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ABSTRACT

Pressure oscillations in liquid-fueled ramjet engines have been studied both
analytically and numerically within the low frequency range. We examine first the
linear unsteady motions in coaxial-dump configurations. The flowfield in the dump
combustor is approximated by division into three parts: a flow of reactants, a
region containing combustion products, and a recirculation zone, separated by two
infinitesimally thin sheets: the flame and the vortex sheets. The three zones are
matched at these sheets by taking into account kinematic and conservation rela-
tions. The oscillatory field in the inlet is coupled to the field in the combustor at
the dump plane to determine the complex frequencies characterizing the linear
stability of the engine. Favorable comparison with the experimental data obtained

at the California Institute of Technology has been obtained.

Numerical analysis has been applied to investigate the nonlinear behavior of the
shock wave in the inlet diffuser. Both viscous effects and the influences of injecting
fuel/air mixture are accounted for. The response of a shock wave to various distur-
bances, including finite and large amplitude oscillations, has been studied in detail.
The results obtained serve as a basis for aﬁalyzing the stability characteristics of

the inlet flow.

Numerical calculations have also been conducted for the pressure oscillations in
side-dump ramjet engines. The flowfields have been constructed in two regions: the
inlet section, including a region of fuel injection, and a dump combustor. Each
region is treated separately and matched with the other at the dump plane. Follow-
ing the calculation of the mean flowfield, the oscillatory characteristics of the
engine are determined by its response to a disturbance imposed on the mean flow.
Results for the frequencies and mode shapes have shown good agreement with the

experimental data reported by the Naval Weapons Center, China Lake.
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Chapter 1
INTRODUCTION

Recent developments in liquid-fueled ramjet engines led to serious difficulties
with pressure oscﬂla.tmns.l'2 Disturbances of this type, called generically combus-
tion instabilities, are a consequence of the sensitivity of combustion processes to
local pressure’and velocity fluctuations. If compensating influences acting to
attenuate the oscillations are weak, then unsteady motions in the flowfleld may
reach sufficient amplitude to interfere with proper operation. Table 1.1, taken from
reference 2, presents some practical examples in which pressure oscillations have

serious impact on engine development programs.

Several modes of oscillations have been observed. They are classified as
transverse, longitudinal, and bulk modes according to the frequency range and spa-
cial structure. Because the driving mechanism is ultimately associated with
combustion and characteristic features of the inlet and the combustor flows, this

classification is best based on the oscillatory flowfields in the combustion chamber.

Transverse mode oscillation, also known as screech instability, may enhance
heat transfer to engine components and therefore compromise engine performance

3 carried out experiments in a two-dimensional

and durability. Rogers and Marble
ramjet combustor. They found that in the presence of screech, vortices were shed
at the flame attachment points, distorting the flame front as they were swept down-
stream. A mechanism for the screeching oscillations was proposed, based upon
transient combustion in the vortices. In spite of the potential detrimental
influences, this mode of oscillation can be controlled effectively with a flow obstruc-

tor such as baffie or a damper such as acoustic liner, and no longer be considered

as a major design problem.
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For contemporary ramjet engines, the low frequency oscillations, including both
bulk and longitudinal modes, seem to be most troublesome. It may interact with
the inlet shock structure and reduces the stability margin of the system. In the
worst situation, the shock is displaced out of the inlet diffuser, leading to failure of
the mission. The purpose of this thesis is to examine the unsteady behavior of ram-

jet engines within the low frequency range.

The basic ramjet configuration illustrated in Figure 1.1 includes a shock wave
system at the entrance, an inlet diffuser, a fuel injection system, a dump combus-
tor, and an exhaust nozzle. Air is delivered to a supersonic diffuser, decelerates
externally through an oblique shock wave attached to the ramp, then becomes sub-
sonic after passing through the terminal shock wave. Either fuel or fuel-air mix-
ture, depending on the injector and atomizer used, is injected into the main flow
downstream of the shock system to provide the necessary combustible mixture.
The combustion processes in the dump combustor are extremely complicated,
involving turbulent mixing, droplet vaporization, flame propagation, shear layer,
recirculating flow, and finite-rate chemical kinetics. Attempts to model these com-
plicated phenomena have been made for over three decades; understanding
remains poor. Most of the past work concentrated on investigation of the mean
flowfields in the combustor; information available on the treatment of the unsteady
flowfields is limited. An excellent review paper concerning the computer modeling

of the steady combustion in ramjet combustor has been given by Lilley.A‘

Experimental investigations of low frequency oscillations in ramjet engines have
been recently conducted by several research organizations. The results obtained
have provided information about the effects of combustor configuration, fuel
management, and inlet system on the overall instability processes. Jarosinski and
Wojcick15 considered the low frequency combustion instability in a dump combus-

tor which is connected upstream to an acoustic resonator. Shadowgraphs and
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motion pictures were taken, and measurements were made of the pressure, velocity
and local chemi-ionization. They concluded that the combustion instability of this
type is closely related to the instability of laminar flames although the combustion
processes are distributed throughout much of the volume.

8 summarized the features of the pressure oscillations in two liquid-fueled

Rogers
engines having very different geometrical configurations. One had an coaxial dump
with a single inlet, and the other had two inlets with a side dump arrangement.
Significant differences appear in the structure of the oscillations excited in the
combustion chamber. Schadow and co-works have studied'?'9 oscillations in several
research dump combustors with special attention focused on the inlet
shock/acoustic wave interaction. The entire device was extensively instrumented
during testing. Two kinds of data have been taken under various operational condi-
tions: the acoustic wave structure and the properties of the inlet shock. In refer-

ences 10 and 11 results for various dual side-dump ramjet combustors were

reported.

So far, most analytical treatments of low frequency motions in ramjet engines
employed linear perturbation techniques, giving results valid in the lixﬁit of small
amplitudes. Nonlinear analysis has not yet been applied to this subject although
some numerical solutions of nonlinear governing equations have been obta.ined.12

Culick and Rogers18

gave the first detailed analysis with both inlet and combustor
accounted for. Some formulas were given for frequencies and mode shapes approx-
imating the oscillations which had been observed in two engines. The combustion
processes were accommodated in a crude fashion, not treated in detail. Later, Yang
and Culick'?# constructed a one-dimensional analysis using an integral formulation.
A more realistic model of the mean flowfield and a proper treatment including the

inlet diffuser were included. Favorable comparison of calculations with experimen-

tal data for the amplitude and phase distributions in an axial laboratory device
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12 also carried out a numerical analysis for dual

were acquired. The same authors
side-dump ramjet engines. The detailed information obtained provides a better
understanding of the flowfields, especially for finite and large amplitude oscilla-

tions. Reardonls

applied a combustion time lag model, originally developed for
dealing with bulk oscillations in liquid propellant rockets, to the corresponding
ramjet problems. In reference 18 the rumble (bulk mode) oscillations in a coaxial
dump combustor have been investigated by considering the interplay of entropy

and acoustic waves. The acoustic field in the inlet is represented as a leftward trav-

eling wave, the reflection process of the shock being ignored.

Because observations of the unsteady behavior suggest that the low frequency
oscillations do not involve significant transverse motions anywhere in the engine,
the work reported here is based on a quasi one-dimensional model. We start with
an analytical linear analysis, followed by a numerical nonlinear analysis. In
Chapter 2 a simple linear stability model accommodating both acoustic and
entropy fluctuations is presented to identify the acoustic modes associated with
pressure oscillations. The engine is approximated by division into two parts: the
inlet section and the combustion chamber. Each region is treated separately and
then matched with the other at the dump plane. The combustion zone is assumed
to be acoustically compact, its unsteady behavior being represented by the Crocco's
sentitive time-lag hypothesis.” As a first approximation, we ignore the cross sec-
tional area change in each section and assume the mean flowfields to be uniform.
The oscillatory field is therefore the superposition of two simple plane acoustic
waves running downstream and upstream, and an entropy wave carried with the
mean flow. Combination of these wave equations with the proper boundary condi-
tions at the shock wave and the entrance of the exit nozzle forms a well-posed prob-

lem for the unsteady motion.
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While this analysis provides reasonable solution for the frequencies and mode
shapes, it is seriously incomplete not including, among other things, treatment of
the mean flowfield in the combustor. Chapter 3 is devoted to correcting this
matter. It is intended to develop a suitable simple and realistic model accommo-
dating the fundamental features of the flowfield in the combuster, including the
flame front, the shear layer, and the recirculating flow. For low frequency oscilla-
tions, the flame front and the shear layer can be represented adequately by two
infinitesimally thin sheets: the flame and the vortex sheets respectively. The
flowfield is, accordingly, decomposed into a flow of reactants, a region containing
combustion products, and a recirculation zone, as shown in Figure 1.1. The three
zones are then matched at those sheets by taking into account conservation and
kinematic relations. Determination of their shapes is part of the solution. The
unsteady motions are treated within linear acoustics and approximated as quasi

one-dimensional motion in each region.

In Chapters 2 and 3 the oscillations are confined to the small amplitude regime
where linear analysis is properly used. The main results of the analysis are fre-
quencies, growth rates, mode shapes, and perhaps more important, the first step
towards nonlinear analysis. For many practical cases, the flowfields involve
finite/large amplitude motions in which nonlinear effects play essential roles. It is
of fundamental importance to answer such questions as: how does the flowfield
respond to a disturbance with finite or large amplitude? and how does an initially
small amplitude disturbance grow and finally reach certain limiting value?
Officially, this can be achieved using either asymptotic expansion method or numer-
ical technique. Each method has advantages which are complementary to the
other. A fruitful discussion of an asymptotic expansion method has been recently

418

given by Awa in his study of combustion instabilities in solid propellant rockets.

Owing to the singular behavior of the shock wave and to the complicated
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configuration of the engine, we resort to numerical methods here.

Chapter 4 starts with the formulation of a two-phase flow problem with both gas
and liquid fuel accounted for, followed by the specification of boundary conditions.
After a review of the theories underlying numerical methods for hyperbolic prob-
lems, some important criteria for choosing proper solution techniques are dis-
cussed. This chapter serves as a basis for the work given in the subsequent

chapters.

In chapter 5 the response of a normal shock wave to various disturbances is dis-
cussed. This is motivated by two reasons. First, the greatest combustion related
operational problem in ramjet engines is inlet unstart due to the loss of shock sta-
bility. Second, the shock wave is an important upstream boundary in the entire
analysis. The oscillatory behavior of the engine depends strongly on the reflection
processes at the shock. Both linear and numerical nonlinear analyses are carried
out. The influences of shock motion on the downstream flow properties, such as

entropy and mass flow rate, are also discussed in great detail.

Chapter 8 deals with pressure oscillations in dual side-dump ramjet engines,
using a one-dimensional numercial analysis. The engine is treated in two parts: the
inlet section, including a region of two-phase flow downstream of fuel injection, and
a dump combustor. Combustion processes are crudely modeled as a stirred reac-
tor, occupying the forward portion of the combustor, followed by a length of plug
flow. Calculations are first carried out for the steady flowfields. The unsteady
behavior of the engine is then determined by its response to a small disturbance
imposed on the mean flow. In addition to the spacial distributions of flow proper-
ties at various times, spectral information is obtained for the time history of the

pressure.

Finally, we conclude this thesis with a summary of the results and future exten-
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sions of the analysis. The work reported here provides a convenient means of

analyzing the unsteady behavior of liquid-fueled ramjet engines within the low fre-

quency range. Favorable comparison of calculations with experimental data for

various laboratory devices, including both coaxial- and side-dump engines, has been

obtained.

10.
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Chapter 2
A SIMPLE LINEAR ANALYSIS

In this chapter, a simple linear stability analysis of low frequency pressure oscil-
lations is developed, based on a one-dimensional approximation for a device having
a coaxial inlet, as shown in Figure 2.1. The engine contains two parts, the iniet duct
and the combustion chamber; in each region we treat the flowfield separately.
Boundary conditions are specified as admittance functions for a normal shock at
the entrance plane and for a choked nozzle at the exhaust plane. The solutions for
the two chambers are then matched at the dump plane to determine the unsteady
behaviors of the engine. Recent experiments conducted at the Naval Weapons

Centerl'z prompted the work discussed here.

Stability of pressure oscillations may be expressed in terms of gains and losses
of energy for the acoustic waves. Within linear analysis, these energy exchange
processes can be conveniently classified as acoustic, entropy, and vorticity modes

3 Each mode behaves indepen-

according to the mechanisms controlling oscillations.
dently, but can be generated by the others through the interaction with the mean
flowflelds and the boundaries. Since the vorticity mode is a multidimensional
effect, in the present analysis only acoustic and entropy disturbances are
accounted for. Treated in this way, the process contributing to the excitation of
oscillations can be visualized as follows. When pressure fluctuations occur in the
combustion zone, density and temperature fluctuations are produced which are not
in general related isentropically. The isentropic fluctuations propagate with the
speed of sound, but the non-isentropic residues are carried with the mean flow.
Upon reaching the exit plane and the exhaust nozzle, these entropy fluctuations

interact with the boundary and the local flow to produce pressure fluctuations

which in turn propagate upstream. If those disturbances arrive, at the proper time,
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at the upstream region where the entropy wave generated, the process may be
repeated cyclically. Thus a feedback loop has been established in the flow and

unstable motions may be a result.

Two major assumptions are introduced here. First, because tests with premixed
gaseous systems have shown that fuel droplet breakup and/or vaporization is not a

1 the flow is treated as single-phase.

necessary condition for oscillatory combustion,
Second, the combustion zone is assumed to be acoustic compact, its length being
much smaller than the acoustic wave length, and confined to the dump plane
across which jumps in temperature and density take place. While this approxima-
tion applies only for very low frequency oscillation in the strict sense, it serves as a
convenient means of identifying acoustic mode structures and assessing the
influence of various parameters on the stability characteristics of the engine. The

obvious deficiency due to the neglect of distributed combustion will be corrected in

the next chapter.

The analysis starts with formulating the equations for acoustic and entropy
fluctuations in a one-dimensional flowfield. After the fields in the inlet and combus-
tor have been found separately, a transcendental equation for the complex fre-
quency characterizing the oscillatory field in the entire engine is obtained by apply-
ing proper matching conditions at the dump plane. Calculated results are then
compared with the experimental data reported in reference 2. Favorable agree-
ment suggests that the model is a satisfactory representation of some of the global

behavior of the device.

2.1. Formulation

If we neglect viscous effects and all other distributed losses, the equations

governing the one-dimensional flowfield in the inlet and the combustor are
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mass equation

B, 0,
o+ 3PV 0 (2.1.1)

momentum equation

8 o)
E%-pu + -a—}-(-;ou2 + -55-= 0 (2.1.2)

energy equation

ds ds _
& +u6x 0 (R.1.3)

The energy equation asserts that the entropy is preserved following fluid particle

since the combustion has been confined to the dump plane.

To simplify the analysis, the cross-sectional area changes in each region are
ignored. The rapid variations in the diffuser and the nozzle sections will appear
indirectly through their influences on the boundary conditions. Therefore, we treat
the problem of oscillatory waves in a uniform mean flowfleld. The flow variables are

accordingly written as sums of mean and fluctuating quantities:

p(xt) =5 + p'(x.t) (2.1.4a)
u(x,t) =T + w(x.t) (2.1.4b)
p(x.t) =p + p'(x.t) (2.1.4c)
s(x.t) =5 + s'(xt) (2.1.44)

Substitution of these decomposed variables into (2.1.1-3) and collection of terms of

first order in the fluctuations produce the equations for linear motions:

o, o, 9P
% TP T Uan 0 (2.1.5)
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fu | Gouw | Op _

A * o 0 (2.1.8)
gs' |, .08 _

3t tag-= 0 (2.1.7)

For convenience, the equation of state for a perfect gas is expressed in terms of

entropy:
(2
p = p’e % (2‘1.8)
Linearization leads to
£-1lp _ 8§ (2.1.9)
P P S

L

Hence, a small change in density may be attributed to both acoustic and entropy

oscillations. Substitution of (2.1.9) for the density fluctuations in (2.1.5) gives

8p' 81 | _8p _
Pt Pt UG =0 (2.1.10)

This equation involves no entropy fluctuation, the entropy mode being decoupled

from the acoustic mode. For convenience, (2.1.10) is further combined with (2.1.6)

to produce a single wave equation governing the acoustic motions.

8 ., B\, -20°
(a--f-u-é-é-)zp -aa-é—x%—=0 (2.1.11)

The field consists of two waves travelling upstream and downstream. Appropriate

solutions to (2.1.11) and (2.1.8) are

p' = [P*elkx 4 pre-ikx] -i(at + Wk) (2.1.12)
u = 5—%—- [Prelkx — prgiKe] o-i(0t + HKx) (2.1.13)

where (1 is the complex frequency, P* and P~ are complex amplitudes of the right

and the left running waves, and K is the modified wave number defined as
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k 0s/a _ (w + ix)/8

— 2.1.14
- e 1P (2.1.14)

The wave number is complex, the imaginary part being nonzero because of losses in

the systermn.

As far as the entropy fluctuation is concerned, it is convected downstream with

the mean flow, The solution to (2.1.7) can be written as

0

c -4(0t - =x)

s' = S(—2)e "
7P

(2.1.15)

The quantity in the parentheses is introduced so that S has the dimension of pres-

sure,

2.2 Acoustic Field in the Inlet

Because the entropy fluctuation associated with unsteady shock motion is a
third order effect in comparison with the pressure fluctuation,? the inlet flow is

considered isentropic. Consequently, the oscillatory flowfields in this region are

Sl' =0 (221)
pl, - [P;eile + Pl_e"lle] e—i(ﬂt +an1x) (2.22)
u,' = _1_ [Pf”eﬂ(lx - P{e'ﬂ(‘x] o MOt + HiKyx) (2.2.3)

P12y

The subscript | refers to the quantity in the inlet section. The influence of the
shock and diffuser can be conveniently represented by an admittance function A,,
defined at the plane x=-L,:

t

- (2.2.4)

1

=]

A =&,

o

If the shock behaves quasi-steady and the flow is isentropic on both sides of the

shock, then the admittance function presented to downstream disturbances is5
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2 [ME+1)
—7-}-1[ _M__az’ JIQ.+7+1M2,
A= — — (R.2.5)
Mls l"——')
72+1

4ﬁu[§£%n 12 +1]
(AR YR AR Mu"( )

where the subscript 1s and 2s represent the quantities immediately in front of and

behind the shock, and the dimensionless frequencies () 4 is

Q, = ] (2.2.6)

A dX ) pock

In this representation, the shock wave acts to dissipate acoustic energy. The left-
running wave is effectively attenuated, leading to a small-amplitude reflected wave
travelling downstream. Since this is a linear problem, the wave amplitude can be
arbitrarily specified without violating the governing equation. For convenience, Py
is chosen to be unity so (2.2.2) and (2.2.3) may be written in the following forms by

applying acoustic reflection condition at the shock (x=-L1).

Py’ = [Be1Bl1 +X) 4 oKz AL +HKx) (2.2.7)
ul' = — ];‘ [ﬂ’eﬁ(l(le +x) - e“lKlX]e"!(nt + HIKIX) (2.2'8)

where g, represents the acoustic reflection coefficient at the shock and can be

determined from the shock admittance function.

1+A,
1—A,

Bs = (2.2.9)

By rearranging (2.2.7), the acoustic pressure is expressed in terms of its ampli-

tude and phase.

py = Ple"‘m”nixlx"’p) (2.2.10)

where
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Py =[1 + [Bs]? + 2|B,|cos(RK x + ¢)] (2.2.11)

[ —sinKix + |8, [sin(Kyx + ¢) |
cosK;x + |Bg|cos(K;x + @) ]

Yp = tan” (2.2.12)

.and ¢ is the phase of the reflection coefficient . It is clear that the acoustic field
depends only on the admittance function for the shock wave, the Mach number of
the flow, and the complex wave number because any viscous losses in the inlet have
been ignored. The calculation of the complex wave number will be described in

detail later.

