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ABSTRACT

The behavior of focussing weak shock waves is experimentally
investigated with a view to observe and understand the processes
occurring near the focus, especially the processes that control the
maximum amplitude. Concave reflectors are used against the endwall
of a large 17" diameter shock tube, to focus the plane incident shock.
Reflectors producing line and point foci, and cusped and smooth caus-
tics are examined for incident shock Mach numbers ranging between
1,005 to 1.5, The flowfield is observed with spark shadowgraphs to
visualize the motion of various wavefronts, Pressure histories
measured at various points in the flow with miniature piezoelectric
gauges provide additional information about the various processes
occurring near the focus,

Shadowgraphs show that for weak shocks, the observed foci
are predominantly nonlinear, even though away from the focus, the
shockfronts appear to be almost acoustic. Thus a weak shockfront,
after the focus, crosses itself and forms a loop, which is an essential
feature of acoustic wavefronts, Nonetheless, at the focus, distortion
in the geometry of the fronts due to nonlinear effects is very prominent,
Inherently nonlinear phenomena, such as formation of three-shock
intersections, lead to foci of finite size, in which, as the pressure
measurements show, the amplitudes are finite,

The amplitude dependence of these phenomena confirms that
they are basically nonlinear, The geometrical distortion and the
focus are larger for stronger shock waves, and the maximum ampli-

fication is smaller, Further, when the distortion becomes significant
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compared to the size of the initial shockfront, a transition occurs in
the geometry of the focussed shockfront. In this case, the focussed
front does not cross and remains "unlooped', which is consistent with
the nonlinear behavior predicted by shock dynamics.

The transition in the geometry of the wavefronts is related to
the behavior of the three-shock intersections formed near the focus.
In fact, it is shown that the occurrence of crossed or uncrossed
shockfronts is very parallel to the occurrence of regular or Mach
reflection, respectively, in t.he case of a shock diffracted by a wedge.
(The reflecting wedge surface corresponds to the axis of symmetry
in a focussing process.) The dependence on the steepness of the
approaching waves is also similar in the two cases; rapid convergence
of waves suppresses nonlinear effects, whereas in a slow convergence,
nonlinear effects gain prominence,

The pressure histories at various locations, when correlated
with the waves occurring there, show that nonlinear diffraction
processes are very important, In fact, it is shown that the formation
of the three-shock intersection oécurs due to nonlinear distortion and
breaking of a compressive diffraction, and that, in the focus, the
limiting and reduction of the peak amplitude occurs by a diffracted

expansion overtaking the shock due to nonlinear effects,
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I. INTRODUCTION

A weak shock wave becomes concave towards its direction of
propagation in a manner similar to that of a wavefront of sound, by
refraction through inhomogeneous or moving media, or by reflection
from concave surfaces, or because accelerating supersonic sources
generate such curved wavefronts. Whatever the reason, the concave
wavefront, once formed, will converge as it travels, and will tend to
focus, Consequently, the wave amplitudes will be greatly magnified
in the vicinity of the focus. It then becomes important to know the
maximumvvamplitude, in a given situation, and the mechanisms that
control this amplitude near the focus.

The prime example of this situation is the focussing of sonic-
booms. Refraction through atmospheric thermal inhomogeneities,
windfields, or turbulence; reflections from valleys or buildings; or
maneuvers of supersonic aircraft are known to cause ''superbooms’),
or intensé sonic-booms due to focussing. Even though a major part of
the interest in the focussing of weak shock waves comes from sonic-
boom problems, the phenomenon is more general and may occur in a
variety of problems involving shock waves or supersonic flows, over
a vast range of physical scales, The study of the physical processes
that limit the maximum amplitudes at a focus is, therefore, of funda-
mental importance,

As a first approximation, geometrical acoustics can be used to

understand the behavior of a focussing weak shock wave (Keller, 1954),
If the shock is considered to have a small amplitude and no thickness,

it can be identified with the wavefront of a sound pulse. The focussing
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of such a shock wave is shown in Fig, 1. The heavy lines show the
shock moving to the right, at successive instants. The shock propa-
gates normal to itself with a fixed speed at all times. The trajectories
of points on the shock, or rays, are therefore straight lines normal to
the shockfront, The rays of a concave shockfront cross as shown by
the light lines., The surface on which adjacent rays cross is called a
Ucaustic' surface, shown here by a dotted line, In many cases, the
shockfront has a minimum radius of curvature, which leads to a cusp
in the caustic, called '"arete', also shown here. According to geomet-
rical acoustics, the wave energy contained in a tube of rays remains
confined to the tube énd when the wavefront comes to a ray érossing,
the vanishing cross-sectional area of the tube leads to infinite energy
flux and infinite amplitude, Thus geometrical acoustics predicts
infinite shock amplitude at the caustic, Evidently geometrical acous-
tics is not valid near such singular regions because it assumes small
amplitudes to begin with,

Nonetheless, geometrical acoustics provides the simplest
description of the geometry of the initial wavefront and, to some extent,
of the process of focussing. In this work, we use the concepts of
geometrical acoustics to describe reflectors and different focussing -
situations associated with them; the terms focus and focussing have |
been used in generality, to refer to any such singularity predicted by
geometrical acoustics. The degenerate cases of caustics in which
infinitely many rays cross at a point or a line are called "perfect foci''.

Physically, a shock wave cannot be infinitely thin, but must

have the thickness of at least a few mean free paths, Clearly, any



FIG.] FOCUSSING OF A SOUND PULSE

FIG.2 FOCUSSING OF A STRONG SHOCK
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focus of such a shock will also be diffuse to the same extent and will
have finite maximum amplitude, 'Physical' or 'wave' acoustics can
arrive at this result more rigorously, still assuming shocks of small
amplitude, but now with finite thickness, A picture of such focussing
would again look identical to Fig, 1, if the line thickness were taken to
represent the shock thickness. The reason for this is the invariance
of wave speed with amplitude, which is a consequence of the assump-
tion of small amplitude, An essential feature of this kind of focussing
is the crossing and folding of the weak shock to form a '"loop' as it
comes out of the focus (see final shockfront in the figure). Even
though this thick-shock picture predicts no singularities, in most-
situations the shock thickness and the resultant size of the focus are
microscopic, This leads to amplitudes large enough to invalidate the
assumption of small amplitude, locally near the focus.,

The major influence of 'finite'" amplitudes is the increase in
wave speed with amplitude, In fact, it is this manifestation of nonlin-
earity that leads to shock waves. It would be expected to influence the
focussing process also, as the amplitudes become larger, and is taken

into account by Whitham's approach to shock dynamics (Whitham,

1957,1959). In this case, a description similar to geometrical
acoustics is used, with shockfronts, and with rays orthogonal to the
fronts. However, the shockfront can travel at different speeds along
different rays depending on its amplitude, This effect turns the
shockfront and bends the rays. Variation of the amplitude of each
shock element, as it travels in a curved raytube, is then approximated

by the variation in the strength of a plane shock traveling down a
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straight tube of slowly varying cross-section. This modified shock
strength determines the speeds for traveling along different rays and
results in further modification of the shockfront, This cyclic process
goes on, Qualitatively, the result of these nonlinear effects on a
focussing strong shock may be described as follows (Whitham, 1957),
The concave portion of the shock amplifies and accelerates relative to
the not-so-concave portions of the shockfront. The rays then curve
away from the focus and the shockfront becomes ""'smooth', This is
illustrated in Fig. 2. During such a process, the rays do not cross
and the amplitudes are finite. Also, the strong shock comes out flat-
tened, to some extent and unlike a weak shock, it has no loop. (In this
study, the term '"'strong'' is only relative; generally M < 2,)

Thus it is clear that the nonlinear effects of finite amplitude
distort the wavefront-ray geometry progressively. In fact, for strong
shocks the final shockfront may appear quite different, However, this
does not imply that only when the shockfront comes out with no loop,
the focussing is nonlinear, and otherwise it is acoustic, In fact this
investigation aims to show that even very minor distortions of the
shockfront lead to nonlinear foci. In other words, despite the fact
that away from the focus, the shockfronts look very much like the
crossed and folded wavefronts of acoustics, at the focus itself nonlinear
diffraction processes dominate and determine the maximum amplitude,

in most cases of shock-focussing,

1.1 Classification of Foci

Focussing of weak shock waves occurs in practice under many

different circumstances. Some typical situations are shown in Figs.
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3 to 6. For simplicity, only bow shocks of supersonic bodies are
shown and their behavior is indicated with rays drawn according to
geometrical acoustics., Also, the figures are only two-dimensional,
whereas, in reality, a focussing situation occurs in three dimensions.

A burst of longitudinal acceleration of a supersonic body
produces a focus as shown in Fig., 3. In order to keep the geometry
simple, a perfect focus is shown, even though, in practice, a caustic
with a cusp is more probable, The situation appears almost identical
when the supersonic body passes through a longitudinal thermal gradi-
ent in the atmosphere, and arrives in a region where the speed of
sound is lower, This again amounts to an increase in the Maéh number
of the body, and is, effectively, an acceleration.

| A lateral thermal gradient can produce a different wave pattern
traveling along a caustic (Fig. 4). The rays in this case are curved by
refraction through the inhomogeneity., The continuous curving turns
the rays around giving total internal reflection. Adjacent rays cross
when they turn around, forming a caustic there, There is no distinct
wavefront traveling with this wave pattern below the caustic, even
though there may be an ''evanescent'' wave, This phenomenon is
called ''sonic cut off'!,

Lateral accelerations of the supersonic body can produce
situations similar to both of those described above, A lateral acceler-
ation implies a curved trajectory and similarly curved shock waves,
Fig. 5 shows a turn maneuver producing a shock with a cusped caustic,
On the other hand, a continuous turn in a circle produces a caustic as

shown in Fig, 6., Comparing this case with the ''sonic cut off', the
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rays here are straight and the caustic has an opposite curvature, The
parameter of importance is likely to be, however, the relative curva-
ture between the caustic and the rays, in which case the two caustics
are not very different.

At this point, it is possible to distinguish between steady and
nonsteady phenomena., In a steady phenomenon, the waveironts do not
change with time, This occurs for both cases of caustics shown here
(Fig. 4, 6), when the frame of reference is chosen to move with the
supersonic body, For this to occur, the curvatures of the rays and
the caustic have to be constant. This cannot happen at the cusp of a
caustic because the curvatu;‘e changes sign there. Therefore, an arete
is inherently nonsteady., Similarly, the starting of a caustic is always
a nonsteady phenomenon, similar to the cusp of a caustic, in that it
produces crossed and folded wavefronts, The cusp, héwever, is not
real, but is simply a point at which the caustic begins, and the other
branch of the cusp is not a caustic but a ray on which the wavefront
folds. (Such rays occur at a perfect focus also, for example in Fig. 3.)
After a long time, this fold and the crossing have moved away from the
caustic, and it may be considered as steady, if the curvatures of the
caustic and the rays remain constant.

