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ABSTRACT

The effective Hamiltonian for B-meson decays of the form B — X s7Y, where X
is a strange hadron, is found in the minimal Standard Model with strong interaction
effects included. Renormalization group techniques are used to scale the coefficients
of the operators in the effective Hamiltonian to find the inclusive decay rate for hard

photon (Ey ~ 2 GeV) emission, to leading logarithmic approximation.
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INTRODUCTION

The minimal Standard Model[l.1] has been very successful in predicting and
explaining the results seen in high energy particle experiments. The charm and
bottom quark have been found, as required by the Standard Model with a minimal
Higgs sector for CP violation to exist. The W and Z particles have also been found,
as the Standard Model predicted they should be. Yet we know it is not the last
word in explaining the events in our universe. There is no motivation for many of
its features, nor does it incorporate gravitational interactions. It is certain that the
Standard Model, even though quite sufficient to explain physics at the energy scales
accessible to us now, will break down at some higher energy scale, where a more
complete description of interactions there must be found. In this sense, the Standard
Model is an “effective” field theory in its own right. Even astronomical observations

that potentially give information on very high energy processes do not yet contradict

the Standard Model.

Given that controlled experiments, at energies where we can expect to directly
probe the Higgs sector, are far in the future, the best we can do is to look at processes
where deviations from the Standard Model will show up most clearly. To this end,
the most informative are the decay modes that are predicted to be quite suppressed
(relying on heavy virtual particle loops) in the Standard Model, yet have a unique

experimental signature.

Among the rare decays of B-mesons are the weak radiative decays, where a B-
meson decays to a strange hadronic state X and a hard photon . Its branching ratio
is ndively expected at the 10™* level. The decay rate depends on the top quark mass

and a measurement of the rate would give a prediction for this mass if the Standard



Model were correct. With the extensive B physics efforts at CESR, and the prospects
for future B-meson factories, a measurement of the decay rate could be expected in the
next few years. Short distance physics gives rise to an effective magnetic moment type
b — sv interaction. Unlike the analogous process in kaon and hyperon decays (e.g.,
K — n7y and £t — py) it seems likely that this magnetic moment type interaction
dominates the rate for inclusive weak radiative B-meson decay. If inclusive weak
radiative B decay is modelled by b-quark decay, then diagrams like F ig. 1 (where a
photon is radiated off a quark leg) are, for hard photons, not competitive with the
short distance contribution. This is particularly true for very hard photons with £, >
2 GeV, because then the strange hadronic final state X, cannot have arisen from the
weak decay of a charmed meson. Effects that go beyond the b-quark decay picture
are, presumably, suppressed by factors of (A/my), where A is a typical hadronic scale

(~ 300 MeV) and my is the b-quark mass.

Since the b-quark is heavy compared with the QCD scale, the short distance
contribution to the inclusive B — X+ decay rate can be approximated by the rate
for the free quark decay, b — sv. The narrow width of the ¢§ mesons, and the existing
data on semileptonic D-decays and semileptonic B~decays (coming from the b — ¢
transition) suggest that the final hadronic states X, are dominated by resonances with
sq flavor quantum numbers (where ¢ is a u~quark for B~ decay and a d-quark for B°
decay). The lowest mass s7 resonance that can contribute is the K*(890). However,
the contribution of this resonance is strongly suppressed by a hadronic form factor,
the suppression arising because in the decay B — K*5 a large momentum must be
transferred to the “spectator quark” in the recoiling K* meson (see Fig. 2). In the
limit of very large b-quark mass (compared with the typical hadronic scale) the rate

is dominated by sq resonances with masses of order mx, ~ +/mpA. For such high
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mass resonances the typical relative momentum of the quark-antiquark pair is so
large that the rate is not suppressed by hadronic form factors. In the large my limit,
it is these high mass resonances (and not the K*(890)) that dominate the inclusive

decay rate given by the free quark decay calculation.

The sensitivity of these radiative decays to new physics makes them an excellent
tool for studying extension to the Standard Model. There is no reason for there to
exist only one Higgs doublet to give mass to the quarks and leptons. As long as
flavor-changing neutral currents remain absent at tree level, the Higgs sector can be
made as complicated as desired. In the calculation of the effective b — s+ interaction,
loops with virtual top and charm quarks dominate (up quark loops being suppressed
by small weak mixing angles); see Fig. 3. In extensions of the standard model with
more than one Higgs doublet there are physical charged Higgs bosons that can appear
analogous to the charged W-boson in the loop of Fig. 3. The charged Higgs bosons
typically couple to quarks proportional to the quark mass. Since the top quark mass
is not small (compared with W-boson mass, My ), processes like B — X,v, where
virtual top quarks play an important role, are particularly sensitive to the structure

of the Higgs sector [1.2].

In this thesis, a detailed discussion of the leading logarithmic strong interaction
corrections to the effective Hamiltonian for weak radiative B-meson decay in the
Standard Model will be given. With this result, it is clear how effects of extensions
to the Standard Model can be incorporated, though this is not done here. In fact, it
is somewhat inappropriate to call these leading logarithmic strong interaction effects
“corrections.” Although [o(mnp)/7] is small, [ag(my)/7]én(m?/m?) is not small and
so all the leading logarithmic terms of the form{[as(mb)/ﬂ']ln(mf/mg)}p should

be summed (using the renormalization group) in order to get the correct effective



Hamiltonian. Even if these alter the free quark result (that follows from Fig. 3)
significantly, we expect the next-to-leading logarithmic effects to be only a small

correction.

Chapter 1 reviews the Standard Model and comments on the techniques of ef-
fective field theories and the renormalization group. Chapter 2 contains a discussion
of the operator basis appropriate for the effective Hamiltonian for weak radiative
B-meson decay. The coefficients of the operators in this effective Hamiltonian are
evaluated in the minimal Standard Model, with a subtraction point approximately
equal to the W-boson mass. Chapter 3 contains the derivation of the anomalous
dimension matrix, which is used to scale the coeflicients of the operators down to
a subtraction point about equal to the b—quark mass. This procedure transfers the
large logarithms from the matrix elements of the operators to their coefficients. For
the anomalous dimension matrix, two-loop graphs are important. Because of this it
is necessary to treat the matrix ~5 correctly. The appendix of ref.[1.3] contains a
justification of the treatment of 5 used here. In solving the renormalization group
equations, a truncated form of the anomalous dimension matrix is used. Chapter 4
contains a detailed discussion of the accuracy of this truncation. Finally, in Chapter

5, we present results for the inclusive B — X,v rate.

The early results given here were published (with Mark B. Wise and Benjamin
Grinstein) in Physics Letters B202, 138 (1988), and presented at the Twenty-Fourth
International Conference on High Energy Physics in Munich, 1988. Included in Pro-
ceedings of the XXIV International Conference on High Energy Physics, ed. R.
Kotthaus and J.H. Kéhn, (Springer Verlag, 1988), p. 573, is a brief discussion on the
validity of using the truncated form of the anomalous dimension matrix. The final

paper is to be published in Nuclear Physics B.



Chapter 1. Some Tools

In order to calculate the strong interaction corrections to weak radiative B me-
son decay, it is necessary to know the Feynman rules with which to calculate the
appropriate Feynman graphs. The starting point for this is the Standard Model, and
so it is reviewed here. To obtain and use a set of nonrenormalizable operators to
calculate the rate in an effective theory, something about the technique of effective
field theories is needed. The renormalization group is used to take into account how

the operators in the effective theory change as the energy scale changes.

1.1 The Standard Model

The minimal Standard Model[1.1,1.4] provides a scheme for understanding the
strong, weak, and electromagnetic forces between particles. Particle content consists
of three generations of quarks and leptons arranged in left-handed doublets and right-
handed singlets. Each quark is a color triplet, occurring, for example, in red, blue,

and green. The fermions in the theory are the leptons

i vt i
i=| b, (1.1.1)
L
and the quarks

. ui Ui Ui
QY = feed , Blue , Green . (1.1.2)
L i 4 1
Red L Blue L Green L

(U}Zed)Rv (uiBlue)R’ (ué}'reen)R? (d}{ed)R’ (diBlue)R’ ( z'Giv'een)R' (113)

The index ¢ runs over the three generations so that, for example, l}z = ep and d‘}; =br.

The up quarks are the u' and the down quarks are the d'. The subscript L denotes



the left-handed component of the fermion so that, for example, up = (1 — 45y,
and R labels the right-handed fermions. With the neutrino taken as massless, it has
no right-handed part; vp = %(1 + vs5)v = 0. To include electromagnetism, the weak
hypercharge Y is defined such that Q = I3 + %Y, where I3 is the third component of
the weak isospin under which the left handed fermions transform as doublets, and Q

is the conserved charge of the fermion.

Mass is given to the gauge bosons W+, W—, and Z°, the mediators of the weak
force, by the presence of the scalar Higgs[1.5] doublet ¢ = (q;:) This doublet
spontaneously breaks the full gauge symmetry SU(3). x SU(2); x U(l)y of the
model to the SU(3). x U(1l)y seen at energies below 100 GeV. SU(3). is the color
group, SU(2)y is the weak isospin group, and U(1)y is the weak hypercharge group.

Table 1.1 summarizes the transformation properties of the matter fields in the minimal

Standard Model.

Table 1.1: Matter fields in the Standard Model

Field SU(3). SU@2); U(l)y Spin

;= (4) 3 2 1/3 1/2

uly 3 1 4/3 1/2

d, 3 1 -2/3 1/2
L= (%) 1 2 1 1/2
G 1 1 2 1/2

¢+
2= (%) 1 2 1 0

The gauge bosons associated with SU(2)p are W;}’ w?

