET)2 1?2(t-t8)2 0 +—O—9—9—B—(t-t8)°
00 p ‘/EE-

éﬂsfm -1

3 4 0

2 f 1z 3 - b 2
+§‘m050('w (31))40 (ZOO(tB)Kz)é(t-tB)

min{n1+m]—1,n2+m0—1,n1+2m0-2,m0,3q-+m0—1}
tol (t-tg) (5.38)

It is now necessary to enter the two shock conditions (4.20c)
and (4.20d) and investigate the possible dominant balances among the

various terms as t—+tB. This process makes use of the asymptotic

results given above and requires a detailed analysis, too laborious to be

included here, of various possible cases. -One is thus led to the values
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m0=3/2 . n]=1/2 (5.39)

for the leading exponents and to the formulas

5,(tg) R AN L
5, = - m , f1=E(6) > >0 . (5.40)

Thus the dominant terms in the expansions (5.11) and (5.12) are determined:

sﬁ)mth—t)% s (5.41)

B

E 1
f(z)ﬂJf04-f1(-z- B-tB)2 . (5.42)

where S, and f] are given by (5.40). Although we have not pursued
in full detail the higher order corrections to (5.41) and (5.42), we

ﬁconjucttﬂe that the Va]ues
= = k 5.43
m s nk Pl ( 4 )

for the exponents in (5.11) and (5.12) provide for a consistent expan-

sion scheme.
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6. Large-Time Behavior of the Phase Boundary

We now undertake an asymptotic analysis to determine the large-
time behavior of the propagating phase boundary. The loading condition

6O(t) >0 suggests that we seek solutions such that -

s(t) <0 for t > tB . (6.1)

The validity of (6.1) in some neighborhood of time t, follows from the

B
results of the previous section. Although we conjecture that (6.1) fol-
lows from the governing equations, either (4.20) or (4.32), we have been
unable to confirm this. We shall show, however, that assumption (6.1)

leads to physically reasonable behavior of the solution to our problem.

From (4.15), (6.1), and the short-time analysis we have

[E .
"\/E< $(t) <0, t>t (6.2)

B

Moreover, since s(t) is monotonic decreasing and bounded below, it fol-
lows that it approaches some limit as t ~ . Thus we define the

asymptotic phase boundafy speed o by

o = =Tim s(t) (6.3)
t > o

0 <o 5\/%7 . (6.4)

The acoustic speed c(x,t) is constant on each negatively-sloped

hence

characteristic ray in R]; moreover, c(O,té) = 0. Thus (6.1) guarantees
that, with increasing time, the phase boundary will intersect characteristic
rays in R] which arise on x=0 at progressively earlier times; see Fig.8.

This geometric state of affairs is described by the inequalities:
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and

cleg(tls(t),t))) < -s(t) , t > te - (6.6)

The validity and equivalence of (6.5) and (6.6) also follow from
(6.1), (4.20h) and the short-time analysis of the previous section. From

(2.15), (2.18), (2.19), (2.32), (2.36), and (6.5) we infer

o (t(s(£,)) <0 and o ole (x(s(t),e)) <0, (6.7)

so that e(s(t) ,t) and v(s(t) ,t) are decreasing with time. We have
already observed that the first inequality in (6.2) guarantees that, with
increasing time, the phase boundary will intersect members of the nega-
tively-sloped family of characteristic rays in Rz which "issue progres-
sively later on x= O.] This alone does not allow us to drawanyconclusion
regarding the monotonicity of E(s(t)+,t) and v(s(t)+,t). We will,
however, be able to establish such a monotonicity result once we deter-
mine some of the properties of the unknown function f(z). Meanwhile,

we consolidate (6.2) and (6.6) into
JE< 30 < cle (x(s(0),0)) .t tg (6.8)

Thus the speed of the phase boundary is confined to the interval between the
different acoustic speeds on each side of this boUndafy, We note that
(6.8) is precisely the entropy condition given by Lax [18].

It is apparent that as t - @ one of the following two alternatives

must occur.

1See the discussion following (4.18).
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Alternative I: The phase boundary in the x-t plane does not cross

the initial characteristic x=-c(0)t and so is confined to RD'

For this to occur it is necessary that

-c(0)t < s(t) for t > t8 . (6.9)

Since by (6.3), s(t) is asymptotically linear, (6.9) will hold if

and only if

£

W_(0)

a < c(0) = 5

(6.10)

Thus for large-time, the curve x=s(t) will be asymptotically

parallel to a limiting characteristic C_ ray in R1. We shall Tet

ra)denote the time at which this Timiting characteristic arises

on x=0. Hence,

3
]

Tim t(s(t),t) (6.11)
t->

and

o= C(SO(TGQ) . (6.12)

Alternative II: The phase boundary in the x-t plane crosses the ini-

tial characteristic at some time tL which satisfies the equation

(6.13)

Then

s(t) < -c(0)t for t>t (6.14)

so that after time tL the phase boundary is the leading disturb-
ance. From (6.14) it follows that this alternative will occur if

and only if



a > c(0) = | ——* . (6.15)

It is clear from (6.10) and (6.15) that whether or not the phase
boundary becomes the leading disturbance depends on the asymptotic phase
boundary speed ao. ThQscxdetermine;whichoftheforegoinga]ternativesoccurs.

To ascertain the large-time behavior of the phase boundary, we
shall study the large-time behavior of solutions to the pair of differ-
ential-delay equations (4.22). A major difficulty in any suchasymptotic
scheme stemsfrom the lack of an explicit formula for t(s(t),t) when the phase
boundary 1is in RD. We faced the same difficulty in connection with the
short-time behavior where an asymptotic analysis led to (5.23). For
large time, another approximation scheme immediately suggests itself. 1In

this case we wish to consider t5»>té>T(s(t),t), so that from (4.20h),

cle(r)) = Sl zslt) (6.16)

Now with (3.2), the discussion in section 2 shows that c(eo(r)) is con-
tinuous and monotonicaily decreasing as a function of t. If C(EO(T))
is strictly decreasing, then it is invertible. By (2.34), thisinvertibil-

ity is assured 1f both

A
(—f-

é&w>o , 0<t (6.17)
and

W'e) <0 0<e<By - (6.18)

Note that (6.18) tightens assumption (2.38) by reguiring that the mate-
rial is not only "non-hardening in the first phase" but also genuinely

nonlinear or "softening in the first phase." In the remaining analysis
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we shall assume that (6.17) and (6.18) hold. Thus we may define an

inverse Q for c(eo(-)), where

Q: [0,c(0)] ~ [O,tB] , ~
2 = cle (2(2))) , 0<z<c(0)
and ~ (6.19)
t = Q(c(so(t)) . 0<t g.tg
y

By (6.16) it now follows that

1(s(t),t) = Q(_Sﬁt)) for >t , (6.20)
provided
0 < 'S§t) <c(0) . (6.21)

If the phase boundary becomes the leading disturbance, then
Alternative II holds and s(t) € Ry for t > s consequently,
t(s(t),t) = 0 for t>t . Thus a large-time asymptotic study of (4.22)
requires an explicit approximation for t(s(t),t) only for Alternative I,
the alternative where the phase boundary does not become the leading

disturbance. Then (6.1), (6.3), and (6.10) yield

0 < -s(t) < c(0) , t>tg . (6.22)

Since s(t) is asymptotically linear, (6.22) implies (6.21) for

large times. Thus when Alternative I holds we may appeal to (6.20) in
the asymptotic analysis. We note that for such an analysis, &

need only be defined on some one-sided neighborhood of a, say (a-&,a].