To check the validity of this simple analysis and the shock admittance given by
(2.2.5), a series of numerical comparison with the experimental results obtained at

the Naval Weapons Centerz

were conducted, using the measured frequencies of
oscillations as known conditions. Figure 2.2 shows a typical comparison of the cal-
culated and the measured phase distributions. The phase varies almost linearly
because of the small acoustic reflection coefficient at the shock ‘Bs‘ A good approxi-
mation is given by (M;+1)K;x, as easily proven by (2.2.10) and (2.2.12). Figure 2.3
illustrates the acoustic pressure distributions at various times within one cycle of
oscillation. The presence of the extremes on the envelope of the pressure ampli-
tude indicates that the wave is non-stationary standing, rather than travelling.
Each pressure node moves around its mean position periodically, no fixed node

point being observed. The same conclusion was reached experimentally by Crump

et a.l.2

2.3 Oscillatory Field in the Dump Combustor

The oscillatory flowfields in the combustion chamber are similar to those in the
inlet except for the presence of an entropy wave due to unsteady combustion. Fol-
lowing the analysis given in Section 2.1, the equations governing the unsteady

motions are
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s’ = 32(7@2 # (2.3.1)

p2' = {P{eﬂ(’*‘ + Pg‘e.ixex] g A+ Tekex) (2.3.2)

e e g
2

The subscript 2 denotes the quantity in the combustion chamber. Since the
reflected pressure fluctuation at the nozzle entrance x=L2 contains contributions

from both the incident acoustic and entropy waves, we have

Cp Ll + Hgkp + £
P = B,P3e %2 + 8,5,( — e %
YePz

(2.3.4)

where §, and f, are the acoustic and the entropy reflection coefficients respectively.

For a choked compact nozzle, they have been found to be®
g = 2o 1M (2.3.5)
g+ (’)’ - I)Mg
_ﬁz
= — 2.3.6
- % (&38)

The reflected pressure wave is out of phase with the incident entropy wave: a posi-
tive entropy disturbance always produces a negative acoustic disturbance. This
phenomenon can be easily explained as follows. For a choked compact nozzle, the
Mach number at the entrance of the nozzle is fixed by the area ratio of the
entrance to the throat. Since a positive entropy oscillation means an increase of
the speed of sound through its influence on the temperature field, the velocity must
increase as well in order to maintain the same Mach number. In general, this can

be achieved only by a negative pressure disturbance.

As a consequence of the decoupling of the acoustic from the entropy fluctua-

tions, the temperature disturbance is conveniently split into two parts: one is



-22-

related isentropically to the pressure oscillation p’, and the other has zero p' and is

related to the entropy oscillation s', according to the linearized equation of state.

%-: T, + Ty = 1—;-1-%—4- é— (3.7)

where Tp' and T, denote the contributions from p’ and s’ respectively. Note that
both Ty and T,' are directly proportional to p’ and s', but no general statement can
be made for the entire temperature disturbance due to the phase difference a
between them. Figure 2.4 shows the time histories of T' for various o, where T,' and

Ty are represented by two sinusoidal functions.

2.4 Oscillatory Field in the Entire Engine

The oscillatory field in the inlet is coupled to the field in the dump combustor in
order to determine the stability characteristics of the engine. This procedure is
based on continuity of mass, pressure, and total energy at the dump plane. By

linearizing the continuity relations, the conditions to be satisfied at x=0 are
continuity of mass

— ' [Fe-d -— [ (e Az

Pruy’ +p1'Ty = (Baug' + pe'lp) A (R4.1)
continuity of pressure

pP1' = p2' (R.4.2)
continuity of energy

quy' +cp Ty +Q = Tgug' + cp, T (.4.3)

where Q' is the fluctuation of heat release at the dump plane. The momentum con-
servation relation is represented by the continuity of pressure. The complete
momentum balance including pressure and momentum flux does not hold as the

inlet flow is subsonic and discharged into the combustor through the dump plane
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at which the cross-sectional area changes suddenly. It would imply a physically
unrealistic shock at the dump plane and violation of the second law of thermo-
dynamics. A comprehensive discussion of this matter has been given in Section 4.7
of reference 7. The energy balance (2.4.3) is required only when the entropy
fluctuation is included in the analysis. For a pure acoustic model, this equation is
replaced by the isentropic relation between density and pressure fluctuations.

The energy source term Q' is described with Crocco's sentitive time-lag (n-7)

B The basic idea is that the reactant material requires a finite amount of

hypothesis.
time T to burn, and therefore, when a sudden change in flow condition is applied to
the steady-state combustion, the process assumes its new condition only after the

time lag 7. If we further assert that the reaction rate depends only on pressure and

is proportional to p®, then Q' can be modeled as

Q) _  pe(0b) —p/(0t - 7) (2.4.4)
Q Pz
where n is called the interaction index, being taken to be the overall order of chem-
ical reaction. For the combustion of hydrocarbon fuel in air, n is between 1.7 to
2.2.9 Equation (2.4.4) indicates that Q' vanishes if there is no time delay; the reac-
tants entering the combustor burn immediately behind the dump plane, regardless
of the flow condition. Physically, T is attributed to the ignition delay and the tur-
bulent mixing between unburned and burned gases, and can be crudely estimated
by considering various time and length scales associated with turbulent eddy struc-
ture and chemical reaction.!? It must be treated here as a phenomenological con-
stant whose value can be determined only by global comparison of calculated

results with experiments. The model of the combustion used here is too crude to

produce a precise definition of 7in terms of fundamental processes.

Substitution of perturbed flow quantities at x=0 into (2.4.1-3) and rearrange-
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ment of the results produces a transcendental equation for the complex frequency

0,
B8 5, (Pt - P7) + (P! + Pn}
£1
- T D+ — nQp; if) + - 1
= M(P3 "Pg)i'[l"-_f-)_-:;-—'(l"'el (P2 +Pg)+77-:z-sz (2.4.5)
where
P} = gl (2.4.6)
Pr=1 (2.4.7)

- ag — oy — Ba{ey — az)eemele
_ i iLp(K, + MoK, + E_)
M; + B.Mae™ 272 + 28.e 2

P# = —;—(al ¥ ag + WuSy) (2.4.9)
Py = é’(al — ag — MzSy) (2.4.10)
and
— ¥ + IT - 'aa AI ¥ + -
oy = [(1 + M))P{ — (1 = My)Py]=—7— - Ma(P{ + Py) (2.4.11)
a; A-2
oz =Pf + Py (2.4.12)
2.5 Discussion of Results

Calculations have been carried out to determine the acoustic modes that are

excited in two research coaxial-dump ramjet engines having different combinations

R

of inlet and combustor lengths.™ The data characterizing a typical experiment are

given in Table 2.1.



- 28 -

Table 2.1 Input parameters

length (engine A) L[, =085m  le=076m
length (engine B) I, =085m lg=057Tm
area ratio %2;— =4.0

speed of sound a; =426.7m/s &y =B853.4nm/s
Mach number M, =04 Mz=02
specific heat ratio 7, =1.38 ¥2 = 1.26
chamber pressure 5.4 atm

shock Mach number M,;; = 1.825

Table 2.2 summarizes the calculated frequencies and growth rates of oscillations,

based on various meodels including pure acoustic and acoustic/entropy fluctua-
tions. All these calculations provide reasonable solutions for the frequencies, but
only the result for a combustion time lag 7=0.001 sec is physically realistic as it
gives both positive and negative growth rates. Since stability can be determined by
the energy flowing to and from the acoustic fields, this result indicates that the
acoustic energy gained in the second mode oscillation is dissipated by the first
mode oscillation through the energy exchange processes between modes. In fact,

the second mode has been found to be dominant in most experiments.z

For a pure acoustic model containing no entropy fluctuation, the growth rates
are always negative. The wave amplitude decays with time. This is a consequence of
incomplete representation of the combustion processes. The acoustic energy
gained from the combustion processes does not compensate the energy losses at
the inlet shock and the exhaust nozzle. Hence, the waves appear to be stable. The
same situation occurs for the model with no combustion time lag as it can not pro-

duce a non-zero fluctuation of energy, Q.
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TABLE 2,2 Measured and Calculated Frequencies and Growth Constants

Engine A Engine B
(baseline combustor) (short combustor)
= _ 190 Hz
fmeasured = 540 Hz fmeasured " 650 Hz Comments
f o f a
calculated calculated calculated calculated
131 ~54 140 =55 No entropy
fluctuation
595 -59 664 -60 included
134 ~-56 141 -60 Entropy fluctuation
included,
580 -58 669 -61 T = 0 sec
139 -37 163 =41 Entropy fluctuation
included,
624 13 679 ~9.8 T = 0.0005 sec
133 ~24 160 -17 Entropy fluctuation
included,
569 6 622 23.5 T = 0.001 sec
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Figure 2.5 shows the calculated and measured pressure and phase distributions
of the second mode oscillations in the baseline engine A. Because the theory is
linear, the amplitude contains an arbitrary multiplying constant whose value has
been adjusted to provide reasonable comparison with experimental data. This
mode is the first longitudinal mode of the combustor with a non-stationary stand-
ing wave in the inlet, and has been observed in the majority of tests. The acoustic
field is driven by the pressure oscillations in the combustor and attenuated
efficiently by the shock. The mode structure in the combustion chamber is similar
to that for a half wave in a closed-closed organ pipe. A pressure node exists in the
middle of the combustor across which a phase jump of nearly 180 degrees occurs.
In the inlet section, the waveform is mainly affected by the mean flow and the
shock. The influence of the former arises from the Doppler effect, which, together
with the smaller speed of sound, causes a reduction of wavelength in comparison
with the wave in the combustor. The phase distribution is almost linear because of
the efficient absorption of the left-running wave by the shock, as explained in Sec-

tion 2.2.

When a short combustor (engine B) is tested, the dominant oscillations occur at
frequencies of 190 Hz and 650 Hz. Figure 2.8 shows the pressure and the phase dis-
tributions for the first mode oscillation. The acoustic field in the combustor is a
bulk mode, giving a uniform phase distribution. Figure 2.7 shows the second mode
shapes and phase distributions. In comparison with the oscillation in engine A, the

frequency increases from 540 Hz to 660 Hz as a result of the shorter burner.

To further identify the mode structures and the controlling mechanisms, a
parametric study of the influences of engine geometry on the second mode pres-
sure oscillations is conducted, giving the result shown in Figure 2.8. The calculated
frequencies are relatively insensitive to the changes in the inlet length, but

decreases almost linearly with the combustor length. This is due to the half wave
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structure in the combustion chamber and suggests that the unsteady motion in the

engine is mainly determined by the flowfleld in the combustor. The inlet flow plays

a minor role since the shock absorbs effectively the left-running acoustic wave gen-

erated by the combustion. The contribution of the small-amplitude refected wave

to the excitation of pressure oscillations is negligibly small in comparison with that

of the combustor flow. The cause for the small hump in Figure 2.8a is not clear; it

may be due to the interaction among the shock admittance function, the combus-

tion time lag, and the engine geometry.

10.
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NOMENCIATURE 2

speed of sound

cross-sectional area of the engine
shock admittance function
constant pressure specific heat

Kol 2

modified complex wave number, defined by (2.1.14)
Mach number

pressure

heat of combustion

entropy

time

temperature

velocity

position coordinate along the axis of the engine
growth constant

ratio of specific heats

frequency

complex frequency, ! = + ia

dimensionless frequency, defined by (2.2.6)

density

VO D EN R K E A0 T R

superscript
(M) average value
() fluctuation

subscripts
1 value in the inlet
2 value in the combustor
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Chapter 3
PRESSURE OSCILLATIONS IN TWO-DIMENSIONAL DUMP COMBUSTORS

In the last chapter, we presented an approximate linear analysis of pressure
oscillations by assuming the mean flowfield uniform. While the treatment is
appropriate for the inlet, situations are quite different for the combustor where the
flow is highly non-uniform. There are strong gradients of density and temperature
due to the energy release in the combustion zone. In addition, the recirculating
flow immediately downstream of the dump plane complicates the velocity and pres-
sure fields significantly. The purpose of this chapter is to develop an adequate
model accommodating these matters within the low frequency range. We consider

here only the case of two-dimensional flow.

The model of the flow is sketched in Figure 3.1, representing the experimental
facility operated at the California Institute of ’I‘echxmlogy.l Premixed gasecus mix-
ture of air and methane is supplied in a connected pipe facility and delivered to the
dump combustor, which is formed by placing a rearward-facing step in the duct. In
some cases, especially when the flow speed is small and the acoustic resonance
occurs in the plenum chamber, large structure vortices with dimensions of the
order of the step height were shed at the flame attachment point, distorting the
flame front as they were swept downstream. Substantial longitudinal oscillations
could thus arise due to the interaction between unsteady combustion and the
acoustic field upstream of the flameholder. This mode of oscillation has also been
reported in reference 2. To circumvent the problem, the plenum chamber is filled
with acoustic damping material such as steel wool, the leftward acoustic wave
transmitted into the chamber is effectively dissipated. Consequently, no regular
shedding of vortices is observed and the wake behind the dump plane is stable in

this sense.
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For cor;venience of analysis, the oscillatory fields are constructed for three
regions spanning the length of the device: the inlet duct (I), the combustion region
from the dump plane to the end of the flame zone (II), and the length from the end
of the flame zone to the exit plane (III). The formulation of the fields in regions I
and III are relatively simple since the mean flows to a good approximation may be
assumed uniform. The results obtained in Chapter 2 can be directly applied. The
main issue is the combustor flow. It seems essential that the two-dimensional char-
acter of the mean flowfield be accounted for. Owing to the non-uniform geometry,
and to the interactions with the mean flow, the acoustic field must also be two-
dimensional. From experience with previous problems one might expect that there
are modes of oscillation which have relatively small components of motion almost
everywhere in planes transverse to the axis. Early observations and the initial ana-
lyses of ramjet cormmbustors established that indeed the low frequency instabilities
are basically longitudinal modes for the chamber and inlet. Accordingly, the
analysis of unsteady motions described here treats plane one-dimensional oscilla-

tions with a two-dimensional mean flowfield.

The analysis is based on the integral formulation, being developed by integrating
the conservation equations with respect to y-coordinate. Because the mean flow
appears only in integrals, the consequent errors in its representation tend to be
softened. Thus we can likely be satisfied with a cruder model than would be
required, for example, to compute the combustion efficiency. The intent is to
represent approximately the main feature of the pressure, velocity, and tempera-
ture fields. For low frequency oscillations, the flame front and the shear layer are
collapsed to two infinitesimally thin sheets: flame and vortex sheets respectively.
The flowfield in the combustion zone is thus decomposed into a flow of reactants, a
region containing combustion preducts, and a recirculation zone, as shown in Fig-

ure 3.2. The three regions are then matched at these sheets by taking into account



-38-

103snquop dung TRUOTSUSWT(-OM] Y3 UT pPIoTIMOTA

"2°¢ qUNOTA
cco_am: uo: WD jSumop
uing §oaal
P 9 193.1p uoibas mojj pauing Jojsnquiod
G o SRTITTGILEITEEY dU0Z uol}SNquI0d
uoibas moj} pauinqun
U=X O=x
1 } B I
W
.Q ¢lIn ._n\
uoibai| mo)} pauinqun-g A

auljwoalys bujpialp

NQ .N3 .NQ Np/
uoibas mo|} pauung yoeup '

€d+€n2y

BUOZ  UOI}DINDII3I [T

e

4

|
-



-39 -

kinematic and conservation relations. Determination of their shapes are part of

the solution.

The unsteady flowfields are treated within linear analysis and approximated as
quasi one-dimensional motions. The pressure waves are assumed to be planar
everywhere in the engine, but the acoustic velocities are different in the unburned
and burned flows due to the different acoustic characteristics. Treated in this way,
the recirculating flow and the vortex sheet, or dividing streamline, are considered
steady. The energy sustaining pressure oscillations is gained mainly from the
interaction between the unsteady flowfields and the flame sheet. As a result of the
periodic fluid dynamic stretching of the flame sheet, the rate of the combustible
mixture entering the flame zone and the consequent energy release may oscillate as
well. If this happens at the proper time and is positively correlated with the pres-
sure fluctuation, a feedback loop is thus formed and the possibility for self-excited

oscillation exists.

In the following sections, an integral scheme is first developed to analyze the
flowfields in the combustion region. The model extends the previous analysi33 of
the unsteady flame spreading from a point flameholder and accommodates the
recirculating flow and gas compressibility. Results can therefore be obtained for
dump combustors. After the fields in the three regions have been treated, with
appropriate matching conditions at the interfaces, the acoustic mode shapes and
frequencies characterizing the linear oscillations in the entire device are deter-
mined. Calculations have shown favorable comparison with experimental data

reported in reference 1.

3.1 Flow Field in the Combustion Zone

The flowfield in the combustion zone is first approximated by division into two
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parts: the ﬁnburned and the burned regions, separated by a flame sheet, as shown
in Figure 3.2. The flame sheet is an idealized treatment of the combustion
processes. It is a surface of discontinuity on which the chemical reactions and
rapid state variations take place. The flow speed tangential to the sheet is continu-
ous, but the normal component suffers a step change due to the discontinuity of
density. Although the model serves as an effective tool in the analysis of laminar
flame propagation, application to turbulent flames is at best a crude approxima-
tion. Only those flows with turbulent scales much greater than flame thickness per-

4 a case not relevant here. As far as the computation of the

mit this application,
low frequency unsteady motions with flame propagations is concerned, the
representation of the flame front by a thin sheet is justified since the sensitivity of
combustion processes is mainly associated with fluid dynamic processes, rather

than chemical kinetics, and the ratio of the oscillation wavelength to the flame

thickness is large.

The sudden change in the cross sectional area at the dump plane produces recir-
culating flow which is bounded by a shear layer. The density and temperature fields
of the recirculating flow are very close to those of the direct burned flow, but the
mean velocity and pressure fields are greatly different.5 There are strong reversing
flows and nonuniformities of the pressure distributions in the recirculation zone.
Therefore, it is convenient to treat the recirculating flow and the direct burned flow
separately. In real flows, the shear layer entrains flow and continuous passage of
hot combustion products into and out of the recirculation zone takes place. We
ignore that process and assume that the shear layer is a sheet of tangential velocity
discontinuity, represented by a dividing streamline here. Nevertheless, the model is
expected to be valid when the acoustic wave length is long compared with the shear

6

layer thickness.” For low frequency oscillations this criterion is met.
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If we neglect viscous effects, the flow fleld in each region can be described by the

following equations of continuity and momentum.

dp i) 8 -

Bt + -0-}'('1)11 + —a;-pv 0 (3.1.1)
8 8 2,90 op _

ngu + Epu + sgpuv + I 0 (3.1.2)
0 ) d ap _

—a—t:-pv + -é-;puv + -a;pve + v 0 (8..1.3)

Since combustion is confined to the flame sheet, there is no mechanism producing
entropy outside the sheet. The entropy is preserved following fluid elements in each

region. As a result, the energy equation can be written in the form

o) a (o) _
F0PS t gaPus * -a-)—’-pvs =0 (3.1.4)

3.1.1 Matching Conditions

The unburned and the direct burned flows are matched at the flame sheet using
conservation and kinematic relations.’ For two-dimensional flow, the kinematic

relations are

on an

Ttl— +uy(x7my.t) —6—x—l- = vi(xm.t) — Wisect (3.1.5)
&

-52—1- + up(x,m.t) %"7;(_1_ = va(x,m,t) — Wesecd (3.1.8)

where W, and W; are the normal flow velocities relative to the flame sheet on the
upstream and downstream sides, and 7, is the y-coordinate of the flame sheet.
Note that 7, depends on both time and space, taking into account the unsteady
motion of the flame sheet. For steady motions, (3.1.5) and (3.1.8) contain no time-
dependent terms and can be derived simply by considering the geometric relations

among the flow velocities at the flame sheet.
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Conservation laws are applied by considering the flow quantities relative to the

flame sheet. The conservations of mass and momentum give
p1¥W = paW2 (8.1.7)
PIWE + Py = paWE + 2 (3.1.8)

Since the pressure is continuous along the flame sheet, the tangential velocity com-

ponent is preserved:
u,(x,1m,t)cosd — vy (x,7m;,t)sind = ug(x,m;.t)cosB — va(x,m;,t)sind (3.1.9)

For most cases the changes in the kinetic energy and the pressure across the flame
sheet may be ignored in comparison with the heat of combustion, AH. Hence,

energy conservation requires
cplTl +AH = szTa (3110)

Rearrangement of the above equation for a perfect gas leads to

Pr_],, AH 1Pz (3.1.11)
P2 cpTh | P1

Equation (3.1.8) implies that the difference between p; and p, is of order of the
square of the Mach number based upon the flame speed. Thus, it is satisfactory to

neglect the pressure change in (3.1.11).