From all these situations of focussing, three kihds of foci may
be identified: caustics, aretes and perfect foci, In mathematical
terms, the radius of curvature of the traveling shockfront can be
expressed as a function of arclength s along the shock and of time t as

R(s,t) = R(s,0) - ct (1)

where c is the speed of the shockfront. Then,
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(i) R(s, t) = 0 implies a caustic,

(ii) R(s,t) = %R(s,t) = 0 implies an arete, and

(iii) R(s,t) =0 for all s in some nonzero range of s implies a

perfect focus,
(By definition each class is a subclass of the previous class, but in use
the names generally imply exclusion of the subclasses.)

If there are no singularities on the initial shockfront (R(s, 0)£ 0
for all s), then it is clear that a local minimum of R leads to an arete,
A starting point of a caustic or a perfect focus are rather special
circumstances, For a caustic to have an endpoint, R must be discon-
tinuous on the ray passing through the endpoint. The wavefront will
fold on this ray, past the caustic, without becoming singular. In this
sense, the perfect focus of Fig., 3 is a caustic shrunk to a point, and
corresponds to two superposed endpoints. Thus it has two such rays
on which R is discontinuous. (R may be continuous, in which case,
there are also caustics attached to the perfect focus.) However, under
mo st normal circumstances, R would be a smooth, continuous function
of s with a minimum, For example, a large plane shockfront will be
locally dimpled when it interacts with a small inhomogeneity, and will
lead to an arete as in Fig., 1. On the other hand, the steady caustics
are different, The waves, in this case, have 'forgotten'' the initial
shockfront and, for all practical purposes, have always had a singular
point at the caustic. The minimum of R is, now, negative infinity,

which is reached only asymptotically by the reflected shockfront,

1.2 Acoustics of Focussing Weak Shocks

Acoustics, as used here, is restricted to the description of
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pressure waves of small amplitude, Even though its validity may be
questioned near a focus, it gives valuable information about the wave
field and the processes occurring behind a focussing weak shock,

This section summarizes some relevant results from acoustics that
would be useful in analyzing the focussing of weak shock waves,

The assumption of small amplitudes (or perturbations) allows
linearization of the equations of irrotational motion in an inviscid,
homogeneous isotropic fluid, and leads to the wave equation for sound
in the fluid:

V- 2y = 0 c = (g%)s (2)
where ¢ is the velocity potential, p is the fluid pressure, p is the fluid
density and s is the entropy of the fluid. Shocks with their entropy
jumps can fit into this isentropic description because the entropy
change is of third order in terms of the pressure change and may be
neglected for small amplitude waves, This hyperbolic partial differen-
tial equation has characteristics in space-time described by the eikonal
equation:

1 o2 _
vS.VS - %S8° = 0 (3)

where S(X, t) = constant is a characteristic surface in space-time. For
changing values of t, the surface S describes a wavefront, which moves
normal to itself with a speed c. The eikonal equation also has charac-
teristics, which are curves on S and whose projections on space are
rays (Friedlander, 1958), The rays are normal to the wavefronts in
an isotropic medium and they are straight lines in a homogeneous

medium,
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1.2a Geometrical Acoustics

It can be shown that weak shock waves, which may be treated as
discontinuous, '‘weak' solutions of the wave equation, can occur only
along its characteristics (Whitham, 1974). (More simply, this occurs
because initial values may be specified independently across the char-
acteristics, Linear hyperbolic partial differential equations reduce to
ordinary differential equations along the characteristics. Thus the
solution can take different values across the characteristics, but will
be continuous along them, ) In the geometry of wavefronts and rays,
this identifies shockfronts with wavefronts. Given a shockfront, then,
its position and shape at later times can be found by drawing rays
normal to the front and advancing the front by an appropriate distance
along the rays. In the presence of boundaries, reflected fronts can be
constructed consistent with the laws of reflection (Friedlander, 1958),

This behavior is closely paralleled by light waves, because
electromagnetic fields also obey the wave equation (where c represents
the speed of light), However, in this case, there are high frequency
sinusoidal waves, instead of discontinuities., Again in the asymptotic
approximation of infinite frequency, the ''phasefronts'' or the surfaces
of constant phase coincide with the wavefronts and behave similarly
(Keller, 1954; Friedrichs and Keller, 1956). This parallel between
high frequency sinusoids and discontinuities is not unexpected as they
are related by Fourier analysis of discontinuous functions., Also, this
behavior of wavefronts, shockfronts and phasefronts agrees with both
Fermat's Principle and Huygen's construction,

The amplitude of the shock or of the high frequency sinusoidal
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waves at later times can be found with the "transport equation'),
obtained from the wave equation by approximation after substituting an

assumed form for the solution (Whitham, 1974), For a shock,
1 =, st
2VS. Vg, +(v°S - E‘astt)”‘l =0; é = H(S) r§1¢n =T (4)

where H(S) is the Heaviside Step Function. The transport equation has
the same characteristic curves as the eikonal equation (Whitham, 1974).
Therefore discontinuities of shock amplitude, proportional to ¢, may
occur across the rays for the same reason that shocks could occur
along the characteristics of a wave equation, For infinite ffequency
sinusoidal waves, or for .shockfr.onts, this corresponds to shafp
shé.dows. Further, the transport equation can be integratéd to show
that the amplitude in a narrow ray tube varies inversely proportional
as the square root of the area of cross section of the ray tube. This
can be loosely interpreted as a form of conservation of wave energy,
as the energy is proportional to the square of the amplitude (Kellef,
1954; Freidrichs and Keller, 1956).

Thus, the behavior of a shockfront or a phasefront can be
determined in part, simply by geometrical considerations of the initial
front. This ''geometrical acoustics', however, is valid only in the
asymptotic approximation of strict discontinuities and infinite frequen-
cies (or zero wavelengths), and does not give the complete solution to
the wave equation. It excludes shocks of finite thickness, or waves of
finite frequency, and says little about the pressure field behind the
shock (Keller, 1954; Friedrichs and Keller, 1956), Aléo, near a focus

the cross-sectional area of the ray tube vanishes, and the amplitude
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becomes infinite according to geometrical acoustics, Thus the ampli-
tudes at and beyond the focus cannot be found, though the shockfronts
can be. To solve these problems a more complete solution of the

wave equation is necessary.

1.2b Poisson's Solution

In homogeneous media without any interfering boundaries, a
solution of the wave equation (1) is given by Poisson in terms of
averages of initial distributions of amplitude, ySo, and its time deriv-
ative, 561:0. The averaging is done over the surface of a sphere of
radius ct centered at the point of interest X. If such an average is
represented as a functional M(g), the solution can be written as follows
(Whitham, 1974).

FEt) = o [ctME%)] + ctM@B®) (5)

Unlike geometrical acoustics which computes shock amplitude from
point to point along rays, this form of the solution connects the ampli-
tude at any point and time directly to the initial values, irrespective of
the amﬁlitudes in between. Therefore this solution can be used to
evaluate some amplitudes beyond a focus., But, so far as the shocks
have no thickness, it predicts infinities at the foci and on certain
.shockfronts coming out of the focus (Friedlander, 1958). According
to this solution, a shockfront, when it passes through a line focus, not
only becomes infinite in amplitude, but changes into a logarithmic
compression-expansion front, Furthermore, if the curvature in the
other direction focusses this front again then it comes out as an

expansion shock, In the case of a point focus, both curvatures become
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infinite at the same time and the shock skips the intermediate stage of

the logarithmic front. This is illustrated in Fig, 7, for a perfect focus,
Poisson's solution can also deal with thick shocks and finite

frequencies, and it can predict the pressure field behind the shock, but

the answers are not very explicit as they depend on details of the

averaging. In an unobstructed, homogeneous, isotropic medium, it

confirms and supplements the answers of geometrical acoustics,

1.2 ¢ Diffraction

Geometrical acoustics, being an approximation, does not give
all the wavefronts, It predicts regions of sharp shadow, whereas in
practice, wavefronts and rays do occur in such regions. These new
wavefronts and rays can be described with Fermat's Principle or
Huygen's Construction, Also, wave-like variations of amplitude may
be observed in the flow behind curved shock waves. Such waves are
the result of a phenomenon called "diffraction'',

Geometrical acoustics tolerates discontinuous amplitudes
across rays (as explained previously). But this is true only at the
shock itself, or in the limit of infinite frequency only. Such a discon-
tinuity in the amplitude of the shock leaves discontinuities in the
pressure field behind the shock, These discontinuities of pressure
will drive waves until the pfessure becomes uniform everywhere,
These waves are the diffraction waves, Examples of such wave fields
can be found in diffraction of sound pulses by wedges (Friedlander,
1958),

The instant a discontinuity in pressure occurs along the shock-

front, a front of the diffraction wavefield starts and travels radially
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out from that point with the speed of sound. The front is generally not
a shock, but a more gradual pressure change (Keller, 1954; Friedrichs
and Keller, 1956). The portion traveling into the high pressure fluid
is an expansién and the portion traveling into the low pressure fluid is
a compression., The net effect is to bring the fluid to some interme-
diate equilibrium pressure, Fig. 7 shows such diffraction fronts
spreading from sharp edges of the reflector. The discontinuity in
amplitude at the shock continues to travel along. However, the pres-
sure distribution immediately behind the discontinuity becomes smooth,
continuous and settles to the mean pressure, At other points on the
diffracted front, away from the discontinuity, the pressure change
begins as the square root of time., Later, far behind the diffracted
front, the pressure everywhere smoothly settles down to the same
final equilibrium pressure, All diffractions which result from discon-
tinuities in the amplitude of the shock have this character, Clearly,

if the curvature of the shock is discontinuous across a ray, a growing
discontinuity in shock amplitude results along this ray, followed by a
diffraction wavefield. This occurs for all cases of perfect focus and

is shown in Fig. 7.