Hence we could weaken (6.17) and (6.18) to
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5, (1) > 0 and W (e, (1)) <0 . (6.23)

However, as Toois not known in advance, it is convenient to retain (6.17)
and (6,18).

When Alternative I holds, (6.20) furnishes the leading term in an
asymptotic expansion of t(s(t),t) for large t. This can be seen by

considering the following iteration scheme suggested by (4.20h):

) T, =0 5 (6.24)

for which t(s(t),t) is a fixed point and (6.20) is the first iterate.

Equation (6.24) generates a formal series solution to (4.20h) of the

form
+) = v I"S(t)\ -k )
T(S(t)sb) kzo Ak\ t / t s (6-25/
d d“a(2)
where Ak(z) js a finite sum of products of z, (z), aE-Q(z)-" "
dz
The first three Ak's are given by
' N
A (z) = a(z)
0
- do(z)
A](z) = z0(z) & s
and > (6.26)
_ .2 do(z)\ 2 2 do(z
Ay(z) = 2%0(z) (BUZ)° - 7(a(2))? 442)
2
1.2 2 d0(z)
+g 200" L5 )

" Differentiation of the second of (6.19) yields

1

=3 . (6.27)
c(e (a(2))) g, (a(z))

a‘-‘z-sz(z)



-73=-

It then follows from (2.18) and (2.32) that (6.17) and (6.18) are pre-
cisely the conditions necessary for dR/dz to be finite. It similarly
follows that all the Ak(z) are finite, although not necessarily uniform-
1y bounded, so that (6.25) is indeed an asymptotic series.

From (6:f7)'and (6.18) " it follows that eo(t) “and  c(s)
are invertible in the first phase; their inverses, denoted by

g;]\‘ and . ],are then defined on 0 < e < B4 and 0 < ¢ < c(0), respec-

tively. We then have

az) = e (< (2) (6.28)

and hence arrive at the following asymptotic formulas for AlternativeI:

(s(t)t) = ) (B8 v oy (6.29)
e(s(6)7,t) = e (x(s(t), 1)) » (2R (6.30)
W (e(s(6)7,8)) = W (e, (e(s(t),0))) ~ ' (TS (6.31)
V(s(£)7,) = ole, (xls(2),8))) ~ o(cT () (6.32)

Entering (4.22) and (4.23) with (6.29)-(6.32), we arrive at the asymptotic

governing equations when the phase boundary does not become the leading

disturbance (Alternative I):

,Jr_ (5(6) 45 f-s(0) B0+ L t)-ng_'a <t-g/—-
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- —213 w’(c”(‘s,gt))) =0 (6.33a)
E/ : E E D 1 JE - -1,-s(t
o s -Eo - 2 - L s el
+%(é(t)-\/§)¢<c“('5§“>> f et -0 (6.33b)

Conversely entering (4.22) and (4.23) with e (t(s(t),t)) = 0, we arrive

at the exact governing equations when the phase boundary becomes the

leading disturbance and t > t, (Alternative II):

F e D s Fo e L 300148 oyt fE (o)

"= (5(t)+[2) = 0 . (6.34a)
P

\/g (-s(t) +\/-§) f(s(t). - %t) - %——8 =0 . (6.34b)

In proceeding with the analysis of (6.33), (6.34) we shall treat

four separate cases:

(1) W)= E , o (t) >+ (6.35)
(1) W) E , o, (t) » o <+, (6.36)
(riny  wY)<E o, (t) » oy < +o, (6.37)
(tv) wW“()<E , o (t) > +0 . (6.38)

Since the end condition (6.17) implies that 1im co(t) < +m , the four cases
t>ro
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listed above are exhaustive. Although it seems Tikely that W”(0)> E
for real materials, we shall treat cases (III) and (IV) as well for the

sake of completeness. We note from (6.4) and (6.15) that the condition

W’(0) < E (6.39)

is necessary for the phase boundary to become the leading disturbance.
We have so far remained silent on the behavior of f(z), the re-

maining unknown in the differential-delay equations. We first show that

f(z) is monotonically decreasing on its interval of definition

(—a),-\[g tB]' For this purpose, as well as for the forthcoming

analysis, we will need the following lemma.

Lemma: If W(e) satisfies (2.14), (2.15), (2.16), (2.17), (4.2), and
(6.18), then

W) -ece)-ns>0 (6.40)

0<Ek g_min{\waéEQ ,\jgg} . (6.41)

: 7 el 7]
We note that min{ \/U——éo—),\/%} is W__é{_O) in cases III, IV; it is

,/% in Cases I, II.

Proof of Lemma:

where

Let
1

HE) = W' (c7'(E) - EcT' (&) -D (6.42)
then since c_](0)= By it follows that

H(0) = w’(e])— EB,-D > W (B)-EB,-D =0, (6.43)

Since H(0) > 0, we need only demonstrate that H(Z) is monotonically
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increasing. Writing

] _ #, ~1 d -1

HA(E) = (Wi(c (&) - E) gz ¢ "(8) (6.44)

we examine each factor of H'(Z) individually. Now

wy =1,
N e g (6.45)

)
e=c (&)

e -

I
aqg—c(e)

As for the first factor of (6.44),

. 1] - w“ 0)-E <0 f W’ (0) < E
W' (C‘](min{ y_é.g_)’\/g)) _E = { (0) or
E-

E=0 for W’ (0)>E (6.46)
and
dweten-o-wclE) w0 (6.47)
Now (6.46) and (6.47) give
W (E)-E<0 . (6.48)

Hence we obtain the monbtonicity result
H'(g) 2 0 . (6.49)

which completes the proof of the Lemma.

Corollary: For W(e) as in the above Lemma and e* defined by
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« 0 for w"(O) =E ,
g = (6.50)
N %) for W"(0)=E ;
W(e) -Ee-D>0 \ (6.51)
when
e*gege] . (6.52)

We now show that f’(z)<0. Differentiating (4.22b) and using

(4.23b) we find after some algebra. that

: E d
£ (s(t) -\/;t) d—Zf(Z)!Z=S(t)—‘J§t

_ 1 s(t) [w’(eo(T(s(t),t))

1

« e (x(s(t),1)) ". (6.53)

Later on we shall also require f'(-s(t)- ,fgtﬂ, which we display at this

juncture. From (4.22a), (4.23a), we obtain after elementary manipulations,
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£(- (t)-\/Et)z_d.f )
: P az "2 }z=-s(t)-\/pgt
) 1 { s(t)
2\/§<\/§+ i(t))? p<\/;§-+é(t)>

~Eeg(1(s(t),t)) - D

[W'(EO(T(s(t),t)))

: [(\/gw»c(eo(r(s(t),t)))) (5(t) +c(eoms(t),t>>>)]§fsoh(s<t>,t>>

. E\2 - [0
+ 2(s(t) + \/;) eo(t+\/-E~ s(t))} . (6.54)
Now recall that

8] 2.€O(T(S(t),t)) >0 . | (6.55)

In addition, if w"(O) 2 E, the phase boundary cannot become the leading

disturbance; accordingly, (6.7), (6.30), (6.3), (6.45), and (6.4) yield

By z_eo(f(s(t),t)) 3_c'](a) Z‘C-](‘Vég) when W'"(0) > E. (6.56)

Consequently gO(T(S(t),t)) always occurs in the interval given by (6.52),

so that the Corollary yields
W' (e ((s(t),t)) - Ee (t(s(t),t)) -D>0 . (6.57)

Examining the second bracketed quantity in (6.53) we have with the aid

of (6.8) that

{(\/% cle (t(s(t),t)))) (é(t)+c(eo(r(s(t),t))))]< 0, . t>t;.(6.58)

Thus applying (6.1), (6.8), (6.57), (6.58); and (6.7) to (6.53), we
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conclude that

£ (s(t) -\/gt) <0 ., Tt tg - (6.59)

Moreover, s{t) < 0 and S(tB) = 0 guarantees that tw s(t)- ‘fg-t is a
continuous, one-to-one mapping of the interval (-oo, tB] onto (- ,-\/g tB],

This allows us to conclude from (6.59) that

£'(z) <0 for -m<z<—£t8, (6.60)

thus establishing the monotonicity of f. It is interesting to note that
it is not obvious from (6.54) that f’(—s(t)-;\j%;t)< 0, although of
course (6.60) provides this result as well.

