LINEAR PROGRAMMING METHODS
FOR THE NUMERICAL SOLUTION
OF PARABOLIC EQUATIONS
BACKWARDS IN TIME
Thesis by

Michael David Prendergast

In Partial Fulfillment of the Requirements
for the degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

1983

(submitted May 18, 1983)



ii

ACKNOWLEDGMENTS -

I gratefully acknowledge support during my stay at Caltech in the form
of teaching assistantships, summer support from the Kaplun Memorial Fund, and
a Charles Lee Powell Fellowship. I am deeply indebted to my advisor,
Professor Joel Franklin, whose skill and expertise in ill-posed problems made
this thesis possible. His patience and advice have helped me many times. I
would also like to thank all of the students and faculty who have helped make

my stay here more interesting and enjoyable.



iii
ABSTRACT

This thesis investigates linear programming methods for the numericél
solution of parabolic equations backwards in time. These problems are
ill-posed. Hence an approximate numerical solution for such problems can
only be obtained if additional constraints (called a regularization) are
imposed on the solution in order to guarantee its stability under small
perturbations. Previous authors have implemented regularizations on the
backward heat equation which used (linear or nonlinear) least squares, or
linear programming. These regularizations use the exact form of the kernel
for the heat equation, however, and so are not generalizable to problems with
an unknown kernel or unknown eigenfunction expansion. Furthermore, the least
squares methods can not easily handle the nonnegativity constraint that a
positive temperature, for example, must have.

In the first part of this thesis, linear regularizations which can be
used to solve any linear parabolic equation on a finite domain backwards in
time are introduced. It is then shown how a numerical approximation to the
solution of the regularized problem can be obtained by using linear
programming and any stable and consistent difference method (such as
Crank-Nicholson). The convergence of these algorithms is shown to be a
direct consequence of the Lax equivalence theorem. The stability, accuracy,
and results of actual numerical experiments using this linear programming
method are analyzed.

The second part of this thesis shows how these regularizations can be

used on weakly nonlinear equations. This is done by introducing a successive
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approximation method, and solving a linear program at each step in the
iteration. The stability, accuracy, and results of numerical experiments for

this algorithm are also examined.
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I. INTRODUCTION AND REGULARIZATION OF ILL-POSED PROBLEMS

I.1. Introduction.

No model is perfect: any mathematical description of a physical system
must ignore some features of the system. If the wrong features are ignored,
the model will be bad. This situation often occurs when the description of
the system is ill-posed.

Consider the lineaf problem
(1.1) Ku=f,
where K is a bounded linear operator mapping a Banach space X into a Banach
space Y, f is known, and u is to be determined. This problem is defined to
be well posed if it has a unique solution which depends continuously on f;
otherwise it is improperly posed (or ill-posed). The restriction that u

& PR

depend continuously on f prevents a small change in f fr
change in u. This is important, for if (1.1) represents a model of a
physical situation, then a small measurement error in f should cause only a
small error in the calculated solution u.

There are three ways in which (1.1) can be ill-posed. First, there
could be more than one solution, which occurs when Kv=0 for some v#0.
Second, (1.1) might have no solution at all, which occurs when f is not in
the range of K. Third, a unique solution to (1.1) might exist which does not
depend continuously on the ‘data' f. This last case occurs when K has an
unbounded inverse. These three cases are related, as the following theorem
shows.

Theorem 1.1: If the domain of K is X, if the range of K is dense in Y,

and if K is invertible, then the range of K is all of Y if and only if Kd is



bounded.

Proof: This theorem is an immediate consequence of the closed graph
theorem. See [33], page 209.

If an ill-posed problem comes from a model of a physical system, certain
key features of the system are being ignored in the model. 1In order to make
the model well posed, more features of the system must be specified.

Example 1 (Backward heat equation): Suppose that the temperature
distribution on a thin rod is measured at time t=1, and the temperature is
sought for some t'<1. Heat conduction is a diffusive process, and so like
many diffusive processes that occur in chemistry and physies, this phenomenag i
can be modeled by a parabolic partial differential equation. The equatio;
often has variable coefficients, but for this process they are constant.
Here the problem is to find u(x,t) satisfying

Ug =Uxy

u(0,t)=0
(1.2)

u(TT,t)=0

u(x, 1)=£(x) (0<x<TT, 0Kt
This problem is ill-posed, however. A small perturbation of sin(nx)/n in
f(x) creates a large perturbation of e"gsin(nx)/n in u(x,0).

Certain key features of the experiment are ignored in this description.
One of them is the data error in f(x). An additional constraint on the
solution is also needed. This constraint should reflect a known feature of
the temperature distribution. For example, suppose f(x) is measured to

within a tolerance of .01, and that it is known (either from observations or

from the system itself) that at time t=0 the temperature u satisfies 0<u<1.



With this, (1.2) becomes

Ug=Ugy

l;(x.1)—f(x)(5.01,
(1.2%)

u(0,t)=u(TT,t)=0

0<u(x,0)<1.
Later it will be shown that if u, and u, are any two solutions to (1.2'),
then

U, G 8)=uy(x,0) 1 <20 *.
Therefore, the solutions to (1.2') do not have the instability that solutions
to (1.2) have.

Example 2 (Numerical differentiation): Suppose that an experimenter
measures a function f(x) for 0<x<1 and seeks its derivative. Setting
(1.3 g(x)=f"(x)
will not work here, since f(x) is a measured quantity and might not even be
differentiable. Furthermore, a small error of d&f'in f(x) will cause a large
error of n*x" in g(x). Problem (1.3) is therefore ill-posed.

Equation (1.3) requires information about the data error in f(x) as well
as an additional condition on g to remove this instability. ©On the other
hand,

Ie(x)-fo ()L &
1
Se(x)dx=fo(x)-£(0)
(1.3 0
Hglx) i, <M,
Mg (x) 11 <M,

has both of these. If a selection rule is used to specify which of all g(x)



that satisfy (1.3%) is the approximate solution to (1.3), then (1.3') becomes
well posed. Franklin [16] and Cullum [10] have studied this preoblem using a
selection method due to Tikhonov.[35,36].

For the above examples, the original description of the experiment
resulted in an ill=posed problem. A more thorough description of the
experiment was needed to make the problem well posed.

The solution at t=0 to the ill-posed backward heat equation (1.2) solves

the Fredholm integral equation of the first kind

T
(1.4) Sk(x,s)u(s,0)ds=£(x),
0
where
o0
.n"
(1.5) k(x,s):[Z/Tl’]Ze sin(nx)sin(ns).
n=1

From (1.5) it can be seen that all derivatives of k(x,s) exist and are
continuous. Therefore, if u(x,0) is continuous, all derivatives of f(x) must
exist and be continuous.

Finding the solution to any Fredholm integral equation of the first kind
is ill-posed. This is easily seen, for if k(x,s) is any bounded, measurable
function, then

[ 8
(1.6) 6ﬁ<(x,s)sin(ns)ds —>0 as ne==>9,
This shows that an arbitrarily small change in f(x) can lead to an 0(1)

change of sin(nx) in u(x,0). Another example of an ill-posed problem that

can be written as an integral equation is the problem of finding u(x,1) from



uxx+uyy=0
u(0,y)=0
(1.7 u(TT,y)=0
u(x,0)=f(x)
uy(x,0)=0 (0<x<TT, 0<y<1).
Here a small change of [sin(nx)]/n in f will produce a large change of
2[cosh(n)sin(nx)1/n in u(x,1). In this case, the solution to (1.7) at y=1
solves the Fredholm integral equation
ngx,s)u(s,1)ds=f(x),
0

where

' - -]
k(x.s):-?F:EEsin(nx)sin(ns)/[cosh(n)].
n=1

Computers produce roundoff errors. However, even a small error in the
data can lead to a large error in the solution of an ill-posed problem, as
these examples show. Hence without the imposition of additional constraints
on the solution, numerical methods to solve these problems will be unstable.
The assumptions which remove this instability are often called a
regularization. For example, consider the inequalities

HIKv-f1lp< € (p>1),
(1.8)

llelliSM (g>1),
where B is a bounded linear operator with bounded inverse, and €<<M. These
inequalities might arise in heat conduction problems, for example, if u is
known only approximately (to within measurement error) at t=1, and is known
to be bounded at t=0. Instead of looking for the unique solution to (1.1),

we now try to find any solution to (1.8) for small enough £ We then hope

that the solution to these inequalities is, in some sense, 'close' to u. If



it is, then (1.8) regularizes the ill-posed problem. These inequalities will
regularize the backward heat equation (1.2) for 0<t<1, as will be showun
later. Cannon [4] and Douglas [11] used this regularization with p=g= @ to
calculate approximate solutions to the problems of analytic continuation and
the backward heat equation, both problems in which k(x,s) is known exactly.
Others, such as Miller [23,24], have used least squares algorithms to solve
(1.8) when p=q=2 and the kernel k(x,s) is known. Not all ill-posed
final-boundary value problems have known kernels, however. For example, the
problem of finding u(x,t) for t<1 from

r(x,t)ue=(p(x,tluy)y

u(x,1)=g(x)
(1.9)

u(0,t)=0

u(TT,t)=0
is also ill-posed if r,p>0. The kernel for this problem can not in general
be determined, however.

The inequalities (1.8) will not in general regularize the Fredholm

equation (1.4). One regularization-that will work for these problems is due
to Tikhonov [35,36]. 1In it, (1.8) is replaced with the variational problem

of finding u such that
& ° em) o
(1.10) HiKu-£i1; + EZHrm(x)u )H;t =minimum (n>1)
m=0

for small €>0. Tikhonov showed that if the integral equation (1.4) has a
continuous solution v(x), then the solutions to (1.10) will converge
uniformly to v(x) as &==>0. Franklin [15], however, has shown that

convergence of Tikhonov's method can be arbitrarily slow. Because of this,



there is little computational advantage in using Tikhonov's method instead of
the regularization (1.8) for many ill-posed partial differential equations.

In this thesis, regularizations to (1.4) of the form

n
S M M (n>0),
m=0
(1.11)
[lKu-fl(TS ¢ (q=1 or <@

are used to obtain numerical solutions to parabolic equations such as (1.9)
backwards in time. It should be emphasized that the choice of n, M, and q
depend on the additional information known about the solution u. Withogt
this information, there is no particular reason to choose any n, M, or q.
For backward parabolic equations, this regularization takes the form

n

EHS u(x,0) “

m=0

llu(x,1)-f(x)lhtgi.
As in Tikhonov's method, solutions to these inequalities will converge
uniformly to the solution of (1.3) as £«=>0 if this solution obeys certain
smoothness conditions.

Now for these backward problems,

u(x, 1)=Ku(x,0)
by definition. Given u(x,0), however, u(x,1) can be approximately determined
by using any stable and consistent difference method, such as Crank-Nicolson.
In this case, we have

u(x,,1) u(x, ,0)
. -4 :

ulxy,1) u(x,,,:O)



for some matrix A. Here A can be thought of as an approximation to the
kernel XK. Substituting this and the appropriate centered differences into
(1.11%) results in a system of linear inequalities, and these inequalities
can be solved by linear programming. A priori and a posteriori error
estimates will be derived for this procedure, and it will be shown that the
error in the discretized problem as well as the analytical problem is
logarithmically convex. This method will also be compared with other
methods, such as Tikhonov's method, and it will be shown how to obtain a good
initial guess of the solution in order to reduce the computation necessary to
solve the linear programming problem.

This algorithm will also be applied to solve weakly nonlinear parabelic
equations backwards in time. For example, consider the problem of finding
u(x,t) (t<1) from

rix,t)ug=(p(x,t)uy)g+cF(u)

u(0,t)=0
(1.12)

u(TT,t)=0

ulx, =f(x) (0<x<TT, o<t<1),
where F is continuous and 0<e<<1. A successive approximation method can be
formulated to find an approximate solution to this problem. Let éd(x,t) be
an approximate solution to (1.12) when ¢=0. This function can be
approximated by using the regularization (1.11). For n>0, let d” solve

r(x, 0= (p(x,8) 8, +eF (™Y,
together with appropriate regularized boundary conditions at x=0, x=zJ{, and
t=1. Each u™ solves a linear problem, and so it can be approximately

determined with the aid of regularization (1.11). The error in this



algorithm can often be made arbitrarily small if € is chosen small enough and
n is chosen large enough. Error analysis and sufficient conditions for
convergence will be derived in this thesis, and these theoretical conditions
will be verified with numerical experiments.

This thesis is divided into four parts. This section and the next
section, which make up the first part, cover background material on ill-posed
problems, functional analysis, and regularization techniques for ill-posed
problems.

The second part of this thesis covers the description and analysis of
the linear programming methods proposed here for linear backward parabolic
equations. Sections II.1 and II.2 are devoted to studying the logarithmic
convexity of solutions for the cases of time-independent coefficients and
time-dependent coefficients. In section II.1 it is shown that if u(x,t)
solves a nonsingular parabolic equation with time-independent coefficients on
a finite domain, then

-t t

(1.13) HuGo, e <flux, 001, Tux, DU,
There are analogous (although more complicated) results for the case of
time-dependent coefficients. These problems have been studied before, for
example by Payne [26], Carasso [9], Franklin [16], and others. Hence some of
the material in these sections is not new; that which is not is clearly
indicated. The results obtained in these two sections can be usgd to study
the error in using regularizations such as (1.8) for backward parabolic
problems. In particular, if u and v both solve (1.11), then

Ilu(x,t)—v(x.t)llz_SZEtM'—t ,

from (1.13). In section II.3 the details of the numerical method for
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approximately solving backward parabelic equations using the regularization
(1.11) are given. The resulting system of linear inequalities takes the form
(for m=0, gq= o2

-M < u(x; ,00< M
n
- &< J%a;)-U(xi,O)—f(x;) < E (iz1,...,0),

and for a given € and M this system can be solved with linear programming.
Sometimes, however, the bound M at t=0 and the error € at t=1 might not be
known precisely. In section II.4 methods are given for solving parabolic
equations backwards in time when either & or M is unknown. These
regularizations require finding a solution to (1.11) which minimizes either
€., M, or some linear combination of them. This can be done to guarantee that
the solution is accurate at t=1 and that it does not blow up at t=0. Linear
programming is ideally suited for extremal problems such as these. There are
four cases to consider; each of the constants € and M can be either known or
unknown. Miller [24] showed that only one of these cases can be solved by
using regular least squares. All four cases can be solved by using linear
programming, however. Four types of linear programming problems are
described, and the equivalence of the errors for these problems is proven.