AR

Pz enTy

]

By (3.1.12)

Physically, the density jump due to the combustion produces volume sources along
the flame sheet; their unsteady behavior is partly responsible for the pressure oscil-

lations in the chamber.

Kinematic relations at the dividing streamline are obtained by considering its

instantaneous motion. The results are
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81 | M _
So F Ue(x7et) 5= = va(xmait) (3.1.13)
8n2 bne _
30 T Us(Xmet) 5= = va(xmat) (3.1.14)

Because the dividing streamline is a streamline across which there is no flow but
the tangential velocity is discontinuous, the only conservation relation available is

continuity of pressure:

Pa(X.Mg.t) = ps(xmp.t) (3.1.15)

The flame speed W, is required to complete the matching conditions. For the
turbulent flame spreading from a bluff body flameholder, it appears to depend on
the local flow speed and to a less extent on the turbulence level in the unburned
st:z'eam.g‘9 The influences of the fuel-air ratio, the gas temperature, and the proper-

ties of the fuel are relatively small. Therefore,
Wy =8V & Bruy(xmy.t) (3.1.18)

where V, is the speed of the upstream flow and 8y is determined empirically.

3.1.2 Integral Formulation

To formulate the flowfield in terms of integral variables, conservation equations
are integrated with respect to y over each region. We first treat the continuity

equation for the unburned flow in the region 1.

™ 8p,y ™ 9 " 9 _
A —5t--dy+j; E;K-plu,dy+j; FePIV1dy =0

Integration by parts, with 7, a function of axial position and time, gives

a8 M 8_Mm om
3k POy + ooy prndy — pru(xm t) 5 -
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- p1 %1%" +pvi(xm.t) —p1vy(x,0t) =0

Application of the kinematic relation (3.1.5) at the flame sheet and the boundary
condition at the wall gives the final result for the integral mass equation in region

1
8 M a8 U _
EE-_/; pdy + —5}2—‘/‘; p1u,dy + p;Wisecd=0 (3.1.17)

A similar integration of the other conservation equations results in the following

integral equations:

momentum equation (region 1)

atf pr1udy + P f plufdy + f —dy + puy(x,m L)W secd =0 (3.1.18)
mass equation (region 2)

8 ng _

3t pgdy I j;h Ppauzdy — peWosecd =0 (3.1.19)
momentum equation (region 2)

8 n, O

2, Mpauady + 2= opugdy + [ ™22y — ppug(em Wesecd=0  (3.1.20)
mass equation (region 3)

8 rR 8 rR _

-5-{-]% pady + 53?-[% peugdy = 0 (3.1.21)
momentum equation (region 3)

a?t f psugdy + o f pguddy + f ———dy 0 (3.1.22)

As discussed in Chapter 2, an entropy fluctuation may be generated at the flame
front and carried downstream with the mean flow. Since the flows are isentropic in

the region upstream of the flame sheet and in the recirculation zone, the only
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entropy equation required is that for region 2,

'56{ nlnngsgdy + 'éa;(‘f,;:, ®paUpSedy — peSg(x.m;.t)Wosecd = 0 (3.1.28)
In this work, we consider an incompressible two-dimensional mean flowfield with
quasi one-dimensional unsteady motions. Because the radii of curvature of stream-
lines are large except in the recirculation zone, the equation of motion in the verti-
cal direction assures that the variations of pressure across regions 1 and 2 are
negligible. Consequently, the mean pressures in these regions are assumed to be
functions of x only. The dependent variables are written as sums of mean and

fluctuating quantities.

region 1

pi(x.y.t) =p1 + pr'(xt) (3.1.24a)
u(xy.t) = Wxy) + w'(xt) (3.1.24b)
pi{x.y.t) = Bi(x) + py'(x.t) (3.1.24c)
si{xy.t) =5 (3.1.244d)
region 2

pa(x,y.t) =Pz + p2'(x.t) (3.1.24¢)
uz(xy.t) = Te(xy) + up'(x.t) (3.1.24f)
pa(x.y.t) = Pe(x) + py'(x.t) (3.1.24g)
se(xy.t) =8z + s2'(x.t) (3.1.24h)
region 3

pa(x.y.t) = P2 + pg'(x.t) (3.1.24i)
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us(x.y.t) = Tg(x.y) + ug'(x.t) (3.1.24))
ps(x.y.t) = Bs(x.y) + p1'(x.t) (3.1.24k)
sa(x.y.t) =5 (3.1.241)

The unsteady pressure is assumed uniform in the transverse direction as a resuit of
the small Mach number of the flame speed, but the velocities are different in the
unburned and burned regions. We do not make the strictly one-dimensional

approximations for the acoustic fields, i,e.,

w,'(xt) = up'(xt), ete.

The model has two advantanges. First, the difference between the acoustic charac-
teristics of the unburned and burned flows is taken into account. Second, the
unsteady motion of the flame sheet as well as its effect on the acoustic field can be
accommodated. Note that the recirculating flow is assumed to be steady due to the

one-dimensional approximation to the velocity luctuations in regions 2 and 3.

3.1.3 Mean Flow Fields in the Combustion Zone

The mean flowfield must be known for analysis of the unsteady motions. We con-
sider the mean recirculating flow first. The recirculation zone is treated as a closed
region bounded by a dividing streamline. Because the inner boundary layer thick-
ness is small in comparison with the width of the recirculation zone and the viscous
and turbulent stresses decay rapidly away from the shear layer, the so-called

0

frozen vorticity them‘y1 is used. The vorticity distribution is assumed to be uni-

form, the diffusion of vorticity due to viscosity and turbulence being ignored. The
representation of the recirculating flow by a flow of constant vorticity with slip at

hll

the boundary has been found to be adequate. For example, Smit considered

such a representation for the flow in the region of the trailing edge of an aerofoil.
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12

Taulbee and Robertson™™ used it to study the turbulent separation bubble ahead of

a step. The model provided good agreement with experiments in all cases.

With the introduction of the stream function ¥, the equation of motion for the

mean recirculating flow can be written in the following form:
V2 = g ¥ =0 along the boundary (3.1.25)

where wp is the constant vorticity, treated here as an empirical constant to be
specified. The mean velocity and pressure fields are then obtained from the

definition of the stream function and the preservation of total pressure along the

streamline,
g =% =%
Ts(x.y) 3y Va(xy) = == (3.1.28a)
= 1. pe_
Ps + 3P2Vs = constant (3.1.26b)

Legitimately, equation (3.1.25) can be solved either numerically or analytically.
Both methods have been used, but the latter seems to be much more promising.
The numerical technique using the successive over-relaxation (SOR) method 3 to
solve the finite difference approximation encounters serious difficulties in the vicin-
ities of the flow separating and reattaching points where strong velocity gradients
exist. Unless very fine computational grids are used, the scheme may produce inac-
curate results and sometimes becomes unstable. In addition, the rate of numerical
convergence is usually slow. Because of these deficiencies, we resort to analytical
methods here. The domain of concern is mapped conformally to a unit disk in
which a closed-form solution to (3.1.25) is available. A detailed description of the

analysis is given in Appendix 3A.

The integral conservation equations for the mean flowfields in regions 1 and 2

are obtained by considering the time invariant part of (3.1.17-20). Thus, we have
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steady mass equation {region 1)

Q%] + W;secd=10 (3.1.27)

o
xl“

steady momentum equation (region 1)

o dj
z%—(—{u ] + Zl dpl + T (x,7,)W;secd =0 (3.1.28)
1

steady mass equation (region 2)

{7 ~ )] - WasecB=0 (3.1.29)
steady momentum equation (region 2)
q B ,
f;{ G8(7z = M) + —-——?-7-’—)——(12—2— = (%, 7)) Wasecd = 0 (3.1.30)
Pe

where ; and (i, are the average axial velocities defined as

o1 M
@ = =/ T(xy)dy,
4}
- 1 e
G, = — Ua(x,y)dy
Fiz = Th j%l

In the derivation of (3.1.27-30), the following two conventional assumptions were

made, similar to those used in shallow water wave calculations.
N ~ 12
Ji [mi(xy) -6 *dy =0,
fﬁlﬁz[ﬁa(x.y) - GzJfdy = 0,

Notice that the momentum integral equations explicitly involve the local velocity
components at the flame sheet, T,(x.%;) and Ta(x,%,). To complete the theoretical
formulation, they must be determined in terms of the flame height %, and the

integral flow variables. The following remarks describe a simple independent
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analysis of the flowfield in region 1, providing the necessary information.

Since the flow upstream of the flame sheet is inviscid and irrotational, the velo-

city potential satisfies the Laplace equation.
V3 =0, (3.1.31)

subject to the proper boundary conditions. Solution of the above equation may be

written in the following form.

= mn
¢ = WpX + ﬂzlAme r cos(%’f—y) (3.1.32)
m=

where u;, is the inlet flow velocity in the flat section of the flameholder (position 0
in Figure 3.1), and Ap's are constants to be calculated from the boundary condi-
tions at the flame sheet. As a first approximation we shall account for the first
term in the series only. This term is assumed to represent the general characteris-
tics of the unburned flow to a sufficiently good approximanticn,14 Thus, an equation
relating the local velocities at the flame sheet is obtained from (3.1.32):

¥1(x.7)

b = —tan{ 4,) (3.1.33)
U (%) — up r’

Combination of (3.1.33) with (3.1.5), (3.1.8), and (3.1.9) gives the expressions for

T (x.7,) and Ta(x.7).

uptan( -:-‘L?)I) - W,secd
0, (%) = —— (3.1.34)

™ m_
dX + tan'( ;—?71)

u;tan( g—ﬁ,) - W;secd _
+ W,(v - 1)sind (3.1.35)

(%) = an -
1 —
rra tan( ?m)
The theoretical model for the mean flow fields is completed by substituting the

above two eguations into the integral momentum equations.
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The ove;'au calculation using the integral scheme based upon iteration pro-
cedures proceeds as follows. We first assume a dividing streamline shape and solve
the Poisson equation (3.1.25) and (3.1.26a) for the velocity field in the recirculation
zone. The pressure distribution along the dividing streamline is calculated accord-
ing to the Bernoulli equation (3.26b). With the result available as a known condi-
tion, the integral scheme governing the flowfields in the unburned and the direct
burned regions is carried out to the end of the recirculation zone. Determination
of the shapes of the dividing streamline and flame sheet is part of the solution
obtained. Another calculation of the recirculating fiow continues, using the new
dividing streamline shape, and the whole procedure is repeated. The iterative com-
putation halts when the solutions become convergent, the changes in the dividing
streamline shape from step to step being small. The integral scheme is then per-

formed to the end of the flame sheet to complete the solution.

Numerical calculations have been carried out for the mean flowfields in two
dump combustors, referred to as combustors A and B here. They have the same
inlet systems, but with step heights being one half and three quarters of the duct
height respectively. The data characterizing a typical experiment reported in refer-

ence 1 is given in Table 3.1.

Table 3.1. Computer program input variables

up=71.32 mA Pin=101325 NAn?

in—

Pin=1.24 Kg/m? we=100 14
Tm=283 K 2;n=337 mA
1,=0.559 m 1g=0.406 m
B,=4.94 £y=0.05
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Figure S;.B summarizes the various distributions in the unburned flow in combus-
tor A. The pressure variation upstream of the reattachment points is dominated by
the recirculating flow. The effect of combustion appears in the determination of
the flame and the dividing streamline shapes. For positions downstream the
combustion plays a decisive role. As a consequence of the favorable pressure gra-
dient generated by the combustion, the flow accelerates rapidly to the end of the
flame zone. A kink, corresponding to the reattachment point, is observed on the
flame sheet. The slope of the sheet gradually decreases near the kink, then grows
after that point. This can be interpreted by appeal to the momentum balance.
Because the pressure gradient tends to be small in the reattaching region, the
flame shape must become flatter in order to reduce the momentum influx into the

burned flow region.

Figure 3.4 shows the shapes of the dividing streamline and flame sheet for
different cases in combustor B. These shapes are determined primarily by the
flame speed parameter f; and the density ratio across the flame, B, although the
vortex strength affects the velocity field in the recirculation zone significantly.
Because of the small radius of curvature of the dividing streamline caused by high
vorticity, the length of the recirculation zone decreases as the vorticity wg
increases. The influences of the flame speed and the density ratio on the dividing
streamline shape can be explained as follows. The higher flame speed, or the higher
density ratio, usually implies the greater momentum influx into the direct burned
region where the pressure field is mostly determined by the recirculating flow. For
a given vortex strength this in turn produces a steeper dividing streamline to bal-
ance the momentum. Figure 3.5 shows the tangential velocity distributions along

the dividing streamline. Obviously, they depend greatly on the vortex strength wy.

In the development of the integral scheme, we encountered a closure problem,

which was then solved by proposing a simple independent equation (3.1.33) to
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formulate 'the local flow velocities at the flame sheet. A similar difficulty was found
by Subbaiah!® in his study of the nonsteady behavior of a flame stabilized by a
flame holder at the center of a two-dimensional duct. He carried out a more
thorough analysis of the irrotational flow field upstream of the flame to provide the
necessary conditions for the completeness of the model. In order to check the vali-
dity of the present work, specifically equation (3.1.33), we apply our model to the
problem dealt with in reference 15 and use exactly the same input parameters. For
this comparison, the recirculating flow immediately behind the flame holder is not

accounted for. Figure 3.8 shows that the agreement is reasonably good.

3.1.4 Unsteady Flow Fields in the Combustion Zone

The unsteady flowfield in the combustion zone is formulated by considering the
time-dependent counterpart to the steady analysis of the integral relations. It is
treated within quasi one-dimensional linear oscillation. With the proposed decom-
positions of the flow variables and consideration of the first order terms only, the

mass integral equation for the unburned flow in region I becomes
) Mty iy, , e o
E{f pydy + f P pdy] + "‘[f (Pr1uy' + py'Ty)dy + f lpluldY]

smﬂ o'

+p'Wisecd - oW, —=———=10
co

Rearrangement of the above equation yields

a - [ 3~ a - ey ¥ [ — e
a'{m”h + P + a—x—[plux(x.m)m +p1' 07 + Py

sind Om’ _ (3.1.36)

+ py'Wsecd - 5, W, cos®s 0X

Similar manipulations of the other integral formulas produce a system of equations

governing the unsteady flow fleld:
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momentum‘equation (region 1)
gg{ﬁlﬁl(xﬁl)fh' +p1 T+ pray'm] + %{ﬁxﬁf(x.ﬁx)m' + py T 0f
+ 2101 M1u'] + py'Ty (x5 ) Wisecd + pru, 'Wsecd

sind om' dp,’ , 0Py _
- Py (x.75)W, ot x|t Mo tm'g =0 (3.1.37)

mass equation (regions 2 and 3)

a 1 + — 1] a - t = e = 3 - = t
3riPs (R =) = Pamn'] + 5-{Peua (R —7h) + p2'0a(Te — 1) — Palie(x.)n1']
- 3 o'
— o WasecT + HpW, SI2 =0 3.1.38
P Wiz Pz 2cosaﬂ A% ( )

momentum equation (regions 2 and 3)

aat Lo? (R "71) + p2 ug(na nl) quz(x 771)7'}1—] + "‘{Pz' Aa 771)

+psf TEdy + 2paup' Ga(Tle — 1) — B2UE(X.Ti)'] — pa'Walla(x,7j;)sech

+ .’a !
 Paug Wasec® + pata(x Wy ST 4 (R — ) B2 T2 = g (3.1.39)
entropy equation {region 2)
a — tfas = a A = ¢ - t P o
FrPese (Mle = M)] + 5APe®(Te —Th)se'] — PeWasz (.71 t)secd = 0 (3.1.40)

As a result of oscillations of flow properties at the flame sheet, entropy fluctua-
tions may be generated and convected downstream. Consequently, the density dis-
turbance in region 2 contains contributions from both the pressure and entropy

fluctuations.
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In regions 1 and 3, the flows are isentropic; the oscillatory density fields are related

to their pressure flelds through the isentropic relations.

pi' =pi'AL  ps' =ps/aE (3.1.42)
Thus, the formulation for the linear oscillatory fields is completed. In summary,
there are five integral equations (3.1.38-40) for five unknowns u;’, uz’, p1’. M. and

sy’. For harmonic motions, the time- and the spatial-dependent parts of each flow

variables are separated.
q'(x.t) = §(x)e 0t (3.1.43)

where q' denotes the unsteady flow variable. Substitution of (3.1.43) into the
integral equations produces a system of ordinary differential equations with com-

plex coefficients.

3.2 Acoustic Field in the Inlet

The analysis of the inlet is identical to that in Chapter 2. The acoustic field con-
sists of two simple plane waves. One is driven by the pressure oscillations in the
combustor and propagates upstream, and the other is reflected at the entrance
and propagates downstream. Appropriate equations governing the acoustic pres-

sure and velocity flelds are

py’ = [Bpe il 1) 4 o 7Hix] HOC + R (3.2.1)
u, = g__1%_' [ﬂpeiK‘(aL‘ +x) _ e"iKt‘] e-«i(ﬂt + 8K x) (3.2.2)
191

where 8, is the acoustic reflection coeflicient at the entrance (x=-L,), and K, is the

modified complex wave number.
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kl Q /8, (G) + la)/il

Kis —= = ——%5= — 3.23
VT-NE T 1-M2 1-M2 (3.23)
If we assume that the transition section from the plenum to the inlet is acoustically
compact and the plenum serves as an acoustic energy absorber, to a good approxi-

mation, 8,=-1. The entrance is essentially an acoustic pressure node.

8.3 Acoustic Field Downstream of the Combustion Zone

Physically, this region contains the completely burned gas flow, ranging from the
end of the flame sheet (x=L) to the exit plane (x=1;). The mathematical treatment
of the oscillatory fields in this region are similar to those in the inlet section except
for the different mean flowfleld and the presence of an entropy wave due to
unsteady combustion. Since the duct is fully open at the exit, the incident pressure
wave is perfectly reflected with phase difference 180 degrees. No contribution to
the reflected pressure wave is made from the entropy fluctuation. The equations

for the unsteady motions are

pe' = PFe™ - K3z =3y At + FeKex) (3.3.1)
P -

ug' = p:_;i [eﬂ("‘x + X@le x)] o 10+ Hgkex) (3.3.2)
282

where P is the amplitude of the right-running wave and Kj; is defined as

Kz _ /3, _ (0+id)/3

=2 =12 = a 3.3.3
1-M§ 1-M§ 1 -M§ (333)

K,

The complex wave numbers Kp differs from K; because the speeds of sound are

different in the two regions.

3.4 Acoustic Field in the Entire Engine

The acoustic field in the combustion zone must be coupled to the fields upstream
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of the dump plane and downstream of the end of the flame sheet. For linear prob-
lemns this procedure eventually produces a transcendental equation for the complex
wave number characterizing the acoustic field in the entire engine. The coupling is

expressed by requiring that the acoustic pressure and mass flux be continuous.