Having shown that f is monotonically decreasing, we now demonstrate
that f(z) is bounded. From (5.10) we already have the minimum value for

f. To show that f is bounded above, we appeal to (4.22b) which yields

D E
. t —+2\/— B,)
f(z) < max S(6),s(t) P 2 i 1 . (6.61)

2(
< E
tztez\/— \/-) 2%

In view of (6.60), (6.61), 1im f(z) exists, and so we-may define
zZ> -

£ = Tim  f(z) . (6.62)
B T’

Combining (5.10) and (6.62) »

-;—<\/§¢<s1>-82 Bt < ) < (6.63)

The preceding discussion concerning the behavior of s(t) for large
positive t and of f(z) for large negative z leads us to seek asymptotic

solutions of (6.33) or (6.34) in the form
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s(t) =-at + g(t) , (6.64)
f(z) = f_,* fi(2) (6.65)
where
q(t) = o(t) 5 q(t) =o(1) as t-+o0 , (6.66)
f1(z) = o(1) as z + - . (6.67)

We shall give formulas determining o and f—a)’ and shall seek more
specific information about gq(t) and f1(z).
In the ensuing analysis of (6.33) or (6.34) we are faced with

determining the asymptotic behavior of f(-s(t) -‘jg;t) , T(s(t) - -g t)
and 00(t4-\/%-s(t)) as t - m. Here we shall usé the fact that since
f and 9, aremonotonic, their asymptotic behavior as their argument ap-

proaches some value (finite or infinite) is simply given by the function

. 1
evaluated at its asymptotic argument.

it

Case I: W (0)>E, co(t) + 00

Here (6.33) necesﬁari]y applies and substitution of (6.64) into

(6.33a) yields the asymptotic equation:

E (av [y st - B0+ é(-m\fg—)aom a2

- % (_OL+J2-\/5E) + %—J—g—o&c—](u) -%(“oc +\/-§-) (e (o) - %‘OW'(C-](G)) =0

(6.68)
. The last four terms are bounded for all o with O0<ax \/g', as is the

first term, because of (6.63). However, if a #‘,g-,the second term is

TThis procedure was tacitly employed in obtaining (6.30)-(6.32).
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unbounded. Thus we conclude that
a = /= . (6.69)

When (6.69) holds, (4.17) réquires that

gq(t) > \/’pEtB . (6.70)

On account of (6.69), equation (6.33a) to dominant order yields

\/gé(t)”-“(t)”/—J;—Q(*G{x/_ alt)) +3 2
+%%c-](J§)-§%W'(C_](J§))=O : (6.71)

while (6.33b) to dominant order gives

- 5¢<c"(\/§>)+—§5w'(c'1< gy -0 . (6.72)

From (6.72) and (6.65) we obtain

@ Z]‘ -](\/—)+Ec (\/_ %J—‘gﬁc'](\/—g)). (6.73)

Turning our attention to (6.71) we note that the last three terms are
0(1) and by the Lemma do not sum to zero. Since q(t)=o(1) and f s
bounded, it follows that to effect the dominant balance, Go(\J%?q(t))
must be unbounded as t ~ @ . This requires that

1im q(t) = +o , (6.74)
t-m

1Hence (6.70) is satisfied for large-time.

1
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and that the leading behavior of q(t) is supplied by the solution of

d(t)oo(\/—‘équ)) - %—Jg[w%c“(\/%)‘)- Ec“(\]% 0150,  (6.75)

the inequality being a consequence of the Lemma. Integration of the

above expression yields

q
J‘ cro( J%s)ds " %\/g [W'(c-](\[g)) - Ec_]('\/—%‘) - DIt

Let us consider as examples power-law and exponential Joadings:

Example 1: Asymptotic power-law loading

Let

o (t) = kqt" +o(t") , K

o >0, 0<n<om.

1

Upon substitution into (6.76) this yields
1 [Ep,e, -1, [E -1, {E
7\[g[w (c (\/-E_))—Ec (\/;)-D]t

q ,

= n/2 ot}
”Jkl(\l%s)nd“kl(‘%) aak

so that

a(t) “’\E@% (w‘(c”(\/gn - T D) -D))“” A

Example 2: Asymptotic exponential loading

et
Go(t) = k2 e

Substitution into (6.76) now yields

(6.76)

(6.77)

(6.78)

(6.79)

(6.80)
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%\/E[w’(c"g/gn - Ec"(\/§> - D]t
q k
r\,JkZe 2k de \/- \[;3q, (6.81)

whereupon

1 E
g(t) ~ EE‘JE; nt . (6.82)

From these examples, we see that the faster co(t) tends to infinity,
the smaller is the dominant behavior of g(t). Hence the phase boundary
approaches its asymptotic speed.Vég faster for faster loading rates.

Since the final round of the above analysis involved a dominant
balance among the O(1) terms in (4.22), further corrections to f(z) and
g(t) will involve consideration of higher order terms from (6.30)-(6.32).
Because this requires considering the o(%) term in (6.25), it appears
that higher order analysis would become an order of magnitude more

tedious.

Loyl
Case II: W (0)>E , og(t) > oy <@

Again the phase boundary cannot become the leading disturbance so
that (6.33) apply. We can dismiss the possibility dﬂ=‘,§', since in
that case the first two summands in (6.33a) are o(1) and we are left

with the O(1) terms which must satisfy

1 -1 E -1 E
'QB'(D_“'EC (\/;) - W (c (\/-E_))) = 0, (6.83)

contradicting the Lemma. Hence we conclude that
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0<a< ‘/bE' ) (6.84)

Consequently, not only-is

f(s(t) —’Vegt) " f-oo as t - o, (6.85)

but also

f(—s(t)-\/g-t) " f((oc—\/g)t) " f—oo as t - . (6.86)

Entering with (6.85), (6.86), and (6.64) into (6.33), we are lead to the

asymptotic equations:

and
E E . D ,1 [E -
\/;(0;+ ) ‘-'oo"2"5+§\j/;°‘“ (a)
- et B o @)+ U’ @) = 0 (6.88)

Eliminating f__ between (6.87) and (6.88) we arrive at an equation for a:

2
6(a) = (07 - §) e G R AR (6.89)

Any root of G(a)=0inthe interval 0 < o <‘/%-furnishesz&candidate for
the asymptotic phase boundary speed. We now show that there is a unique

root o of (6.89) in the above 1interval. To this end note that
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6(0) ==L og*t =W (<71(0)) ==& (o~ op(tg)) <0, (6.90)
and
a5 - LB e N JBH-m >0, (6.91)

where the inequality in (6.91) follows from the Lemma. Thus we are
guaranteed at least one root in the desired interval. To establishthe

uniqueness of this root, we demonstrate that G(a) is strictly increasingon the

interval 0 < o < \/g . From (6.89),

EoZo -k @+ W @) - D) e . (6.92)