In section II.5 the stability and accuracy of the linear programming
solutions is analyzed, and it is shown here how the stability of the
difference scheme affects the stability of the linear programming solution.
It is also proven here that the linear programming solution converges to the
exact solution of the ill-posed problem if and only if the matrix A:(aU ) is

obtained from a stable and consistent difference scheme. Finally, in II.6
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the results of numerical experiments are given.

In the third part of this thesis the results of part II are extended to
weakly nonlinear parabolic equations. Logarithmic convexity results and
estimates of the regularization error for these problems are given in III.1.
Here it is proven that if F is Lipschitz continuous with Lipschitz constant
L, and if u and v both solve

Ug=Ugq+cF(u)
(1.14) "U(X’O)“;SM

Hulx, D=-f(x) 1< & (0<e<1, 0<x<TD),
then

MuCx,£)-v(x, 8V, <2 JTT 51" 75/ (1-cL)
if cL<t. This shows that the bound on the solution at t=0 will only restrict
the growth of the error if ¢ is small enough. This section also gives an
example of how the Lipschitz cohstant L can be estimated from the bound on u
at t=0. In section IIT.2 the successive approximation method used to solve
these problems is described. The nﬁmerical error for this method is analyzed
in section III.3. Sufficient conditions for the approximation method to
converge are given here. The results of numerical experiments for weakly
nonlinear problems are given in III.4.

Chapter IV, the conclusion, summarizes the results of this thesis. This
chapter also mentions how linear programming methods similar to those used
here can be used on other ill-posed problems, such as the Cauchy problem for
(linear and weakly nonlinear) elliptic equations, and the problem of
numerical differentiation with inexact data.

Appendix A provides background information on linear programming and
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Chebyshev approximation, subjects frequently mentioned in this text. This
appendix also contains an explanation of why, in this author's opinion,
linear programming methods are bettef than least squares methods for solving
parabolic equations backwards in time. There is a table of symbols after the

appendix which defines some of the notation used in the text.



13

I.2. Regularization.

Regularization will be defined in this section, and it will be shown
how some results from functional analysis can be used to prove
regularization theorems for ill-posed problems. Several examples will
demonstrate how these regularizations can be applied to the backward heat
equation.

Let X and Y be Banach spaces, and let K be a bounded linear operator
with an unbounded inverse mapping X into Y. Let U be any closed set in X.
The operator K' is said to be (weakly) regularized on U if
(2.1 Ku; —=>Ku as i==>ee  (u,u;el)
implies that

u; ==>u (weakly) as 1==>08%.
Equivalently, we say that the problem Ku=f is (weakly) regularized on U.

Lemma 2.1: Let K be as above. Then Kﬂ is regularized on compact sets
in X.

Proof: Let U be compact, and let u,u; satisfy (2.1). By the
Bolzano-Weierstrass theorem, {u;} has a convergent subsequence {UG }. Let

v= Lim u;, .

iz=>00 !
Then
Kv=K Lim u; = Ku
5:}-—>OO J
and so
u=v,

since K is invertible.

The following theorem is well known.
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Theorem 2.1: Bounded, closed sets in a reflexive Banach space are
weakly compact.
Proof: See [33], pp. 177.

Corollary 2.1: Let X be a reflexive Banach space, and let K be as

above. Then K" is weakly regularized on U if U is bounded and closed.
Proof: Apply Theorem 2.1 to Lemma 2.1.

Corollary 2.2: Let X=L,[a,b], let Y=Cla,b], and let U be a uniformly

bounded family of functions in X with uniformly bounded derivatives in
Lyla,bl. Then K' is regularized on U.
Proof: Let u, {y;} be elements of U that satisfy (2.1). Since

[fug |1, <
for some M>0, {u}}l has a weakly convergent subsequence in Lgla,b] by
Theorem 2.1. Let {u!-w.} be any weakly convergent subsequence of {u!l}, and
let v(x) be its weak limit. Also let

X
w(x)= Sv(s)ds + u(a).

a

Then for fixed x (a<x<b),

X
Kw(x)=K[ Sv(s)ds + u(a)]l
a
X
=K f(Lim u', (s)ds) + u(a)
a i; ->00 ‘

=K Lim u,(x).
i; Do J
These last two equalities were obtained from the fact that (5* ds) is a
linear functional and from the definition of weak limit. But this implies

that
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Ku= Lim Ku, =Kw,

N p
s
and so ’

u=w.
This proves the corollary.

Corcollary 2.3: Let X=C[a,b], and let U be a uniformly bounded,

equicontinuous family of functions. Then K?‘is regularized on U.
Proof: Apply the Arzela-Ascoli theorem to Lemma 2.1.
Example 1 (Backward heat equation): Let u(x,t) solve

uuzuy,  (0<x<TT, t20),
u(0,t)=fa(t) (£20),
u(TT,e)=f, (£)  (£>0)
u(x, 1)=g(x) (0<x<TD)
Flu(x,0) ) lg<M

and let v(x,t;&) satisfy

(2.2a) Vg =Vgy FQﬁxSTT, £>0),
(2.2b) v(0,t)=f, (t) (t>0),
(2.2¢) v(TT,t)=f (t) (£>0),
(2.2d) Hv(x, D-g( < € ,
(2.2e) Wv(x,0)Flg<M,

where p>1 and gq>1. We will show that
jvix,t:8)-ul(x,t)|==>0 as E==>0 (t>O, Qﬁxﬁ}T}.
Let
wix,t;8)=v(x,t:&)-u(x,t),
so that w solves

(2.3a) W, =Wy, (0x<TT, t20),
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(2.3b) w(0,t)=0 (£>0),
(2.3¢) w(TT,t)=0 (t>0),
(2.3d) Hw(x, DI{,< € (0<x<TD) ,
(2.3e) Fiw(x,0) 11, <M (0<x<TD) .

The set of all functions in L{[a,b] that satisfy (2.3e) is weakly compact.
For £-~>0, let w(x,t;&;) be solutions to (2.3), and let z(x) be any weak
limit of a subsequence of the w. Then for any continuous K(x,s),

I w
‘Sz(s)K(x,s)dx = Lim jh(s.O;E:)K(x,s)ds .
0 € «>0 0

by the definition of weak convergence. Therefore, if
ad
K(x,s):[2/’ﬂ']f [sin(nx)sin(ns)exp(—na")] .
n=1

then

s
0= Lim fhw(s,138)11 = Lim i $w(s,0;€)K(x,s)dsil,
£,->0 P g0 o

= fgzs)K(x,s)ds .
Hence, by the uniqueness of solutions go the heat equation,
z(x)=0 (0<x<TD .
We have shown that w(x,0;8)==>0 weakly as $-=>0. It follows therefore

by the definition of weak convergence that for t>0,

T )
w(x,t;8)= §Wls,0:8)[2/T71 = (sin(nx)sin(ns)exp(-nt))ds
0 n=1

=a>( as & —==>0.
This was what we wanted to show.
Example 2: Note that the regularization (2.2d,e) is not enough to
guarantee that v(x,0;& —>u(x,0) as €==>0. Merely restricting the solution
to lie in a bounded set is not enough here. However, if v(x,t;e) and

u(x,t) also satisfy
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(2.2f) Hug(x, 00 Ly o Hve(x,0) Fg <M,
then this is enough to insure that {{u(x,0)=v(x,0;8){} ——>0 as g—=>0, by
Corollary 2.2. Regularizations like this were first studied by Tikhonov
[35,36].

Example 3: Uniform convergence at t=0 can be obtained if, instead of

(2.2d,e), the regularization

(2.2g) Ivix,1:8)-g(x) i< € (0<x<TT)
(2.2h) lv(x,0;8)1<M, (0<x<TD)
(2.21) vy (x,0) 1M, (0<x<TD) «

is used. This is a consequence of Corollary 3.3.

In this section several ways in which ill-posed problems can be
regularized were illustrated, and some of these regularizations were
applied to the backward heat equation. The question of which
regularization to choose for a particular ill-posed problem depends upon
the physical information available, as well as the numerical efficiency and
accuracy of the algorithm used to solve the regularized problem. In the
following sections the numerical efficiency, stability, and error for
regularizations of backward parabolic problems which can be solved using

linear programming will be analyzed.
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II. THE LINEAR PROBLEM

II.1. Logarithmic Convexity for Problems with Time-independent
Coefficients.

Several theorems are proven in this section on the logarithmic
convexity of solutions to linear parabolic equations with time-independent
coefficients. These convexity results can be used to obtain error
estimates for the numerical solution of regularized parabolic equations
backwards in time. Some of the results in this section have appeared in
print before, either by Miller [25], or Payne [26].

A positive real function F is defined to be logarithmically convex on
[a,b] if for a<x<b F(x) satisfies

b-x X-a
F(x)<[F(a) I®~%[F(b)1?=

The following is the most well known logarithmic convexity result.
Theorem 1.1 (Hadamard's three circle theorem): Suppose f(z) is
analytic and single-valued on the annulus a<{zl{<1, continuous on the

closure, and

If(2)i<m=a%, lzl=a,
1£(2) i1, lz[=1.
Then for alr<1,
log r
[£(z)}<mT®T T=r® Jzl=r.

Furthermore, this bound is optimal when ¢ is a positive integef. since the
analytic function z° assumes the bound.

Proof: See [33], pp. 270. If F is the maximum modulus of f,
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F(r)= sup If(2)},
lzl:r

then Theorem 1.1 says that F(r) is logarithmically convex.

Miller [24] has used this theorem to show that solutions of the heat
equation are logarithmically convex. Here a different approach suggested
by Franklin is used, and logarithmic convexity results are obtained for a
more general class of problems.

Theorem 1.2: Let H be any Hilbert space of functions on [0,1], with
norm }} llz, and let L be any symmetric, positive definite operator mapping
H into itself. Furthermore, let u(x,t) be in H for all fixed t>0, and let
u(x,t) solve
(1.1) ug=Lu - (£>0, 0<x<1).

Then
. . S -t . 4
Uu(x.t)l[zglIU(x,O)H°z Hulx, DI, .
Proof: Let
F(t)=.5Log<u(x,t) ,u(x,t)> = Log [lu(x,t)lf:.

To show that F is convex, we must show that

F''(£)>0 (0<t<1) .
But

Fr(t)= <Lu,u>/<u,u>,
and

F'' (t)=2(<Lu, Lud<u,ud>=<Lu,u>*) /<u,ud > o,

by the Cauchy-Schwartz inequality. This proves the theorem.

Theorem 1.3: Let u(x,t) solve (1.1), where L is a symmetric, positive
definite operator defined on C[0,1]. Then

Hiux, S LS <Hux, 01 g HuCx, 11l
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if (1/p)+(1/9)=1.
Proof: The solution to (1.1) is
u(x,t) = etLu(x,O),
and so
<u(x,.5),u(x,.5)>=<ésLu(x,O),é:s‘u(x,1)>
=<u(x,0),ulx,1)>,
since L is Hermitian. The desired result now follows from Holder's
inequality.

Theorems 1.2 and 1.3 have been used by Payne [26], Miller [25], and
others to obtain L, error estimates for solutions to backward parabolic
problems. Here we derive a new logarithmic convexity result that will
enable us to obtain pointwise error estimates for these problems. We first
need some lemmas.

Lemma 1.1: If

£(0)=£(TT) =0,

and
5(”::(x>>"dxgmf',
0
e o0 FaxeuZ,
then °

if(x)ia_{ 2M, M.

Proof: For 0<s<TT, we have
a S
[£(s)] =05[f(x)2‘]'dx

S
=20jf<x>f'<x)dx ,
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and so

5 2 < 2
[f(s)1* < 2(ﬁf(x>1“d9"" (ﬁfo)J‘sz‘z
0 0

Lemma 1.2: Any u(x,t) continuous in [0,TT1x[0,00] that satisfies
r(x)utz(p(x)uxxx-q(x)u (0<x<TT, £20)
u(0,t)=0 (£>0)

(1.2) u(TT,t)=0 (£>0)
Hulx, 01, <M
Hulx, DI < &
with p,r>0 and q>0 also satisfies
!/&
{lug (x, D] Ig< KEl[Log (M/£)]
for some constant K depending only on the functions p, q, and r.
Proof: Any solution to (1.2) has the form
e a
u(x,t)= 2 a,X,(x)exp(-Aat) (0<x<TT, £20),
n=1
where X,‘(x),A.‘a solve the Sturm-Liouville problem
(PCOXL(X)) T+ (Aar (x)=q(%))X, =0,
(1.3)
X.(0)=X, (T =0.

If the X, are normalized by

W
(1.4) (reox, o ax=1,
0
then
w
a,= Jfr(x)xn(x)u(x,o)dx.
0

Hence from

[~*2]
!lu(x,1)llar = ;E; afexp(-ZAf)
! n=1
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and
[~ o] a
Ulx,t) = E a, X! () exp(~At)  (0<x<UT, t>0),

=

it follows that

Hug(x Dy, = 2 aPexp(-2a%) ﬁau)tx'(xn dx  +

22> a a,exp(-AX AJ p<x>x;<x>x;cx>ax
m<n
(1.5) =
hS 2 aexp(~2A) fp(x)(X'(x))dx +

=

2 h w - 'la
22&1 a,.exp(.,AE..,\:')éfr;(x)(XA(x)) da(p(x)(x,"(x)) dﬁ
m<n 0

Using (1.3) and integration by parts, we see that

W . 7w
S, 00 DEr (0 =q (0 Tdx=- fTp(0X2 (01X (x)dx
0 0
7w
= ofp(x)D(,',(x)]a'cht.