For low frequency oscillations, the flammeholder is acoustically compact. The
boundary condition for the unburned flow at the dump plane (x=0) can be specified

from (3.2.1-2).

pr(0.t) = [Bpe™™ ™™ + 1] 70t (3.4.1)
u(08) = ——( Byg,e¥Mit — 1]e-i0t (3.4.2)
P13y T

The flame sheet is assumed to be attached to the edge of the step. Thus,
m'(0t) = 0. (3.4.9)
Since the oscillatory velocity vanishes at the rigid wall,

u'(0t) = 0. (3.4.4)

The matching conditions at the end of the flame sheet (x=L) are given by (3.3.1-

2).

pa'(Lit) = Pie ek _ galfle L)y (0t + T Kel) (3.4.5)
+ o P n

ug/(Lt) = ﬁ.__i; o7l 4 oeldle ~1)y oA+ Hefh) (3.4.6)

Because this is a linear problem, the complex wave number must be calculated
before the wave amplitude PZ can be determined. Hence, the proper boundary con-

dition to be satisfied at x=L is

up(Lt) (Bpdp) _ 1 — e Xele~D)

p2(Lt) 1 4 ¢%Kele-D) (3.4.7)
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Combinzlition of the integral scheme constructed in Section 3.1 and the boundary
conditions given above forms a well-posed problem which can be sclved for the com-
plex frequency (1. The computation is based on an iteration procedure and
proceeds as follows. A value for the complex frequency is assumed, and the boun-
dary conditions at the dump plane are calculated from (3.4.1-4). Consequently, we
may determine the unsteady flowflelds in the combustion zone by integrating
(3.1.36-40). With the calculated flow variables at x=L, the boundary condition
(3.4.7) is checked. A new procedure is repeated by assuming another complex fre-
quency (1 until (3.4.7) is satisfied. To improve the rate of convergence of the itera-
tive scheme, we utilize an IMSL routine ZANLYT in which the Muller method with

deflation is used. 16

3.5 Discussion of Results

The calculated frequencies and growth constants of oscillations in two research
dump combustors (configuration B)1 for the test conditions given in Table 3.1 are
shown in Table 3.2. The second mode frequencies check the measured results well.
The growth constants are positive except for the third mode oscillations, in which

the wave amplitudes decay with time.

For ramjet combustors, there are at least two possible processes contributing to
the excitation of pressure oscillations: shedding of vortices followed by periodic
pulsing combustion; and fluctuation of burning rate due to fluid dynamic stretching
of flame front. The former has long been recognized as the mechanism driving high
frequency instability.17 A similar phenomenon may be active in respect to low fre-
quency longitudinal oscillations but no firm evidence has been given. According to
the model constructed here, the interaction between the unsteady motions and the

flame front provides the necessary energy required for sustaining pressure oscilla-
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Table 3.2 Calculated complex frequencies

baseline combustor (Lz=0.408 m, fneasured=457 Hz)

first mode =222 Hz a= 914
second mode f=454 Hz a=14 14
third mode f=562 Hz a=-5 14

baseline combustor (1e=0.508 m, fmeasurea=371 Hz)

first mode f=220 Hz a=142 1A
second mode f=403 Hz a=R2.71 14
third mode f=540 Hz a=-131A

tions. This is confirmed by the positive growth constants for the lower modes. Ear-
lier works for the the unsteady flame spreadingg'18 have shown that indeed the
acoustic signal may be amplified significantly at certain characteristic frequencies

when passing through an unsteady flame sheet.

Figure 3.7 shows the distributions of the acoustic pressure amplitude and phase
for various modes in the baseline combustor. The dominant second mode in the
experiment corresponds to a quarter wave in a closed-open organ pipe. The phase
distributions are uniform, suggesting that the waves be standing. When a longer
combustor is treated, the frequencies decrease due to the increase of the chamber

length, but the mode structure remains the same, as shown in Figure 3.8.

A parametric study of the influence of the vortex strength on the unsteady
flowfield is also conducted. Results have indicated that in the present case, the fre-
quencies are insensitive to the choice of wy. The geometry is the dominant factor.
This may be due to the small Mach number of the mean flow and the high blockage

of the duct at the dump plane.
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3.8 Concluding Remarks

An integral scheme has been developed to study the flowfields in two-dimensional
dump combustors. This work is the first in which the severe gradients in the pro-
perties of the mean flow have been accounted for in the analysis of unsteady
motions. Since the oscillations are treated within quasi one-dimensional approxi-
mation, the effects of the vortex shedding, either from the lip of the dump combus-
tor or from the curved flame sheet, and the unsteady recirculating flow on the
acoustic field are not accommodated. These merit thorough consideration in the

future.

APPENDIX 3A
CALCULATION OF MEAN RECIRCULATING FLOW

This appendix presents the solution to the two-dimensional Poisson equation
(3.1.25), using the conformal mapping technique. The procedure is essentially the
approach taken in reference 19. Figure 3A.1 shows the model of the flow con-
sidered. Because of the dependence of the curve AB on the x-coordinate, no closed
form solution can in general be obtained in the physical Z plane. We therefore map
the configuration conformally to a unit semi-circle in the Q-plane where an analytic

solution is available.

We assume that the curve AB in the Z plane is perpendicular to the coordinate

axes at the points A and B. With the Schwarz-Christoflel transformation.zo it can

be transformed into an arc in the Z, plane according to the following formula.

-1 1+1
! E and b= E

B 5 (3A.1)

2 _ A
Zl=Zb a' where a =

Since the radii of curvature are very small in the vicinities of the points A and B,

unacceptable numerical inaccuacy may be generated due to the strong gradients.
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To aviod this difficulty, a second transformation is performed, which maps the cir-

cular arc enclosing the curve AB in the Z, plane to a semi-circle in the Z; plane.

U ki

(rzsin-g— +Z)¢ - (rgsin-g— -7, : )

Zz = ™ 7 3A2
(rgsin-g— +7)% + (rgsin-g- - Z,)"—

where 6/2 is the angle between the circular arc and the real axis. Treated in this
manner, the curve AB becomes a nearly semi-circle in the Z; plane. The strong gra-

dients in the vicinities of the points A and B have been significantly reduced.

The mapping from a nearly semi-circle to a unit semi-circle in the Q plane is
achieved using Theodorson's integral formula.?! Mathematically, this formula maps

a unit disk to any given domain and, with the notations in Figure 3A.1, is written as
Y(¢) — ¢ =C[lnr, (V)] (3A.3)

where C represents the complex conjugate function. Equation (3A.3) can be easily
solved using the iterative Fast Fourier Transformation method.z1 We first expressed

the functions on the both sides of (3A.3) in the complex Fourier series:
Inr,(v) = Y ame™ (3A.4)
v—¢ =3 byelm (3A.5)

Since each function is conjugate harmonic to the other, the Fourier coefficients ap,

and by, are simply related as21

—iam if m>0
bm =10 if m=0 (3A.8)
iap, ifm<0

The overall calculation proceeds as follows.
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A Z ¢ = Clinry(4)] (3A.7)

With the information known at the jth step, we may compute v at the (j+1)th step
from (3A.4-7). The same procedure is repeated until the solution becomes conver-

gent.

Having found the mapping functions, we are now able to derive the solution to
the Poisson equation (3.1.25). For convenience, the particular and harmonic parts

of the solution are treated separately. The particular solution ¥p has the form
¥p = +Im(ZnZ) + Z{im2Z)? (3A.8)

where Im denotes the imaginary part of the complex function. Note that Y¥p van-
ishes on both the real and imaginary axes, producing a symmetric solution of ¥,
about the real axis in the Q plane. The method of image can thus be applied. Since
the domain of the solution has been mapped conformally into a unit semi-disk, the
harmonic function ¥4 in the Q plane can be represented by the Fourier series with

coefficients determined from the boundary conditions.

Yo = 3 ekt (3A.9)

The velocity fleld in the recirculation zone is calculated by taking the normal

derivative of the stream function.

[ (2 -2 2)

-1

dz
dQ

on on |, dZ on on (3A.10)

Substitution of (3A.8-9) into the above equation and rearrangement of the resuit

lead to

= |42

V= aQ

dQ

-1
{[% ; + ;—Im[ZZQInZ(g—g—) + QZ(%)] + (ImZ)h(Q.@_Z:.} (3A.11)

where
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[%Q = glkwkeﬂf (3A.12)

To check the validity of the analysis, a series of numerical calculations of the

velocity field in the recirculation zone are carried out with different allowances e,

and e; in the Z, plane. The step height I; and the vortex strength oy are chosen to

be one sixth and unity respectively, and the dividing streamline AB is represented

by an ellipic arc. Figure 3A.2 shows the velocity distributions on the dividing

streamline. The solution depends heavily on e, and e;. By using suitable mappings,

the difficulties associated with the singular behaviors at points A and B can be

effectively overcome.

10.

11.
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NOMENCIATURE 3

speed of sound

step height

modified complex wave number, defined by (3.2.3)
Mach number

pressure

inlet height at the dump plane

height of combustor

entropy

time

temperature

axial velocity

transverse velocity

flame speed

position coordinate along the axis of the engine
growth constant

flame speed parameter, define by (3.1.16)
acoustic reflection coefficient at the entrance
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Bs :iensit.y ratio of the unburned to the burned gases
m y-coordinate of flame sheet

N2 y-coordinate of dividing streamline

v ratio of specific heats

w frequency

A% vortex strength

complex frequency, {} = w + ia

7 velocity potential

¥ stream function

p density

AH heat of combustion per unit mass of fuel
superscript

(7) mean quantity

() fluctuation

-~

average quantity

subscripts

1 values of the unburned flow (reion 1)

2 values of the direct burned flow (reion 2)
3 values of the recirculating flow (reion 3)
in values of the inlet flow at the dump plane
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Chapter 4
FORMUIATION OF TWO-PHASE FLOW PROBLENS AND NUMERICAL TECHNIQUES

So far we have only investigated linear unsteady motions in a coaxial-dump ram-
jet engine. In practice, the unsteady motions are such that nonlinear effects must
be accounted for. Examples of these are finite amplitude oscillations, and behavior
which apparently shows the existence of limiting cycles. For ramjet engines, more-
over, it appears that the fundamental processes responsible for the the excitation

of oscillations are nonlinear.

Theoretical analysis of nonlinear oscillations may be carried out either analyti-
cally or numerically. Each method has advantages which are complementary to the
other; the choice depends on the features of the problem. An analytical treatment
provides a formal way to link linear and nonlinear analyses, a detailed description
of physical processes, and a less expensive means of accessing parametric
influences. On the other hand, it suffers difficulties from lengthy formulation and
sometimes cannot represent easily and accurately the various processes involved.
In the present work, the flowflelds are so complicated even within the one-
dimensional approximation; that we shall use numerical techniques. The purpose
of this chapter is to give a general formulation of the problem, followed by a

description of relevant numerical methods.

4.1 Formulation

The analysis is based on a one-dimensional model for two-phase flow. The gas
phase contains air, fuel vapor, and combustion products; its instantaneous compo-
sition depends on the flow condition and the chemical reactions. The liquid phase
is composed of fuel droplets and treated as a fluid with density p,, mass per unit

volume of the chamber. Conversion of liquid phases to gas may occur at the rate oy
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due to the droplet vaporization or combustion. For convenience, ¢y i8 written in

terms of the surface regression rate of the droplet, ry.

by = AspiTy (4.1.1)
where A, is the specific surface area of droplets, total surface area of droplets per
unit volume of the chamber, and p; is the density of the liquid fuel. If we neglect
viscous effects, heat conduction and relative diffusion of species, and assume the

fuel droplets are monodispersed and uniformly distributed over the entire cross-

sectional area, the the conservation equations are

mass equation (gas-phase)

Bp. 1 6(p'u°A°) . " e
+ - = + 4.1,
ato Av ax¢ c‘)g AsPl Iy ( 2)

mass equation (liquid phase)

ap; 1 a(p];upl. l.) o LI )
—+ = < =, — A D 4.1,
ot A ox P s ( L 3)

momentum equation
) ... . 1 i) . . o2 . .
R(pu +ppu;)+K,—-&;-[(p +p'u +ppuf)A]

= i—-%—— + Ugglop + Uiy (4.1.4)

energy equation

a » > 1 ] ‘z * » u&
a;—[,o (%T + 92——) +pp(elTy + =)

. 2
1 d oco&_o )..1‘a ¢ .0 .
+—-A. &;{puA(yT * 5 )+ppupA(c{Tp+EE—2 )
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e e
"1 6 * .A 4 . u, . # . , . »
= —(%;L.-l*' fg(cpTeg + 'ég-) + (e Tep + EZR-) + +m AH (4.1.5)

species equation

3(p'Yy) . 1 8(p'Yu'A") e e ee
R - = .1
fuel PO e P hy s + AP Ty (4.1.6)
a(p°Y, 8(p"Y,u'A* .
oxydizer o ,°) ¢ L (p¥ou'A’) = —my, (4.1.7)

at A’ ax’
where asterisks denote dimensional quantities. A nomenclature is given in the end
of this chapter. Note that the mass source terms d; and & are introduced only at
the injector position, representing respectively the mass fluxes of air and liquid fuel

entering the chamber through the fuel injection system.

Following some straightforward manipulations, we can write the momentum and
energy equations for each phase by taking into account the proper interactions

between the gas and liquid Alows.

momentum equation (gas-phase)

*

6{2'!.1 2 1 a r . o 2\ e LdA. .. .
o ——— + = s o +
ato Ao axo [(P P u )A A’ dxo usgc‘)g Fp

+ AgpiTpup (4.1.8)

momentum equation (liquid-phase)

8 'u’) 1 ) * ¢ .0 . . o s 0
—%7?— +oF 5erts A) = ugdy — Fp — Apriup (4.1.9)

energy equation {gas-phase)
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o2
-1 6u° .A' :* . u . P—
U G AT R

<
+ Agp/rohy + %—) + ' AH' (4.1.10)

energy equation (liquid-phase)

[ o2 f 2
b pple)Tp + 222—-) + KlT é:[p;u;A‘(c{'I‘; + 221-)

at’
2
L ] Sy # * . ¢ & & * u
= w3(ci T + Fug) =@ — Wy — Alar(hy + ) (4.1.11)

The energy equation for the liquid phase (4.1.11) is valid only for the subcooled dro-
plets, accounting for the initial heating-up process. The fuel vaporized in this
period is ignored. As soon as the droplets reach their saturated states, vaporiza-
tion occurs and ’I‘; remains the boiling temperature. The interactions between two
phases depend mainly on the regression rate ry and the velocity difference u® - u,.
Therefore, (4.1.11) is replaced by a formula for the surface regression rate written

in the Lagrangian coordinate.

DI'; Gr; .al‘; »
- = 1.12
Dt* . ot | TPaxt b (4.1.12)

4.1.1 Auxiliary Equations

To complete the formulation, the modeling of chemical reactions and the empiri-
cal correlations for the initial droplet size, drag force, heat transfer, and the dro-
plet regression rate are required. These terms constitute an important part of the
analysis, taking into account the rate of heat release and the coupling between two
phases. Amo:ig them, the chemical reactions and the droplet regression rate are
strongly problem-oriented,; it is impractical to make a general statement here. We

therefore leave them to Chapter 8 in which some specific problems are dealt with.
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Mnitial broplet Size. The diameter of the fuel droplet immediately downstream of
the injection needs be specified as it is the necessary boundary condition for the
liquid flow. The break-up of a fuel stream into small droplets depends greatly on
the injector/atomizer employed, the physical properties of the fuel, and th= flow
conditions. For liquid-fueled ramjet engines, the most commonly used system falls
into the category of a blast atomizer to which the correlation obtained by Hussein

et all can be directly applied.

.. 105 2 045
SMD = 0.703| 28| 4 g.pa| | g (4.1.13)
f g1p !

where SMD stands for the Sauter mean diameter. Equation (4.1.13) indicates that
there is no influence of liquid jet velocity on the drdplet size. The second term on
the right hand side accounts for the effect of viscosity, being negligibly small in

most cases.

Drag Force. The drag force per unit volume exerted on fuel droplets by the sur-
rounding gas may be expressed in terms of a drag coefficient Cd through the follow-

ing equation.

* 3 * * * E & 1 >
Fy, = Up —-u |{u, —-u)—=-=5qC 4.1.14
P 8"/" p [(up )pp__‘p‘_’z.]‘ d ( )

2

Dickerson and Schuman™ have summarized the experimental data for Cd' giving the

result as shown below.

R7Rg%4, 0< Ryg=< 80
Cq =4{0.271R%?%17, 80 < Ry < 10* (4.1.15)
2, 10* < Ry

where Ry is the Reynolds number based on the relative flow velocity,
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_ * u. -u‘ d.
Ry =21 wldy = ' | (4.1.18)

The viscosity p,‘ varies with temperature according to the Sutherland 1aw.3

Convective Heat Transfer. Carlson and Hoglund's formula® for the convective

heat transfer coefficient is used to calculate the heat transfer between gas and

liquid flows.
. Récp | . . 0.55p 0.55
Q= —{u'pp(T = Tp)[R + 0.469RS%°PP5%] (4.1.17)
FiTﬁrp

4.1.2 Nondimensionalization

Before the numerical computation is attempted, the governing equations formu-
lated above should be normalized. This procedure is attractive from both the
analytical and the numerical points of view. First, it is easier to identify the relative
importance of each term in the equation and to interpret the results obtained.
Second, the normalized variables with uniform magnitudes improve the numerical

accuracy.

By choosing suitable reference quantities, the flow variables are nondimensional-
ized as given in Table 4.1. Substitution of them into the governing equations and

rearrangement of the result produce the nondimensional forms of the equations.

gas-phase mass equation

i) o)
—a% + %-%—AL: wg + 3pprp (4.1.18)
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Table 4.1 Normalized Flow Variables

X=X/Lrer Ugg = Ugg/ Bret Wp = %ﬁf/prelare!

A=AVANY  Tag=Ta /T Fp = Fplyet/ Pre@ret

UT Ug/8rer  Ugp = Ugy/ By Qp = QpLret/ PrerCparetTret
a=a"/any Tep = Tap/ Tret e/ =¢//cp

t= o/ Loer  Up = Up/ 2 Ty = (Tb/Tprer)Lret/ aret
T=Te/Tret  Pp=P'p/ Pret Tp = Tp/Cprer

P =P’/ Dret Tp = T°p/ Tret

P =p"/Pret Wy = Wgliet/ Pratrer

gas-phase momentum equation

a(gtu) +L9 [(5—+pu2)A

=P dA
A ox | JA dx T+ U + 35pTelp (4.1.19)

dx

gas-phase energy equation

[ 2 [ 2
a T u 1 3 U
R AT + 5

T
RN (e G vy whl

2
= =1 o(upA) | % + upFp + wy( Tog + iﬂi)

YA  8x -1 ¥y -1 2
U5
+ 3pprp(hy + S ) + iy sAH (4.1.20)
species equation
a(pYy) = 1 B(pYuA) .
fuel ——6‘_!:_+ K‘ .—-?X_—= ~IMy s + SpPPb (4,1.21)
. 9(pY,) 1 8(pY,uA) .
oxydizer R ™ = Iy, (4.1.22)
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liquid-phase mass equation

8 1 8(ppuph)
3ptp 1 SX’A = wp = 30pry (4.1.23)

liquid-phase momentum equation

d
._(%Eg'.ez_ + ;1{- :x—(puzA) = Ugpo, — Fp — AgoipUp (4.1.24)

liquid-phase energy equation

[

2 [
'agt—lpp(ci'rp + %‘) L 9

\.12
+ -A—' a-i-lppup(cﬂp + —é—)A]

2 (4
= wp{ciTap + —52) = Qp = UpFp = Bppry(hy + ) + rigAH (4.1.25)

surface regression rate of droplet

Drp, _ orp Orp _
Bt T U= =T (4.1.28)

]

4.1.3 Eigenvalues and Compatibility Relations of the System

The eigenvalues and their associated eigenvectors of the governing equations
must be determined in order to have a deeper insight into the problem. As we shall
show, this procedure is essential to the development of proper techniques of solu-

tion.