Whereas (2.18) gives

Aw'ic ) - o) = 0, (6.93)

1
p
which implies that (6.92) may be rewritten as

gg,z %?-([GG3~GB]*.[UQ- WMo+ (¢ N (a)) - B¢ (a) - DT) . (6.94)

Since each of the bracketed quantities in (6.94) is positive on

0<acx \[E, it follows that

dG E
i 0 for 0<ac< ‘JE; . (6.95)

Consequently (6.89) furnishes a unique value for the asymptotic phase

boundary speed in the interval 0 < a < \/E;. One may now find fwo

from either (6.87) or (6.88). |
From (6.89) it follows that the larger Oy the larger is the

asymptotic phase boundary speed. Moreover, as the last three terms
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of (6.89) are bounded, the unique root approaches.Vﬁg as o, tends to
infinity. This, of course, is to be expected fromthe results for Case I.

In contrast to Case I, we have obtained here, from the o(1) terms
in (6.33), only the leading asymptotic terms for s(t) and f(z) which are
o and f—a)‘ Hence the first corrections to both s{t) and f(z) will
undoubtedly require consideration of the o(%) term in (6.25).

We now consider materials which admit the possibility that the
propagating phase boundary becomes the leading disturbance, that is,

materials for which

W')<E ‘/ \/‘ (6.96)

It then follows from (2.14), (2.15), {(2.17), (4.2), (6.18), and an ap-

plication of the mean value theorem that

D <0 . (6.97)

This inequality is also apparent from the graph of an appropriate
stress-strain curve that obeys (6.96).

Since the phase boundary will not become the leading disturbance

e _ w0 .
if a<c(0)-= — (see (6.10)), (6.33) applies when

0<ax<c(0) . (6.98)

IM
(e

= W' (8,) - E8, <H'(8,) - EB, = W'(0) +W"(0)8, +  W" (£)85 - E8,

= (W"(0) -E)g, +% w"'(E)s$< (W"(0) - E) B, < 0, where 0 < € <&, .
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Conversely, the phase boundary becomes the leading disturbance if

a > ¢(0), so that (6.34) applies when

c(0) < a < \jE: . (6.99)

Case ITI: W'(0)< E, o4(t) >0 <

Let us suppose, prior to the analysis, that the phase boundary
does not become the leading disturbance. Then we can once again appeal
to the analysis which yielded (6.89), provided we also satisfy (6.98).
The roots of G(a) = O,with o satisfying (6.98) furnish candidates for

the asymptotic phase boundary speed. Once again,

6(0) <0 |, %g-> 0 for 0 <a < c(0). (6.100)

Hence (6.89) has a unique root in the interval given by (6.98) if and

only if

6c(0) = (e(02-£) @ - QD o (6.101)

Therefore, a necessary condition for the phase boundary not to become the

leading disturbance is that

. D ¢(0)®
@ — E_ C(O)2

Y

o (6.102)
Now let us suppose first that the phase boundary becomes
the leading disturbance. Again we -denote the time at which this

occurs by t, . Then (6.34) applies when t > t . Here the asymptotic
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phase boundary speed must lie in the interval given by (6.99). As before
we dismiss the possibility that o = \[g since then the asymptotic

equation resulting from (6.34) requires that

]

D _
75 " o ., (6.103)

contradicting (6.97). Hence, c(0) < a < \E;’ so that we again have
(6.85) and (6.86). The asymptotic equations provided by (6.34) are

E E 1D
\/g(m\j;) R (6.105)

Elimination of f=a> between (6.104) and (6.105) leads to the equation

(—u2+§) 0 * WD =0 (6.106)

which has the single positive root

JE
o= ED“"'T 7
(1--29V
(e]
(1))

(6.107)

By (6.97), a < \Eg . Finally, the first ineguality in (6.99) requires

>c(0) , (6.108)

or equivalently,
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2
o »>zDc(0)” (6.109)

w E 2
5" c(0)

Inequalities (6.102) and (6.109) reveal the circumstances under

which the phase boundary becomes the leading disturbance. If the

ultimate end load coois Tess than or equal to a cut-off load

_-D c(O)2
g, = ——4-% (6.110)

the phase boundary is confined to the disturbed region and the asymp-
totic phase boundary speed is given by the unique root of G(o) = 0 in
the interval 0 < a < ¢(0). Conversely, if O > OL> the phase bound- -
éry becomes the Teading disturbance and the asymptotic phase boundary

speed is given by (6.107). We note that an application of the mean-

value theorem (in a manner similar to that which led to (6.97)) yields

o) >0 = Go(tB) . (6.111)

If we define o as a function of o via (6.89) when (6.102) holds,
and via (6.107) when (6.109) holds, it will follow that a is a continu-
ous and increasing function on g <0< . As % approaches Ogs
one has o ~ 0. When O = 01> it follows that o =c(0), so that in the
x-t plane the phase boundary is confined to the disturbed region, but
is asymptotically parallel to the leading characteristic curve
x=-¢(0)t. Finally as O™ @ @ approaches \/E:

Having obtained a, we find f_  when o < o, from either (6.87)

or (6.88). Here, as in Case II, further corrections to s(t) and f(z)



-90-

will again require consideration of the O(%) term in (6.25).

When Op > 0L We obtain f_oofrom either (6.104) or (6.105). The
result is
(] __ll_)]/z
D 1 D ° o
£ o= = < 0. (6.112)
O 2 \/g) 2E ]+(1__UD__)1/2
0 ®

Asymptotic corrections to all orders for f(z) and s(t) are found from
(6.34). Since the analysis is not difficult and the result is interest-

ing, we proceed.to obtain some of these corrections. Let

o (t)=c_+o,(t), o,(t)>0, o,(t)=0(1) as t=+o0.
0 09) 1 1 1
(6.113)

Substituting from (6.113), (6.64), (6.65) into (6.34) and cancelling the pre-

viously balanced O(1)-terms eventually yields the asymptotic equations:

5 |
(- D a)r (car B (- B 1)

+ (ot J—E)%o}((]—\/’goﬁt) =0 (6.114)
-q(t) £+ (°‘+‘E) f1((—a-\/§)t) =0 . (6.115)

Eliminating q(t) between (6.114) and (6.115), one has

Py
|—h
8
+
m'eq
t
mio
="
P}
+
0%4
j
-—h
—
P——
~——
]
QR
]
Nl
j
ot
j

f
+——E°—Q (-oc+\/-£_-) c]((l—\/%oc)t) =0, (6.116)
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which may be used to determine the asymptotic behavior of f](z). From

(6.115) the asymptotic behavior of q{t) is then given by
E
. vy g
q(t) ~ —-?f——g—-f]((-u-\jgst) . (6.117)
-®

We are also now in a position to determine the asymptotic behavior of

t
J f]((-u-\jg)S)ds, where t* is some fixed time greater than t . If
%*

t
this integral is unbounded as t -+ o, it follows upon integration of

(6.117) that the contribution due to the lower limit of integration t*

is subdominant. In this case we may further conclude that

/E t
(a+ /=) E
q(t) v ——E— | f ((~a-4/Z)e)ds . (6.118)
f 1 o
-00 *
t
Consider as an example,
_ -N -N
Uoﬁ)"0m+(ﬁt +o(t ) , oy < 0, n>0. (6.119)