It is well known that )\”:om) (see [6] for example), and so using
(1.4) we see that there are constants K, and K;L such that
v &
(1.6) K, o< Ojacmx;(x)] dx<K,n™* .
Therefore, from (1.5) we have that

]
llux(x.1)“= Zn‘a exp(-—sz +2K,2a,a,,exp(-)\:'-&)

man

=K na“ex p( ~A%))2 .
=1

For >0, let C(d) satisfy

1.7 C(cﬂexp(é‘)(?) >n (n=1,2,...).

It follows then that
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esdi
Hug(, DG < K Ie@ 1P S aZexp(~M2-26))
! nz=1

(1.8) =K LC@ T Hulx, 1= 10
< Kpren P e,
the last inequality being a consequence of Theorem 2. We now must choose
C .
Using )a=0(n). from (1.7) we must have

cd) [nexp(-—é‘)&]a’

Iwv

Iwv

nnexp(~2£k3na)

for all positive integral values of n and for some positive constant KB‘
Consider now the function

(1.9) F(x) = x™exp(-2dK,x*).

The maximum of this function can be found from elementary calculus.

F'(x)

H

(EX_MJKBxB)exp(—Bfkgx“)
= 0 when Ekaxa = 1.
Substituting this value into F gives
F(x;d) = 1/(2dKq4e).
Let
C(g)z' = F(x:;8).
[C(‘B(M/E)Jj becomes unbounded as dw=>0 and as d==>00. We now seek to

choose d>0 so that this quantity is minimized. This is accomplished by

letting
d = 1/[2Log(M/g) ],
so that
&.a
(1.10) [c(dH /€)1 = [Log (M/E)1/Kg.

Combining (1.8) and (1.10) now gives
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llu,(xn)l(:P S_K‘zfafLog (M/€)1/Kg.
This proves the lemma.
Theorem l;ﬂ: There is a constant K depending only upon p, q, and r
such that if u(x,t) satisfies the conditions of Lemma 1.2, then
(u(x,t)l_g_KEtM'.ﬁLog(M/E)}‘, .
Proof: From Theorem 1.2, we have
Hux, )1 <c, g% (£50)
for some constant Cys and from Lemma 1.2 we have
[ (2,6 [ <Gy Tog(WE)2  (£50)
for some constant Cy. Now apply Lemma 1.1.

More logarithmic convexity results for ill-posed problems can be found

in [24].
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I1.2. Logarithmic Convexity for Problems with Time-dependent Coefficients.

Two logarithmic convexity theorems for solutions of time-dependent
differential equations in a Hilbert space are proven in this section. One
of these functional analytic results is due to Carasso [9]; the other is
due to Agmon and Niremberg [1]. Here it is shown how these theorems can be
applied to obtain error estimates for the solution of parabolic equations
with time-dependent coefficients backwards in time.

Let H be a Hilbert space of functions on [0,7T], and let L(t):H==>H be
a linear operator for all fixed t in (0,1). Here L(t) will be called

differentiable at t=t' if there exists an operator Ly such that

(2.1) L{t)-L(t")
Lim e U = Lygu
T Dt ! t-t!

for all u in H.

ansider now the problem
(2.2a) up=L(t)u (£>0)
(2.2b) u(0d=u,,
where L is a linear negative definite operator and is differentiable in the
sense of (2.1) for all t€&(0,1). The unique solution to this problem is
given by

t
$L(t)dt
u(t)= e Ug .

Let
F(t)=Log <u(t),u(t)>.

Then
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Frit)=2<u(t),u’(t)>/<ult) ,ult)>

= 2<u,L(t)u>/<u,u> <0,

and

Fri(t)=2(Ku,L{t)u>/<u,ud)?

= 4 (<Lu,Lu><u.u>-<u,Lufz)/<u,u>a

+2 <u, Lgu>/<u,ud
2 2<u,Ltu>/<u,u>

by the Cauchy=-Schwartz inequality.

An equivalent form of the following theorem was first stated by

Carasso [9].
Theorem 2.1: Let u solve (2.2a), and let

M=<u(0),u(0)>,
£ =<u(1),u(1)>,

If u also satisfies
2<u,Ltu> 2 C<u,u>

for all t#£(0,1), then if C>0
<ult),u(t)> < £tu'?,

and if C<0

.ct(#t%tMl~f

ult),u(e)> < e

Proof : Define

(2.3) G(t)=Log<u(t),u(t)>=-[tLoge¢ + (1-t)Log MI],
so that

G(0)=G(1)=0,
and

G''(t)=F''(t)=(Log<u(t),u(t)>)'" >C.
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If C>0 then
(2.4) G (t)=F"'(£)>0 (0<t<1),
which implies that the maximum of G must occur at either t=0
or t=1. Hence
G(£)<0 (o<1,
or equivalently
ult) u(e)> < eF M,
Assume now that C<0. Let

G(s)= sup G(t) .
0<eL1

We can assume without loss of generality that s#0 or 1, so that
G'(s)=0.
It follows from (2.4) that
=G'(£)=G7(s)=-G'(£)>C(s~t) >C(1-t) (1>s>t>0),
and so
G(£)-G(0) = G(t) £ t[=C(1-t)] (1>s>t>0).

Similarly, for 1>t>s>0 we have

G'(£)>C(£=-5)>Ct (1>t>s>0),
so that
G(£)=G(1)=G(L)L~CL(1=t) (1>t>8>0).
Hence,
(2.5) exp(G(t)) < exp[-Ct(1-t)] (01

The desired inequality now follows immediately from (2.3) and (2.5).
This theorem, which was first proven by Agmon and Niremberg [1], can
be used to provide error estimates for the solution to regularized

time-dependent parabolic equations backwards in time (although they never
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did so).

Theorem 2.2: If there are positive constants ¢ and k such that

<Lgu,u> > e<(L-kI)u,u> (0<t<1),

then
ity uled> < <ul0),u(03 eu(1) u(nI

where

w(t)=(explet)-1)/(exp(e)=1).

Proof: Let

(2.6) s=zexp(ct)
and let

-1 -
F(s)=Log<exp(=kt)u,exp(-kt)u> = Log<s u(s),sqa(s)>.
We will show that F is a convex function of s. Now
du/ds=(du/dt) (dt/ds)=us/(es),

and so - -y
25%%<u,du/ds>+(-2k/c)<u,u>s <

Fi(s)

-
s %<u,u>

[2/(es) 1(Ku,ue>=k<u,u>)/<u,u>

[2/(es)](Ku,Lu>=k<u,u>)/<u,ud.
Also, since
d(du/dt)/ds = d(Lu)/ds = (L(t)u),/(es) = (L*uslyu)/(es)
We have that
F''(s) = =2k/(es?) - [2/(es?)I<u,Lu>/<u,u>
+[2/(es) 1(<u,Lu>/<u,u>)
= [2/(033)]{—k<u.u§1—<u,Lu><u,u>+(2/c)<Lu,Lu><u,u>
~<u,Lus7c +<u,ud><L,u,u>/c}/<u,u>>,

Hence, using the Cauchy-Schwartz inequality gives
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2
Fii(s)> (-kilull;-<u,Lu>+iiLuliz/c + <L,u,u>/c)
- a & & & ®
(es®itully
2
> . (<Ltu,u>-c<u,Lu>—ck<u,u>).
(es)™alull]

But this last quantity is nonnegative by hypothesis. Therefore, if

e® -s s -1
(2.7 G(S)=F(S) =| mmmmee F(5=1) + o= F(sze®)] ,
e -1 e® -1

then the convexity of G implies that

G(s)< G(0) = G(1) = O.

Substituting (2.6) back into (2.7) and raising exponents gives

-w(?)
e u(t) u(t)> < <u(0),u(0)> v <U(1).u(1)>“""e="“"‘f’

or

Huo < < Fruonl® tueon®
where
(2.8) w(t)=(exp(et)=1)/(exple)=1).

This proves the theorem.
We now show how error estimates can be derived from these theorems.
Example 1: Let u, and ugy both satisfy
Uge = (P(x,0)upgy = L(B)u  (O<x<T, 0<t<1),
u(0,t) = u(TT,t) = 0 (0<t<1),
Hulx, D=-£COI < g (0<x<ED ,
piu(x,0)ii <M - (0<x<TD)
where p is positive and differentiable on [0,TT1x[0,1]. The operator Ly is

given by
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dl'"
[ =4
L]

[pe(x,Elugly.
Hence,
U Leu> = =<p(x,t)u, uy>.
If p is monotonically decreasing in t, then
<u,Lgu> >0,
and so the error estimate
Hu,(t)-—ua_(t)lla_<_2€tM"t.
can be obtained from Theorem 2.1.

Example 2: Let u, and u, both solve
ut=uxx—q(x,t)u (0<x<TT, 0<t<1),
u(0,t)=u(TT,t)=0 (0<t<1),

Hulx, D-fFOL,< E
Hulx, 001, <H,
where q(x,t) is nonnegative and differentiable on [0, TTIx[0,1].
N = sup (qt(x,t)l .
0<x<TT

0<tK1
Then

<u,Ltp> = {=q U, u> 2 =N<u,u>,
and so Theorem 2.1 gives the estimate
ME (0
e ¢ -t
Y
Hu‘(t)—ua(t)ilai 2e EM .
Example 3: Let u, and ua‘both solve
ut=(p(x,t)ux)x-q(x,t)u,
u(0,t)=u(TT,t)=0 (0<t<1),
liu(xv1)-f(x)‘la£ E v

Hlucx, 03 L, <,

Let
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where p is positive and q is nonnegative on [0,T11x[0,1]. Here

<uyLgu> = —<qtu,u>-<ptux,qx>9

and
<u,Lu> = =<qu,u> - <pux,ux>9
Now if
¢ = Sup
0<x<TT t,(x,‘c)/p(x,‘r;), qt(x,t)/q(x,t), 0 ’
0<t<1
then

<u,L¢y>-c<u,Lu>Zp,
and so applying Theorem 2.2 gives the error estimate
[, G, 6)-ug(x,£) 11, <26 N =8
where w(t) is defined by (2.8).
The logarithmic convexity theorems given in this section and in the
previous section are useful in obtaining estimates of the regularization
error when solving ill-posed parabolic equations backwards in time. A

linear programming algorithm for solving these problems is described in the

next section.
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II.3. The Numerical Method.
In this section we shall show how to find an approximate solution to
r{x,8)ue=(p(x,t)uylg=-q(x,t)u,
u(x, =g(x),
(3.1
u(o,t)=fq(t),
u(mr, t)=rf, (t),
in the region (0,Tr)x(0,1) by utilizing a priori information about u(x,t).
In particular, it shall be shown how linear programming can be used to
approximately solve (3.1). Here we assume that r(x,t) and p(x,t) are
positive and continuous, and that px(x,t) exists in this region. We also
assume that
g(0)=f (1), g(TN=f, (1).
Notice that (3.1) includes the backward heat equation (a classical
ill-posed problem) as a special case.
First we show how (3.1) can be reduced to an ill-posed problem with
homogeneous boundary conditions at x=0 and x=1[].
Now
u(x,t)=vix,t)+w(x,t),
where v(x,t) solves
r(x,t)ve=(p(x,t)vyly -alx,t)v,
v(x,0)=(x¥f, (0)+(T-x)*#£, (0))/ T,
(3.2)
v(0,t)=fa(t),
v(T,t)=f, (t) (0<x< T, 0<t<1),

and w(x,t) solves
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r(x,t)wi=(p(x,t)wx)x—q(x,t)w,

Wiz, D=g(x)=v(x,1),
(3.3

w(0,t)=0,

Ww(Tr,t) =0 (0<x<TT, 0<t<1) .
Problem (3.2) is an initial-boundary value problem for a parabolic
equation, and it is well posed. Hence (3.2) can be solved numerically by
any stable difference method, such as Crank-Nicolson. Problem (3.3),
however, is a final-boundary value problem, and this problem is ill-posed.
Since we can solve for v(x,t) in (0,T1)x(0,1), we have succeeded in
reducing (3.1), which has general boundary conditions at x=0 and x=TT, to
(3.3), which has homogeneous boundary conditions.

Since (3.3) is ill-posed, a direct numerical solution of it can not be
obtained without further assumptions about the solution w(x,t). Any small
truncation error in the evaluation of g(x) may lead to an arbitrarily large
error in calculating w.

Assume therefore that f,,f,, and g are not known precisely, but that

If,(£)-F, (L)< g" (0<t<1)
(3.14) bE L (8)=F (D) I €' (0<t<1)
lg(x)-G(x)I< g (0<x<T)

where F;, F,, and G are known, continuous functions in their domains, and
0< &, &', g1,

Assume also that there is a constant M such that

(3.5) fu(x,0)(<M (0<x<T) .

Assumption (3.4) might occur, for example, if fo, f,, and g are measured

quantities in an experiment and are therefore subject to measurement
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errors. Assumption (3.5), on the other hand, can be interpreted as known

information about the past temperature of a thin rod, for example.

Under

these assumptions, u(x,t) solves

(3.6)

r‘(x,t)utz(p(x,t)ux)x ~-q(x,t)u,
lu(x, -G(x)I< €,

fu(o,t)-F, (t)[£ €',

W@ e)-F (2] g",

hu(x,0)I<M (0<x< TT, 0<t< 1),

Let uy(x,t) solve (3.1) and satisfy (3.5), and let ug(x,t) be any

twice continuously differentiable sclution to (3.6) in (0,TT)x(0,1). Let

e(x,t):Uo(x,t)"uE(th) 9

so that e(x,t) satisfies

(3.7)

rix,t)e,=(p(x,t)e,), -q(x,t)e,
{e(x, DI &,
le(o,t){<g,
[e(T L) <",

le(x,O)lg?M.

If r, p, and q are functions of x only, then we have the following lemma.