For aretes and caustics, the curvature of the shock and there-
fore its amplitude change continuously along the shockfront. Thus
there are no discontinuities, but pressure gradients are created none-
theless. Evidently there can be no distinct diffraction fronts, but the
pressure gradients set up a wavefield to bring the fluid to an equilib-
rium pressure, Even though the diffraction waves are not distinct,

they still must have the same character: expansions traveling into the
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high pressure fluid and compressions into the low pressure fluid,

In general, variations along the shockfront create nonuniform
pressures behind the shock, which relax to a uniform equilibrium
pressure by generating diffraction waves behind the shock. In the
acoustic approximation, these waves travel with the same speed as
the shock. If the shock is thick, then near a focus, its crest is
affected by diffraction waves within a region of the size of the shock
thickness, and the amplitudes are finite, (Similar effects occur
for high frequency periodic waves. Further, the phasefronts of
these waves become locally plane in the focus (Debye, 1909; Kay
and Keller, 1954).) On the other hand, if the shock has no thickness,
the diffraction waves cannot affect the shockfront, Therefore, the
singularities predicted by geometrical acoustics remain, so far as
the shock is treated as having no thickness, Under these circum-
stances, the amplitudes clearly depart from infinitesimal, and
other amplitude-dependent phenomena enter the picture. This is

discussed in the next section,

1.3 Dynamics of Shock Waves

It is well known in fluid flows that when wave amplitudes
become finite, the increase in wave velocity becomes significant, If
an acoustic approximation is used, the error in the slopes of the char-
acteristics increases with amplitude. The total error grows with time
or distance traveled (Friedlander, 1958; Whitham, 1974). This gives
the familiar distortion of waveforms, which break to form shock waves,
Thus a shock wave is continually overtaken and modified by the

wavefield behind it, The velocity of the shock wave is approximately
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the mean of the wave velocity ahead of it and the wave velocity behind
it, especially for a weak shock. The shock velocity also, therefore,
increases with amplitude (Whitham, 1974).

Shock dynamics is an approximate theory, developed by

Whitham, to predict the motion of such nonlinear shockfronts in two or
three dimensions (Whitham, 1957, 1959, 1974). It applies in situations
where the nonlinear interaction occurs mainly between the shock and
the geometry, and the interaction with the wave field behind the shock
is weak (Whitham, 1974). (In contrast to this, an acoustic shock is
free of any interaction with the Wave field behind it. )
In this approach, using the fact that a shock travels normal to

itself, rays are introduced as orthogonal curves to the shockfront,

The shock travels with differént speeds along different rays, depending
on its local amplitude. Therefore gradients in amplitude and speed
turn the shockfront as it travels, Consequently, rays curve away from
-regions of large amplitude, The variation in shock strength due to ray
convergence or divergence is approximated with the shock strength
variation of a plane shock traveling in a straight tube of slowly varying
cross section, The a.pproximation neglects the cummulative effect of
area changes on the wave field behind the shock. Also, particle paths
behind the shock are assumed to lie along the rays, although, in
actuality, they may deviate from them after the passage of the shock
(Whitham, 1974).

It turns out that the system of partial differential equations

describing this kind of shock motion is hyperbolic, and disturbances

propagate as waves along the shockfront. The waves carry changes in
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slope and Mach number M of the shock with a wave speed which is an
increasing function of M, These waves on the shock can generally be
identified with some wave (known to exist from independent consider-
ations) in the flow behind the shock, traveling oblique to the shock and
intersecting with the shock. The wave on the shock represents the
movement of this intersection along the shock,

The waves on the shock are nonlinear just as the waves behind
the shock; therefoi'e, increases in M steepen, whereas decreases in
M spread out, This leads to the breaking of the waves carrying
increases of M along the shock., The breaking corresponds to a discon-
tinuity in slope and in M. The trace of this ''shock' on the shock is
called a '""shock-shock'. Physically, this corresponds to another shock
wave inter sect'ing the shockfront obliquely frdm behind, thus forming
a 'three-shock' or '"Mach intersection''.

It should be emphasized that, because rays curve away from
regions of large amplitude, the shock becomes concave in a wave
carrying an increase in M, Thus shock-shocks and three shock inter-
sections are a natural outcome of a concave shockfront, according to
shock dynamics,

Results of calculations of focussing shock waves, using the
equations of shock dynamics, are not available, However, some |
asymptotic cases may be considered. The concave corner in Fig. 8
is an asymptotic case of a concave corner with a small radius. The
reflections in the two cases must look similar after a long time,
Reflections from a concave corner are shown in Fig, 8, according to

both acoustics and shock dynamics (Whitham, 1957, 1959). The
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appearance of a crossed and folded shockfront, and a flattened shock-
front, respectively, seem consistent with the behavior of focussing
shocks, The case of shock-diffraction from a wedge represents only
a half of such a reflection from a shallow concave corner, In this case,
it is easier to identify the folded wavefronts with regular reflection and
the wavefronts without folds with Mach reflection (Fig. 9). In Fig. §,
these reflections occurred from the axis of symmetry. The occurrence
of three-shock intersections in the nonlinear cases is interesting; they
are connected with the occurrence or non-occurrence of crosses and
loops in the shockfront. This will be seen also from the results of this
investigation,

Intuitiveiy, effects similar to Mach reflection should occur for
total internal reflections also, For example, near sonic cutoffs
(Fig. 4), three-shock intersections have been found to occur instead
of the cusps of the shockfronts (Sanai and Toqng, 1974). Similar behav-
ior may be expected from cusps of shockfronts near other caustics also
(Naumann and Hermanns, 1973). Thus, it appears that the three-
shock intersections are important to the behavior of shocks near foci,
in general,

Three -shock intersections have been analyzed also by indepen-
dent and more rigorous approaches (Henderson,1965). There are many
possible three-shock configurations in supersonic flows. Only three
of these correspond to Mach reflections (the total deflection of flow
through these is small), and are of interest here: direct, stationary
and inverted (Courant and Friedrichs, 1948), The direct intersection

occurs in a Mach reflection and travels away from the reflecting wall,
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The stationary intersection travels parallel to the wall. The inverted
intersection, if it occurs at all, travels into the wall, and is replaced
by regular reflection. It may therefore, occur only as a transient
phenomenon, for example, if the wall turns slowly into the flow until
a regular reflection occurs,

In summary, it appears that the nonlinear behavior of focussing
shock waves is closely related to the formation and behavior of three-
shock intersections, the occurrence of regular or Mach reflection and
the corresponding presence or absence of crosses and loops in the
shockfronts, In fact, it will be seen that three-shock intersections

play a crucial role in determining the behavior of a shock near a focus,

1.4 Previous Investigations

For the purposes of this study, focussing sonic booms may be
considered as a pair of focussing shock waves. Then a great volume
of measurements is available from field investigations of sonic boom
phenomena, Unfortunately, as to the details of any focal processes,
the evidence is very inconclusive in most cases. Large uncertainties
are introduced by the uncontrolled, random atmosphere, and inferring
the flow in the focus with pressure records taken at scattered points
beéomes difficult., Nonetheless, very good measurements have been
made, after extensive investigations, by Wanner et al, (1972), and
Haglund and Kane (1974), Their observations show wavefront config-
urations indicating nearly acoustic focussing,

There have been attempts at simulating the sonic-boom
behavior in the laboratory environment, using electric sparks to

create N-waves. Beasley et al, (1969), Thery et al. (1970), and
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Cornet (1972) have studied the focussing of such weak waves, Except
for the very minor wave distortion described by Cornet, no evidence
of nonlinearity was observed, The measurements fit the predictions
of acoustics very well except near the singularities, where the resolu-
tion of the instruments becomes crucial, Evidently, for such weak
waves, the distortion created by nonlinear effects within the small
scale of the experiments is extremely small. Thus the foci were so
minute that they could not be resolved by the methods used.

On the other hand, behav_ior of strong shocks has been observed
in many cases, In an investigation on shock stability, Briscoe-and
Kovitz (1968) have photographed perturbed shocks. These pictures
show shockfronts coming out of foci without any folds, Sturtevant (1973)
has reported the preliminary stages of the present investigation where
measurements of pressure transients indicated that, in these experi-
ments, folding of the shockfront was prevented by nonlinear effects,
Naumann and Hermanns (1973) have observed shockfronts near caustics,
during their investigation of the interaction between a shock wave and
a vortex field, Here also, the shockfronts have no loops or folds, but
they have three-shock intersections, Sanai and Toong produced foéi
by refraction inside a ballistics range, They found no evidence of
folding near aretes. However, they did observe three-shock intersec-
tions in their simulation of the sonic cut off (Sanai and Toong, 1974).

On the theoretical side, acoustics and shock dynamics constitute
the basis for explaining the focussing of shock waves.‘ Many of the
investigations appiy or extend these theories to specific cases, For

example, by using Poisson's Solution to the wave equation Pierce (1968)
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has demonstrated the diffraction waves behind a focussing sonic boom,
and Obermeier (1973) has examined the foci of sonic booms with thick
shocks, using Fourier integrals, Among the nonlinear theories,
Friedman et al. (1963) have extended the shock dynamics theory in
order to apply it to focussing by atmospheric refraction. It has been
claimed by Friedman (M, P.) and Chou (1965), and independently by
Friedman (M. B.) (1968), that their shock dynamic computations fail
to show focussing near a sonic cutoff,

On the other hand, for such steady caﬁstics, Guira.ud‘(1965)
and Hayes (1968) have speculated a nonlinear similarity behavior near
the singular region, based on transonic flow equations. Using these
results, Seebass et al, (1970) and Gill (1973) have obtained solutions
for the nonlinear behavior of shocks near caustics. Pierce (1971)
also has suggested a scaling for the maximum amplitude at an arete.
These theories, however, need substantial verification from experi-
ments,

In short, both nearly-acoustic and strongly-nonlinear behaviors
of focussing shock waves have been well documented, It is clear that
the behavior of focussing shock waves changes with amplitude, In fact,
it changes such that the cross and loop on a focussed weak shockfront
disappear if the shockfront is strong. However, the previous investi-
gations have not demonstrated how such changes occur, Also, the
influence of parameters such as the focal length and the angle of
convergence has not been examined, Further, for the nearly-acoustic
shocks, no evidence of a.ny amplitude-controlling mechanisms has been

observed near the foci., The theories proposing such mechanisms lack
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adequate verification, indicating the need for well-defined laboratory
investigations under controlled conditions. The present study aims to

deal with these problems.
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II. EXPERIMENTAL APPARATUS AND PROCEDURE

2.1 The GALCIT Seventeen-inch Shock Tube

The GALCIT 17'" diameter shock tube, originally designed for
studies of rarefied gases (Liepmann et al,, 1962) was used due to its
convenient large size, and its high repeatability in producing very
plane shock waves, In these experiments, it produced weak shocks in
atmospheric air with compressed nitrogen for driver gas, The shock
tube has a 12, 5' driver and a 70' test séction. A set of straight knife
blades was used to burst different diaphragms, to obtain well-con-
verged shock waves at the end of the test section., The shock Mach
numbers varied from 1, 605 to 1,5 as shown in Table 1, with test times
ranging between 5 msec for the strongest to 25 msec for the weakest.
Also weak shocks made with mylar diaphragms converged much
quicker than those made with metal diaphragms. The boundary layer
thicknesses are estimated to be less than 1 mm in the region of

interest,

2.2 Concave Endwall Reflectors

Cylindrical reflectors were constructed of machined wood
blocks, smoothed and repeatedly polished with a sanding sealer to
obtain a high finish, Parabolic reflectors, producing perfect line foci,
were machined by following templates, whereas more complex 'sha.pes
producing caustic surfaces and their cusp lines were machined by
following coordinates, The wood blocks were fastened to metal .plates
during machining and during the experiments to reduce the effect of

warping.
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A paraboloid reflector producing a point focus was also con-
structed with a commercial glass reflecfor embedded in epoxy on a
wooden backing,

Table 2 lists the various reflectors and their important charac-
teristics,

To locate the reflectors at various distances from the instru-
ment ports in the shock tube, a movable endwall was constructed.