> and VVj, where y =

1,2,3,4 is the Dirac index. The gauge boson for the U(1)y group is B,. Then the
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kinetic energy term in the Lagrangian for the electroweak sector is

1

a apy 1 124
L= —TFaF™ 2 fuf*, (1.1.4)

where £}, and fu, are the field strength tensors for SU(2) and U(1)y, respectively.
At this point, there are four massless gauge bosons in Wj; and B,. However, it
is known that only the photon field is massless in reality. Also, the global SU(2)
invariance prohibits mass terms for the quarks and leptons. To obtain a theory with
massive fermions and a single conserved quantity ) associated with one massless
gauge boson, the complex scalar ¢ is used. Then a term in the Lagrangian for the

Higgs sector must be included:

Ly = (D*¢) (Duo) — V(s'9), (1.1.5)
where the covariant derivative in the electroweak sector is

9

BuY +i%a Wy, (1.1.6)

The generator of the weak hypercharge is Y and the generators of SU(2); are the

T = %—a“, a=1,2,3, with the Pauli matrices

(1) (5. o=( ) ua
1 0 : 0 0 -1

To allow spontaneous symmetry breaking of the SU(2) group, the potential used is:
T A t 2)2
V(9'¢) = (8¢ —v7)". (1.1.8)

This gives the “Mexican hat” potential form with a well of potential minima in a circle

of radius v about the origin in the complex ¢ plane. It is also possible to include an

7



interaction term for the Higgs scalars and fermions using the Yukawa coupling. This

gives a term in the Lagrangian that generates a mass for the quarks and leptons:

The indices ¢ and j are summed over the three generations, and the color indices
are understood. ¢, g4, and g; are the coupling matrices for the up-type quarks, the

down-type quarks, and the leptons, respectively.

= 0! 1.1.10
€= 10 (1.1.10)

is the totally antisymmetric ¢ matrix.

Choosing a vacuum expectation value for the Higgs doublet breaks the SU(2)r

symmetry. Let (¢)o = (2) and then expand about this value to see how Ly and Ly

behave. First notice that the vacuum is invariant under a generator G if

% ($)o = (¢)o. (1.1.11)
To first order in o this becomes
(1+iaG) {¢)o = (#)o. (1.1.12)
or
G{4)o = 0. (1.1.13)

For the generators in the electroweak sector:

o o = ( (1) [1) ) (S) = (S) # 0, (1.1.14a)



(2) - (_(f”) #0, (1.1.146)
(g) = (_OU> #0, (1.1.14c)
(2) = (2) # 0. (1.1.14d)

But it is apparent that the combination can be chosen so that

Y(¢)o = (

(0°+Y) (¢)o =0, (1.1.15)

so that Q is the generator of the unbroken symmetry, and we get the conserved

quantity Q and the massless photon field associated with it.

Because of the vacuum expectation value given to the Higgs doublet, there are

now mass terms in Ly such that:
My = VGy, Mg = —vgy, and m; = —vg, (1.1.16)

where my, mg, and m; are the up-type quark, the down-type quark, and the lepton
3 x 3 mass matrices, respectively. Unitary transformations on the left— and right-

handed fermion fields give the familiar diagonal mass matrices. With unitary matrices

Tr,Tgr,Vr,Vr, Wr,andWpg, then

upp=TP p(W)] & (1.1.17a)
dyp=Vi'p(d)] (1.1.17b)
lz,R = WZJ’R(Z')Q’R, (1.1.17¢)

with 1,j=1,2,3 and the primed fields are the mass eigenstates. The diagonalized ma-

9



trices can then be written as

my 0 0
Thm,Tp = 0 me 0 (1.1.184)
0 O my
mg O 0
VimaVy = 0 ms O (1.1.18b)
0 0 my
me O 0
Whm Wy = 0 m, 0 . (1.1.18¢)
0 0 m,

The gauge bosons acquire mass through the kinetic energy terms in £. At the

vacuum expectation value:

U2

Acgauge mass = 'Z ((ngu - 92W3)2 + Q%IW‘} + ZW‘%lQ) . (1119)
To find the charged mass terms we can define:
(BL F1iB?), (1.1.20)
so that the charged vector boson piece becomes
g3v° e 2
_4_’(|Wu I“+ W l%), (1.1.21)

and the mass is:

M%, = gov. (1.1.22)

10



To find the neutral boson masses we define the orthogonal combinations:

Z, = COS@WWI% — sinfy B, (1.1.23)
and
A, = cosOw B, + sinHWW;f, (1.1.24)
where
sinfw = Il cosby = J2 (1.1.25)

\ 91 + 93 \/ 91+ 93

so that we can isolate the neutral Z boson that acquires a mass Mz = é‘—g—g’;, and see

that the photon field A, remains massless. Now, with the generators Ty = %*—, and
oy = (01 £ i02)/V/2, the covariant derivative in terms of the mass eigenstate gauge

fields becomes

DF = 9* + %204}1/_’: + 3g—z—o:.Wf + tQgosinfy A*

+ 51/9% + g3(os — 2Qsin®0w) 2", (1.1.26)

and then the electromagnetic coupling constant is identified as

e = gosinfyy. (1.1.27)

To get the couplings (and thereby the Feynman rules with which to evaluate

Feynman diagrams) of the boson fields to the quarks, we look at the kinetic energy

11



term for the left-handed quarks, written in terms of the mass eigenstate quark fields:

i@ ) (8" +iy/g} + g3 (—;— - gsinzﬁw) 78 4 ze(«i—) A") (W'Y,

+i(@ Yy (9" +i4/9% + 63 (—% + %sinzew) 2% + e - -:1);) A (),

_%((a')mf(fm(d')’gwﬁ +hee). (1.1.28)
The color indices are suppressed and repeated indices are summed over the three gen-
erations of quarks. Note that there are no tree level flavor-changing neutral currents.
The Kobayashi-Maskawa[l.6] matrix in terms of the unitary matrices that diagonal-
ized the quark mass matrices is K = TEVL. For three generations in the Standard

Model, K is often parameterized by four angles 8;, 82, 03, and é so that

1 —81€3 —38183

8 c1c283 + Sngew . (1.1.29)
1

K = S§1C2 CiCaC3 — 32836z

]

8182 C€182¢3 + ¢2s3€’ c18283 — cac3el

The abbreviated ¢; = cosb; and s; = sinf; , with i=1,2,3. If the quark masses remain

nondegenerate and none of the angles 8; vanish, it is not possible to make K real.

So by allowing the Higgs doublet to obtain a vacuum expectation value, the
SU(3)c x SU(2)r x U(1)y theory for quarks and leptons has been spontaneously
broken to yield mass terms for these fermions and the intermediate vector bosons
Wlf: and Z,. However, there is another result that comes out of this procedure. With

the field redefinitions ¢t — AT and ¢° — v + A%, the potential in the Higgs portion

12



of the Lagrangian becomes
A
Vg = Z(lﬁ*h* + h%*R0 4+ 2v Reh®)?. (1.1.30)
This means that there is a real massive scalar Reh® with a mass

TMReh® = \/Xv. (1.1.31)
This has yet to be confirmed by experiment.

1.2 Effective Field Theories

In some ways, the idea behind effective field theories is one that is quite fun-
damental to our belief that physics can be studied at all[1.7]. We have to assume,
at each level of knowledge, that it is possible to find out something about the laws
that govern our world without knowledge of how everything works at all levels. We
have to assume that we can study ete™ collisions and learn what we can expect to
see happen at those energy scales and have a theory that is predictive there, with-
out knowing how the interactions behave at energies at the Planck mass scale. This
means that if we are interested in what happens at some scale u, we don't need to
have full information about what happens at some scale A >> pu. The information
needed about those high energy scales will be incorporated into coupling constants

and particle masses that are seen at scale p.

Probably, all the theories that we now accept as the current best are effective the-
ories in the above sense (except, perhaps, superstring theory). But it often happens
that to make a problem more tractable, it is judicious to “throw away” some informa-

tion we have about our theory and obtain an effective field theory as the framework in
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which to do the calculation. This is loosely analogous to statistical mechanics where,
to find the volume or pressure of a box full of atoms, it is better not to know all
the microscopic information on individual particle locations and momenta, but work
only with “averages” of such quantities. In the words of Howard Georgi, the use of

effective field theories “will make hard calculations easy and impossible calculations

doable.”

To incorporate all of the information about a full theory into an effective theory
would require an infinite number of nonrenormalizable operators involving an infinite
number of parameters. This would seem to be a step backwards. However, if we know
the full underlying theory, it is possible to calculate all of these parameters. Further,
the dimensionful parameters that appear in this infinite list will all involve powers
of the masses of the heavy particles of the full theory. When these masses are very
large compared to the energy scale we are calculating in, the effect of many of the
nonrenormalizable operators will be highly suppressed. This process can give much
qualitative insight into the problem we are calculating. An effective field theory will
contain operators and a coefficient for each of them. The matrix element of these
operators will typically contain large logarithms, which would make them difficult to
calculate. However, by renormalizing the theory, as discussed in the next section, we
can move the large logarithms from the matrix elements into the coefficients of the
operators. These coeflicients we can then calculate, and the matrix elements will have

no large logarithms and will therefore be amenable to lattice theory calculations.

As we look at increasingly higher energies, each new particle that appears can be
interpreted as introducing a new effective field theory. They are the “new physics”
that must now be incorporated into the theory. To match the new effective theory

onto the old one it is sufficient to require that, just below the threshold for making
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the new particle, the two theories give identical results. This essentially requires that
the coupling constants for the particles existing in both theories will be continuous
across the boundary into the theory containing new particles. The conditions that
satisfy the above are called the “matching conditions” of the theory. For them to
be calculated using perturbation theory, they are evaluated at the scale y near the

boundary mass between the two.

In this way, we do not need to know what the full renormalizable theory is or
whether it in fact exists. The more stringent requirement of renormalizability is then
replaced, at this level, with conditions on the effective theories. If nonrenormalizable
operators are present that have couplings of 1/M to a power, where M > yu, then we
know that there exist particles in the theory with mass m on the order of M in order
to account for these operators. When the effective theory is found that is valid at
energies ;£ > m, it must include these particles. As we go up in energy towards higher
mass particles, the nonrenormalizable operators in the effective theory valid below
these energies become more important until they must be replaced by operators that

respect the finite nature of the new particle masses.

Moving in the opposite direction, if we have a theory valid at higher energies, a
calculation at lower energies is often easier if we remove from the theory the informa-
tion that does not affect our calculation. A nice example of this is given in ref.[1.8],
where an effective field theory useful for calculations in kaon decays was found by

stepwise removing first the W boson and then the heavy quarks, one by one.

1.3 The Renormalization Group|1.9]

In order to calculate the 6 — s+ decay rate, we need to be able to find the value of

the coefficients of the operators in our effective theory at about the bottom mass scale,
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Cj(my), from knowledge of their value at the W mass scale, C;(Mw ). The coeflicients
at the W mass scale are found using matching conditions. The renormalization group

equations tell us how to find the C;j(my) from the C;(Mw).

