Evolution of Genetic Codes

Thesis by
Charles A. Ofria

In Partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy

California Institute of Technology

Pasadena, California

1999
(Submitted May 13, 1999)

1

© 1999
Charles A. Ofria
All Rights Reserved

1l

Abstract

In this thesis, I use analytical and computational techniques to study the development
of codes in evolutionary systems. We only know of one instance of such a genetic
code in the natural world: our own DNA. However, the results from my work are
expected to be universally true for all evolving systems. I use mathematical models
and conduct experiments with avida, a software-based research platform for the study
of evolution in “digital organisms.” This allows me to collect statistically powerful
data over evolutionary timescales infeasible in a biological system.

In the avida system, Darwinian evolution is implemented on populations of self-
replicating computer programs. A typical experiment is seeded with a single ancestor
program capable only of reproduction. This ancestor gives rise to an entire population
of programs, which adapt to interact with a complex environment, while developing
entirely new computational capabilities. I study the process of evolution in this
system, taking exact measurements on the underlying genetic codes, and performing
tests that would be prohibitively difficult in biological systems.

I have focused on the following areas in studying the evolution of genetic codes:

Information Theory: I treat the process of reproduction as a noisy channel
in which codes are transmitted from the parent’s genome to the child. Unlike most
channels, however, evolution actively selects for codes received with a higher informa-
tion content, even if this increased information was introduced via noise. A genetic
code consists of information about the environment surrounding the organism. As
a population adapts, this information increases, and can be approximated through
measuring the reduction of per-nucleotide entropy - in effect sites freeze in place as
they code for useful functionality. In the avida system, we know the sequence of all
genomes in the population, and new computational genes can be identified as they
are formed.

The Evolution of Genetic Organization: Organisms incapable of error cor-

iv

rection (such as viruses) develop strong code compaction techniques to minimize their
target area for mutations, the most prominent of which is overlapping genes. Higher
organisms, however, are capable of reducing their mutational load and will explicitly
spread out their code, cleanly segregating their genes. I investigate the pressures be-
hind overlapping or segregation of genes, and demonstrate that overlaps have a side
effect of drastically reducing the probability of neutral mutations within a gene, and
hence hindering continued adaptation. Further, in a changing environment, overlap-
ping genes have a significantly reduced ability to adapt independently. I compare
overlapping and singly expressed sections of code in avida, and show a significant
(two-fold) difference in the average per-site variation. I also demonstrate the evolu-
tionary pressure for organisms to segregate their genes in a fluctuating environment
to improve their adaptive abilities.

Evolving Computer Programs: [explore evolution in digital genetic codes,
and isolate some of those features of a programming language that promote contin-
uous adaptation. In the biological world evolution gives rise to complex organisms
robust to changing situations in their environment. This increase in complexity and
“functionality” of the organisms typically generates more stable systems. On the
other hand, as computer programs gain complexity, they only become more fragile.
If two programs interact in a way not explicitly designed, the results are neither pre-
dictable nor reliable. In fact, computer programs often fail even when put to the use
for which they were explicitly intended. Computational organisms, however, have a
level of robustness more akin to their biological counterparts, not only performing
computations, but often doing so in a manner beyond the efficiency that a human
programmer could produce.

Finally, all of this work is tied together, and future directions for its continuation

are explored.

Acknowledgements

Thank you to Chris Adami, my advisor and mentor, for his time, his criticism, his
encouragement, and his remarkable insights as he guided me in developing an effective
research methodology. I also wish to thank Alan Barr; he has provided me with space
and resources for my investigations and taken an active role in my development as a
researcher.

I’d like to express my gratefulness to the members of my thesis committee for
their guidance and helpful discussions: Chris Adami, Alan Barr, Yaser Abu-Mostafa,
Jehoshua Bruck, and John Allman. They have each provided me with strong input
on my research direction.

A multitude of people have profoundly influenced my research. Travis Collier has
been involved at some level in every one of my projects, much to their betterment.
Titus Brown co-designed and implemented the original version of the avida system,
contributing his remarkable skills and innovations. Richard Lenski has been a fountain
of ideas and information, and has opened my eyes to new potential for my work in
understanding biological systems.

On a personal note, I want to express my deep gratitude to Charles and Alice
Ofria, my parents, for their guidance and cultivation of my love of science. My
heartfelt appreciation also goes to Amy Forth for her help, especially during the late
nights when deadlines were fast approaching.

Many other people have had a significant impact on my work. My thanks go out to
Dennis Adler, Johan Chu, Martijn Faasen, Mike Haggerty, Grace Hsu, Rob Schwartz
and Sen Song for fruitful discussions or collaborations. My thanks also go to members
of the Graphics Group who have provided a wonderful working environment and solid
feedback: Matt Avalos, Cindy Ball, Alan Barr, Maret Bower, David Breen, Dan Fain,
Dave Felt, Kurt Fleischer, Louise Foucher, David Laidlaw, Mark Montague, Preston
Pfarner, and Erik Winfree.

vi

My fond appreciation to Professor Peter Henderson of SUNY Stony Brook who
aided me in starting on my research path as an undergraduate, and to Professors
Steven Skeina and Alan Tucker who tapped my creativity and encouraged me to
make frequent use of it. Finally, a sincere thank you to Professor Gerry Brown who
provided me with the encouragement and support to come to Caltech.

Microsoft and the NSF supported my work through grants. My stipend was paid
for by an NSF training grant. Access to a Beowulf system was provided by the
Center for Advanced Computing Research at the California Institute of Technology.
The URECA program at SUNY Stony Brook provided the funds that allowed me
to begin my explorations into Artificial Life. All opinions, findings, conclusions, or
recommendations expressed in this document are those of the author, and do not

necessarily reflect the views of the sponsoring agencies.

vii

Preface

Portions of this thesis rely on work performed in collaboration, most notably with
my advisor, Chris Adami.

Chapter 2 contains material from [54]. Chapter 3 is based on two papers being
readied for publication ([10] and [52]), while Chapter 4 and the latter half of Chapter
5 (evolution of genome organization and differentiation) are based on [51] and [53].
The studies on the evolution and robustness of computer languages in the first half
of Chapter 5 are described in a paper in preparation [9]. The co-authors and collabo-
rators of the above articles have agreed that their work is included in this thesis, and
are gratefully acknowledged.

The postscript of the final version of this thesis is available from my web page at
http://www.krl.caltech.edu/Charles/thesis/. Many pages require color; those
are placed online, separate from the body of the thesis. For any questions or com-

ments, please contact me at charles@krl.caltech.edu.

viil

Contents

Abstract
Acknowledgements
Preface

1 Introduction

1.1 Overview. o e
1.2 Computational Models of Life
1.3 Background
1.3.1 The Coreworld System
1.3.2 Tierra
1.3.3 The Avida Platform
1.4 Artificial Chemistry

2 The Experimental Testbed

2.1 The Avida Platform 0o
2.2 Time Slicing in an Artificial Chemistry
2.2.1 Time Slicing
2.2.2 Carving a Landscape L.
223 Fitness
2.2.4 Time Slicing Algorithms
2.3 Reproduction
2.4 The Virtual Computer
2.4.1 The CPU Structure
2.4.2 The Instruction Set Implementation

2.4.3 An Example Program

iii

vii

Neo e N e R e

10

2.5 Mutations L
2.6 Research with Avida
2.7 Basic Analysis Metrics L
2.8 Analysis Tools
281 Test CPUs.
2.8.2 Species
2.8.3 Local Landscape Analysis

An Analytic Approach to Evolution

3.1 Information Theory and Complexity
3.2 Complexity in Avida
3.3 Progression of Complexity
3.4 Maxwell’s Demon and the Law of Increasing Complexity
3.5 Selective Pressures on Genome Size and Neutrality

3.6 Fitness: The selective pressures of evolution

The Evolution of Genetic Organization
4.1 Overlapping Genes
4.2 Experimental Details
4.3 Single Expression vs. Multiple Expression
4.4 Evolution of Differentiation
4.5 Evolution of Genetic Locality
4.6 Genetic Segregation
4.6.1 The Aagos Model
4.6.2 Experiments with Aagos

4.7 Discussion and Conclusionso

Evolution of Computer Languages

5.1 Evolvability and Robustness in Computer Languages
5.1.1 Exploring Artificial Chemistries
5.1.2 Neutrality

47
49
53
%)
58
62
64

70
70
72
6]
78
81
85
85
87
90

513 Results. 96

5.2 The Evolution of Parallel Processing 100
5.2.1 Introduction 100

5.2.2 Experimental Details L. 101

5.2.3 Evolution of Multi-Threaded Organisms 103

524 Summary 109

6 Future Work 113
A Configuration Files 116
Al Thegenesis File 116
A.2 Theevent list File 118
A3 Theinstset File 120
A4 Thetaskset File, 121

B Extracted Organisms 124
Summary of Variables 132
Glossary 133
139

Bibliography

xi

List of Figures

1.1

2.1

2.2

2.3

24

2.5

2.6

The lattice from a typical avida experiment. Colors represent specific
genotypes. Light blue displays those genotypes that were not abundant
enough to warrant a unique color and dark blue signifies organisms that

have not demonstrated an ability to replicate.

Structure of the virtual CPU in avida. The CPU operates on three
registers (cyan), two stacks (green), and an instruction poiﬁter (pink).
Input and output from and to the environment is achieved via dedi-
cated I/O buffers (yellow).
Statistics from a typical avida experiment. Measurements for (A)
Genome Length and (B) Fidelity are displayed for both the domi-
nant (dots) and average (solid line) genotype, throughout the course
of evolution over 50,000 updates.
Statistics from a typical avida experiment. Measurements for (A) Ges-
tation Time and (B) Merit are displayed for both the dominant (dots)
and average (line) genotype, throughout the course of evolution over
50,000 updates. e
Statistics from a typical avida experiment. Measurements for Fitness
are displayed for both the dominant (dots) and average (line) genotype,
throughout the course of evolution over 50,000 updates.
Statistics from a typical avida experiment. Measurements for (A) Geno-
type Count and (B) Threshold Count are displayed throughout the
course of evolution over 50,000 updates.
Statistics from a typical avida experiment. Measurements for (A) Geno-
type Entropy and (B) Average Inferiority are displayed throughout the

course of evolution over 50,000 updates.

36

37

38

2.7

2.8

2.9

3.1

3.2

3.3

3.4

xii
Statistics from a typical avida experiment. Performance of the 80
awarded tasks is displayed throughout the course of evolution over
50,000 updates. Each horizontal line represents a single task: black in-
dicates tasks never performed, dark gray are performed once by most
organisms, and brighter shades are performed multiple times.
Statistics from a typical avida experiment. Measurements for (A)
Species Count and (B) Species Entropy are displayed throughout the
course of evolution over 50,000 updates.
Statistics from a typical avida experiment. Part (A) breaks down all
of the possible mutations on the dominant genotype into the cate-
gories fatal, detrimental, neutral, and beneficial. Part (B) shows Neu-
tral Fidelity and Genomic Diffusion Rate. Both graphs are displayed

throughout the course of evolution over 50,000 updates.

A typical avida organism, extracted 1,434 generations into an evolu-
tionary experiment. Each site in the code is color-coded according
to the entropy of that site, as determined by studying the effects of
all single-point mutations in test-CPUs. Red sites are highly variable
whereas black sites are perfectly conserved.
An avida organism extracted 34 generations later than the one depicted
in Fig. 3.1. A learning event has occurred, freezing most of the begin-
ning of the genome and several other loci.
Progression of per-site entropy for all 80 sites throughout an avida
experiment. The entropies are calculated at 60 points evenly spaced
throughout the course of evolution. e e
(A) Total entropy per program as a function of evolutionary time. (B)
Fitness of the most abundant genotype as a function of time. Evolu-
tionary transitions are identified with short periods in which the en-

tropy drops sharply and fitness jumps.

40

43

45

54

56

57

3.5

3.6

3.7
3.8

3.9

3.10

4.1

4.2

4.3

xiil

Complexity as a function of time. The organisms from Figures 3.1
and 3.2 are indicated by circles.o
Entropy per program as a function of evolutionary time across a tran-
sition. Lo
Maxwell’s Demon at work (from [41]).
Average fitness (A) and average genome length (B) displayed for three
experiments at distinct levels of complexity. Set I (red, bottom) is
from the simplest environment (no tasks), set II (green, middle) has
12 tasks available, and set III (blue, top) has all 80 tasks present.

Average gestation time (A) and average genome length (B) displayed
for set IV. Set IV is the continuation of set III, with all merit contri-
butions deactivated. Lo oo
Average neutrality is displayed for sets V (blue), VI (green), and VII
(red). All three sets are at a fixed length of 80 instructions and have
the full range of tasks available. Their mutation rates are 0.5%, 1.0%,

and 1.5% respectively.

(A) Average fitness as a function of time (in updates) for 200 popu-
lations evolved from ¢ = 20 ancestors and (B) their average sequence
length, for the single expression chemistry controls (blue line) and the
multiple expression chemistry (green line).
Average genomic diffusion rate as a function of time (in updates) for
200 populations evolved from ¢ = 20 ancestors, for the single expression
chemistry controls (blue line) and the multiple expression chemistry
(green line).
Differentiation measures. (A) Average fraction of lifetime spent with
secondary expression, as a function of time (in updates), (B) average
thread distance, (C) average code differentiation. Set I (blue line), set

IT (green line), and set III (red line).

39

66

76

7

4.4

4.5

4.6
4.7

4.8

2.1

3.2

xiv

Average fraction of doubly expressed code for the three experimental
sets. Blue (top) line: set I, green line: set II, red line: set III.
(A) Per-site entropy for each locus as a function of time for a standard
(set III) trial. Random (variable) positions with near-unit per-site
entropy are red, while “fixed” instructions with per-site entropy near
zero are dark blue or black. (B) Thread identification within a genome.
Black indicates instructions that are never directly executed, blue de-
notes instructions executed by a single thread when no other thread
is active, while sections that are executed by a single thread while an-
other thread is executing elsewhere are colored in green and orange.
Finally, sections with overlapping expressions arered.
An example aagos organism.
Genome length from 2 starting conditions (averaged over 50 trials each)
in a static aagos experiment. Set one (solid line) began with length 80
genomes, while set two (dashed line) had length 20 ancestors.

Genome length in 5 different changing environments in aagos (each

averaged over 50 trials). L.

(A) Neutrality averaged over 100 trials for each of the five chemistries,
as a function of time (in updates). Set I (Standard, blue curve), Set IT
(Direct-Matching, red), Set III (No-nop, magenta), Set IV (Mem-size,
green), and Set V (Long, cyan). (B) Average fitness (relative repli-
cation rate with respect to ancestor) across trials for each chemistry.
Colorcodeasin A.
The time progression of organisms learning to use multiple threads
averaged over 200 trials. (A) The fraction of trials which thread at
all, and (B) the average fraction of time organisms spend using both
threads at once. The data displayed here is for the first 5000 updates

of 50,000 update experiments in environment III.

88

89

97

5.3

5.4

5.5

5.6

XV
(A) Average fitness as a function of time (in updates) for the 200
environment III trials, and (B) average sequence length for the linear
execution experiments (blue) and the multiple execution experiments
(green).o
(A) Execution patterns for an evolved avida genome. The inner ring
displays instructions executed by the initial thread, and the outer ring
by the secondary thread. Darker colors indicate more frequent execu-
tion. The initial thread primarily executes gene R, which performs the
copy process, while the other thread centers on genes C; and C; for
task computation. (B) Genome structure of the phage ®X174. The
promoter sequence for gene Ax is entirely within the gene A, causing
the genes to express the same series of amino-acids from the portion
overlapped. Genes B, F, and K are also entirely contained within oth-
ers, but with an offset reading frame, such that different amino acids
are produced (i.e., the expression is different).
Differentiation measures averaged over all trials for each experiment.
Average values of (A) Thread Distance and (B) Fractional Thread
Distance are displayed for experiments in environment I (red), envi-
ronment II (green), and environment III (blue).
Differentiation measures averaged over all trials for each experiment.
Average values of (A) Code Differentiation and (B) Expression Differ-
entiation are displayed for experiments in environment I (red), envi-

ronment I (green), and environment IIT (blue).

105

106

109

Xvi

List of Tables

2.1 An example avida genome. L. 29

2.2 The trace of a sample genome execution. 30

4.1 Average neutrality of the final dominant genotype: multiply-expressed
code (column 1), singly expressed code (column 2), and their ratio
(column 3), for 200 populations grown from ¢ = 20 ancestors (variable
length) [set I], 100 populations grown from £ = 80 ancestors (variable
length) [set II], and 100 populations grown from ¢ = 80 ancestors
(constant length) [set TII). 77

5.1 Example genetic encoding inavida. 107

Chapter 1 Introduction

1.1 Overview

Evolution has traditionally been a formidable subject to study due to its gradual pace
in the natural world. One successful experimental method uses microscopic organisms
with generational times as short as an hour, but even this approach has difficulties; it
remains impossible to perform measurements with high precision, and the time-scales
to see significant adaptation are still on the order of weeks, at best'.

Recently, however, the exponential increase in computational power has allowed
us to explore methods of studying these problems in a digital medium—through the
use of populations of self-replicating computer programs. These “digital organisms”
are limited in speed only by the computers used, with generations in a typical trial
taking a few seconds. These systems allow us to study the dynamics of evolution
in a medium where we have full control over the environment and progress of the
population.

Perhaps more importantly, artificial evolving systems give us the ability to explore
evolutionary principles that are no longer at work in natural systems. Life on Earth
is the product of approximately four billion years of evolution, with the vast majority
of beginning and intermediate states lost to us forever. The exact details of how we
evolved to become what we are may be impossible to know for sure, but what we
can do is better understand the evolutionary pressures exerted on life, and from that
reconstruct sections of the path our evolution is likely to have taken.

Here I look at fundamental issues to living systems as we know them focusing on

the evolution of life’s underlying program: the genetic code.

!Populations of E.coli introduced into new environments begin adaptation immediately, with
significant results apparent in a few weeks [38]). Observable evolution in most organisms occurs on
time scales of at least years [39)].

2

With a computer reconstruction of a living system, we can gather data with perfect
accuracy that would be very difficult or impossible to collect in its purely biological
counterpart. Traditionally in a complex system, individual pieces are studied inde-
pendently, in isolation before a full analysis of the collective behavior is attempted.
However, this approach does not work as well in a biological medium—normally, a
disassembled living organism is no longer alive. Likewise, a disassembled ecosystem
results in each component being unstable and rapidly dying out. Therefore, we must
look at life as a whole, but this historically has prevented us from getting much of the
detail we need. These difficulties can be overcome by using a computational system.
The observation of such a system does not bare any effect back on the organisms
within it.

In this thesis, I concentrate on an information-theoretic perspective to understand
the process of evolution of genetic codes. I analyze the process of reproduction as a
noisy channel wherein information is transfered from parent to child. This allows us
to further analyze the coding scheme in order to determine a measure of information
content of the codes and, in turn, an intuitive metric for the complexity of the resulting
organisms.

This framework allows us to answer specific questions about the structure of our
own genetic codes. One such question that I tackle here is “Why are genes segregated
in our DNA?” In all higher forms of life on Earth, genes have a distinct promoter
sequence where their expression begins, a stop codon where it ends, and their entire
sequence occupies a unique portion of the genome. On the other hand, it is quite
common for viruses and some bacteria to have overlapping genes where a particular
section of the genome provides code for more than one product. I look at both the
information-theoretic reasons that such overlapping expression patterns are advanta-
geous (they allow for shorter genomes, and therefore a smaller target for mutations
and less code to be copied), and then explain why genetic segregation does occur in
higher organisms to the point where only a handful of cases of overlapping genes have

ever been found.

Finally, I apply this study of the emergence of complexity in evolution back to

3

Computer Science. Today, it is already common for computer programs to contain
millions of lines of source code, interacting with other programs to form something
akin to an ecosystem. These programs are expected to be able to interact indepen-
dently; while in a biological system this is gracefully handled, this level of compu-
tational complexity is already proving difficult for humans to deal with. Programs
of great length are not fully testable, and interactions with other software that are
not explicitly planned for are unpredictable. I consider the elements of computer
languages conducive to evolution and I study the impact of these design choices. I
then look at the benefits of such evolvable languages in developing highly optimized
and robust code. In the end, I consider other techniques of natural evolution and I
make initial attempts at harnessing them for computer science.

In the remainder of this chapter, I provide a background for computational models
of life, and further discuss the framework behind it. In Chapter 2, I talk about the
details of avida, the primary software that I have developed and used for this research.

I apply information theory to these models of living systems in Chapter 3, with
explicit results from avida, and the insights they provide into evolution. In Chapter 4,
I discuss the organization of genetic codes, using principles from information theory to
understand the ramifications of structures used, and I link this into actual biological
experiments. Next, I tie in the applications to Computer Science in Chapter 5.
Finally, in Chapter 6, I pull all of these ideas together discussing contributions and
open directions where future work can continue. I close this thesis with a glossary,

placing the definitions of all of the common terms and variables in one location.

1.2 Computational Models of Life

The most common application of evolutionary principles to computer science is the
“Genetic Algorithm.” A variety of variant strategies do exist, such as “Genetic Pro-
gramming” or “Evolutionary Computation,” but they all boil down to a similar recipe;

that is:

1. Create a population of random solutions.

4

2. Evaluate all of the solutions, assigning each a “fitness” that represents its qual-
ity.
3. Select a subset of solutions with the maximal fitness, and remove all of the rest.

4. Refill the population with variations (or re-combinations) of the selected solu-

tiomns.
5. Repeat from step 2 until a desirable solution is found.

This works well for some categories of problems, but lacks certain essential elements
of natural evolution.

The models (both mathematical and instantiated in software) that I use in this
thesis are auto-adaptive genetic systems [1| differing in key areas from traditional
genetic algorithms, to encompass more of the features of natural evolution. Solutions
in these systems take on the role that biological organisms do in nature, thus I shall
use the term “digital organism” to describe them. Indeed, in most of these systems
the digital organisms are self-replicating computer programs written in a computa-
tionally universal language, which theoretically allows them to adapt to calculate any
computable function and can replicate through the execution of their own code.

A prominent feature of auto-adaptive systems is that there is no explicit selection
of organisms that places them in the next generation. These organisms only have the
ability to self-replicate, relying on their offspring to preserve their genetic information.
Thus, in addition to the traditional fitness that determines an organism’s rate of
replication, an implicitly selected criterion is for the organism to optimally transmit
its information into the genome of its children. As in the natural world, this pressure
does not require offspring to be exact duplicates of their parent as long as the critical
information is transmitted faithfully. In fact, a greater tolerance to variation can
actually improve the ability for a species to adapt. The details of this genome-
transmission process are explored in Chapter 3.

This slight shift in selection pressure from GAs to auto-adaptive systems has major

ramifications on the system. The replication process in digital organisms will adapt

5
to be maximally robust to mutations. That is, the programs become less rigid, and
more variation is introduced into the population among high fitness organisms. In a
traditional genetic algorithm, the quality of the solution is the only selection pressure,
and quite often this leads to the genetic encodings becoming trapped at fragile local
maxima causing evolution to grind to a halt.

The avida system takes the “realism” of these algorithms several steps further.
Avida comprises a population of self-replicating computer programs that have a com-
putationally universal genetic basis, and a collection of tools used to study them.
These digital organisms extend their code length, copy their genome into this extra
space, and then divide off a child replacing the oldest organism in the local neigh-
borhood. As the maximum size of the population is fixed, the birth of any organism
equates to the death of another, and on the average each organism will place only one
offspring into the next generation. In practice, a significant portion of the population
is fatally mutated such that many programs that remain viable will produce a second
copy of their genome. However, as this copying process is subject to mutations, those
genomes less likely to break when mutated are implicitly selected for, and no organism
is guaranteed accurate transmission into the next generation no matter its “fitness.”

In a limited (but very real) sense, the digital organisms can be considered to be alive.

1.3 Background

1.3.1 The Coreworld System

Work on constructing self-replicating computer programs that exhibit real evolution
was first popularized in 1990 when Steen Rasmussen released work performed on
the coreworld simulator [55]. This program was based off of the computer game
Corewars in which competitors write computer programs in a simplified assembly
language called “Redcode” [20], modeled on a subset of the Intel-i860 instruction set.
In Corewars, these programs are placed into the memory space of a virtual computer,

alternating execution, and the last program to remain active “wins.”

6

Rasmussen introduced a single program into the virtual core capable only of copy-
ing its own genome into other portions of memory. The replication began immediately,
and the memory space filled with identical programs. Next, mutations were applied
to this copy process to determine if the digital organisms could be evolved or other-
wise had any ability to adapt. Unfortunately, however, this portion of the experiment
failed; not only did no evolution occur, but those programs that had been capable
of self-replication were copied over with fragments of fatally mutated code, and the
system as a whole collapsed into a “non-living” state. The dynamics of this system
still turned out to be intriguing, displaying the partial replication of fragments of

code, and repeated occurrences of simple patterns.

1.3.2 Tierra

In 1991, Thomas Ray at the University of Delaware decided to design a program of
his own, with significant, biologically-inspired modifications. The result is the tierra
system [56], the first software to successfully encompass evolution with computer

programs. The changes introduced into the system were:

e A simple assembly language was used, containing 32 instructions that had no

arguments. Instead, these instructions act on only the current state of the CPU.

o A template-based addressing scheme allows portions of the code to be identified.
Two special no-operation (nop) instructions were introduced, used to form pat-
terns (templates or labels) in the program. All instructions that needed to find
other portions of code (e.g., the jump instruction) perform a pattern matching

on sequences of these nops.

e The organisms were write-protected. Programs could not arbitrarily write over
the genomes of each other; they could only be removed as a whole when memory

had filled up.

These three differences not only allowed evolution to occur, but caused it to develop

to very interesting outcomes.

7

The first tierra experiment was initialized with an ancestor program that was
80 lines of code. It filled up the allocated memory with copies of itself, many of
which had mutations that typically caused loss of functionality. Yet, enough of these
mutations were neutral and did not affect the organism’s ability to replicate—and a
few were even beneficial. In this initial experiment, the only selective pressure on the
population was for increasing the rate of reproduction—in this case the minimization
of the number of instructions per program (i.e., the gestation time).

As the experiment progressed, Ray witnessed a shrinking in the average length of
the programs. Shorter programs had less to copy and could therefore do so in less
time. Indeed, the size continued to shrink down to 60 lines, which seemed to be the
minimum size. But this was not the end of evolution: after a long stasis, a 45 line
program appeared and propagated itself through the population; such a condensed
program seemed too small to be able to exist, and certainly to develop so suddenly.
Oddly enough, however, it was not able to dominate the population—the length 60
programs persisted as well.

Upon further investigation, Ray determined that this new program acted as a
parasite on the longer one. As a parasite, it was able to calculate its own beginning
location, end, and allocate its own space for a child, but when it came time to copy
its code to form the child’s genome, it would jump its execution into a working host.

In time, the hosts developed immunity to the parasites. They altered the templates
within themselves that the parasites were using to jump their execution to, and forced
the parasites into extinction. Periodically, new parasites would arise, the hosts would
adapt, and again they would die out. This changed later in the experiment when
a host evolved that, rather than adapting to avoid the parasites, had moved the
location of the template being targeted. Now, when the parasites tried to execute
the copy procedure in these hosts, they would instead be forced to re-calculate size
and location information—this time of the host organism. In effect, this forced the
parasite to actually make copies of the host’s own genome. These organisms were

dubbed “hyper-parasites.”

8

This interplay continued for some time, and developed many other types of or-
ganisms as part of a primitive, digital ecosystem.

In 1992, about a year after the release of this initial study of the tierra system,
Chris Adami at the California Institute of Technology began experiments of his own
with tierra, both to study the underlying process of evolution, and to perform “animal
husbandry” (directed evolution) on these digital organisms to have them evolve spe-
cific computational abilities. Three main changes were applied to the system toward

this goal:

e The amount of execution time (time-slice) given to an organism was set to be
proportional to the length of the genome of that organism. This reduced the
selective pressure to shrink, allowing some “junk code” to exist in the genome,
from which these computations would arise. Unexecuted code was discouraged
by multiplying alloted CPU time by the leanness (fraction of code executed) of

the organism.

e The population size was limited to a power of 2, to allow masking for calculating
integer numbers modulus population size (as was often necessary). This led to

a three-fold speed increase.

e The input and output (get and put) instructions were modified to monitor
those numbers being manipulated. If an output was a desired computation of

inputs, a record would be made of this.

e When an organism divides, the time-slice of both it and its offspring was re-
calculated with a bonus applied for each computation completed. Thus, if all
computations are performed each gestation cycle, then this lineage of organisms
will always have their execution rates increased to reflect their computational

capabilities.