This endwall rests on adjustable nylon pressure pads and is supported
axially from behind with a large screw which transmits the force on
the movable endwall to the shock tube endwall (Fig. 10).

In all geometries of the reflectors, it was necessary to keep
the aperture of the reflector sufficiently small so reflections of
scattered waves from shock tube walls do not enter the flowfield during
the time of measurement. Especially in two-dimensional geometries,
such as a cylindrical reflector producing a line focus, it is impossible
to avoid this effect completely, Reducing the width of the reflector,
however, does restrict it to the lateral ends of the reflector, in which

case it would be observed as secondary waves,

2.3 Shadowgraph System

The flowfield of the reflected shock waves was observed with
spark shadowgraphs. The spark has a duration of less than a micro-
second and freezes the wave pattern very well, It was necessary to
use very fast film, and Polaroid Land film type 108 (ASA 3000) was
found to be very convenient. The whole system was enclosed in a black
box to allow operation in daylight,

As shown in Fig.12, a Schlieren mirror of 54' focal length was
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used to make the light parallel, The aperture at the source had a
diameter of , 01", and this gave excellent resolution. Even hairline
cracks in the silver of the mirror left an impression on the film, some
70' away. The 3 ' windows in the shock tube were made of flat,
optical glass and were mounted partly recessed and partly protruding
into the shock tube, in order to minimize diffractions.

The spark was timed and triggered electronically, A piezo-
electric gauge measured the incident shock wave and triggered a single
sweep time base on an oscilloscope (Tektronix 555), A delayed trigger
signal from the scope, with manually set delay, was amplified and
used to trigger a thyratron vacuum tube. The thyratron in turn applied
a 3000 V pulse across a small triggering spark gap. The ions provided
by this spark across the main spark gap brought about the breakdown
of the main spark gap and discharged a bank of capacitors, The time
taken by the process, after the delayed trigger signal from the oscillo~
scope occurred, was of the order of a microsecond. (The original
design for this spark gap was obtained from the University of Arizona.)

Thus a shadowgraph was obtained for each run of the shock
tube, and by changing the delay setting on the oscilloscope it was possi-

ble to observe the flowfield at different stages of focussing,

2.4 Measurement of Transient Pressure Waveforms

After the different regions of flow were identified with spark
shadowgraphs, transient pressures were measured at various points
in the flowfield. High spatial resolution and a good high frequency
response to transients like shock waves were necessary, and very small

piezoelectric gauges were chosen for this purpose (PCB Piezotronics,
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type 105A, risetime - 1 microsecond, sensitive surface smaller than
0.1" in diameter)., The gauges have an integrated circuit amplifier
coupled to the crystal, and show a very géod sidewall response to a
shock wave, However, when the gauge faces into the shock wave, ring-
ing is observed. Also, mounting the gauge in midflow scatters the
shock wave and the diffraction effects modify the signal considérably.

For two-~-dimensional flowfields, such as a line focus, these
problems can be avoided by using a dividing plane. The dividing plane
is parallel to the two dimensions of importance and has the pressure
sensors mounted flush with thé surface (Fig. 11)., The influence of the
boundary layer on the plane is seen to be rather minimal, |

The dividing plane in the shock tube is shown in Fig, 11, It is
supported in the shock tube through the instrument ports. The support
is a hollow cylinder, and also serves as a housing into which the
instrument capsule containing the pressure gauges can be introduced,
Fig. 13shows the instrument capsule mounted flush with the dividing
plane. The capsule has two transducers, one in the plane of symmetry
of the reflector, along the axis of ‘the capsule, the other at a radius of
1" from the first. By rotating the capsule the second transducer may
be placed at different distances from the plane of symmetry., The
leading edge of the dividing plane was chamfered on the support side to
minimize diffraction. Also the plane was sufficiently long, so the
waves scattered by the support, etc., could not diffract a.round‘the
leading edge into the flowfield during the time of measurement,

The dividing plane effectively modified the cross section of the

shock tube, Portions of the movable endwall and the reflectors were
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cut off so they fit this cross section. This made it necessary to finish
all shadowgraphy before beginning the pressure measurement,

Proper mounting of the pressure transducers was found to be
crucially important for good response. It was necessary to isolate
them from the stress waves in the dividing plane., This was done by
mounting the transducers in small brass mounts which were supported
in a soft rubber cast (GE-RTV 118) as shown in Fig, 13. Also the
mounting hole in the brass mounts had to be modified to cure pro-
nounced ringing in the signal. The transducer has a small stub
(0.1'" dia, x 0.1" long) in which the crystal is mounted, It appears
that anything touching this stub upsets the stress waves .in the rod
behind the crystal and leads to ringing., Some dimensions of the
mounting hole and the seating ring had to be enlarged to prevent such
contact and ringing, and some other dimensions had to be machined
to a very close tolerance to ensure square seating.

Only preliminary pressure measurements were done in the
axisymmetric flowfield created by a paraboloid reflector with a
perfect point focus., Pressure histories were recorded at a few points
on the axis of symmetry. At these points a piezoelectric gauge was
located, facing the reflected waves, (PCB Piezotronics, 113 A 21,
with a built in amplifier, risetime = 1 microsecond, sensitive surface
smaller than 0.2" in diameter.) This was done with the help of an
arm extending into the shock tube through an instrument port. The
gauge showed no ringing when it faced into a shock wave, but consid-
erable diffraction effects were seen due to its large size., The signal

showed a spurious peak before it settled to the correct value. Also
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the risetime increased considerably when the waves were incident at
an angle. (These effects can be seen in the pressure measurements
for a perfect point focus; sec, 3.7, Fig. 28.) However, it was possi.
ble to infer, qualitatively, the nature of the pressure variation.

All pressure measurements were recorded on oscillograms,
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III. PERFECT FOCI

This chapter deals with the experimental results and their
interpretation regarding the behavior of shock waves near perfect foci.
This is done in detail with one reflector producing a perfect line focus,
First, the flowfield is observed with shadowgraphs for different inci-
dent shock strengths., Qualitative features of the reflected wave
patterns are used to delineate various regions of the flowfield, Then,
in correlation with these regions, some typical pressure waveforms
are presented to indicate the changes occurring at and between the
wavefronts. This is then summarized to show how the focussing is
affected by the incident shock strength and how the focal processes
control the maximum amplitude,

After this, the investigation is extended to different reflectors,
Influence of the angle of convergence and the focal length is examined
using reflecotrs with different angular apertures and focal lengths,
The sharpness of the corners of a reflector is shown to have a minor
effect on the focussing, The case of an axisymmetric point focus is
examined to emphasize the generality of the observed phenomena,
Finally, an approximate method for numerical simulation of some
essential features of the focussing process is described, Results are

presented for comparison with the observations,

3.1 Shadowgraphs and Wavefronts

For an incident shock of M = 1,1, Fig. 14 shows the reflection
from a parabolic cylinder in various stages of focussing, at successive

instants. (Reflector no, 1, Table 2). This behavior of the reflection
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is typical of weak shocks, as may be inferred from the crossing and
folding of the shockfront as it comes out of the focus. Nonetheless,
nonlinear distortion effects are evident, especially near the focus,
The dark lenticular region near the focus is the hot gas left behind by
a strong shock.

In this sequence of shadowgraphs (Fig, 14), the reflection
travels from left to right, and two different window locations are used.
In the first two pictures, the reflector is immediately to the left of
the frame. In the rest of the pictures, it has been moved back by
1 .3/4",

In the first picture, the wavepattern has three different char-
acters. The dark circulé.r wavefront in the center, concave to the
right, is the reflected shock traveling towards the focus, This wave-
front has dark convex (to the right) extensions on either side, which
are compressive diffraction fronts emanating from the sharp corners
of the parabolid reflector. Behind these waves (on the left), are two
circular light wavefronts, traveling towards the axis of symmetry,
These are expansion waves, the counterpart of the compressive
diffraction fronts from the corners of the reflector (cf. Fig, 7).

In the second picture the shockfront has converged towards
the focus, and the diffracted expansions behind it have just passed
through each other, In other words, the expansion from the lower
corner of the reflector (convex upwards, traveling up) in the lower
half of the first picture is now in the upper half of the second picture
(still convex upwards, traveling up)., The situation is symmetric for

the other expansion. This picture exhibits an important nonlinear
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effect., The intersections of the expansion waves with the shockfront
have met each other, before the shockiront has reached the focus, In
the linear picture, they arrive at the focus together with the shock-
front (Fig. 7). Also, this picture shows an important feature of the
diffraction wavefield behind the converging shockfront, Close to the
shock, a dark region of compression waves can be seen developing
ahead of the diffracted expansion fronts,

In the third picture the shock -is at the focus, and in the rest
of the sequence it is seen coming out of the focus with a crossed and
folded configuration, leaving behind a region of hot gas at 1I:he‘ focus.
The compressive diffraction fronts from the corners of the reflector
have crossed in front, and thus precede the focussed shock, which
follows between the folds, The two tails of the 'focal spot'' are the
slipstreams of the folds in the shock. The folds look very much like
three-shock intersections, even when they are very close to the focus,
This effect is due to the shocks attached to the folds on the outer side.
These shocks appear to have formed from the compression fronts
ahead of the diffracted expansions mentioned above, For such weak
shocks, the tracks of the intersections in the fluid can be identified
with shock-shocks., In fact, the focal hot spot seems to be enclosed
by two shock-shocks, formed about the time of picture two. Thus
the three-shock intersections develop from the intersections of the
diffracted fronts with the shock, When these intersections turn
around and cross again, they enclose the focal spot, From this point
on, crossed and folded shockfronts are seen (cf. acoustic reflection,

Fig, 8, also Fig. 7).
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Fig, 15 shows the reflection of a shock of strength M = 1.3, in
the same experimental configuration. This sequence of shadowgraphs
shows the strong-shock behavior, Aga'}n, the intersections of the
diffracted waves with the shock meet and turn into three-shock inter-
sections before the shockfront gets to the focus, This occurs much
earlier in this case. The stem shock of the intersections is surpris-
ingly plane, and leaves the fluid in the focal spot with a higher entropy
than its surroundings. In contrast to Fig, 14, the shock-shocks in
this case do not turn around, but simply spread apart, and the focal
spot never closes., Consequently, the configuration of waves obtained
is not crossed and folded, but is flattened in some sense (cf, nonlinear
reflection, Fig. 8)., In the last two pictures, the waves have left the
field of view, and only the slipstreams of the three-shock intersections
are seen, The slipstreams are shear layers in addition to entropy
layers and evidently become unstable. In fact, at the beginning of the
focal spot the layers cross, and in the last picture, this crossing
appears to be forming into a jet.