Lemma 3.1: If e(x,t) solves (3.7), then for 0<t<1 we have

w
_5( e(x,t) )’"dx_glﬂTMa“"t)Ea't
0

Proof: This result is a direct consequence of the logarithmic

convexity of solutions of (3.7) (see section II.1). Notice that the above

inequality implies that

m 2
gku,(x,t)—ue(x,t)) dx ==>0 as £€==>0 (0<t<1).
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Hence inequalities (3.4),(3.6) regularize (3.1) in La£0,7T) for 0<t<1.

We will now show how (3.6) can be solved by linear programming. First
notice that the error estimate in Lemma 3.1 is independent of the errors g
and g" at x=0 and x=JI. Also, since the forward problem is well posed, the
instability in the backward problem is not due to the boundary conditions
at x=0 or x:TT: but to the instability of u(x,t) to small perturbations in
g(x). Therefore, instead of trying to find solutions to (3.6), we will
find solutions to

r{x,t)u,=(p(x,t)uy ), =-q(x,t)u

hu(x, D-G( K €
(3.8) u(0,t)=F_(t)

u(im, t)=F, (¢)

tu(x,0) <M.
The generalization to other types of boundary conditions is readily
apparent. As before, we can split the solution of this problem into two
components, v(x,t) and w(x,t), where v(x,t) solves a well posed initial
value problem, and w(x,t) solves

r(x,t)w,=(p(x,t)wygly -q(x,t)w

Iw(x,1)—(G(x)—v(x,1))|_<_£
(3.9 : w(0,t)=0

w(ll, £)=0

Iw(x,0)+v(x,0) |<M.

Let
h= TI/N

for some positive integer N, and let

X; =jh (j=0,1,...,N),
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Consider any stable and consistent difference approximation to the
differential equation, such as
r(x; t+.5k) (U(x; t+k)=u(x. ,£))/k=D"(p(x. ,t)D u(x. ,&))
J L | LI L [
(3.10)
—Q(X; ,tJ.)U(X‘- 98‘) ]
and choose
k=1/m
for some positive integer m. This explicit difference scheme is known to

be stable and O(k+ha) if r=p=1, q=0, and k/h® is small enough.

Now (3.10) can be written as

u(x,,5+k) i u(x1,§9
) = A :
U(gq,§+k) u(*h;ﬁ)

for some (N-1)x(N-1) matrix A. Hence,

ulx,,1) u(x, ,0) u(x‘,o)

5
LN

(3.11) )

i

‘_b
"
=

ot
1]
o

ulx, 1) u(x,_,0) u(%,p0)
Here A can be thought of as an approximate Green's function for the partial
differential equation.

Substituting (3.11) into the inequalities of (3.9), we obtain

1 u(x, ,0) G(x)=v(x,,1) 1
(3.12a) -¢ : < A : - : <&
1 u(,.0) G (%= (e 1) 1/ .

and



37

1 u(x, ,0) v(x,,0) 1
3.120) M| . [ < : . : |
1 u(g*;O) v(&u:o) 1/ .

This is a system of UN-4 inequalities, and these inequalities can be solved
by the Simplex algorithm of linear programming if v(x,t) and A are known.
Since v(x,t) is the solution to a well posed initial boundary value
problem, it can be approximated by any of several techniques. The matrix A
can also be obtained easily.
For any integer j between 1 and N-1, let

z;(x;5,0)= 4.
Using (3.10), we can calculate z;(g;,1). Let

atizz;(x',1).

Clearly, a;;

i is the (i,j) component of the matrix A. Note that if r, p,

and q are functions of x only, and if m=2" for some integer n, then A:(A,f"
can be calculated qu{?e efficiigtly. First, calculate A,. Then set
a) =t 1t Geeom.

Linear programming problems involve finding extremal solutions to
systems of linear inequalities. 1In other words, with linear programming
one can find solutions to (3.12) which minimize (or maximize) some linear
combination of the u(x;,0) and v(x; ,0). Using this fact, one can solve
(3.12) even when & and/or M are unknown.

If M is known and € is unknown, & can be treated as a variable which
will be minimized. This corresponés to Chebyshev approximation with

inequality constraints (see Appendix A); the aim is to find the unknown

u(x;,O) that satisfy the inequality constraints and most closely solve
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(3.12a). Note that this linear program always has an optimal solution.
Note also that if £=0 in this optimal solution, then (3.12a) becomes an
equality, and the solution at t=0 can be obtained by setting
u(x?,1) = G(x;)—v(x,,1)

This rarely happens in practice, however, unless M is taken to be very
large. If the optimal solution has £ >0, as is usually the case, then this
value of £ gives an indication of the accuracy of the data G(x). Of
course, this value of & will not be the true error in G(x); it will be a
combination of the true error, the discretization error, and the error in
calculating v(x,1). If v(x,t) and the matrix A are determined by an O(h%)
difference method, for example, then

< R <€ < & won?

=& =
= true opt Ctrue

for some constant C.

If & is known and M is unknown in (3.12), then M can be treated as a
variable which must be minimised using linear programming. This
corresponds to finding any solution to (3.12a) which does not grow too
quickly as t approaches zero. Similarly, if neither & nor M is known, then
both & and M can be treated as variables with some linear combination €+cM
ninimized. (The constant ¢ here ahould be a very amall positive number;
the reasons for this are discussed in the next section.) A remarkable fact
can be deduced from these last two methods. Since M need not be gpecified,
no a priori assumption is really needed at t=0 (except the assumption that
the solution is continuous there) to approximately sclve the backward heat

equation! One of the goals of the next section is to prove the validity of
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validity of this last statement. In other words, in the next section it
will be proven that the methods described here actually work.

Other inequality constraints can be used with (3.12). For example, if
the initial temperature profile sought has bounded derivatives, then
inequalities of the form
(3.13) -Mah < Tulx,0)+v(x,,00] = [u(x:~,0)+v(x,;,0)1<M_h
are needed. Similarly, if the initial profile is everywhere nonnegative,
then inequalities of the form

u(x;,0) > =v(x;,0)
are needed.

One well known principle of linear programming is that the computation
necessary to solve a linear program can be significantly reduced if one
already knows a solution close to the extremal solution (see Franklin
{141). This fact can be used to formulate an efficient algorithm for mesh
refinement.

First, solve (3.12) with a fairly.coarse mesh. Then, using
interpolation on the coarse mesh, find the approximate solution on a finer
mesh. Use this interpolated solution as the initial estimate of the
solution to (3.12) on the finer mesh. This technique will lead to a
significant decrease in the computation time necessary to solve the linear
program on the finer mesh, since even when using a coarse mesh most
distinguishing features of the true solution are found in the approximate
solution. This technique was used by this author with considerable
success, even when the coarse mesh had as few as six gridpoints.

The total error obtained in using the numerical methods described in
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this section is a combination of the regularization error (inherent in the
regularized problem) and the discretization error (inherent in the
numerical method). In the next section, it will be proven that the four
algorithms proposed here are equivalent, and estimates of the
regularization error will be obtained. It will be shown that these
estimates approach zero as &€ does, therefore proving that these
regularizations work. The effects of bounding a derivative, such as in
(3.13), will also be discussed. The stability of the numerical algorithms

propesed here is analyzed in section II.S5.
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I1.4., Regularization Error for the Numerical Method.
The previous section showed how discretization of the problem
r(x,t)utz(p(x,t)ux& ~q(x,t)u
u(0,t)=F,(t)
(4. 1) u(TT,t)=F, (¢)
lu(x, D-G(x) I &
fu(x,0)iKM (0<x<TT, 0<t<)

leads to the system of inequalities

1 w(x,,O) G(x, )-v(x,,1) 1
sl < a : - : < gf-
- Wiz, ;50 G (xy. )= Xy 1) i/,
=M\ w(x, ,0)+v(x,,0)\ M\

: < | : < .
M WXy 03 4¥(x,,. 1,0 '

The analysis that follows was inspired by a paper from Keith Miller
[23], in which he discusses how least squares can be applied to ill-posed
problems. Here it is not assumed that either & or M is known precisely,
but it is assumed that there is an € and an M such that u(x,t) satisfies
(4.1). There are four cases, depending upon whether £ and M are known
precisely or not.

Case 1: &,M both known.

This is the simplest case of all. Here we attempt to find any u(x,t)
that solves (4.1) for some specific & and M. Discretization leads to the

problem of finding any w(x‘,O),...,w(gﬁ,,O) that solve (4.2). The Simplex
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algorithm for linear programming will provide 'a solution to (4.2) if one
exists, or report that a solution does not exist.

Case 2: € known, M unknown.

Suppose the temperature of ; thin rod of slowly varying thickness is
measured at t=1 to within a certain tolerance €, and the temperature at t=0
is known to be bounded, but the bound is not known precisely. 1In this case
we might seek a solution to (4.1) which is within the measurement error at
t=1, and which does not blow up at t=0. For example, we might seek the
"smallest' M such that (4.1) is satisfied for some u(x,t). After
discretization, the problem becomes to minimize M subject to the linear
inequalities (4.2). This problem can also be solved readily by linear
programming.

Case 3: €& unknown, M known.

This case occurs, for example, if the temperature at t=1 is measured
with an instrument of uncertain accuracy. Here (as in Chebyshev
approximation) the aim is to find the w(x;,0) such that (4.2) is satisfied,
and such that

€ = max [ (Aw);, -G(x;){
0<i<N

is minimized.

Case 4: £, M both unknown.

This method is applicable when the temperature in a rod is measured at
t=1 and known to be bounded at t=0. Neither the accuracy of the
measurement, nor the maximum temperature at t=0 is known, however. Once
again, we seek a solution which closely matches the observations at t=1,

and which is not too large at t=0. This can be accomplished if we try to
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find the unknown w(x;,0) such that (4.2) is satisfied, and such that
HAw-Glly+clivil o

is minimized for some small ¢>0. The analysis which follows will show that

a good choice for ¢ is ¢=0(&/M).

Notice that all four of these cases can be handled by linear
programming, whereas Miller [23] reported that only case U4 can be solved by
regular least squares.

We shall now prove the equivalence of the errors for these four cases.

Let ug(x,t), ug(x,t), and uy(x,t) be approximate solutions to (4.1)
obtained from methods 2, 3, and 4 (with c=£/M), and define W(&€,M) to be the
set of all functions u(x,t) that satisfy (4.1) and are continuous in

[0,TV1x[0,1]. Let

sup  Hu (x,8)-v, (x,t) H =,

R, (€,M;t) .
: u, ,v,é€W

R (E,M3t) = sup  [Huy(x,t;&M-u (x,t) e,
u, €W

R3(£,M;t) = sup  [lug(x,t;&M-u (x,t) Hes,
u,&W

Rg(&,M;t) = sup  Bhuy(x,t;€,M)-u,(x,t)}leo.
ueW

Lemma 4.1: R;(E,M;t) is a monotone nondecreasing function of € and M
for i=1,2,3,4.
Proof: If g'<g and M'<M, then W(g',M') & W(E,M).
Lemma 4.2: If (4.1) has a solution uy, with £=0, then
R, (3€,3M;t) < UR,(1.5&,1.5M;5¢).
Proof: Let u,,v,€W(3£,3M), and let

wix,t) = (Bug(x,t)+u, (x,t))/4.
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Then w(x,t)éW(&,1.5M)gW(1.5€,1.5M). Furthermore,
Tw(x,t)=ug(x,8) 1 = Ju (x,t)=u (x,t)|/4
for all fixed (x,t)€[0,4T1x[0,1]. This shows that
R, (1.5, 1.5M;t)> [R, (3€,3M;t)1/4,
which proves the result.
Lemma 4.3: R (&M;t)<R, (&,M;t)<2R, (E,M5¢)
Proof': u;_(x,t;i,l4)6W(E.M), so the first inequality is immediately
satisfied. On the other hand, |

sup  llu (x,£)-v (x,t) ], < sup Hu‘(x,t)-ua(x,t)lf,
u, ,V,éW ueW

+ sup llv'(x,t)-u’zfx,t) He
v,eW

= 2Rz(€1M;t) ©
Similarly, we have the following.

Lemma 4.4

.

Rg(&,M;t)< R (EM;£)< 2R5(E,M5t) .

.5: Rg(&M;t)< 4R, (E,M;t)< BRy(E,M;t).

—err—r~.

Lemma
Proof: For all u,(x,t) in W(€,M),
Hu (3, D-G () FE g (E/M) hhu (x,0)] | <E+(E/MM = 2€
Hence
fuy(x, D-G(x) < 2€
and
bug(x,0) {<2M.
This shows that u.,(x,t) lies in W(2&,2M), so

sup ”U.-U«'“a_{ sup Hu,-v 1
u,EW(E,M) u, ,v,EW(2€,2M)

< L&R,,(E,M;t)

by Lemma 4.2. Also,
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sup Hu =v e < sup  Hu ~uylle +iug-v, He
U, ,v, €W(E M) u, ,v, ¢ WE M)

=2Ry (E,M;t)
Combining these two results proves the lemma.
Lemmas 4.2-4.5 show that the regularization errors for any two methods
are eqguivalent, that ig that their ratios are bounded by a constant.
Let us now consider the problem of finding a continuous u(x,t) in
[0, TT1x[0,1] satisfying
r(x)ug = (pCx)uy )y (r,p>0)
u(0,t)=0
(4.3) u(TT,t)=0

ute, Dl < &

L

Hulx, 00 Hape Hlug(x, 00450 <1
Equation (4.3) is not an example of a problem that can be solved by linear
programming, but the analysis that follows will show how little extra
accuracy is gained when a bound is imposed on ux(x,O).

Let W' be the class of all continuous functions u(x,t) which satisfy

(4.3). Define the modulus of regularization for this problem to be

R(t,£)= sup [Hulx,t)llye.
ueW?

The following theorem was first proven by Franklin [15] for the case when
p=r=1.

Theorem 4.1: There is a constant C, such that

8 4
< €
R(t,£)<C, ((Logﬁ/i))&) £.
In particular, R(0,s)==>0 as se=>0. Furthermore, this bound is best

possible, since if r=zp=1 and Ezexp(—na)/n.
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dy =& t
lexp(-n®t)sin(nx)/n} > 2((Log(1/£)) )y &

Proof: The optimality of the bound is a straightforward exercise in
algebra, and so will be omitted here. Note that due to the legarithmic
convexity of solutions of parabolic problems (see section II.1), it is only
necessary to show that

RCO,£)<C, (Log(1/6)} 3
for some positive C,.