Then (6.116) suggests “the asymptotic form

f,(z) ~ ?c‘](-z)'n as z> -0 , (6.120)

where ?} js a constant to be determined., Substitution from (6.119) and

(6.120) into (6.116) yields

-f -n+1
_ 3
+

fi= <0
1 - -n+1 o -D -n+1 i
f-oo((o“r‘j;f').nﬂ (ot Vg) " i (O‘J’\/'E) (6.121)

where the inequality follows from oy < 0, o < \jg and (6.112). Further
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from (6.117) ,
T -n+1
q(t) ~ ;cl— (a+ \/%_) t" >0 , (6.122)

so that as t ~ 00 ,

-n+l
( f (°°+\/—) N1

for O<n<1,
( n+1)
Tf.‘_
gq(t) ~ ‘< ‘?l— ent for n=1,
-
constant for n>1. (6.123)

Case IV:  W"(0)<E, o4(t) > o

Since in this case oo(t) eventually exceeds I the results of the
analysis for Case III allow us to conclude that the phase boundary will
become the leading disturbance at some time, again denoted by tL. For
t > L’ the governing equations are once more given exactly by (6.34).

An argument Tike that given in Case I yields

a = \/Ej s (6.124)

This result could have been anticipated by formally letting Op” @ in

(6.107). We also find

f = =<0 . (6.125)

As in Case I, it follows that
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Tim q(t) = 4o, (6.126)]
t-o

- 2
TGO(\/}E:S)ds%-§\/;Dt>O . (6.127)

Let us again consider the asymptotic power-law loading of Example 1,

whence

_ n n
co(t) = kst +o(t ),k

Then (6.127) and (6.77) yield
1
n+] n+1 \[E n+l

The simple form of (6.34) allows the computation of the next cor-
rections for s{t) and f(z), provided we know the next term in an

asymptotic series for co(t). Consider the following extension of (6.77):

o (t)=kit"+k t"+0(t™) , k. >0, n>0, m<n . (6.129)

0 1 2 1

An asymptotic analysis of (6.34) then reveals that
1

1
s(t) v- \/gt+ (- o)™ \/_gt”” +q, t" as t-o,  (6.130)
1

as z > - , (6.131)
where

! See the discussion leading to (6.74).

2 See (6.76).
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T-n+m
—FT for m> 0,
P = (6.132)
1-n
e for m< 0,

and ?}, a} are computable constants.



~-95--

7. Summary and Conclusions

In this final section we shall describe the strain, stress and
velocity fields in the bar, with particu]ar reference to their
asymptotic behavior for times both very near tB and much greater than
tB . Also we present a summary of our results for the bar loaded in a
hard device. We close with a discussion of other pertinent aspects of

the problems we have considered.

A. The Strains and Velocities on the Phase Boundary

We have already seen that

e(s(t)7,t) <0, S v(s(t),t) <0, t > tg, (7.1)!

hence the strain, stress and velocity immediately ahead of the phase

boundary are monotonically decreasing with time. Immediately behind the

phase boundary we have from (4.10) that
9vis(t)h,0) = yE #iste) - JE 0(ae) By
' (7.2)
R # (st - E 00 By + 20t + J2sen(E+ s,
nd

cels()Tt) = - #s(1) -\E ) -5 + 7 (st) E

x (3(0) B+ g (e + B s(e)) (1 w2 506D,

From (2.32), (6.2), (6.17), (6.60) and (7.2) it follows that

o

a

(7.3)

See (6.7).
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[=8

4 visth)y,e)s0 , t>t

at (7.4)

BP
To obtain a corresponding monotonicity result for e(s(t)+,t) we must go

beyond (7.3) since there the first term works against us. Substituting from

(6.53) and (6.54) into (7.3) we find after some algebra that

. cle lx(s(t), )% - $()% | 4
It e(s(t) ,t) = Tt € (t(s(t),t))

% - 5(t)?

[= 8

Q.

] ] ( LN

zJ_ o B2 sw B2 |

EEO(T(S(t)at)) - D). (7.5)

Hence (6.1), (6.7) (6.8), (6.57) and (7.5) yield

g-f e(s(t),t) >0, t> t, - (7.6)

Thus the strain, stress and velocity immediately behind the phase

boundary are monotonica]}y increasing with time.

B. Summary of Results for Small Time

From (5.40) -(5.42), the small-time asymptotic results for s(t) and

f(z) are summarized as follows:

5 (t 1/2 '
s(t) = - _%lt%) (t - t)¥/% + o.[(t - tB>3/2] : (7.7)
39(82 - B])
3(B, - By) & (t,) \I/2
f(z) = + \/'¢<e, ) -8y 4 B2 10 B )
P

(2 Bt 2 v o[ (2 -\E 2] . L (.e)
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An appeal to (4.10), (4.2), (7.7) and (7.8) determines the strain, stress

and velocity immediately behind the phase boundary:

5 ()
c(s(8)1t) = B, + 200 (¢ - t) + ollt - t )], 7.9)

»
(ad
~

i

= 0g * 7 Gy(tg)(t - tg) +ol(t - t,)], (7.10)

3(B,-8y)5,(t,) \1/2
v(s(t)*,t) = o(g)) +’7< 21 o > (t-t )12 ol (t-t,)1 /2],
(7.11)

As required, these three field quantities are smoothly increasing with
time. In particular we note that although the quantity 62~51 — which
goes to zero with the Tength of the interval for the unstable material
phase — appears in the denominator of Sy it does not occur in the
denominators of any of the expansion coefficients appearing in
(7.9)-(7.11).

For comparison, we display the leading terms in the series
expansions for the prescribed load and the resulting strain and velocity

at the end of the bar:

5, (t
(0, = 8 + 208 (6 -ty + ot - £, (7.12)
5(0,8) = g, + o (E)(t - ) + O[(t-1,)], (7.13)
3(8,-8,)5,(t,) 172
v(0.1) = o) + 5 —2E- (¢ tg) 2ottt )14, (.14)

Between the end of the bar and the phase boundary, where

s(t) <x<0, : (7,15)

we have that
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s (4 5 (t
By + 3 G°é ) (t-tg) + o[(t-t,)] < elx,t) < 8, + UOE e (t-t

g)

. ol(t-t,)], (7.16)

og + %—60(t8)(t—t6) tol(t-to)] < o(x,t) < og + 0, (te)(t-tg)

+ol(t-t)], - (7.7)
3(B,-81)5,(ts) \1/2 |
vixt) = o(8)) + 3 ( 200 8 ) (t-tg)!/2 + ol (t-t )21, (7.18)

We note that the proposed expansion scheme (5.11), (5.12) and
(5.43) would suggest that the "o" error bounds appearing in (7.7) -(7.11),
(7.16)-(7.18) may be tightened to "Q" of the next larger half-integer
power.