To illustrate how this may occur, we can look at QCD interactions without quarks;
in particular the interaction between two static color sources. The energy involved
is proportional to g%, where g is the QCD coupling constant. At the classical level,
there is no mass scale set by QCD, yet this does not survive to the quantum theory.
The reason is that the medium can polarize in the same way that it polarizes in the
presence of electric charge. In QED, vacuum polarization has the effect of “screening”
an electron so that its “bare” coupling constant is not the same as its “renormalized”
(screening taken into account) value. The same process can occur in QCD, only now
the vacuum fluctuations are virtual gluon pairs, and the coupling constant changes
value or “runs,” as it does in QED. Since this screening occurs, the coupling constant g
should be a function of separation of the color sources, r. However, the coupling is also
dimensionless (when & = ¢ = 1) and so the energy E ~ ¢%(r) = ¢%(x 1), and now a mass
scale has appeared. This means that when calculating an interaction process in QCD,
the loop corrections give logarithmic ultraviolet divergences that must be subtracted
away. This subtraction is done at a mass scale g. Under the renormalization group,
such a scale is needed to define the renormalized Green’s functions (the result of
Feynman diagram evaluation), but all physical results must be independent of this
mass scale. This is what is meant by saying it may be chosen arbitrarily. The
movement of this scale p in the theory is accomplished using renormalization group

equations.

Consider a scalar field theory, where field renormalization is given by Z;(x) and

the renormalized coupling is g,. These quantities are dependent on the subtraction

16



point u so that physics can be made independent of x. An n-point Green’s function

(renormalized) in this theory is
G\ =< 0|T[6r...4r)[0 >, (1.3.1)

where T is the time-ordering operator. This Green’s function is a function of a g,

and u, among other things:
G =G (g m). (13.2)

The bare, unrenormalized Green’s functions are independent of y, and are functions
of the bare coupling constant, g,, and a cutoff A. The cutoff, A, is needed so that the

calculations done with unrenormalized Green’s functions are finite.
& = G (g0, A). (1.3.3)

We can use the p independence of these functions to obtain the scaling law. The

relation between the two forms is:

9u = 9u(go, A), (1.3.4)
(n) AL nj2 A(n)
Gr'(gurp) = [Z(;;)] Gl (9o, A). (1.3.5)
This means that the quantity
A n/2A(n
2GR (g, ) (13.6)

is independent of u. So, picking u = E, we have

(2] G (g4, 1) = [2(E)2CP (g5, B), (1.3.7)
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or,

Z(
Al

This is the integrated form of the renormalization group equation, and shows that by

G g ) = | 53] G905, ) ()

finding Z(p) and g,, we can determine the scaling law for the Green’s function. The
Green’s functions will have contributions from logarithms whose arguments are the
typical mass scale, £, divided by the subtraction point, g. Choosing u = E removes
the large logarithms from the matrix elements. This is why we use the renormalization

equations.

Alternatively, consider a field theory with field renormalization Z(x) and renor-
malized coupling constant g,. The theory does have a mass scale, as before, but it is

arbitrary. So

1

1
gu' :gu’(;‘agu)- (1.3.9)

Differentiating with respect to x' and then setting u' = u gives
d
h o = B (1.3.10)
where 3 is a function of g, alone. Also,
!
Z(? = Z(,u)l/zF(—/;-,g“). (1.3.11)
Again, differentiating with respect to y' and setting u' = u, yields:

e 2 = 2(g), (13,12

were v is another function of g, only. Then the p independence of the unrenormalized
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Green’s function:

d n
ug;[zwnn/?c;;)(gu,u) = 0. (1.3.13)
can be expressed as:
d 0 n
g+ B9 5o + mi(aIGY =0, (1.3.14)

Determining the functions 8 and 4 will determine how the Green’s functions scale

with energy. To find 3 and v, one must find g, and Z(y), usually perturbatively,

which is what will be done here.

The scaling of mass terms is done in the same way. If it is treated as a coupling
constant dependent on the subtraction point, y, the Green’s function is now a function
of the quantity —"l!gﬁl and

1 d

—_—, 2
Ym = 2,ud'uln(m ) (1.3.15)

gives the scaling behavior.
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Chapter 2. Matching Conditions

We want to find an effective Hamiltonian for the b — s+ decay. This is done
by “integrating out” the heavy degrees of freedom in the full theory to obtain the
(non-renormalizable) operators that will mimic the effect of the full theory at the en-
ergy scales we are interested in. This is analogous to approximating the intermediate
W boson exchange in 8 decay by the four fermi point interaction found by taking
the W mass to infinity and noting that at low enough energy scales the finiteness
of the W mass is irrelevant. This standard procedure[2.1] will incorporate into ap-
propriate coefficients the information removed. For our case the heavy particles in
question are the top quark and W boson in the Standard Model. For a theory with
a more complicated Higgs structure, the charged scalars will also be removed. In
supersymmetric theories there will be heavy partners to the standard particles that
can contribute to the b — s+ decay rate, which should be removed to form an ef-
fective Hamiltonian valid under supersymmetry. The phrase “integrating out” arises
from the path integral formalism where one is formally integrating over the degrees
of freedom associated with the heavy particles and is therefore left with a nonrenor-
malizable (unsymmetrically weighted) function of the remaining degrees of freedom.
In practice, the procedure amounts to evaluating the relevant Feynman diagrams and
extracting the piece of the diagram that contributes to an operator in the effective
Hamiltonian. This piece determines the coefficient of the operator at the energy scale

of the particles removed and is called the matching condition.

We want to integrate out the heavy particles (i.e., the top quark and the W-
boson in the Standard Model with minimal Higgs sector) in order to derive an ef-
fective Hamiltonian for weak radiative B-meson decay. This effective Hamiltonian

is expressible in terms of the “light” u,d, s, c and b-quark fields and the photon and

21



gluon fields. The effective Hamiltonian can contain local operators, O;, of arbitrarily
high dimension, d;, which are invariant under the unbroken color and electromagnetic
gauge interactions. The resulting Hamiltonian must be of dimension four, however (to
leave the corresponding action dimensionless; i=c=1), so higher dimension operators
are suppressed by powers of the masses of the heavy particles that were integrated
out. Also, renormalizable operators with dimension d; < 4 are not relevant because
they are flavor off-diagonal mass or kinetic terms that are removable by field redef-
initions (i.e., they renormalize the values of the quark masses and the weak mixing
angles). Therefore it is nonrenormalizable operators of the lowest possible dimension

that dominate the effective Hamiltonian.

To derive the effective Hamiltonian in the Standard Model with minimal particle
content [2.2], one integrates out the heavy W-boson and top quark. The couplings

of the heavy fields to the light fields are given by the interaction Lagrangian density

d
L= -Z@et,+Vv|s| Wf+ he (2.1)
ve b
L

Here the Kobayashi-Maskawa matrix, V, is a 3 X 3 unitary matrix that arises from
diagonalization of the quark mass matrices. It is possible to express V' in terms of

four angles 61, 62, 83, and é, in the following way [2.3]

1 —381C3 —38183

& crcass + sacze® | | (2.2)

s

V = s1¢2 ci1cacy — S983€t

s

8182 c€182¢3 + ¢2383€*®  ¢18983 — cacyéEl

where ¢; = cos §; and s; = sin §; for 1 = 1,2,3. Without loss of generality the
angles 61, 0>, and 03 are chosen to lie in the first quadrant, where their sines and

cosines are positive. Then the quadrant of the angle § has physical significance and
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cannot be chosen by convention. Experimental information on kaon decays, nuclear
B-decay, hyperon decays and B-meson decays implies that the angles 6}, 65, and 03

are small [2.4].

It is the interaction (2.1) that determines, in the minimal Standard Model, the
flavor quantum numbers of the effective Hamiltonian for weak radiative B-meson
decay. To form an effective theory for the b — s decay we want to find all possible
dimension five and dimension six operators that could contribute to this process.
Operators of higher dimension will be suppressed by more orders of the heavy mass.
The dimension six operators are competitive with those of dimension five since the
dimension five operators all appear with a factor of m; in them, which makes them
effectively of dimension six for counting the powers of heavy masses that appear in the
denominator of the operator. The matching conditions will be found at a subtraction
point p that is much greater than mj so that the coefficients of the operators are
determined by high momentum physics, where the light quarks can be treated using

perturbation theory.

In the minimal Standard Model a complete set of operators that have the right
flavor quantum numbers to contribute are six four-quark operators and the two—quark

operators

@1 = 3 PD,D*b (2.6a)
Q2 = 5pDPD by ~1/2 5D, D*Pby (2.6b)
Q3 = 3 DJPD*by (2.6¢)
Qs = 35.PPPbr (2.6d)
Qs = g5 Ty b0 D" Gy, (2.6¢)
Qs = 9G,,s51T*v* D" (2.61)
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Q7 = gGZVELTa’Y“DVbL , (2.69)

Qs = eTnbgLo'l“/bRF,Lw s (2.6h)
Qo = gmp3o"TebRG,, (2.64)
Qi = mpSPPbr . (2.65)

In egs. (2.6) G, is the field strength tensor for the strong interactions, G;‘w is its

dual, Fy, is the electromagnetic field strength tensor and the covariant derivative is
Dy = 0y + igT*A, + ieQpA, . (2.7)

We work to first order in the electromagnetic interactions.

Since the effective Hamiltonian is ultimately to be used to compute S-matrix
elements, the equations of motion can be used [2.5] to reduce the operator basis (2.6)
to four-quark operators and the magnetic moment type operators Qs and Q9. Oper-
ators @1, Q4, and Q10 vanish by the equations of motion (e.g., Ps; = 0, neglecting
the strange quark mass). Operator (s is equivalent to a four—quark operator. For

()3 first note that

5;D*PDybr = 5.[D*, D"]y,Duby

=195 TG, 7' D*by + iQpe3p F " D¥bp 29
Next note that
FRs17" DPbp = (1/2) Fuspy*{+*,P}br ’o
= —(1/2) mpFuusro™br + (1/2) Fusr{y",P}r*byr, 2
which yields
Fu 31y’ D¥bp = (1/4) mpSpo* brF,, . (2.10)
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A similar manipulation for 837Gy D¥by, gives (with G, = G%,T%)
S1Guy" Dby = (1/4) mpdo*Guubgp + (four — quark operators), (2.11)

implying that Qg is equivalent to Qg plus four—quark operators. Combining eqgs. (2.8),
(2.10), and (2.11) gives
ine

Qs = 1 Qs + é—f—Qg + (four — quark operators) . (2.12)

For Q7, use the gamma matrix identity, %73 Ye = MAYo+ MoVv — NovTa— 1157 €pvrs

to deduce that

51Gu*DVbp = i[§L$7’\7”GAabL — 25L’70D’\G/\abL}

= 2%5; G\, Db + (four — quark operators)

i

so Q7 is equivalent to Qs plus four-quark operators.