We know from Sturm-Liouville theory that any u(x,t) in W must have the
form
(4.4) u(x,t):ianxn(x)e"\}t,

n=1

where X,(x) and Af are the eigenfunctions and eigenvalues for the problem

2
(PCOXHN '+ (Ar(x))X,=0  (0<x<Th
(4.5) X.(0)=0
X.(Th=0
and that
= &
“U(X.O)“;'p= 2 a" °
n=1

Furthermore, using (4.4) and Cauchy's inequality, we find that

ug(x,0) 11, nE(x)(Ea X1 (x))" dx

(4.6)
- a’t)’p(x)(xwxndx] 23 aﬂf(x)X'(x)X'(x)dx.

i=1 m<n

But

Y1y w ¢
fpOXI0XI(0dx = = FIp(x)XLx)IX 0(x)dx
0 0

w
)2‘fr(x)xm(x)xn(x)dx=0,
0
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and we showed in section II.1 that there are positive constants ¢, and c

such that
T a
c,nagép(x)(x,{(x)) dx _<_ca_n"‘.
Therefore,

o2 oo
e, = n®al<llug(x,0)0l,,¢c,Z n*a% .
n=1 n=1
But

Hux(x.O)Hl'Pf_h
and so from (4.7) we obtain
[a.l<(n*e, )‘”"-‘
On thé other hand, from (4.4) and (4.3) we have
la, <.
Also,

& 2 a.-aAa 3
llu(x,1)ll4’,.=r§13..e X g2,

and so together with (4.3) we obtain

la,l<e e .
Now clearly, for fixed £ we have

3 e*‘?—)m, (n%c, )—\"!'—->O as ne=>00 .

Assume that £ is small enough so that
(4.8) £eM et )™
for some positive integer n. Let N(8) be the greatest positive
integer that satisfies (4.8). Hence

(N+1)e™ o (gYc, -)'éZNe'\% .
Taking logarithms,

Log(N+1)+A:',ZLog(1/£)+.5Log(c. )>Log(N)+ )\,?,' .

-2
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This implies the existence of positive constants K, and K4 such that
(4.9) K,N(&)*<Log(1/8)<K,N(E)*

Let Al
ge’ if n<N(g)
ha=
(na,)/N if n>N(€).

Now clearly

lh.‘z_‘an‘ ?

and so
0 (>3]
Sia, < Sin, 12
n=1 n=1
a
= g"—Zce“") + = (n%3)/00%
n<N nZN

k.3
- ga (@ woand
n<N

2 -
7 S (/e 4 o

’/\

-
=

a
=

OC1/N®) + 0(1/NY

But, from (4.9),
1/N%=0((Log(1/6))™") .

This proves the result.

The above theorem shows that imposing a bound on ux(x,o) will
regularize (4.1) at t=0. For example, if the inequalities
(4.10) fug (x,00I<M , [ulx, D-f(x)[<E (0<x<ED
are used as the regularization, there is no guarantee that uéx,O)-)qéx,O)
as g=~=>0. However, if the inequality
(4.11) luex(x,o)lgM,

is also used, then Theorem 4.1 implies that
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(4.12) Alue(x,O)—uo(x,O)H&&<Log(1/£_>*>ﬁ-->o as £=->0.

This convergence is very slow, however. The error & must be chosen smaller
than exp(-100) in order to have (Log(1/&)3h<.1. Therefore, since (4.10)
regularizes the backward parabolic problem (4.1) for t>0, (4.11) should not
be used if ul(x,t) is only sought for some t>0.

The next section will show that solutions to the system of discrete
inequalities (4.2) are stable under perturbations in g, and obey
logarithmically convex error bounds when the matrix A is obtained from a

consistent and stable numerical method.
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IT.5. Stability and Discretization Error.
In this section, some stability theorems about the approximate linear

programming solution to the problem

(5.1a) ug= Lu = (p(x)u,), —a(x)u  (0<x<IT, £20)
(5. 1b) u(0,t)=fa(t) (£>0)
(5.1e) : u(TT,t)=f,(t) (£>0)
(5.1d) Ju(x,0)1<M (0£x<TD)
(5.1e) lu(x, D-g(x)I< € (0<x<TD

will be proven. Here, as before, it is assumed that q(x), p'(x), and g(x)
are continuous, and that p(x) is positive and q(x) is nonnegative on
[0,T7]. In particular, it will be shown that the numerical method
described in section II.3 is convergent if the one-step difference
approximation to (5.1a) is stable and consistent.

A difference scheme of the fornm

’\Y&M):(V(X. ,(n+1)K) , .. "V(XN-I «(n+1)k))

(5.2)
= ACk,n)y™

is called stable for 0<t<1 if there is an s>0 such that the infinite set of
matrices A(k,h) satisfies

A, < Cyexp(emk)  (0<k,h<s, 0<mk<1)
for some constants C,,c. The difference equation (5.2) is consistent if
1l (A(k,h)=I)/k = L{l==>0 as k,h==>0. The difference equation is said to be
convergent if, for fixed mk<1, JIA(K,h)Pu(x,0)=u(x,mk)} | —=>0 as k,h==>0 for

all functions u(x,t) that satisfy (5.1a,b,c).

The following lemma gives a simple example of stable difference
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schemes on 0<t<1.
Lemma 5.1: Any consistent difference approximation to (5.1a) in

[0,TT1x[0,1] which obeys the maximum principle

max (£'y) = max {f,(jk),f, (jk),v(x, ,0)} (n>0),
0<i<N 0<i<N
0<J

is stable in Lop[0,TT].
Proof: Applying the maximum principle to both v and -v, we get that
bv(x, t;00< sup {If, (64, 1F (£)0,1v(x,0)0}

0<x<TT

0<t<1
which is independent of k or h. This shows that [v(x;,t;)| is bounded in
[0,TTIx[0, 1] independent of the fineness of the mesh, which proves the
lemma.

1e¢ following theorem is very important; it will be used to prove that

the algorithms proposed in the previous section for solving (5.1) are
stable.

Theorem 5.1 (Lax Equivalence Theorem): Given a properly posed
initial-value problem, and a consistent finite difference approximation to
it, stability is the necessary and sufficient condition for convergence.

Proof: See [29], page 45.

Consider now the implicit difference scheme
(5.32) V(X tpk) =v(X, £+ (k/h®)D* p(x) D™V (X bk ) -kQ (%) V(X terk)
where
(5.3b) h=(x,,,-x;)=TT/N,
for some integer N,, and
(5.3¢) k= (t;,-t;)=1/N.

We will now obtain error estimates for the approximate linear programming
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solution of (5.1) using the difference scheme (5.3). The techniques used
in these derivations will then be generalized to include stable and
consistent Hermitian difference methods. Finally, it will be shown that
the difference scheme need only be stable and consistent (not necessarily
Hermitian) for the linear programming algorithm to be convergent. The
following lemma shows that (5.3) is stable.

Lemma 5.2: Let v(x;,t;) satisfy (5.3) in [0,TTIx[0,1]. Then the
maximum of v(x;,t;) occurs when either x;=0, x;=T[, or t; =0.

Proof: The difference scheme (5.3a) can be rewritten as

(T+r(p(x; )+p(x; +h) ) +kq(x;)) v(x;,t; +K) =

-8 v(x;.tj)+rp(x;+h)v(x;+h,§;+k)+rp(x;)v(x;—h.§;+k) .

where

~ Since r and k are positive, (5.4) takes the form

vix; oty +k)=alx; ) vix; , 0 )+b (X )v(x; +h,t; J+e(x; ) v(x;-h,t;)

where

a(x;), b(x;), c(x;)>0,
and

a(x; )+b(x )+c(x;)<1.
Hence

v(x;,t3+k)5max{v(x;,tj).v(x;+h,t;),v(x;-h,t;)}.
This shows that the maximum of v(xi,pj) can not occur if 0<x;<TT'or t; >0,
which proves the lemma.

From (5.4), we have that
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v(x,,t;) v(x, ,t +k)

& °

it
=4

v(x, ..t-) v(

Ml 5 t; +k)

xn.o‘

where

T+r(p(x)+p(xg))+kq(x,)  -rp(xy)

-rp(x,) . - O

A = ® ° ®
O . . ~rp(Xa-1)
=rp(x, ) 1+r(p(Xy. ) +p(xy, ))+kq(x,.,)

This matrix is symmetric and diagonally dominant. Therefore, it has all
real eigenvalues, and by applying Gerschgorin's circle theorem we see that

=l - '
all of the eigenvalues X; of A satisfy

A1

and so the eigenvalues A; of the real symmetric matrix A satisfy
lo\§l<1y

which implies that

(5.5) tatiy<t.

Now let u=(u,,...,u,.) and v=(v, ,...,Vy be any vectors in éb: and
define the inner product < , > by
<u,v>=h(u, v, +...+U, Jxd «
Then
(5.6) <Au,Au>=<ATAu,u> < @u, B wt
by the Cauchy-Schwartz inequality. Hence if
ECt;)=<(ulx ot ) s eeesulxy, (ot;)), (ulx 185 ) seee,ulxy 0t;))>,
then from (5.6) it follows that E(Q;) is logarithmically convex, or
Et;)<EC0] ™ B,
Let ug(x,t) be the solution to (5.1) with £=0, and let w(x;,pj) be

determined by the difference scheme (5.4) with boundary conditions
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w(x;,0)=uqy(x;,0) (i=1,...,N,=1),
(5.7) w(0,t;)=F,(t;) (3=0,...,N),
w(TT,t;)=f (t;) (320, .00, M)

Let
e(x;,t; )=w(x, ,t; )=u,(x; ,t).
Expanding u,(x;,tj) in a Taylor series gives
(e(x;.tj+k)-e(x;,t5))/k=D+1p(x;)D'e(x;,t5+k))—q(x,)e(x,,t;+k)
+0(k+h*)

for sufficiently smooth u(x,t). Hence,

e(x, ,t ) e(x,,t;+k)

® ‘\ °

. = A . +0(k*kh?).
e(xM.,,tJ‘) e(x“.,,tj +k)

Using (5.5), it follows that there is a constant € such that
5.8 [le(x; ,t;+k) ] l;_<_l AL, He(x;,t5) ll;+C(k"+kh‘7')
<lleCx ;8,01 (a-.y-Ck(k«:-h") .
But
e(x;,0)=0 ,
and so (5.8) implies that
{(e(x;,1)ll;§p(k+ha).
We are now ready to prove the following theorem.
Theorem 5.2: Let uy(x,t) solve (5.1) with £=0, and let v (x,,t;) be
the linear programming solution to (5.1) using the difference scheme (5.3).
Then there is a constant C such that
Hlug(x; 085 )= v lxs,t;) lla__gxgﬁ(£+0(k+h2)5t"(2M)'-€';-C(k+h")t.
Proof: We know from the above that

ARy (x;,0)=u,(x; , 1] [ <Clkeh)



for some constant C. We alsoc have from (5.1) that at t=1
Hve(xg D=u, 0, DL <ITTE
so that
Hlve(x, ,1)-1\"*;30(x‘. L) JTTECken™)
Furthermore, at t=0
v (x,,00-u,(x;,0) 1], <2 JTTHE
From the logarithmic convexity of the difference scheme (5.3a), this gives
us
(5.9) g (x; ot )-8 wa(xy 0 1 CT(E+C(ket®) Y 21
On the other hand, we already know that
(5.10) LA w0, (x; L 0)=uCx; 1) L1, <Clkeb®)E,
The desired result now comes from (5.9), (5.10), and the triangle
inequality.

Note that if k is chosen O(£€) and h is chosen O(Eﬁﬁ. then the
truncation error will not dominate the total error at t=1. With these
choices for k and h, the approximation error (5.10) becomes 0(£&), which is
dominated by the logarithmic convexity error O(£%) of (5.9) for t<1.

The following theorem generalizes Theorem 5.2 to arbitrary one step
Hermitian finite difference methods.

Theorem 5.3: Let

U(X.,tj+k) U(X‘ otj)
(5.11) . = A(k,h) .
u(xM4,t5+k) u(xmq,tj)

represent any stable finite difference approximation to (5.1a) with
truncation error O(H%+wh) for some integers Ny and Ng, where A is an

Hermitian matrix. Also let v(x;,gj;ﬁ) be any linear programming solution
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to (5.1), and let uy(x,t) solve (5.1) exactly with £=0. Then there is a
constant € such that
Huglx; o8 )=v(x; .85 5001 L <TTCEscf %Sy Famd™ soodlfye.
Proof: The logarithmic convexity of solutions of the matrix equation
(5.11) is guaranteed since the matrix A is Hermitian (see (5.6)). Now let

w(x;,ts) be determined by the difference scheme (5.11) with boundary

conditions
w(x,;,0) = u,(x,,0) (i=1,...,N, 1),
w(0,t;) = £ (t;) (J=0,...,N,),
w(TT,t;) = f.(tj) (j:O,,..,N&),
and let
e(x;,t;) = wix, ) - us(x;,t;).

Then e satisfies

e(x;,0) = 0,
e(x,.t; +k) e(x, ,t;)
: - A : + B
e(xM.;t5+k) e(xM_;ts)

where
Moy < G k(iK™
for some constant C‘. Hence

e(x',t3+k)

J .
off
e = % Ab;g.
S=

e(&nd,t3+k)

and so
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J
lelx, b+ 1L, < C, k(n%4™ S 1af)1,
s=0

C,Co( g+ k("

A

C,Co(t; +k) (H%k™

for some constant C,, since the difference method is stable. The magnitude
of the truncation error is therefore O(t(H%K™) at time t. The rest of
the proof follows exactly as in Theorem 5.2.

The next theorem is the main result of this section.

Theorem 5.4: Consider the regularized ill-posed final value problem
(5.1) with a consistent finite difference approximation to it. Stability
of the finite difference approximation is the necessary and sufficient
condition for convergence of the algorithm (as &k,h—>0) to the solution
of (5.1) with £=z0, whenever this solution exists.