We turn now to a determination of the various field quantities

immediately ahead of the phase boundary. Here from (5.22), (5.23), (5.39)

and (5.40):

7(s(t) tj =t - " Soltg) (t-t
? B 2,11

2 2
B) + o[(t—tB) 1. (7.19)
Furthermore (2.30), (5.25), (5.26), (5.29)-(5.31), (5.39) and (5.40) yield:
- 60(t8)
3(62"'81 )WIH(B])

(s(t)7ht) = o, - o8 (t-t,)% + o[ (t-t,)%1, (7.21)
w 8 (WB(BZ—B])ZW'"(B])> 8 T

e(s(t) »t) = 8y - (t-tg) + of(t-t)],  (7.20)

. 3/2
-2 oo(tB)

- 3/2
v(s(t) »t) = ¢(8y) - : +
1 3572 01/2(82_8])3/2w.u(

(t-tg)
By) :

+ o[(t-t,)¥?], (7.22)

B
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As required, the above field quantifies are smoothly decreasing with
time. We also note the presence of BZ—B]in the denominators of the
coefficients of the terms giving the lTeading order time dependence. The
final quantity which we shall examine is the acoustic speed immediately
ahead of the phase boundary. From (4.20h), (7.7) and (7.19) it follows
that

s (t,) \1/2

cle(s(t),t) = —2—B
3@(62‘8])

1/2

(t-t) /% + o[ (t-t )1/27, (7.23)

B

We note that (7.7) and (7.23) confirm (6,6),for small-time. The determination .
of the exact order of the remainder terms appearingin (7.20)-(7.23) is
complicated by the multiple nesting of functional arguments occurring
in the various formulae, as well as by the neéd to determine the next
order correction to (7.19).

C. Summary of Results for Large Time

We have treated separately the four cases (6.35)-(6,38) and have

“found that

s(t) = - ot + q(t) as t >, (7.28)

f(z) = f__ + f](z) as z » -, (7.25)
where

0<ax< %_ (7.26)

and

a(t) = o(t), 4(t) = o(1) as t » o , (7.27)

f1(z)= o(1) as z > -, (7.28)

We first considered the cases given by (6.35) and (6.36), for which

w?(0) > E. (7.29)
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For these cases the phase boundary cannot become the leading disturbance.

When the applied load approaches a finite limit o the asymptotic phase
boundary speed o is given by the unique root of (6.89) occurring within
the interval 0<u<\f§ . It follows that o is an increasing function of
o, and approaches \JE;as o, tends to infinity. The constant f__may
then be found from either (6.87) or (6.88). When the applied load is
unbounded, o = \[E and 112 q(t) = o. In particular the dominant

behavior of q(t) is given implicitly by (6.76), while f__ is given by
(6.73).

For the cases given by (6.37) and (6.38), we have

Ww"(0) < E. (7.30)

For these cases, if the applied load remains below the value o,, given
L

by (6.110), the phase boundary does not become the leading disturbance.

Here o is the unique root of (6.89) occurring within the interval
(0,c(0)], while f__ is again found from either (6.87) or (6.88). If the

applied load exceeds s,'the phase boundary eventually becomes the leading

disturbance. In particular if the applied Toad approaches a limit
T > Op 5 O is given by (6.107) and f__ by (6.112). If the applied load is
unbounded, o =\/E; and f__ = D/4E. In this latter circumstance q(t) '
is also unbounded, the dominant behavior being given implicitly by
(6.127).

We have already noted that ahead of the phase boundary,
e(s(t) ,t), o(s(t) ,t) and v(s(t) ,t) are monotonically decreasing with
time. Of course if the phase bouhdary becomes the leading disturbance,
say again at t= tL, these quantities are all zero for t > tL' Otherwise

the phase boundary is confined to the disturbed region and is asymptoti-
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cally parallel to the characteristic ray C_1in R] which issues from
x = 0at time t = t_, where

T = al) . (7.31)]

Then (6.30)-(6.32) yield the asymptotic results:

e(s(t),t) v (o) as t oo, (7.32)
o(s(t)7,t) v W' (c T (a)) as t > w, (7.33)
v(s(t)",t) v olc  a)) as t » e (7.34)

Consider the fixed particle P initially at x. Since s(tB) =
follows from (5.9) and (6.1) that for any given x < 0 the equation

x = s(t) has a unique root t = tx with tx > t,. Consequently the

B’
particle P finds itself in the high-strain phase for times greater than

tx. For fixed x we have

Tim f(x —\[E t)="Ff_, Tim f(-x —\fE t)="Ff__, (7.35)
P - t—)oo p -

T
which, with (4.6) and {4.10), yield the following large-time asymptotic
results for the stress, strain and velocity at the particle P initially

at x:

o(x,t) n co(t +\[% X) as t - o, (7.36)
e(x,t) e (t +\/5E~ x) = [oo(t+\[-§x) “DJ/E astow,  (7.37)
vix,t) ~ [oo(t+\[g'x) - D]/ [oE + 2\[5 f_ ast~>o. (7.38)

It is interesting to compare (7.36)-(7.38) to the stress, strain
and velocity fields occurring in a companion problem involving a

Tinearly elastic bar, for which the stress is related to the strain via

T
See (6.11), (6.12) and (6.28).
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= ke + Dy, e > 0, (7.39)

In this companion problem we shall denote the strain, stress and velocity
fields by &(x,t), o{x,t) and V(x,t). The response of such a linearly

elastic bar subject to the prescribed end-loading
5(0,t) = o (t), | (7.40)

in the disturbed region x;=-|/%% t s given by

§(x,t) = o (t + £x), (7.41)
ex,t) = [og(t /%) - 0] / E, (7.42)
Tx,t) = Loy (t [T %) - D] /\[oE . (7.43)

Two cases of interest in comparing (7.36)-(7.38) to (7.41)-(7.43) are

D2 =0 —1in whiéh case the linearly elastic bar when stress-free is
unstrained ---and'D2 = D, dnwhichinstance (7.39)4s the 1inear extrapolation
back through €=0 ofthe final linear portionof the stress-straincurve
occurring in the original problem. Recall that D can be either positive

or negative], According to (6.63),
B8 "
- E, oy o1 L [wi(s)
f o> flz) > f(- 5%)—2U0 £ ds-8y)s (7.44)

so that f(-\/g tB) may be either positive or negative depending

on the value of Bo and on the detaiTed behavior of W(e) within the
interval (O,B]). Similarly f__ may be either positive or negative2 .

1 As we have seen D<0 when W"(0) <E; see (6.97).

2 For examp]e when W"(0)<E, it follows that f( \[_-t <0, However if
W"(e)>9E for 05£§;; By and 8, < g By it fo]]ows that f('\[:?t6)>0
In this case (7.44) provides f__>0. Conversely,(6.112) furnishes an
example with f_ <0.
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ébnsequently, apart from the monotonicity of f, there is Tittle
we can say concerning its range without stipulating further conditions
on the stress-strain relation.

One case of interest is that of a material with a small

nonlinearity. Suppose

[W"(e) - E| <8, for 0 < e<By-6y, and that B, = By +38;, (7.45)
where

81 >> 51 >0 and E >> 52 > 0, (7.46)]

Here the material is "almost Tinear" except in a 61-neighborhood about

e= 81- For such a material

B. ] '
tin f(-yEt) = tim 5 (1] WL 4o\ =0, (7.47)
856,70 . 8126520 0

and
1im D= Tim (W‘(B]) - EBZ) =0, (7.48)
6],62+O 6],62+0

We now show that in all of the cases set down in (6.35)-(6.38),

lim
815,850

It
o

(7.49)

When the phase boundary becomes the leading disturbance,(7.49) follows
from (7.48) and either (6.112) or (6.125). When the phase boundary is
confined to the disturbed region, we examine either (6.73) or (6.88).