With the assumption that the source and the coupling terms can be expressed in
algebraic forms, the eigenvalues for each phase are calculated separately. For sim-
plicity, we recast the gas-phase conservation equations (4.1.1B-20) in the following

matrix form.

u

i

8
at

[ p a —pa ra) e
+| pu 1/y O I % =1cg (4.1.27)
T(y-1) O u Cs

C 1 —-p
p 0 O
0 0 1
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where ¢4, Co, and cq are the inhomogeneous terms defined as

cy = T(Bpprb - L dA)

cg = Fp + wy(uge —u) + 3pprp(u, —u)

__uTly-1)da 7% Fp _
cg = - xt ot > 7(y = 1)(up = u)

+ %‘7(7 - 1){;2?1—— ———T_—i-)-+ -é—(u — ugg)?]

9494

# B2ty by - —=Eoe kL -]

This equation is conveniently represented by

C, BtX +C, aa Ax=-c, (4.1.28)

where C; and Cjz are 3x3 coefficient matrices, and X is a column matrix containing
the flow variables. Determination of the eigenvalues is straightforward by solving

the matrix equation,

-¢C,| =0 (4.1.29)

Three distinct real roots are found, ¢ = u+a, u-a, and u, confirming that the system
is totally hyperbolic. For subscnic flow, these eigenvalues correspond to the slopes
of the right-running, the left-running, and the gas-particle characteristic lines

respectively.

The eigenvectors of the system A are then determined from the solution to the

homogeneous equation.
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AT(Ce — Céx) =0 (4.1.30)

The superscript T denotes the transpose of A, After some algebra, these eigenvec-

tors are found to be

A=[1 ya p] for ¢{=u+a (4.1.31a)
A=[1 —ya p] for ¢{=u-a ‘ (4.1.31b)
a=[0 1 ;:-:Ll-] for ¢=u (4.1.31c)

Multiplication of (4.1.27) by the eigenvectors and rearrangement of the result

lead to three characteristic equations, or compatibility relations.

right-running characteristics

1 6'p 6w _ & %  C3
ypa 6t &  ypa  p ! 7a (4.1.32)

o8 8.
&t~ 8t +(u+a)6x'

left-running characteristics

1 6p_6u_ & _C  C3
ypa 6t 6t ~ yoa p + va (4.1.33)

etk
gas particle line
p-gf—-z—?—l-%%w;i-%cl (4.1.34)

Physically, the left- and the right-running compatibility relations represent the

time rates of changes of disturbances along the characteristics. For instance, if the
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passage oif a disturbance moving with the speed u-a brings a change Au in velocity,
then it will change the pressure by (ypa)Au and contributions due to source terms.
The quantity ypa is commonly known as the flow impedance in classical acoustics.
The gas-particle compatibility relation is nothing more than an entropy conserva-
tion equation; it represents the time rate of change of entropy following a specific
gas particle. If the source terms on the right hand side of (4.1.34) vanish, the con-
ventional isentropic relation is recovered and the compatibility relations along the

two characteristics can be simplified as shown below.

For an isentropic flow, the thermodynamic properties may be expressed in terms

of pressure only. We therefore define a new thermodynamic function F,

SR TN
re 2o 2 (% pF)-
Pypa y-—1

7_1(a~5) (4.1.35)

where P and & are the mean pressure and sonic speed respectively. Substitution of
F for the pressure derivatives appearing in (4.1.32) and (4.1.33) leads to the compa-

tibility relations for an isentropic flow.

& =8 (R --audA
m (u+ F)—at(7~1tu)- A dx (4.1.36)
The deviations of u+F and u-F from their mean values correspond to the wave
amplitudes along each family of characteristics. For constant-area flow, these

quantities remain constant and are the Riemann invariants.

As far as the liquid phase is concerned, the fluidization of fuel droplets allows no
signal propagating through them. The only eigenvalue surviving is the local liquid
flow velocity up; the governing equations change from totally hyperbolic to hyper-

bolic with the existence of two compatibility relations along the liquid particle line.
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F,

%‘%ﬁ: %:-(u,,-u,,) - (4.1.37)
T = S T+ 2 T gy
+ 3rp[Tp + 322—2%:-1—)—] (4.1.38)
where

Several remarks regardmg the liquid-phase compatibility equations should be
made at the point. First, equations (4.1.37) and (4.1.38) are exactly the same as the
momentum and energy equations in the Eulerian forms. This is due to the fact that
the dispersion of liquid particles prohibits the presence of wave-like motion in the
liquid phase. The fluid motion is necessarily convective. Second, the energy equa-
tion (4.1.38) is valid only for the subcooled liquid flow. When the droplets reach
their saturated states, a formula for the surface regression rate (4.1.28) must be
used, as discussed earlier. Third, since there is no relation between the bulk den-
sity of liquid flow and the droplet temperature, the liquid-phase mass equation is
decoupled from the energy equation and cannot be written in the characterisite

form.

4.1.4 Specification of Boundary Conditions

The flow properties at both boundaries for each phase need to be specified in
order to solve the problem. For gas flow, these boundary conditions are formulated
by considering physical situations and compatibility relations obtained from the
method of characteristics.5'6 Use of the method of characteristics to specify boun-

dary conditions ensures correct signal propagation and consequently consistency
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and stability of the numerical results.7

Three independent conditions are required as there are three first order govern-
ing equations. Focusing attention on the upstream boundary, one should consider
four different cases as shown in Figure 4.1. Case 1 represents a subsonic inflow into
the engine. The left-running characteristic line (II) serves as a compatibility rela-
tionship at the entrance, linking the flow properties in the interior region to those
at the boundary; therefore, two physical boundary conditions are required. Case 2
represents a sonic or supersonic inflow. Since there is no characteristic line run-
ning from the interior region at the present time to the boundary at the future
time, three physical boundary conditions should be specified. Case 3 represents a
subsonic outflow at the entrance. Two characteristic lines (II and III) run from the
interior region at the present time to the boundary at the future time; therefore,
only one physical boundary condition is required. Case 4 represents a sonic or
supersonic outflow. Since no outside disturbances can propagate into the interior
of the engine, no physical boundary condition can be specified. The boundary con-

ditions are determined solely from the three compatibility relations.

In brief, the number of physical boundary conditions required depends not only
on the flow direction but also on the relative magnitude of the flow velocity to the
speed of sound, i.e., on the Mach number. The same principle is applied to deter-

mine the downstream boundary conditions.

The specification of boundary conditions for the liquid phase is relatively simple.
Since no signal can propagate through the dispersed droplets, it is not necessary to
use compatibility relations. The boundary conditions are therefore determined
either from physical conditions or numerical one-sided differences, depending on

8

the flow direction. Detailed analysis® has shown that the one-sided difference has

the same virtue as the liquid-phase compatibility relation, at least within the first
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order accuracy.

Two different cases, inflow and outflow, should be considered here. In the inflow
case, the fuel droplets flow from the exterior to the interior regions; the boundary
conditions are specified entirely by the physical conditions at the boundary since
the interior flowfields have no effects on them. For the outflow, the situation is
reversed. The disability of the liquid flow in the interior region to sense the changes
outside the boundary suggests using one-sided differences for the calculation of

boundary conditions.

4.2 Numerical Method

In this section, the numerical techniques used to solve the set of nonlinear
governing equations (4.1.15)-(4.1.23) are discussed. We start with a brief review of
relevant theories underlying numerical methods for hyperbolic problems. After a
survey of various techniques, some important criteria for the selection of adequate
methods are addressed. Finally, a description of the self-adjusting hybrid scheme

with artificial compression is given.

4.2.1 Weak Solution and Entropy Condition

To simplify the description, the gas-phase conservation equations formulated in

the previous section are written in the following shorthand notation,

oF | aG _
% o =Z (4.2.1)

where F, G, and Z are column vectors containing the conserved flow properties , the
fluxes of these pro‘perties. and the source and coupling terms respectively. Since
the inhomogeous part Z usually does not affect the fundamental features of the
equation, in the study of numerical method it is sufficient to consider only the

homogeous part of the equation,
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oF , 3G _
-t ax 0 (4.2.2)

subject to proper initial and boundary conditions. By differentiating the flux vector

G with respect to F, a quasi linear system of the above equation is obtained.

aF , ,OF _

S tAS-=0 (4.2.3)

where A is the Jacobian matrix, 8G/9F. The system is called hyperbolic in the sense

that the matrix A has three real eigenvalues for all values of F. For gas dynamic

problems, the flux vector G is homogenous of degree one9 with respect to F; conse-
quently,
G = AF (4.2.4)

Because of the nonlinearity of (4.2.2), no smooth solution will in general exist in

the entire time and space domain of interest. Shock discontinuities may take

place, across which the Rankine-Hugoniot relation hc:lds,10
_Gi -G _[q]

The subscripts 1| and 2 denote respectively the states immediately ahead of and
behind the discontinuity, and S is the speed of propagation of the discontinuity.
Mathematically, the composite solution which satisfies (4.2.2) at points of con-
tinuity and allows jump discontinuities satisfying the shock condition (4.2.5) is

called the weak solution in contrast to the strong or smooth solution.

The concept of weak solution appears commonly in the development of numeri-

cal schemes for hyperbolic equations. It may be defined alternatively by an inter-

gral relation, 10

S/ + c¥yaxdt + fo(x0p(x)ax =0 (4.2.6)

where R is an arbitrary domain in the (x,t) plane, ¢ is an arbitrary test function
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which has continuous first derivative and vanishes on the boundary of R, and ¥ is
the initial condition. Function F is called the weak solution of (4.2.2) if the inter-
gral relation (4.2.8) is satisfied for every . This alternative definition provides a
convenient means to check the validity of a numerical scheme and has been exten-

sively used.

In spite of its mathematical significance and usefulness, the weak solution based
on (4.2.8) is non-unique. One has to impose a so-called entropy condition on

discontinuities ,i.e, the entropy must increase with flow through shock, in order to

kil

determine a physically acceptable solution. Oleini has shown that this condition

can be represented by the following expression,

G(FF)' :gl(Fx) aSe G(F}l - g:Fz) (4.2.7)

for all F between Fl and Fz. Also, a weak solution satistifying the entropy condition
is uniquely determined by its initial data. A discussion of the role of entropy in

numerical calculation has been recently given in reference 12.

4.2.2 Characteristic and Conservation Forms

The system of hyperbolic equations possesses the property that it can be written
in two equivalent ways called the characteristic and conservation forms. These are
fundamentally important in the theories underlying numerical schemes. By
characteristic form we mean that the governing equations can be written in the
characteristic form with the existence of complete sets of eigenvalues and eigenvec-
tors. The resulted characteristic equations provide information about the direc-
tions of signal propagation and have long been used as the basis for solving hyper-
bolic problems. By conservation law we mean that the governing equations are for-
mulated in terms of conserved flow quantities such as mass, momentum, and

energy. The total amount of these quantities contained in a control volume
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changes only due to the fluxes across the boundary, regardless of the flow distribu-
tions inside the volume. Lax and Wendroff!3 have shown in their classic work that
if a finite difference scheme in conservative form is convergent, it converges to a
weak solution of the governing equations. The conservation law, together with the
entropy condition, plays an essential role for a finite difference scheme to capture

shock discontinuities adequately.

Depending on the utilization of these two properties, the numerical schemes for

solving hyperbolic problems usually fall into the following four categories:

1. method based solely on characteristic information;
<. method based solely on conservative formulation;

3. method based on nonconservation formulation but

using characteristic information;

4. and method based on both conservative formulation
and characteristic information.

Method of Characteristics. This method simplifies the governing partial
differential eqations into a system of nonlinear ordinary differential equations and
has long been recognized as a natural way to solve the prolem. For example, Levine
and Culick!# employed this method in their investigation of combustion instabili-
ties in solid propellant rockets. The accuracy of this method is known, but it usu-
ally involves complicated and lengthy programming efforts. An undue number of
iterations are required to locate the intersections of the characteristic lines and
therefore to calculate the flow properties at desirable positions. As a result, it is
now generally recognized that this method is best used only for the specification of

boundary conditions in which the correct characteristic information is required.

Conservative Difference Scheme. This scheme, which preserves the conserved

flow properties in the finite difference approximation and satisfies the entropy
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condition, provides an eflective means for solving hyperbolic problems with jump
discontinuities. The primary advantage is the capability of capturing shocks, i.e., a
shock evolves automatically and accurately in the course of calculation. However,
it suffers two deficiencies. First, the numerical diffusion and dispersion due to the
truncation error smear out the discontinuities, especially for contact discontinui-
ties. Second, most conservative difference schemes produce oscillations in the
vicinity of the shock which sometimes may trigger nonlinear numerical instabilities.
Vreugdenhillls has shown that except for some first order schemes such as Lax's
staggered scheme, nonmonotonic shock profiles are inevitable due to spacial inter-

polations of flow properties across the shock.

Among the several ways to circumvent these defects, the artificial dissipation
technique and the self-adjusting hybrid scheme with artificial compression seem to
be most powerful and have been applied to various problems. Following the

18 many forms of artificial viscos-

pioneering work of Von Neumann and Richtmyer,
ity have been proposed. The purpose is to suppress, not eliminate, oscillations in
the shock region while allowing the shock transition to occupy only a few mesh
points and retaining the higher order accuracy in the smooth region. For Lax-
Wendroff type schemes, the method due to Lapidus” has been widely used; it is
very easy to be incorporated into an existing scheme and to fit into the conserva-
tion form. The use of an artificial viscosity is not advisable in the present applica-

tion because it can not completely eliminate the ragged appearance of the shock

profile and confuses the effects of numerical and physical viscosities.

Since the first-order scheme leads to smooth shock profiles, it is natural to con-
struct a second-order scheme which switches automatically and smoothly to a first-
order approximation in narrow shock regions. This self-adjusting hybrid scheme of

18

Harten and Zwas™~ posseses the merits of both first and second order schemes,

producing nonoscillatory shock transitions and more accurate results in smooth
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19 developed an artificial compression method used in con-

regions. lLater, Harten
junction with the hybrid scheme. By introducing artificial compression fluxes in
the conservation equations, the smeared transition regions containing either

shocks or contact discontinuities are sharpened.

Characteristics- Embedded Non-Conservative Difference Scheme. Numerical
schemes in this category solve hyperbolic equations in the non-conservative quasi-
linear form (4.2.3), rather than (4.2.2), using characteristic information. As an
example, we consider the famous Courant-Isaacson-Rees scheme20 for a simple

scalar wave equation.

du Su _
Bt +A I 0 (4.2.8)

which implies that u is conserved along the characteristic line dx/dt=A. Construc-
tion of a stable finite difference approximation to (4.2.8) depends on the direction
of the characteristics. If A is positive, the signal propagates downstream, and the
spatial derivative should be replaced by a backward difference according to the
domain of influence of signal propagation. Similarly, a forward difference is used

for negative A. The finite difference equation is thus written as follows.

uit! =yj - )\-ﬁ-i-{u,i -ui,), A0 (4.2.9)
uftt = yj - )\%}t?(uéﬂ ~uj), A<O (4.2.10)

This scheme is also known as the first upwind (directional biased) difference
method. For convenience, (4.2.9) and (4.2.10) are combined into a single equation

for arbitrary values of A,
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utt = uf - RSN - ufy) - B - ) (42.11)
where

A+=1‘—+—21—>‘-L. x:?‘-—‘éﬁ‘—f—. and A=A+ A"

If A is positive, then A = A* and A'=0; the above equation turns exactly out to be
(4.2.9). Similarly, (4.2.10) is recovered for A < 0 by setting A =A™ and A* =0.
Therefore, we have successfully split the eigenvalue into two parts: A" and A" This
splitting technique provides an automatic switch determining proper difference

approximation.

The same idea can be applied to a system of equations. For hyperbolic problems,
there exists a similarity transformation such that the Jacobian matrix A of (4.2.3)

may be decomposed as
A=QAQ™ (4.2.12)

where A is a diagonal matrix with the eigenvalues as its elements, and Q is an
orthogonal matrix containing the eigenvector's.21 Following the same procedure as

for the scalar equation, we split the diagonal matrix into two parts,
A =,A+ +A” (4.2.13)
where

A+ N IM

A" = diag(N") = diag(———), and A~ =diag(\{) = dlag( —)
Substituting (4.2.12) and (4.2.13) into (4.2.3) and employing the homogeneity pro-
perty of the flux vector G (4.2.4), we obtain the following coefficient matrix- and

flux-splitting equations:
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OF , LOF L OF , oinv s povgmt OF.
st tA - o FAATHADRT G

_ 6F +0F . gF

= +A s +A Fvs (4.12.14)
_ OF  3aG* = aG~

= % ot e (4.12.15)

Upwind finite difference schemes based on (4.2.14) and (4.2.15) have been recently
developed by Chakravarthy et ad22 and Steger and Warmingzs. Note that the
Courant-Isaacson-Rees type scheme satisfies the conservation law only if the eigen-
value A remains the same sign. When the signal reaches such position at which the
eigenvalue changes sign, the conservation law is violated and the entire problem
becomes very cumbersome. This deficiency may be corrected with the use of a

second upstream difference method averaging the eigenvalues on both sides.

Characteristics- Embedded Conservative Difference Scheme. A finite difference
scheme accommodating merits of both characteristics and conservation laws seems
to be most desirable; it provides shock-capturing capability and preserves the
domain of influence of signal propagation. Attempts to construct such a unified

scheme are subjects of current research in computational luid dynamics.

As an example, we present the upwind flux difference splitting method of Yang,
Lombard, and Bershader®? here. Instead of dealing with (4.2.2) or (4.2.3) directly,

they considered the following equation.

8F . ~8G _
5t A =0 (4.2.18)

where A is the identity matrix and can be regarded as the normalized Jacobian
matrix A of (4.2.3). By using the orthogonality property of Q, A is split into two

parts,
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K=QA*+A)Q ' =A* +A- (4.2.17)

where A* = diag( Af), i=1,2,3, whose element Af is the normalized eigenvalue

defined as

., [Evncita=o
{ =172 it ;=0 , (4.2.18)

Substitution of (4.2.17) into (4.2.18) leads to

OF , £0G , £ 0G _

= ax 5 =0 (4.2.19)

The equation is then solved with a upwind difference scheme.

To date, most characteristics-embedded finite difference schemes using splitting
techniques are first-order accurate and have not been tested for various problems.
Recent numerical experiments of the shock tube problemza"25 have indicated that
while the shock transition is handled remarkably well, these schemes gave rather
smeared-out solutions in regions containing contact discontinuities. Consequently,

they do not seem promising for the present work.

4.2.3 Dissipation, Stability and Convergence

When the solution of a partial differential equation is approximated by a finite
number of data points, errors associated with discretization are inherently embed-
ded. This phenomenon can be explained easily by making the discrete Fourier
transformation of the unknown variables with respect to spacial coordinates, in
which the number of frequency components is determined by that of computational
meshes.?® For a physical process reqiring a wide range of frequencies to describe it,
such as strong gradients or jump discontinuities, the band-limited approximation
generates errors which may grow very fast and finally cause numerical instability.
To circumvent this aliasing problem, the scheme must accommodate some sort of

dissipative mechanism such that the high frequency noise is effectively damped out
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while preserving the convergent low frequency approximation. A scheme of this
type is said to be stable. The concept of dissipative stable approximation is impor-
tant even for smooth solutions since the rounding error propagates effectively with

high frequency o::z)mponents.z7

In practice, as a consequence of nonlinearity and complexity of the problem, a
rigorous stability analysis is formidable. The stability criterion is therefore usually
based on the homogeneous quasi-linear equation (4.2.3) in which the coefficient
matrix A i3 further treated to be constant by ‘freezing" the local flow varia.bles.28
The stability of a difference operator with constant coefficients is easily ascertained

by using the Fourier transform. In that representation, the difference approxima-

tion to (4.2.3) can be written as
F(x.t+At) = BF(x,t) (4.2.19)

where @ is called the augmentation, or amplification, matrix containing the Fourier
components of the difference operator and the elements of the coefficient matrix A.
The scheme is stable in the sense that the eigenvalues of ® do not exceed 1+0(At)

in absolute value. This is the well-known von Neumann condition of stability.28

On the other hand, Courant, Friedrich, and lewyzg have observed that the neces-
sary condition for stability requires that the value of Ax/At be greater than the

largest eigenvalue of the problem. This is written in the present case as

Ax

A=< ——-‘ul T

(4.2.20)

Several other stability analyses have been proposed, but few of them gave stricter

explicit conditions than these two methods.