Proof: Assume that the algorithm converges on 0<t<1 as £,k ,h==>0.
This means that for fixed mk<1,

| 1ACK, ) ug(x,0)~u (x,mk) | [—>0 as &k,h—>0
for all ue(x,t) that satisfy (5.1). But
IluE(x,mk)—uo(x,mk)ll£->0 as E—20,
since (5.1) is regularized. Hence
FIACK,hY ug(x,0)=ug (x,mk) I, —>0 as k,h,&—>0,
and so taking the limit as £—>0 gives us
[]A(k,h)muo(x,O)-uo(x,mk)ll;—>0 as k,h—>0.
But since u, is arbitrary, this shows that the difference scheme is
convergent. Hence, by the Lax equivalence theorem, the difference scheme
is stable.

Now suppose that the finite difference apprcximation is stable and
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consistent. Then the difference scheme is convergent, by the Lax
equivalence theorem. In other words, for fixed nk<{1,
1A, 0)" u(x,0)-u(x,nk) | ,=—>0 as h,k—>0
for all functions u(x,t) which satisfy (5.1a,b.c). Let ue(x;,ti) be the
linear programming‘solution to (5.1) using this difference scheme, and let
veﬁx;,tj) be determined by the difference scheme (5.3), together with the
initial condition
vel(x:,0) = uglx,,0).
For all fixed &>0,
(5.12) ilueﬁx;,tj)—ve(x;,pj)Igl->0 as k,h==>0,
since the difference scheme determined by (5.3)»and A(k,h) are both
convergent. Also, from convergence of the difference method,
Hug(x; 1) = u(x; . Dl < E+o(1),
and so
Myl o D-uglx; , D, <€+0(1) +Cll) = E40(1).
Therefore, as in the proofs to Theorems 5.2 and 5.3, it follows that
(5.13)  LlupCx; o5 )=vglxs o801, <YFTEs0(1T (@)™ wo(1).
The desired result now follows from (5.12), (5.13), and the triangle
inequality.
Some results of numerical experimentation are reported in the next

section.
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I1.6. Repert on Numerical Experiments.
These calculations were done backwards in time on parabolic problems
of the form

r(x,t)ut=(p(x.t)ux)x-q(x,t)u (£>0,0<x<TH

u(0,t)=0 (£50)
(6.1)

u(TT,t)=0 (t>0)

u(x, 1)=g(x) (0<x<TD) ©

Here it was assumed that r and p are positive and that q is nonnegative in
(0,Thx(0,1).
For figures 1-3, r=zp=1 and q=0, so that (6.1) becomes the heat
equation. With
g(x)=exp(~9)sin{3x)+3exp(-1.)sin(x)
the regularization
fu(x, )-g(x) < g = .005,
(6.2)
0<u(x,0)<M
was used, where M was assumed unknown and minimized. Using the explicit,
stable difference scheme
(6.3) r(x,£) [uCx, t+k)-u(x,t) 1=kD¥ [p(x,£)D ulx,t) 1-q(x,t)ulx,t)
with h=1]/30 and k=1/900, these figures show the solution and its
approximation at t=.2, t=.1, and t=0. The approximation is quite good at
t=.1, but is very bad at t=0, as the theory predicts.
For figures 4 and 5, g(x) was determined by.a forward integration of
3sin(x) with r(x)=1+.1x, p(x)=1-.1x, and q(x)=0. The same regularization

(6.2) and the same difference scheme (6.3) were used here.
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Figures 6 and 7 demonstrate the ability of the algorithm to handle
time-dependent coefficients. Here r=1+.1t, p=l1=.1t, q=0, and g(x) was
again determined by a forward integration of 3sin(x). There is excellent
agreement at t=.4 and still good agreement at t=.2 between the approximate
solution and the exact solution.

In figure 8, the effect that bounding a derivative has on the solution
at t=0 can be seen. Here the parameters were

g(x)=[8/(eTN Isin(x) + [8/(27TTeY)1sin(3x),
€= .01,
M=6,
and
Hulx, 1=g(x) [+ (/M) (1Hu(x,0) ] I+ Vlug(x,0) [ 1o

was minimized. Franklin [16] first showed that this method will converge

n

logarithmically slowly toward the exact solution at t=0, and indeed the
approximation is not too good here.

Finally, the ability to resolve higher order harmonics is seen in
figures 9-11. For these graphs, Crank-Nicolson was used, together with the
regularization (6.2) with £=.01. For figure 9, h=TT/25, k=1/32, and
t=.125. For figures 10 and 11, h=T[/50, and k=1/64. Notice the greater
accuracy of the approximation in figure 10 to that in figure 9. Figure 11
is interesting because it shows that in some sense this method even picks
up the periodicity of the solution at t=0. The following table compares

the actual solution of this problem to the computed solution.
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h=TT/25, k=1/32 h=TT/50, k=1/64
_ Hell,  llell Helle el
Time ‘
Hulle Llully Hulle llully
.000 .512 .367 .587 402 (.402)
. 125 .075 .069 .033 .027 (.253)
.250 . 043 . o4l .018 .019 (.160)
.375 .036 .036 .017 .017 (.101)
.500 .030 .030 .016 .016 (.063)
.625 .025 .025 .01l 014 (.040)
.750 .020 .020 .013 .013 (.025)
.875 .016 .015 .012 .012 (.016)
1.00 .012 011 .011 .010 (.010)
Table 1

Percent error as a function of time for the backward continuation of the
heat equation. The parenthesized numbers in the right column represent the
a posteriori error estimate (£*M"% derived in the text.
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III. THE WEAKLY NONLINEAR PROBLEM

III.1. Logarithmic Convexity Bounds.

This chapter shows how the linear programming methods described in the
previcus chapter can be used to obtain approximate solutions to weakly
nonlinear backward parabolic problems. In this section logarithmic
convexity bounds for sclutions of the weakly nonlinear equation
(1.1) Up = Uy +cF(u) ((x,t)e[0,Trx[0,1D),
are derived, where c<<1, F is continucus, and F(0)=0. It will be shown
that these problems, like the linear'problems, require a good description
of the data error and a restraint on u(x,0) to remove any instability in
them. Other sections describe the proposed numerical method, analyze the
error in this method, and give the results of numerical experiments.

Let K be a self adjeint, linear negative definite operator mapping a
dense subset of a Hilbert space into itself. (Here we associate Ku with
Ugy). Then any solution to

Uy =Ku+cF(u)
(1.2)
u(0)=u,

can be found by the method of integrating factors to satisfy
Ke % kit-s)
(1.3) u(t)=ze uo+ccjé F(u(s))ds.

Suppose now that F is Lipschitz continuous in u with Lipschitz
constant L, and that cL<1. The following theorem proves that flu(t) i< oo
for 0<t«<1.

Theorem 1.1: If u solves (1.3), then

ot



T4

sup  llu(t) i, < l]u,lla/(1—th').
0<t<t ! 2

Proof: From (1.3) and the Lipschitz continuity of F,

t'
Ke td-3)
sup  Hu(e)|l, < sup  [1e bl llu iy +eL §11d“Ws)|[ as
0<t<t ! % =0ctct ! >R 65 a

< Hugllrelt'sup Hu(t) il .
0<t<t!

Hence, for sufficiently small ¢,

sup  HuCe) il < flu dla/(1-clt?) < 00
0<t<t!

if 0<t'<1.
The above theorem shows that the auxiliary conditicons
[lulx,0) 11, <M,
(1.4)
l}u(x,1)—f(x)ll;j; &
can only regularize (1.2) if ¢ is small enough. The next theorem bounds
the error in solutions to (1.2) and (1.4).
Thecrem 1.2: Let u and v be any two sclutions to (1.2) and (1.4), let
F be as above, and let
WzU=-V.,
Then if cL<1,
t gt
Plw(x,t)11,< 2 JTre M ™ /(1-cL).
Proof: The function w(x,t) solves
We=Kw+c[F(u)-F(v) 1,
where A"‘
Kz wwms ,
ax?

Hence, using the method of integrating factors, w is seen to satisfy
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t
wm=ektw<o)+cofe“"“’[1:(u<s))-F(v(s))]ds

(1.5) HHw(0) 11, <M
”w(1)lll_325.
But ektw(o) solves the heat equation, so using the logarithmic convexity of

solutions to the heat equation and the Lipschitz continuity of F gives

T t
(1.6)  Hw(e) 1L < 2(E+cL(f(|(eK” Tt a4 s chue"“‘ﬁs)uzds.
o

But from (1.5), we get
1
Hem")w(s)llz: {lw(1)=c feku'SL)F(u(s))-F(v(s))]ds]l;
0
(1.7)

: \
<€ +cLOj sy { Jds.

Successive applications of (1.7) to (1.6) now proves the theorem.
The above two theorems show that the inequalities
bu(x,0) 1M
tulx, D-f() | E
regularize the weakly nonlinear (1.1) for small enough c¢. As with linear
ill-posed problems, a good description of the data error and an additional
constraint on the solution u are needed here to sclve this problem.
Note that the results in Theorems 1.1 and 1.2 continue %to hold if
(1.1) is replaced by
r(x)ut=(p(x)ux)x+cF(x,t,u)
and {1 IE. is replaced by {| l‘kr' For the time-dependent coefficient case
r(x,t)u£=(p(x,t)ux)x+cf(x,t,u)

there are results analogous to these theorems based upon the logarithmic
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convexity of time-dependent equations derived in section II.Z2.
Example: Consider the problem
(1.82) U, Zuy o+ 0107
with initial—boundary conditions
fu(x,00{ < 1,
(1.8b)
u(0,t) = uw(TT,t) = 0.
The function F(u)zL? is not unifeormly Lipschitz continuocus on the real
line. Nevertheless, the condition (1.8b) can be used to find a Lipschitz
constant valid for all solutions to (1.8) on [0,TV71x[0,1].
Decompose u(x,t) intoc two components, v and w, where v(x,t) satisfies
the homogeneous problem
Ve =Vax

v(x,0)=u(x,0)

v(0,t) = V(Tr:t) = 0,
and w(x,t) is the solution to
i 3
W =Wy, e 01 (vaw)
(1.9) w(x,0)=0
w(0,t) = w(TT,t) = 0.

The maximum principle for the heat equation gives
(1.10) Iv(x,t)1 < 1 ((x,t)€l0,TTIx[0,1]).
It remains to estimate w(x,t).

For fixed t, let

w(xp,t) = sup w(x,t).

0<x<r

If x,=0 or TT, then w(x,t)< O for OﬁgﬁTT. Otherwise,

3
(1.11) [w(xo,t)]tﬁ O (vaw(x,,t)) .
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Using (1.9), (1.10), and (1.11), it is clear that w(x,,t) is bounded by
sclutions to

dz/dt = .O1(1+z)3'

z(0)=0.
The solution to this differential equation is given by

)

z(t) = (1=.02t)% -1

AN

011 for 0<t<1.
Therefore,

W(xg,t) = sup w(x,t) < .011
0<x<FT

in [0,T011x[0,1]. A similar calculation shows that

inf w(x,t) > -.011 .

o<x<IT

Jutx, )l < fvix,e)[ + fw(x,t)] < 1.011,

[F(w1' = (u¥)r =3u®

301,011

f A

£ 3.07.
Therefore, 3.07 is a Lipschitz constant for F(u) valid for all u(x,t) that
solve (1.8). This example illustrates how a bound at t=0 can be used to
find a Lipschitz constant valid for all u(x,t) that satisfy the prescribed
bound.
In the next section it will be shown how the solutions to (1.1) and

(1.2) can be approximated by using a successive iteration and linear

programming .
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III.2. The Numerical Method.
In this section an algorithm for computing numerical sclutions to the
Qeakly nenlinear equation
(2.1 r(x,thuy = (p(x,E)u )+ cF(x,t,u)  ((x,t)€[0,TTIx[0,11)
backwards in time is described. Here it is assumed that r and p are
positive, that F is continuous, and that F(x,t,0)=0.
Let u(x,t) solve (2.1), together with boundary conditions
u(x,1) = g(x),
(2.2) u(0,t)= fg(t),
u(TT,t)=f, (t).
The results of the previous section show that u(x,t) can be approximately
determined (for small c) if, instead of (2.2), the regularized boundary
conditiens .
lu(x,H-g(x)}j< €,
u(0,t)=f,(t) ,
(2.3)
u(TT,t)=f (t) ,
Ju(x,0) <M
are used for some £ and M. A successive approximation method using linear
programming is used here to find solutions to (2.1) and (2.3).
Let u? solve (2.1) and (2.3) with c=0, and for n>0 let u™ solve
(2.%) r(x,t)‘g’z(p(x,t)dﬁx +eF(x,t 0"
Each dm‘is now the solution to a linear problem. This iteration can be
stopped after a predetermined number of steps, or it can be stopped
whenever JJu”-d™|| gets small enough.
The iteration (2.4) is not the only successive approximation that can

be used on the weakly nonlinear (2.1). For example, if F:u’I for some n>1,
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and G=F/u, then _
(2.4%) r(x.t)ﬁz)z (p(x,t)d:Sx + cJNG(x,tan%
also results in a linear equation at each step. Iteration (2.4) is
analyzed here, however, because of its simplicity.
Clearly

u"zx,t)zv”%x,t)+dn?x,t).
where v"(x,t) solves
P(X IV = (p(x,E) Vi) g +eF(x,t ™),
V5,00 = (x*£ (0)+(TT-x)*£, (0)) /TF,
(2.5) o
vlo.t) = £,(1),
VT, 8 =F (1),
and wmtx,t) solves

r(x,t)w.'é": (p(x.t)w;"ﬁx.