For ), we note that

51D, D*Pby = —imys D* Db = Z—?EL[A/”,y"]D,,,D,,bR
(2.13)

m . .
= —52 5p 0" [igGuy + ieQpFu)bp

Egs. (2.12) and (2.13) imply that Q2 is equivalent to four-quark operators; it has no

magnetic moment piece.

An operator basis for the effective Hamiltonian for weak radiative B-meson decay
thus consists of four-quark operators and the magnetic moment-type operators. We

write (to leading order in small weak mixing angles) the effective Hamiltonian density
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as

Hor = (4Gp/V2)(s3+ s2e®) 28: Ci(w)0;(n) (2.14)

j=1

where (displaying the color indices explicitly)

O1 = (C1s7"bra)(BLavucrs) (2.15a)
Oz = (CLa7"bra)(SL8YucL8) (2.15b)

= (5La7"bLa) :(ﬁw’muw) +...+ (BLﬁ’YubLﬂ)] ; (2.15¢)
O4 = (51a7"b13) :(ﬂLﬂ’)’uuLa) +...+ (EmebLa)] ; (2.15d)
Os = (51a7"bLa) :(aRﬁ'YuuRﬁ) +...+ (BRﬂwbRﬂ)} ; (2.15¢)
Os = (31a7"bLp) :(ﬁRﬂ'YuuRa) +...+ (BRB'YubRa)] ; (2.151)
O7 = (e/167%)mp5a0* braFuy (2.159)

= (9/1672)myS1a 0" T2 sbrs G, . (2.15h)

We shall integrate out the top quark and W-boson together. This approximation
amounts to neglecting the running of the strong interaction fine structure constant
between m; and My (compared with how much it runs between My, and my). Since
the strong coupling constant varies little over the range between 50 and 150 GeV,
where the top quark is expected to be found, the strong coupling constant at the
top and at the W scales should be the same within ten percent. The coefficients
Cj(Mw) are determined solely by high momentum physics and can be computed
using perturbation theory. With 4 = My the large logarithms are in the matrix
elements of the operators 01 — Og. These large logarithms are transferred from the

matrix elements of the operators to their coefficients C; by scaling the subtraction
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point x down from Mw to m; using the renormalization group equations
d 8
m Ci(w) = D %ii(9)Cilw) = 0, (2.16)
=1

which follow from the p-independence of the effective Hamiltonian density in
eq. (2.14). Here 7 is the anomalous dimension matrix for the operator basis in
egs. (2.15). It takes into account the subtraction point dependence of the renor-

malized operators.

We use dimensional regularization with minimal subtraction to define the oper-
ators [2.6]. Recall that in n-dimensions the quark fields have dimension (n — 1)/2,
the gauge fields have dimension (n — 2)/2, and the bare gauge couplings have di-
mension (4 — n)/2. The renormalized gauge couplings are, however, dimensionless.
It follows that the bare operators Og-o), J =1,...,6 and the renormalized operators
Oj,7 = 1,...,6 have dimension 2n — 2. On the other hand the bare operators OS,O)
and Ogo) have dimension n 4+ 2 while the renormalized operators O7 and Og have

dimension 3n/2.

The bare, y~independent, operators Ogo) are related to the renormalized ones via

8
v —eD(©®
Oi(w) = Y uPr 2 y=P” 0 | (2.17)
i=1

where Zj; is dimensionless and has a perturbative expansion of the form

2
g 1
Zij = &j + SrZe Zi(j) +..., (2.18)
and
eDj = dimension[O;] — (2n —2) (2.19a)
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€D§0) = dimension[Og-O)] - (2n-2) . (2.195)

Here

3

Il
S

!

o™
o~
)
8]
fonn]
p——e

it follows that v;;(g) has the perturbative expansion

2

vii(g) = —gg,rz zZ01+DY - Dy 4., . (2.22)

The dimensions of the renormalized operators do not affect the anomalous dimensions;

7vi; only depends on the dimensions of the bare operators, D;O). Explicitly

0 i=1,...,6
D - {1 i=1,8 (223)

The solution to the renormalization group eqgs. (2.16) is (using a somewhat

schematic matrix notation)

g(n) T
— ex 7' (9)
Oly) = [ p ) M/ | dg ﬂ(g)J C(Mw) . (2.21)

To get the coefficients Cj(my), the matching conditions C;(Myy) are required. In
the leading logarithmic approximation, the matching conditions for the four—quark

operators 01-Og are determined by the tree level W-boson exchange. This gives

Co(Mw) =1, (2.254)
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C;(Mw)=0 j=1,3,4,5,6 . (2.25b)

The one-loop mixing under renormalization of the four-quark operators O;-0Og with
the magnetic moment type operator O7 (and Og) vanishes. Therefore, in the leading
logarithmic approximation, the value of C7(Myw ) in the minimal Standard Model

follows from the one-loop Feynman diagrams in Fig. 3. They give [2.7]

Ca(Myy) = _% Az) (2.26)
where
2/32% +5/12¢ — 7/12 3/22% — z)inz
Alz) == / (${_1)3 N2 _ (/(x_l)i , (2.27)
with
z = mi/My . (2.28)

(Note that if the one-loop mixing of operators O;-Og with O7 had not vanished
then, in the leading logarithmic approximation, it would have been appropriate to set

C7(Mw) = 0.) Fig. 4 shows a plot of the function A(z).

In the leading logarithmic approximation, the value of C3(Myy) in the minimal

Standard Model is determined by the one-loop diagrams in Fig. 5. They give [2.8]
1
Cs(Mw) = -3 D(z) (2.32)

where

z (1/22% —5/2z — 1 3zlnz
D) = 5 (P + )

Fig. 6 shows a plot of D(x).

(2.33)
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To determine the matching conditions C7(Mw ) and Cs(Myw ), we used the opera-
tor basis (2.15) that was reduced using the equations of motion. On-shell b6 — s and
b — sg matrix elements of O7 and Og were compared with the on-shell calculation
of the b — sv and b — sg matrix elements in the minimal Standard Model. (The
on-shell one-loop b — sy and b — sg matrix elements of 0O1-Og vanish.) It is also
possible to work off-shell, matching one particle irreducible Green’s functions in the

models we consider with one particle irreducible Green’s functions in our effective

field theory.
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Chapter 3. The Anomalous Dimension Matrix

The values of the coefficients Cj(u), at a subtraction point u << My, are given
somewhat schematically by equation (2.24). They depend on the matching conditions
Ci(Mw ), which were calculated in the previous section (for the minimal Standard
Model) and on the 8 x 8 anomalous dimension matrix v;;. In this section, we com-
pute the anomalous dimension matrix and explicitly solve the renormalization group

equations.

The one-loop mixing of the operators Oj,...,0¢ has been studied previously
[3.1]. The magnetic moment type operators O7 and Og do not mix with O1-Og since,
if the factor of my is removed, they are only dimension five. Their self-renormalization

has been determined to give [3.2]

777=—£—, Y88 = — —— . (3.1)
T

Eq. (3.1) includes the py—dependence that arises from the running b-quark mass in O7
and Og and the strong coupling in Og. The operator Og mixes with O7 at one-loopJr

yielding [3.4]
V8T = ——— 5 - (3.2)

Since we work only to first order in electromagnetic interactions, O7 does not mix

with Og so
78 = 0 . (3.3)

The mixing of Oy,...,0¢ with O7 and Os first occurs at two—loops. Despite this it

t In our original work [3.3] we incorrectly concluded that this mixing vanishes. This error,
however, has (as we shall see in Chapter IV) a small impact on C7(m;) in the Standard Model
with a minimal Higgs sector.
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must be included in order to determine C7(yx) and Cs(u) in the leading logarithmic
approximation. Recall that the matching conditions for the magnetic moment-type
operators, C7(Mw ) and Cs(Mw ), are a one-loop effect and their scaling through the
renormalization of O7 and Os is also a one loop effect. On the other hand for O1-Og,
the matching conditions C1(Mw )-Cs(Mw) are a tree level effect, while the mixing
of these operators with O7 and Og is a two-loop effect. By including the factors
e/167r2 and g/167r2 in the definitions of O7 and Os, all the matching conditions
Ci(Mw),1=1,...,8 (see egs. (2.25) and (2.26)) are order unity and the elements of

the anomalous dimension matrix v;j,%,7 = 1,...,8 are all order g*/8x2.

The tracelessness of the generators T® of SU(3) color implies that the two-loop
mixing of Oy with O7 vanishes. Thus 4 has the form (the X; and Y; are unknown

operator mixing elements at this point):

13 0 0 o0 0 0 A
3 -1 —1/9 1/3 —1/9 1/3 X, Y
0 0 —11/9 11/3 —2/9 2/3 Xs Y
210 0 229 23 —59 53 X4 Y
TTEIl o 0 0 0 1 -3 X5 1w (3:4)
0 0 —5/9 5/3 —5/9 —19/3 Xe¢ Y
o 0 o0 0 0 0 16/3 0
\o 0 0 0o o 0 —16/9 14/3)

With the subtraction point, u = m;y, there are no large logarithms in the matrix
elements of O1-Og responsible for B-meson decay. The on-shell  — $v matrix
elements of O1-Og vanish at one loop. Therefore when the inclusive rate for B —

Xsv (with E, large) is modelled by b-quark decay, it is determined, in the leading
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logarithmic approximation, by the tree-level matrix element of O7(my):
: 2. 2 GEmjcem 2
D(B = Xov) = (s3+s3+2s083¢5) — o 5—|Cr(my)* . (3.5)

(Note that if the on—shell one-loop b6 — s+ matrix elements of O1-Og had not vanished
then these matrix elements would have made a contribution comparable to the tree
level matrix element of O7.) In eq. (3.5) aem is the electromagnetic fine structure

constant, aem = 62/47T.

A simple analytic formula for C'7(myp) can be derived by truncating the anomalous
dimension matrix. If the mixing of O, with the other four quark operators and

with the gluon magnetic moment operator is neglected, then eq. (2.24) yields, for

g << My,
Cr(p) = [%g%l] . {C7(MW) - ;CS(MW) [1 — (%) 2/23} 56
el G T |
Here we used [3.5]
Blg) = —(11 —2/3Ny) ‘1“69‘;2‘ ; (3.7)

with Ny = 5 (appropriate to an effective five quark theory). In eq. (3.6) oy is the

strong interaction fine structure constant oy = g2 /4.