First note that for €<<B1

T If it were not for (6.18), we would take 62=0.
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Tim  W’(e) = Ee , (7.50)

lim  o(e) = 1lim j'\/ W) g, - 4 %—ds - \[%fg. (7.51)

6],62+0 .I,é -0 O 0

When (6.88) applies, we have

it vin (2 LB @ denBote e
8156520 i °

=—1 T 1im (%—5)+J2-oc Tim <—\/§C—1(u)+¢(c-](a))>
\[E(a+\[E§ °

],62—>0 6] ,62~>O

~2— Tim (J—qs(c (a) -~w’(c'1(u)))]=o. (7.52)

828520

Similarly (7.48), (7.50) and (7.51) yield (7.49) when (6.73) applies.
This completes the verification of (7.49) in all cases., Finally from

(7.44),(7.47) and (7.49) we have

1im  f(z) = 0. (7.53)
It is immediate from (7.45) that the strain, stress and
yelocity ahead of the phase boundary will, as 6] and 62 approach zero,
approach the corresponding values occurring in a material with the

stress-strain relation

o= Ee e>0. (7.54)
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What (7.53) guarantees is that the same is true behind the phase
boundary] . Thus it follows that the jumps in strain, stress and
velocity acrosé the phase boundary will tend to zero with 61 and 62.
In other words the solution to the nonlinear problem approaches the

"shock-free" solution to the linear problem as the nonlinearity becomes

sma11Z.

D. Summary of Results for Hard Loading

So far we have only considered "soft" loading conditions for the
materials introduced in the fourth section. For hard-loading , we have
formulated in (3,24) the free boundary problem governing the phase
boundary for materials unrestricted by assumptions as to the curvature
of the stress-strain relation in the high-strain material phase. As one
would expect, if we confineourattention to the 'subclass of materials for
which (4,2) also holds, we are able to integrate (3.24) partially whereupon
we arrive at a pair of differentié]—deiay equations formally resembling
(4,22) and (4.23), 'We may then recast the problem as an integral
equation formally resembling (4.32),

Proceeding as in the analysis of the soft device, we arrive at
qualitatively similar results, The major difference between hard and
soft loading occurs in the small-time asymptotic results, We restrict
attention to the generic case: w"‘(B]) < 0 and VO(tB) > 0. Here t = t,
is the unique root of (3,23). Upon completion of an analysis parallel to

that of the fifth section, one is led to the following asymptotic results:

3
Formally set f=0 in (4.10).

2
This is reassuring, since naivelyletting Bo>By s in (7.7) and (7.20)-

(7.22) would have led us astray,
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- Voltg)
() = —2 B (¢ - 197 +ql(t - £)%] 0.
2(82'81)
-2
t
sl = g+ 22 (o ors - 17 .
E(By-B4)
.2
o(s(t)",t) = o + Molte) (. tg) + ol(t - £)°1 (7.
8,8
21
Vs(8)F.8) = vo(tg) + V(e (E - ) + OL(t - £)°T . (7.

Also, in analogy with (7.16) and (7.18), here we have for

x < s(t) <0 (7.
that
2. 2,
J(ty) 3pVa(t,)
32+f).v.9_._8... (trtB)Z + o{(t-tB)Zk e(x,t) < By + "o 8 (t'tg)z
E(Bz'B]) ZE(Bz'B])
+ ol (t - t5)°]
(7.
and ‘ :
Vix:t.) = vg(t) + ol(t-t)°] . (7.

55)

56)

57)

58)

59)

60)

61)

Moreover, in contrast to the soft Toading case, indications are that here the

phase boundary location s(t) — as well as the strain, stress and

velocity fie]ds'immediate]y on either side of the phase boundary— can

apparently be expanded in integer powers of t-tB.

Turning to the large-time analysis we again represent s(t) in the

form (7.24) subject to (7.26) and (7,27), As with soft-loading, the

phase boundary cannot become the leading disturbance for materials with

E

W"(0) > E, In this case, if the end velocity is unbounded, o =\jgi and

g(t) is unbounded, while if vo(t) approaches a Timit v_ we find o as the



unique root within the interval (0,4/=) of the equation
(? - Blv,-otcT @) + 200 (e (@) - EcT (o) - D1 = 0. (7.62)

For materials with w"(o) < E the phase boundary becomes the Teading
disturbance if and only if the increasing velocity at the end of the
bar eventually exceeds the value v =V where

- ~Dc(0)
Lo - c(0)?)

(7.63)

If vo(t) is unbounded, o =\j§T and q(t) is unbounded; otherwise o is
found from (7,62) when v_ SV while it is given by

E
+ — °

5 (7.64)
when y_ > v In all cases it is possible to obtain higher order

corrections through methods analogous to those employed in = Section 6.

E, Further Remarks .

The integral equation formulation for this problem remains relatively
unexplored. It can be shown that for a certain type of piecewise-linear
stress-strain relation, the integrals can be evaluated yielding a scalar
equation relating the quantities t, ta and tb’ Such an equationvcou1d
perhaps permit the determination of s(t). It should be noted that if
s(t) is known, it is a simple matter to determine u(x,t) in R, by a .
procedure we now briefly outline. Since (4.15) ensures that the curve
x = s(t) is never parallel to the characteristic rays in ﬁ%, the phase
boundary is an acceptable curve on which to specify Cauchy data for the

classical wave equation (4.11) which governs u(x,t) in R, - The proper
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Cauchy data to specify on the phase boundary may be found from
e(s(t)+,t) and v(s(t)+,t),which in turn are given in terms of the known
functions e(s(t)™,t), v(s(t) ,t) and §(t) by means of the jump conditions
(2.12). Then, as is well known, an application of Green's theorem in the
plane will yield u(x,t) in Ry. It is essential to locate the curve
x = s{t) properly inorder to guarantee that this solution to the classical
wave equation will satisfy the condition prescribed on x = 0.

If this procedure is employed with s(t) as yet unknown, it gives
a functional representation for u(x,t) behind the phase boundary
in terms of s(t) and s(t), For the problem of hard Toading, equating
the prescribed value of u(0,t) to that provided by this functional
representation furnishes an elegant alternative derivation of the integral
equation, However, since the soft boundary condition amounts to prescribing
the normal derivative of u(x,t) on x = 0, this method will not supply
the integral equation for the case of soft loading.

One notable aspect of our analysis is the inequality (6.8) which
assures that the phase Boundary is subsonic with respect to the material
in the high-strain phase behind it, but supersonic with respect to the
material in the low-strain phase ahead of it. According to James {19]
certain uniaxial tensile experiments on a bar in a dead-loading (soft)
device indicate that phase boundaries appear which separate approximately
homogeneously deformed phases. These experiments also indicate that the phase
boundary travelsmore slowly than the sound speed of either phase. That the phase
boundary we describe is supersonic with respect to the material ahead of

it is equivalent to the geometrical requirement that the leading side

of the phase boundary intersect characteristic rays which arise either
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attheendofthebar x=0 for t<t,, oronthelineofinitial data x<0, t=0,

8

From the discussion following (3.5) we recall that the vanishing of the
sound speed at x = 0, t = té ensures that these characteristic rays form
an unambiguous cover of ﬁ\\j(o,t)lt z_tB}. Consequently any phase

boundary emerging at time t, must at Teast initially be supersonic with

1

B
respect to the material ahead of it

. Moreover, when (6.1) holds the
curyature of the phase boundary in the x-t plane assures that the Teading
side of the phase boundary continues to intersect new members of this
covering set of characteristic rays, thus ensuring the supersonic
condition (6,6),

For a phase boundary to advance subsonically into a material in the
low-strain phase, characteristic curves must arise on the leading side
of the phase boundary, Such a violation of the entropy condition given
by Lax would seem possible if the phase bo&ndary were to emerge on x = 0
before the sound speed of the material vanishes, i.e, before the loss

of hyperbolicity at time t,. Suppose the phase boundary emerges on x = 0

8’

at time te < t,. Then a sufficient condition for the phase boundary

8"
to be initially subsonic with respect to both material phases is that

it emerge with zero velocity. In this circumstance any point in the
region of the x-t plane between thé characteristic ray originating at
x=0,1t= te and the phase boundary would 1ie on a negatively-sloped
characteristic ray which originates on the phase boundary. Consequently
the solution representation (2.30) would apply only up to the character-
jstic ray originating at x = 0, t = te' The obvious candidate for a
solution in the region —c(eo(te))(t-te) < x < s(t) would be the extension

L T —

1
As in confirmed by (7.7) and (7.23).
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of the strain and velocity fields as constants from x= —c(eo)(te))(t—te).