W %x, D+v™(x, D-g(x)] < &,
(2.6) W*0,8) = 0,

W) = o,

ek, 0049 (x, 001 < M.
Problem (2.5) is an inhomogenecus initial-boundary value problem; numerical
sclutions to this well posed problem may be found with arbitrary accuracy
by using any consistent and stable difference scheme with a fine encugh
mesh. Problem (2.6), however, is a regularized backward parabolic problem,
and can be solved using linear programming by the methods of Chapter II.
At each step any of four linear programming problems can be sclved,
correspeonding to whether the bounds £ and M are known or unknown. Problem

(2.4) can therefore be reduced from an inhomogeneocus backward problem with

inhomogeneous boudary conditions to a homogeneous problem with homogeneous
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bcundary conditions.

Since problems (2.5) and (2.6) are being solved iteratively, this fact
can sometimes be taken advantage of in order to reduce the computation and
increase the accuracy of the numerical solutions. It has already been
mentioned that the computation necessary to sclve an extremal linear
program can be significantly reduced if one starts from a solution which
is, in some sense, ‘close' to the extremal solution. Of the four cases
analyzed in II.6 (corresponding to € and M either known or unknown), three
of these cases require solving an extremal linear program. These cases
occur when either € or M is unknown. For these cases, using J"dkx,t) as an
initial estimate of J“%x,t) has been found to significantly reduce the
computation time necessary to solve (2.6).

The accuracy and convergence properties of this algorithm will be

analyzed in the next section.
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I1I1.3. Error and Convergence of the Numerical Method.
The error and convergence properties of the successive approximation
method described in the previous section are analyzed here. We start by

considering the convergence properties of the related forward iteration

ca)_ ¢8}

t7 xy

u"‘L :" +cF(x,t,u‘“’) (n>0)
(3.1 *

u™x,0)=£(x) (n>0)

d™0,0) =T, ) =0 (n20).

Theorem 3.1: Let F be Lipschitz continucus in u with Lipschitz
constant L, and let u(x,t) be the continuous solution to
utzux)t-c-cF(x,t,u)
(3.2) u(0,t)=u(TT,t)=0
u(x,0)=f(x).
Then the forward iteration‘ (3.1) converges to u(x,t) whenever clL<1.
Proof: Let
Ux,ty=ulx, ) —ulx,b)
so that ew solves

e +o[F(x,t u"‘.’)-F(x,t,u)]

)
exx
Y0,t)=e (TT't) =0
e"(x,O):o.

Hence, using the Lipschitz continuity of F,

< eL sup {1 & x t)”
0<t«1

en)
sup lle (x,t)H‘.z
0<t<1

It now follows from the contraction mapping theorem that
em)(x,t)->0 as n==>g0. This proves the theorem.

Remember from section III.1 that the pair of inequalities
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(hu(x, =g, < €
Hiulx,0) ki <M
will only regularize (3.2) if cL<1. This means that the numerical method
described in III.2 will only work when ¢ is small. How does the error
depend on ¢? This question will now be answered.
Let u(x,t) solve
u, = Ugg+cF(x,t,u)

t N
u(0,t) = f,(t)
(3.3)
u(x,1) = g(x) (0<x<TT, 0<t<1),

»)
and let J (x,t) be iterate n in the successive approximation to (3.3).

Then if n=0, dw’solves
to} ¢o)
ll \ 11 L 11
(3.*131 ut_ ua uxx
or, if n>0, u solves
a.)_ (23] (220
(3.4p) ut = ux*+cF(x,t,u 3

together with boundary conditions
Wo,8) = £, (t)
u™(TT,6) = £ ,(8)
(3.4¢c) =)
W (x,D-g(x)l < €
Id"}x.O)l < M.
Let the error at step n be given by
)
(x,t) = ™k, t)ulx,t) .

This error will now be estimated.

fo)
When n=0, eo(x.t) solves
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%Y )

et=e!x—CF(x 't ,u)

1€, Dic e
16%(x,0) |<2M

eto,t)=¢MT ¢ =0,

(3.5)

while when n>0,

e‘;‘ =e;'3 +c[F(x,t ,u"")ﬁ “F(x,t,u)]

1€%0x, 1 < ¢
(3.6)
1ex,0)( < 2M

én
&0,t)= T 6) 0.
As usual, em)(x,t) can be split into two components, e“") and e:), where e‘,nj

solves the homogeneous equation

) ¢n)

e xx
(3.7) e™(x,0) = &1tx,0)

&0, = ST = o,

and e‘;‘ solves the inhomogenecus equation
¢} )] enet
€14 = e,x;c[F(x,t,u 3-F(x,t,u)]

(3.8)
em(O,t) = e“hT,t) = e"?x,O) =0

when n>1. The quantities e':" and e“’ will ncw be estimated.

a
Let
M, = sup Ju(x,t)} .
0<x<T
0<t<1

From (3.4a), it can be shown that “e:)l la_ is bounded above by solutions to
dy/dt = cLM , y(0) = 0,

and below by solutions to
dy/dt = -cLM\, y(0) = 0.

Hencle,

(3.9) NMERxEI L < ol b
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On the other hand, (3.7) and (3.9) together imply that
()
e, (x,00] < 2™,
and that

e, DL < Gl DI+ 11, D1,

_S_Et.ﬁ'?;cLM, .

Therefore,

¢ =T
(3.10) Hetx,ertly < JTEreLi)" (24,)

by the logarithmic convexity of sclutions to the heat equation. Together,
(3.9) and (3.10) show that the error in the first iterate can be bounded

above by

E™0x, e 1, < 11,11, +11€00x, 0211,
(3.11)

< JTTL (E+cly, )"'(ZM,)"t+cLM,t].

When n>0, however, it follows from (3.8) that

LG enet) ¢n
.5<e1,ea$t £ cl<e ey
¢avt) e
L cLile H:_Heg’lla.

Integrating this inequality gives
t

(3.12) etz el <ol § 11 tx,s) 01 ds.
0

Furthermore,

eald

le, (x,001 < 2M,

and

) [1:1) )
He, (x, DL e (D + e (x, DI,
! ¢ret)
<&JTT +chflle (x,s)]];ds.
Therefore, by the logarithmic convexity of solutions to the heat equation,

1 Rt "t
(3.13) e 621, < @ +eL §11™ )11 ,a5)° (24,
0
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Hence, using (3.12) and (3.13),
1
N0, < @I el S x| ds)® (M)t
— 3, ©
(3.14)
t
+cL Si!e“”kx,S)llzds.
0
An iterated inequality similar to this one is used to prove the following
error estimate.
Theorem 3.2¢ There is a constant A such that
= el
™0, t) 1, <A+ (L™ M )" (M) +(2eL™ M, /2.

Proof: The error €” is given exactly in L,[0,TT] by

t
e"“(x,t)=e*"f‘[e‘wx.o>1+c0je"’*'5%F(d""<s>)-F(u(s))]ds,

)

2
where K is the operator <= operating on twice differentiable functions
v"
that vanish at x=0 and x=T]. Using this equation, we see that e"%x,t) must

also satisfy the more restrictive inequality

1 -
HE™x,0) ] <C2TTTwoL § 11 PR Ux,5) [1 as (o)™
0
(3.14Y)

R(e=3)
e

+cL (ile ‘”Qx,s)llzds

in addition to (3.14). But

1
e“"'ﬂef""(x,s):e"'"’(x,1>-c5e“"“%F(u‘”"’cs))-F(u(s))]ds.
S
Therefore, using this in (3.14') gives

1 P o
116702, 0) 1] < (EJTTcLle JTT+eL § 1« ex,s) ([ ds])" (2M,)
0

+
+cL(lfé"“(x,t)¥€+cL_f][é“t”e“”(x,s)!llds).
0
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Continuing in this manner, a simple induction proves that

Al

He™x,t)1 ‘JSE%L + (cL) M,]t(ZMa )ht
+ (20L)"'M, /2
SACE+ (LY ™M, F (2M) " 4201y Y, /2
for A:%fé%. This proves the theorem.
Theorem 3.2 does not imply that the successive approximation algorithm
will always converge. It does indicate, however, that the error at time
t>0 can be made arbitrarily small (for small c¢) if € is chosen small enough
and if n is chosen large enough. In fact the algorithm should not always
converge, for if any solution to (3.4) is sought, then the best that can be

hoped for is that the difference between iterates satisfies

™x, D-u""x, D1 < 28

™z, 0)-d""Ux,001 < 2M,.
This is only one of the four cases analyzed in section II1.6, though. Any
solution will do for this case; particular extremal solutions are sought in
the other three cases. Numerical experiments indicate that for these other
cases the algorithm converges if cL<(1.
In the next section the results of some numerical experiments are
given, and the error and convergence properties of these experiments are

compared with the results obtained here and in section III.T.
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III.4. Report on Numerical Experiments.
The calculations reported here were done on problems of the form
(4.1a) Ug = Uyy +cF(u)
with boundary conditions
u(0,t) = u(Tr,t) = 0,
(4. 1b) lu(x, D-g(x)l < €,
tu(x,001 < M.
Here M was assumed unknown and minimized, and & was given to be .01,

A simple perturbation expansion of the problem

- 3
(4.2a) U, = Uy, +cu
with boundary conditions
u(0,t) = u(fr,.t) = 0
(4.2b)
u(x,0) = sin(x)
shows that

u(x,t) = sin(x)exp(1.-t) + c(.375)sin(x)(exp(3.-t)-exp(3=3t))
+ c(sin(3x) (exp(3-9t)-exp(3=3t))/24 + 0(c?).
Set
v(x,£) = sin(x)exp(1-t)+.01(.375sin(x) (exp(3~t)~exp(3~3t)))
+,01(sin(3x) (exp(3-9t)-exp(3-3t))) /24,
and let
g(x) = vi(x,1) = 1.0240sin(x) - .0004sin(3x).
Table 1 shows the difference between the first few iterates obtained using
our algorithm and v(x,t) given above. Note that the error for these
iterates is considerably smaller than the logarithmic convexity estimate
obtained in III.1. This error estimate goes toc zero as € and c do if

(4.3) e sup IF'(u)i<1.
@
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For the problem given above, iteration 1 provided
]

sup ju'f = 2.165

and so
0 :v

¢ suplF'" (UM = .01(3)(2.165) = .1406,
which is well within the tolerance of (4.3). Figures 1 and 2 show the
difference between the solution calculated in iterate 6 and v(x,t) for
t=.25 and t=.375.

Figure 3 was obtained from the problem

<

U, = U, +cu,

t
(4.4) u(o,t) = u(lt,t) = o0,

Hy,

u(x,0) = exp(#)sin(2x).
A simple perturbation expansion for this shows that

u(x,t) = exp(4-4t)sin(2x) + 0(e),
and so g(x) was set to

g(x) = ulx,1) = sin(2x).
For this problem, iteration 1 provided

sup [u™) = 41.467,
and so

c sup VF'(u™| = .01(2)(41.467) = .829.
The iterations converged very slowly for this problem. Several iterations
were required to obtain two place accuracy between iterates at t=0. Figure
3 shows the result of the third iteration at t=0. Note the slight
asymmetry about x£TT72. This is probably due to roundoff érror; the true
solution is symmetric about this point. The computed sclution should not
be expected to be accurate at t=0. It should be periodic, however (see

II.8).
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Finally, an experiment was made on (4.2a) using

u(x,0) exp(9)sin(3x),

u(0,t) = u(lT,t) = 0.
Clearly,

u{x,t) exp(9=-9t)sin(3x) + O(e).

The first iteration provided a periodic function of x satisfying
sup ]1f“| = 5471,

Hence, for this problem
c sup [Fr(u™] = .01(3)(54715:L > 1.

The iterations diverged for this problem.

Iterate 1 Iterate 2 Iterate 3
- RTINS < NPT TREIANTEEEY D

(lelly, Mlelly,  llell, tlelly,  Hell; llell e

t=0 1.450 1.739 1.417 1.690 1.450 1.670  (1.450)
t=1/16 .6698 .6017 .6564 .5660 .6524  .5487 (1.065)
t=1/8 .3795 .3222 .3726 .2989 .3722 .3207 (.7807)
t=1/4 .1276 .1028 1272 1222 <1357 .1435 (.4051)
t=1/2 .01851 .02031 02714 ,02959 .O4786 .04741 (.1218)

Table 1: Error at time t vs. iteration. The parenthesized numbers in the
right column represent the a posteriori error estimate (e*M"t) derived in
section III.1.
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Iv. CONCLUSION.

This thesis has shown how to approximately solve parabolic problems on
a finite domain backwards in time by using linear programming. Here it is
not necessary to assume that the Green's function or that the eigenvalues
and eigenfunctions for the associated Sturm-Licuville problem are known
explicitly.

Forward parabolic problems, such as the heat equation and the
Fokker-Planck equation, can be used to model a variety of diffusive
phenomena. Backward parabolic problems are ill-posed; a small change in
the terminal data can lead to a large change in the solution sought. Since
roundoff errors are inevitable in any numerical method, this instability is
very undesirable. A technique to remove this instability is called a
regularization. An important class of regularizations are those that
restrict the search for a solution to a compact set.

For example, consider the problem of finding u(x,0) from

U, = Ugy (0<x<TT,t>0),
(1) u(x,1) = g(x) (0<x<T,
u(o,t) = u(Tl,t) = 0 (t>0).

One regularization for this problem is
Uy, = Ugys
Bulx, D-g(x| < &,
)
(2) u(o,t) = u(fT,t) = 0,
Hulx, 0l < M,
o0
Hug(x,00 11 < M,.
as™

Here problem (1) has been replaced by problem (2), which is in some sense

'near' to the original problem for g small. The restrictions on u(x,0) and
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u (x,0) imply that any solution to (2) must lie in a uniformly bounded,
equicontinuous family of functions; this family is compact, by the
Arzela—Ascoli theorem. On the other hand, the problem
UgmU g
Hu(x, D-g(x)1] < g,
(3) : e
u(0,t) = u(IT,t) = 0,
llu(x.O)[[d; M,
does not regularize (1) at t=0. It does regularize (1) for 0<t<{1, however.
This is proven in section I.2: the proof uses the fact that bounded sets
are weakly compact in LP for 1<pea,

A discrete approximation can be obtained for (2) or (3). Let

ho=TI/N , k=1/Ng

for some integers N‘ and N2= and let

u-
§

1]

u(ih,0),

g(ih).

g.