The actual code to perform a task is never considered; only the inputs and output are
used. This allows an organism to develop the desired computation by any method

that works, not applying any preconceived limitations that the researcher might have.

9

Four tasks were rewarded in this system. When an organism would get any
number at all, when it put out any number, when it actually connected the two to
“echo” an input to an output, and finally when two inputs were taken, added together,
and the sum was returned. In a short time, the population evolved to learn all of
these tasks.

Initially, Adami studied the dynamics of learning events in these systems [1],
analyzed self-organized critical effects [2], and began to formulate a framework to
approach the evolution of living systems from a statistical mechanics standpoint [3],
but found it to be difficult to make necessary modifications to the tierra system, and
to gain the required accuracy on the data being collected. To that end, he decided

to begin a project of his own.

1.3.3 The Avida Platform

In the summer of 1993, C. Titus Brown and I joined with Chris Adami to develop

the avida platform.

The primary differences in avida from tierra are:

o A simulated parallel execution of all digital organisms. Each CPU has an as-
sociated value called merit that determines the exact rate at which it should
be processed relative to all other CPUs in the population, thus removing the
effects caused by organisms receiving large blocks of time as their time slice,

and giving an arbitrary resolution of detail to this measure.

e A localized environment for the organisms. Each program exists on a point of

a lattice, and can only affect its immediate neighbors.
e High precision measurements that record features of the population exactly.

o A flexible interface, allowing for the easy modification of tasks, instruction sets,

and other components involved in the population dynamics.

Figure 1.1 displays 25,600 avida genomes in their “artificial Petri dish.” Avida is

10
detailed in Chapter 2. See the avida technical manual [54] for information on the use

of the software.

Figure 1.1: The lattice from a typical avida experiment. Colors represent specific
genotypes. Light blue displays those genotypes that were not abundant enough to
warrant a unique color and dark blue signifies organisms that have not demonstrated

an ability to replicate.
i

1.4 Artificial Chemistry

The metaphor underlying most of the work to date on adapting computer programs

is that of an artificial chemistry [4]. In living organisms, chemical reactions provide

tha anarayw cnnirea that Anaratoc cancnre cuwritrhace cianal trancdncare and artunatarc

11
Such ordered, causal, functions may quite generally be viewed as computation. In
turn, these chemicals are coded for in the DNA of the organism: the “program” of
the computer. In the software systems that explore self-replicating computer code,
from Rasmussen’s coreworld through Ray’s tierra to our avida, this analogy is taken
seriously: the execution of computer code, based on low-level assembly-like instruction
sets, is viewed as an analog of chemical reactions.

The idea behind these systems is to explore the complexity that the chemistry
of self-replication has introduced, without actually simulating chemical reactions.
Rather, the chemistry of the molecules coded for in the DNA is replaced by the
execution of strings of instructions. Chemical reactions in biological organisms are
evolved to make use of resources available in their environment to provide additional
energy to aid in propagation of genetic information. In avida, CPU time takes the role
of this energy, and computational “reactions” are evolved to acquire more. Replication
and execution of instructions costs CPU time, thus consuming energy.

The accomplishment of a computation on numbers (found in the programs’ en-
vironment) may be viewed as the catalysis of an exothermic reaction, benefiting the
organism that carries the “gene” for this computation by speeding up its metabolism.
As in real chemistry, it is problematic to specify which sequence of instructions is
beneficial; rather, we construct the environment by rewarding effects. Any reaction
that produces the desired outcome is positively reinforced with a CPU-speed increase.

The experiments that I report on here were performed with an instruction set that
is computationally universal (ensuring that the system is not limited in the types of
computations it can give rise to). The instruction set of biochemistry (the twenty
amino acids) also appears to be computationally universal based on the observation
that certain higher organisms display the capability to calculate (albeit to a finite

extent) arbitrary functions.

12

Chapter 2 The Experimental Testbed

This chapter is a detailed description of the avida platform and related tools used for
the research in this thesis. It is structured such that readers can skip it and still gain
from the rest of the work presented, but it is strongly recommended to understand

the intricacies of the system and design decisions that may be non-intuitive.

2.1 The Avida Platform

The computer program avida is an auto-adaptive genetic system designed as a plat-
form for research in biological and computational evolution. The avida system consists
of a population of self-reproducing strings with a Turing-complete genetic basis sub-
jected to a variety of mutations. The population adapts in a biological manner, both
to maximize its replication rate, and to beneficially interact with its environment.
By studying this system, we can examine evolutionary adaptation and general traits
of living systems (such as self-organization), and apply these concepts to evolving

computer code.

Overview

The avida system creates an artificial environment inside of a computer. The system
implements a toroidal lattice of virtual processors that execute a simplified assembly
language; programs are stored as sequential strings of instructions in the individual
memory of each processor. Every program string (typically termed genome) is asso-
ciated with a processor, collectively referred to as a digital organism. Active lattice
sites are alive, and inactive (or empty) lattice sites are dead. The maximum popu-
lation size of these organisms is given by the dimensions of the lattice, N x M. For
purposes of research into evolving systems, the assembly language used must sup-

port self-reproduction; the default assembly language instructions, as well as several

13
specialized instructions for specific projects, are described in Section 2.4.

The virtual environment is initialized with a human-designed program that self-
replicates. This program and its descendents are subjected to random mutations that
change instructions within their memory, resulting in negative, neutral, and positive
variations. Mutations are qualified in a strictly Darwinian sense: any mutation that
results in an increased ability to reproduce in the given environment is considered
positive. While it is clear that the vast majority of mutations will be negative—
typically causing the organism to fail to reproduce entirely—or else neutral, those
few that are favorable will result in organisms that reproduce more effectively and
thus thrive. Mutations in avida are described in Section 2.5.

Over time, organisms that are better suited to the environment evolve from the
initial (ancestor) program. All that remains is the specification of an environment
such that specific tasks not directly useful to self-reproduction are selected for. This is
achieved by altering the tsme slice, or amount of time apportioned to each processor,
and is described in Section 2.2.

While avida is clearly a genetic algorithm (GA) variation (to which all evolution-
ary systems with a genetic coding can be reduced), the presence of a computationally
(Turing) complete genetic basis differentiates it from traditional genetic algorithms.
In addition, selection in avida more closely resembles natural selection than most GA
mechanisms; this is a result of the implicit (and dynamic) co-evolutionary fitness land-
scape automatically created by the reproductive requirement. This co-evolutionary
pressure classifies avida as an auto-adaptive system, as opposed to standard genetic
algorithm (or adaptive) systems, in which the organisms have no interaction with each
other. Overall, avida is an evolutionary system that is easy to study quantitatively
yet maintains the hallmark complexity of living systems, as described in Chapter 3.

For all of the experiments presented here, co-evolution has been minimized, both
by providing only a single niche, and by disallowing any direct interactions between
organisms (such as parasitism). The reason for this is so that we can first understand
the simplest of living systems before we attempt to unfold the emergent properties

when multiple niches interact.

14
2.2 Time Slicing in an Artificial Chemistry

Time slicing is the method by which the organisms in an avida population are allo-
cated CPU time to execute their code. Some of these organisms have faster CPUs
than others, so the time slicing algorithm must make sure they are executed at the
appropriate (relative) rates. The CPUs can be run either synchronously or asyn-
chronously, closely approximating actual parallel machines. The closeness of this
approximation depends largely on the granularity, or simplicity, of the instruction
set. If a single instruction has a large effect on the surrounding environment, it will
be correspondingly harder to approximate parallel execution using an asynchronous
update technique. Each organism has a merit that determines the speed of its CPU;

avida will adjust this merit as specified tasks are performed.

2.2.1 Time Slicing

The mechanism by which portions (or slices) of CPU time are distributed to the
individual organisms significantly influences the global behavior of the population;
here I examine these effects.

Two considerations go into the allocation of CPU time to the digital organisms in
avida: the external bonus structure and the underlying system of CPU-time distribu-
tion that describe the low-level aspects of the virtual chemistry we are constructing.
To define the time slicer, we must first decide how much time an organism should be
“worth” by default (i.e., before the outcome of the string’s execution is considered).

A simple choice would be to give all strings a constant time slice regardless of its
features (most notably, its length). This is the primary mechanism used in the tierra
system. With such a choice, each organism will attempt to minimize the length of its
genome by shedding superfluous instructions, since gestation time is roughly linear in
the length of the genome in such cases. The advantage gained by shrinking the code
can be so dramatic, however, that programs often shed sections of code that trigger
moderate bonuses. Such a method provides for efficient optimization, but discourages

the evolution of complex code by magnifying the barrier to neighboring local optima

15
in the fitness landscape. As far as the structure of the fitness landscape for the strings
1s concerned, such a slicer increases the local slopes and thus accelerates convergence
to a local energy optimum while reducing ergodicity.

Another possibility is to distribute CPU time in a manner proportional to the
length of the code. This is the size-neutral regime also available in tierra. The resulting
fitness landscape is intuitively smoother; strings that behave in the same way but
differ in length of code are degenerate as far as their replication rate is concerned and
far-lying regions in genotype-space can be accessed easily. Clearly this mechanism is
more conducive to the evolution of complexity. However, it has a certain disadvantage
from a practical perspective, as the instruction set provides the possibility to jump
over sections of code, leaving them unexecuted. The organisms soon discover that
they can “earn” CPU time by developing code that is neither executed, nor accurately
copied into their offspring. This does not exist in real chemistry, as even DNA that
is not expressed still participates in chemical interactions.

I developed a mechanism (similar to the one used by Adami in tierra) that counts
only those instructions that both are copied into the genome and are executed by
the organism’s CPU, when evaluating an organism’s effective length. Under these
conditions, lean programs are favored over those that carry sections of unexecuted,
uncopied code.

The slicers discussed here can be distinguished by a simple formula that describes
the mechanism. Specifically, the time doled out (allocated) to each organism a priori
1s proportional to that organism’s merit, where merit is determined by the effective
genome length times any bonuses given to the organism through its interaction with
the environment. This multiplication (as compared to the method of addition of
bonuses used in previous incarnations of avida and in tierra) serves to ensure that
there is no size bias in evolution. In the case where bonuses are additive, they soon

overshadow the size component of merit thus returning to the constant time-slice

paradigm.

16
2.2.2 Carving a Landscape

Since the time slicer defines the landscape (and thus the “physics” and artificial
chemistry) associated with self-replication, we can superimpose any landscape we
deem interesting. This is done by specifying bonus CPU time associated with the
phenotype of the string. By rewarding actions rather than a particular sequence of
commands within a genotype, we introduce the possibility for open-ended evolution.
As the set of possible strings that have the same phenotype is effectively infinite (as-
suming no bounds are put on the length of strings), it is impossible to construct a
string with maximum fitness given a sufficiently complex environment. The complex-
ity of the landscape (here identified roughly as proportional to the number of distinct
local optima) increases exponentially with the number of bonuses specified, as they
can in principle be triggered simultaneously and in any order (often integrated so
precisely that the same section of code will make progress on multiple tasks at once).
For example, consider the landscape constructed such that the adapted population
reflects a phenotype capable of adding integer numbers.

As a first step, any form of input or output is rewarded. Next, a connection
between inputs and outputs is rewarded: the capability to echo numbers from the
input, directly to the output. Finally, if the organism writes into the output a number
that is the sum of two previously read inputs, the string is rewarded with another
bonus. Each of these rewards can be triggered multiple times each gestation period
(typically to a maximum of three). By default, the bonuses multiply the organism’s
merit by a specified factor the first time they are triggered, while only multiplying
them by a smaller fixed factor (1.05) thereafter. This is both to encourage diversity
in ability, and because it is typically easier to perform a task multiple times than it
was to learn it initially.

How such a bonus structure carves a landscape in the space of all fitness improve-
ments becomes obvious (or at least intuitive) if we analyze the population shortly
after it has adapted to the echo bonus. At that point, strings that are mutations of

the wild-type write all sorts of numbers, obtained via random manipulations, into the

17

output. Among those we find sums, differences and multiples of the input numbers.
The gene for addition is simply filtered out by rewarding that particular task out
of all those currently being performed (no matter how poorly), and then optimized
through time. Any other task can be filtered in the same manner. Quite literally,
rewarding addition creates a “fitness valley” that only those organisms with the ap-
propriate gene can occupy. Since organisms in the lower regions of the landscape
obtain more offspring than those higher up, they soon dominate the population and
drive strings missing the gene into extinction. Once this is achieved, the adapted pop-
ulation spreads in diversity via the effects of mutation, to explore new regions of the
landscape where more crevices may be found. Such a sequence of adaptations results
in a fitness curve resembling a staircase, which can be a true fractal for environments
of high complexity. Additionally, these learning events give rise to the propagation
of information, and to Fisher waves [17] whose diffusion coefficients can be calculated
exactly given the competitive advantage the new genotype received from its beneficial
mutations.

Addition is an example of a particularly simple task for these organisms to per-
form. The default environment in avida selects for 80 tasks in all. Two of these are
the trivial rewards for input and output. The remaining 78 are for the computation
of bitwise logical operations, using only the nand instruction they are supplied with.
The inputs they receive are 32-bit integers; for an output to trigger a bonus, all 32
bits must consistently represent a single logical function. There are 2 tasks rewarded
that require a single input (ECHO and NOT), 8 two-input tasks (AND, OR, NAND,
NOR, -A AND B, —-A OR B, XOR, and EQUALS) and 68 requiring three inputs.

Although nand is the only operation the organisms have in their instruction set, it
is sufficient for constructing any logical function. Additionally, as evolution develops
the simpler (typically one- and two-input) tasks first, they are made use of as partial
results in more complex formulas.

The successful computation of any of these logical operations can be viewed as
beneficial metabolic chemical reactions that speed-up the virtual CPU accordingly;

more complex tasks result in larger speed-ups. If the task is performed efficiently, the

18
corresponding speed increase is more than the time expended to perform the task,

and the net effect is an increase in the replication rate of the organism.

2.2.3 Fitness

The fitness (w) of an organism in such simple digital systems is given by the expected
number of offspring it can generate in its environment. This is closely approximated
by the merit M earned by the organism divided by the time it takes to generate an

offspring (the gestation time, t,):

(2.1)

]
9
This fitness measurement can be directly compared to the fitness of any other organ-
ism to determine their relative reproduction speeds. If one organism has twice the
fitness of another, then it will be able to have twice the number of offspring per unit

time.

In practice, there is quite a bit more to measuring the fitness of an organism than
simply its expected number of offspring. The main additional factor that we must
take into account is the ability for that organism to faithfully transmit its genetic
information into the next generation. This analytical study of selective pressures in
evolution is explored further as the topic of Section 3.6. For the moment, the above
formula will be used as a good approximation of the true fitness of an organism.

Fitness improvements come in two forms: the maximization of CPU speed by task
completion, and the minimization of gestation time. As all tasks must be computed
each gestation cycle to maintain a reward, this gestation time minimization includes
the optimization of task completion in addition to speed-ups in the main replication

process.

19
2.2.4 Time Slicing Algorithms

Time slicing algorithms handle the details of population execution; they ensure that
organisms are executed with simulated parallelism to minimize any advantage depen-
dent on execution order that might occur.

This system also provides a method of time-keeping independent of lattice size:
the update. An update is defined as the time it takes an average CPU to execute
30 instructions. The entire population is executed during each update, with the
time slicer partitioning CPU executions such that the average cycles per organism
remains constant. Additionally, many of the algorithms provide a natural interface
to distribute the avida system across multiple processors.

There are four main time-slicing algorithms implemented in avida. They are

e Constant: All CPUs receive the same execution time, independent of merit.
This encourages shrinking, and removes all incentive to learn environmental
tasks (unless merit is taken into account in the maximum age limits of offspring—
see Section 2.3). CPU time is doled out evenly such that each organism executes

a single instruction before any execute their second.

e Block: CPUs are allocated a block of execution time such that the size of
each time-slice block is proportional to the organism’s merit. The CPUs are
executed in sequence for their entire block, as is the case in tierra. This method

is available only for compatibility of experiments between systems.

e Probabilistic: Instructions are executed in a semi-random fashion, such that
the probability of a single organism having an instruction executed is propor-
tional to that organism’s merit. Thus, on average, each program obtains CPU
time that is proportional to its merit. This method has the most realistic “feel”
to it, but the random component slows adaptation, and the constant use of the

random number generator makes avida as a whole run slower.

e Integrated: This is the default slicing method in avida, used in all experiments

unless otherwise stated. It has each CPU execute a single instruction at a time

20
in a deterministic fashion such that the relative speeds of the individual CPUs
are proportional to the merit of the corresponding organism. Effectively, this
comes as close to a perfectly synchronous parallel execution as mathematically

possible.

2.3 Reproduction

The process of replication dominates the dynamics of the avida system. Here, I
present an overview of the method by which programs reproduce, and I discuss their

implementation.

Reproduction in avida is typically performed in four distinct phases:

1. Allocation of new memory at the end of the program’s code (elongation).

2. Copying of the parent genome into the new memory, instruction by instruction.
3. Division of the program into parent and child programs.

4. Placement of the child program into the lattice.

The first three steps are implemented in the instruction set (and are thus the
responsibility of the individual organism), while the fourth process is automatically
handled by the environment when a successful division occurs.

In a correctly replicating program (see the example program in Section 2.4), the
size of the allocated memory is the program’s length (doubling the total memory
from its original size), with division occurring at its midpoint at the end of the
copying process. In principle, there is no reason that a program could not use a
different method (such as tripling its size, and making two copies of itself, or creating
a self-extracting smaller program); however, the instruction set (and the handwritten
ancestor) bias the products of evolution toward the first method.

Placement of offspring is done in a localized manner; the child-program can only be
placed within the immediate neighborhood of the parent’s location (the eight nearest

grid positions on a 2-D lattice).

21
The process of placement is entirely a function of the environment; as soon as
a successful division occurs, the offspring is automatically placed in a manner de-
termined during the configuration of the experiment. If there are any empty sites
available, they will always have priority. If none of the eight immediate cells con-
nected to the parent are vacant, the following mechanisms are in place for removing

one of the surrounding organisms (or the parent itself):

e Choose Randomly: an organism is chosen at random from the parent and
its eight neighbors. This method is poor for evolution because approximately
half of the organisms will be replaced before producing their first offspring, and

hence will not have been properly evaluated [6].

e Choose Eldest: this is the default method in avida. The oldest organism in

the neighborhood around the parent (including the parent itself) is removed.

e Choose max [Age/Merit]: this placement method favors organisms with a
higher merit, and is an additional way to encourage specific tasks to be learned.
Combining this birth method with the constant time-slicing scheme causes or-
ganisms to be selected for by increased life span (as opposed to enhanced CPU

speed).

e Choose Empty: this is a limited birth method that is useful only when or-
ganism death® is activated. In this mode, organisms are prevented from killing

each other, and new offspring are placed only into empty locations.

2.4 The Virtual Computer

The virtual computers implemented in avida each consist of a central processing unit
(CPU) operating on a memory space of commands from a specialized instruction set.
These components define the low-level behavior of each program; the CPU and the

instruction set together form the hardware of a universal computer.

!Organisms can be assigned a maximum number of executions, which, when reached, will cause
them to be removed from the population.

22
When a genome is loaded into the memory (as the software) of a CPU, the initial
state of the universal computer is set. The hardware, combined with the interaction

with other CPUs, then governs the set of transitions between CPU states.

2.4.1 The CPU Structure

The CPU consists of the following set of components, as shown in Fig. 2.4.1.

e A memory that contains the assembly source code to be executed. Each lo-
cation in memory contains a single instruction, and a set of flags to denote if
the instruction has ever been executed, copied, mutated, etc. This memory is
associated with an instruction pointer (IP) that indicates the next position to

be executed.

e Three registers that contain arbitrary 32-bit values and are operated upon by

most instructions.

e Two stacks that are used for storage. These are of variable (though finite) size.

The default limit on stack size is 10 numbers.

o An input buffer and an output buffer used by the organisms to receive informa-

tion, and return the processed results to the environment.

e A facing that determines which of the CPU’s neighbors it is currently pointing
toward. Those instructions that require interaction with other organisms use

this facing to determine which neighbor to affect.

The memory of each CPU is circular, as is the genome in most bacteria and
viruses. As a consequence, the instruction pointer never leaves the local organism
unless it is forced to by explicit command (see the jump-p command below). This
has a consequence of making parasitism more difficult to develop, but does add a

higher level of biological realism to the process.

allocate
push
nop-B

Stacks
nop-C
copy

nc

Genome

Figure 2.1: Structure of the virtual CPU in avida. The CPU operates on three
registers (cyan), two stacks (green), and an instruction pointer (pink). Input and
output from and to the environment is achieved via dedicated I/O buffers (yellow).

2.4.2 The Instruction Set Implementation

The instruction set in avida is loaded on startup from a configuration file allowing
selection of different instructions without recompilation. These sets were designed

with three goals in mind:

e To be as complete as possible; both in a Turing complete sense, and, more
practically, to ensure that simple operations require only a few instructions to

perform.

e For each instruction to be as robust and versatile as possible in all situations.
Instructions should take an appropriate action any time they are executed, and

gracefully handle those error conditions that do remain.

@ Th have minimal rediundaneyv hatwean inetrietinneg

24

One concept that differentiates this assembly language from its real-world coun-
terparts is in the unconventional uses of nops (no-operation commands). They have
no effect on the CPU when executed, but may modify the behavior of an instruc-
tion that precedes them. This occurs in two ways; most of the time it will change
the register affected by a command. For example, an inc command followed by
the instruction nop-A would increment the contents of the AX register, while an inc
command followed by a nop-B would increment BX.

Below, whenever a register name is surrounded by ?’s in an instruction description,
it is the default register to be used. If a nop follows the command, the register it
represents will replace this default.

The second way nops can be used is as labels (reference points, or templates) for
a search or a jump as in tierra. If nop-A follows a jump-forward command, it scans
forward for the first complementary label (nop-B) and moves the instruction pointer
there. Labels may be composed of more than a single nop instruction.

The label system used in avida allows for an arbitrary number of different nops.
By default, we have three nop instructions, nop-A’s complement is nop-B, nop-B’s is
nop-C, and nop-C’s is nop-A.

Below is a description of all of the 28 default instructions implemented in avida,
followed by a limited collection of instructions used in specific projects. Hundreds of
instructions are implemented from which the researcher may choose to assemble an
appropriate set for their project, but here I only present those that will be used in

work related to this thesis.

No-operations

There are three nops in the default instruction set:

1-3 Inop—A ’, lnop—B ’, and

25

Flow control operations

4

5

10

: If the 7BX? register does not equal its complement register, execute

the next instruction, otherwise skip it. (Thus a nop-A following this command
causes AX and BX to be compared; nop-B—the default—compares BX and CX,

and finally, a nop-C compares CX and AX).

: Execute the next instruction only if the ?BX? register is less than

its complement register, otherwise skip it.

: Execute the next instruction only if the last bit of ?BX? is one.

‘ jump—bl and ‘jump—fl : If a label follows, search for its complement in the

backwards/forwards direction; if a match is found, jump to it. If there is no
label, jump by BX instructions in the proper direction. If there is a label, but

its complement is not found, the jump will fail.

: Put the location of the next instruction on the active stack, and jump

forward to the complement of the label which follows. If there is no label, jump

BX instructions.

: Pop the top value from the active stack and jump to that index in

the organism’s memory.

Single argument math operations

11-12

13-14

15-16

17

[shift-r|and |shift-1]|: Rotate the bits of the ?BX? register in the appropriate

(right or left) direction.

linc]and |dec|: Increment or decrement ?BX?.

push | and [pop|: Push ?BX? onto the active stack or pop the stack into ?BX?.

: Toggle the active stack to be used by instructions.

26

Double argument math operations

18 : Set 7BX? to the sum of the BX and the CX registers : ?BX? = BX+ CX.
19 : ?BX? = BX - CX.
20 : ?BX?= BX NAND CX (in a bitwise fashion).

21 : Swap the contents of 7BX? with its complement register.

“Biological” operations

22 : Allocate ?BX? instructions at the end of the memory for this
CPU and return the start location of this memory into AX. Only one allocate
may occur between successful divides; any additional ones will automatically

fail. Not more than twice or less than half of the current memory size can

successfully be allocated.

23 : Split the memory in this CPU at 7AX?, placing the instructions

beyond the dividing point into a new site. There are a number of conditions

under which a divide will fail. Those are:

(a) If either the parent or the offspring would have less than 10 instructions.
(b) If the organism has not completed a successful allocation of memory.

If less than 50 percent of the parent was executed.

)

()

(d) If less than 50 percent of the offspring’s memory was copied into.

(e) If the offspring would be less than half or more than double the parent’s

size.

24 : Copy a command from the memory location pointed to by the BX
register to the memory location pointed to by AX + BX, i.e., copy the instruction
at location BX into a location offset by AX. If a location is out of range of the

memory, then it will be cycled back into range.

27

I/0 and sensory operations

25 : Place the next value from the input buffer into ?CX?.

26 : Place 7BX? into the output buffer and set the register used to 0. Avida

will analyze this output (with respect to the values the organism has input) to

determine if a merit bonus is warranted.

27-28 |search-f |and | search-b|: Search in the appropriate direction for the comple-

ment label and return its distance from the current IP position. The returned
value is placed in the BX register, and the size of the label that followed is put

in CX. If a complement label is not found, a distance of 0 is returned.

Additional instructions

These instructions are all used to test specific aspects of evolution, and are not in the

default avida instruction set.

° : A pure no-operation instruction. It will do nothing when executed,
and will not modify the execution of other instructions in any way. This instruc-
tion is used to test the functionality of specific portions of code (by replacing
them with a nop-X and testing the change that has occurred) and to test the
ability of organisms to withstand insertion mutations (other inserted instruc-

tions may cause side-effects that obscure the results).
. : Copy a command from memory at BX into the CX register.

. : Copy a command from the CX register into the memory location at
AX + BX.

o : Only execute the next line if the contents of memory locations BX

and AX + BX are identical; otherwise skip it. This command has an error rate

equal to the copy mutation rate. (It can be used to do error checking).

28
° : Place BX and CX in the proper order, i.e., such that CX > BX.

o : Jump into the memory of another CPU, decided by the current

facing. Jump to the position in the faced organism at an instruction after the
first occurrence of the complement label being searched for. If no complement
label can be found, this instruction fails. If no label is initially provided to the
instruction, the IP (instruction pointer) will move to line BX in the faced CPU’s
memory. An organism’s I[P may only move to an immediate neighbor and no

further (local interactions only).

e |[rotate-1]and [rotate-r|: Rotate the current facing of the CPU in the ap-

propriate direction.

2.4.3 An Example Program

Table 2.4.3 describes one of the simpler organisms distributed with avida. Due to
its efficiency at self-replication, this organism is not well suited as an ancestor for
adaptation experiments: it has a low degree of neutrality and will often become stuck
in local optima.

This simple program contains two label pairs (c, &) and (3, (), one for the
purpose of calculating the genome length, and the other for the implementation of
a copy loop. Execution commences as the search~f followed by label « searches
forward in the genome for its complement &, and returns its distance (from the end
of the first label to the end of the second) into the BX register, as well as the size
of the label itself into CX. The program then adds CX to the BX register, to account
for the length of the label itself, and finally increments BX to account for the single
(search-f) instruction before the first label. The program now has its own length
in BX. When the instruction on line 5 (allocate) is called, the memory is doubled in
length and the absolute address of the new chunk of memory is put in AX. Now, AX
contains the offset of the newly allocated section, and BX contains the length of the

genome (which, if an organism is copying itself properly, will always be the same).

29
Lines 6 through 11 move the length of the genome (via the stack) into the CX register,

and sets BX to zero.