A selection of five such shadowgraph sequences for five
different incident shock strengths is shown in Fig. 16, The sequences
of Fig. 14 and 15 are respectively third and fifth from the top. The
fourth sequence, M = 1,2, shows a borderline case between crossing ‘
and not crossing of the shockfront. In this case, the shock-shocks
turn around and come very close to a second crossing, but then move
away. The focal spot is almo st pinched off at that point, but not quite,
and the waves leaving the focus are not crossed. For shocks weaker

than this the shock-shocks cross twice, giving a finite focal spot and
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crossed shockfronts. The stronger the shock, the larger the focal
spot and the smaller the triangular loop in the shockfront., For shocks
stronger than the transition shock strength (in this case, M =1, 2),
the focal spot becomes semi-finite and the loop disappears,

In the focal spot, the shock is plane and normal, and the
amplitude must be finite, Thus, nonlinearity spreads the focus and
gives a finite maximum amplitude,

Figures 17, 18, 19 and 20 summarize the situation schemat-
ically into four processes, perfect focus of sound pulses, weak shocks,
moderately strong shocks and strong shocks.. The typical wavefront
patterns for each are now shown together., The trajectories of the
three-wave intersections (three-shock intersections or intersections
of diffraction fronts with shocks) are shown with dotted lines for each
case, In terms of shock dynamics, these are characteristiés of
waves on the shockfront, which turn into shock-shocks, Their further
behavior determines the outcome of the process, If these curves
cross a second time, enclosing the focal spot, crossed shockfronts
occur. Otherwise, the focal spot extends to infinity, and the shock-
front never crosses itself. In the limit of infinitesimal amplitude,
these curves reduce to the rays (of geometrical acoustics) that confine

the focussing shock, in Fig, 17,

3.2 Pressure Traces and Waveforms

The trajectories of the three-wave intersections divide the
flowfield into different regions, These regions can also be identified
with the kinds of waves occurring in them. This is shown in Fig, 21

with the help of pressure traces taken at different points in the various
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regions., The different wave patterns (traveling to the right) before,
at and after the focus are shown, The shock-shocks (dotted) cross
twice and the final wave pattern is crossed, indicating this as the
behavior of a weak shock., On the pressure traces, time increases to
the right (abscissa), and pressure increases upwards (ordinate).
Shocks are seen as discontinuities of pressure whereas diffracted
expansions appear as discontinuities of slope. The different wave-
fronts can be correlated with the corresponding pressure variations.
For points closest to the reflector, the first pressure jump on the
traces cofresponds to the incident shock.

A great deal of pressure variation can be seen between the
wavefronts, Thus, the pressure rises smoothly behind the leading
shockfront in all regioﬁs except the focal region, The pressure
invariably drops after the last wavefront, in all regions. However,
the feature of crucial importance is the sharp expansion following the
strong stem shock in the focal region.

Even though only the weak shock case is shown, the pressure
traces remain qualitatively the same in all cases, For strong shocks,
the focal region extends to infinity, and the last region with the crossed
shockfronts does not occur, Then the same pressure trace typical of
a focal region (an expansion following the stem shock) is observed all
along in the extended focal region, even far away from the focus.

The pressure field of each wave pattern can be visualized with
the help of the waveforms, If the instantaneous value of pressure at
each point is plotted normal to the plane of a wave patterni in Fig, 21,

a pressure surface is obtained. Isometric views of such surfaces
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Shock-
Shocks

FIG.22 PRESSURE FIELD NEAR A PERFECT LINE FOCUS
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(only qualitative) corresponding to the three wave patterns are shown
in Fig. 22, The wavefronts (heavy lines) are seen on the ground,
traveling towards and to the right of the observer. The wavefronts
and the shock-shocks correspond with those of Fig, 21, The pressure
is shown vertically upward. Lines of intersection of the pressure
surface with planes parallel to the plane of symmetry (light lines)
indicate the wavelike nature of the surface., In fact, these intersection
curves approximately represent the pressure trace observed in a
corresponding location on the plane of wave patterns, This is seen if
the observed pressure trace is held in a plane parallel to the plane
of symmetry with pressure upward and time increasing in the direction
opposite to the general direction of wave motion. The correspondence
is not exact, because a wave pattern and its pressure surface are
instantaneous, whereas the pressure trace is not, On the other hand,
a pressure trace represents occurrences at a point in space, but not
the wave pattern. However, in regions where all the waves are
traveling roughly in the same direction, the correspondence is quite
good. In regions where the waves travel in very different directions,
this correspondence does not exist (for example, near the reflector).

These views of the pressure surface couple the pressure traces
observed at various 10c’ati§ns into an integrated picture of the focus-
sing process. It is reasonably simple from here to obtain the pressure
surfaces for intermediate times, for example, when the shock-shocks
are crossing. The most important fact, however, is that the sharp
expansion following the stem shock in the focal region arises from a

combination of the two expansion waves traveling behind the shock.
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These were shown to be due to diffraction at the corners of the
reflector (Fig. 7). In fact, it is clear that the first crossing of the
trajectories of three-wave intersections is the point of maximum
amplitude; the amplitude is severely attenuated at any later instants
by the two overtaking diffracted expansions, These expansions also
carry a smooth compression ahead of them, Near the focal region
parts of this compression form into shocks along the same diffraction
front, Thus, nonlinear effects lead to the formation of the three-
shock intersections. Later, when the waves cross, the shock coming
out of the focus occurs on the same front and has the same character:
a smooth compression followed by a shock and an expansion. Also,
the nature of the diffraction fronts is seen clearly in regions away
from the focus. The pressure rises (or falls, for an expansion) approx-
imately as the square root of time (except for a small shock that leads
the compressive fronts, which is clearly a nonlinear effect).

For weaker shocks, the focal region becomes smaller and the
three-wave intersection trajectories tend to the rays of geometrical
acoustics. The point of maximum amplitude shifts towards the focus.
This implies larger maximum amplification for weaker shocks. In
the limit of infinitesimal shock strength, the whole picture is acoustic
and may be obtained from the behavior of sound pulses, It is inter-
esting to note that the focussed shock, with a compression leading it
and an expansion following it, turns into a logarithmic front in the
acoustic limit (sec. 1.2b, Fig., 7).

Fig. 22, with its crossed shockfront, represents the focussing

of a weak shock, For strong shocks, where the crossed and folded
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waves do not occur, the focal region extends to infinity, The wave-
forms observed in this extended focal region indicate that the pressure

surface there is similar to that near the focus,

3.3 Peak and Maximum Amplitudes

The pressure surfaces show the local variations of pressure at
different instants, The change in their amplitudes from instant to
instant is represented by plotting peak amplitudes at various locations
along the axis of symmetry (Fig. 23). The peak amplitude (maximum
amplitude observed at a point) is normalized with the pressure jump
across the normally reflected shock, The distance from the focus,
along the axis, is normalized with the focal length,

The topmost curve in Fig. 23 shows the measured peak ampli-
tudes at points along the axis. As can be seen from Fig. 22, the shock
amplitude is smaller than the peak amplitude, outside the focal region.
The variation of this shock amplitude, outside the focal region, is
shown by the two lower curves. They seem surprisingly close to the
}/m dependence of acoustic waves, in regions away from the focus
(f = focal length = 2,375"), In the focal region, the shock amplitude
becomes indistinguishable from the peak amplitude, as seen in Fig, 22,
The apparent jump in the shock amplitudé is connected with the simul-
taneous formation of the three-shock intersections at this point,

In the focal region, the shock amplitude (which is also the peak
amplitude) diminishes as it travels along the axis. It is believed that
this is due to the sharp expansion behind the stem shock overtaking it
and reducing its amplitude, At the end of the focal region, the three-

shock intersections pass through each other, and a focussed shock is



(SND04 INIT L93443d) SIXV IHL ONOTV 3ANLITdWY Mv3d €2 °9ld

00

©

} 0O%¢ Gl o'l Go 00 GO- O’l-
c&l.‘ ' v v T Y
X | . 1oo0d

~-54 .
)
°
S
=
a
E
<
-
O
)
Q.
77

Xl />

'l = S
: ..o.—om:mm:
sSNo04 9ulT] }08j}i3d

/

7l
/7
7y Ldwnp

330yg 1

~
o

O
0

O
q-

ORe]

uol}poijtjdwy dinsseld



-55-
formed (according to Fig, 22). Its amplitude at formation cannot be
resolved with the present pressure sensor. However, the peak ampli-
tude seems to drop more rapidly beyond this point, which marks the
end of the focal region.

The amplitude at the beginning of the focal region is expected
to be the maximum amplitude. However, the measurements do not
indicate>this. This is attributed to the limited resolution of the pres-
sure sensor. It can be seen from Fig. 22, that the peak in the
pressure surface is very sharp near this point (both along the axis
and laterally)., Further, the amplitude of this peak goes through a
sharp maximum at this point, Therefore it is quite expected that the
pressure sensor with its finite sensitive area reads an amplitude
substantially lower than the maximum amplitude. (The size of the

sensitive surface is about the same as the x symbols in Fig, 23,)

3.4 Influence of Shock Strength

This section re-examines the influence of incident shock
strength on the focussing of shock waves. The two important features
that best exhibit the behavior of focussing shock waves are the trajec-
tories of the three-wave intersections and the distribution of peak
amplitudes, The first of these is related to changes in the geometry
of a focussing shockfront, whereas the latter indicates the change in
maximum amplitudes.