¢

Then upon discretization, (3) becomes
Mo,

Hull <M, ,

)

where A is an (N-1)x(N=1) matrix determined by the difference scheme used.
Sclutions to this system of inequalities can now be determined by linear
programming. |
The error involved in replacing (1) with (2) or (3) is called the
regularization error, and it is logarithmically convex. That is, if ug
solves (3) and u, solves (1), then
Hug-u,ll, < 524"

This shows that the error in ug goes to zero as &€ does for 0<t<1. This
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result also holds if the heat equation in (1) is replaced by the more
general space-dependent problem
rixdue = (p(x)uy ), -q(x)u.
On the other hand, if the equation considered is of the form
Y‘(X,t)ut = (p(xyt)ux))(

then the error satisfies

- Lt
‘,ue—ucl ‘1 i ewcteZMo )l
where
w(t) = [exp(et)=1]1/[exp(c)=1]
and
¢ = sup {pys/p}.
0<x<TT
0<e<1

It is not necessary to know precisely what either & or M is in (2).
Clearly, if both are known then any solution to (4) will suffice. This is
not always the case, however. If a temperature distribution at t=1 is
determined by measurement, then an unknown & will correspond to uncertain
accuracy in the measurements. An unknown M, on the other hand, will occur
if the solution is only known to exist and be continuous at t=0. There are
four cases to consider (each of € and M may be either known or unknown).
If M is known and € is not, for example, then £ can be considered a
variable which can be minimized using linear programming. This case is
equivalent to Chebyshev approximation with inequality constraints (see
Appendix A). The regularization error for each of these four cases is
equivalent, as is shown in section II.4,

In section II.5, error estimates for the discretization (4) were
derived, and it was shown that the algorithm is convergent to the true

solution of (1) is the matrix A is obtained from any stable and consistent
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difference scheme (such as Crank-Nicolson). This important theorem was
confirmed by the results given of numerical experiments of various linear
parabolic problems backwards in time.
In chapter III, these results were extended to regularized, weakly

nonlinear parabolic problems such as

Ug = Uy, +cF(x,t,u)

Hulx, D-g(x) < &
(5)

u(0,t) = u(tT,t) = 0

Hu(x, 01 <M,
where ¢<<1. If F is Lipschitz continuous in u with Lipschitz constant L,
it was shown in III.1 that

£, -t
(6) Hug-ugff, <2Jme)" (M) /(1-cL)
if cL<1. Moreover, Lipschitz continuity is not really much of a
restriction on F, for the constraint at t=0 can usually be used to restrict
the range of u under consideration. For example, if F':u3 and ¥ =1, then
L<3.07, as was shown in III.1.
A successive approximation method for solving (5) can be obtained by

letting u“lx,t) solve
¢y (o)

Up = Uye

and for n>0 letting u“kx,t) solves

€Ay ¢A} A=t
ut_%*acﬂu &
It was shown in section III.3 that if u solves these equations together
with boundary conditions
(Tu™(x, =g 1] ¢ €
@

and

nd"’(x,onc}‘gmo (n>0),
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then
llui(x,t)-uc(x,t)H_z_<_A(£+(cL)“‘M. »* (2M°>"t
+ (2L M, /2.

Each d“‘heré solves a regularized linear equation, and the linear
programming techniques of chapter II can be used to do this. This
algorithm will not converge in all of the four cases described in section
II.4, however. In the case that both & and M are known, then the best that
can be hoped for is that

{umkx,1)—dkn(x,1)).§ 2€
and

(F™(x,0)-d"(x,0)[ < 2M,.
The results of numerical experiments for weakly nonlinear problems are
described in III.4. The experiments performed converge for clL<l and
diverge for cL>1.

Linear programming techniques similar to those proposed in this thesis

can be applied to other ill-posed problems of the form

Ku=f,

where K is a bounded linear operator with an unbounded inverse. A

regularization for these problems will take the form

‘!Ku—fl‘ _<_E’
(7 ®
ul <M,
and (possibly)
(8) llu'{]uﬁM‘.

After discretization, solutions to (7) can be found by using linear
programming .

Example 1 (Numerical differentiation): Suppose that



98

X
(9) Kug () =éu°(y)dy = £(x),

and assume that

£(1)=0.
The problem is to find ug(x)=f'(x). Divided differences are usually used
to approximate u,, but this technique will often not work well if f is a
measured quantity and thus known only to within measurement error. In this
case the measured function f might not even be differentiable. This
problem has been analyzed before by Franklin [16] and Cullum [10].
Franklin showed that for this problem the error in the solution to the
regularized problem (7,8) is 0(5&)_

Example 2 (Cauchy problem): Let u(x,y) solve
uxx+uyy;9,
u(x,0)=f(x),

uv(x,0)=0,

u(0,y)=u(JT,y)=0 (=00 <x,y< 0).
If

f(x)=[sin(nx)1/n,
then

u(x,y)=[sin(nx)cosh(ny)l/n.
This problem is ill-posed; a small perturbation in f can lead to a large
error in u. Solutions to this problem are (almost) logarithmically convex
(see Miller [25]). Therefore, the error analysis for this problem is
similar to that for the backward heat equation. Extensions of this problem
can include variable coefficient problems, as well as weakly nonlinear

problems. These extensions can be handled in a manner similar to the
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methods proposed in this thesis for extensions of the backward heat
equation. An analysis of numerical methods for solving the Cauchy problem
for elliptic equations would make a good research problem.

Example 3 (Harmonic continuation outside a circle): Let f(r,®) be
harmonic on (r,8)€l0,11x[0,2TT), and let

f(r, ,8)=g(8) (0<e<2Th

for some r‘<1. The problem here is to find f(1,8). This problem is
ill-posed because an O(r") perburtation of r®sin(n®) in g can lead to an

0(1) error in f(1,8). Poisson's integral formula states that

1 21T (1=r®)
f£(r, ,¢> T — )‘ £(1,6) de .
21T o [1-2r, cos($-8)+r?2]

The problem now is to invert this formula. Douglas [12] has shown how the
similar problem of analytic continuation can be regularized and solved
using linear programming. Extensions of this problem might include an
analysis of what happens when the boundary lzl:q is incompletely specified,
or when the boundary is irregular.

There are many other linear ill-posed problems; these are only a few.
Mcore research is needed for a better understanding of these problems and

techniques used to solve them, for as G. Anger stated in the 1979 preface

to Inverse and Improperly Posed Problems in Differential Equations,

n"The practical importance of inverse and improperly posed
problems is such that they may be considered among the
pressing problems of current mathematical research.
Many problems remain unsolved in the study of inverse
problems.*
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Appendix A: Linear Programming and Chebyshev Approximation.

In linear programming one seeks the maximum (or minimum) of a linear
function of several variables subject tc linear constraints on the
variables. The following are two examples of linear programs.

Example 1: Minimize z=X, +2%; subject to

X, 1%, 20
X, +x; =1,

The solution te this problem is given by
x‘=1, xz;o, z=1.

Example 2: Maximize y subject to

y<i
y<2

The sclution to this problem is clearly
y=1.

Example 2 is called the dual of Example 1, and the solutions of these
two examples are closely related, as shall be seen.

In general, let A be an m by n matrix, and let b and ¢ be vectors with
m and n components respectively. Consider the problem of finding the
vector x that solves

Ax=b, x20,
(A. 1)

<c¢,x>=minimum.
This is called the canonical minimum problem of linear programming, and
Dantzig's simplex algorithm (described in Franklin [13]) provides a means

for determining when a sclution exists and computing the solution. The

solution to this problem is closely related to the solution of the dual
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linear program

YTASQT

(A.2) =
<X,B>=maximum,
as the following theorem shows.
Theorem A.1 (Equilibrium Theorem): The vector Ez(x,....,x,f‘is
optimal for (A.1) if and only if there exists a vector Z:(y,,...,x"f.

optimal for (A.2) satisfying
(A.3) =V, a,=¢; if x>0,

Furthermore, if x is optimal for (A4.1) and_z is optimal for (A.2), then
(A. %) {gk§>=<§,z?.

This well known result can be found in [13].

A vector x that satisfies the linear constraints in (A.1) is called a
feasible solution. For any feasible x, define the set
(A.5) SQﬁ;A):{aizxj>0},
where aJ denotes column j of the matrix A. If the vectors in S(x;A) are
linearly independent, then X is called a basic feasible solution. The
following theorem guarantees the existence of basic feasible solutions.

Theorem 5:2: If (A.1) has any feasible solution, it has a basic
feasible soluion. If (A.1) has any optimal solution, it has a basic
optimal solution.

A simple proof of this theorem can be found in [13].

Assume now that

rank(A)=m,

and that b is independent of any m-1 columns of A. If these conditions are

met, then (A.1) is called nondegenerate. Suppose that x is a basic optimal
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solution to (A.1). Then since b is independent of any m-1 columns of A, x
must have m non-zerc components. From the equilibrium theorem, (A.3) gives
m equations for the m unknown components of the dual sclution PR
Furthermore, since z.is basic, the vectors in SQ;;A) are linearly
independent. Hence, given x, the vector X.that solves the dual program
(A.2) can be found by simply solving the m linear equations (A.3). This
shows that for nondegenerate canonical minimum problems, the solution to
the dual problem can be found directly from the solution to the primal
problem.

Linear programming can be used to solve problems in Chebyshev
approximafion. Stiefel [32] was the first to show how this is deone. Given
an overdetermined and inconsistent system of linear equations
(A.6) a;,X #8;a%a+. 00 +8;, X,=b, (iz1,...,m),
the Chebyshev approximation problem is to find an X sees,X, that

approximately solve (A.6). In particular, if

z,=za;, X, +8;3X ;+e 0. 48X

.
]

ﬂ‘b;i (i=1,.c.gm)’
then the problem is to find

(A.T) zZ= min max z;
(X, 300es%,) i

This is a problem in linear programming. To see this, consider the
problem of minimizing z subject to
A X, +8, Xqte. o+, X, =b; {2
(A.8)
@, X, +8;y Xateoot+d;, X =b,; D=2 (i=1,...,m),
z>0.
It is easy to verify that soclving this program will give us the Chebyshev

approximants x., as well as the desired minimum z. This problem can be put

into canonical minimum form so that it can be solved by the Simplex
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algorithm.
Set
t;=(b;-a; X =...-a,,%,)+z,
W, =Z+(a;, X o048, X, ~bs) (i=1,...,m).
Clearly
t,.w 20 (i=1y000,m).
Also choose
rj,sfzp (j=1,cc.,n)
so that
X, =r; -S; (j=1yeee,n).

Substituting these relationships into (A.8) yields the following problem:
minimize z subject to
a;(r,=s )+ ..4a , (r =s, )=z+t b,
(A.9) a;,(ry=s)+...+a;, (1, =s.)+z=w- =b:
rj,sj,z,t;,w;zp (i=1,...,m;j=1,...,n).
This is a canonical minimum program in 2n+2m+1 unknowns and 2m equations.
It can be more efficient numerically to write (A.8) in canonical
maximum form, however. For this, the problem (A.8) can be written as
follows:
maximize -z subject to
A, X, +eoota;, X, =28y
=8, X, ~.oc=a:,X~2<~b,; (i=1,...,m)
This is the dual of a canonical minimum problem, and has only (n+1)

unknowns and 2m inequalities. The corresponding minimum problem, which can

be derived from (A.8), is to minimize
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m
S b, (u;-v;) subject to
i=1

M

a.-.,(u;-v;)=0 ) (j:'l,...,n)q
iz1 3
(A.10)
m
(u,+v,)=1,
1=1
u; 4V, 20 (i=1,...,m).

Since (A.10) involves fewer unknowns than (A.9), practice has shown that it
is generally more efficient to sclve (A.10) first, and then to solve the
dual program (A.8) using the equilibrium theorem and (A.3).

Both linear programming and the method of least squares can be used to
find approximate solutions of ill-posed problems. We conclude this
appendix with a comparison of these twec methods. The method of linear
programming can be used to compute approximate solutions to (A.6) that
satisfy

[{Ax-b[l =minimum,
or
(|A£721[“5minimum.
The method of least squares, on the other hand, gives the solution to
[le—b1|A=minimum
as
%=(ATAY 'ATb.
Both methods allow us to find a 'best' approximation to Axs=b in a suitable
normed space. Is there any advantage in using linear programming instead
of least squares? The answer is yes. With linear programming we are

allowed to impose additional linear inequality constraints on the soclution,
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such as
(A.11) Ix; (<M (i=1,...,0),
(A.12) x.20 (i=1,...,0),
or

n
(A.13) ;;;efxizf .

Constraints such as (A.11) occur in regularized ill-posed problems, while
constraints such as (A.12) often are required when the nonnegativity of a
solution must be guaranteed, such as in heat conduction problems. Both
linear programming and least squares can incorporate equality constraints
such as (A.13). Neither (A.11) nor (A.12) can be handled by conventional
least squares techniques, however. Therefore, in this author's opinion, it
is better to use linear programming than least squares on linear backward

heat diffusion problems.
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SYMBOLS

The Banach space of functions on
[a,b] with norm [[ 1 lp (1<p<e0).

The norm for Lp;

TESEIE (ﬁflpdx)‘lp.
a

The Banach space of functions on [a,b]
with norm [[{ Il,,. Note r(x) must be
positive on [a,b].

b Yo
llfllmr= (j]ftpr(x)dx) .
a

The space of continucus functions on
[a,b] with norm [} i},

The space of functions continuously
differentiable p times on [a,b].

{{fhles sup (£(x)].
a<x<b

The inner product in a Hilben; space.
For example, if g¢=(c ,...,c,), and

\ JPN 8
X=(X, yoee X, JER,

{e,x>= fc X .

i=1

Dru(x)={u(x+h)~u(x)l/h. Note that h
is assumed Kknown here.

Du(x)=lu(x+h)-ulx-h)1/(2h).
D u(x)=[u(x)-u(x=h)1/h.

§.=1if iz3,
Y 0 otherwise.
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