Table 2.1: An example avida genome.
00 search-f find distance to the end label
01 nop-A label o

02 nop-A
03 add account for the end label’s size
04 inc account for the initial search-f

05 allocate allocate space for offspring
06 push move length from BX onto the stack

07 nop-B

08 pop move length off of the stack into CX
09 nop-C

10 pop since the stack is empty, pop 0 into BX
11 nop-B label 8 (Copy Loop start)

12 nop-C

13 copy copy the current line...

14 inc move onto the next line

15 if-n-equ if we aren’t done copying...

16 jump-b ...jump back to the loop’s beginning
17 nop-A label g

18 nop-B

19 divide done copying; separate the offspring
20 nop-B label &

21 nop-B

The copy loop follows. It starts by copying from line BX and uses BX + AX as
the destination. Initially, BX is 0 and AX is the size (22). This means the first time
through the copy loop, line 0 is copied to line 22 (the first line in the newly allocated
memory). Then line 14 is executed and BX is incremented. Finally, if-n-equ tests to
see if whether BX and CX are different, and jumps back to the beginning of the loop
if this is the case. The loop will continue (copying a new line each time) until BX
equals CX and hence all the lines have been copied. Finally, the divide instruction is
reached.

The divide instruction partitions the memory at the offset specified in the AX

register, creating distinct parent and child genomes. The offspring is placed in a

30
neighboring location (the mechanism of which is described in Section 2.3). At the end
of the program, the instruction pointer is automatically looped back to the beginning.
Table 2.4.3 contains a trace of the execution of the program, with the values of

the registers and stack at each moment in time.

Table 2.2: The trace of a sample genome execution.
line instruction AX BX CX stack comments

00 search-f 0 19 2

03 add 0 21 2

04 inc 0 22 2 We have genome length!
05 allocate 22 22 2 Allocate space

06 push 22 22 2 22 push BX onto the stack
08 pop 22 22 22 pop CX

10 ~ pop 22 0 22 pop BX

12 nop-C 22 0 22 No-Operation

13 copy 22 0 22 Copy line 0...

14 inc 22 1 22

15 if-n-equ 22 1 22

16 jump-b 22 1 22 ... to start of loop
13 copy 22 1 22 Copy line 1...

14 inc 22 2 22

15 if-n-equ 22 2 22

16 jump-b 22 2 22 ...to start of loop
13 copy 22 2 22 Copy line 2...

13 copy 22 21 22 Copy line 21..

14 inc 22 22 22

15 if-n-equ 22 22 22

17 nop-A 22 22 22

18 nop-B 22 22 22

19 divide 22 22 22 Divided!

20 nop-B 22 22 22

21 nop-B 22 22 22

For this program, the gestation time (the number of instructions required to re-
produce) varies between 98 and 100 instructions. The first time through requires 98
instructions: the portion before the copy loop consists of 8 executed instructions; the
copy loop contains another 4 instructions that are each executed 22 times, except for

the last time the copy loop is executed, when the last jump-b is skipped over; from

31
there it is another 3 instructions until the divide is issued. So, 84(4x22—1)+3 = 98.
However, the second time through, an additional 2 instructions are executed because
of the « label after the divide instruction, and a gestation time of 100, rather than

98, is averaged into the genotype record.

2.5 Mutations

Avida has a range of both explicit and implicit mutations. Five forms of explicit
mutations have been implemented.

There are three intuitive methods by which mutations can be triggered in avida.
The first is the cosmic-ray or point mutation, which is generated by an external
random process independent of the action of the organism—they hit randomly chosen
loci in the population at Poisson-randomly distributed times (thus, the time between
point mutations is exponentially distributed, with the average time being the inverse
of the mutation rate). Next there are copy mutations, which can occur whenever a
program tries to copy a line. There is a small probability (fixed by the user) that a
copy command will result in a random instruction instead of the instruction intended.
Finally there are divide mutations, which occur during the birth of an offspring with
a fixed probability. During a divide, a probability can also be set for a single insertion
or deletion to occur at a random position in the code.

In all experiments presented in this thesis, the primary type of these explicit
mutations are copy mutations. They are used most in avida experiments as they are
the most prevalent in natural biological systems. Additionally, we maintain a low
level of divide insertions and deletions so that genome length is not fixed. By default,
the copy mutation rate in all experiments has been set to 0.0075/copy, and both
divide insertions and deletions are set at 0.05/divide.

Naturally, the rates for all these mutations must be below a certain threshold to
avoid killing the population, while a rate that is too low reduces variation, slowing

evolution to a crawl ([4], p.265-296).

It is also important to note that each form of mutations has rates that are ex-

32
pressed in their own units. Copy mutations are specified per instruction copied, point
mutations are per-site per-update, and divide mutations are per-offspring. What this
means is that for the former two, longer genomes stand a higher probability of being
mutated, inherently placing a selective pressure on the population to decrease genome
length. On the other hand, organisms typically survive a single divide mutation better
if they are longer, and therefore apply a slight pressure for genome growth.

Implicit mutations in avida involve mistakes (due to incomplete or faulty algo-
rithms) committed in the act of self-copying, usually instigated by code that was
corrupted by explicit mutations. There are a wide assortment of these, many of
which have not been categorized due to the ability of life to always find new and
surprising methods of operation.

A common form of implicit mutations is the duplication of code within a genome;
sometimes the flow of execution will be distorted such that a section of the genome
will be replicated multiple times within a single offspring. Interestingly, this has
an analog in the biochemical code where repeated DNA sequences are abundant. A
second (similar) form occurs when an organism only partially copies itself over a dead
code fragment that previously occupied the CPU. In this manner, the two genomes
(old and new) are effectively merged into a single one—a form of recombination that
is disabled by default in avida. Other implicit mechanisms are possible. As a result of
these, the effective copy-fidelity of a program can be significantly different from the

one calculated with mutation rates alone.

2.6 Research with Avida

The avida system was designed to maximize flexibility, speed, and accuracy in order
to be a versatile research platform. In addition to the characteristics discussed above
(mutation rates, time-slicing mechanism, tasks, and instruction sets), the following
features exist:

Clones: At any time during an experiment, the entire population can be stored

on disk for later continuation, or to place into a variety of new environments in order

33
to study evolutionary dynamics from a well-equilibrated starting point.

Connectivity: The layout of the environment that the digital organisms evolve
in is central to the course and dynamics of evolution. In avida, this is by default a
lattice (equivalent to biological experiments using a Petri dish), but can have any
other connectivity including a fully connected (well-stirred) environment.

Events: A full range of events exist in avida that can be set to occur at any time
in an experiment. These events include changing most primary characteristics of an
experiment (tasks, mutation rates, etc.), collection of specific data (i.e., recording
the landscape of the dominant genotype, or analyzing the per-site entropy across the
population), or one-time events, such as killing a fraction of the population in an
“apocalyptic” event.

Gene Surgery: The researcher has complete control over the state of genomes
in avida, and can either set an event or manually (via the user interface) modify the
genetic code of any organism in the population.

Injection: New organisms can be introduced to an active population at any time
to study the effects of invasion of specific organisms. One common experiment involves
injecting parasites into a population to study the resulting effects (with parasite mode
turned on).

Phylogenetic Trees: The complete phylogeny of an experiment can be recorded
along with the genotypes and species of every organism that has ever existed. This
allows a researcher to reconstruct a history of the genealogical relationships and un-
derstand the impact of evolutionary transitions on the structure of the phylogenetic
trees.

User Interface: Avida has a detailed user interface that allows a researcher to
observe the metabolic state of the average and the dominant organism, or even modify
the experiment as it progresses. The lattice can be viewed to determine the geograph-
ical distribution of many features, histograms of genotype and species abundance are
available, statistics can be observed, and configurations can be modified. Researchers
can even monitor the CPU state of a specific organism as they step through the

execution of its genome (one instruction at a time) to understand how it functions.

RY1
The main configuration files to set some of these conditions are described in Ap-

pendix A.

2.7 Basic Analysis Metrics

In this section, I discuss the dynamics of a typical avida experiment. There are a
number of basic metrics that are used to study the course of evolution.

Genome Length (£) is an obvious statistic to consider. Figure 2.2(A) displays
the progression of length for both the average and dominant genotypes. As evolu-
tion incorporates new computations into the genomes, more information storage is

required. As such, we witness regular increases in genome length through time.

Figure 2.2: Statistics from a typical avida experiment. Measurements for (A) Genome
Length and (B) Fidelity are displayed for both the dominant (dots) and average (solid
line) genotype, throughout the course of evolution over 50,000 updates.

180 T T T T T T T T T

—t b
A O
o O

-
Q
o

Genome Length
N
o

0]
o

[2]
(@]

2 25 3 35 4 45 5
Updates [x10%]

o
o
n
-t
—h
o

o
o

Fidelity
o o
H [¢)]

o
(&)

2 25 3 3.5 4 4.5 5
Updates [x1 04]

o

(V)
o
oL
o
A
——t
o1

35
Fidelity (F') is the probability for an organism to produce an offspring perfectly
identical to itself, (i.e., the probability that the offspring is unaffected by mutations

during the replication process). For a copy-mutation probability R, per line copied,
F=(1-R,)". (2.2)

If other explicit mutations are active, the fidelity can be calculated as the product of
probabilities for each mutation not occurring. In an adapting population, other factors
can affect the fidelity and lead to low-fidelity organisms even while the theoretical
fidelity is high. One such example would be a sub-optimal replication algorithm.
Conversely, the development of error-correction techniques could increase the actual
fidelity beyond the value predicted in the above formula.

Mutation probabilities are fixed for all experiments examined here, making fidelity
a function of genome length only, and thus varying accordingly in Figure 2.2(B).
Longer genomes present a larger target for mutations, and are therefore more difficult
to replicate faithfully.

Gestation Time (,) is the number of instructions an organism must execute to
produce a single offspring. This counts both the execution time spent performing all
computations, in addition to the replication of the actual genome. As the gestation
time tends to be dominated by replication (typically taking four instructions executed
to copy a single line), this statistic usually remains proportional to genome length, as
demonstrated in Figure 2.3(A). Any gestation time fluctuation that is not correlated
to a length change implies an algorithmic re-organization involving a shift in the
number of executions of pre-existing code. This effect can be seen at updates 16,000
and 28,000 in this sample experiment.

Merit (M) represents the relative rate at which the individual CPUs execute
instructions. As bonuses increase the merit multiplicatively, merit is displayed on a
logarithmic scale in Figure 2.3(B).

Note that gestation time grows over the course of evolution, despite the negative

impact on replication speed. Any such gestation time increase must be compensated

36

Figure 2.3: Statistics from a typical avida experiment. Measurements for (A) Ges-
tation Time and (B) Merit are displayed for both the dominant (dots) and average
(line) genotype, throughout the course of evolution over 50,000 updates.

2000 T § I T 1] 1 i 1

-
6}
Q
o

Gestation Time
)
(=]
o

0 0.5 1 1.5 2 25 3 35 4 45 5
Updates [x1 04]

10 1 i T i 1 1 1 T 1

Merit

0 1 1 I 1

0 0.5 1 1.5 2 25 3 35 4 45 5
Updates [x1 04]

by at least a commensurate increase in merit. In practice, gestation time grows
linearly while merit grows exponentially, causing the latter to dominate the adaptation
dynamics.

Fitness (w), as previously described in Part 2.2.3, is the replication rate of a
genome, approximately given by w = M/t,. Figure 2.4 shows a typical temporal
history for fitness. We see both periods of gradual fitness growth (witness updates
16,000 through 25,000) as well as sharp punctuations (for example, update 25,000).

Each jump in fitness represents a major learning event, typically involving a signif-
icant change in genome structure. Often, a period follows in which these changes are
fine-tuned, as an optimization of tasks is performed; each generation only producing

incremental improvements. While individual trials will vary in the specific tasks that

37

Figure 2.4: Statistics from a typical avida experiment. Measurements for Fitness are
displayed for both the dominant (dots) and average (line) genotype, throughout the
course of evolution over 50,000 updates.

104 1 i 1 Ll 4 Ll 1 1 1 |

Fitness

0 05 1 15 2 25 3 35 4 45 5
Updates [x10%]

are learned, they all exhibit a similar pattern of fitness increases.

Other significant features of an avida experiment include the count and diversity
of genotypes present in the population.

Genotype count (V,) is the number of unique encodings found in the population,
displayed in Figure 2.5(A). As genome lengths increase, so too does the variety of
sequences found in the population. In this sample experiment, the high genotype
count is mostly due to a dominant genotype (wild type) with a long genome, which
is thereby affected by more mutations. Note the correlation between genotype count
and genotype length.

Threshold count (%V;) is an approximation (lower bound) of the number of lving
genotypes in a population. A genotype is labeled as threshold if ever its abundance
reaches three or more, as it is unlikely to observe that many copies of an organism
if it cannot properly survive in this environment. Figure 2.5(B) shows the threshold
count for our sample experiment. Note that as the total number of genotypes in the
population increases, fewer of them ever reach threshold.

Genotype Entropy (H) is a measurement of the variation in the organisms

in a population. Technically, entropy is a measure used to determine the disorder

38

Figure 2.5: Statistics from a typical avida experiment. Measurements for (A) Geno-
type Count and (B) Threshold Count are displayed throughout the course of evolution
over 50,000 updates.

3500 T T T T T T T T T

Genotype Count
w
o
(@]
o

1 1 1 1

2500 1 1 1 1]
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Updates [x1 04]

400 T T ¥ T T T 1 T T

300 .

200 §

Threshold Count

0 I 1 1 1 1 1 1
0 0.5 1 1.5 2 25 3 3.5 4 4.5 5

Updates [x10%]

in a system, according to Shannon Information Theory [63]. For this measure, the
probability of occurrence of a single genotype ¢ in the population, p;, is approximated

by n;/N:
H=-Y —tlog— (2.3)

where n; is the current abundance of genotype 7 and N is the total number of organ-
isms in the population. This statistic is shown in Figure 2.6(A).
Average Inferiority ((Z)) is a measure that determines how much worse the

average organism is than the genotype that is currently dominating the population [3].

39

Figure 2.6: Statistics from a typical avida experiment. Measurements for (A) Geno-
type Entropy and (B) Average Inferiority are displayed throughout the course of
evolution over 50,000 updates.

8.1 T T T T T T T T T

(o]

Genotype Entropy
\‘
«©

7.8
7.7 1 1 1 1 1 1 1 1 1
0 0.5 1 1.5 2 25 3 3.5 4 4.5 5
Updates [x104]
15 T T T T T T T T T

—h
T

Average Inferiority
o
o ($]

1 1 i 1] |

0.5 1 1.5 2 25 3 3.5 4 45 5
Updates [x104]

|
o
a

Each individual organism’s inferiority (Z;) is measured as
Z; = log(wqom) — log(w;) - (2.4)

Note in Figure 2.6(B) that when a new genotype begins to dominate the population,
this is reflected by a downward then upward spike in average inferiority that gradually
settles down as this new genotype becomes pervasive. This metric is often referred
to as energy due to its correlation with the statistical mechanics measurement.

80 Tasks are available in the default avida environment for the organisms to
incorporate into their genome. Each experiment will follow its own course as different

tasks are acquired; typically between 20 and 30 are performed by each organism after

40

50,000 updates. In this sample experiment (whose tasks are displayed in Figure 2.7)

the organisms have learned 27 of the available tasks before the experiment was halted.

Figure 2.7: Statistics from a typical avida experiment. Performance of the 80 awarded
tasks is displayed throughout the course of evolution over 50,000 updates. Each hor-
izontal line represents a single task: black indicates tasks never performed, dark gray
are performed once by most organisms, and brighter shades are performed multiple
times.

Task Number
A o
S S

[\®]
o

0 1 2 3 4 5
Updates [de]

2.8 Analysis Tools

The experimental observables detailed in the previous section provide a solid basis for
understanding the course of evolution in a population. However, many measurements
are not as easily extracted simply by monitoring the actions of the organisms. To

this end, I have assembled a collection of tools to further analyze avida experiments.

2.8.1 Test CPUs

All of the analysis tools in avida require the ability to study the behavior of an
organism in isolation. I have constructed test CPUs that load a genome, process it
to determine if it is viable and what tasks it can perform, and record its metabolical
statistics involved without ever affecting the population from whence it came. Of

course any organism that interacts with other organisms in its environment (such as

41
a parasite) cannot be studied in this way; most of this work is done excluding these
possibilities.

Determining if an organism is viable is not a simple process. An organism is
viable if it is “colony-forming”; that is, if it is able to produce a stable colony when
introduced into a new environment. In the simplest form, this is an organism that
can produce at least two identical copies of itself through reproduction.

One immediate use for these isolated CPUs is to collect statistics on any organism
that we are extracting from the population (see Appendix B for examples of extracted
organisms). More sophisticated uses include studying products of gene-surgery that
we do not want to place into the population itself. Sections 2.8.2 and 2.8.3 exploit

test CPUs in this manner.

2.8.2 Species

Up until this point, organisms in avida have been classified and studied on the basis
of their genotype. That is, only if two organisms have identical genomes are their
functionality considered together, in the form of genotypic statistics. However, from a
biological perspective, we are interested in grouping organisms that have functionally
and organizationally equivalent (though not identical) genomes, such that if they were
to be recombined they would produce an “offspring” with identical functionality.

In Biology, it is quite difficult to classify asexual organisms in terms of species
as sexual recombination rarely (if ever) occurs. However, we are not bound by such
restrictions in digital organisms—if we want to know if two organisms can produce
a successful offspring by the crossover of their genomes, we can construct and test
such a hybrid in an isolated test CPU. In fact, we can test all possible recombinations
between the two genomes. We line them up next to each other for the best possible
match, and then move from one point to the next trying both possible recombinations
for that crossover point.

In effect, this technique isolates those genotypes that differ only in non-functional

regions of their code. If such non-coding portions are broken up and recombined, there

42
should be no change in the overall expression. On the contrary, if meaningful code is
divided in this process, the resultant organism will most Iikely lose computational or
reproductive capabilities.

In the end, we have a species definition that is satisfying from both a compu-
tational and biological perspective: only codes that are functionally identical are
classified together, and a method akin to sexual recombination is used to perform
this test.

Species Count (V,) is portrayed in Figure 2.8(A). This approximates the number
of different, functional methods present in the population. So that non-living organ-
isms do not each get counted as a new species, only genotypes that reach threshold
have their species tested. All new genotypes are, by default, assigned the species of
their parent until threshold is attained.

Species Entropy (H,) provides a measurement of the diversity of species within
a population. Figure 2.8(B) demonstrates a drop in the number of distinct functional
techniques after each jump in fitness (Figure 2.4) due to the rise of a new species with
a competitive advantage that drives all others to extinction, and then diversifies with

time.

2.8.3 Local Landscape Analysis

In avida, we have the ability to experimentally determine the structure of the local
genetic landscape around a genotype. In fact, we can look at all possible neighboring
genotypes that are a single mutation away from the wild type, and study each of
these neighbors in a test CPU in order to classify them as having a positive, negative,
or neutral effect on fitness.

Given that we have D instructions in our instruction set, and we are considering
a genome of length £, the number of single-step mutations that can be performed on

this genome (i.e., the size of the local fitness landscape) is

Nawats = £(D — 1) . (2.5)

43

Figure 2.8: Statistics from a typical avida experiment. Measurements for (A) Species
Count and (B) Species Entropy are displayed throughout the course of evolution over
50,000 updates.

500 T T T T T T T T T

w B

Q (@)

(@) (@]
T

1 I

Species Count
N
o
(@]

100
A

O 1 1 L 1 1 1] 1 1
0 0.5 1 1.5 2 25 3 3.5 4 4.5 5

Updates [x1 04]

5 T T 1 T T T T T T
>,45' n
&
= 4r .
o
[1F]

» 3.5)
o
e 3 L
o
(/7]

25 B il

2 1 1 1 1 1 L i i ‘ 1

0 0.5 1 1.5 2 25 3 35 4 45 5

Updates [x1 04]

For example, the default instruction set in avida has D = 28, so if we consider a
genome of £ = 80, we would need to test (28 — 1) x 80 = 2, 160 neighboring genomes.

Immediately, we can obtain four numbers to describe this local landscape. These
are the fraction of fatal mutations (those that cause the resulting organism to lose its
ability to self-replicate), of negative mutations (those that impair replication rate),
of neutral mutations (those that leave replication rate unaffected), and of positive
mutations (those that actually improve replication rate). The fraction of neutral
mutations in an organism, or its neutrality (v), is a fundamental measure that we shall
use to understand the evolution of that organism. Note that these categorizations of

mutations only take into account an organism’s speed of replication in isolation, not

44
any effects of fidelity or the susceptibility to subsequent mutations. Nonetheless, this
is a good indicator of the local landscape.

Figure 2.9(A) displays the proportions of each of the mutation types over the
course of the sample experiment. Note that the original (ancestral) organism is dom-
inated by fatal mutations, but both detrimental and neutral mutations become more
prevalent as the organisms evolve to become more robust to the noisy environment
they must survive in. All human-written programs show a similar fragility, which is
subsequently lost through evolution. The commensurate decline in neutrality (seen
to initiate near update 25,000) is caused by learning events not associated with size
changes. Under such circumstances, new functionality must be placed in available
code, thereby reducing the neutrality at those sites. If any of the sites containing this
new information are now disturbed, they deminish the bonus earned by the organisms,
and thus are classified as detrimental mutations (as indicated by the corresponding
rise in the detrimental fraction at this time).

Fitness and fidelity, combined with neutrality are key in determining the ability of
an organism to thrive in an avida environment. They correspond respectively to an or-
ganism’s ability to create offspring, for those offspring to have a minimum mutational
load, and for them to survive those mutations which they do bear. Apart from this,
however, there is another aspect which is necessary for a phylogenetic branch to be
successful, and that is its ability to further adapt to its environment. To characterize
this, we define two more genomic attributes, both presented in Figure 2.9(B):

Neutral Fidelity (F,) is a measure that can be calculated once an organism’s
neutrality is known. It is the probability that an organism will give birth to an
identical or equivalent offspring. Taking f. = R.(1 — v) to be the probability for an
Instruction to receive a mutation that is not neutral to the organism, we obtain the

neutral fidelity as:
Frews = (1 = fo)b. (2.6)

Genomic Diffusion Rate (D,) is the probability for an offspring to have a

45

Figure 2.9: Statistics from a typical avida experiment. Part (A) breaks down all of the
possible mutations on the dominant genotype into the categories fatal, detrimental,
neutral, and beneficial. Part (B) shows Neutral Fidelity and Genomic Diffusion Rate.
Both graphs are displayed throughout the course of evolution over 50,000 updates.

1 T T] 1 T 1 1 |l T
mmm—— Fatal

0.8% A mmmmm= Detrimental i
S s = Neutral
s . == Beneficial
S 0.6 ®
L. ®
[=
2
3—5' 0.4
=)
=

0.2 » A

0 0.5 1 1.5 2 25 3 3.5 4 4.5 5
Updates [x1 04]

et

mmmm= Neutral Fidelity

0.8k B = Genome Diffution
) Rate

Fraction
o
L
®
(]
e

1 1 1 1

0 0.5 1 1.5 2 25 3 3.5 4 4.5 5
Updates [x1 04]

46
genome different from its parent, but to be otherwise equivalent (i.e., neutral). This

is obtained by subtracting the genome’s fidelity from its neutral fidelity
Dy = Fhent — F'. (2.7)

This is a particularly important indicator as it is the rate at which new, viable geno-
types are being created, which in turn is the pace at which genetic space is being

explored, and therefore positively correlated with the rate of adaptation.

47

Chapter 3 An Analytic Approach to

Evolution

Darwinian evolution is a simple yet powerful process that requires only a population
of reproducing organisms in which each offspring has the potential for a heritable
variation from its parent. This principle governs evolution in the natural world, and
has gracefully produced organisms of vast complexity. Still, whether complexity is in
fact increasing in evolution has become a contentious issue. Gould [29], for example,
argues that any recognizable trend can be explained by the “drunkard’s walk” model,
where “progress” is due simply to a fixed boundary condition. McShea [44] investi-
gates the evolution of certain types of structural and functional complexity, and finds
some evidence of a trend but nothing conclusive. In fact, he concludes that “Some-
thing may be increasing. But is it complexity?” Bennett [12], on the other hand,
explicitly defines complexity as “that which increases when self-organizing systems
organize themselves” resolving the issue by fiat. Of course, in order to address this
issue, complexity needs to have a clear definition.

In this chapter, I circumvent the issue of structural and functional complexity
by examining genomic complexrity instead, and assume that organismic complexity is
incorporated into this. Of course, how the complexity of the organism is reflected
in the complexity of its genome (or vice versa) is a contentious issue in itself, owing
not only to the aforementioned ambiguous definition of complexity but also to the
obvious difficulty of matching genes and function. Also, the gradual pace of evolution
renders an observation of changes in complexity imperceptible on non-geological time
scales.

Here, we are concerned with the evolution of complexity in biological genomes and
the factors that influence such evolution. Several developments allow us to bring a new

perspective to this old problem. On the one hand, genomic complexity can be defined

48
in a consistent information-theoretic manner [8] that appears to encompass intuitive
notions of complexity used in the analysis of genomic structure and organization [15].
On the other hand, we can observe evolution in an artificial medium such as avida,
allowing us to observe the growth of complexity explicitly, and also to distinguish
distinct evolutionary pressures acting on the genome and analyze them within a
mathematical framework.

If an organism’s complexity is a reflection of the (mathematical) complexity of its
genome (as we assume here), understanding evolutionary pressures on the genome is
of prime importance in evolutionary theory. Equating genomic complexity with the
full length of a genome in base pairs gives rise to a conundrum (known as the C-value
paradox) because large variations in genomic complexity (in particular in eukaryotes)
seem to bear little relation to the differences in organismic complexity [16]. The
C-value paradox is partly resolved by recognizing that not all of DNA is functional;
that is, there is a neutral fraction that can vary from species to species. If we were
able to monitor the non-neutral fraction, it is likely that a significant increase in
this fraction would be observed throughout, at least, the early course of evolution.
For the later period, in particular the later Phanerozoic Era of natural history, it
is unlikely that the growth in complexity of genomes is due solely to innovations
in which genes with novel functions arise de novo with a commensurate increase
in sequence length. Indeed, most of the enzyme activity classes in mammals, for
example, are already present in prokaryotes [21]. Rather, gene duplication events
leading to repetitive DNA and subsequent functional divergence [14] as well as the
evolution of gene regulation patterns acting on those genes appears to be a more
likely scenario for this stage. However, if we believe that the ancestral molecule of
prokaryotic life was a simple RNA replicase, evolution toward complex genomes must
have involved evolutionary transitions in which first simple, then more complex genes
(coding for diverse proteins and enzymes) evolved out of randomness, and in which
the growth of sequence length paralleled the growth of information coded into those
genomes. This period, simpler than the subsequent era in which gene regulation

is of primary importance, can be explored in detail in avida and compared to a

49

theory couched in the simple and intuitive language of information theory. Even after
ontogenic gene regulation becomes the primary source of evolutionary innovation, the
complexity growth dynamics described here still play a role, albeit less prominently.

In the next section, I present complexity and its evolution from the perspective of
information theory and discuss how to measure complexity in evolving populations.
I apply this measure to avida in Section 3.2 and study the course of its evolution
in Section 3.3. Then I examine an evolutionary transition in detail in Section 3.4,
demonstrating how complexity is increased by the action of a natural “Maxwell De-
mon.” Finally, in Sections 3.5 and 3.6 I analyze evolutionary pressures on the genetic

codes and show how they interact to promote complexity growth.

3.1 Information Theory and Complexity

The use of information theory to understand evolution and the information content
of genetic sequences is not a new undertaking. Unfortunately, many of the earlier
attempts (e.g., that of Schrédinger [62], Gatlin [28], and Wiley and Brooks [68])
confuse the picture more than they clarify it, often clouded by misguided notions of
the concept of information!.

A key aspect of information theory is that information cannot exist in a vacuum;
that is, information is physical {36]. This means that information must have an
instantiation (be it ink on paper, bits in a computer’s memory, or even the neurons
in a brain). Furthermore this information must be about something. Lines on a piece
of paper, for example, are not inherently information until it is discovered that they
correspond to something, such as (in the case of a map) the organization of local
streets and buildings. Consequently, any arrangement of symbols might be viewed
as potential information (also known as entropy in information theory), but acquires
the status of information only when considering its correspondence, or correlation, to

other physical objects.