The stability analyses cited above are incomplete; they do not include the inho-
mogeous part of the equation. In many cases, a stable scheme for the homogeous

equation may become unstable if the inhomogeous part is accounted for.
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Unfortunately, an investigation of such a phenomenon is extremely complicated.
Hick830 therefore suggested disregarding the study of stability criteria and
proceeding to the heart of the problem, the convergence. A finite difference
approximation must approach the solution of the original differential equation, and

stability then becomes of secondary interest.

For a complicated problem, numerical convergence may be tested by changing
the mesh sizes and boundary conditions. In all these tests, the solutions should be
bounded and checked with available analytic solutions. Furthermore, a subroutine
is always suggested to be built in the program to examine the balances of the con-

served flow quantities.

4.2.4 Self-Adjusting Hybrid Scheme with Artificial Compression

As mentioned earlier, the self-adjusting hybrid scheme of Harten and Zwas18
allows first-order monotonic shock transition and preserves higher-order accuracy
in the smooth region. Because of its accommodation of steep-fronted waves and
capability of capturing shocks, this scheme is particularly suitable for treating
combustion instability pr'c»blems.31 It is therefore selected as the primary numeri-

cal scheme in the present application.
Mathematically, the scheme can be expressed as follows.
Fit' =gl + (19)Le]F{, O0<y<1 (4.2.21)

where L, is a nonoscillatory first-order accurate scheme and I is a second- or
higher-order accurate scheme. The scalar quantity 4 is called the automatic switch
which senses the presence of strong gradients and has value close to unity at
discontinuities. If we choose Lax's staggered scheme32 for I, and the two-step Lax-
Wendroff scheme13 for lp, then the finite difference approximation to (4.2.1)

becomes
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predictor
Fit = }_{Fj + Fi’] + _A_t_rzi! + Z,j] - _Ai_[(;‘ ._GJ'] (4.2.22)
i - 2 i+l 2 LHi+] ZAX 1J+1 i A
corrector

P = F o+ SHE + B- L Er - 6

+ S{8(Fhy — F) —8.,(F —FL))] (4.2.23)

The stability criterion for the first order scheme L, is

M3

2 (4.2.24)

max(!u]+a)£—;~s

This is stricter than the Courant-Friedrich-Lewy condition®

9 for the second order
scheme Ip. Therefore, (4.2.24) determines the stability condition for the hybrid

scheme.

Within this framework, the automatic switch 4 is specified by requiring (1) sensi-
tivity to shock discontinuity; () monotonicity in shock region; (3) preservation of
high order accuracy in smooth region; and (4) satisfaction of conservation laws.
There are many possible choices for 4; that used in reference 18 is chosen here.

Define

=0 if |pha—pil + lpi—pia| <&

_ lodn—pil = |pi-pli|

= - e , otherwise 4225
ohpil + lpi=pi (42:25)

, and the switch 131 is
% = max(§,8,) (4.2.26)

With the use of a first order scheme the numerical results are smeared out in

regions containing discontinuities. This drawback is remedied by applying artificial
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compression fluxes locally. Consequently, the finite difference approximation

(4.

2.23) is modified as

Pt = (FJ")' - ol o6 - 8,G10) (+2.27)

The superscript asterisk denotes the result obtained from the original hybrid

scheme and G is a function of the artificial flux defined in reference 18. Note that

the artificial compression method is inherently limited to nonoscillatory first order

schemes; extension to higher order schemes yields physically unacceptable resuits.

10.

11,

The overall calculation procedure of the scheme is given in Figure 4.2.
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¥
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l

GANDZ: Calculate the vectors
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NOMENCIATURE 4

cross-sectional area

specific surface area of droplets

specific heat of fuel

constant pressure specific heat of air

diameter of droplet

diameter of fuel injector port

drag force between air and fuel droplets
enthalpy

Mach number

rate of consumption of ith species

pressure

Prandtl number

heat transfer rate between air and fuel droplets
surface regression rate of droplet

radius of droplet

Reynolds number based on relative flow velocity
time

temperature

velocity

air flow velocity



X position coordinate along the axis of the engine, normalized w.r.t.
inlet length

Y; mass fraction of ith species

Y ratio of specific heats

7 viscosity

&y rate of consumption of fuel in the stirred reactor

g rate of air injected into the main flow

wp rate of liquid fuel injected into the main flow

P density

Pi density of liquid fuel

0, surface tension of liquid fuel

AH heat of combustion per unit mass of fuel

superscript

() dimensional quantity

subscripts

f fuel

o] oxidizer

p liquid phase

ref reference quantity

sg, sp
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values at port of fuel injector

the
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Chapter 5
ANALYSIS OF UNSTEADY DIFFUSER FLOW WITH A SHOCK WAVE

Unsteady inlet diffuser flow with a shock wave has received considerable atten-
tion in recent investigations of longitudinal combustion instabilities in ramjet
engines.l As a consequence of pressure fluctuations generated by combustion
processes, the stability margin of the inlet diffuser may be reduced due to pertur-
bations of the shock system. In this chapter, a finite difference scheme with a
shock-fitting algorithm is used to study unsteady behavior of the inlet fiow. The
formulation is directed specifically to obtaining results required in analysis of

unsteady motions in engines.

In a continuing experimental program, Sabjen and coworkers have repc:r‘tedz's'4
extensive, detailed observations in the transonic range. They have summarized the
features of the flow flelds under various conditions. Both self-sustaining and
mechanically induced oscillations were investigated. Schadow et al exal.'nim‘-zd“S
oscillations in a research dump combustor with special attention focused on the
inlet shock/acoustic wave interaction. Two kinds of data have been taken: the

acoustic wave structure and the characteristics of the inlet shock.

Several analyses of the problem have been carried out. Adamson et a\l6 obtained
systematic solutions for large amplitude shock wave motion in a {wo-dimensional
transonic flow, using methods of matched asymptotic expansions. The same

7au.'ld

approach was later extended to include boundary layer displacement effects,
shock wave/boundary layer interaction.B In references 9 and 10, numerical solu-
tions of Navier-Stokes equations for multi-dimensional transonic/supersonic flows

were reported. The detailed information obtained provides a better understanding

of the flowfields, especially under conditions when flow separation occurs.
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For linear stability analysis of unsteady motions in an engine, the boundary con-
dition at the upstream end of the diffuser is conveniently expressed as the admit-

1 analyzed the problem

tance function of a normal shock wave. Culick and Rogers
of small amplitude motions of a normal shock in one-dimensional flow. Results for
the admittance function were given for two cases: inviscid flow, and a case which
might be regarded as a crude approximation to the influences of separation. The
work reported here begins with essentially the same model of the flow, but with the

numerical analysis results can be obtained for finite and large amplitude motions.

In addition, the effects of viscous boundary layers are accounted for.

Both inviscid and viscous cases are accommodated. As a first approximation, the
gas flow is assumed to be inviscid. Figure 5.1 shows the idealized inlet system con-
sidered, consisting of a convergent-divergent channel and a fuel injection system.
Air is delivered to a diffuser, becomes sonic at the throat, then accelerates super-
sonically in the divergent section. After passing through a normal shock wave, the
flow becomes subsonic and decelerates to the exit, which may represent the
inlet/combustor interface. Either fuel or fuel-air mixture, depending on the injec-
tor and atomizer used, is injected into the main flow downstream of the shock to
provide the necessary combustible mixture. Within this representation, interaction
between the inlet and combustor may be visualized as follows. Unsteady combus-
tion generates a pressure wave propagating upstream and causes the shock to
oscillate about its mean position. As a consequence, the induced shock motion pro-
duces fluctuations of entropy and mass flow rate, which, together with the reflected

pressure wave, may augment or attenuate the initial disturbance.

To make the model more realistic, viscous effects in the boundary layers are
included. For longitudinal oscillations at relatively low frequencies, the boundary
layer behavior can be considered quasi-steady. The flow therefore consists of a one-

dimensional unsteady inviscid core flow coupled to a two-dimensional steady
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viscous boundary layer. The wall boundary layer is assumed to be turbulent and
attached, and represented with Green's lag-entrainment method.12 A simple
phenomenological model modified from reference 13 is used to treat the compli-
cated shock wave/boundary layer interactions. By using theoretical and experi-
mental informations, the viscous displacement surface in the vicinity of the shock
may be described. Combination of this viscous ramp model with boundary layer

analysis completes the theoretical formulation.
The specific objectives of this chapter are

1. to study the response of a normal shock wave to
various disturbances;

2. to analyze the changes of flow properties, such as
entropy and mass flow rate, due to shock motion;

3. to examine the influences of liquid fuel droplets and
wall air jet injected downstream of the shock wave;
4. and to investigate the effects of viscous boundary
layers on the flowfield.
The coupling between the inlet and processes in the combustion chamber are not

treated here.

5.1 Formulation

The flowflelds in the inviscid core and the viscous boundary layer regions are
treated separately. This approach has the advantage of reducing the governing
Navier-Stokes equations to a set of one-dimensional Euler equations coupled to a
set of two-dimensional boundary layer equations by including only those terms

which influence the fluid dynamic processes in each region.
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5.1.1 Analysis of Core Flow

The core flow consists of three different regions shown in Figure 5.1: the regions
upstream and downstream of a normal shock wave, and a region containing both
air and fuel droplets. The fuel droplets are assumed to have uniform size and to be
distributed over the entire cross-sectional area, the initial phase of fuel jet break-
up and multi-dimensional effects being ignored. For some systems, preparation of
fuel droplets may be achieved outside the diffuser. In that case, a mixture of air
and fuel, rather than pure fuel, is injected into the main stream. Both cases are

accomrodated here.

The analysis is based on a two-phase, quasi one-dimensional model. If we neglect
droplet vaporization, the equations governing the gas flow can be expressed in the

following conservation form, displayed earlier as (4.1.18-20) in Chapter 4.

gas phase
dp 1 8(pud) _
T A ox wg (56.1.1)

%if— +Fp + Ugtdy (5.1.2)

Bew) , 1 8lp . 2]
CI e A e

[ 2
10 T _,u
* A 5(1”%(7(7-1) My

[ 2
8 T
_6?1‘) ( Yo %_)

o oL OupA) oo Teg UGy, G
= A ox +w‘(7-—-1 t5oF o) + uF, (5.1.3)

Since the droplets are dispersed and injected downstream of the shock, no wave-
like motion may exist in the liquid flow. The governing equations are thus solved

conveniently in the non-conservation form.
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liquid phase
Baip . 50&;;;:%) = oy — Bic‘ie_%_ (5.1.4)
B s, 22 < --zf- (5.1.5)

where A, is the cross sectional area of the inviscid core, obtained by reducing the
geometric duct area by the boundary layer displacement thickness. The flow pro-
perties are normalized with respect to their quantities at the entrance except the
velocity which is referenced to the speed of sound. Note that the mass source
terms w, and «_ are introduced only at the injector position (x=Lr). and the

g P

momentum and heat transfer coupling terms Fp and Qp vanish in regions I and II.

5.1.1.1 Specification of Boundary Conditions

In order to solve this problem, three boundary conditions must be specified at
both boundaries for each phase. Depending on the amplitude of shock motion, the
upstream boundary is chosen to be either the entrance or the throat of the
diffuser. For most cases of finite amplitude oscillations, the shock motion is res-
tricted to the divergent section of the diffuser. The flow remains always sonic at the
throat; no signal can propagate through it from the downstream region. Therefore,
it is convenient to choose the throat as the upstream boundary. The boundary con-
ditions are then determined by specifying three physical quantities, the Mach
number, static pressure and temperature, since there is no characteristic line run-

ning from the interior region to the boundary.

Under certain conditions the shock moves upstream of the throat, disappearing

as the pressure increases, and then rapidly reappears at its farthermost down-
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stream position as the pressure reaches minimum amplitude. This sort of behavior

has been observed in recent experiments.s

referred to as the large amplitude oscil-
lation case in the present work. The upstream boundary is chosen to be the inlet
entrance with three conditions obtained by assuming conservation of total energy
and isentropic process from a reservoir upstream to the inlet, together with the
lefiward characteristic equation. Within this assumption, the reservoir serves
essentially as a perfect acoustic energy absorber. Any disturbance radiated from
the entrance is etﬁciently damped out. At the downstream end, the flow is subsonic.

Two characteristic lines run from the interior region to the exit; only the static

pressure needs to be specified.

Because the liquid droplets are dispersed, no signal can propagate through them.
The governing equations change from totally hyperbolic to hyperbolic; the three
characteristic lines collapse into one. This suggests using a one-sided difference for
the calculation of the downstream boundary conditions for the liquid phase. The
conditions at the upstream boundary (x=Lf) are determined from the physical

requirements set by the convection of droplets downstream.

5.1.1.2 Numerical Method

The basis for the analysis is a numerical program described in Chapter 4. The
conventional two-step Lax-Wendroff method is hybridized with Harten and Zwas'
first order scheme and further modified by an artificial compression correc-
tion, 1415 The spurious pre- and post-shock oscillations produced by second order
finite difference approximations are completely eliminated. Because of its remark-
able shock-capturing feature, the scheme is applied first to solve for steady

flowfields.

For unsteady problems, direct application of that method is accompanied by two

problems. First, the shock transition requires a small number of computational
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grids. The flow properties immediately in front of and behind the shock are not well
defined. Second, there are two time scales involved in the calculation: Tgh and T,
Tsh IS the time required for a shock to pass through a grid, and Te is associated
with an external disturbance. Unless very fine meshes are used, i.e., Tsh << T the
crude time resolution of shock motion may produce false information. To over-
come these problems and improve numerical efficiency, a shock-fitting algorithm
has been incorporated.

6 treats the shock as an internal boundary, separat-

The shock-fitting techm‘que1
ing the supersonic and the subsonic regions. The Rankine-Hugoniot equations
together with four characteristic relations, three in the supersonic region and one
in the subsonic region, suffice to provide the required boundary conditions for the

finite difference scheme on each side. The motion of the shock front is determined

as part of the solution.

The numerical calculation starts with application of the self-adjusting hybrid
scheme. As soon as the shock is captured and reaches its steady condition, the
shock-fitting algorithm is activated to refine the solution. This has proved to be an

effective procedure, producing accurate results with modest costs.

5.1.2 Turbulent Boundary Layer

The thin turbulent layers on the top and the bottom walls are formulated using
Green's lag-entrainment method1? because of its accuracy and favorable com-
parison with other methods. In that representation, a turbulent boundary layer is

defined by three independent parameters, momentum thickness ¥ shape factor

H= %— and entrainment coefficient Cg, defined as follows.
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displacement thickness
a‘=f 1- L2394 5.1.7
o (1 oy (5.1.7)
momentum thickness

8= f—ﬂ—-—-(l - ——)dy (5.1.8)

entrainment coefficient

d
Cg = . ue a-x_p‘u’ (6 -6 (5.1.9)

where ¢ is the boundary layer thickness. The subscript e stands for values at the
edge of the boundary layer, being equal to the values in the core flow. By integrat-
ing the equations of motion along y-coordinate and utilizing the equation for shear
stress which Bradshaw et al? derived from the turbulent kinetic energy equation,

three ordinary differential equations governing ¥ H, and Cg are obtained:

momemtum integral equation

d
ds _ G _._(H +2 - Me) L “° (5.1.10)
dx
entrainment equation
di _ dH . _ 8 du,
ﬂdx =, {Cg —H [ -(H + l)ue = —1 (5.1.11)
rate of change of entrainment coefficient
dCg 2.8 3 due
g - 12
b F‘2H+HL CrRg — ACr ]+[ue dx
9 du, 2 (1 +0.2M )
- — —{1 + 0.075M 1.
u, dx (l +0. lM"") (5.1.12)

where M is the core flow Mach number and H is the modified shape factor.
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B+ s+ Xy (5.1.13)

Detailed derivation of the above equations and additional relations for the integral

properties are given in reference 12.

5.1.3 Yiscous-Inviscid Interaction

The coupling between inviscid core flow and viscous boundary layers is accom-
plished using an iterative method. The core flow solver provides the velocity distri-
bution at the edges of boundary layers, which is used in the calculation of boundary
layer properties. The resulted displacement thickness then modifies the effective
cross-sectional area of the diffuser to renew the calculation for the core flow. To
ensure convergent solution and improve numerical efficiency, an under-relaxation
procedure is employed. The relaxed displacement thickness 6° in the (n+1)th itera-
tion is

6° = w6y + (1 — 1) 6ny (5.1.14)

where the subscript n represents the nth iteration and @, is the relaxation

coefficient. In the present work, a value of 0.75 is suggested by trial-and-error.

In the above direct iteration procedure, the core flow velocity field is prescribed
in order to determine boundary layer properties. While being straightforward, this
method sometimes, especially if the flow is separated, produces a slowly convergent
or even a divergent solution unless a suitable relaxation coefficient w, is adopted.
To overcome this problem, an inverse iteration scheme has been proposed.18 The

momentum integral equation (5.1.10) is first rewritten as

sdue _ 1 g o
u. dx H+2-MF| dx ' 2 (5.1.15)

With the prescribed displacement thickness 6°, the boundary layer edge velocity ug

is calculated from (5.1.15), (5.1.11) and (5.1.12). This is then used to compute an
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up-dated ¢° through the equation given below.
. o Ue
) = O —— 5.1.18
(a+1) = () ( )

where u;,, denotes the inviscid core flow velocity. The same procedure is repeated

until the solution becoms convergent.

Both direct and indirect iteration procedures have been used. They all lead to

convergent solutions since the boundary layer is assumed to be attached here.

5.1.4 Shock Wave/Boundary layer Interaction

The strong interaction between a shock wave and a turbulent boundary layer
involves the penetration of the shock wave into the boundary layer. As a conse-
quence of the strong normal pressure gradient resulted from the diffraction of the
shock wave by the nonuniform velocity field in the boundary layer, the conventional
boundary layer approximation is not valid. The interaction may affect the flowfield
both locally and globally. The principal local effect is to smear the pressure rise
across the shock over a few boundary layer thicknesses. The global influence arises
from the rapid increases of boundary layer properties across the shock which may

significantly thicken the boundary layer thickness in the downstream region.

Several researchers have analyzed the flowfield near the shock foot using
matched asymptotic expansion rnethocls.lg”20 All these models are based on the
assumption that for a transonic weak shock, the interaction can be considered as a
small perturbation superimposed on the boundary layer. Favorable results were
obtained in some limiting cases at the expense of complicated formulations. To
simplify the analysis, an alternative phenomenological model is used here. It has
proven to be useful in many engineering applicanticms.ls’z1 If the shock strength is
weak and no flow separation occurs, then the thickening of the boundary layer in

the interaction region can be modeled as a viscous ramp shown in Figure 5.2. The
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shock is located in the middle of the ramp, taking into account both the upstream
and the downstream influences of the shock on the boundary layer. This feature
distinguishes the present model from references 13 and 21 in which the shock is
attached to the ramp apex. As shown later, the inclusion of the upstream influence

is essential to obtain reasonable quantitative prediction.

Since the interaction is a local phenomenon, an appropriate length scale govern-
ing the domain of influence must be determined. By considering the non-trival

solution of the transonic small perturbation equation, this scale is defined as19

n =6 AE=1 (5.1.17)

where &g is the unperturbed boundary layer thickness. For a weak shock, the incli-

nation angle of the ramp agrees roughly with the maximum deflection angle for an

attached shock.gz Thus, from the oblique shock relation we have
Mgsin?g ~ 1
= 2cot 51.18
% = Reotf B+ coszg) + 2 (5.1.18)
where
=1 .7..7. in~—1 ._1_.
g= .2_{ 5 + sin i (5.1.19)

A third-order polynomial is chosen to define the shape of the viscous ramp by satis-

fying the following conditions.