This truncation of the anomalous dimension matrix is an additional approxi-
mation beyond the leading logarithmic approximation. While it correctly gives the
[cvs(p)/7)ln(m?/u?) term in the perturbative expansion of C7(y), some contributions
to the {{as(u)/m]én(m3/u?)}P terms are missing for p > 2. As will be discussed in

Chapter 4, we expect that (in the minimal Standard Model) the errors induced in
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C'7(my) by this truncation are less than 15%. The remainder of this section is devoted

to the computation of Xj.

We define our operators using dimensional regularization with minimal subtrac-
tion. Dimensional regularization, however, is plagued with difficulties in nonvector—
like-theories. These stem from the inability to extend the Dirac matrix v5 and the
totally antisymmetric symbol €,,), to n—dimensions. Because the mixing of Oy with
Oz is a two-loop effect, it is important in the calculation of X to handle the ~ss,
which occur in the definitions of Oa and O7, correctly. As a step in that direction we

prove that if the magnetic moment counterterm to O3 is ZO7, then Z 07, where

A €

07 pod W my ga Uuy ba Fuy s (38)

is the magnetic moment counterterm to the vector operator

A

O2 = (Sav"ca)(Esvubs) . (3.9)

First note that the parity invariance of the strong interactions implies that the oper-

ator
O: = (3Ra7"cra)(CraTubRS) (3.10)

has the magnetic moment type counterterm ZO7 where

~ e ~
07 = —1—-6—7-r—2— my (SRa UuubLa)F“V s (3.11)

is the parity transform of O7. So the parity even operator

. 1 1
02+ 02 = §(§a’7uca)(5ﬁ’7ubﬂ) + '2'(50’7”“/5‘3&)(5B7u75bﬂ) ) (3.12)

has the magnetic moment counterterm ZO7. Since the parity even operators

%(507“%)(657”65) and %(507"75%)(%7”7565) are related by the non-anomalous
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discrete chiral symmetry co — ¥5¢a,%a — Ysta, they both have the same magnetic
moment counterterm }Z O7. This completes the demonstration that the magnetic
moment counterterm to the vector operator 02 1s Z 07 if and only if the magnetic
moment counterterm to Oz is ZO7. This relationship holds in any renormalization
scheme that preserves the parity and discrete chiral symmetries of QCD. Furthermore,
in the leading logarithmic approximation, 727 (which follows from Z) is a physical
quantity and must have the same value in any (acceptable) renormalization scheme.
Dimensional regularization with minimal subtraction can be used to compute the
magnetic moment counterterm Z 07 to the vector operator 02 since 45 never appears
in this calculation and no Fiertz identities are used. This prescription for Z is equiva-
lent to having v5 anticommuting in the calculation of the two-loop mixing of O, into
O7 (i.e., to following the chirality of the quark lines through the graphs). Since the
products of y-matrices can be reduced using n-dimensional gamma matrix identities
that don’t involve €,,)s, and no trace over gamma matrices is taken, treating vs as
anticommuting makes the calculation of the mixing of O; with O7 manifestly identical

to the calculation of the mixing of Og with 07.

To compute the mixing of Oz with O7 we work off-shell. Therefore the mixing
of Oz with the complete off-shell basis Q1-Q10 is considered and then the equations
of motion are used to reduce this basis. While it is possible to work on-shell to
compute the anomalous dimension matrix element 27, working off-shell offers two

major advantages:

(x) Only one-particle-irreducible (1PI) Green’s functions need be considered so

there are less Feynman diagrams to compute than there would be working on—

shell.
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(12) Of the operators Q1-Q7 only @3 is relevant; the others have no (electromag-
netic) magnetic moment piece when the equations of motion are applied. Sim-
ilarly, of the operators (Js-Q10, only Qs is relevant. It is possible to pick out
the mixing of O2 with @3, and Oy with Qs by focussing on one particular
Lorentz structure so that it is not necessary to compute the complete off-shell
1PI Green’s functions. This makes the calculations less tedious than if we had

worked on-shell.

The amputated 1PI tree level b(p) — s(p')v(k) Green’s functions of the operators
Qi,t =1,...,7, inserted at zero momentum (so that p' = p — k), can be written as

[l + gk + gt + ol Igp2

(5) (6) (1) (8) (1—17s) (3:.13)
+o; ' pe-k+o; pe-p+a; fe-p+ oy ke k —s

Here €* is the polarization vector for the electromagnetic field A#. Since the Green’s
function is off-shell, the condition € - k£ = 0 is not imposed. The crucial observation
is that agz) vanishes unless : = 3 and for that case agz) = t@pe. Thus to isolate
the mixing of O with Q3 it suffices to extract the piece of the b(p) — s(p — k)y(k)

Green’s function with Lorentz structure ¢p - k.

A simple application of this result is that the potential one-loop mixing of Fig. 7
vanishes. In Fig. 7 the loop integral can only produce a term quadratic in k (i.e., ¢k®

or fe- k). Similarly, the two-loop graphs in Fig. 8 can also be shown to be irrelevant.

The amputated 1PI tree level b(p) — s(p’)v(k) Green’s functions of the operators

Qi t = 8,9,10 inserted at zero momentum (so that p’ = p — k), can be written as

o[B80k + B8 + 80w+ 504 L) (3.14)

The coefficient of ,6,(2) vanishes unless ¢ = 8 and in that case ﬁéz) = e. Therefore the

37



mixing of Oz with Qs can be isolated by extracting the piece of the b(p) — s(p—k)v(k)

Green’s function with Lorentz structure ¢f.

In summary, the mixing of Oz with ()3 and @3 can be derived from the two-loop
Feynman diagrams in Figs. 9-15 by extracting the ¢p - k and ¢§f Lorentz structures,
respectively (when other Lorentz structures are expressed in the basis of eqgs. (3.13)
and (3.14)). Moreover, by treating insertions of the b-quark mass (which flip chirality)
perturbatively, graphs without an insertion shown in Figs. 9-12 contribute only to
the mixing with )3 while those with a mass insertion (Figs. 13-15, denoted by a

cross) contribute only to the mixing with Qs.

The calculation of X3 is further simplified by noting that the graphs in each pair
of Figs. 9-11 are related by charge conjugation. Consider the graphs in Fig. 9. In

Feynman gauge they give
4 1 —
L Q100 K + 1D ) L2 (3,15

Here Q. = 2/3 is the charge of the charm quark, the identity T35T5, = (4/3)8ay has
been used, and J(I) and J® which correspond respectively to Figs. (9a) and (9b), .

are given by

Or = [ 24 dr e 1 a1 1,1 1
000 = [ o [ e T e i e 00

and

(2) _ dnq d"r A 1 l 1 1 i
08 = [ o [ o TR e e G0

Let C be the charge conjugation matrix

CAtCt = 4T | (3.18)
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(where the superscript T’ denotes the transpose). From egs. (3.16)—(3.18) it follows

that,

IO, k) = - I (p, -k)T C

(3.19)

Thus J®) may be extracted from the computation of J(1). In the computation of J(1)

we keep p’ arbitrary and expand to linear order in powers of k. Keeping p’ arbitrary

regulates possible infrared divergences and higher powers of k are not necessary since

we are only after the part of J() + J(2) that goes as ¢p - k.

Writing (to linear order in k)

JOG k) = a(@®)p -k + B0 E+ 10

then eq. (3.19) gives

JO(p,k) = —a(p®)p-k —28(p>)fp -k + B(P°)dpE +...,

and so

O+ 7 = fp Halr™) = o) - 28(6°) - 21(p")]
+ (B(") + B) Pk +1(P*)p* + ...

Dimensional analysis in n = 4 — e dimensions implies that

Using (3.23) and the expansion

1) =1(%) (142 ep—l;z—k +0(e)
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(3.20)

(3.21)

(3.22)

(3.23)

(3.24)



we finally arrive at

1

JO 4 @ =
(=p)¢

¢p - k[—280 —2(1 — &) yo] + ..., (3.25)

where the ellipses stand for terms that correspond to the other possible invariants. So
to extract the coefficient of ¢p- k in J(1) + J(@) we need only compute the coefficients
of ¢f# and ¢p'* in J(V,

It is straightforward to compute J). For book-keeping purposes it is useful to

do the integrals and y-matrix algebra separately. We write
1
JO = ) crmesr (3.26)

where
TMabré = 7“7”7’\7ﬂ7;¢77¢767)\ . (3.27)

Expanding to linear order in k gives

I = —2k2 KU+ kK0 + KGO (3.28)
where
i = [ G | G e b - O
6t = [ or | o AR 13:290)
K = [ 5w | e e 1250
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The divergent parts of these integrals are straightforward to compute. For example

by _ 1 In—e 1 29
Kygy = ~16m2 2 (—=p*) T + 6)[(4 T PalB~
(3.30)

b 5 (B + By700)
e Pallay T PyTlap

Similar expressions for K(1%) and K19 can be found in the appendix. The results can
then be contracted into T(M*8¥¢ and reduced using n—dimensional y-matrix algebra.
For example, for k5l{§1ﬂb?/T(l)"ﬂ75 we need to compute the contractions of ksp,n35,
kspgnay, and ksplynag with T8 and extract the coefficients of ¢f'F. These are

8 — 4e, —12¢, and —8 + 4¢ respectively. Thus

~ e (P T+ 05

k 1((15)T(1)a676 _
6D o By (1671’2

+ -27—6] WE +... . (331)

The appendix contains a tabulation of the relevant contractions with 7186, Using

the results given there

1 » —4
J(l) + J(z) = ————'——n—/'z— (_pZ) F(1+6> [é—-z- B

61
o : ] dp-k +... .(3.32)

Next consider the graphs in Fig. 10. In Feynman gauge they give

T [1008 + I0p) 2 (333

In this case

n

(3)( q 1
TPk = /w ﬂ 7 4 kﬂﬂ"wﬂ”’

| &
(4) q d?‘ 1 1
W0 [ G | G i 0
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d'n,

(3.34)
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J®) and J® are related in precisely the same way as J(1) and J() so the discussion
between eqs. (3.19) and (3.26) applies with J() and J® replaced by J®) and J¥,

respectively. Moreover, writin
b

3 a
JO = g8 7@ (3.36)
with
T — iy PP Ty (3.37)
and expanding to linear order in k yields
3 la -(1b 1
IO ¢ = 2 K(D — ks K — K05 (3.38)