In biological systems, the instantiation of information is DNA, but what is this

'In particular, Brillouin’s book [13] has done nothing but confuse a generation of researchers.

50

information about? In part, it is the blueprint of an organism and as such information
about its own structure. More specifically, it is a blueprint on how to build an
organism that can best survive in its native environment, and pass on that information
to its progeny®. Thus, those parts of the genome that do correspond to something
(the non-neutral fraction, that is) are fixed only because they provide a benefit to
the organism for its survival in the environment it lives in. Deutsch [19] summarized
this as “Genes embody knowledge about their niches.” This environment, of course,
is extremely complex itself. It ranges from the ribosomes the genetic sequences are
translated by, over other chemicals and the abundance of nutrients inside and outside
the cell, to the environment of the organism proper (i.e., the oxygen abundance in the
air as well as ambient temperatures, to name but a few). Thus, an organism’s DNA
is not only a book about the organism, but is also a book about the environment it
lives in, including the species it co-evolves with.

It is well-known, of course, that not all the symbols in an organism’s DNA cor-
respond to something. This is (no doubt misleadingly) referred to as “junk-DNA”,
and usually equated to the portion of code that is unexpressed or untranslated (i.e.,
introns excised from the mRNA). More modern views concede that unexpressed and
untranslated regions in the genome can have a multitude of uses, such as satellite
DNA near the centromere, or the poly-C polymerase intron excised from Tetrahy-
mena TRNA. In the absence of a complete map of the function of each and every
base pair in the genome, how can we then decide which stretch of code is “about
something” (and thus contributes to the complexity of the code) or else is entropy
(i.e., random code)?

A true test for whether a sequence is information uses the success (fitness) of
its bearer in its current environment. Note that this implies, naturally, that a se-
quence’s information content is conditional on the environment it is to be interpreted
within [8]. For example, Mycoplasma mycoides (which causes pneumonia-like respi-

ratory illnesses), has a complexity of somewhat less than 10% base pairs in our nasal

2This is essentially Dawkins’ view of selfish genes which “use” their environment (including the
organism itself), for their own replication [18].

51
passages, but close to zero complexity most everywhere else; effectively it cannot
interact with any other environment so its code would count for little more than a
random nucleotide sequence outside this favored habitat.

A genetic locus that codes for information essential to an organism’s survival
will be fized in an adapting population because mutations of that locus result in the
organism’s reduced ability to promulgate the tainted genome, whereas inconsequential
(neutral) sites will be randomized by the constant mutational load. It would thus
be sufficient to examine an ensemble of sequences large enough to obtain statistically
significant substitution probabilities to separate information from entropy in genetic
codes.

In order for new functionality to develop within a genetic code, some mechanism
for change must exist. The “breeding grounds” for new functionality are usually neu-
tral (variable) or redundant sections of the genome, which can be mustated without
harm to the organism. According to the previous arguments, they do not contribute
to the complexity of the organism (they encode no information about their environ-
ment?). However, they allow many potential (randomly generated) gene sequences
to be explored. Should ever one of these random sequences code for a protein that
improves survivability, then the organism that carries it will increase its relative abun-
dance within the population, and the once-random sites will fixate. Thus, entropy is
transmuted into information. Neutral sections of the code thus turn out to be critical
for evolution to proceed, as has been pointed out by Maynard Smith [43]. Further-
more, neutrality may actually be selected for under certain circumstances, which I
will discuss in Secﬁon 3.6.

In Shannon’s information theory [63], the metric entropy (H) represents the ex-
pected number of bits required to specify a state, given a distribution of probabilities

(i-e., it measures the amount of potential information that could be recorded in that

A duplicated gene does not represent information if it can be replaced with a random sequence
without affecting the fitness of the organism.

52

system). For a site ¢ that can take on four nucleotides with probabilities

{pC(i)apG(i),pA(i)’pT(i)} s (31)
the entropy is
C,G, AT
Hy=— Y p;(i)logp;(i) . (3:2)

The maximal entropy per-site (if we agree to take our logarithms to base D—the
size of the alphabet—in this case 4) is 1, which happens only if the probabilities are
all equal at 1/D. If the entropy is measured in bits (take all logarithms to base 2)
the maximal entropy per site is log, 4 = 2 bits. Naturally, this also corresponds to
the maximal amount of information that can be stored in a site: log D. If a site is
perfectly conserved across an equilibrated ensemble, then we assign the probability
p = 1 to one of the symbols and zero to all others, rendering H; = 0 for that site

according to Eq. (3.2). The amount of information per site is thus [61]
I(i) = Hyax — H; . (3.3)

In the following, we shall approximate the complexity of an organism’s sequence
by applying Eq. (3.3) to each site and summing over the sites. Thus, for an organism

of ¢ base pairs, the complexity is
Crt-Y H(). (3.4)

This value can only be an approximation to the true informational (or physical)
complexity of an organism’s genome because, in reality, sites are not independent
and the probability to find a certain base at one position may be conditional on the
probability to find another base at another position. Such correlations between sites
are called epistatic and they can render the entropy per sequence significantly different

from the sum of the per-site entropies. The entropy per sequence, taking into account

33

all epistatic correlations between sites, is defined as
H=-Y pli|E)logp(ilE) (3-5)

and involves an average over the logarithm of the conditional probabilities p(i| E)
to find genotype 7 given the current environment E. In every finite population,
estimating p(i|E) using the actual frequencies of the genotypes in the population
(if those could be obtained) results in corrections to (3.5) larger than the quantity
itself [11], rendering the estimate useless. Another avenue for estimating the entropy
per molecule is the creation of clones, mutated at several positions [25, 40] to measure
epistatic effects. The latter approach is feasible in single niche systems of digital

organisms, as an extension of the local landscape analysis described in Section 2.8.3.

3.2 Complexity in Avida

Despite the apparent simplicity of the single-niche environment and the limited inter-
actions between digital organisms, we can observe rich dynamics in avida experiments.
As the populations I use are small (3600 organisms in all experiments reported here),
we can assume that an equilibrium population will be dominated by organisms that
all code for similar functionality and are of equivalent fitness (except for those organ-
isms that have been adversely affected by mutation). In this world, an organism with
different functionality can only obtain a significant abundance if it has a competitive
advantage (increased Malthusian parameter) thanks to a beneficial mutation. As the
system returns to equilibrium after the innovation, this new species will gradually
exert dominance over the population, bringing the previously dominating species to
extinction. In artificial evolution, perfect knowledge of the state of each organism’s
genetic code during the population’s evolution gives us the ability to present a de-
tailed view of the process and to accurately test our hypotheses. This dynamics of
innovation and extinction has been monitored in detail and appears to mirror the

dynamics of E. coli in single-niche long-term evolution experiments [24].

o4

shift—| 41 ezt
add

sub

search-f
0.9

nop—-C

search-b nop—C
id—th Ay nop-C

push

nop—B

0.8
allocate

nop-C
add
add

nop—C

nop-A

copy
inc

0.7

nop-B

if-n—equ

(0] kill-th jump-b
0.5
add nop—-C
divide call
0.4
swap-stk sub
swap-stk
: 0.3
s [T
swap-stk
0.2
push

sub

0.1
fork—th

60 BElefe!

0

Figure 3.1: A typical avida organism, extracted 1,434 generations into an evolutionary
experiment. Each site in the code is color-coded according to the entropy of that site,
as determined by studying the effects of all single-point mutations in test-CPUs. Red
sites are highly variable whereas black sites are perfectly conserved.

The complexity of an adapted digital organism according to Eq. (3.4) can be
obtained by measuring substitution frequencies at each instruction across the pop-
ulation. This is easiest if genome size is constrained to be constant as is done in
the experiments reported below, even though this can be relaxed by implementing
a suitable alignment procedure, or testing the effects of mutations (to determine if
they are neutral) in test CPUs. In order to correctly assess the information content
of the ensemble of sequences, we need to obtain the substitution probabilities p; at

each position, going into the calculation of the per site entropy, Eq. (3.2). If we use

35

the distribution of instructions at each site that are present on the population, care
must be taken to wait sufficiently long after an innovation, in order to give those sites
within a new species that are variable a chance to diverge. This is because shortly
after an innovation, previously 100% variable sites will appear fixed by “hitchhiking”
on the successful genotype (see below).

For a population in which the sequence length was held constant at 80, collecting
the p; (for i = 1,---,28; D = 28) at equilibrium allows us to calculate the per-site

entropy for any locus (k) in the organism as

28
Hk = ———sz 10g28pi s (36)
=1

an example of which is shown in Figure 3.1. This map of the genome shows that
the organism is well-adapted (after 1,434 generations) and sports primarily conserved
sites. Most of its variability (and ensuing neutrality) appears to be in the first ten

lines, with smaller blocks elsewhere.

3.3 Progression of Complexity

Tracking the entropy of each site in the genome allows us to document the growth of
complexity in an evolutionary event. Figure 3.2 displays the genome of an organism
extracted 34 generations after the one displayed in Figure 3.1. This program is an
offspring of an organism that underwent a mutation that allowed it to perform several
new computational tasks, resulting in a fitness increase by a factor of 5.1. Comparing
the two entropy maps, we can immediately identify the sections of the genome that
code for those new tasks—the entropy at those sites has been drastically reduced.
The organism shown in Figure 3.2 is unlikely to be a direct descendant of the one
in Figure 3.1, as they differ widely in the neutral sections of code where most of the
new gene appear to have arisen. Note, however, that all instructions that were frozen
before this transition remain unchanged in the new organism, while most volatile sites

differ.

06

nop-B search-f

nop-C

put nop-C
sub 45 le] B ®;
nop-C
pop
nand

nop-C
add
add
nop-C

0.6
if-less

(0] kill-th
0.5
add
divide
0.4
nop-A
& 0.3
Y] allocate
swap-stk
B 0.2
nop-B

sub

0.1
fork—th

fork—th] add

nop-C

0

Figure 3.2: An avida organism extracted 34 generations later than the one depicted in
Fig. 3.1. A learning event has occurred, freezing most of the beginning of the genome
and several other loci.

We can extend this analysis by continually surveying the entropies of each site dur-
ing the course of an experiment. Figure 3.3 does this for the experiment just discussed.
A number of features are apparent in this figure. First, the trend toward a “cooling”
of the genome (i.e., to more conserved sites) is obvious. Second, major evolutionary
transitions can be identified by vertical darkened “bands”, which arise because the
genome instigating the transition replicates faster than its competitors thus driving
them into extinction. As a consequence, even random sites that are “hitchhiking” on
the successful gene are momentarily fixed. This is documented clearly by plotting the

sum of per-site entropies for the population (as an approximation for the entropy of

o7

Line Number

Update [x1 04]

Figure 3.3: Progression of per-site entropy for all 80 sites throughout an avida experi-
ment. The entropies are calculated at 60 points evenly spaced throughout the course
of evolution.

the genome)

H=~ H (3.7)

across the transition in Figure 3.4(A). By comparing this to the fitness shown in
Figure 3.4(B), we can clearly see a similar sharp drop in entropy followed by a slower
rise for each learning event that the population undergoes. Quite often the population
does not even reach an equilibrium state again before the next transition occurs.
While this entropy is not a perfect approximation of the exact entropy per program
(Eq. 3.5), it does accurately reflect the disorder in the population as a function of
time. I show this complexity estimate (3.4) as a function of evolutionary time for
this experiment in Figure 3.5. While the measured complexity decreases briefly after
transitions, it always settles down at a higher level. This overshooting of stable
complexity is a result of the overestimate of complexity during the transition due to

hitchhiking. This effect is also seen at the begining of evolution, as the population

o8

Total Entropy

0 0.5 1 1.5 2 2.5 3
Updates [x1 04]

10; T T T

0 0.5 1 15 2 2.5 3
Updates [x10%

Figure 3.4: (A) Total entropy per program as a function of evolutionary time. (B)
Fitness of the most abundant genotype as a function of time. Evolutionary transitions
are identified with short periods in which the entropy drops sharply and fitness jumps.

is seeded with a single genome with no variation present. This typical evolutionary
history documents that the complexity, measuring the amount of information coded
in the sequence about its environment, steadily increases. The circumstances under

which this is assured to happen is discussed in the following sections.

3.4 Maxwell’s Demon and the Law of Increasing

Complexity

Let us consider an evolutionary transition like the one leading from the genome in Fig-

ure 3.1 to that in Figure 3.2 in more detail. This transition is magnified in Figure 3.6,

59

80 T T T T T

~
o

Complexity
[@)]
o

Ot
(@]

40 ! 1 i
0 0.5 1 1.5 2 2.5 3

Updates [x10%]

Figure 3.5: Complexity as a function of time. The organisms from Figures 3.1 and 3.2
are indicated by circles.

which shows that the entropy does not fully recover after its initial drop.

The difference between the equilibrium level before the transition and after is
proportional to the information acquired in the transition, namely the number of
sites that were frozen. This difference would be equal to the acquired information if
the measured entropy (Eq. 3.7) were equal to the exact one given by Eq. (3.5). For this
particular situation, in which the sequence length is fixed along with the environment,
is it possible that the complexity decreases? The answer is that in a sufficiently
large population this cannot happen® as a consequence of a simple application of the
second law of thermodynamics. If we assume that a population is at equilibrium
in a fixed environment, each locus has achieved its highest entropy given all the
other sites. Thus, the entropy can only stay constant or decrease, implying that the
complexity (being sequence length minus entropy) can only increase. How is a drop
in entropy (such as the one evident in Figure 3.6) commensurate with the second
law? That answer is simple also: the second law only holds for equilibrium systems.
The transition we are witnessing in Figure 3.6 (and throughout the experiment) is

decidedly not of the equilibrium type. In fact, such a transition can be described

4In smaller populations, there is a finite probability of all organisms being mutated simultane-
ously, referred to as Muller’s ratchet [49)].

60

Total Entropy
>

1.9 2 21 2.2 2.3 2.4
Updates [x104]

Figure 3.6: Entropy per program as a function of evolutionary time across a transition.

conveniently as a measurement.

In the classical measurement situation, the object to be measured is hooked up
to a measurement device in such a manner that the state of the object is reflected
in the state of the device. In other words, object and device are rigged so that
they are correlated, such that one may give information about the other. Performing
measurements on a system clearly reduces our uncertainty about the system, or in
other words, reduces the entropy by increasing the amount of information we have
about that system. This process cannot be described within equilibrium statistical
physics either [7], but is perfectly well-described within information theory. It has
been speculated for a long time that making judicious measurements would allow a
violation of the second law (see, e.g., [37]). A “beast” that conducts such experiments
was described first by Maxwell [42] and was later termed the “Maxwell Demon.” The
Demon was thought to operate a door separating two compartments filled with an
inert gas at equal pressure. By measuring the molecules’ speed and opening the door
for the fast molecules to enter one half but closing it for the slow ones, the demon
could produce a pressure difference between the halves and accordingly a difference in
entropy, apparently violating thermodynamic’s second law (see Fig. 3.7). Something
quite analogous happens in evolution.

In effect, evolution can be thought of as a series of random measurements on the

61

'
: -/~
] /'1
%
P 4
\ ,"’”

Figure 3.7: Maxwell’s Demon at work (from [41]).

environment. Darwinian selection is a filter, allowing only informative measurements
(those increasing the ability for an organism to survive) to be preserved.

A mutation that increases fitness leads to the fixation of some sites (or, at least to
a net increase in the number of fixed sites) because the increased replication rate of
the mutated genome causes (due to heredity) a non-equilibrium event (*“avalanche”)
that installs the mutation as the new wild-type. Because the new genotype represents
information about its environment and that information has increased, the transition
in fact represents a measurement—performed by the population on its environment.
Information cannot be lost in such an event because a mutation corrupting the infor-
mation is purged from the population due to the corrupted genome’s inferior fitness®.
A mutation that corrupts the information cannot increase the fitness, because if it
did then the population was not at equilibrium in the first place. As a consequence,
only mutations that reduce the entropy are kept while mutations that increase it are
purged. This is the classical behavior of the Maxwell Demon.

In an unchanging environment, an increase in the entropy can only occur if there

is a rise in the average length of the organisms. In such an event, the number of bits

5This holds strictly for asexual populations only.

62
needed to describe an individual genome increases, while the amount of information
held in those genomes remains fixed. The extra length comes in the form of entropy.
Note, however, that these size-change events are critical to continued evolution as
they provide a new space to record environmental information within the genome,

and thus allows complexity to march ever forward.

3.5 Selective Pressures on Genome Size and Neu-
trality

In the preceding sections, I argued that a genomic complexity can be defined rigor-
ously in the context of information theory. According to this simple and intuitive
measure, a genome’s complexity corresponds to the amount of information about its
environment coded in the sequence. Thus, complexity is context dependent rather
than absolute, and increases during every evolutionary transition as an organism ob-
tains more information that improves it ability to survive in its environment. If the
context, (i.e., the environment), does not change, complexity is forced to increase by
a process akin to the operation of a Maxwell Demon. Thus, information can only
enter a (statistically equilibrated) population, and never be lost. Naturally, should
the environment itself be altered (including through the co-evolution of other organ-
isms) or the organisms enter a new environment, the complexity of the sequences it
harbors can decrease as portions of their genome information become invalid (trans-
forming them into entropy). This does not, by itself, violate the law of increasing
genomic complexity, which only declares that the complexity given a particular en-
vironment must always increase. Change the environment, and the complexity can
change dramatically (a fact most clearly demonstrated by human interference with
the ecosystem).

In the remainder of this chapter, I focus on the selective pressures of molecular
evolution and how they contribute to the evolution of complexity. From the point of

view of information theory, it is convenient to view Darwinian evolution of popula-

63

tions of code much like an information transmission channel, subject to a number of
constraints. The information transmitted is the genome of a particular species, from
one generation to the next, and it is subject to noise due to an imperfect copy pro-
cess. Information theory is concerned with analyzing the properties of such channels,
how much information can be transmitted and how the capacity of such a channel—
the maximum amount of information that can be transmitted given a certain error
rate—can be achieved. Selection acts to maximize the number of times the genetic
information is transmitted to offspring, per lifetime. This maximization involves a
number of factors, and illustrates the pressures evolution exerts on the code itself.

One way of decreasing transmission time is by shortening the message as long
as such a length decrease does not affect the rate at which symbols are copied (i.e.,
code compression). This type of evolutionary pressure is analogous to r-selection
in Evolutionary Biology, and is observed most frequently when a species invades a
new niche. Its effects on the genome usually involve the removal of genes that are
unimportant in the new environment thereby compressing the length of the necessary
message, and increasing the rate of replication. This pressure has also been seen at
work in the classical experiments of Spiegelman [45] involving RNA replicating in
vitro.

Another way of increasing the channel’s capacity consists of increasing an individ-
ual’s expected lifetime and therefore raising the total number of copies of the genome
that it has time to propagate. Typically, this occurs when an organism is mutated
such that it takes better advantage of the environment it lives in, improving its own
ability to make use of resources or avoid dangers. This type of adaptation is referred
to as K-selection. Usually, both 7- and K-selection act on the genome simultaneously
while local conditions decide which dominates.

Improvements in the efficiency of the replication process brought about by r-
selection are fundamentally limited by the amount of information that must be main-
tained within the genetic code. Once a species is established in a niche, most contin-
uing evolution occurs via K-selection, which has no such limitation, but does have a

cost involved. Specialization to a particular niche requires more information about

64

that environment to be stored within the genome, resulting in a longer code to trans-
mit and, typically, a longer time frame to express that code. Thus, the complexity of
organisms is restricted when the additional length required for new genes raises the
gestation time and mutational load beyond that for which the improved life span will
compensate. As a result, many niches are still occupied by primitive organisms such
as bacteria, while other more intricate environments foster high levels of complexity.
An example of an extreme case of r-selection appear to be the Mycoplasmas, whose
genetic code has shrunk to less than 1 x 10° base pairs due to the nutritionally rich
environment in which they thrive. Because of the simplicity of their environment,
K -selection plays only a minimal role.

Theoretical arguments and experiments that I report on below have identified a
third variable that affects information transmission and the rate at which complexity
grows in adapting populations: the neutrality of a genome. These neutral mutations
often occur on a non-critical nucleotide (synonymous substitutions), or else in code
that is not currently expressed. That most evolutionary change is neutral with respect
to the phenotype is of course well known at least since Kimura’s seminal work on the
subject [34]. What I suggest here is that there is a pressure, call it v-selection, that
acts upon genomes to increase the probability that a mutation is neutral. While such
a possible pressure has been mentioned before [48], I demonstrate its importance in

detail both theoretically and experimentally.

3.6 [itness: The selective pressures of evolution

In Section 2.2.3, I introduced the term fitness (w) as a measurement of the ability
for an organism to survive in a given environment. This fitness can be calculated
approximately by the time apportioned to the organism (its merit, M) divided by

the amount of time it needs to produce an offspring (its gestation time, ¢,); that is,

w R —. (3.8)

65

This formula clearly reflects the relative forces of both 7- and K-selection. K-selection
is the maximization of merit (and thereby lifespan, in computational units) achieved
by gaining bonuses from tasks performed, while r-selection is the minimization of
gestation time. These two selection pressures are very often contradictory. For every
beneficial addition made to an organism’s genetic code, there is also the cost of copying
that code and expressing it.

Interestingly, there is an additional factor to fitness not represented by either r or
K, not normally mentioned in the literature about selection pressure. As the new code
has a chance of error, such a mutation can cause harm to the organism as a whole by
its presence alone. Clearly then, a better approximation of the fitness of an organism
must take into account the probability of the genetic information being correctly
transmitted to the offspring. Fidelity (as defined in Section 2.7) is the probability
for an organism to transmit its genetic code perfectly, but we are more interested
here in the neutral fidelity: the probability of an organism transmitting correctly the
information in its genome (introduced in Section 2.8.3) while disregarding mutations
in the neutral portions of the genome. This neutral fidelity can be thought of as the
fidelity of the quasi-species centered around the wild-type. Taking into account this
probability for an offspring to be functionally identical to its parent, we multiply the

original fitness (offspring per unit time) by neutral fidelity, to arrive at

Weff = —/tﬁF,, (39)

g

Again, this effective fitness weg is only a good predictor of replication success in a
fixed, single-niche environment. Any change to the environment or niche structure will
affect the information content of the organisms, possibly resulting in a drop in fitness.
I have investigated this fitness metric in 1600 experimental trials, each lasting 50,000
updates, for a total of over 12 million generations (or 15,000 CPU hours) and in every
case the above measure of fitness only increases (other than fine-grain fluctuations)
over the course of evolution. This seems to imply that it is the combination (3.9)

that is selected for, rather than Eq. (3.8).

66

Fithess

100 -ﬁ 1 1 1 L 1 1 L 1 1
o 05 1 15 2 25 3 35 4 45 5
Updates [x10%]

Genome Length

O 1 1 1 1 1 1 1] 1
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Updates [x1 04]

Figure 3.8: Average fitness (A) and average genome length (B) displayed for three
experiments at distinct levels of complexity. Set I (red, bottom) is from the simplest
environment (no tasks), set II (green, middle) has 12 tasks available, and set III (blue,
top) has all 80 tasks present.

Here, I present individual experiments to demonstrate the relative effects of each
pressure. Any learning event in evolution requires a tradeoff in its selection; for
example, in order for merit to be improved through the completion of a new task, a
portion of the lifetime must be spent to perform this task (increasing gestation time).
Also, the sites that code for this task will be frozen, and therefore the organism,
for a while, will have a lower neutrality. However, as long as the increase in merit
outweighs combined effect of these losses, the new genotype will still be selected for.

K-selection is examined in Figure 3.8. Three sets of experiments were performed

with initial conditions differing in the complexity of their environments. In Set I, no

67

800 100
A | B
o 600 1 £
E =
(= I
c 2 60
— (]
= 400 2
e 2 40
& 3
200
20+
0 : : - 0 : :
0 05 1 15 2 25 0 05 1 15 2 25
Updates [x104] Updates [x104]

Figure 3.9: Average gestation time (A) and average genome length (B) displayed for
set IV. Set IV is the continuation of set III, with all merit contributions deactivated.

tasks are rewarded at all, in Set II, 12 different tasks are rewarded, and in Set III,
all 80 logic operations provide a bonus leading to the most complex landscape. The
average fitness for the 100 trials of each experiment is displayed in Figure 3.8(A),
clearly showing the correlation between environmental complexity (i.e., the potential
for K-selection) and the resulting fitness. Figure 3.8(B), in turn, shows the average
length of the genomes, indicating that those organisms performing more functions are
also significantly longer. In a sense, the results of this experiment are quite trivial:
populations rewarded with increased CPU time for performing simple tasks will adapt
to perform those tasks. In this way, they maximize their own life expectancy and that
of their offspring, clearly indicating the existence of K-selection.

To perform a corresponding test for r-selection, I removed the effects of K -selection
by examining a set of trials (set IV) that are seeded with the final populations of
set III (all 80 tasks available, above), but in which merit no longer determines the
CPU apportioned to an organism. In other words, organisms that adapted to the
complex environment of set IIT were subsequently exposed to the simple environment
of set I. Consulting Figure 3.9(A), we see that, indeed, gestation time falls sharply

as sections of the genomes that have become meaningless in the simple environment

68

0.4 T 1 T T

o
w
T
1

Neutrality

o
N
T
1

0.1 : : :
0 0.5 1 1.5 2 2.5 3

Updates [x1 04]

Figure 3.10: Average neutrality is displayed for sets V (blue), VI (green), and VII
(red). All three sets are at a fixed length of 80 instructions and have the full range
of tasks available. Their mutation rates are 0.5%, 1.0%, and 1.5% respectively. .

are stripped away so that they are no longer copied. In Figure 3.9(B), we witness
the corresponding loss in genome length. Such experiments can be compared directly
to the experiments by Spiegelman [45] who extracted viral DNA and replicated it in
vitro and saw a seven-fold decrease in sequence length.

My final tests focus on the effects of v-selection. This is harder to isolate than the
others as it is a weaker form of selection, and acts mostly as a “cost” factor against
additional complexity. We examine three new sets (V, VI, and VII), all of which have
the full range of tasks rewarded (equalizing the pressure from K-selection between
them) and are forced to remain at a genome length of 80 instructions (preventing
size changes, and hence minimizing r-selection). The trials in set V were conducted
with a copy mutation rate of 0.5% chance of error per copy, Set VI were conducted
with a rate of 1.0%, and Set VII were conducted with a rate of 1.5%. As we would
expect, those experiments with a higher mutation rate seem to be influenced more by
v-selection (Figure 3.10) as neutrality to mutations is more important when there are
more mutations occurring. Note that all neutralities gradually drift downward in the
latter half of the experiment. This occurs as their fixed-length genome starts filling

up with information, which implies that they are no longer able to incorporate new

69

tasks without reducing some of the neutrality they have acquired.

70

Chapter 4 The Evolution of Genetic

Organization

In this chapter, I examine the evolution of expression patterns and the organization
of genetic information in populations of self-replicating digital organisms. Seeding
the experiments with a linearly expressed ancestor, we witness the development of
complex, parallel secondary expression patterns. Using principles from information
theory, I demonstrate an evolutionary pressure toward overlapping expressions caus-
ing variation (and hence further evolution) to sharply drop. I compare the overlapping
sections of dominant genomes to those portions that are singly expressed and observe
a significant difference in the entropy of their encoding. Finally, I introduce a new
model devised specifically for the study of gene organization, and demonstrate the

segregation of genes in changing environments.