6'=6 atx=- (5.1.20a)
%ﬁ—co atx = (5.1.20b)
5:1_6_'_'____0 atx =1 (5.1.20c)

dx
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gi = tanz%m 1& atx=0 (5120(1)
dx
Consequently,
3
6 =6 +al[E e (B - LTy (5.1.21)

where 1 is of the order of magnitude of the length scale 7; its actual value used in

the numerical calculation depends on the displacement thickness &* at x=1.

In the limit of a transonic weak shock, the jumps in boundary layer integral pro-
perties are proportional to the pressure jump across the shock wave, <0 Therefore,
the following linear variations of Aé® and Ad¥with the shock strength are proposed to

fit the experimental data reported in reference 24:

AS' M,

29 -gt-1 5.1.22
(- (5.1.22)

AS M,

=31 5.1.23

o s (5.1.29)

Evaluating the displacement thickness 6° at x={ from (5.1.21) and using the empiri-

cal correlation (5.1.22), one may determine the length of the interaction region.

L= 4.5%}(%— 1) (5.1.24)
In general, ! is much smaller than the longitudinal acoustic wave length; the entire
interaction region is acoustically compact. The processes in the interaction regions
on both sides of the shock are therefore considered quasi-steady and isentropic

since the entropy fluctuation due to the motion of a weak shock is negligibly small.

The overall calculation procedure with viscous/inviscid and shock
wave/boundary layer interactions accounted for is given in Figure 5.3. The interac-
tion module provides the necessary information for calculating the downstream

flowfield. Its global role in the program is obvious.
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5.2 Discussion of Results

Calculations have been carried out for two different diffusers, referred to as A

and B respectively. Diffuser A has a linear area distribution,

Alx) _ X
=1+ k({5 (5.2.1)

where L is the length of the diffuser from the entrance to the exit. Diffuser Bis a

convergent/divergent nozzle with a flat bottom and a contoured top wall, with the

axial distribution of area given by the formulas:

convergent section

_  1.4114cosh¢
Alx) = 0.4114 + cosh¢

0.5

[
~08%(3563 [ 2565

{= 108
[1 ¥ 2.598‘

(5.2.2)

divergent section

A(x) = 1.5cosh¢
0.5 + cosh¢

2.25( ——)
(= 721?0.& (5..3)

X
L~ 7218

1t is the baseline diffuser in reference 4. For each case, the analysis is applied first
to compute the flowfleld under steady conditions. The response of a shock wave to
various disturbances and its associated influences on the flowfield are then exam-

ined in detail.

Figure 5.4 shows the distributions of the mean flow properties in diffuser A with
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only the inviscid gas flow accounted for. The shock-fitting scheme functions well,
confining the numerical error within one tenth percent. At t=0 a periodic pressure
oscillation is imposed at the exit, simulating a pressure fluctuation induced by
combustion instability. After the time required for the disturbance to travel
upstream to the shock, the shock begins to oscillate about its mean position. The
local pressure and velocity fluctuations just downstream of the shock are of course
different from those existing at the exit and exhibit features due to the nonlinear
behavior of the shock and the nonuniformity of the mean flowfield. Figure 5.5
shows the instantaneous position of the shock for downstream disturbances having
different frequencies and amplitudes. The strong influences of frequency and
amplitude on the average position is evident: lower frequency and high amplitude
tend to displace the shock towards the throat, unfavorable for the performance of

an inlet,

The shock response depends strongly on the local diffuser shape. Earlier work 1

has shown that the dimensionless frequency Q0 , defined as follows,

Q= 3 (5.2.4)

A dx Jshock

plays an important role. As a check of the numerical analysis described here, the
real and imaginary parts of the admittance function have been calculated with the
results given in Figures 5.6 and 5.7. Agreement between the calculations based on
the present model, applied in the limit of small amplitudes, and the earlier results

11 g quite good. The response of the shock increases if (0 is

from a linear analysis
decreased. According to the definition (5.2.4), this happens if the fractional change
of cross-sectional area is increased . For the frequencies chosen here, the values of

() for the two diffusers treated here are:
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300 Hz 600 Hz

A Q=177 Q =3552

B  =2475 ( =4.950

Thus, one would anticipate that the shock wave in diffuser B should be more
responsive. Comparison of the results shown in Figure 5.8 (diffuser B) and Figure

5.5 (diffuser A) confirms this conclusion.

5.2.1 Oscillation of Entropy

Entropy fluctuations are generated as a consequence of shock motion due to a
pressure disturbance, and are convected downstream by the mean flow. These may
in turn produce pressure waves when passing through a region of nonuniform velo-
city. From the results for temperature and pressure, the entropy fluctuations can
be determined from the following thermodynamic relation:

as=2=% T _y-1 Pe (5.2.5)
Cp Te 7 P2

The induced entropy fluctuation is usually very small except for a strong shock.
For example, for diffuser A and the unsteady motions shown in Figure 5.5, the
entropy response function, defined as the ratio As/Apz/2). has magnitude less

than 0.1.

Figure 5.9 shows the entropy distributions at various times during a cycle of
oscillation in diffuser A. The distributions given include the maximum upstream
and downstream excursions of the shock, and an intermediate position. The non-

linear motions are clear in the asymmetrical shapes of curves.

5.2.2 Oscillation of Mass Flow Rate

Even for a fixed mass flow rate upstream of the shock, an oscillation of mass flow

will occur in the downstream region due to the shock motion. To first order
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accuracy, the fluctuation of mass flow rate can be written,
Arh =y - e = (5, ~P2)VsAs (5.2.6)
Combination of the above equation with the expression for the incident pressure

fluctuation Pe'. which is given in reference 11, and rearrangement of the result pro-

duce a formula for the mass response function.

( 1)(
A _ M
Ry = A 5 % M > : (5.2.7)
p 2 77+11 ( l)( ) Q +P

where Ps is a function of ﬁl‘ defined in reference 11. This agrees identically with
the result obtained by Waugh using an alternative approach due to I“iurrell.z5 Oscil-
lations of the mass flow rate for small amplitude disturbances are easily calculated

with this formula.

Oscillations of mass flow rate in diffuser A have also been computed, giving the
results shown in Figure 5.10. A pressure disturbance with frequency 300 Hz and
amplitude ten percent of the average pressure changes the air flow rate, and conse-
quently the equivalence ratio of the air/fuel mixture, by almost three percent if the
fuel flow rate remains constant. This will obviously affect the downstream combus-
tion processes. Unlike the predictions of linear theory, the amplitude of mass flow
oscillation is smaller for disturbances with higher amplitude. This is due to the fact
that nonlinear effects tend on the average to displace the shock toward the throat

and reduce its strength.

5.2.3 Upstream Disturbances

Pressure oscillations originating upstream of the shock due to unsteady boun-
dary layers or changes in flight conditions may be important. Their influences on

shock motion and the downstream flowfield are discussed in this section. A linear
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analysis is first carried out, followed by a numerical nonlinear analysis.

In contrast to the problem dealt with in the earlier Wor'k.11 the shock motion
studied here is resulted from upstream disturbances. Thus, the fluctuations of

velocity in a frame moving with the shock and pressure just upstream of the shock

are
. .odu;

U = Ue—Vg+ —a;cl—x,. (5.2.8)
dp; .

Pi = Dot ook (52.9)

respectively, where the last terms on the right hand sides are due to shock motion
in a nonuniform flowfield, and the subscript e denotes the incident disturbance.

Similarly, the fluctuating velocity and pressure immediately downstream of the

shock are
, , ., duz |,
Ug = Uy —Vg+ E‘})}?—}%’ (5.2.10)
. _ ., d4Pg .
Pz = Pt ax Xy (6.2.11)

Substituting the above expressions (5.2.8-11) into the normal shock relations and
assuming quasi steady behavior for the shock, we obtain a formula for the

transmission coefficient of a shock, Tr'

P__ {0'1'{"100'2 ﬁ;

T, = o {0’3+1004 T (5.2.12)
where
2+(1—y)M?
= 2l p o . 52.13
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2y e[, Pr, Mi+1
= - — M —)+— 52.14
o3 = YMaU,—P, (5.2.15)
= _:2_2_. 1 3 ¥
O, S+l l+ﬁ?+2M2} (5.2.16)

Figure 5.11 shows the magnitude and phase of the transmission coefficient Tr' The
result is well known: the shock amplifies all the disturbances from upstream. The
magnitude of T, is always greater than unity, and increases with the shock

strength.

Numerical calculations for finite disturbances have shown that the dependence
of the shock motion on amplitude and frequency are similar to those for down-
stream disturbances. The average position of shock wave is always shifted

upstream.

5.2.4 Resonance

One of the important issues regarding the oscillatory pressure field in an acous-
tic cavity is resonance. With supersonic flow upstream of the shock in an inlet
diffuser, the cavity is defined as the region from the shock to the exit, where the
counter-running wave system exists. Calculation of the natural frequencies is
straightfoward using a linear one-dimensional acoustic model. If we assume that
the cross-sectional area of the diffuser varies slowly, then the appropriate equation

describing the acoustic pressure fleld is

. e L s XX
P= fp';— =~ /2 ;u P+e.m+wj‘-f &+ +P_e~M iy g (5.2.17)

where P_ and P_ are complex amplitudes of the right - and the left-running waves.

By applying the condition for reflection at the shock and treating the exit as an
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acoustic node, the following transcendental equation for the natural frequencies is

obtained.

Be it Bl4e l BT =g (5.2.18)

where f is the acoustic reflection coefficient at the shock given in reference 11.

To check if resonances exist, numerical calculations have been carried out for
periodic pressure oscillations with a wide range of frequencies imposed at the
entrance. Figure 5.12 shows the spectra of the extreme excursions of the shock in
diffuser B, where the vertical arrows indicate natural frequencies determined from
(5.2.18). Only near the fourth harmonic (560 Hz) does the shock response (weakly)
resemble that for resonance. The shock is an over-damped system. A similar con-

3

clusion has been reached by Sajben and Bogar™ in their experimental investigation

of forced oscillations in supercritical diffuser flows.

5.2.5 Influence of Fuel and Air Injections

So far we have only examined the behavior of a single-phase flow. For many
practical ramjet engines, fuel is injected and atomized in the inlet section. It is
thus necessary to examine the flowfield with liquid fuel droplets accounted for. Cal-
culations have been done for various drop sizes, injector locations, and air flow
rates through the injector, while keeping the boundary conditions and fuel-to-air
ratio fixed. Figure 5.13 shows the mean pressure distributions in diffuser B with
stoichiometric RJ-4 fuel droplets (e = 0.07M,;) and wall air jet introduced. The
injected fuel/air flow modifies the main flowfield noticeably, moving the shock
upstream and reducing the shock strength. The mean shock positions for various
injection conditions are shown in Figure 5.14. The effects of fuel droplets are best
measured by their momentum and heat transfer to the gas flow. Since smaller dro-

plets mean a greater specific surface area for a mixture with fixed fuel-to-air ratio,
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the effects increase with decreasing droplet size. Evidently the dependence of

shock position on the rate of mass injection is the dominant effect.

Figure 5.15 shows the instantaneous shock positions subject to downstream dis-
turbances. Comparison with Figure 5.8 clearly indicates that the stability margin of
a shock is reduced by injecting fuel and air into the main flow. A pressure distur-
bance with dp=0.1Pe; forces the shock to pass through the throat in a flow with a
small amount of air added (n=0.05), while the stability is ensured even for

06p=0.15P¢ in a flow without injection.

5.2.8 Large Amplitude Oscillation

Large amplitude oscillation is of concern when the flow in front of the shock is
transonic. Recent experiments on inlet diffuser flow® have shown that within the
transonic range a small perturbation in back pressure leads to significant shock
motion. The shock may be displaced upstream of the throat by the compression
part of a periodic pressure wave, then either vanishes in the convergent section or
accelerates to the entrance, depending on its strength. After a short while, another
shock is generated at the farther downstream position according to the pressure

distribution in the diffuser.

To simulate this phenomenon numerically, the entire diffuser B is considered by
setting the upstream boundary at the entrance. The flowfield is first calculated
under steady state conditions, giving the results shown in Figure 5.16. The scheme
produces smooth and accurate transition from subsonic to supersonic flows at the
throat. Subsequently, similar to the previous cases, a periodic pressure oscillation
is imposed at the exit at time t=0. Figure 5.17 shows the instantaneous shock posi-
tions for disturbances having two different amplitudes. A pressure disturbance
with amplitude dp=0.2Pex displaces the shock out of the supersonic region and

causes the loss of the stability margin of the system. Note that the shock speed



-137-

(g 19sN33TQ) SUOTITPUO)
uorioaful SNOTIBA JISPUN SUOEINGTAIST(C 9ANSSaIJ UBSK °*€1°C TUINOTA
wu\x ‘uotarsod TeIXE
0'1 GL'0 ‘ 0s'0 S¢°0 0°0
| | | ]

10309 fuy

an ™
TP s000 = P S

P

ao3oueyp 191doap

moT3 upew

poloalur are

pa1oalur ire/Ton3y ou

= u

noS=p ‘G0 0=U
nog=po=U

0'0

S0

0°¢

u'!:d/d ‘ganssoxd



-138-

pue 9az1g 397doxg uo uoriIfsod YOoys jo douapuadaq

(g4 19sn3jJTq) uolaIrsog xolzosfur

. ¢3ardoap jo aajsumelp

‘%16 HYNOIA

052 002 0S1 001 05 0
f | ] ] 1 | ]
uﬁmﬁ 100 = ﬁmawe
ﬁﬂ 90 = WA ‘G0°0 = U lllll\l‘l\\\\l\‘l\\l‘\\‘
\
P1g8'0 =71 00 =u
Ppgg =731 =u

uotioafur ou

1°0

c'0

£°0

%0

T/sx ‘uor3itsod yooys

%



-139-

(4 x9sn3ITA) 2H 00€ = JF YITM

20UBQINIST(Q WEDAISUMO(J O} SNP UOTITSOJ YOOYS SnoduejuelIsuUl  *G¢1°G¢ HYNDIA

0°¢l

. SWI] sSsaTuUOTSUdWEP
(A 0°6 0'9 0°¢ ‘0

1 og

paioafur iye/1eny ‘00 =

1 | ! l

= p ‘iajsuerp 3a1doip

paioafur afe/Iony ‘G600 = u ¢ d 1°Q =

pe1vafu Tang ‘0 = U <*°d gp0 = ,d

uor3osfuy afe/1eny ou ¢ d ¢p°Q = ,d

0°0

S1°0

0€°0

S0

0s°0

q/sx ‘uoTarsod ooys

P



- 140 -

increases rapidly in the convergent section in which the shock is unstable within
linear analysis. Figure 5.18 shows the pressure distributions at various times for
large amplitude oscillation. The intermittent appearance of a shock is clearly

displayed. Finally, the mass fluctuations are given in Figure 5.19,

5.2.7 Viscous Flow

Viscous effects in the boundary layers are included in order to make the model
more realistic. Figure 5.20 shows the measured wall pressure distribution and the
calculated mean pressure field of the core flow in diffuser B. The experimental con-
ditions given in reference 4 are closely reproduced. The calculated Mach numbers
in front of the shock are 1.24 and 1.48 respectively for the viscous and inviscid
cases. The discrepency in the vicinity of the shock is due to the strong normal
pressure gradient in the boundary layer in the interaction region. The viscous
boundary layers have profound effects on the mean flowflelds, tending to displace
the shock upstream and reduce its strength. The spike immediately behind the
shock, resulted from the rapid increase of boundary layer displacement thickness
due to the shock wave/boundary layer interaction, represents the post-shock

expansion and has been observed expe:rimenta.uy.26

5.3 Concluding Remarks

The numerical analysis described here serves as a convenient and inexpensive
means of assessing the influence of large amplitude disturbances on the unsteady
behavior of an inlet diffuser. It is not the intention of this work to provide a theory
of the diffluser, but rather to construct an approximate representation which may
later be used in analysis of the nonlinear behavior of an entire engine. Any results
obtained with the formulation used here are restricted to relatively weak shocks so

that flow separation does not occur.
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NOMENCIATURE 5

speed of sound

geometric cross-sectional area of diffuser
effective cross-sectional area of diffuser
specific heat of fuel

constant pressure specific heat of air
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d diameter of tuel droplet

£ frequency

Fp drag force between air and fuel droplets

La length of diffuser

Le position coordinate of fuel injector

M Mach number

p pressure

Py defined by Eq. (29), Ref. 11

P,,P_. amplitudes of rightward and leftward traveling pressure waves, respec-
tively

Qp heat transfer rate between air and fuel droplets

Rn mass response function, defined by Eq. (5.2.7)

8 entropy

t time

T temperature

Tr acoustic transmission coefficient, defined by Eq. (5.2.12)

u velocity

Ug defined by Eq. (30), Ref. 11

Vg velocity fluctuation of normal shock

X position coordinate along the axis of the diffuser

Xg position fluctuation of normal shock

g acoustic reflection coefficient of normal shock presented to downstream
disturbance

7 ratio of specific heats

n ratio of air flow through the injector to the main flow

P density

A angular frequency

g rate of air injected into the main flow

tp rate of liquid fuel injected into the main flow

0 dimensionless angular frequency, defined by Eq. (5.2.4)

superscripts

* sonic condition

(7) average value

-}

fluctuation

subscripts
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incident disturbance

value at exit of diffuser

value at entrance of diffuser

liquid phase

value at normal shock

value at port of fuel injector
transmitted disturbance

value upstream of normal shock
value downstream of normal shock
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Chapter 8
PRESSURE OSCILIATIONS IN SIDE-DUMP RAMJET ENGINES

This chapter deals with the combustion induced pressure oscillations in two
research side-dump ramjet engines, being motivated by recent experimental work
conducted at the Naval Weapons Cent:er.l'2 Figure 6.1, taken from reference 2,
shows the baseline configuration considered. Preheated air is delivered from the
plenum chamber to the combustor through two circular side ducts. Fuel injection
takes place just behind the diffuser secticn to ensure adequate mixing of air and
droplets, using a fixed orifice, contra-stream injection system. Because the engine
exhibits severe transverse oscillations under many test conditions, a tangential
mode suppression vane is used. This has proved to be an effective method,
suppressing high frequency fluctuations significantly. Details of the system are

given in reference 1.

In the following sections, a one-dimensional model is employed to formulate the
problem, which is then solved numerically. The engine is treated in two parts: the
inlet section, including a region of two-phase flow downstream of the plane of fuel
injection, and the dump combustor. Combustion processes are crudely modeled as
a stirred reactor, occupying the forward portion of the combustor, followed by a
length of plug flow. Calculations are first carried out for the steady flowfields. The
unsteady behavior of the engine is then determined by its response to a small dis-
turbance imposed on the mean flow. In addition to the spacial distributions of flow
variables at various times, the power and cross spectral densities are computed for

the time history of the pressure.

8.1 Formulation

Because the flow properties change abruptly across the dump plane, the engine
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is first approximated by division into two parts: the inlet section (region I) and the
dump combustor. Each region is treated separately and matched with the other.
The physical phenomena downstream of the inlet ports, roughly ranging from the
dome of the combustor to the transverse mode suppression vane, are extremely
complicated. The important processes include mixing of unburned and burned
gases, droplet vaporization, and finite-rate chemical reaction. To bypass these com-
plexities, a lumped parameter analysis is used to formulate the combustion
processes in this region. The combustor therefore consists of a stirred reaction
section (region II) for ignition and preliminary combustion, and a plug flow reactor

section (region III) for final burn-out.

The model is based on the one-dimensional approximation for two phase flow, as

described in Chapters 4 and 5. The inviscid conservation equations for the gas flow

are
gas-phase
1 _Ke__L
at = 3p1% (6.1.1)
Bow) . 18] p . ay.-_p dA
T e I w i (612
a{,¢>(—2LT-——+ 2yl oy L E’[puA( X EE‘)
5?1 rmly-1) 2 Adx |7 ym(y-1)
==L oupd) B g (h +322-)+' AH (6.1.3)
Teh x| y—1 ¢ e T T d T M -

species equation

BpYr) . 1 8(pYuh)

fuel FrE— = —riy g + 3pply (6.1.48)
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O(pY,) | 1 dpYeuh) _

oxygen a3t A ox = -y, (6.1.4b)

For convenience of numerical calculation, the governing equations for the liquid

flow are solved in the following non-conservation form.

liquid-phase

dpp . 8(ppup) _ PpUp dA ,

T T ox P T A ax b (8.1.5)
—6-39—4-11 S _ B (6.1.8)
ot P ox Pp

T, o, _ @

T Y i P (8.1.7)

surface regression rate of droplet

Dr or or
P = P P -
Tt St T U g = b (6.1.8)

The flow properties are normalized with respect to their quantities at the end of the
inlet diffuser except the velocity, which is referenced to the speed of sound. A

nomenclature is given in the end of this chapter.