Fig. 24 shows the trajectories of three-wave intersections
starting from one corner of the reflector for different incident shock
strengths. The situation is symmetric for the other corner, not

shown here. The trajectories are traced directly from the
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shadowgraphs, such as in Fig, 16, The unobserved portions of the
trajectories are shown dashed., For each trajectory, the region
between the crossings with the axis of symmetry near the focus repre-
sents the focal region, For strong shocks only one crossing occurs,
and the focal region is semi-infinite,

In the acoustic limit, the three-wave intersection occurs at
the point of tangency between the shockfront and the diffracted expan-
sion (see Fig, 17, for example), and its trajectory is the ray from
the corner to the focus (shown dashed), For shocks of finite ampli-
tudes, a three-wave intersection and its trajectory correspond,
respectively, to a wave on the shock and its characteristic.. These
waves travel along the shockfront at speeds which increase with the
shock strength, Thus the three-wave intersections of a stronger
shock reach the axis much more rapidly, (This implies smaller maxi-
mum amplification for stronger shocks.) Near the axis, they turn
into three-shock intersections and travel along shock-shocks,

After the focus, the three-shock intersections for the weak
shocks travel into the axis of symmetry, like transient "inverted
intersections', and are replaced by regular reflection at the axis (see
sec, 1.3). This gives créssed wavefronts, On the other hand, for
strong shocks, the three-shock intersections travel away from the
axis of symmetry, like ''direct intersections' of a Mach reflection.
Consequently, the shockfront has no loop. This behavior of focussing
shock waves seems consistent with the behavior shown in Figs, 8 and
9, and discussed in section 1, 3,

The influence of incident shock strength on peak amplitudes is
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shown by Fig, 25, Only the measurements for M = 1,1 and above are
presented, For weaker shocks, the foci are very small and cannot be
adequately resolved by the pressure sensor.’ The curve for M =1,1
appears to have a discontinuous slope at the point where the focal
region ends. For both M = 1,2 and 1. 3, the focal region is semi-
infinite, and such kinks do not appear in the peak;amplitude
distribution, However, in either case, it seems certain that the
diffracted expansions overtake the shock on the centerline, before
it gets to the focus and reduce its amplitude, For stronger shocks,
it is seen that the expansion waves overtake the shock earlier, with
the result that the maximum amplitude is smaller.

Thus, the three-wave intersection trajectories show that the
mechanism for the expansions to overtake the shock is basically non-
linear, Further, the peak amplitudes indicate that the expansion
waves reduce the amplitudes in the focal region by a nonlinear inter-
action, Therefore, in a given shock-focussing situation, the maximum
amplitude is determined by the nonlinear behavior of finite amplitude

waves,

3.5 Influence of the Angle of Convergence and Focal Length

Reflections from two other parabolic cylinders with shallower
geometries have been examined. This implies smaller angles of
convergence (angular aperture) of the reflected wave, The flowfield
was observed only with shadowgraphs.

Even though the shockfronts are shallower in these cases, they
undergo exactly the same processes seen in Fig, 16, which can be

summarized by Figs. 17, 18, 19 and 20, However, the shock strengths
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for which each case is observed are smaller, For example, the
transition in the geometry of the shockfront from crossed to uncrossed
waves occurs for relatively weak shocks, (Table 3 shows the range of
shock strengths in which the transition occurs for each reflector.) It |
is also possible to examine the influence of change in the angle of
convergence for a given shock strength, This is done in Fig. 26,
using observed trajectories of three-wave intersections., (These
trajectories are traced directly from the corresponding shadowgraphs. )
It can be seen that for a smaller angle of convergence the focal region
is larger., When the length of the focal region becomes comparable
to the focal length, the transition to uncrossed waves occurs,

Physically, converging of the fronts and nonlinear acceleration
of the shock in the center are competing effects. The waves cross if
they are coming into the axis very steeply., On the other hand, if the
stem shock in the focal region is strong or the convergence is slow,
the shock accelerates out of the convergence, giving uncrossed waves.
Thus, a rapid convergence suppresses nonlinear effects, whereas a
slow convergence makes the focussing effectively more nonlinear,.

It has been shown so far that the focuséing of shock waves and
its dependence on shock strength and convergence are basically due
to the nonlinear distortion of the wavefield, It is well known that this
distortion scales with time elapsed or distance traveled (see sec, 1. 3).
Therefore, the focal length or the radius of curvature is the natural
length scale for nonlinear effects observed near a focus. For this
reason, in Fig, 26, the trajectories of the shallower reflectors are

scaled so the focal lengths of the three reflectors coincide. Thus,
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when scaled with the focal length, the nonlinear phenomena in the
focussing of a shock wave essentially depend only on the convergence

and the shock strength,

3.6 Influence of the Sharpness of the Reflector Corners

For this purpose the reflector producing a perfect line focus
was used (Reflector 1, Table 2). This was fitted into a flat baffle, so
the incident shock reflected normally beyond the ends of the parabola.
At the end of the parabola, the slope changed discontinuously to that
of the béffle. Also, a rounded baffle that avoided this discontinuity
of slope was tried, In this case, however, the radius of curvature
was still discontinuous at the point,

These changes made very little difference to the wavefronts
and the shock-shocks., Fig. 27 shows the late stages of reflections of
weak shocks (M = 1,1) for the three configurations: reflector without
a baffle (sharp corners), reflector in a flat baffle, and reflector in a
rounded baffle. The close similarity suggests that the discontinuity
in the curvature of the reflection leads to diffraction waves which are
equivalent, as far as the focus is concerned,

This is not unexpected. The diffraction front depends on the
discontinuity in the amplitude of the shock, which is approximately
the same in the three cases, The final equilibrium pressure, far
behind the diffraction fronts, may differ. However, the portion of
the diffraction that is important near the focus is the leading edge of
the expansion. Since this does not change very much, the sharpness
of the corners of the reflector has only a minor influence on the focus-

sing of a shock wave,
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With Sharp Corners

With A Flat Baffle

With A Rounded
Baffle

FIG.27 EFFECT OF THE SHARPNESS OF REFLECTOR
CORNERS (Mg =1.1, REFLECTOR)
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3.7 Perfect Point Focus

This kind of a focus differs from the perfect line focus due to
its axial symmetry. In this case, according to geometrical acoustics,
not only does the shock go through a point focus, but even the diffrac-
tion wavefronts focus on the axis as they cross it. The sharp edge of
the paraboloid reflector is a circle and the diffraction front emanating
from it is a growing torus; all rays emanating from the circumference
with a fixed inclination to the axis converge at a point on the axis, and
different points on the axis represent foci for rays with different
inclinations to the axis., Nevertheless, if projected onto a plane
containing the axis, the wavefronts are identical to those of a perfect
line focus (Fig. 7). The parallel beam shadowgraph automatically
takes such a projection. However, its sensitivity is drastically reduced
beéause, now, only the small portions of the shockfront tangential to
the beam make a shadow.

Qualitatively, the shockfronts near a point focus look very much
the same as in Fig, 16, and show identical changes with shock strength,
Therefore, shadowgraphs from experiments on point foci have not been
presented, Just as in the case of a perfect line focus, the behavior of
the reflection in this case also can be separated into four cases:
focussing of sound pulses, weak shocks, moderately strong shocks,
and strong shocks (shown in Figs. 17, 18, 19 and 20). The critical
shock strength for the transition in the geometry of the shockfronts is
different in this case, due to the axial focussing of the diffracted waves.

The major effect of axisymmetric focussing is seen in the

pressure waveforms, especially on the axis, Fig. 28 shows some
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R Distance Outside The Focus, x/f
1.0

FIG.28 PRESSURE TRACES AFTER A PERFECT
POINT FOCUS (REFLECTOR 4,SWEEP-20u sec/cm)
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pressure traces made on the axis outside the focus. The experimental
configuration and the transducer are different in this case, as
described in sec. 2.4, If the effects of finite size of the pressure
gauge (sec, 2.4) are taken into account, the pressure traces of Fig, 28
can be qualitatively interpreted. In fact, the influence of nonlinearity
can be shown quite clearly. For the traces in the top row and in the
second row, second column, the diffraction waves arrive before the
focussed shock, The focussed shock is inverted and follows the
diffraction waves (sec. 1,2b, Fig, 7). Thus, the waveform has the
appearance of a square pulse, consistent with the predictions of acous-
tics. The inverted '"shock', however, seems to be preceded by a
smaller shock not predicted by acoustics, The width of the square
pulse is proportional to the size of the loop in the folded shockfront,
Since the size of the loop increases with distance from the focus and
decreases with increasing shock strength, the pulse width follows the
same trends. In fact, in the bottom row, the pulse width is zero.

This indicates that the probe is in the extended focal region; it is
sensing the stem shock and the expansion wave behind it, This is
consistent with the flattened shockfront shown by the corresponding
shadowgraphs. The transition in the geometry of the shockfront occurs
for an incident shock strength between M = 1,03 and M = 1.1, for this

reflector,

3.8 Approximate Numerical Simulation

Trajectories of three-wave intersections describe a significant
part of the behavior of focussing shock waves, Therefore, such

trajectories have been computed based on a simplified geometrical
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model for the motion of a three-wave intersection. Basically, the
motion of the intersection of two fronts (or curves) moving with
different velocities is found numerically, The difference in the
velocities of the two fronts is assumed to be proportional to the shock
strength (Appendix A), Then the trajectories can be calculated, pro-
vided the shape and strength of the shockfront are known a priori, Such
information cannot be predicted by simple means in regions where the
shockfront is strongly affected by nonuniform diffraction fields., In
these regions, approximate forms of the cbserved shock shapes and
the expected shock strength distributions are used (Appendix A),

Figs. 29 and 30 show the results of such computations., Quali-
tatively, the behavior of the computed trajectories is very similar to
that observed in Figs., 24 and 26, respectively. (Crosses in Fig, 29
correspond to points on the trajectory for Ms = 1.2 in Fig, 24), In
fact, even the critical shock strengths for the geometrical transition
of the shockfront agree with the measured values (Table 3). With due
consideration to the approximations involved, the vgood agreement with
observations indicates that the basic mechanism behind this behavior
of three-wave intersections is the inherent nonlinearity of shock waves,
However, the method used here is very approximate and restricted, and
and may not apply to other situations. A much more general and
complete approach is that of shock dynamics, which represents the
same aspects of the nonlinearity of shock waves in terms of waves

on the shock, their characteristics and shock-shocks (sec. 1, 3),
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IV, CAUSTICS, CUSPED AND SMOOTH

In this chapter, the behavior of focussing shock waves is
investigated near an arete (a cusped caustic) and a smooth caustic,
The approach is similar to that used in the case of perfect foci., An
arete is examined in detail with shadowgraphs and pressure waveforms
to identify the processes occurring near the cu.sp and near th¢ rest of
the caustic, Then the influence of shock strength is emphasized to show
how the nonlinearity in the process is effective in controlling the maxi-
mum amplitude in the foci, All through, the features that are parallel
to the perfect foci are pointed out and the important differences are
described in detail, Finally, the case of a smooth caustic is examined

in relation to the phenomena observed near an arete,

4.1 Shadowgraphs and Wavefronts Near an Arete

Fig. 31 shows four successive stages of a focussing shockfront
near an arete, (M = 1,2 for the incident shock, the reflec}ted front is
traveling to the right.) This sequence represents the arete of a weak
shock, as signified by the crossed wavefront configuration in the last
picture (bottom row, on right)., Nonetheless, occurrence of strong
shocks near the focus is evident from the heated fluid (dark, peninsular
region in the center).