4.1 Overlapping Genes

Here we look at a fundamental issue to life as we know it; the organization of the
genetic code and the differentiation in its expression. DNA is structured into many
distinct genes that can be concurrently active, transcribed and expressed in an asyn-
chronous, (i.e., differentiated) manner. Extant living systems have evolved to a state
where multiple genes influence each other, typically without sharing genetic material.
In all higher life forms, it appears that each gene has its own unique position on the
genome, while the transcription products often interact with unique positions “down-
stream.” Those organisms that do exhibit more primitive, overlapping expression
patterns are mostly virii and bacteriophages [50]. This suggests that genomes with
purely localized, non-overlapping genes evolved later on [33].>

Upon initial inspection, the reason for a spatially separated (segregated) layout

71

is not obvious. A modular design may be quite common in artificial coding schemes
such as computer programs, but, in fact, only reflects a designer’s quest to create
human-understandable structures. Evolution has no such incentive, and will always
exert pressure toward the most immediate solution given the current circumstances.
A more compressed coding scheme, perhaps with overlapping genes, would allow
a sufficiently shorter code that would minimize the mutational load and hence be
able to preserve its information with a higher degree of accuracy. Moreover, such
overlapping regions might be used for gene regulation. Why this is not more common
becomes clearer when we observe those examples from nature where these overlapping
reading frames do exist, such as DNA phages [50] and eukaryotic viruses [60]. Even in
these organisms only some sections of code overlap, but examination of those sections
reveals that they contain little variation—almost all of the nucleotides are effectively
frozen in their current state from one generation to the next [46, 47]. This occurs
because for any mutation to be neutral in such a section of genetic code, it must not
affect either of the genes that it is within. Further, the neutral mutations in DNA
usually occur in the third nucleotide of a codon, as substitutions in that position
are often synonymous. When overlapping genes have offset (out-of-phase) reading
frames, however, the position of the third nucleotide in one gene maps to the first or
second in the other, leaving no such redundancy.

Here, I study the development of genome organization and differentiation in the
avida system, extended to allow for the expression of a second gene (here, the execution
of a second thread via an additional instruction pointer) to occur in parallel. T pro-
cessed the evolution of 600 populations from a seed program to complex information-
processing sequences for 50,000 updates (an average of over 9000 generations). The
600 trials were divided into four sets that differ in initial and environmental condi-
tions. All populations with a genetic basis allowing for the development of multiple
threads learn to use them almost immediately (see below), but the methods by which
this happens are quite distinct and varied. In the next section, I outline the experi-
mental setup used in this study and discuss measures of differentiation. In Section 4.3

I present results obtained with the multiple-expression digital chemistry and compare

72
them to controls in which no secondary expression was allowed. In Section 4.4 I study
the evolution of differentiation for different experimental boundary conditions, while
Section 4.5 explores in more detail the organization and development of genes with an
example. The final evidence for genetic segregation is presented in Section 4.6 where
I compare gene organization between static and changing environments in a specially
designed model. I close in Section 4.7 with a discussion of the evidence and conclu-
sions, and issue caveats about applying the lessons learned directly to biochemistry.
Later, in Section 5.2 I return to multi-threaded organisms in avida to explore this

topic from a more computational perspective.

4.2 Experimental Details

In order to study the evolution of code expression, I extended the avida instruction set
to allow for more than one instruction pointer to execute a program’s code. Within the
biochemical metaphor, the simultaneous execution of code is viewed as the concurrent
expression of two genes, i.e., the chemical action of two proteins. The first new
instruction allows a program to initiate a new expression: fork-th. Its execution
creates a new instruction pointer (“forking off a thread”) that immediately executes
the next instruction, while the original thread skips it. Thus, fork-th is the rough
equivalent of a promoter sequence in biochemistry. This secondary expression is
initially rather trivial and leads to redundancy: if the second thread is not sufficiently
altered by the instruction following the fork-th, it simply executes the same code as
the first thread in lock-step. Of course, we are interested in how the organisms use
this redundancy as a starting point to diversify the expression.

The second new instruction inhibits an expression: kill-th removes the instruc-
tion pointer that executed it, while a third addition, id-th, identifies which instruc-
tion pointer is currently executing the code by placing an identifying number in the
BX register. The three commands together are expected to be useful in the regula-
tion of expression. In principle, more than two instruction pointers can be generated

by repeated issuing of the fork-th command, but here we restrict ourselves to a

73
maximum of two threads so as not to complicate the analysis. In nature, of course,
complex genomes express hundreds of proteins simultaneously.

As all experiments begin with a self-replicating program which does not use any of
the multiple expression commands, the first question might be whether or not multiple
expression will develop at all. In fact, it does almost instantly, as secondary expression
(typically in the trivial lock-step mode mentioned earlier) is immediately beneficial,
because the second thread effectively doubles the amount of computational time the
organisms receive. From here on, differentiation evolves, i.e., the two instruction
pointers begin to adapt independently, to express more and more different code.
Ultimately one might expect that each pointer executes an entirely different section
of code, achieving local separation of genes and fully parallelized execution. The
mode and manner in which this separation occurs is the subject of this investigation.

For this study, I obtained several hundred independent experimental trials and

controls, testing different experimental conditions.

Set I consists of 200 trials, each initialized with a short (length 20) ancestor
that did not have any threading ability. Computational tasks and the use of

multiple threads were learned in all cases.

Set II consists of 100 trials similar to set I, but all trials were seeded with a

longer (length 80) ancestor.

Set IIT consists of 100 trials initialized with the length 80 ancestor, but in

which programs could not change in size.

Set IV is our control. It consists of 200 trials initialized with the short ancestor.

Threading is not available in the instruction set, and therefore cannot evolve.

For each of these trials a record is kept of a variety of statistics, including the dominant
genotype at each time step, from which we can track the progression of evolution of

the population, in particular by studying the details of its expression patterns.

74

Basic Analysis Metrics

To track the differentiation of the threads, we need to develop a means to monitor
the divergence between the two instruction pointers roaming the genome. This is a
major advantage of digital chemistries: some of the data collected is impossible to
accurately obtain in biochemical systems, and even less practical to analyze.

The following measures and indicators keep track of function-differentiation. In
biochemistry, the differentiation of expression can be varied, and includes overlap-
ping reading frames (in-phase and out-of phase), overlapping operons and promoter
sequences, and gene regulation. There are no reading frames in our digital chemistry,
but it is possible for a sequence of instructions to give rise to a different computa-
tion depending on the state of the thread that is executing it—in particular if one
gene contains another (as is common in overlapping biochemical genes [67]). Also,
thread-identification may lead one thread to execute instructions that are skipped
by the other thread, and threads may interact to turn each other on and off: a case
of digital gene regulation. All such differentiation however has to evolve from the
trivial secondary expression discussed earlier, and we consequently need to monitor
the divergence of thread-execution with suitable measures.

Thread Distance is the metric I use to determine the spatial divergence of
the two instruction pointers. This measurement is the average distance (in units of
instructions) between the execution positions of the individual threads. If this value
becomes high relative to the length of the genome, it is an indication that the threads
are segregated, executing different portions of the genome at any one time, whereas
if it is low, they likely move in lock-step (or sightly offset) with nearly identical
executions. Note, however, that if two instruction pointers execute the code offset by
a fixed number of instructions, but otherwise identically, the thread distance is an
inflated measure of function differentiation, as both threads do behave identically.

Code Differentiation distinguishes execution patterns with differing behavior.
A count is kept of how often each thread executes each portion of the genome; code

differentiation is the fraction of sites in the genome for which these counts differ

75
between threads. Thus, the ordering of execution (time-delay) is irrelevant for this
metric; only whether the code ends up getting executed a different number of times

by one thread vs. the other is important.

4.3 Single Expression vs. Multiple Expression

Let us first examine adaptability as measured by the average increase in fitness for
both multiple and single expression chemistries. In Figure 4.1(A), the fitness is av-
eraged for the 200 trials' that were seeded with small (¢ = 20) seed sequences and
no size constraint (sets I and IV). While the average increases relatively smoothly
in time, each individual fitness history is marked by periods of stasis interrupted by
sharp jumps, giving rise to a “staircase” picture (refer back to Figure 2.4) reminiscent
of the adaptation of E. coli [24]. During adaptation, the sequence length increases
commensurately with the acquired information, as shown in Figure 4.1(B).

Clearly, the trials in which multiple expression is possible adapt more slowly than
the single-expression controls, a behavior that may appear at first glance to be para-
doxical as the only difference in the underlying coding of the multiple expression
trials is an increased functionality. However, as I noted in Section 2.8.3, the neutral
fidelity of an organism directly determines the fraction of its offspring that are viable.
As this value is inversely correlated to the length of the genome, there is a pressure
for the genomes to evolve toward shorter length. Normally, this pressure is counter-
acted by the adaptive forces which require the organism to store more information in
its genome, requiring increased length. Overlapping expression patterns allows this
adaptation to occur while minimizing the length requirement.

The pitfalls of compacting so much information into the same portion of the
genome are illustrated in Figure 4.2 where [plot the average genomic diffusion rate D,

for both chemistries. It is evident in this graph that initially both sets of experiments

IEach trial was seeded with a single ancestor, which quickly multiplies to fill the maximum
number of programs in the population, set to 3,600 for these trials. The populations were subjected
to copy mutations at a rate of 7.5 x 103 per instruction copied, and a rate of 0.05 single insertion
or deletion mutations per gestation period.

76

Fitness

0 0.5 1 1.5 2 25 3 3.5 4 4.5 5
Updates [x1 04]

(0]
o

2]
o

Genome Length
A
(@]

N
o

0 1 1 1 1 1
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Updates [x10%]

Figure 4.1: (A) Average fitness as a function of time (in updates) for 200 populations
evolved from ¢ = 20 ancestors and (B) their average sequence length, for the single
expression chemistry controls (blue line) and the multiple expression chemistry (green
line).

explore genetic space at a comparable rate, but at approximately 5000 updates (on
average) the diffusion rates diverge markedly, followed by a corresponding divergence
in the fitness of the organisms (that a higher diffusion rate leads directly to higher
fitness in an information-rich environment is shown in [9]). Investigating the course of
evolution further, we can see that it is precisely at this point that the differentiated,
yet overlapping, use of multiple threads is typically established.

To further implicate overlapping expression in reduced adaptation for the popu-
lations, let us consider (as was done in Ref. [46] for the bacteriophage ®X174) the

substitution rate of instructions for overlapping versus non-overlapping genes. The

7

o
o
o

o
o
o

o
o
R

Genome Diffusion Rate
o o
(@] o
N w

o
o
o 4

0 0.5 1 1.5 2 25 3 3.5 4 4.5 5
Updates [x1 04]

0 1 I 1 |

Figure 4.2: Average genomic diffusion rate as a function of time (in updates) for
200 populations evolved from ¢ = 20 ancestors, for the single expression chemistry
controls (blue line) and the multiple expression chemistry (green line).

substitution rate in avida is equal to the neutrality (at equilibrium). We find the
substitution suppression (the neutrality in multiply expressed code divided by the
neutrality in singly expressed code) to be between 0.53 and 0.57 for the three sets
of trials (Table 4.3). In other words neutrality is suppressed by 0.43 to 0.47. This
is in the same range as the suppression ratio of between 0.4 and 0.5 observed in
bacteriophages [46]. When the instruction pointers do adapt independently and the
threads differentiate, neutrality in overlapping regions is compromised. The instruc-
tions within these sections of overlapping code are comparatively “frozen” into their

state.

Table 4.1: Average neutrality of the final dominant genotype: multiply-expressed
code (column 1), singly expressed code (column 2), and their ratio (column 3), for
200 populations grown from £ = 20 ancestors (variable length) [set I], 100 populations
grown from £ = 80 ancestors (variable length) [set II], and 100 populations grown from
¢ = 80 ancestors (constant length) [set III].

Set || Vmult | Vsingle | ratio
I | 0.109 | 0.202 | 0.539
IT || 0.197 | 0.346 | 0.569

ITT || 0.082 | 0.145 | 0.566

78
4.4 FEvolution of Differentiation

Let us now track the evolution of differentiation in more detail. First, I address the
de novo evolution of multiple expression, i.e., the development of multi-threading
from linear execution. In initial experiments with the tierra system, usage of multiple
threads would not evolve spontaneously, but hand-written programs that had sec-
ondary expressions would evolve toward an increased level of multiple expression [64].
More recently, experiments were carried out within a network version of the tierra ar-
chitecture, which showed that a program that used different instruction pointers to
execute different genes would not lose this ability [59]. The failure of multiple expres-
sion to evolve spontaneously in that system can be tracked back to problems with
tierra’s digital chemistry and the lack of an information-rich environment [53].

Within avida, the ability to use more than a single thread begins to develop within
the first 5000 updates and is common after about 10,000 updates, depending on the
experimental boundary conditions. Figure 4.3A shows the (averaged) percentage of
a program’s lifetime in which more than one thread is active, for the populations of
set I (blue line), set IT (green line) and set ITI (red line). It is apparent that multiple
expression develops more readily in smaller genomes, due to the fact that the logistics
are less daunting.

In panels B and C of Figure 4.3 I show two indicators of differentiation (defined
earlier), the thread distance and the code differentiation, respectively. The thread
distance appears to be sensitive to the experimental starting conditions, as set II
and set III show a value over twice that of set I. This is due to the small size of the
ancestor used in set I: as that ancestor develops threading quickly, it loses adapt-
ability earlier and lags both in average fitness and average sequence length. In fact,
the averages for set I are dragged down by a significant percentage of the trials that
become stuck in an evolutionary dead-end shortly after developing threading. Set II
and III, which were seeded with an ancestor of length ¢ = 80, did not suffer from
this. Figure 4.3(C) shows the code differentiation, i.e., the fraction of code that is

executed differently by the two threads. This fraction is less dependent on experi-

79

—

Time Threaded
o o o
A O o™

o
(V)

O 1 1 1 1 1
0 0.5 1 15 2 2.5 3 3.5 4 4.5 5

Updates [x1 04]

N
o

-
(¢}

—
o

Thread Distance

()]

0 0.5 1 1.5 2 2.5 3 3.5 4 45 5
Updates [x1 04]

o

—

o
(o0}
T

1

o
o

Code Differentiation
o
~

o
(M)

0 0.5 1 1.5 2 25 3 3.5 4 4.5 5
Updates [x1 04]

o

Figure 4.3: Differentiation measures. (A) Average fraction of lifetime spent with
secondary expression, as a function of time (in updates), (B) average thread distance,
(C) average code differentiation. Set I (blue line), set II (green line), and set III (red
line).

80

o
(00}
T

1

o
(02}
T

i

Fraction Overlapping
o
S

=
(V)

0 1 1 1 1 1 1 1 1]
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Updates [x10%]

Figure 4.4: Average fraction of doubly expressed code for the three experimental sets.
Blue (top) line: set I, green line: set II, red line: set III.

mental conditions, and the genomes appear to develop toward 0.5. Note, however,
that this measure cannot accurately reflect functional differentiation, which is more
subtle than threads executing particular instructions a different number of times. For
example, two threads that execute a stretch of code in an identical manner but that
start execution at different points “upstream” may calculate very different functions,
and thus have quite different behaviors. This difference will thus be underestimated.
While the preceding graphs seem to indicate that differentiation stops about half-
way through the trials, this is actually not so, as the more microscopic analysis of the
following section reveals. Rather, the use of these differentiated sections of code is
optimized and integrated with one another to achieve greater functionality. Finally,
Figure 4.4 shows the evolution of the fraction of code that is executed by multiple
threads.

As anticipated, this fraction rises swiftly at first, but then levels off, as it is not
advantageous to multiply express all genes (see below). However, we might expect
that the fraction would start to decline at some point, when the organisms develop
the ability to localize genes and use independent instruction pointers for each of
them. This trend is not apparent in Figure 4.4, presumably because there is no cost

associated with the development of overlapping expression. In the natural world,

81
such an environmental over-fitting would cause a negative impact upon the organism
anytime a fluctuation in the environment occurred (due to the reduced neutrality
and adaptability). Likewise, viruses develop in a more consistent environment than
most higher organisms; they become very specialized to make use of specific hosts
and the environments within them. In a virus, specific genes remain segregated
(presumably those that need to be adaptable for the evolutionary arms race with its
host), but the rest of the sequence often has two or three genes overlapped throughout.
For example, in ®X174, only 4 of its 11 genes are segregated. Finally, both avida
organisms and viruses have no error protection or correction mechanisms, thus the
effects of mutation provide a much stronger incentive to decrease code length by

whatever means necessary.

4.5 Evolution of Genetic Locality

To understand how evolution is acting upon programs harboring multiple threads, let
us look at exactly what is being expressed. We can loosely characterize all organisms
by tracking three categories of genes. They are “self-analysis” (slf), “replication”
(rpl) , and “computation” (c¢mp). To follow the progression of these genes through
time, I examine a sample experiment from the environment in which size-altering
mutations are strictly forbidden (a trial from set III). This limitation is enforced to
facilitate alignment, allowing us to cleanly study the functionality of the organism
and the location of its genes. Similar analyses have been done with all sets, showing
comparable behavior.

In Figure 4.5(A) we can follow the per-site entropies for each locus as a function
of time, as described in Section 3.3. Positions are labeled 1 to 80 on the vertical axis,
while time proceeds horizontally. A color coding has been employed to denote the
variability of each locus, where red denotes more variable (“hot”) positions and blue,
fixed (“cold”) positions. Figure 4.5(B) shows which portion of the code is expressed
by which pointer, by two pointers simultaneously, or not at all.

The first gene sif uses pattern matching on nop instructions to find the limits

Instruction Position

Update [x10%]

N
o

Instruction Position
o N
o o

Update [x1 04]

Figure 4.5: (A) Per-site entropy for each locus as a function of time for a standard
(set III) trial. Random (variable) positions with near-unit per-site entropy are red,
while “fixed” instructions with per-site entropy near zero are dark blue or black. (B)
Thread identification within a genome. Black indicates instructions that are never
directly executed, blue denotes instructions executed by a single thread when no other
thread is active, while sections that are executed by a single thread while another
thread is executing elsewhere are colored in green and orange. Finally, sections with
overlapping expressions are red.

of its genome and from that calculate its length. This value is used for elongation
(via the command alloc), which adds empty memory to the genome and prepares
it for the expression of the replication gene. There are two interesting points to note
about the evolution of sif: First, there are many methods by which the organism can
determine its own genomic length, so this gene tends to vary widely. Most of the time
the organism retains pattern matching techniques, but matches different portions of
the code. However, often an organism shifts to purely numerical methods, performing

mathematical operations upon itself that yield the genome length “by accident,” and

83

thus making the organism brittle to size changing mutations (in those experiments
where size change is allowed). The other evolutionary characteristic of this gene is
that there is no benefit in expressing it multiple times as it can be applied only once
during the gestation cycle. Looking at Figure 4.5, the sif gene initially spans from
lines 44 to 61 plus the first four lines and last four lines of the genome, which are
boundary markers fashioned from nop instructions. The first major modification to
the slf gene occurs near update 3000. The pattern used to mark the limits of the
genome is a series of four nop-A instructions. As a newly allocated genome has all
of its sites initialized to nop-A, the genome is re-organized such that these lines are
no longer copied. This reduces the possibility of variation in these sections of code
to zero. This is apparent in Figure 4.5(A) as the positions of these limit patterns
become fully black indicating vanishing entropy.

The sif gene is continuously undergoing minor changes as it becomes more opti-
mized to require fewer lines of code to perform its function. Near update 13,000 it
shifts dramatically and is replaced by one in which size is calculated using only the
final boundary markers. The distance from the gene to the final marker is deter-
mined, and then manipulated numerically to obtain the number that is the size of
the organism. Looking at the first four lines of Figure 4.5(A) near this update, we
can see that they are slowly phased out and increase in entropy as they are no longer
as critical to the organism’s survival. Finally, the size of the pattern marking the end
boundary of the organism is shortened until it becomes only a single line. By the end
of the evolution shown, the sif gene only occupies lines 48 through 56. Note that all
of these lines are only expressed a single time.

The next gene under consideration is the actual replication gene rpl. This sequence
of instructions uses the blank memory allocated in the self-analysis phase and essen-
tially consists of a “copy-loop” that moves line by line through the genome, copying
each instruction into the newly available space. When this process is finished, it severs
the newly created copy of itself which is then placed in an adjacent lattice site. These
dynamics spawn off a new organism that, if the copy process was free of mutations, is

identical to the parent. In Figure 4.5, the organism being tracked has its replication

84

gene on lines 65 to 71 until update 24,000 at which time this gene is reshuffled and
takes up an additional line, thus becoming more efficient by “unrolling” its copy-loop.
What this means is that it is now able to copy two lines each time through the loop.
From the dark blue color of these lines, it is obvious that they have low entropy, and
are therefore highly conserved. The copy-loop is a fragile portion of code, critical to
the self-replication of the organism, yet we do see some evolution occurring here when
multiple threads are in use. Often the secondary thread will simply “fall through”
the copy-loop (not actually looping to copy the genome) and move on to the next
gene, while the other thread performs the replication. However, sometimes the two
threads will evolve together to use the copy loop in different ways, with each thread
copying part of the genome. In Figure 4.5, most of the rpl gene is executed by only one
thread. The rpl gene is followed by junk code that, while executed sporadically, does
not affect the fitness in any way (as evidenced by the light shading in Figure 4.5A for
these lines).

The most interesting of the genes is the computation gene ¢mp. The ancestor does
not possess this gene at all, so it evolves spontaneously during the adaptive process.
The cmp gene(s) evolve uniquely in each trial, enabling the organisms to perform
differing sets of tasks. There are, however, certain themes that we see used repeatedly
whereby the same section of code is used by both threads, but their initial values (i.e.,
the processing performed thus far on the inputs) differ. The unique “pre-processing”
step causes this section of code to perform radically different tasks, allowing the
multiple use of the same code to be beneficial. Portions of this algorithm that might
have some neutrality for a single thread of execution will now be conserved due to the
added constraints imposed by a secondary execution. The size of cmp grows during
adaptation as a number of computations are performed, and the gene is almost always
expressed by both threads as this is always advantageous for an individual organism.
In Figure 4.5, the cmp gene stretches from line 1 to line 42 (at update 30,000), while
it 1s considerably smaller earlier. Furthermore, the genome manages to execute the
entire gene with both threads (the transition from single expression of part of cmp to

double expression is visible around update 20,000). This gene ends up being expressed

85
many times (as the instruction pointers return to this section many times during the
organism’s lifetime). All in all, 17 different logical operations are being performed by
this gene.

By the end of the evolution tracked in Figure 4.5, most of the genes appear to
occupy localized positions on the genome. The c¢mp gene (red sections in Figure 4.5B)
is revisited many times by both threads with differing initial conditions for the regis-
ters, allowing the genome to maximize the computational output. In the meantime,
those sections have become fixed (their variability is strongly reduced) as witnessed

by their dark blue shading in Figure 4.5A.

4.6 Genetic Segregation

Our analysis of organisms that exhibit overlapping expression patterns has led us to
the theory that this is a form of overfitting, and only occurs in those environments
that are relatively static. To test this theory in its simplest form, I have constructed
the Auto-Adaptive Genetic Organization System (aagos) to simulate the evolution
of genetic organization, removing many of the complexities involved in avida and

focusing only on the evolution of gene positions.

4.6.1 The Aagos Model

Aagos is loosely based on Kauffman’s N —k model [31, 32]. Each organism is composed
of a bitstring (of length £) comprising n, specific genes, each of length £,

Figure 4.6 displays an example organism. Its genome (along the left most edge of
the figure) is £ = 16 bits long. It harbors n, = 4 genes (labeled A through D) each
of which corresponds to ¢, = 8 bits of the genome. The blue bar in the figure marks
the range of bits that determine the state of each gene. For example, gene A is the
first 8 bits of the sequence—10110001.

The fitness contribution of each individual gene is uniquely determined by the
bit-sequence associated with it. Each gene has a fitness chart associated with it;

the sequence is indexed into this chart to determine the corresponding fitness. The

86

A B CD

A =10110001

B =10001011

C=01100010

D =01110101
rExample Fitness Chart

Code Fitness
00000000 0.7852
00000001 1.0198
00000010 0.5520

11111111 19987

= O | O | b | O il O O O 1| 1| O 4

Figure 4.6: An example aagos organism.

entries in this chart are generated by the formula f; = 2" where 7 is a random value
evenly distributed between —1 and 1. Therefore, each entry ranges between 0.5 and
2.0 with an equal probability of being above or below one. The individual entries in
this fitness chart are uncorrelated such that any change to a gene’s sequence will alter
its fitness contribution. The fitness of an organism is the product of its individual
gene fitnesses.

In the example given, if genes A through D had the respective fitnesses of 1.2, 0.9,
1.6, and 1.1, then the overall fitness of the organism would be 1.2 x 0.9 x 1.6 x 1.1 =
1.9008.

A mutation in the first bit of the genome would cause gene A to change its
contribution. If this flip happened to improve A, it could be selected for. On the

other hand, a mutation in the fourth bit would alter the contributions of all three

87
genes A, B, and C, which are overlapping in this section.

Aagos is an auto-adaptive system: the fitness of each organism determines that or-
ganism’s replication rate, but never guarantees the perfect transmission of its genome
into the next generation. Thus, if one organism has twice the fitness of another, it will
produce an offspring in half the time. Like avida, aagos has a fixed population size,
so when a new organism is born, the eldest is removed. This encourages high-fidelity
information transfer into the next generation: organisms with a low fidelity will have
fewer viable offspring.

Several types of mutations exist in this system. The first are copy mutations.
Every time an organism produces an offspring, each line has a fixed probability to
be mutated. This provides a pressure for organisms to keep a short genome and
minimize the target area for mutations. Next, there are insertion and deletion muta-
tions that occur with a fixed probability per genome. When an instruction is inserted
or removed, all genes in subsequent positions in the genome are shifted such that
they remain associated with the same bit sequence. These two mutations allow the
genomes to adjust their length as selection dictates.

Finally, there are gene-position mutations that will shift the location of any par-
ticular gene. The position of each gene is inherited by the offspring, and the evolution

of these positions (the genetic organization) is what we are most interested in.

4.6.2 Experiments with Aagos

The initial experiments with aagos test the default organization of genes given a static
environment. There are conflicting pressures—copy mutations encourage genomes to
be as short as possible, but this requires overlapping genes. When genes overlap,
mutations at any shared site affect all genes at that site. For the genes to evolve
independently (each to their own maximal fitness), they must have as little overlap
as possible.

Figure 4.7 displays the average number of sites used by genomes (sequence length)

from two different experiments, each averaged over 50 trials. Organisms in both

88

80 . T T T T . u T T
70 7
60 6
= 50 5

3 40} i

30 7

201 .

10 L 1] 1 1 1 1 1]
0 1 2 3 4 5 6 7 8 9 10

Generations [x1 03]

Figure 4.7: Genome length from 2 starting conditions (averaged over 50 trials each)
in a static aagos experiment. Set one (solid line) began with length 80 genomes, while
set two (dashed line) had length 20 ancestors.

of these experiments consisted of 10 genes, each 8 bits long. The copy mutation
probability was 0.01 per line, insertion and deletion probabilities were both 0.02 per
organism, and the probability of a gene shifting position was 0.005 per gene. The
experiments differed in the starting conditions only: the first set began with an 80
bit ancestral genome while the second had a 20 bit ancestral genome.

These aagos experiments evolved overlapping genes, as expected from equivalent
studies in both avida [51] and viruses [46]. The maximal genome length (assum-
ing all genes to be fully segregated) would be 80 bits, while if they were perfectly
overlapping, it would only be 8 bits (their individual length). In this case, both ex-
periments converged to similar values; their average lengths evolved to 27 and 31 bits,
respectively.

Next, I test the hypothesis that a changing environment will prevent overfitting.
Intuitively, if two genes are overlapping in a fit state and the environment is altered to
make one of them less fit, the suboptimal gene will be under pressure to change. How-
ever, any change will also cause the overlapping gene to alter its fitness contribution
as well, likely causing it to lose its optimized state. Only through gene segregation

can a genome adapt quickly to a turbulent environment.

20 1 1 1] 1 1 1 1 1
0 1 .2 3 4 5 6 7 8 9 10

Generations [x1 03]

Figure 4.8: Genome length in 5 different changing environments in aagos (each aver-
aged over 50 trials).

Fluctuating environments are easy to implement in aagos by setting up the fitness
charts such that at each generation there is a fixed probability that a fitness value
will be randomized. The higher that probability, the faster the environment will be
changing.

In Figure 4.8, I show the progression of average sequence length with time for
environments with a fluctuation rate of 0, 0.004, 0.02, 0.04, and 0.1, all initialized
with a length 20 ancestor. As expected, as the rate of environmental fluctuation is
increased, so too is the segregation of the genes in the genome (as seen from the

increased sequence length).