In this study, the fuel/air mixture is lean and well mixed before vaporization
occurs. Each droplet acts individually without interaction with the others. The dro-
plet regression rate ry is therefore obtained by considering the vaporization or
combustion of a single droplet in a convective environment. For quasi-steady

behavior and uniform temperature in the droplet, the surface regression rate ry, is

found to be3
ry = ;f;%—ln(l + B)[1 + 0.39P}3RY/?] (6.1.9)
P

The second term in the square brackets is used as an empirical correction for con-

vective heat and mass transfer. The transfer number B represents the driving
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Jorce for the diffusion process and is defined as follows.4
(T -T
pure vaporization B= -2—(——-13’& (6.1.10a)

L

cp(T - pr) + ‘PonoAH
L

droplet combustion B= (6.1.10b)

where ¢, is the stoichiometric ratio of fuel to oxygen. The regression rates of
liquid droplets are not strongly influenced by the surrounding pressure and tem-
perature because of the insensitivity of the product pD to them and the appearance

of B in the logarithrnic function.

86.1.1 Combustion Process

The chemical reaction rate my ¢ is an essential element in the entire analysis. Its
formulation depends heavily on the conditions of the droplets flowing into the
combustor. A simple estimate of the droplet size in the inlet section has been made
by comparing various time scales associated with the droplet heating-up, the vapor-
ization rate, and the flow residence. For the problem studied here, the port diame-
ter of fuel injector is 1.018 mm and the initial droplet size is about 30 microns
according to the formula given by (4.1.13). Most of the vaporization takes place
within the inlet, producing very tiny droplets with diameter of the order of 10
microns at the dump plane. As a result, the combustion processes are assumed to

5

be homogeneous,"” similar to those of a premixed combustible gas. A further check

of this assumption will be given later.

As mentioned earlier, the flowfield in the upstream part of the combustor is
treated as a stirred reactor in which chemical reaction takes place uniformly.
While the method provides reasonable solutions for the energy release, direct appli-
cation to unsteady problems is inappropriate. The reactor usually occupies such a

space that prohibits certain spacial variations of oscillatory flowfields. Conse-
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quently, the frequencies may be overestimated except for very low frequency oscil-

lations.

To get around this problem, a patching technique has been used with the con-
sideration of an equivalent combustor as shown in Figure 8.2. The flowfield is
assumed to be quasi one-dimensional everywhere in the combustion chamber. How-
ever, the rate of heat generation due to combustion in the stirred reactor section is

calculated in an average sense, using a lumped parameter analysis described below.

Conservation laws are applied to obtain three conservation equations together
with two species equations. Legitimately, these equations can be derived by
integrating (8.1.1-4) with respect to x over the reactor section and ignoring the

momentum and heat transfer between two phases.

v%f-:m, ~ ring (6.1.11)
VEEL = rhyu, - hgug + Ax(py ~ po) (6.1.12)
VEEE = iy, — riaghyg + opAH (6.1.13)
v-‘—l—g-? =, Yy — mhgYe — o (6.1.14)
VL vy~ st v (8119

The subscripts | and 3 denote respectively the inlet and the exit planes of the reac-
tor, and Yfl is the bulk mass fraction of the fuel at the entrance, including both
fuel vapor and droplet. The lumped flow properties on the left-hand sides of
(6.1.11-15) take the values of those quantities at the exit plane, being consistent

with the concept of the stirred reactor.

The chemical reaction rate is determined with a global chemical kinetics model
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8

proposed by Edelman and Fortune,” which contains as a rate-controlling step the

following subglobal oxidation procedure.

CpHp + %oz > ?—Hg +nCO (6.1.18)

This reaction is unidirectional with an empirically determined rate given by

d[CoHp]

T AT®p%3[C H,]%5[0z]e KT (6.1.17)

where [ ] denotes molar concentration. Therefore, the rate of the total amount of
fuel consumed in the reactor can be written as
& = aTp®3p!5YPOY e /BT = oYP oY, (6.1.18)

The constant o' absorbs all the unit conversion factors and the pre-exponential

coefficient in the expression for the chemical reaction rate.

Rearrangement of (6.1.11) and {8.1.14-15) leads to

dY, dy,
Yos = Yor + V[Yrs — Y0 ] + Ter[v d;a - _d_t?l] (8.1.19)

where 7gg is defined as pV/r,;, representing the residence time of the combustible
mixture in the reactor. If the characteristic time of pressure oscillation is much
greater than 7gg, then the time derivatives appearing in the above equations can be
ignored. The whole process becomes quasi-steady. Of course, this happens only for

very low frequency case.

Equation (8.1.19) is further simplified by taking into account the species concen-
trations at the inlet plane. For a mixture containing only fuel and air, that equa-

tion becomes
Yog = ¢; + C¥py + cg¥yg (6.1.20)

where
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dYs dY.s

- 52

dt dt

¢, = 0.231 + Tsp[v

cg = -3.55

Cg = 3.317

Combination of (6.1.14), (6.1.18), and (6.1.20) and rearrangement of the result pro-

duce a third-order polynominal for Yy
daYih + YR +d,Yys +dg = 0 (6.1.21)

The coefficients di are functions of the lumped flow properties and the inlet fuel

concentration, defined as follows.
dy = f%cf
dp = 2c,cgf? + 2egesffYy — 1
d; = %cf + BRcdYR + Reicef®Yn + Yy — 2cy

do = ‘Yﬁ - C42, + Yy 04

and’

dYys

a
Cs = TSR g =

“m,

The overall calculation for the rate of fuel consumption cx is based on an itera-
tion scheme. We first assume the temperature field in the reactor and compute Y;g
from (6.1.21), taking the pressure field to be Py &y is then determined from
(6.1.18) and (6.1.20). As a result, the flow properties in the reactor become known
after some manipulations of (6.1.11-13). The time derivatives are estimated using

the fourth order Runge-Kutta method. The same procedure is repeated until the

calculated temperature converges to its initial guessed value. To improve the



- 1569 -

numerical efficiency, an under-relaxation method with relaxation coefficient 0.75
has been used for the temperature. It is important to note that in the stirred reac-
tor theory, the solution is usually not unique due to the exponential variation of the
energy release with the temperature (6.1.18). Depending on the flow conditions at
the entrance of the reactor and the volume V, two or three solutions with different
temperatures may be obtained. Only the result having the highest temperature,

close to the adiabatic flame temperature, is physically re.':mlistic.s'7

VWith a uniform source distribution of energy, the chemical reaction rate my; in
region II is readily obtained by division of dy by the volume V. The calculation for
the entire flowfield in the combustor then proceeds from the dump plane {location
R of Figure 8.2) to the exhaust nozzle by solving {6.1.1-3). The flowfield downstream
of the suppression vane is treated as a plug flow reactor in which the global reac-

tion rate model (6.1.17) determines the combustion processes.

6.1.2 Treatment of Boundary Conditions

In order to solve this problem, boundary conditions must be specified ade-
quately. Earlier work has shown that these conditions can be obtained by consider-
ing: 1) physical processes, 2) compatibility relations obtained from method of
characteristics, and 3) numerical one-sided differences. For the gas phase, the
boundaries are chosen to be the inlet throat and the entrance of the exhaust noz-
zle respectively. The upstream boundary conditions are determined by assuming
conservation of total energy and isentropic process from the plenum chamber to
the throat, together with the leftward characteristic equation or choked condition,
depending on the flow speed at the throat. Treated in this manner, the plenum
chamber acts as a perfect acoustic absorber. The acoustic wave radiated into the
chamber is efficiently dissipated, no resonance taking place. This assumption is

2

confirmed by the experimental results® which indicate that the pressure oscilla-
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tions upstream of the throat (location 0 of Figure 6.1) are remarkably small. At the
downstream end, the flow is subsonic. Two characteristic lines run from the inte-
rior region to the exit; the only physical boundary condition required comes from
the Mach number at the exit, which is determined by the area ratio of the combus-
tor to the throat for a choked compact nozzle. The conditions for the liquid phase

can be specified with the same procedure described in Chapters 4 and 5.

With the treatment of the inlet and the combustor separateiy. an internal boun-
dary is introduced at the dump plane. The three compatibility relations, two in the
inlet section and one in the combustor, together with the continuity equations for
the mass, pressure, and total energy provide the necessary boundary conditions for

the finite-difference approximation in each region.

8.2 Discussion of Results

The aforementioned self-adjusting hybrid scheme with artificial compression is
used to study the flowfields in two research side-dump ramjet engines operated at

2 Both engines have the same inlet systems, but with

the Naval Weapons Center.
different combustor lengths. Since static pressure measurements in the diffuser
section indicated that the throat was unchoked during all the tests, in this work no

shock-fitting algorithm is activated.

The mean flowfields must be determined first in order to provide the necessary
initial conditions for the analysis of unsteady motions. The primary input data
simulating a typical experiment are given in Table 6.1. The liquid fuel used is Ri-4
fuel having stoichiometric fuel-to-air ratio (by weight) 0.0702. Because the engine
always exhibits oscillatory behavior, in the calculation of mean flow fields, the Mach
number in the inlet section is fixed by the measured value. The requirement for
continuity of pressure across the dump plane is then satisfied by choosing a suit-

able pre-exponential factor in the chemical reaction rate equation. For unsteady
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problems, the condition for a fixed inlet Mach number is relaxed. The internal
boundary conditions at both sides of the dump plane are calculated, based on the

model given in Section 8.1.

Table 8.1 Computer program input parameters

Tr, =612 K L=350J4
P15 = 7.728 atm AH = 42397 14
p15=423Kg/m®  p =940 Kg/m?

M5 = 0.23 0y = 0.023 N/m
Tr, = 2323 K (4 = 0.0035 NsAn?
M, = 0.37 e =2.1J&-K

¢ =091 i = 3%x1075 Ns/n?
Tpp = 480K e, = 1.05Jg-K

K = 0.046 JA-m-K

Figure 8.3 summarizes the distributions of various mean flow properties in the
baseline engine. The rapid changes of pressure and velocity downstream of the
dump plane are due to combustion processes. For the conditions chosen here,
more than eighty percent of the chemical reaction takes place in the stirred reac-
tor section. Figure 6.4 shows the bulk density of the liquid fuel and the mass con-
centration of the fuel vapor in the inlet section. The density decreases rapidly
downstream of the injection because of the acceleration of fuel droplets. Most of
the fuel is vaporized before entering the combustor. This is the basis for the
assumption made earlier that only homogeneous reactions occur in the combustor.
The kink on the density distribution corresponds to the position at which the liquid

fuel begins to vaporate.
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The stability characteristics of the engine are investigated by examining the
response of the flowfield to a disturbance imposed on the mean flowfield. In this
case, the mean pressure of the combustor flow is slightly uniformly reduced. Fig-
ure 8.5 shows the time history of the pressure at the end of the inlet. The ampli-
tude of the oscillation grows initially, then apparently reaches a limiting value after
certain time. Nonlinear effects are clear from the development of this limit cycle
and from the structure of the waveform. The pressure distributions at various
times within one cycle of oscillations are shown in Figure 8.6. The wave is nearly
standing in the combustor with the existence of a pressure node, which
corresponds to the first mode oscillation. The acoustic field is driven by the pres-
sure oscillations in the combustor and damped efficiently due to the propagation of

waves through the upstream boundary into the plenum chamber,

To make a direct comparison with experimental data and to have a deeper
insight into the problem, spectral analysis of the pressure at various locations has
been conducted. The power spectral density for the pressure at the exit plane of
the inlet is shown in Figure 8.7. The dominant frequency is 320 Hz, compared with
the measured value 295 Hz. The wide-band noise is due to the numerical noise and
the transient part of the signal. Table 6.2 gives the calculated and the measured

frequencies of oscillations.

Table 8.2. Calculated and measured frequencies

mode fcalculated fmeasu.red
bulk 176 Hz 130 Hz
first 320 Hz 295 Hz

second 624 Hz 590 Hz
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Figure 6.8 shows the distributions of amplitude and phase for the first mode.
The linear phase distribution in the inlet suggests that the field be dominated by
the leftward travelling wave generated by the combustion, the reflected wave being
very small. The wave amplitude remains almost constant except in the diffuser sec-
tion, where the gradual decrease of cross-sectional area toward the throat produces
an increase of wave amplitude. The mode structure in the combustion chamber is
similar to that for a standing half wave. As far as the absolute magnitude is con-
cerned, the analysis underestimates the fluctuation almost by a factor of 25 per-

cent.

When a short combustor with length 36 inches is tested, the dominant bulk and
first mode oscillations occur at 187 Hz and 419 Hz respectively, as shown in Figure
8.9 where the vertical arrows represent the measured results. In comparison with
the oscillations in the baseline combustor, the frequencies are greater as a conse-
quence of the reduction of the combustor length. However, the wave amplitude of
the first mode drops significantly almost by a factor of eight. This phenomenon
may be crudely explained by Rayleigh's crit:erion8 which states that to sustain a
self-excited standing wave system, the local energy fluctuation must be positively
correlated with the pressure fluctuation. Obviously, the condition is best fulfilled if
the energy source is located at the pressure antinode. For the baseline (longer)
combustor, the active combustion takes place in the forward part of the combus-
tor, close to the pressure anti-node and away from the node point. Therefore, it is
easier to drive the first mode instability. Situations are different for the short
combustor. Since the combustion is distributed throughout much of the region
between the acoustic anti-node and the node , rather away from the node, the

amplitude of the pressure oscillation is thus reduced.

Figure 6.10 shows the first mode pressure and phase distributions in the engine

with a short combustor. Again, a standing half wave exists in the combustor, and
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Ref, 2
2.0 - ¢

calculated result

1.6 b (scale factor 0.75)
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FIGURE 6.8. Distributions of Amplitude and
Phase of First Mode Oscillation
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FIGURE 6.10. Distributions of Amplitude and
Phase of First Mode Oscillation

(short combustor)
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the unsteady field in the inlet is dominated by the leftward travelling wave.

8.3 Concluding Remarks

In this chapter, numerical calculations of pressure oscillations in side-dump
ramjet engines have been carried out, based on the one-dimensional approximation
for two-phase flow. Results have shown favorable comparison with experimental
data for the frequencies and mode shapes, but the amplitude of the dominant mode
is underestimated almost by a factor of 25%. Nevertheless, the analysis provides a
basis for interpreting experimental observations and for predicting some of the glo-
bal behavior of the engine. Within the present framework, no representation of
multi-dimensional effects, such as vortex shedding and recirculating flow, has been

attempted. Extension must be made to these matters.
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NOMENCIATURE 6

cross-sectional area

specific heat of fuel

constant pressure specific heat of air
mass diffusivity

activation energy

frequency

drag force between air and fuel droplets
enthalpy

heat conduction coefficient of air

latent heat of liquid fuel

position coordinate of fuel injector
Mach number

rate of consumption of ith species
pressure

Prandtl number

heat transfer rate between air and fuel droplets
gas constant

surface regression rate of droplet
radius of droplet

Reynold's number based on relative low velocity, defined by Eq.(4.1.13)
time

temperature

boiling temperature

velocity

veolume of stirred reactor

position coordinate along the axis of the engine, normalized w.r.t. the
inlet length

mass fraction of ith species

gas constant, normalized w.r.t. that of the air
ratio of specific heats

viscosity

stoichiometric coefficient

rate of consumption of fuel in the stirred reactor
rate of liquid fuel injected into the main flow
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@ equivalence ratio

P density

I density of liquid fuel

o surface tension of liquid fuel

AH heat of combustion per unit mass of fuel
subscripts

f fuel

o oxygen

in inlet flow

p liquid phase

sg value at port of fuel injector

1 value at the exit plane of the inlet

2 value at the inlet plane of the combustor
3 value at the exit plane of the stirred reactor
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Chapter 7
CONCLUSION

The work reported here must be regarded as the first step towards a com-
plete understanding of the low frequency longitudinal pressure oscillations in
ramjet engines. Because the problems to be treated are complicated and con-
tain many uncertainties, it will not be fruitful to formulate elaborate theories
treasured for their alleged predictive powers. The effort has been directed to
constructing an acceptable approximate model accommodating the fundamen-

tal features of the flowfields.

We started with an analytic linear analysis, followed by a numerical nonlinear
analysis. The main results of the linear analysis are frequencies, growth con-
stants, mode shapes, and perhaps more important, the basis for nonlinear
analysis. Chapter 2 deals with the longitudinal unsteady motions in several
laboratory coaxial devices operated at the Naval Weapons Center. The engine is
approximated by division into two parts: the inlet and the dump combustor, in
each of which we assume the mean flowfield to be uniform. The oscillatory field
is therefore the superposition of two simple plane acoustic waves running
upstream and downstream, and an entropy wave convected downstream. With
appropriate matching conditions at the interface, the stability characteristics of

the engine can be determined.

The assumption of the uniform mean flowfleld in the dump combustor has
been released in Chapter 3. We have modeled the flow in three regions: the
upstream flow of reactants, a recirculation zone and a region containing
combustion products. The flame zone and the shear layer at the edge of the
recirculation zone have been considered infinitesimally thin. With that mean

flowfield, small amplitude motions have been calculated as one-dimensional
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waves. The apparent mismatch between a two-dimensional mean flowfield and a
one-dimensional oscillatory field can be easily resolved using the integral formu-
lation. Distributions of the amplitude and phase have shown good agreement

with experimental data taken at the California Institute of Technology.

There are several important aspects of linear analysis which require exten-
sive attention. First, the representation of the unsteady combustion is incom-
plete. Within the flame sheet model, the unsteadiness of combustion appears in
the fluid dynamic stretching of the sheet due to the local velocity and pressure
fluctuations. The flame speed itself remains constant. Extension should be
made to finite-rate chemical reaction. Second, only two-dimensional coaxial
configurations have been treated. Extension to axisymmetric and side-dump
devices is required. Third, to date we have only analyzed one-dimensional
unsteady motions with a two-dimensional mean flowfleld. Extension must be
made to two-dimensional wave motions. This probably is the key issue of the
entire problem. As a consequence, a more realistic and accurate representation

of the shear layer and the flame front is required as well.

As fas as the numerical nonlinear analysis is concerned, we have carried out
approximate numerical calculations for the inlet diffuser flow with a shock wave.
Nonlinear behavior of the shock wave in the inlet is a necessary part of the
problem since we need this information as a boundary condition. We did not
intend to construct a complete theory of diffusers; we are interested only in the
way in which the diffuser influences unsteady motions in the engine. Both
viscous effects and the influences of injecting fuel/air mixture have been
accounted for. The response of a normal shock wave to various disturbances
has been investigated in greai detail. Because the viscous boundary layers have
been assumed to be steady and attached to the wall, the flow separation, either

due to the unfavorable pressure gradient or to the shock wave/boundary layer
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interaction, has not been accommodated. These merit thorough consideration

in the future.

Numerical calculations have also been conducted for the pressure oscilla-
tions in side-dump ramjet engines, based on the one-dimensional model for two-
phase flow. Combustion processes have been crudely modeled as a stirred reac-
tor, occupying the forward portion of the combustor, followed by a length of
plug flow. The unsteady behavior of the engine has been determined by its
response to a small disturbance imposed on the mean flowfield. Within the one-
dimensional approximation, the apparent multi-dimensional effects, such as
vortex combustion and recirculating flow in the vicinities of the
inlet/combustor interfaces, have been neglected. Future effort should be

devoted to correcting this matter.