The first picture of the sequence shows the reflected shock
approaching the cusp of the caustic (dark curve, concave to the right).
Near the most concave portion of the shockfront, some evidence of
diffraction can be seen, This is quite expected, since the most concave

portion is also the most amplified portion, being nearest to a focus.
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In the next picture (bottom row, on left), the shockfront has just passed
the cusp. (The cusp refers to the cusp predicted by geometrical
acoustics for this focussing situation.) In this case, the diffraction is
seen more clearly. It has the form of a compression wave being
followed by an expansion wave. In fact the compression appears to be
forming into two small shock waves on the two sides of the shockfront,
In the third picture (top row, on the right), these shock waves have
grown bigger and are clearly distinguishable.‘ They seem to form as
very weak shocks, in the middle of the diffracted compression region,
but closer to the reflected shockfront they become stronger (indicated
by the variation in the thickness of the sharp, dark shadow). These
shocks intersect with the shock, forming two three-shock intersections,
with a common stem shock. In this case, strong refraction of light
has masked the stem shock in the center, but its span is indicated by
the separation between the two slipstreams of the two three-shock
intersections (two pairs of dark and bright lines, trailing in the fluid),
It must be emphasized, at this point, that the formation of the diffrac-
tion shocks (shocks formed from smooth diffraction waves) and the
simultaneous formation of the three-shock intersections is inherently
a nonlinear process, Thus these processes are very similar to those
near a perfect focus,

The further development of this configuration of shocks is
shown in the last picture of this sequence. The reflected shockfront
has crossed ahead of the focussed shock, which appears to follow, thus
forming a triangular loop in the shockfront, The diffraction shocks

now meet the two off-axis apices of this triangle, making three-shock
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intersections at those points, The slipstreams of these intersections
have crossed in the fluid behind the shockfronts, This indicates that
the three-shock intersections in picture three have met on the axis and
have passed through each other, The slipstreams have thus bounded
the dark peninsular region, which is the fluid heated by the strong stem
shock. Qualitatively, the slipstreams indicate the paths of the inter-
sections, or shock-shocks. Thus, in this case, nonlinear diffraction
processes behind the shockfront lead to the formation of two shock-
shocks, Then, the shock-shocks cross, At all points beyond their
crossing; crossed and folded shockfronts are seen, This, again, is
very similar to the perfect focus of a weak shock, The major differ-
ence occurs in the diffracted expansions behind the focussing shock,
In this case, they are not distinct, with the result that the shock-
shocks start far apart, and there is no distinct point marking the
beginning of the focal spot (see Fig., 14, sec., 3.1).

Fig. 32 shows such shadowgraph sequences (rows, from left
to right) for four different incident shock strengths, From the top
three sequences, it is clear that with increasing shock strength, the
focal region becomes larger and the triangular loop becomes smaller,
Finally, as shown in the last sequence, the shock-shocks cannot cross,
but simply spread apart, leaving a focal region of indefinite extent,
The final shockfront is not crossed and the triangular loop has disap-
peared. This behavior is totally analogous to the shock wave behavior
near perfect foci (see Fig. 16, sec, 3.1).

It is interesting to note that the slipstreams of the three-shock

intersections in the last sequence of Fig, 32 become turbulent at a
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short distance behind the intersections (pictures 3, 4 and 5), The
last picture of the sequence shows the starting point of slipstreams.
Being shear layers, they become unstable and roll into two line vor-
tices, The layers beyond the vortices are turbulent and merge togeth-
er to form a jet,

Similar to the case of perfect foci, it is possible to distin-
guish four kinds of behaviors near an arete; these correspond to sound
pulses, weak shocks, moderately strong shocks and strong shocks,
and are shown schematically in Figs, 33, 34, 35 and 36, The shock-
shocks in each case are shov:}n with a pair of dashed lines close to the
axis of symmetry, The other pair of dashed lines (on the outside)
mark the loci of the extremities of the diffraction shocks, In the
acoustic limit they all coincide with the two branches of the caustic.
With finite amplitude, the locus of the shock extremity shifts‘towa.rds
the center of curvature of the caustic, where as the shock-shocks
shift away from it. Consequently the shock-shocks cross on the axis
and form the narrow, peninsular focal region. The region between
the shock extremity locus and the corresponding shock-shock is also
inherently nonlinear and corresponds to the focal region of the caustic
inside it, The arrows in the figure indicate the motion of the inflexion
points of the shockfront, The angle enclosed by these lines represents
the effective angle of convergence of the shockfront, in the case of an

arete,

4,2 Pressure Waveforms for an Arete

Some typical pressure traces observed in the different regions

of the flowfield are presented in Fig. 37. The line sketch schematically
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shows the focussing of a weak shock wave near an arete (cf. Fig. 34).
The dark spots represent the points of measurement. The corre-
sponding pressure histories are shown with indicators,

On the leftmost pressure traces the first pressure jump is the
incident shock, which is followed by the reflected shock, Behind the
reflected shock, effects of diffraction can be seen., To the left of the
focal regions (of the cusp and of the caustic), the diffraction generally
appears as a smooth compression, followed by a smooth expansion.
The processes of importance, however, occur near the foci, Along
the axis into the focal region, the waveform distorts in such a way
that the shock jump is magnified greatly, but is immediately followed
by a sharp expansion. (In the case of perfect foci also, a similar
waveform occurs in the focal region.) Such a sharp expansion, due
to nonlinearities, overtakes the shock and controls its amplitude in
the focal region,

Near the focal region of the caustic, the smooth compressive
diffraction (top row, trace 1) gradually steepens (top row, traces 2
and 3) and forms into the diffraction shock across this focal region
(top row, trace 4). Again the diffracted expansion which follows the
compression overtakes this shock in this region, as seen in the last
trace. Thus, even in the case of a caustic, the maximum amplitude
is controlled by/nonlinéar effects,

For strong shocks the focal region of the cusp extends to
infinity and the last region of crossed and folded shockfronts does not
occur, Then the wavefrom corresponding to the focal region of the

cusp occurs all along. The other waveforms are similar for all shock
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strengths,

Figs. 38 and 39 qualitatively show the nature of the pressure
field in the two important focal regions, with isometric views, The
wavefronts are shown in the ground plane (heavy lines, dashed where
they lie under the pressure surface), Also the caustics and the shock-
shocks are indicated. The wavefronts are moving towards and to the
right of the observer. The line patterns drawn on the pressure
surfaces (light lines) may be identified with the waveforms occurring
at corresponding locations on the ground plane.

Fig. 38 shows the pressure field near the cusp of the caustic.
The shock amplitude in the focal region is being controlled by an
overtaking expansion. On both sides of the arete, this expansion
blends into the expansion behind the smooth diffraction wave. The
compressive part of this diffraction, however, gradually becomes
steeper in regions closer to a focus, The formation of the diffraction
shock with an extremity can now be visualized in terms of the nonlinear
distortion of such a compression front,

As the shockfront approaches the crossing of the shock-shocks,
the span of the stem shock tends to zero. This amounts to a simple
modification in Fig, 38, Beyond the crossing of the shock~shocks,
the focal region separates with the two branches of the caustics. The
pressure surface also splits into two configurations joined by the
crossed w‘aves and the focussed shock (Fig. 37). The pressure field
occurring near the left branch of the caustic (lower branch in Fig, 37)
is shown in Fig. 39,

This pressure surface occurs near the focal region of a caustic.



-80-

~,

\ N }Shocks
\Caustic

FIG. 38 PRESSURE FIELD AT AN ARETE

T

——

I‘ R —

/ N s‘\\ \

= >~ Shock-Shock
~~ Caustic

il

FIG.39 PRESSURE FIELD AT A CAUSTIC



~-81 -

The diffraction waves associated with it correspond to the left half of
the pressure surface in Fig, 38, The major difference occurs in the
three shock intersection. In this case, the diffraction shock forms
the stem shock of this intersection. The two other shocks are respec-
tively the focussing shock and the focussed shock (see crossed and
folded shockfront, Fig, 37).

It may be added that these pressure fields may be reduced to

the predictions of acoustics, by removing the nonlinear effects,

4.3 Influence of Shock Strength

The shock-shocks and the distribution of peak amplitude exhibit
the important features of the behavior of a shock wave near a cusped
caustic. Therefore the influence of shock strength on the focussing
process is briefly examined in terms of shock-shocks and peak ampli-
tudes,

Fig. 40 shows the shock-shocks and the extremity loci (dashed)
of the diffraction shock for one branch of the cusped caustic, The
curves are traced from shadowgraphs for different incident shock
strengths, For a given shock strength, the region between the corre-
sponding shock-shock and the shock extremity locus represents the
focal region of the caustic, The lateral growth of this region_ with
increasing shock strength, and also along the caustic, is quite evident.
This behavior is essentially the same as that of nonlinear distortion
which increases with nonlinearity and distance traveled (sec, 1. 3).

The region to the left of the intersection of the shock-shock
with the axis represents the focal region of the cusp of the caustic,

The three-shock intersections occurring on the shock-shocks can be
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compared with the "inverted" and the '"direct' intersections (sec, 1. 3).
Their behavior in producing crossed shockfronts or uncrossed shock-
fronts is very parallel. This is the case, also near a perfect focus,
(sec. 3.4).