90
4.7 Discussion and Conclusions

The path taken by evolution from simple organisms with few genes toward the ex-
pression of multiple genes via overlapping and interacting gene products in complex
organisms is difficult to retrace in biochemistry. Artificial Life may help to under-
stand some key principles in the development of gene regulation and the organization
of the genetic code. We have examined the emergence and differentiation of code ex-
pression in parallel within a digital chemistry, and found some of the same constraints
affecting multiply expressed code as those observed in the overlapping genes of sim-
ple biochemical organisms. For example, multiply expressed code is more fragile with
respect to mutations than code that is transcribed by only one instruction pointer,
and as a result evolves more slowly. During evolution, two constraints are notable:
the pressure to reduce sequence length in order to lessen the mutational load, and
the pressure to increase sequence length so as to be able to store more information.
Simple organisms can give in to both pressures by using overlapping genes, gaining
in the short term but mortgaging the future: the reduced evolvability condemns such
organisms to a slower pace of adaptation, and exposes them to the risk of extinction
in periods of changing environmental conditions.

This effect is clearly visible in the evolution of digital organisms, as is a trend
toward multiple expression of as much of the code as possible. This latter feature
is not universal, but rather due to the fact that organisms in avida exist in a static
environment, and multiple expression is cheap (i.e., no additional resources are used
to express more code). In a more realistic chemistry, this would not be the case:
fluctuations in the environment would select against those organisms that had a
reduced ability to adapt, placing an implicit cost to properly balancing the use of a
secondary expression. Also, in such an environment where multiple expression is not
free, we can expect more complex gene regulation to evolve as genes would be turned
on only when needed.

Still, under certain extreme conditions I believe that multiple overlapping genes

are a standard path that any chemistry would follow. Such organisms can be rescued

91
either by the development of error-correction algorithms, or an external change in the
error rate. In either case, a drastic reduction of the mutational load would enable the
sequence length to grow and the overlapping genes to segregate (for example by gene-
duplication). Such a drastic event might thus give rise to an explosion of diversity

followed by innovation.

92

Chapter 5 Evolution of Computer
Languages

If current trends in the growth of computer hardware and software continue, we can
speculate that in the not so distant future we shall be faced with a crisis in the
development of complex operating systems and the programs designed to run under
them. With computer codes beginning to exceed many millions of lines, intended
to interact with other software written independently, such systems are becoming
effectively untestable, and their behavior unpredictable. New paradigms of code
generation, testing, and assembly may have to borrow principles from nature, by
interpreting living organisms as complex machines that are constructed from—and
operating on— “software” (the genome) several billions of lines long, assembled from
various sources and operating in a remarkably robust and fault-tolerant manner.
Early experiments in Genetic Programming [35] and Evolutionary Programming [27)
focused on the evolution of tree-like structures in which each “atom” already has a
functionality related to the problem to be solved. Also, Genetic Algorithms [30] can
be viewed as a tool to evolve specialized problem-solving code. In both instances,
the brittleness of the coding—the tendency of evolved code to easily break under
mutations—seems to go hand-in-hand with the specialization of the atomic instruc-

tions used, and therefore as the price to pay to ensure fast adaptation.

5.1 [Evolvability and Robustness in Computer Lan-
guages

In this section, I show that evolvability and robustness can be achieved simultaneously,

within the biologically-inspired, auto-adaptive paradigm discussed in this thesis.

93

Unlike in Genetic Programming and Genetic Algorithms, in systems of self-replicat-
ing computer code (auto-adaptive systems) robustness is selected for, as there is a
premium for high-fidelity information transmission into the next generation. Rather
than settling for a single instance of such an “artificial chemistry,” I explicitly test
elements that influence robustness and adaptability and take the first steps toward
their systematic exploration. In particular, I study the role that evolution plays in
generating populations of programs that réact to changing and noisy environments

in a predictable manner, while still maintaining evolvability.

5.1.1 Exploring Artificial Chemistries

The original experiments in self-replicating codes performed by Rasmussen [55] seemed
to rule out the evolution of programs because the programs turned out to be extremely
fragile. Self-replicating digital organisms written in the Redcode language could not
survive even miniscule amounts of stochasticity in the replication process, leading to
“dying” populations. Thus, Redcode represents a computationally effective chemistry
that, however, does not survive mutations (i.e., is extremely brittle).

An important step was taken by Ray [56] who recognized that the brittleness of
Redcode is primarily due to the argumented instruction set: independent mutations in
the instruction and its arguments are unlikely to lead to a meaningful combination.
In experiments with a version of Redcode designed to run on the avida system I
determined that, in fact, over 99% of all non-trivial’ mutations are deleterious in
this architecture, even though information can be preserved in large populations if
programs are protected during the replicative process. Evolvability in this language
is severely limited.

Write-protection and an argument-free instruction set led to the first successful
evolutionary experiments with assembly-like code in Ray’s tierra world. Rather then
using arguments for direct addressing, Ray’s instruction-set relied on patterns of

instructions whose execution has no effect (no-operation, or “nop”, instructions) for

LA trivial mutation is defined as one that affects only non-executed portions of code.

94
relative addressing. Such instructions play a role analogous to untranslated binding
sites in biochemical code (e.g., promoter sequences). Self-replicating programs survive
well in the tierra world and can adapt to user-specified fitness landscapes and grow
in complexity [1].

The artificial chemistry of the avida world differs from the coreworld and tierra
systems: In avida, each program has a natural protection as it occupies a unique
location on a two-dimensional lattice that other programs cannot directly access?.
Consequently, interactions between programs are local, and organisms cannot corrupt
the genome of other organisms by overwriting, as happens in Coreworld. This feature
contributes significantly to the robustness of programs in this world, as it ensures
that a program’s fidelity does not depend on its neighbors.

Which aspects of the instruction set’s design are directly responsible for evolvabil-
ity and robustness is of fundamental importance [57] if dedicated, evolvable instruc-
tion sets are to be designed in the future. Here, I systematically test (within the avida
system) the influence of design choices on robustness and evolvability by constructing
several chemistries:

Set I is the standard instruction set described in Section 2.4, with 28 instructions
and minimal redundancy.

Set IT tests the importance of nop instructions matching to a complementary
pattern, as does Set I. This direct-matching set is identical to the standard except that
those instructions requiring nop patterns match directly to themselves (i.e., nop-A
matches nop-4, not nop-B).

Set III tests the need for including nop instructions at all. This no-nop set lacks
all three nop instructions entirely. The instructions jump-f, jump-b and call all
require a value in the BX register (as opposed to a template) that set the distance to
be jumped. Additionally, the search-f and search-b instructions are removed. Also,
instead of push and pop, the register-specific push-AX, push-BX, push-CX, pop-AX,
pop-BX, and pop-CX are used, for a total of 27 instructions in the set.

2The instruction pointer cannot execute or overwrite code of neighboring organisms except in
special chemistries which explicitly allow for this. Thus, the phenomenon of parasitism [56] is
excluded in the present experiments.

95

Set IV is nearly identical to the standard set, with the addition of the memsize
instruction. In all of the other instruction sets, the organisms must calculate their own
genome length before they can allocate memory to copy their offspring into. Often,
this size-calculation mechanism is fragile, forcing the organisms to become stuck at a
fixed size (which brings further evolution to a standstill). The memsize set overcomes
this limitation with a single instruction that will return the genome length.

Set 'V tests the relevance of instruction set size to the dynamics of evolution. This
long set comprises 84 unique instructions, with no additional functionality beyond the
standard set. The new instructions are all variants of the normal instructions. For
example, the standard set contains the conditional instructions if-less, if-n-equ,
and if-bit-1. From these, any numerical comparison can be constructed. How-
ever, the long set contains the additional conditionals if-equ, if-grt, if->= if-<=,
if-equ-0, if-not-0, if-grt-0, if-les-0, if->=-0, if-<=-0, if-A!=B, if-B!=C,

and if-A!=C.

5.1.2 Neutrality

One of the most important characteristics of a fitness landscape is its neutrality [43].
Intuitively, the neutrality of a landscape is a measure of its connectedness: the number
of different ways a fitness improvement can be reached via a neutral walk (i.e., without
ever taking a step down). Either extreme of neutrality brings evolution to a halt: zero
neutrality implies that any mutation affects the fitness—leading to fragile programs (a
rugged fitness landscape in which evolution “freezes” into a local optimum). Maximal
neutrality, on the other hand, implies that no selection can occur. Landscapes ideal
for evolution should therefore sport regions with neutrality somewhere in between,
where neutral mutations can take a population out of local optima and avoid dead
ends [22].

The neutrality of a landscape is a local characteristic that can change drastically
in major evolutionary transitions. The landscape encountered by the programs in

avida is not self-averaging, so no particular evolutionary path is representative of

96

the space of all possible paths. Thus, as in natural genetic landscapes, the result
of a particular evolutionary experiment is contingent upon the ancestral program or
genome; the process is non-ergodic. However, the area in genotypic space adjacent to
the dominating wild-type is statistically occupied, giving rise to a “cloud” of programs
that forms a quasispecies, a concept introduced to molecular evolution by Eigen [23].
By focusing only on the quasispecies, we ignore the vast volumes of genetic space
that are—and always will be—unoccupied. Section 2.8.3 discussed the landscape
analysis tool in avida that allows us to directly measure the neutrality of the dominant
organisms. Genomes with a higher frequency of neutral mutations give rise to clusters
of functionally equivilent organisms that diverge from their progenetor to form new
strains.

For each experiment in each chemistry, I test the local landscape around any
program that is ever most abundant (dominant) in the population. The fraction
of mutations are recorded that fall into each of the categories of fatal, deleterious,
neutral, or beneficial. In practice, all deleterious mutations prove fatal for the mutant
as it is out-competed. Most beneficial mutations turn out to be fatal for the rest of
the population, as the edge in replicative ability spells doom for inferior genotypes
in this single-niche environment. Yet, the percentage of advantageous mutations is
so small that no statistical significance can be attributed to it. Consequently, we can
classify almost all mutations as either neutral or effectively fatal. One of the central
questions addressed here is how this degree of neutrality is affected by changes in the

artificial chemistry.

5.1.3 Results

Due to the contingent nature of evolution, experiments with identical conditions but
different random number seed can—and do—lead to wildly different outcomes. Here,
we have the opportunity to repeat such trials many times (replicas) to gain statistical
significance, and extract global characteristics that set one chemistry apart from

another. I focus on two such measures: the percentage of neutral mutations to

97

0-15 T I T T T T T T T

5
14
S

<

Neutrality

o
&
‘
!r

0 1 1 1 L 1 1 1
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Updates [x1 04]
103 E 1 T T 1 1 1 I T T
- B
2
o 10°F E
(%] o
@ [
E L
= I
10'F
100 1 1 1 1 1 1 1 1 1

0 0.5 1 1.5 2 25 3 3.5 4 4.5 5
Updates [x1 04]

Figure 5.1: (A) Neutrality averaged over 100 trials for each of the five chemistries, as
a function of time (in updates). Set I (Standard, blue curve), Set II (Direct-Matching,
red), Set III (No-nop, magenta), Set IV (Mem-size, green), and Set V (Long, cyan).
(B) Average fitness (relative replication rate with respect to ancestor) across trials
for each chemistry. Color code as in A.

measure robustness, and the average fitness (relative replication rate with respect to
the ancestor) as a function of time to measure evolvability.

For each of 100 replicas in each of the five chemistries®, the neutrality history is
obtained by extracting the dominant genotype every 100 updates and recording its
neutrality. This time series is then averaged across the replicas of a particular set to
produce Figure 5.1(A). We notice first that there are significant differences between

chemistries, and that the neutrality changes (in general, increases) during the course

3Each population of 60 x 60 programs was allowed to adapt for 50,000 updates subject to a
mutation rate of 7.5 x 1072 errors per instruction copied, as well as a 5% probability for a single
insert or delete mutation per gestation cycle.

98
of an experiment. This is primarily due to the increase in sequence length which
accompanies adaptation, but the neutrality levels out while the fitness, in most cases,
continues to increase (see Figure 5.1B). This will be discussed later on.

The neutrality of a genotype is essentially determined by the fraction of hot loci,
which we can think of as the sequence length minus the amount of information stored
in the sequence, in units of instructions. Thus, learning events decrease the neutrality
if the sequence length stays constant, while size-increases without commensurate ac-
quisition of information increase neutrality [4]. The mechanism by which the sequence
length changes thus is crucial for both neutrality and evolvability.

In three of the chemistries (sets I, II, and V), size changes are possible only as
long as the program calculates its size by finding its end (marked off by a pattern
of nop instructions), which is the type of algorithm used by the ancestral program.
Any insertions or deletions that occur in such an organism will be measured properly,
and thus accounted for in the next memory allocation. If, however, size is calcu-
lated by some other means, such as a mathematical operation that produces a result
equal to the length, then this calculation is not likely to change (and certainly not
appropriately) when mutations have led to an altered length.

The chemistry in which size changes are easiest is set IV, as it contains an instruc-
tion (mem-size) that directly returns the sequence length without self-inspection. If
mem-size is used for size calculation (as is developed in 96 of the 100 trials) insert or
delete mutations become more neutral and size changes occur as needed. The opposite
extreme is set III, in which no nop instructions are available rendering relative ad-
dressing impossible. For these experiments the standard ancestor must be replaced by
one in which the genome length is explicitly coded into the sequence. Consequently,
changes in size are rare as they involve significant code rearrangements.

Instruction set II differs from the standard set only in that the search for a pattern
of nops seeks the pattern itself rather than its complement, as described earlier. This
seemingly innocuous change leads to important differences in the evolutionary history.
In set I, two pairs of patterns are required for the correct functioning of the digital

organism: a pattern and its complement to mark the end of the genome, and a

99

second pair framing the copy loop of the organism. With complementary template
matching, we have witnessed that only 18% of the replicas retain such a flexible size-
calculation structure. In most others it is replaced by one in which the organism’s
search for its end returns the location of the copy loop instead, then finds its own
length (accidentally) by manipulating this number. While this is an effective way to
calculate program size, it is also quite brittle: size changes can occur only if several
instructions are changed in a commensurate manner. As a consequence, the standard
set develops difficulties in adjusting the program’s length the moment this algorithm
is locked in. On the contrary, in set II the original algorithm is maintained more
frequently (in 29% of the replicas), because the direct-matching of templates tends
to avoid misdirected searches.

The differences in the way size changes occur is reflected in both evolvability and
robustness. First, the neutrality is highest for chemistries that lead to the develop-
ment of junk code, i.e., loci which do not code for information (Figure 5.1A). These
are chemistries I and IT where size changes occur frequently, but the direct-matching
chemistry (set II) holds the edge after 20,000 updates when the trials in set I begin to
lock in a non-robust algorithm for size calculation leading to problems in the acqui-
sition of more information®. Set IV changes size most easily, and uses this ability to
eliminate junk code. Consequently, its neutrality is lower except for the early stages
of evolution (Figure 5.1A). This set beats all other chemistries as far as evolvability is
concerned, mainly because the early neutrality gives it a head-start in the acquisition
of information.

Set V, which consists of 84 instructions, lags in both neutrality and fitness. This is
attributed to the smaller rate of advantageous substitutions (due to the larger set of
instructions to choose from), while the versatility of the instructions seems to result
in smaller sizes and less junk code. The chemistry that is deprived of the possibility
of relative addressing offered by templates of nop instructions (set III) is extremely

inflexible: size changes are infrequent leading to poor neutrality and adaptation. In

4This difference in chemistries is only apparent in the average. Because of contingency, the
observables are not normally distributed, and the standard deviation can be as large as the average
itself.

100
that respect, it is more akin to the Redcode chemistry mentioned earlier. Also, the
neutrality of the ancestral genome is larger than the type selected by evolution, no
doubt due to a clumsy design by humans.

In conclusion, I have examined different artificial chemistries with respect to their
robustness and evolvability, and found that while the differences among them are
attributable mainly to the manner in which genome-size changes occur, in almost all
cases evolution guides the population toward a region in genotypic space with signif-
icant neutrality. While fitness continues to increase during the evolutionary process,
the neutrality (on average) stays constant, suggesting that the adaptive process has

led the population to a “comfortable” level that avoids evolutionary dead ends.

5.2 The Evolution of Parallel Processing

5.2.1 Introduction

In this section, I address a critical difference between the standard avida experiments
and the natural world, previously touched on in Chapter 4. In nature, many chem-
ical reactions and genome expressions occur simultaneously, with a system of gene
regulation guiding their interactions. However, in most of the work done with digi-
tal organisms only one instruction is executed at a time. This implies that no two
sections of the program can actively interact, as opposed to natural systems where
interaction is the rule. Due to this, an obvious extension is to examine the dynamics
of adaptation in artificial systems that have the capacity for more than one thread of
execution (i.e., an independent CPU with its own instruction pointer, operating on
the same genome). I study the emergence, adaptation, and differentiation of parallel
code execution (“multi-threading”) from a more computational perspective than was
done in Chapter 4, and examine its impact on the evolutionary dynamics.

Work in this direction began in 1994 with Thearling and Ray using the pro-
gram tierra [56]. These experiments were initialized with an ancestor that creates

two threads each copying half of its genome, thereby doubling its replication rate.

101

Evolution produces more threads up to the maximum allowed (16), each copying a
subsection of the genome [64]. In subsequent papers [65, 59] this research extended to
organisms whose threads are not performing identical operations. This is done in an
enhanced version of the tierra system called Network Tierra [58], in which multiple
“islands” of digital organisms are processed on real-world machines across the Inter-
net. In these later experiments, the organisms exist in a more complex environment in
which they have the option of seeking other islands on which to place their offspring.
The ancestor used for these experiments reproduces while searching for better islands
using independent threads. Thread differentiation persists only When island-jumping
is actively beneficial; that is, when a meaningful element of complexity is present in
the environment.

In the experiments reported here, I survey the initial emergence of multiple threads
and study their subsequent divergence in function. Further, I investigate the hypoth-
esis that environmental complexity plays a key role in the pressure for the thread
execution patterns to differentiate. Finally, I discuss how research on the evolution of
multiple threads in digital organisms can be applied to more practical issues in both

Computer Science and Biology.

5.2.2 Experimental Details

We examine the development of multi-threading in populations exposed to different
environments at distinct levels of complexity, comparing them to each other and to
controls that lack the capacity for multiple threads. For this purpose, I measure thread
development and subsequent divergence in the research platform avida, modified to
allow the generation of multiple threads, as described in Chapter 4.

I performed experiments on three environments of differing complexity, with both
the extended instruction set that allows multiple expression patterns and the original
(standard) instruction set as a control. Each setup was repeafed in two hundred trials
to gain statistical significance. Individual trials often differ extensively in the course

of their evolution, generating radically different genetic structures, or getting caught

102
in evolutionary dead-ends.

These experiments were performed on populations of 3,600 digital organisms for
50,000 updates, equating to approximately 9,000 generations per trial utilizing about
twenty hours of execution on a Pentium Pro 200. Mutations are set at a probability
of 7.5 x 1073 for each instruction copied, and a 0.05 probability for an instruction to
be inserted or removed in the genome of a new offspring.

The first environment (I) is the least complex, with no explicit environmental
factors to affect the evolution of the organisms; that is, the optimization of replication
rate is the only adaptive pressure on the population. In the next environment (II),
the organisms have available collections of numbers that they may retrieve and twelve
basic (one- and two-input) logic operations for which rewards are given out. The final
environment (IIT) studied is the most complex, with 80 logic operations selected for.
For each trial, dominant genomes are analyzed to produce a time series of thread use

and differentiation.

Differentiation Metrics

The following measures and indicators keep track of functional differentiation. I
keep this initial analysis manageable by setting a maximum of two threads available
to run simultaneously. Under this limitation, we can study the basic mechanism
of differentiation, while preventing the analysis from becoming overwhelming. The
relaxation of this constraint does lead to the development of more than two threads
with characteristically similar interactions. The first two measures here are repeated
from Chapter 4.

Thread Distance is the metric I use to determine the spatial divergence of
the two instruction pointers. This measurement is the average distance (in units of
instructions) between the execution positions of the individual threads. If this value
becomes high relative to the length of the genome, it is an indication that the threads
are segregated, executing different portions of the genome at any one time, whereas
if it is low, they likely move in lock-step (or sightly offset) with nearly identical

executions. Note, however, that if two instruction pointers execute the code offset by

103
a fixed number of instructions, but otherwise identically, the thread distance is an
inflated measure of differentiation, as both threads do behave identically.

Code Differentiation distinguishes execution patterns with differing behavior.
A count is kept of how often each thread executes each portion of the genome. The
code differentiation is the fraction of instructions in the genome for which these counts
differ between threads. Thus, the ordering of execution (time-delay) is irrelevant for
this metric; only whether the code ends up getting executed differently by one thread
vs. the other is important.

Execution Differentiation is a more rigorous measure of functional differen-
tiation. It uses the same counters, taking into consideration the difference in the
number of times the threads execute each instruction. Thus, if one thread executes a
line 5 times and the other executes it 4 times, it would not contribute as much toward
differentiation as an instruction executed all 9 times by one thread, and not at all
by the other. This metric totals these differences in execution counts at each line
and then divides the sum by the total number of multi-threaded executions. Thus, if
the threads are perfectly synchronized, there is zero execution differentiation, and if
only one thread exclusively executes each line, this metric is maximized at one. An
execution differentiation of 0.5 indicates that half of the executions were not matched

in each thread.

5.2.3 Evolution of Multi-Threaded Organisms

For my initial investigations, I focus on the 200 trials in environment III (the most

complex), with the extended instruction set, allowing for multi-threading.

Emergence of Multiple Execution Patterns

Describing a universal course of evolution in any medium is generally not feasible due
to the numerous random and contingent factors that play key roles. However, there
are a number of trends that appear in a significant portion of experiments, which will

be discussed further.

104

g 1
5 3
3] (1]
® 08¢ 1 S o8}
£ £
I —t
= 0.6} 106
E H
E o
@ 0.4 1 -',E: 0.4}
S .
G 0.2} 1 802}
E L
[T
0 ‘ - - 0 ' - - '
0 1 2 3 4 5 0 1 2 3 4 5
Updates [x10%] Updates [x10%]

Figure 5.2: The time progression of organisms learning to use multiple threads av-
eraged over 200 trials. (A) The fraction of trials which thread at all, and (B) the
average fraction of time organisms spend using both threads at once. The data dis-
played here is for the first 5000 updates of 50,000 update experiments in environment
I11.

Let us first consider the emergence of organisms from a purely linear execution to
the use of multiple threads. In Figure 5.2(A), we see that most populations do, in fact,
develop a secondary thread near the beginning of their evolution. Secondary threads
come into use as soon as this extra execution grants any benefit to the organisms. The
most common way this occurs is by having a fork-th and a kill-th appear around
a section of code, which the threads thereby move through in lock-step, performing
rewarded computations twice. While multiple completions of a task provide only a
minor speed bonus, this is often sufficient to warrant a double execution.

Once multiple execution has set in, its use will be optimized with time. Smaller
blocks of duplicated code will be expanded, and larger sections will be used more
productively, sometimes even shrinking to improve efficiency. Once multiple threads

are in use, differentiation follows.

Execution Patterns in Multi-threaded Organisms

A critical question is “What effect does the introduction of a secondary thread have
on the process of evolution?” The primary measure to denote a genome’s level of

adaptation to an environment is its fitness. The progression of fitness with time (av-

105

10 " " - . 100
A
2 80t
2 [=2]
107 ic
? 2 60t
[]
£ -
E 1 [=] 40 I
10 ¢ 5
@ 20
10° : - : : 0 : : : :
0 1 2 3 4 5 0 1 2 3 4 5
Updates [x104] Updates [x104]

Figure 5.3: (A) Average fitness as a function of time (in updates) for the 200 environ-
ment III trials, and (B) average sequence length for the linear execution experiments
(blue) and the multiple execution experiments (green).

eraged over all trials for each experiment) is shown in Figure 5.3(A)®. Most increases
to replication rate occur as a multiplicative factor, requiring fitness to be displayed
on a logarithmic scale.

Contrary to expectations, the availability of additional threads leads to reduced
adaptation. However, the average length of the genomes (Figure 5.3B) reveals that the
code for these marginally less fit organisms is stored using 40% fewer instructions,
indicating a denser encoding. Indeed, the very fact that multi-threading develops
spontaneously in these populations implies that it is beneficial. How then can a
beneficial development be detrimental to an organism’s fitness? Inspection of resulting
genomes has allowed us to determine that this code compression is accomplished by
overlapping execution patterns that differ in their final product. See Chapter 4 for
more details.

Figure 5.4(A) displays an example genome. The initial thread of execution (the
inner ring) begins in the D “gene” and proceeds clockwise around the diagram. The
execution of D divides the organism when it has a fully developed copy of itself
ready. This is not the case for this first execution, so the gene fails with no effect to

the organism. Execution immediately progresses into gene C, where computational

®Note that the fitness curves of individual trials display a sharp punctuation in learning events,
appearing as an uneven staircase.

106

Figure 5.4: (A) Execution patterns for an evolved avida genome. The inner ring dis-
plays instructions executed by the initial thread, and the outer ring by the secondary
thread. Darker colors indicate more frequent execution. The initial thread primarily
executes gene R, which performs the copy process, while the other thread centers on
genes C; and C for task computation. (B) Genome structure of the phage ®X174.
The promoter sequence for gene Ax is entirely within the gene A, causing the genes
to express the same series of amino-acids from the portion overlapped. Genes B, E,
and K are also entirely contained within others, but with an offset reading frame,
such that different amino acids are produced (i.e., the expression is different).

tasks are performed, increasing the CPU speed. Near the center of Cy, a fork-th
instruction is executed initiating secondary execution (of the same code) at line 27,
giving rise to gene Cy. The primary thread continues on to line 55, the S gene,
where genome size is calculated and the appropriate memory space for its offspring
is allocated. Next, the primary instruction pointer runs into gene R, the copy loop,
where the actual replication occurs. It is executed once for each of the 99 instructions
in the genome (hence its dark color in the figure). When this process is complete, it
moves on through gene /I shuffling numbers around, and re-enters gene D for a final
division.

During this time, the secondary thread executes gene Cs computing a few basic
logical operations. C; ends with a jump-f (jump forward) instruction that initially
fails. Passing through gene I, numbers are shuffled within the thread and the jump
at its last line (72) diverts the execution back to the beginning of the organism. From

this point on, its execution loops through Cy and Cj for a total of 10 times, using the

107

Table 5.1: Example genetic encoding in avida.

00: pop 17: if-bit-1 | 34: push 51: pop 68: nop-C 85: inc

01: divide | 18: push 35: swap 52: jump-f 69: add 86: if-n-equ
02: get 19: id-th 36: nand 53: nop-C 70: if-bit-1 87: jump-b
03: nop-A | 20: jump-f | 37: put 54: push 71: get 88: nop-B
04: nand 21: get 38: nop-C | 55: search-b | 72: jump-f 89: get

05: nand 22: shift-r 39: get 56: nop-C 73: fork-th 90: dec
06: nand 23: add 40: nand 37: nop-C 74: put 91: nop-C
07: nop-C | 24: put 41: get, 58: add 75: allocate | 92: nand
08: push 25: fork-th | 42: swap 59: if-less 76: push 93: push
09: nop-A | 26: push 43: nand 60: swap 77: search-f | 94: nop-B
10: nop-A | 27: nand 44: put 61: dec 78: pop 95: nand
11: nop-A | 28: if-n-equ | 45: nop-B | 62: nop-C 79: nop-C 96: inc

12: nop-B | 29: nand 46: divide | 63: kill-th 80: swap-stk | 97: pop
13: put 30: put 47: nand 64: fork-th 81: swap-stk | 98: pop
14: add 31: get 48: shift-r | 65: inc 82: if-n-equ

15: push 32: nop-B 49: nand 66: add 83: copy

16: put 33: nand 50: put 67: add 84: copy

results of each pass as inputs to the next, computing different tasks each time. The
full genome for this organism is presented in Table 5.1. Note that for this organism,
the secondary thread is never involved in replication.