Note that no new integrals are encountered. The contractions of 73) with the relevant
tensors are listed in the appendix. Using these and the values of the integrals gives

the divergent contribution

1
(1672)n/2

4 169

(3) 4 — _ = i
ST+ 9¢2 + 27¢

(—p?)" ¢ T(1 + 6)[ ] dp-k +... . (3.39)

The last pair of truly two-loop graphs that make a contribution to the mixing of

O with Q3 are shown in Fig. 11. In Feynman gauge they give

3ot @ P9 R + 10 K] L2 (3.40)

where @y = —1/3 is the charge of the bottom quark and

(5) (..t _ dnq d"r 1 1 A 1 l _1—
! (p’k)"/ (2r)" / O i Er S A

(3.41)
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() _ [ 4% dhr 41, 1 1 11
1w = [ o | a0

The relationship between J() and J(®) is the same as between J() and J( given in
eq. (3.29). Again the discussion between eqs. (3.19) and (3.26) applies, but this time
with J(1) and J® replaced by J® and J(©), respectively. Writing

JO = g0) 7elas (3.43)

with

gives, upon expanding to linear order in &, that

(5) (50) (55) | po(50)
Tapys = —2k° Kol + kg KOO + K9 (3.45)

where

(5a) d™r d*q (r+p)e(r+p)s(qa+r)vqs(r +0),
Kaﬂ'yb‘p - / (Qﬂ-)n / (Qﬂ.)n r2[(r +p’)2]3(q + r)2q2 ’(3-46‘1)
) _ [ d'r d*q  (r+p)alg+1)vgs
k0= | oy | aor e (3.460)
ey _ [ d°r d*q (r+p)alr+p)s(g+7)vgs
I(aﬂ"fﬁ - (27!')” / (27.‘.)11 7.2{(7, +p/)2]2(q + T)zq; (3466)

The contribution of Fig. 11 to the mixing of Oz with Q3 is extracted from the ¢§'f and
the ¢p' terms in J(®) as in egs. (3.20) and (3.25). Only for J©®) + J®) is the ey, piece
in eq. (3.25) important. The 1/¢2 pole in J) 4 J(2) cancels against that for J3) 4+ (49
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separately for 8y and 7. On the other hand, in J(® and J(®) the 1/€2 pole vanishes
due to a cancellation between the 8y and =y contributions. The cancellation of the
1/€2 poles must occur because although we are computing a two—loop contribution to
the anomalous dimension matrix, it is a leading logarithmic term since the one-loop
mixing vanishes. Expressions for the integrals K55 and the relevant contractions

with 7(®) can be found in the appendix. They give, for the divergent piece,

1 —4
T

To complete our calculation of the mixing of Oy into @3 the contributions from
the graphs in Figs. 12 are required. In these one-loop diagrams the vertex denoted

by the shaded square arises from the one-loop counterterm to O3 that is proportional

to (5. The counterterm is computed from Fig. 16 and the resulting vertex is

1 4

.1
—om 3 9T < (B ) (3.48)

Fig. 12 gives the contribution (in Feynman gauge)

where
g _ / (;l"qn PR SRR B (q%s;q«,qs) ’ (3.50)
o =B +5) g
and
J& = JgO (3.51)
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Expanding to linear order in k we write

(M — p(Mraps 4(7)
JO = pvess g

)

where

TP = 47 4§ 4Py

and

M _ (7a) (7b)
Jogys = 2K° Kogvsp — Fa Kgog

The integrals K (7% are

aBybp

57 / d*q (p+9alr+ 9)s(*1v6 — 4495)(p + 0),

(2m)" [(p+ ¢)%3 ¢

K _ / d*q (P +9)s(4°nys — 4495)
frd @mr (P +9)%? ¢

Since

(78) _ e (Ta)
Kgys = 1% Kogrsp

?

(3.53)

(3.54)

(3.55qa)

(3.55b)

(3.56)

there is only one integral to compute. The appendix gives this integral and the

relevant contractions with 7(7). Using these results we find the convergent result

—1

7 8
I 4 IO = =gk

(3.57)

Next we consider the mixing of O, with the (51,5g) operator Qg. In Feynman
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gauge Figs. 13 give the contribution

> mueg? Q) 4 J00 L) (3.59)

where

@ - [ 44 dr w1 gL a1 11 5
JO _/(Qﬂ)n/(Qw)n7“¢_k¢d7 7 PP (3.59)

and

a) _ [ Fa [ dr 1 oAl 1 L L
1= o | e e i e O

The only Lorentz structure that is relevant is ¢f so we expand in the external mo-

mentum k, keeping only the linear piece. This gives for J()

JO = 7@y 5O (3.61)
where
TP = iy gy Py Ty, (3.62)
and
I, = 2 K& — ko K5 (3.63)

In eqs. (3.63) the integrals K(°) and K are

KO _ / (dq / dr 9095(9 + )15 (3.64)

wpve = ) @om Jo@nr (¢9)3(g+ 1) (r +p)Pr?
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(95) d"q d"r a3(q + 1)y
Koy’ = / (2m)n / (2m)™ (¢%)%(q +7r)%(r + p)?r? (3.65)

(9
= n% [‘zgﬁagp

For J(19 expanding in k and keeping only the linear piece gives

J10) _ 7(10)asy JSSOA) : (3.66)
where
T = Py iyl iy, (3.67)
and
Ty = —2k2 K& 4 ky KGD (3.68)

Note that no new integrals enter the computation of J(19). The results of the appendix

give, for the divergent contribution,

JO = _(_167;—)575 (=p?) "  T(1 +¢) E—] i+, (3.69)
JUO = o +... . (3.70)

The last truly two—loop Feynman diagrams to be considered are those of Fig. 14.
Here we encounter a problem if my is treated as a perturbation. With three b-quark
propagators these graphs are “infrared” divergent as the gluon momentum approaches
—p. Therefore instead of expanding about my; = 0 we keep the bottom quark mass

in the propagators but now expand to zeroth order in p and linear order in k. Then
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Fig. 14 gives the contribution

1
myeg” % Qp J1V (——27—5) ; (3.711)
where
g — 4 7 pp T(110)aB Kc(ylﬁlﬁ 4+ T(1b)asyp Kf,lﬂlb) ’ (3.72)
with
TMa)ef _ AyauabBo (3.73a)
Wb — Ayopobo by (3.73b)
and
“ d*q d"r galg + 1)o7
K :/ P , 3.74
w510 = | @) @R (@)lg + PG — ) (-74)
(115) d*q d'r ga(q+1)p .
_ 74b
fas " = | @ry @7 @@+ 02 —mlp .70
Using the results listed in the appendix, one finds
gy - 1 (M) T(1 +¢) [—_—1-} o+ . (3.75)
(16772)"/2 €

The last contribution to the mixing of O, into Qg are the one-loop diagrams in
Fig. 15, which contain an insertion of the one-loop counterterm (3.48). As was the
case for the diagrams in Fig. 14, this is best computed by setting p = 0 and keeping

the b-quark mass in the propagator to regulate possible infrared divergences. Then
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one picks out the term that flips chirality and expands in & keeping only the linear

term. This procedure yields for the graphs in Fig. 15

i 16, 1 az) (1 +7s) -
6oz g 9 @ o J 5 ; (3.76)
where
T = —an—1) e K KV + 40 p AP K (3.77)
with
(20 _ / d"q 998
b 2m)™ (2 — mi)?
l 2\—¢€/2 1 1
= [onyi/t (m}) ) (1 +¢/2) ~af (3.784)
and
(28 _ / d"q  ¢*Nag — qaqp
oh (2m)* ¢*(¢* — mj)?
R Ny 21
= oz DT T /2) 2 (1 n) Nag - (3.780)

It follows that the divergent part of (3.76) with the Lorentz structure ¢ is determined

from

i3
JA? = T kT (3.79)

This completes the calculations that give the Q3 and Qg counterterms to Os.

The renormalized operators O;(g), 7 = 1,...,8 are related to the bare u—

independent operators O;O), 7 =1,...8, via the relation

8
D, ;. —eD®
Oi(p) = Y. uP Zj =P 0V | (3.80)

i=1
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where Z;; is dimensionless and has the perturbative expansion

s 8L
Z;] - 51] + 8—7;-2_5 Zl] +... . (3.81)

. : SO .
As stated in Chapter 2, the factors of uPs and ;F‘DJ in eq. (3.80) arise because

in dimensional regularization the operators O1-Og and Ogo)—OgO) don’t all have the

same dimension.

eDj = dimension [O;] — (2n —2) , (3.82a)
and

eDgo) = dimension [O}O)] - (2n-2) . (3.820)

Using the egs. of motion to relate 3 and Qs to the electromagnetic magnetic moment

operator O7 we deduce that

8
7z = (—QQC + 5 Qb) : (3.83)

The anomalous dimension matrix follows from eq. (3.80) and as was noted in Chapter

2 it has the perturbative expansion

2
#il9) = 52 2y 1+ - D) +... (3.84)
where
0 :=1,...,6
DV = { , (3.85)
1 :=17,8 .

Combining egs. (4.1), (3.83), (3.84), and (3.85) gives

Xy = <4QC _ ;—g Q,,) = %31—2 . (3.86)

There have been other attempts to compute X;. In ref. [3.2] the part of X5 pro-

portional to Q. was calculated by working on-shell in four-dimensions and extracting
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the logarithmic ultraviolet divergence. Our result agrees with theirs. Ref. [3.4] calcu-
lated X3 using dimensional reduction. They find a value for X, that disagrees with
ours. We believe that the origin of this discrepancy lies in the inability to straight-
forwardly apply dimensional reduction as a regulator for non-supersymmetric gauge
theories [3.6]. In a more recent publication, Ref. [3.7], the authors find that indeed

dimensional reduction is invalid for this calculation.
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Chapter 4. Truncation of the Anomalous Dimension Matirx

To find the b — sy decay rate, we used not the full anomalous dimension matrix,

but an abbreviated version. This is justified in what follows.