The time at which the phase boundary emerges is determined by the
particular inverse to the stress response function o= W'(e) which
operates at the end of the bar, In our study we have assumed an inverse
which-results in a change of phase only when the current phase can no
longer support the applied load. A consequence of this assumption is that
the sound speed of the original phase vanishes where the phase boundary
emerges. The vanishihg of the sound speed is a phenomenon not without
precedent in continuum mechanics. Consider the isentropic one-dimensional
non-~steady flow engendered by withdrawing a piston from a tube containing
an ideal polytropic gas initially at rest. If the final piston velocity
exceeds the escape speed, the sound speed is zero at the leading edge of
the gas as it moves into the newly created volume. Although this piston
problem has many formal similarities to our problem of the elastic bar,
there is no appropriate analogue of a second phase. Here the region
between the piston and the leading edge of the gas is simply a vacuum or
zone of cavitation. A relevant solid mechanical analogue of the piston
problem would seem to be the monotonic loading of an e]éstic bar whose
stress response curve is initially increasing with strain and then

decreasing without a final increasing portion, for then, just as speeds

above the escape speed cannot be achieved by the gas, equilibrium
stresses above a certain level cannot be sustained by the elastic

solid |

1 For a discussion of such a stress response in (incompressible) elastic
-s0lids and the corresponding analogy with compressible fluids, reference
may be made to Section 4. of [23].
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As discussed in the third section, it is possible to introduce a
second phase emerging at the end of the bar at any time in the interval

[t ,t ]] . Besides our choice of t = t_, another plausible candidate is
a’ "B

B
the time tM when the applied load reaches the Maxwell stress. Then
GO(tM) =0, and we expect to observe o = O €= Yy and v = ¢(y1) in
the region of the x-t plane between the "Maxwell characteristic" and
the phase boundary. Although we have yet to investigate such a problem,
we point out that since the fields in front of the phase boundary would,
at lTeast initially, be homogeneous, such a study has the analytical
advantage of eliminating the need to invert (4.20h),

Besides the Maxwel]l characteristic, there is another canonical

characteristic, We observe that, at the end of the bar, the particles

s C 0o - WY (0 _ . .
are initially subsonic since v(0,0) = 0 <.V—~—75—~ = ¢(0,0); at time tB,
however, they are supersonic since v(O,tB) = ¢(81) >0 = c(O,tB). Hence

there is a "transonic characteristic" on which the particles are moving
to the right at the acoustic speed, We can locate this characteristic
by solving for the associated "transonic strain". The latter is the unique

root within the interval (O,B]) of the equation

L (Tt ey - (o) 48 )=
c(e) - o(e) \[E- (;/ﬁf-(e) fov W' (s) d > 0. (7.65)

In contrast to the familiar situationof two-dimensional isentropic steady
compressible fluid flow, the governing equations for the dynamics of an
elastic bar do not change their type as the continuum passes from

subsonic to supersonic, It should be noted from (7.65) that the transonic

1
See the discussion surrounding eqn. (3.8).
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strain is completely determined by the first ascending branch of the
stress~strain curve. On the other hand, the Maxwell strain Y1 for the
material in the low-strain phase depends on the global stress-strain
relation via the equal area rule, Consequently the transonic strain may
be either greater than, equal to, or less than UE In other words,
whether the particles become supersonic before or after they reach the
Maxwell stress depends on the particular stress-strain curve under
consideration,

Another interesting result of our analysis is that the velocity of
the phase boundary approaches the sound speed of the high-strain phase
\[g as the applied load tends to infinity. This bears a resemblance
to results in other free-boundary problems in mechanics. Burridge
and Keller [24] treat a semi-infinite one-dimensional Tinear-elastic
adhesijve~tape which is initially completely attached to a plane surface
and subject to an in-plane tensile force at its end. Peeling is initiated
by suddenly applying a sufficient1y large normal force to the end of
the tape. The free-boundary is the point separating the portion of the
tape still adhering to the surface from that part which has already
peeled. If the pair of forces at the end of.the tape is maintained, the
free-boundary will move at a constant velocity which is a monotonically
increasing function of the magnitude of the applied normal force.
Moreoyer the value of this function approaches the fixed sound speed of
the elastic adhesive-tape as the magnitude of the applied normal force
tends to infinity., The analogy, however, cannot be carried too far, since
the tape problem incorporates a condition which characterizes the

breaking of the adhesive bond between the tape and the surface, while the
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problem of the elastic two-phase bar incorporates no ana]ogous‘failure
condition external to elasticity theory. The adhesive failure condition,
which applies only at the free-boundary, is dissipative in the sense that
it Towers the free-boundary speed1. It would seem that a corresponding
effect on the phase boundary speed might occur in the problem treated
here if a surface energy were associated with the phase boundary. As
James [5] has obséEVed, the éffects4d%bsuch surface énergies haVe S0

far been ignored.

Finally we note that in this study we have totally neg!écted unloading,
a process which we would expect to promote conventional shocks; see [16].
In addition we have dealt with a very specialized class of materials that
not only made possible the integration of some of the governing equations,
but also precluded conventional shocks behind the phase boundary. For
more general materials, even determining the smoothness of the fields
behind the phase boundary would perhaps demand mathematical techniques

entirely different from those employed in this study; see, for example, [25].

1 See Eq. 2.7 of [24].
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o=W'(€)

Stress-strain curve for an elastic material which admits

multiple phases.

Figure 1.
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Figure 2. Geometry of the characteristic rays C_ for an elastic single-
phase bar.
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Jo=W'(e)

W'ey)
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Figure 3a. Stress-strain curve with an jsolated discontinuity in We)
at e= €4

-

C_(td")/ / C_(t4
1)
Q)
)
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O'o(td) =Wl(€d)

Figure 3b. Region between the characteristic rays associated with strain
€4 which involves constant strain and velocity.
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Figure 4a. Traction impulse delivered at time td.
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Figure 4b. Centered simp]é wave associated with the traction impulse.
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vertical

Figure 5.

O

The smooth monotone loading past o=o0g (=0 o{tg)) of a bar
whose material is non-hardening in the f1rst phase is as-
sociated with a pattern of characteristic rays C_ which pro-
vide an unambiguous covering of the region R\{(0,t ]tzztB
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ay

Figure 6. The particular inverse to the stress response curve of Figure
which results in the material assuming the high-strain phase

only when the Tow-strain phase can no longer support the ap-
plied load.
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jo=W'(e)

Figure 7. Representative stress-strain curve for the family of materials
introduced in Section 4.



-123-

" v d
Slope" §F = — /7%‘ |

Figure 8. Geometry of the characteristic rays C_ for the material whose
stress response curve is depicted in Figure 7.