Similar overlapping patterns appear in natural organisms, particularly viruses.
Figure 5.4(B) exhibits a gene map of the phage X174 containing portions of genetic
code that are expressed multiple times, each resulting in a distinct protein [67]. Stud-
ies of evolution in the overlapping genes of ®X174 and other viruses have isolated the
primary characteristic hampering evolution. Multiple encodings in the same portion
of a genome necessitate that mutations be neutral (or beneficial) in their net effect
over all expressions or they will be selected against. Fewer neutral mutations result
in a smaller variation and in turn a slower adaptation rate. It has been shown that in
both viruses [46] and Avida organisms [51] (see Chapter 4), overlapping expressions
have between 50 and 60% of the variation of the non-overlapping areas in the same
genome. Therefore, fewer mutated offspring survive, causing genotype space to be
explored at a slower pace.

In higher organisms, multiple genes do develop that overlap in a portion of their

108
encoding, but are believed to be evolved out through gene duplication and specializa-
tion, leading to improved efficiency [33]. Unfortunately, viruses and avida organisms
are both subject to high mutation rates with no error correction abilities. This causes
a strong pressure to compress the genome, thereby minimizing the target for muta-
tions. As this is an immediate advantage, it is typically seized, although it leads to a

decrease in the adaptive abilities of the population in the long term.

Environmental Influence on Differentiation

Now that we have witnessed the development of multiple threads of execution in avida,
let us examine the impact of environmental complexity on this process. Populations
in all environments learn to use their secondary thread quite rapidly, but show a
marked difference in their ability to diverge the threads into distinct functions. In
Fig 5.5(A), average Thread Distance is displayed for all trials in each environment
showing a positive correlation between the divergence of threads and the complexity
of the environment they are evolving in.

More complex environments naturally require more information to be stored within
the organism, and hence promote longer genomes [4], possibly biasing this measure.
To account for this, I consider this average thread distance normalized to the length
of the organisms, displayed in Fig 5.5(B). When threads fully differentiate, they often
execute neighboring sections of code, regardless of the length of the genome they are
in. Indeed, longer genomes now need their threads to be further spatially differen-
tiated to obtain an equivalent fractional thread distance. Thus, the fact that more
complex environments still have a marginally higher distance is quite significant.

Interestingly, Code Differentiation (Fig 5.6A) does not firmly distinguish the en-
vironments, averaging at about 0.5. In fact, the distribution (between 0 and 1) of
code differentiation turns out to be nearly uniform. This indicates that the portion
of the genomes that are involved with the differentiated threads are similarly dis-
tributed between complexity levels. Execution Differentiation (the measure of the
fraction of executions that occurred differently between threads, shown in Fig 5.6B),

however, once again positively correlates environments with thread divergence. The

109

Thread Distance
IN o

N

0 0.5 1 1.5 2 25 3 3.5 4 4.5 5
Updates [x1 04]

0.2) 1 1 T 1 I T 1 I

0.1p i

0.05 J

Frac. Thread Distance

0 1 1 1 1 1 1 1 1 1
0] 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Updates [x1 04]

Figure 5.5: Differentiation measures averaged over all trials for each experiment. Av-
erage values of (A) Thread Distance and (B) Fractional Thread Distance are displayed
for experiments in environment I (red), environment II (green), and environment III
(blue).

degree of differentiation between the execution patterns is more pronounced in the

more complex environments.

5.2.4 Summary

We have witnessed the development and differentiation of multi-threading in digital
organisms, and exhibited the role of environmental complexity in promoting this
differentiation. Although this is an inherently complex process, the ability to examine
almost any detail and dynamic within the framework of avida provides insight into

what I believe are fundamental properties of biological and computational systems.

110

0.8 A

o
N
T
1

Code Differentiation
o
n

O 1 ! 1 1 1 1 1 1]
0 0.5 1 1.5 2 25 3 3.5 4 4.5 5

Updates [x1 04]

©
>

T T I T T T

o
w
T
I

©
N
T
1

o

—A
T
1

Execution Differentiation

0 0.5 1 1.5 2 25 3 3.5 4 45 5
Updates [x1 04]

o

Figure 5.6: Differentiation measures averaged over all trials for each experiment.
Average values of (A) Code Differentiation and (B) Expression Differentiation are

displayed for experiments in environment I (red), environment II (green), and envi-
“ronment IIT (blue).

The patterns of expression (lock-step, overlapping, and spatial differentiation) are
selected by balancing the “physiological” costs of execution and differentiation against
the implicit effects of mutational load. Clearly, multiple threads executing single
regions of the genome provides for additional use of that region. This is analogous
to the use of both the overlapping genes as seen in many viruses, as well as the
more common use of single gene products within various pathways. The benefit
is in the form of additional functionality and a reduction in the mutational load
required for that functionality. Within the context of this thinking, the correlation

between environmental complexity and the usage of multiple threads makes a great

111
deal of sense: multiple threads are advantageous only if they can provide additional
functionality.

However, there is a cost side in this equation. Even though in avida there currently
is no ezplicit cost for adding threads, when a gene or gene product is used in multiple
pathways, variations are severely reduced as the changes to each affected gene must
result in a net benefit to the organism. This cost was demonstrated: We observed
a negative correlation between rates of adaptation and use of multiple threads. Fur-
thermore, the ability to analyze the entropy of each site in the genome quantifies the
loss in variability predicted by this hypothesis.

Implications of this work with potentially far reaching consequences for Computer
Science involve the study of how the individual threads interact and what techniques
the organisms implement to obtain mutually robust operations. The internal inter-
actions within computer systems lack the remarkable stability of biological systems
to a noisy, and often changing environment.

In a computer, a substantially altered environment will cause a program to cease to
function. Likewise, if two pieces of software interact in a way not explicitly designed,
the results are neither predictable nor reliable. An even more acute problem seems to
be that in contemporary computer systems we are reaching a level of code complexity
that renders systems untestable, and fragile even under normal use.

Conversely, as biological organisms have evolved to higher levels of complexity,
they deal more gracefully with change or unexpected situations. Life as we know it
would never have reached such vast multi-cellularity if every time a single component
failed or otherwise acted unexpectedly, the whole organism shut down. Although
failure or pathological behavior of a single cell within an organism can cause traumatic
results (such as cancer), this is an exception. The typical outcome is for the body
to remove the offending cell and have its function carried out by others. This is
accomplished by inter-cell communication and gene regulation.

Clearly, we are still taking the first steps in developing systems of computer pro-
grams that interact on similarly robust levels. Here we have performed experiments

on a simple evolutionary system as a step toward deciphering these biological prin-

112
ciples as applied to digital life. Systems at levels of integration anywhere near that
of biological life are still a long way off, but more concrete concepts such as applying
principles from gene regulation to develop self-scheduling parallel computers may be

much closer.

113

Chapter 6 Future Work

In this thesis, I have used the avida software to systematically study specific aspects
of the relationship between a population’s evolutionary dynamics and the underlying
genetic encoding employed by the organisms. Throughout, I consider genetic codes in
the form of computer languages, and attempt to exploit the analogy in both directions.
For one, evolving systems can be studied in a computational medium, allowing us to
observe dynamics and verify predictions at a level of detail that would otherwise
be infeasible to obtain. In the other direction, biological evolution has been able
to produce and manage vast levels of complexity that are currently impossible to
deal with in software systems; those techniques that are employed in the software
systems are not nearly so elegant. If we can better understand the robustness of,
and complexity growth in evolved systems, this may provide us with insights into
handling similar aspects of man-made software.

The next steps in my research involve strengthening the comparison between the
evolution of biological genetic codes and the evolution of computer programs. I have
begun a collaboration with Richard Lenski at Michigan State University, to use avida
to reproduce several experiments performed by him on E. coli. In the first of these,
we have compared the epistatic effects from his biological work [25] to our digital
organisms [40]. In the next steps of this collaboration, we are considering the relative
roles of chance, history, and adaptation on the products of evolving systems [66], and
the nature of punctuated versus gradual evolution [24].

I am also continuing my studies of complexity in evolving systems. The equations
for calculating complexity presented here neglect the possibility of correlations occur-
ring in codes, which can significantly skew the accuracy of the complexity estimates.
The landscape tool in avida has been expanded to.sample millions of genomes at an
arbitrary mutational distance away. If the expecfed fitness from this test is not mul-

tiplicative (i.e., if a single mutation reduces fitness by a factor of «, a multiplicative

114
model would predict n mutations to reduce it to a™), then we know such epistatic
effects are at work, and can be estimated in a simple model.

All of the other projects presented here are equally open for continued study.
There is significantly more to the topic of genetic organization than the overlapping
or segregation of genes. The expression of specific amino acids in DNA seems to
maximize the probability that the mutation of a single nucleotide will not affect
the protein that it is involved in expressing. Likewise, there are many structures
(promoter sequences, transcription levels, catalytic sections of introns, etc.) that we
do not account for in the current instantiation of avida.

The topic of evolvability and robustness of computer languages is quite extensive;
in this thesis I have only considered a few of the key issues that have been assumed,
but not tested, to be critical. On the topic of label matching alone, we have shown
the importance of labels, but we are far from isolating the optimal type of labels to
be used.

In several portions of this thesis, I explore the effects of allowing the digital or-
ganisms to have multiple threads of execution. In the limited model that I present,
only two threads are possible, and while they can communicate, they have no ability
to directly promote or suppress one another. I plan to expand this research into the
study of digital gene regulation, with the goal of understanding how to develop more
complex software with interacting parts.

Looking forward, extensions I have planned for this work should be able to enhance
both the fields of Computer Science and Biology. A project I am initiating on the
computational side is the study of a genetic algorithm variation that I call an auto-
adaptive algorithm (A3). Such a system would have solutions replicating themselves
proportional to their fitness. Unlike a standard GA, however, no genome can ever
guarantee having its information propagated to the next generation except through
its offspring. This will introduce v-selection into the system, forcing the codes to
maintain a neutrality to mutations, and in turn making it more difficult for the
population to become stuck in an evolutionary dead-end.

Finally, I am adding a resource model to avida with the goal of constructing

115
primitive ecosystems. We have been very successful in using avida to understand
the progression of evolution in a single niche; I am now expanding this work to
cover higher-level biological structures. The simplest eco-system model would include
two resources, each of which requires a different type of task in order to obtain
the merit bonus associated with it. When one resource is used, it is converted to
the other encouraging two niches to exist at once, each fueling the other. Such
experiments should allow us to witness the evolution of co-operation and small co-

evolving ecosystems.

116

Appendix A Configuration Files

Avida is designed to be highly flexible such that the researcher can setup a configura-

tion to perform a wide varieity of experiments.

A.1 The genesis File

The genesis file is the primary configuration file for avida. Most environmental initial

conditions can be adjusted here.

The format is: <variable name> <value>

The genesis file is divided into several sections, each of which contains a selection

of variables (described briefly within the actual file).

VERSION_ID 1.4

Do not change this value!

Architecture Variables

MAX_UPDATES 50000
MAX_GENERATIONS -1
WORLD-X 60
WORLD-Y 60
MAX_CPU_THREADS 2
RANDOM_SEED 1

Maximum updates to run simulation (-1 = no limit)

Maximum generations to run simulation (-1 = no limit)
Width of the world in Avida mode.

Height of the world in Avida mode.

Number of Threads CPU’s can spawn

Random number seed. (0 for based on time)

Configuration Files

DEFAULT_DIR ../work/

INST_SET inst_set.28.base

TASK_SET task_set
EVENT_FILE event_list

START_CREATURE creature.base

Viewer #it#
VIEW_MODE 1 #

Reproduction
BIRTH_METHOD 1

#
#
#
#
#
#
#

DEATH_METHOD O

Directory in which config files can be found.
File containing instruction set.

File containing task set.

File containing list of events during run.

Organism to seed the population.

0=BLANK, 1=MAP, 2=STATS, 3=HIST, 4=0PTIONS, 5=Z00M

= Choose Random Organism (poor for evolution!)

= Choose 0Oldest Organism

= Choose largest Age/Merit

Choose only empty cells.

= Choose Random from full population (Mass Action)
= Choose Eldest from full population (Tierra)

= Never kill organisms.

SO WN RO
Ui

AGE_LIMIT 5000
ALLOC_METHOD 0

Divide Restricti
CHILD_SIZE_RANGE 2

MIN_COPIED_LINES 0.5
MIN_EXE_LINES 0.5

Mutations
POINT_MUT_PROB O.
COPY_MUT_PROB
INS_MUT_PROB

0.00
0.
DEL_MUT_PROB 0.
0.
0.
0.

O O O O O

DIVIDE_MUT_PROB
DIVIDE_INS_PROB
DIVIDE_DEL_PROB

o

5
05

Time Slicing
AVE_TIME_SLICE 30
SLICING_METHOD 3

SIZE_MERIT_METHOD 4

TASK_MERIT_METHOD 1

#i## Task Bonus Modif
MAX_NUM_TASKS_REWARD

Genotype Info
THRESHOLD 3

GENOTYPE_PRINT O
SPECIES_PRINT 0
GENOTYPE_PRINT_DOM O
#

SPECIES_RECORDING 2
SPECIES_THRESHOLD 2

Data and Log Fil
SAVE_AVERAGE_DATA
SAVE_DOMINANT_DATA
SAVE_COUNT_DATA

117

1 = Kill when inst executed = AGE_LIMIT

2 = Kill when inst executed = length * AGE_LIMIT

Modifies DEATH_METHOD

0 = Allocated space is set to default instruction.
1 = Set to section of other organisms (Necrophilia)
2 = Allocated space is set to random instruction.
ons #i###

Maximal differential between child and parent sizes.
Code fraction which must be copied before divide.
Code fraction which must be executed before divide.

Mutation rate (per-location per update) (x107-6)
Mutation rate (per copy).

Insertion rate (per site, applied on divide).
Deletion rate (per site, applied on divide).
Mutation rate (per divide).

Insertion rate (per divide).

Deletion rate (per divide).

75

H H H HH H R

= CONSTANT: all organisms get default...

= BLOCK: Block slice scaled to merit.

= PROBABILISTIC: Run _prob_ proportional to merit.
= INTEGRATED: Perfectly integrated deterministic.
= off (merit is independent of size)

= Merit proportional to copied size

Merit prop. to executed size.

= Merit prop. to full size.

= Merit prop. to min of executed or copied size.
= Merit prop. to sqrt of the minimum size.

= No task bonuses

= Bonus just equals the task bonus

H O HF H H H H #H H H B HHR
O U WNEFE O WNRKRO
Il

iers #i##
ED -1 # -1 = Unlimited

#
Number of organisms in a genotype needed for it
to be considered viable.
0/1 (off/on) Print out all threshold genotypes?
0/1 (off/on) Print out all species?
Print out a genotype if it stays dominant for
this many updates. (0 = off)
1 = full, 2 = limited search (parent only)
max number of failures organisms to be same species

es ###

10 # Print these files every x updates. Enter O for
10 # those that should never be printed

10

118

SAVE_TOTALS_DATA 0

SAVE_TASKS_DATA 10
SAVE_STATS_DATA 10
SAVE_TIME_DATA 10

SAVE_GENOTYPE_STATUS 0 # Print these files every x updates. Enter 0 for
SAVE_DIVERSITY_STATUS O # those that should never be printed

0/1 (off/on) toggle to print file.
0 = off, 1 = print ALL, 2 = print threshold ONLY.
0/1 (off/on) toggle to print file.
0/1 (off/on) toggle to print file.
0/1 (off/on) toggle to print file.
0/1 (off/on) toggle to print file.
0 = off, 1 = all, 2 = parents only.
0/1 (off/on) toggle to print file.
0/1 (off/on) toggle to print file.

LOG_CREATURES ©
LOG_GENOTYPES O
LOG_THRESHOLD 0
LOG_SPECIES 0
LOG_BREED_COUNT 0
LOG_PHYLOGENY O
LOG_GENEQOLOGY O
LOG_LANDSCAPE ©
LOG_MUTATIONS O

HoH o N N H

Debug
DEBUG_LEVEL 2 # O = ERRORS ONLY, 1 = WARNINGS, 2 = COMMENTS

END

A.2 The event_list File

The event_list file configures the events to occur during the course of an avida
experiment, by listing the trigger of the event, the name of the event, and any relevant

arguments required. The format is:
<trigger type> <trigger> <event name> [<args>...]

Currently there are two trigger types available: updates (u) and generations (g).
The trigger itself takes the form of start:step:stop; the first number indicates when
the event should initially be triggered, the second number is how often it should be
triggered, and the final number is when it should no longer be triggered. Thus, if an

event were
u 1000:50:2000 save_clone

then starting at update 1000, a clone of the population would be saved every 50

updates until update 2000. If only two number are specified, the even will continue

119
periodically until the experiment terminates. If a single value is given, the event
happens only once.

If an event requires any arguments to specify how it should behave, those come

at the end.

Here is an example event_list file:

g 100:100 calc_landscape
u 5000:5000 save_clone

u 9000:10:10000 mod_copy_mut 0.0001
u 20000:10:21000 mod_copy_mut -0.0001

u 30000 inject creature.parasite
u 40000 apocalypse 0.75

u 50000 exit

The file starts off by setting two events that occur continuously; every one hun-
dered generations a local landscape analysis (see Section 2.8.3) is performed on the
dominant organism in the population, and every 5000 updates a clone is made of the
population.

Specific events begin at update 9000 when, for the next 1000 updates (until
10,000), the copy mutation rate is slowly increased. This “high temperature” en-
vironment persists for 10,000 more update when it begins to cool at update 20,000
returning to its original level by update 21,000. At update 30,000 a parasite is in-
jected into the population, and then at 40,000 an apocalypse event occurs killing off
75% of the population.

Finally, at update 50,000 the experiment is ended.

120
A.3 The inst_set File

The instruction set file determines which instructions are to be included in the compu-
tational chemestry. It consists of a list of possible commands for the virtual assembly
language, each with a 1 or 0 next to them, which determines if they should be in-
cluded. Any instruction not listed here will automatically be assumed to have a 0
next to it (so, theoretically only the included instructions need to be in the list). Avida
is distributed with a collection of pre-configured instruction set files for the specific
types of languages.

The default 28-instruction set follows. Here, it is divided over two columns to

conserve space, but progresses linearly in the actual file.

nop-A 1 set-num 0
nop-B 1 inc 1
nop-C 1 dec 1
nop-X 0 zero 0
if-equ-0 O neg 0
if-not-0 O square 0
if-n-equ 1 sqrt 0
if-equ 0 not 0
if-grt-0 O add 1
if-grt 0 sub 1
if->=-0 0 mult 0
if->= 0 div 0
if-les-0 0 mod 0
if-less 1 nand 1
if-<=-0 0 nor 0
if-<= 0 and 0
if-A'=B 0 order 0
if-B!=C 0 xor 0
if-At=C 0 copy 1
if-bit-1 1 read 0
jump-f 1 write 0
jump-b 1 stk-read O
jump-p 0 stk-writ O
jump-slf O compare 0
call 1 if-n-cpy O
return 1 allocate 1
pop 1 divide 1
push 1 c-alloc 0
swap-stk 1 c-divide O
flip-stk O inject 0
swap 1 get 1
swap-AB 0 stk-get 0
swap-BC 0 stk-load O
swap-AC 0 put 1

121

copy-reg O search-f 1
set_A=B 0 search-b 1
set_A=C 0 mem-size 0
set_B=A 0 rotate-1 0
set_B=C 0 rotate-r 0
set_C=A 0 set-cmut 0
set_C=B 0 mod-cmut 0
reset 0 fork-th 0
pop-A 0 kill-th 0
pop-B 0 id-th 0
pop—C 0 repro 0
push-A 0 dm-jp-f 0
push-B 0 dm-jp-b 0
push-C 0 dm-sch-f 0
shift-r 1 dm-sch-b 0
shift-1 1 re-jp-f 0
bit-1 0 re-jp-b 0
abs-jp 0

A.4 The task_set File

The task_set file lists the possible bonuses that an avida organism can receive, and
sets the type and level of that bonus.
The file is in the format

<category> <task name> <bonus type> <bonus value> [<type> <value>

In the file below, each task entry is followed by a comment describing that task.
The type of each bonus determines how it affects merit; it can either be additive
(Mpew = Mg + bonus), multiplicative (Myew = Moq X bonus), or exponential
(Mew = M)

If more than one bonus is given for a task, the first bonus is rewarded the first
time that task is completed, the second bonus is awarded the second time, and so on.
If a task is performed more often than there are bonuses listed for, the final bonus
that is listed is applied thereafter. Note that all of the task descriptions below end in
a “+ 0” mandiating that additional completions of the task garner no bonus at all.

The naming convention for the logic task is a number-letter pair. The number is

how many inputs the task makes use of, and the letter is a unique code.

Cat.

misc
misc
misc
misc

logic
logic

logic
logic

logic
logic
logic
logic
logic
logic
logic
logic

logic
logic
logic
logic
logic
logic
logic
logic
logic
logic
logic
logic
logic
logic
logic
logic
logic
logic
logic
logic
logic
logic
logic
logic
logic
logic
logic
logic
logic
logic
logic

Task

get
put
echo
add

3e

3aa
3ab
3ac
3ad
3ae

Bonuses. ..

+ 4+ ¥ *

+
o

* *

* X X X X X ¥ ¥

O O R P

[y

e e T S T S SO

HREERPRPEREERE R BRRRR B R R B R R SRR R R R e o

.05
.05

* ¥

* X

* X X X K ¥ X ¥

*-)(-*****-X-***********************

[y

e T RSO

L e e e e e i e e e i Y S Ot U ST

.05
.05

.05

i e N Y SO

HEERREE PR R RERERRBERRRBRRB B R 2 (B8 [3 4o e

*

+
(@]

+ + + 4+ + o+ o+ o+
Coocococooo

R S S L T T S S T T T T T S Ui

1.05

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

122

+*

++

H H o R OB R H

###############################

Meaning

0
0

Bitstring of all Zeros
Bitstring of all Ones

Echo
Not

and B

or B

or "B
and "B
nor B
nand B
xor B
equ B

=k o e e e e

A and B and C

A and B and “C

A and "B and “C

“A and "B and °C

A and (B xor C)

Ag B O
A+B+C=2
A+B+C>= 2

A & “(B xor C)

A xor (B & C)

A (B&C)

Ag B 0

(A& "B) | CA&B&C
(A& "B) | (B & C)

A & (B nand C)

A xor (B & C)

Al (B&OQO

(A xor B) & ~C

"A% (BxorC))| (A&B&C)

(A& "B) | ("A&B& "C)

A& BI] ~C) | (CA& "B&C)
(A xor B) | (4 & C)

(A nor B) nor C

CA&E BICH I B&O
("TA&B) | ("A&C) | (B& "C)

Al (B& O

(A& "B) | (A& "C) | ("A & B)
A+B+C=1

A xor B xor C

A&C)|l B&C)l ("AL& B&O
[very complex]

logic
logic
logic
logic
logic
logic
logic
logic
logic
logic
logic
logic
logic
logic
logic
logic
logic
logic
logic
logic
logic
logic
logic
logic
logic
logic
logic
logic
logic
logic
logic
logic
logic
logic
logic
logic
logic

3af
3ag
3ah
3ai
3aj
3ak
3al
3am
3an
3ao
3ap
3aq
3ar
3as
3at
3au
3av
3aw
3ax
3ay
3az
3ba
3bb
3bc
3bd
3be
3bf
3bg
3bh
3bi
3bj
3bk
3bl
3bm
3bn
3bo
3bp

HREERRP R R R R R R R R RR R R R R R e sk o [SN
U'IUlU'IO'I0’10101010'10'I(J'I(J'l0'10'1010101010101U10101010‘I(ﬂ01010‘|(ﬂ(’.ﬂ()’10’10’1010’!0‘l

*******-)(-)(-****************************

L e e e e e e e i anli o S S e G T T T (SN

e il o e e NI o e

e e e e e T YA
COO0O0OO0O00000O0O0O0O0O00DOOOOOOOOOCOCOOOOOO OO O O

123

[very complex]

A | (B xor
“((A& B
A or B or
(AkB&C
A nor (B x
[very comp
[very comp
(C& (A]
A xor “(B
A+B+C
("A & "B)
(A xor B)
A& (B
(A& "B) |

c)
& C) |
C

("A & "B & ~C))

) | "A& "B & C)

or C)
lex]
lex]
B)) |
xor C)
=1

("A & "B& "C)

| (A &B&C)
nor (A & C)

~C)

(A &C) |

[very complex]
[very complex]

[very comp

lex]

A | (B nor Q)

("A & ("B
A] “(B xo
A nor (B &
A equ (B &

D]
r C)
)]
c)

("B & "C)

(A & (B xor C))

(A & “B) nor (B & C)
(A& "B) nor ("A & B & C)

A nor (B &
A equ (B&
A nand B n
“A | (B&

A nand (B xor C)

Al B]|C
A+B+C
A+B+C
A nand (B
A nand (B
“A | "B |
“Al "B |

C)
C)
and C

~C)

<=1
=2
)

xor C)

124

Appendix B Extracted Organisms

Organisms can be extracted from avida for analysis by a researcher, or for use in
future experiments. This appendix displays several organisms, both those that are
used as ancestor organisms, and those that were the product of evolution.

Two main ancestors have been used in the experiments prestented here: one pos-
sesing short, 20-line genome, and the other with a longer 80-line genome. Each of
these were placed into avida and immediatly extracted; all comments are automat-
ically generated. By default, genotypes are named with a 3 digit code (indicating
their length) followed by a unique 5 letter id. The length-20 genome follows:

Filename......., : 020-aaaaa

Update Output...: 0O

Is Viable.......: 1

Generation: 0 Divide-1 Divide-2 Average

Merit...........: 17 19 18

Gestation Time..: 88 90 89

Fitness......... : 0.193182 0.211111 0.202146

Errors.......... : 0 0

Code Size.......: 20 20

Copied Size.....: 20 20 20

Executed Size...: 17 19 18

0ffspring.......: SELF SELF

get: 0 logic:3i: O logic:3ac: O logic:3aw: 0
put: 0 logic:3j: 0 logic:3ad: O logic:3ax: 0
logic:la: O logic:3k: O logic:3ae: O logic:3ay: 0O
logic:1b: O logic:31: O logic:3af: O logic:3az: 0
logic:2a: O logic:3m: O logic:3ag: O logic:3ba: 0
logic:2b: O logic:3n: O logic:3ah: O logic:3bb: 0O
logic:2c: O logic:30: O logic:3ai: 0 logic:3bc: 0O
logic:2d: O logic:3p: O logic:3aj: 0 logic:3bd: 0
logic:2e: O logic:3q: O logic:3ak: 0 logic:3be: 0
logic:2f: O logic:3r: O logic:3al: 0 logic:3bf: 0
logic:2g: O logic:3s: O logic:3am: 0 logic:3bg: 0O
logic:2n: O logic:3t: 0 logic:3an: 0 logic:3bh: O
logic:3a: 0 logic:3u: 0 logic:3a0: 0 logic:3bi: 0O
logic:3b: O logic:3v: O logic:3ap: O logic:3bj: 0
logic:3c: O logic:3w: O logic:3aq: 0 logic:3bk: 0
logic:3d: © logic:3x: O logic:3ar: 0 logic:3b1: O
logic:3e: O logic:3y: O logic:3as: 0 logic:3bm: 0
logic:3f: 0 logic:3z: 0 logic:3at: 0 logic:3bn: 0

#
#

logic:3aa: 0
logic:3ab: O

logic:3g: O
logic:3h: O

search-f
nop-A
nop-A
add

inc
allocate
push
nop-B
pop
nop-C
sub
nop-B
copy

inc
if-n-equ
jump-b
nop-A
divide
nop-B
nop-B

H H R

#H o HE ¥ H N N R

H RO HE K H R OHE ¥ H W R

Next, here is the length 80 ancestor; its genome has been manually commented.