The anomalous dimension matrix for the mixing of the operators O;-Og has the

form (eq. (3.4))

(-1 3 0 0 0 0 0 ¥i
3 -1 -1/9 1/3 -1/9 1/3 X, Y,
0 0 —11/9 11/3 —-2/9 2/3 X3 Y
210 0 29 23 -59 53 Xi Y
Y= (4.1)
72 | 0 0 0 0 1 -3 X5 Y
0 0 —5/9 5/3 —5/9 —19/3 Xs Ys
0 0 0 0 0 0 16/3 0
\o o o0 0 0 0 —16/9 14/3)

If the mixing of O, with the other four quark operators and with the gluon

magnetic moment operator Og is neglected then eq. (2.24) yields

Crlms) = [%A__@Y)_)] 16/23 {C7(MW) 28 Cs(Mw) [1 - (Ezﬁﬂ%) 2/23}

as(my 3 as( Mw (4.2)
31X 19/23
+ é_)f_% 1 — (_a____s(mb) )
19 as(Mw)
In the last section it was shown that
232
Xy = —8—1— . (4.3)

It is now known that the t-quark is quite heavy. In the minimal standard model,

when m; = My, the matching conditions C7(Mw ) and Cs(Mw) have the values
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C7(Mw) ~ —0.1 and Cs(Mw) ~ —0.06 respectively. To evaluate the various terms
in the eq. (4.2) we also need the value of the strong coupling (at m and My). In

the leading logarithmic approximation as(M) has the form

127

(M) = (33 = 2Ny)in(M?/A§ep)

(4.4)

where Ny = 5 is the number of quark flavors appropriate to the low energy effective
five quark theory. Experimentally, it has been determined that Aqcp lies between
100 MeV and 300 MeV [G. Yost et al. (Particle Data Group), Phys. Lett. B204
(1988) 1]. For Aqcp = 100 MeV, ay(Mw) = 0.12 and ay(m;) = 0.21. Numerically
the expression for C7(m), in the minimal standard model (with m; = Mw, Aqcp =
100 MeV) becomes

C7(myp) ~ 0.68{—0.1 — 0.008 — 0.27}

(4.5)
~ —0.26

The three terms in the brace brackets of eq. (4.5) are in correspondence with those
of eq. (4.2). The term proportional to Cs(Mw) makes only a 2% contribution to
C7(ms). Also, eq. (4.5) shows that, in the minimal standard model with m; = My
(and Aqcp = 100 MeV), strong interaction effects increase the rate for weak radiative
B-meson decay by about a factor of seven. For Aqcp = 300 MeV, a,(Mw) = 0.15
and ag(mp) = 0.29. This gives, for m; = My, C7(my) ~ —0.27 and so experimental

uncertainties in the value of Aqcp only have a small affect on the rate for weak

radiative B-meson decay.

The truncation of the anomalous dimension matrix used to derive eq. (4.2) is an
additional approximation beyond the leading logarithmic approximation. It correctly

gives the [ag(myp)/7]én(m?/m?) term in the perturbative expansion of C7(ms) but
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misses some contributions to the {{as(ms)/7}¢n(m?/m2)}? terms for p > 2. Despite

this we expect that eq. (4.2) will prove to be quite an accurate approximation to

C7(ms). In this chapter we explore the accuracy of eq. (4.2) by studying, in three

examples, the effect of some of the terms in the anomalous dimension matrix that

were neglected in eq. (4.2).

(2)

In deriving eq. (4.2) the mixing of O, with O; (and the other four-quark
operators) was neglected. If we include the mixing between Oy and O; (but
neglect the mixing of O1 with the gluon magnetic moment operator) then the

term proportional to X3 in the brace brackets of eq. (4.2) becomes

3X, . ars(mp) 10/23 N 3X, . s () 28/23 o)

20 as(Myy) 56 as(Mw) ' '
This is the form used in our original work. It looks quite different from the term
proportional to X3 in eq. (4.2). However, numerically, the two expressions are

quite close (i.e., within 1% of each other). Thus the mixing between Oz and O

has negligible impact on the value of C7(my).

Suppose the mixing of O, with the operator Os was not neglected. Then (ne-
glecting the mixing of Og with the gluon magnetic moment operator and with
the other four—quark operators) there would be the following additional contri-

bution to the brace brackets of eq. (4.2)

welGn) WG ) w

In order for this term to be a 15% correction to C7(my) the magnitude of

X6 must be about 40 (in the minimal standard model with m; = My and

Aqcp = 100 MeV). This is an unreasonably large value and so we feel confident
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that the mixing of Oz with Os has negligible impact on the value of C7(my).
The mixing of Oy with the other four quark operators Oz, O4, and O3 is even

less significant.

(222) As our final example we suppose that the mixing of Oz with the gluon magnetic
moment operator Og had not been neglected. If this were the case then the brace

brackets of eq. (4.2) would contain the additional term

81?{(;2?8\%)2/23 1) - 5 K(zﬁg))wm - s

In the minimal standard model (with m; = Mw and Agcp = 100 MeV) this

term is less than a 15% correction to the value of C7(m;), provided |Yz| < 10

(a rather large value).

The three examples discussed above give us confidence that in the minimal stan-
dard model, the error in C'7(my), incurred by our truncation of the anomalous dimen-

sion matrix, is less than 15%.

56



Chapter 5. Conclusions and Prospects

Modelling weak radiative B-meson decay by b-quark decay gives, in the leading

logarithmic approximation, the inclusive rate

G2 5
T(B — Xov) = (3 + s} + 2s2s305) ZF e

|Cr(mp)? (5.1)
In the previous sections we have computed C7(m;) in the minimal standard model.
The sensitive dependence of the rate for weak radiative B-meson decay on the b-quark
mass, and its dependence on the weak mixing angles, can be removed by normalizing
it to the measured semileptonic B-meson decay rate; Br(B — Xep,) = (12.34+0.8)%.
Modelling semileptonic B~meson decay by b-quark decay (and neglecting the small

contribution from b — u transitions) gives

_ G4m3
I'(B — Xen,) = (s2+ 52+ 2s9s3¢5) 1927‘_3’.’ flme/my) (5.2)
where
flz) = 1 — 82% + 8% — 2% — 2z tnz . (5.3)

The function f(z) takes into account the effect on the semileptonic decay rate of the

charm quark mass. For my = 4.5 GeV and m; = 1.5 GeV, f(m./mp) = 0.44.

Combining equations (5.1) and (5.2) gives

F(B——*Xs’)’) _ [ 6aem

— m 2 .
[(B — Xeve) rf(mc/mb)} [Crlms) (5.4)

Fig. 17 shows a plot of this ratio, for the minimal standard model, as a function of

the top quark mass, for A = 100 MeV. The rate is insensitive to uncertainties in the
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value of Aqcp. The dashed line is the decay rate when strong interaction effects are
not included. Note that the effect of the strong interaction corrections on the decay
rate is very dramatic at smaller top quark masses. This is because, when strong
interactions are neglected, there is a GIM cancellation [5.1] that causes C7(my) to go
as (m? /.Mgv) for small m;. The strong interaction corrections, on the other hand, have
only a logarithmic GIM cancellation. Even for large m; the leading logarithmic strong
interaction effects are important. For example, when m; = 120 GeV they increase
the inclusive rate for weak radiative B-meson decay by about a factor of four. We
expect that the next-to-leading logarithmic corrections, which are suppressed by a
factor of as(mp)/7, lead to about a 20% uncertainty in the prediction for the decay

rate presented in Fig. 17.

The above decay rate is the one that the Standard Model predicts. This awaits
confirmation with experiment. Within the next few years, the B factory at Cornell
may be able to measure inclusive decay rates to the 10™* level, and expects to be
able to measure several exclusive decay rates to the 10~> level. The calculation that
we have done is really useful only for inclusive predictions. This is true because,
as discussed earlier, the exclusive rate for the first resonance to be reached (the
K*(890)) is quite suppressed. Further, the breakdown of our inclusive prediction into
exclusive modes requires the use of form factors that are not well known. Judging
from analogous calculations for semileptonic decay, the free quark inclusive decay rate

may differ from the full B-meson decay rate by as much as 30 percent.

If the minimal Standard Model is not correct, but involves another Higgs doublet,
this scenario can be incorporated into the method described here. With a second
Higgs doublet, there will be another physical charged particle (in addition to the W)

that can be exchanged in our matching conditions graphs. This extended Standard
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Model will result in modifications of our initial conditions C7(Mw ) and Cs( My ), but
the rest of the calculation proceeds as before. The operator list is the same and so is
the anomalous dimension matrix. This calculation of the B — X,v decay rate in the

Standard Model with two Higgs doublets was done in Ref.[5.2].

Another attractive model that shows promise of solving the hierarchy puzzle is
Supersymmetry[5.3]. Supersymmetry requires that each fermion particle have a boson
partner and each boson particle have a fermion partner. What this means for us and
our b — sv decay rate is extra particles that can participate in our matching condition
graphs. Again, this modifies C7(Myw ) and Cs(Myw ), but the rest of the procedure is

the same. This calculation is in progress now (with Martin Savage).

59



References for Chapter 5
5.1. S.L. Glashow, J. lliopoulos and L. Maiani, Phys. Rev. D2 (1970) 1285.
5.2. B. Grinstein and M.B. Wise, Phys. Lett. B201 (1988) 274.

5.3. Supersymmetry and Supergravity, a reprint volume of Phys. Rep., ed. M.
Jacob (North-Holland/ World Scientific, 1986).

60



Figure Captions

1.

10.

11.

12.

13.

14.

Some tree level Feynman diagrams that contribute to weak radiative B—meson

decay.

. Quark line diagram for exclusive decay B — K*v. A large momentum must be

transferred to the spectator quark.

. Feynman diagrams that determine the one-loop b — s+ decay amplitude.

Plot of function, A(z), which determines C7(Myy) in the standard model with

a minimal Higgs sector.

Feynman diagrams used to calculate the matching condition Cs(Myw) in the

standard model with a minimal Higgs sector.

. Plot of function D(z), which determines Cs(Mw ) in the standard model with

a minimal Higgs sector.

One-loop diagram, which does not contribute to the mixing of operator Oy with

Q3.

. Two-loop diagrams, which do not contribute to the mixing of the operator Oy

with @3 or @s.

. Some two-loop diagrams contributing to the mixing of Oy with Q;.

Some two-loop diagrams contributing to the mixing of O with Q3.
Some two-loop diagrams contributing to the mixing of Oz with Q3.
Insertion of one-loop counterterm that contributes to mixing of Oy with Q3.
Some two-loop diagrams contributing to the mixing of Oy with Qs.
Some two-loop diagrams contributing to the mixing of Oz with Qs.
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15. Insertion of one-loop counterterm that contributes to the mixing of O, with

Qs.

16. Feynman diagram that gives one-loop counterterm inserted in Figures 14 and
17.

17. Solid line is a plot of the rate for B — Xs7 (normalized to the semileptonic

decay rate) versus m; in the standard model with minimal Higgs sector. The

dashed line is a plot of the same quantity when strong interactions are neglected.

62



Appendix A

Here we list the relevant parts of the integrals that appear in Chapter 3. Also,

the results of the gamma matrix algebra that were encountered there are tabulated.

For simplicity we introduce the symbols +(a — 8 — @), +(a —» 8 — v — a) and

+(a — B — v = § - a) which mean “add cyclic permutations to the tensor” with

the corresponding indices. Thus, for example,

NaBys = MNaB Mys + (ﬂ""')’_’(s""ﬂ)

=TNapB M6 + Nas My + Navy ns3

For the integrals we introduce KM) defined by

1 A2\ —€ -
KM - _ W (“pQ) F(l1+¢) KM)

for M = la — 5c and 9a — 9b (here p is equal to either p or p');

» 1 —€ i
K (M) = - W (mg) F(l + 6) K (M)

for M = 1la — 11b; and

K(Ta) _ —(—1—67{2_)—572 (_pz)—e/2 I'(1+¢/2) L (Ta)

(A.4)

The expressions for the divergent parts of K(*) in eqs. (A.2) and (A.3) and the

value (as € — 0) of K(7) in eq. (A.4) are as follows:
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k)

_ L i 1T
aB180 = 5a¢ z(*

, 1
“6—€> Do NMpvép —
1

g Pa M8v60
+ [5 M6p (naﬁ Py + 7oy p’g)

1

1 N3~ (77016 p:o + Uappg)
6

1
P’a N3~y Nép + (7-—>6~+p——>7)} + [Zép% Na~ép
+(ﬂ—+7—>5—+p—+5)” :

(A.5)
~ap) 1)1 29 \ l 1,
I‘aﬂ‘y = E{Z(l + ﬁe)panm + 6 PaNlay + 6 Py Nep : (A 6)
S(1c) 1) 4 1 83
Koy = 5—6—{1) Nap 7)75( -3 o
(4 1
2¢2

) + plz (77017 UELD) + Nas 7757)
o 2 59
126 papﬂ "776 -

/
234 (ot

+ prh 9 ) (55 + 'lé'i') + [0g Bhph + (B— 7= 6 8)] (

1
~ (5 1 1
3 , , 1 47
+ :12(1 + —8-6) (py MaBp + Ps Nvapp) — Te (1 + “226> [P’a NB~ép
3 pLp;
Famgmpma] ~1 B8],
1 PaP3Pp
9 /2

p T (a—+ﬁ—->p-—->a)]

1,

57 \ [PrPaPs Moo + (a—-*ﬁ—w—*a)}
U2 Y R A )

+(7—->5—+7)) _ ZalaPyPePo

)

(A.8)
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5 1 1 25
K= = Some + L0450 mast o

1 25 \ 2 PoPyPs
Lo By -3}

K aﬁ:g = E{p’ Naf Nv6 — PaPg Ny6 + 5;(1 + ﬂe)P' NoBé

1 33\, 3 17 1y
(1 + - 54 )Papﬁ Nys — Z(l + ‘8‘6) NaB PyPs
24

9 pozpﬁp'ypé
— .__._._____.._plz ,

1, 47
+ - (1 + —6) [p'ap'7 ngs + Pabs gy + (@ — B — a)}

> (7a) 1 1 PaPBPp 1 5

to—a—f=p)| + (ot 1) [prmase + (v —5—7)]

) 2¢
PaPp

(A.9)

(A.10)

(A.12)

1
+5| 7 (p7n5p+psnvp)+(/’—+a—>ﬂ—>ﬂ)}
3 | pypsp PyPsPaPBP
-3 7p2p77a5+(p—->a——+ﬁ——>p) -—%—B—f— , (A1)
(9a 1
aﬂw: 122 ( )naﬂw )
1

(96) _ 5
Ky, = 2621 Z)"ﬂ" ’

W=

1
(43 nm)

. (11a)
Koy = 2452{ L+ 75€) Mag o +

1
Z“z‘l 4)%6
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The result of the contractions of the different tensors obtained from the integra-
tions with the tensors (made from products of gamma matrices) TM) are given in
tables A.1-A.4. For contractions with T(), T3) and T, p = p', while for con-
tractions with T("), § = p. The reduction of the gamma matrix algebra has been
carried out in n = 4 — € dimensions and terms of order €2 were neglected. Only the
terms relevant to the computation of X, are included. The column header labels
the particular tensor TM) and in parenthesis the Lorentz structure extracted. For
example, the top left entry of table A.1 gives —4e for the coefficient of ¢f'F in the
contraction kg p'ﬁ N6 With T(NaBv8  Blank entries are irrelevant for the computation

of X5. Also naﬁT(llb)aﬂ = (8—8e)fk + ...
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Table Al

TOWE | TO @) | TOW@WH | Tk
ko Pg Mvys —4e —8+12¢ 8—4e —2¢
ko Dy 135 8—12¢ 8—4e 12¢ 0
ko Ps n3y —8+4e 4e —8+4e 2e
kg Do Mys 4e 8 —12¢ —8-+4e 4
kg Dy Nas —4e 32 —4e —4e 0
kg Ds Nay 12¢ 8 —de 8—12¢ 8—2¢
ky Pa nas —8+12¢ —8+4e —12¢ 8—2¢
ky Dg Nas 4e —32 +4e 4e 2¢
ky Ds Nap 8—4e —8 +12¢ —4e 4—2¢
ks Pa Mgy 8—4e —4e 8—4e 0
ks Pg Navy —12¢ —8 +4e —8+12¢ 0
ks Py Nap —8+4e¢ 8 —12¢ 4e 0
ko Dg Py Ps/P* - - 2e 0
kg Pa By Ds/D° - - —2¢ 2
ky Pa D D5/ D - - —2¢ 2
ks pa Dg Dv/P" - - 2¢ 0
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Table A2

TO(¢) TG)(g) T®) (¢) T((y)
Pa g Nvs /D —4e 8—4e 8—12¢ 2—e
Pa Dy 18/ D* —8—4e 8+4e —4e 4—c
Pa Ds ngv/D° —8+4e 16—12¢ —8-+4e ¢
Py D6 Nag/P’ 8—12¢ 8—4e —4e 2—e¢
Ps Ps Nar /P —4e 8+4e —8—4e¢ 4—e¢
Bp Dy Nas/B’ 4e 32—20¢ de €
Nag Mvé 16—32¢ 16 —8e 16—32¢ 4-—4e
Ny 185 —32+8e¢ 16 +16e —32+48¢ 16—8¢
Nas MvB —32+432¢ 64 —72¢ —32+32¢ 44+92¢
Pa D3 By Ds/(P*)? - - —2¢ 1
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Table A3

T(g)(ﬂ(;) T(IO)(ﬂé)
ko gy 8 — 8¢ —8 + 8¢
kg Nay 16 — 12¢ 8 — 16¢
ky Nag de —4e

Table A4
T(19)(gf)
Nap k- € 8 — 10e
ko €3 4 — 2¢
kgeq —2¢
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Appendix B. An Integral in Dimensional Regularization

In calculating the anomalous dimension matrix, it is necessary to isolate the
infinite piece of Feynman diagrams and extract the coefficient of this infinite piece.
Since infinity times a constant is still infinity, this coefficient would be difficult to
extract without some way of regularizing the infinite integrals encountered. We want
to isolate the coefficient of % as € — 0. So we will do the integrals in d = 4 — ¢
dimensions and find an expansion in powers of €. In dimensional regularization, both

loop momenta and the Dirac matrices are continued to d = 4 — € dimensions.

A one-loop diagram will give rise to integrals that can be expressed as

deK (kIZ)r
I(m,n) = / ST (B.1)
Rotating to Euclidean space yields
dek (k2)r
— (_1\T—m
I(m,n) =(-1) z/ Grili 1 B (B.2)

For a spherically symmetric integrand

oo
fddk = Qd_lfdkkd‘l, (B.3)

0

where (13_; is the volume of a d — 1 dimensional sphere. Noting that

o0
/ dhe ™ = 797 = 0,4, / (2kdk)—;-(k2)d/2‘le“k2
0

= 2ar(d) (B.4)
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then,

27(’1/2
Qd—-l = W (BO)
Changing the integration from dk to d(k?) gives
d/2 x k_? d/" 147
Tm,m) = (-1 ™ i / s k2 e (B.6)
0
Using Schwinger’s trick to evaluate
[ aupee + r (B
0
gives
o0 o0
1 /ds/d kZ)(kZ)qu 1 —-s(k2+R2)
I'(q)
0 0
1 o @]
= —— [ dss® e s~ (P+IP(p 4+ 1)
ol
(q) J
—qr1l(p+1)
= (R2\P—9+1 —p —
(R%) I(g) I'(g—p—1). (B.8)
So that finally we arrive at
' d/2)[(m —r —
I(m, TI,) _ ¢ (_1)r—m(R2)r——m+d/2 F(T + / ) (m r d/2) ] (39)

~ (1672)d/4 ['(d/2)I'(m)

Our two-loop integrals can be put into the form where the above result, used twice,

will complete the loop-momenta integration.

Some gamma matrix identities needed to reduce the gamma matrix structure of

our Feynman diagrams are (in d dimensions):
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7ﬂ7u = d17

Yyt = (2 — d)v*®,

Y VP = 4g%P1 4 (d — 4)7%47,

YA = =297 % — (d - 4)

72

a B

RARS AR A

(B.10a)

(B.10b)

(B.10c)

(B.10d)



>

T SdAO91d

73



¢ ddNOTd

AT

w A

74



£ ddNo1d

10 L A 1'0

75



0.5 T I T T

FIGURE 4

76



S 349N9I4

10 6 5 1o
m?ﬁ wgurf

77



05

04

0.3

FIGURE 6

78




L 3dNOIA

A

79






6 JdNOIA

81



0T IdNDIA

82



1T JIYNOIA

A

83



¢T JdNoO1d

4-d=d d ¥-d=d d
W\x 2y

84



xIQ“nQ

€T J¥9NOD14

85



1-d

d

4

PT 390014

V4

86



ST IdNDTI4

x% ERWHULM
H s 4 |

87



91 IdNODIJ

88



)

B"‘)(Ceve

T(B=Xsy) / T{

0.003

0.002

000l

0.000

FIGURE 17

89

150