Filename........: base.out
Update Qutput...: O
Is Viable....... 1

Divide-1
Merit........... : 47
Gestation Time..: 353
Fitness.........: 0.133144
Errors.......... : 0
Code Size.......: 80
Copied Size.....: 80
Executed Size...: 47
Offspring.......: SELF

logic:3i:
logic:3j:
logic:3k:
logic:31:
logic:3m:
logic:3n:
logic:3o0:
logic:3p:
logic:3q:
logic:3r:
logic:3s:
logic:3t:
logic:3u:

get:

put:

logic:1a:
logic:1b:
logic:2a:
logic:2b:
logic:2c:
logic:2d:
logic:2e:
logic:2f:
logic:2g:
logic:2h:
logic:3a:

(= eleloNoNoNoNeoNoNeleNo e
(=l =leeNeoNoNeNeNoNeloNe e

125

logic:3au: 0
logic:3av: O

Divide-

2

57
344
0.165698

0

80
80
57
SELF

logic:
logic:
logic:
logic:
logic:
logic:
logic:
logic:
logic:
logic
logic:
logic:
logic:

3ac:
3ad:
3ae:
3af:
3ag:
3ah:
3ai:
3aj:
3ak:
:3al:
3am:
dan:
3ao:

[el=leloNoNeNeNeoNeNo ool e)

logic:3bo: O
logic:3bp: O

Average
52

348.5
0.149421

80
52

logic:
logic:
logic:
logic:
logic:
logic:
logic:
logic:
logic:
logic:
logic:
logic:
logic:

3aw:
3ax:

3az:
3ba:
3bb:
3bc:
3bd:
3be:
3bf:
3bg:
3bh:
3bi:

C OO0 QOO0 OOCO OO

logic:
logic:
logic:
logic:
logic:
logic:
logic:

H H H HHHE R

nop-A
nop-A
nop-A
nop-A
call
nop-A
nop-B
nop-A
nop-A
swap-stk
push
nop-B
swap-stk
call
nop-A
nop-B
nop-B
nop-A
swap-stk
pPop
nop-B
swap-stk
jump-b
nop-C
nop-A
nop-C
nop-C
divide
divide
nop-B
nop-C
nop-B
nop-B
search-b
nop-C
nop-C
nop-C
nop-C
add
push
nop-B
search-f
nop-C
nop-C
nop-C

3b:
3c:
3d:
3e:
3f:
3g:
3h:

OO O OO oo

126

logic:3v: 0 logic:3ap: O logic:
logic:3w: O logic:3aq: O logic:
logic:3x: O logic:3ar: 0 logic:
logic:3y: O logic:3as: O logic:
logic:3z: O logic:3at: 0 logic:
logic:3aa: 0 logic:3au: 0 logic:
logic:3ab: 0 logic:3av: O logic:

Start Label

Call to size-calclulation module.

Save the size on the second stack.

Call the copy module.

Restore the size from the second stack.

Restart the copy section of the genome

Section divisor (never executed)

Beginning of size-calculation module.

Search for distance to beginning of code.

Search for distance to end of code.

3bj:
3bk:
3bl:
3bm:
3bn:
3bo:
3bp:

S O OO O OO

127

nop-C
add
add # Add forwards, backwards, and 4 extra for middle.

pop
nop-C
add
return
nop-B
nop-C
nop-C
nop-B
allocate
push
nop-B
pop
nop-C
sub
nop-B # Copy Loop

nop-A

nop-B

nop-C

copy

inc

if-n-equ

jump-b

nop-A

nop-C

nop-4A

nop-B

divide # Divide off offspring
return # End of copy module.
nop-A # End of genome label
nop-A

nop-A

nop-A

Return size in BX (end size-calculation module)
Beginning of ‘‘copy’’ module

H

H*

Allocate space
Move size into BX and clear CX

+*

Finally, here are two organisms extracted from the sample experiment presented
in Chapter 2. The first is the dominant organism at update 25,000. The genome has

been divided over two columns to conserve space.

Filename........: genebank/147-aaann

Update Output...: 25000

Is Viable.......: 1

Generation: O Divide-1 Divide-2 Average
Merit...........: 134553 103503 119028
Gestation Time..: 952 908 930
Fitness.........: 141.337 113.99 127.664
Errors.......... : 22 19

Code Size.......: 136 136

HH

Copied Size.....:
Executed Size...:
Offspring.......:

#* #®

get 12
put 43
logic:1a
logic:1b
logic:2a
logic:2b
logic:2c
logic:2d
logic:2e
logic:2f
logic:2g
logic:2h
logic:3a
logic:3b
logic:3c
logic:3d
logic:3e
logic:3f
logic:3g
logic:3h

####################
OOOOOHOOOOMOMMMK\JHM

nop-A
put
if-n-equ
if-less
if-less
call
nop-A
put

get

pop
if-bit-1
put
nop-B
nand
push
nand

get

swap
nand
nand
push

put

add

dec

nand
search-b
pop

swap

logic:
logic:
logic:
logic:
logic:
logic:
logic:
logic:
logic:
logic:
logic:
logic:
logic:
logic:
logic
logic:
logic:
logic:
logic:
logic:

147
147

SELF

3i
3j
3k
31
3m
3n
3o
3p
3q
3r
3s
3t
3u
3v

13w

3x
3y
3z
3aa
3ab

OO:&OOOOOOOOI\)OI\)OOMOOO

128

147
147
SELF

logic:
logic:
logic:
logic:
logic:
logic:
logic:
logic:
logic:
logic:
logic:
logic:
logic:
logic:
logic:
logic:
logic:
logic:
logic:
logic:

search
put
copy
nop-A
inc
nop-B
alloca
dec
inc
alloca
search
add
call
inc
copy
copy

3ac
3ad
3ae
3af
3ag
3ah
3ai
3aj
3ak
3al
3am
3an
3ao
3ap
3aq
3ar
3as
3at
3au
3av

-f

te

te
-f

shift-r

dec

allocate
if-n-equ

swap
sub
add
get
push
pop
nand
nand

OOOHOOOOOOOOOOOOOOOO

147
147

logic:
logic:
logic:
logic:
logic:
logic:
logic:
logic:
logic:
logic:
logic:
logic:
logic:
logic:
logic:
logic:
logic:
logic:
logic:
logic:

3aw
3ax
3ay
3az
3ba
3bb
3bc
3bd
3be
3bf
3bg
3bh
3bi
3bj
3bk
3bl
3bm
3bn
3bo
3bp

OHOOOOMOMMOOOOOOOOOO

129

dec put

sub shift-r
put inc

add allocate
put call

sub inc

swap shift-r
inc nop-B
allocate if-bit-1
if-less if-less
return call
search-b nand
nop-C put

inc jump-b
allocate nand
add get

add nop-B
nop-C nand
add nop-B
copy push
add if-n-equ
divide nand
add nop-B
allocate put
push nop-C
swap put
allocate copy
copy shift-1
nand jump-b
allocate allocate
nop-4A pop

put swap
push nand
nop-B nand
copy put

inc return
if-less return
jump-b search-b
nop-A allocate
push shift-r
push search-f
search-f nop-A
inc inc
push copy
copy if-less
swap

This last genome is the result after all 50,000 updates of the sample experiment.

Filename........: genebank/143-abcyx
Update Output...: 50000
Is Viable.......: 1

Generation: 0

Gestation Time..:
Fitness.........:
Errors..........:

Copied Size.....:
Executed Size...:
Offspring.......:

o oH K H H H H R

get 48
put 134
logic:1la
logic:1b
logic:2a
logic:2b
logic:2c
logic:2d
logic:2e
logic:2f
logic:2g
logic:2h
logic:3a
logic:3b
logic:3c
logic:3d
logic:3e
logic:3f
logic:3g
logic:3h

####################
OOMOM\!COHOOMM&OO)-PMMO)

nop-C
push
copy
put
put
call
nop-A
sub
get
get
swap
nop-B
nop-B
nand
nand
get
swap
nand
nand
push
if-less

Divide-1
9.79906e+06
1625

6030.19

1

129

143

143

SELF
logic:3i 0
logic:3j 0
logic:3k O
logic:31 5
logic:3m O
logic:3n O
logic:30 2
logic:3p O
logic:3q 4
logic:3r ©
logic:3s 0
logic:3t 0
logic:3u 0
logic:3v 0
logic:3w 2
logic:3x O
logic:3y O
logic:3z 10
logic:3aa 0
logic:3ab 0

130

Divide-

2

9.79906e+06
1539
6367.16

0

129
143
143
SELF

logic:
logic:
logic:
logic:
logic:
logic:
logic:
logic:
logic:
logic:
logic:
logic:
logic:
logic:
logic:
logic:
logic:
logic:
logic:
logic:

copy
push

3ac
3ad
3ae
3af
3ag
3ah
3ai
3aj
3ak
3al
3am
3an
3ao
3ap
3aq
3ar
3as
3at
3au
3av

search-b

dec
nand

jump-b

if-bit-1

get
sub
copy
nop-A
call

if-less

dec

jump-b

put
push

jump-£

sub
swap

if-n-equ

Average

9.79906e+06

OOOCAJOOOOOOOOOMOOOOOO

1582
6198.67

143
143

logic:
logic:
logic:
logic:
logic:
logic:
logic:
logic:
logic:
logic:
logic:
logic:
:3bi

logic

logic:
logic:
logic:
logic:
logic:
logic:
logic:

3aw
3ax
3ay
3az
3ba
3bb
3bc
3bd
3be
3bf
3bg
3bh

3bj
3bk
3bl
3bnm
3bn
3bo
3bp

OMOMOOQOO%MOOOOOOOOMO

add

inc

put
search-f
pop

swap

dec
nand

put

add
if-less
put

put

pop
if-bit-1
return
search-b
nop-C
inc
divide
add

add

add
nop-C
add

add
push

add
allocate
if-n-equ
swap
swap-stk
nop-B
nop-B
put
nop-B
nop-C
nand

put
nop-B
copy

inc
if-less
jump-b
nop-A
swap

sub
swap-stk
call
search-f
call

131

nop-A
get
push
pop
nand
nand
put
jump-b
if-less
if-less
call
inc

inc
nop-B
call
dec
copy
shift-1
get
nop-B
nand

copy
push

copy
nand
put
nop-C
put
search-f
inc

inc
shift-r
pop

add
swap
nand
nand
put
return
pbop
swap
search-b
if-less
call
sub
nand
add

sub

get
nop-C

132

Summary of Variables

w; fitness of genotype i
Wdom fitness of dominant genotype

fitness of average genotype

g

A; birth rate of genotype i

D, genomic diffusion rate

F fidelity

F, neutral fidelity

H genotype entropy

H, species entropy

Z inferiority

M merit

N number of organisms in population
N, number of genotypes in population
N; number of species in population.

Ny number of threshold genotypes in population.
n; abundance of genotype i
tq allocated time

ly gestation time

133

Glossary

Abundance: The total number of sub-taxa within a taxon. For example, we will
commonly look at the total abundance of organisms within a genotype, or the

abundance of genotypes within a species.

Adaptive System: A system in which a population of solutions will evolve to opti-
mize an eztrinsic fitness function. Typically these solutions will have no direct
interactions with each other; they will only be evaluated for their fitness, and

those with the maximal fitness will be selected to survive and propagate.
Ancestor: The organism used to initialize the population in an avida experiment.

Auto-Adaptive System: A system of self-replicating agents (“solutions”) in an en-
vironment with an implicit fitness function. An agent’s ability to interact with
both the environment and other agents determines how well it is able to repro-

duce. Only indirect control over that environment is used to direct the evolution

of these agents.
Birth-Rate: The number of offspring per update an organism (or genotype) is ex-
pected to have. This can be approximated by

fit
A= ﬁ * ave_time_slice = Zj\/lw—><ta> (G.1)

This value depends on the average merit (M), and hence on other organisms
currently active in the environment. The inverse of this value is the expected
number of updates it would take for the organism to have an offspring given its

current competition.

Clone: An exact copy of an entire population. These are typically used to begin

experiments at an adapted state.

134
Consensus Sequence: the genotype obtained by picking at each location the in-
struction that is the most frequent in the population. This measure can strictly
only be defined for sequences of the same length. If the most abundant geno-
type has more than 50 percent of the population, this genotype automatically
becomes the consensus sequence. After equilibration, the consensus sequence
usually has zero or close to zero representatives in the population (approach to

the error threshold).

Copied Length: The number of lines in a program that were copied into it from its

parent. All lines that were not copied from the parent are typically random.

Copy Mutation: A stochastic event occurring when copying a single line of code
from one point in memory space to another. Typically this event, affecting the
copy instruction, results in the instruction being written to be different from

the one that was read (while still being a legal instruction).
Cosmic-Ray Mutation: See Point Mutation.

CPU (Central Processing Unit): This is the machine that processes the genome
of an organism. By default, it consists of a memory space, three registers, two
stacks, a facing, I/O buffers, and an instruction pointer. The CPU will move
through the instructions in memory, executing each and then advancing. Most

instructions (unless defined otherwise) will deterministically alter the state of

the CPU.

Digital Organism: A single program located at a lattice point in avida. A digital

organism consists of a genome and a CPU executing that genome.

Effective Mutation Probability: The probability of a specific program (or its off-

spring) to be mutated during the replication process. See also: Fidelity.
Energy: A measure of the average inferiority in the population. See also: Inferiority.

Entropy: A measure used to determine the disorder in the population, according to

Shannon Information Theory. In this measure, the probability of occurrence of

135
a single genotype ¢ in the population, p;, is approximated by n;/N:
n; n;
H=- — log — G.2
N8 (G.2)

where n; is the current abundance of this genotype and N is the total number

of strings in the population. See also: Per-Site Entropy.

Executed Length: The number of instructions in the genome of a program that
are executed at least once during the course of its lifetime. A single nop used to
modify the register an instruction interacts with does count as an executed in-
struction, but full labels only have their first nop counted (if these were counted

in full, it could cause programs to develop long labels to maximize their executed

length).

Fidelity: The probability for a string to correctly transmit its code to its offspring.
The fidelity F' is just 1-P, where P is the error probability. If only COpY errors
arise with probability R, the fidelity is

F=(1-R)*, (G.3)

where £ is the length of the code. If insert and delete mutation occur with

probability P; and P, respectively, the effective fidelity is

F=(1-R1-P)(1-Py). (G.4)

Fitness: A unit-less measure of the replication ability of a particular organism in a
specified environment. By itself, fitness has little intrinsic meaning, but when
compared to that of another organism it provides a comparison of their respec-
tive replication rates. Specifically, to calculate fitness, we take an organism’s
merit and divide it by its gestation time. (w = M/t,). Since merit increases
exponentially with the number of tasks acquired, fitness is best described by

the log of its actual value (see also Inferiority).

136

Genome: The assembly language program used to define an organism. The genome

initializes the memory component of the CPU when an organism is executed.

Genome Length: The number of assembly language instructions that form the pro-

gram of the organism. See also Copied Length and Ezecuted Length.

Genotype: A taxonomic level recorded in avida that represents all organisms with
identical genomes. Genotype is one of the standard tools used to study avida,
as all organisms of a particular genotype behave similarly given a fixed environ-

ment.

Gestation Time: The number of instructions an organism must execute to produce

a single offspring. This is typically proportional to the length of the genome.

Inferiority: A measure which determines how much worse a particular genotype is
than the genotype that is currently dominating the system. If w; > 0 represents

the fitness of genotype 4, its inferiority is

Z; = Wpesy — wj - (G5)

Instruction: A single command in the assembly language of the CPU. When exe-

cuted, an instruction modifies some of the parts of the CPU in a deterministic

fashion.

Instruction Set: The collection of instructions in the assembly language the genomes
are written in. Whenever an instruction is mutated, the new instruction is cho-
sen at random from the instruction set (with all instructions given an equal

probability of being selected).

Label: (Also called a template) A sequence of nops (no-operation instructions) in
the genome that are used to modify the instruction that precedes them. They

are also used to reference another point in the code where the complement label

is located.

137

Merit: A value indicating the CPU time a particular organism has earned, taking

into account its length and the tasks that it has successfully completed.

Mutation: Any random change caused to the genome of an organism. See Copy

Mutation and Point Mutation.
Organism: A living individual program. See Digital Organism.

Per-Site Entropy: The expected number of bits required to specify the instruction
that lies at a particular site in an organism’s genome, given that we know
the distribution of genomes in the population it was extracted from. Sites
are typically labeled “hot” if they very wildly across the population (maximal

entropy), and “cold” if they remain conserved among all of the genomes. See

also: Entropy.

Phenotype: A classification system that measures what an organism can do without
ever checking how it is done. In other words, the phenotype reflects gestation

time, tasks completed, bonus earned, and the like, but never takes into account

the source code (the genotype).

Point Mutation: (Also called cosmic-ray mutations). This form of mutation is a
random change from one instruction to another in the memory space of an
organism. This can occur at any time and is not limited to whether the CPU

is executing a particular task, or even executing at all.

Population: The collection of all active organisms on the lattice in an avida experi-

ment.

Quasispecies: A cloud of organisms that are functionally equivalent, all being neu-

tral mutations off of a single wild-type genome.

Replication Rate: The absolute speed at which an organism can self-replicate, i.e.,

the number of offspring per unit time. Typically, this is the same as Fitness.

138
Seli-Replication: The process an organism goes through in making an exact copy

of its genotype into an offspring organism.

Species: A taxonomic level above genotype. All organisms in a species are similar on
a functional and structural level, but not necessarily in all instruction positions
on their genome. Species can be used to study clouds around an archetype

(quasispecies) in genome space.

Task: A feature imposed on the environment that can be triggered by certain actions

of an organism that will cause the merit (and hence fitness) of that organism

to increase.

Template: See Label; this a the biological term for a sequence of genetic code used

in pattern matching.

Threshold Genotype: A genotype that has reached a minimum abundance (usu-
ally three). This is used to determine if the genotype is properly self-replicating
(since it would be unlikely to observe this many copies of an organism that
could not properly replicate itself). For this reason, some statistics are taken

only on threshold genotypes.

Time-slice: The number of instructions executed in a particular CPU during a single
update. By default (and in most avida configurations), this is proportional to

the merit of that organism.

Time-slicer: The portion of code in avida that doles out time slices to CPUs, and

is responsible for executing the proper number of instructions in those CPUs.

Unrolling the Loop: An evolutionary step populations will often take to lower ges-
tation times. This process involves copying two or more instructions each time

through the copy loop to minimize the effect of loop overhead.

Update: An artificial unit of time during which all organisms execute their time-

slice, which is on average 30 instructions. All statistics are collected at the end

of each update.

139

Bibliography
[1] Adami C, Learning and complexity in genetic auto-adaptive systems, Physica D
80: 154 (1995).

[2] Adami C, Self-organized criticality in living systems, Phys. Lett. A 203: 29-32
(1995).

[3] Adami C, On Modeling Life, Artificial Life 1: 429-438 (1995).
[4] Adami C, Introduction to Artificial Life, Telos Springer-Verlag, NY (1998).

[5] Adami C and Brown CT, in Proc. of Artificial Life IV, R. A. Brooks and P. Maes,
Eds., MIT Press, Cambridge, MA (1994), p. 377.

[6] Adami C, Brown CT, and Haggerty M, Abundance Distributions in Artificial Life
and Stochastic Models: “Age and Area” revisited, Lect. Notes Artif. Intell. 929:

503 (1995).

[7] Adami C and Cerf NJ, Prolegomena to a non-equilibrium quantum statistical

mechanics. Chaos, Solitons, Fract. 10: 1637-1650 (1999).

[8] Adami C and Cerf NJ, Physical complexity of symbolic sequences. Physica D, to

appear.

[9] Adami C, Collier TC, and Ofria C, Robustness and evolvability of computer

languages, in preparation.

[10] Adami C, Ofria C, and Collier TC, Evolution of biological complexity: I. Physical

complexity of genomes, in preparation.

[11] Basharin GP, On a statistical estimate of the entropy of a sequence of indepen-

dent random variables, Theory Probability Appl. 4: 333-336 (1959).

140
[12] Bennett CH, Universal computation and physical dynamics, Physica D 86: 268-
273 (1995).

[13] Brillouin L, Science and Information Theory, Academic Press, NY (1962).

[14] Britten RJ and Davidson EH, Gene regulation for higher cells: A Theory, Science
165: 349-357 (1969).

[15] Britten RJ and Davidson EH, Repetitive and non-repetitive DNA sequences and
a speculation on the origins of evolutionary novelty. Quart. Rev. Biol. 46: 111-138

(1971).

[16] Cavalier-Smith T, Eukaryotic gene numbers, non-coding DNA and genome size.

Pp. 69-103 in Cavalier-Smith T, ed. The evolution of genome size, John Wiley,
New York (1985).

[17] Chu J and Adami C, in Proc. of Artificial Life V, Langton CG and Shimohara
T, Eds., MIT Press, Cambridge, MA (1997), p. 462.

[18] Dawkins R, The Selfish Gene, Oxford University Press (1976).
[19] Deutsch D, The Fabric of Reality, The Penguin Press, NY (1997), p. 179.

[20] Dewdney A, In the game called Core War hostile programs engage in a battle of
bits. Sci. Amer. 250/5: 14 (1984).

[21] Dixon M and Webb EC, The Enzymes. Academic Press, NY, 2nd. Ed. (1964).

[22] Eigen M, The physics of molecular evolution, in Molecular Evolution of Life,
Baltscheffsky H, Jornvall H, and Rigler R, eds., Cambridge Univ. Press, Cam-
bridge, MA (1986), p. 13-26.

[23] Eigen M, Naturwissenschaften 58, 465 (1971).

[24] Elena SF, Cooper VS and Lenski RE, Punctuated evolution caused by selection
of rare beneficial mutations, Science 272: 1802-1804 (1996).

141

[25] Elena SF and Lenski RL, Test of synergistic interactions among deleterious mu-

tations in bacteria, Nature 390: 395-398 (1997).

[26] Ereshefsky M (Ed.) The Units of Evolution: Essays on the Nature of Species.
MIT Press, Cambridge, MA (1992).

[27] Fogel DB, Evolutionary Computation: Toward a New Philosophy of Machine
Intelligence, IEEE Press, NY (1995).

[28] Gatlin LL, Information Theory and the Living System, Columbia University
Press, New York (1972).

[29] Gould SJ, Full House, Harmony Books, NY (1996)

[30] Holland JH, Adaptation in Natural and Artificial Systems, Ann Arbor, University
of Michigan Press (1975).

[31] Kauffman SA and Levin 5, Towards a general theory of adaptive walks on rugged
landscapes, J. Theor. Biol. 128: 11 (1987).

[32] Kauffman SA and Johnsen S, Coevolution to the edge of chaos—Coupled fitness

landscapes, poised states, and coevolutionary avalanches, J. Theor. Biol. 149:

467 (1991).

[33] Keese P and Gibbs A, Origins of genes: “Big bang” or continuous creation?

Proc. Natl. Acad. Sci. 89: 9489-9493 (1992).

[34] Kimura M, The neutral theory of molecular evolution, Cambridge University

Press, Cambridge (1983).
[35] Koza JR, Genetic Programming, MIT Press, Cambridge, MA (1992).
[36] Landauer R, Information is physical. Physics Today 44(5): 23-29 (1991).

[37] Leff HS and Rex AF, Eds, Mazwell’s Demon: Entropy, Information, Computing,

Princeton University Press, Princeton (1990).

142
[38] Lenski R, Evolution in experimental populations of bacteria, in Population Ge-
netics of Bacteria, Society for General Microbiology, Symposium 52, Baumberg
S, Young JPW, Saunders SR, and Wellington EMH, eds., Cambridge University
Press, Cambridge (1995) 193-215.

[39] Lenski R, Rose MR, Simpson SC, and Tadler SC, Long-term experimental evo-
lution in Escherichia coli. I. Adaptation and divergence during 2,000 generations,

American Naturalist, 138: 1315-1341 (1991).

[40] Lenski RL, Ofria C, Collier TC, and Adami C, Genomic Complexity, robustness,

and genetic interactions in digital organisms, Nature, in press.
[41] Lerner AY, Fundamentals of Cybernetics, Plenum Pub. Corp., NY (1975).
[42] Maxwell JC, Theory of Heat, Longmans, London (1871).

[43] Maynard Smith J, Natural selection and the concept of a protein space. Nature
225: 563 (1970).

[44] Mc Shea DW, Metazoan complexity and evolution: Is there a trend? Ewvolution
50: 477-492. (1996).

[45] Mills DR, RL Peterson, and S Spiegelman, An extracellular Darwinian exper-

iment with a self-duplicating nucleic acid molecule, Proc. Nat. Acad. Sci. USA

58: 217 (1967).

[46] Miyata T and Yasunaga T, Evolution of overlapping genes, Nature 272: 532
(1978).

[47] Mizokami M, Orito E, Ohba K, Lau JYN, and Gojobori T, Constrained evolution
with respect to gene overlap of Hepatitis B virus, J. Mol. Evol. 44(Suppl. 1): S83-
S90 (1997).

[48] Modiano G, Battistuzzi G, and Motulsky AG, Nonrandom patterns of codon

usage and of nucleotide substitutions in human «- and $-globin genes: An evolu-

143
tionary strategy reducing the rate of mutations with drastic effects? Proc. Nat.

Acad. Sci. USA 78: 1110-1114 (1981).

[49] Muller HJ, The relation of recombination to mutational advantage. Mut. Res. 1:

2-9 (1964).

[50] Normark S, Bergstréom S, Edlund T, Grundstréom T, Jaurin B, Lindberg FP, and
Olsson O, Overlapping genes, Ann. Rev. Gen. 17: 499-525 (1983).

[51] Ofria C and Adami C, Evolution of genetic organization in digital organisms,
Proc. of DIMACS Workshop on Evolution as Computation, Jan 11-12, Princeton
University, Landweber L and Winfree E, eds., Springer-Verlag, NY, (1999).

[52] Ofria C, Adami C and Collier TC, Evolution of Biological Complexity: II. Se-

lective Pressures on Genome Size and Neutrality, in preparation

[63] Ofria C, Adami C, Collier TC, and Hsu GK, Evolution of differentiated expres-
sion patterns in digital organisms, Proc. of the Fifth Furopean Conference on

Artificial Life, to appear (1999).

[54] Ofria C, Brown CT, and Adami C, The Avida User’s Manual, in [4] 297-350
(1998).

[55] Rasmussen S, Knudsen C, Feldberg R, and Hindsholm M, Physica D 42: 111
(1990).

[56] Ray TS, An approach to the synthesis of life, in Proc. of Artificial Life II, Langton
CG, Taylor C, Farmer JD, and Rasmussen S, Eds., Addison Wesley, Redwood

City, CA (1992), p. 371.

[57] Ray TS, Evolution, complexity, entropy, and artificial reality, Physica D 75: 239
(1994).

[58] Ray TS, A proposal to create a network-wide biodiversity reserve for digital
organisms, ATR Technical Report TR-H-133 (1995).

144
[59] Ray TS and Hart J, Evolution of differentiated multi-threaded digital organisms,
in Proc. of Artificial Life VI, Adami C, Belew RK, Kitano H, and Taylor CE,
eds. MIT Press, Cambridge, MA (1998), p. 295.

[60] Samuel CE, Polycistronic animal virus messenger RNAs, Prog. Nucleic Acids

Res. Mol. Biol. 37: 127-153 (1989).

[61] Schneider TD, Stormo GD, Gold L, and Ehrenfeucht A, Information content of
binding sites on nucleotide sequences, J. Mol. Biol. 188: 415-431 (1986).

[62] Schrodinger E, What is Life? Cambridge University Press, Cambridge (1945).

[63] Shannon CE and Weaver W, The Mathematical Theory of Communication, Uni-
versity of Illinois Press, Urbana (1949).

[64] Thearling K and Ray TS, Evolving multi-cellular artificial life, in Proc. of Arti-
ficial Life IV, Brooks RA and Maes P, Eds., MIT Press, Cambridge, MA (1994),
p. 283.

[65] Thearling K and Ray TS, Evolving parallel computation, Complex Systems 10:
229-237 (1997).

[66] Travisano M, Mongold JA, Bennett AF, and Lenski RE, Experimental tests of

the roles of adaptation, chance, and history in evolution, Science 267: 87-90

(1995).

[67] Watson JD, et al., Molecular Biology of the Gene, Fourth Ed., Benjamin Cum-
mings, Menlo Park (1987).

[68] Wiley EO and Brooks DR, Victims of history—A nonequilibrium approach to
evolution, Syst. Zool. 32: 209-219 (1982).