The influence of shock strength on peak amplitudes along the
axis is shown by Fig, 41, (All amplitudes in the reflection are normal-
ized with the pressure jump across the normally reflected shock. )

The curve for M = 1,1 shows that the shock amplitude (lower branch)
is smaller than the peak amplitude before the arete. There is no well-
defined starting point for the focal region of the arete., Also the point
of m;aximurn amplitude does not appear to correlate with some other
specific feature of the flow, except that it occurs within this focal
region, This is due to the smoothness of the diffraction waves, Fur-
ther, the end of the focal region is not marked by any significant
change in the variation of peak amplitude,

However, the most important fact is that the maximum ampli-
tude is smaller for larger shock strengths, This indicates that, though
the processes near an arete are not as well defined as near a perfect
focus, the amplitudes are still controlled by the nonlinear mechanism,
in which a sharp expansion overtakes the shock and reduces its ampli-

tude,

4.4 Smooth Caustic

A ''smooth' caustic, as used here, implies a caustic with a
constant radius of curvature. Not only does this distinguish a smooth
caustic from an arete, but as explained in sec, 1,1, it qualifies the

caustic to be a steady caustic in the approximation of geometrical
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acoustics,

Fig. 42 shows shadowgraphs of shock waves at successive
points (to the right) along the caustic for two different shock strengths
(two rows). The caustic is an arc of a circle, convex downwards, in
the upper part of the picture. In the first picture for the weak shock
(top row), the reflected shockfront has just started to cross. This
process is essential at the starting point of a caustic (sec. 1.1). The
wave behind the shockfront (on the left), is a diffracted expansion due
to the discontinuit‘y in the radius of curvature of the shock, This also
is an essential feature of the starting point. The next picture shows
the crossed and folded front. The triangular loop so formed has its
upper apex traveling along the caustic. The next picture shows the
cross and the other fold of the loop moving away, giving the caustic
an appearance of a steady caustic, Details of the focal region are not
distinguishable in these pictures, however, the shock does end near
the caustic. Also some amplification of the shock due to focussing
is observable (the width and darkness of the shadow of the shock
increases towards the caustic),

For a stronger shock (bottom row), the details of both the
initial crossing and the focal region of the caustic can be seen more
clearly. In the first picture a smooth diffraction front is seen on the
concave side of the caustic (upwards), which has steepened into a
diffraction shock forming a three-shock intersection with the compres-
sive diffraction as indicated by the slipstream (upper)., The diffracted
expansion also shows a shock ahead of it, forming another three-shock

intersection and another slipstream (lower)., It is interesting to note
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that ét this stage, the upper part of this focus is comparable to an
arete, whereas the lower part is comparable to a perfect focus, The
next stages show the subsequent crossing of the shockfront, and the
growth of the focal region of the caustic. Figs. 43 and 44 show this
behavior schematically, for a sound pulse and for a weak shock. The
formation of a diffraction shock and the two shock-shocks, in the weak
shock case, is clearly a nonlinear process,

The growth in time of the diffraction shock out of the smooth
diffraction indicates that the caustic is not steady. This nonsteadiness
is associated with the method of producing the caustic. At points
further down the caustic, the distance traveled by the focussing shock-
front is larger (since reflection), and correspondingly, the nonlinear
distortion is larger. This implies that the nonsteadiness is not
inherent, and occurs because the nonlinear phenomena near the focus
scale with the initial radius of curvature, which varies along the

reflected shockfront in this case,
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V. CONCLUSION

This chapter summarizes the observed phenomena and their
interpretations in more general terms,. First the essential features
of the observed nonlinear behavior of focussing weak shock waves are
described., Then the important focal processes are discussed in

relation to acoustic and nonlinear behavior of shock waves,

5.1 Nonlinear Focussing of Shock Waves

Shadowgraphs of various stages of different shock-focussing
situations have shown the influence of shock strength and angle of
convergence on the geometry of focussing shockironts.

For weak shocks, the shockfront coming out of the focus is
crossed and folded, forming a triangular loop, in qualitative agreement
with acoustics. However, very minor distortion of the geometry of
the fronts does occur. This leads to prominent changes in the wave-
fronts near the focus; three-shock intersections form (essentially, a
nonlinear process), and their paths delineate a focal region. The
shockfront is this region is almost plane and normal, Further down,
the three-shock intersections pass through each other and terminate
the focal region; beyond this point, a crossed shockfront is seen,

For stronger shocks, the distortion in the geometry increases,
leading to larger focal regions and smaller loops on crossed shock-
fronts. For some critical shock strength a transition .occurs in the
geometry of the shockfronts, Then, the three-shock intersections do
not pass through each other, the focal region extends to infinity, and
the shockfront coming out of the focus is uncrossed and has no loop.

The amplitude dependence of these phenomena and their
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geometrical character indicates that they are manifestations of non-
linear distortion of the wavefield, Further, the distortion is more
effective in modifying and transforming wavefronts if the geometry is
shallow. In other words, rapid convergence of waves suppresses the
effects of nonlinear distortion, and for shallow shockfronts the non-
linear effects begin to dominate the focussing at very weak shock
strengths,

Pressure histories recorded at various locations, for some of
the shock-focussing situations mentioned above, show the character
of the different fronts and indicate the diffraction processes occurring
between the fronts (not seen in the shadowgraphs).

The basic ‘character of the observed diffraction effects behind
the focussing shockfronts is consistent with acoustics. Nonuniform-
ities of shock strength along the shockfront create diffraction waves
and eliminate nonuniformities of pressure in the flow behind; éompres-
sions travel into regions of low pressure, whereas expansions travel

into regions of high pressure,

Thus, the focussing (and therefore amplifying) shock wave is

followed by strong expansion waves, whereas it sends compression

waves into the fluid behind weaker shocks. The nonlinear behavior

of these finite amplitude waves leads to two important effects:
1. The compression waves distort and break into shocks,
which intersect with the shockfront to form three-shock intersections.
2. The expansion waves overtake the amplifying shock before
it goes to a focus and reduce its amplitude in the focal region. This

nonlinear effect is responsible for.limiting the maximum amplitude,
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Furthermore, for stronger shocks, the expansion overtakes
the shock earlier., Therefore, the maximum pressure amplification
near the focus is smaller for stronger shock waves,

In summary, the nonlinear distortion processes in the wave-
field behind the focussing shock modify the shock, resulting in
geometrical distortion of the shockfront, In particular, nonlinear
diffraction is responsible for determining the focal region and the

maximum amplitude near the focus.

5.2 Focal Processes

Diffraction in the wavefield behind the shock plays a major role
in both nonlinear focussing and acoustic focussing 6f thick shocks
(sec. 1,2c). In both cases it interacts with the focussing shock, and
controls the amplitude in the foci, essentially by distributing the wave
energy concentrated by focussing, in a small region along the shock.
The plane normal shock in the nonlinear focal region and the locally
plane fronts of an acoustic focus (sec. 1l.2c) are examples of such
interactions.

In nonlinear focussing, the length by which the wavefield has
overtaken the shock is a scale of the extent of the interaction, .whereas
in acoustic focussing the shock thickness is the measure for an over-
lap region between the shock and the diffraction field, Therefore, in
a given situation, the dominating lengthscale of the two determines the
size of the focal region and the kind of focussing, Since for weaker
shocks, nonlinear distortion is smaller and the shock thickness is
larger, a fransition from nonlinear focussing to acoustic focussing is

expected as the shock strength gets very small,
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Even though the control of amplitude near the focus is largely
attributed to diffraction effects, viscosity and other dissipative mech-
anisms also are crucial to the process in an indirect manner. These
mechanisms are primarily active within the shock thickness. In
acoustic focussing, they determine the shock thickness, which leads to
finite amplitudes in the focus. However, this effect is primarily due
to such dissipation occurring throughout the fluid, and not necessarily
only at the focus, As compared to this, in nonlinear focussing, the
prominent dissipative effects are quite loc;xl, such as heating of the
fluid in the focal region. In this case, the dissipation of the wave
energy at the shock is directly controlled by nonlinear effects, which
become prominent near the focus. However, it must be emphasized
that for such weak shock waves the dissipation is only a small fraction
of the total energy in the wave,

It is also possible that the three-shock intersections and their
slipstreams have a structure much larger than the shock thickness
due to viscosity (Sternberg, 1959). This may become important in the
small focal regions of weak shock waves,

In general, diffraction and viscous dissipation are both impor -
tant processes that control the maximum amplitude near the focus,
The invariance of wavespeed in acoustic focussing restricts their
action on the amplitudes. On the other hand, with finite amplitudes,
the nonlinear increase in wavespeed and the consequent distortion of
the wavefield greatly enhance the influence of these processes and

result in reduced maximum amplifications near the foci.
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APPENDIX A

APPROXIMATIONS IN THE NUMERICAL SIMULATION

OF THE THREE-WAVE INTERSECTION TRAJECTORIES

Trajectories of three-wave intersections represent the impor-
tant geometrical aspects of the behavior of focussing shockfronts, This
appendix describes a method for numerically simulating the trajectories
in the case of a perfect focus. The essential behavior can be quali-
tatively simulated by modeling the nonlinear increase in the wavespeeds
of the intersecting fronts., Other effects, linear or nonlinear (such as
diffraction and its effect on the shockfront), are crudely approximated
to improve the simulation.

If the shock ahead of the intersecting wave has a Mach number
M (Fig. 45), then the intersecting wave is assumed to havg a speed
ao (2M-1) independent of its amplitude and direction. (ag; is the speed
of sound in the fluid ahead of the shock,) Further, if the angle « is
known, the angle B can be found as a function of M and ¢, which
completely determines the motion of the intersection in this approxi-
mation. The intersection travels upward along the incoming shockfront
(B -a <m/2, if M > 1), which is the nonlinear effect primarily respon-
sible for the observed behavior of the trajectories,

When an intersection travels on a converging shockfront, « and
consequently P tend to become large, which produces another effect,
The shockfront which is moving almost as rapidly as the intersecting
wave, casts a ''shadow'' in the intersecting wave, and the intersecting
wave diffracts into this shadow. (The shadow occurs because the portion

of the wavefront already merged with the shock cannot separate from
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the shock,) The diffraction curves the intersecting wavefront, contin-
uously re-orients the intersection and limits the maximum value of §.
(In Fig. 15, the high curvature of the diffracted expansion front, close
behind the converging shock, is evidence of such diffraction.) The
maximum value of B is taken to be 1/2 in this calculation. The corre-
sponding @ is a maximum for a given M. Due to this effect, the local
curvatures of the shockfront and the trajectory are quite similar,
Further, the speed of the intersection along the shock is a minimum
and depends on M alone. The latter result is parallel to the speed of
a wave on the shock along the shock (sec. 1, 3).

Thus, for a shockfront with a perfect focus, two intersections
occur at the two reflector corners and travel towards the center., The
segment of the shock between them is assumed to be circular and its
strength is predicted according to acoustics, This determines the
trajectories to the point where they meet on the axis,

When the two intersections meet, the whole shockfront has
been affected by them, and its shape and strength are not known and
must be assumed in order to continue the calculation, Mo'st approxi-
mate forms for these quantities lead to qualitatively identical results.
The approximations that produced the best simulation in these compu-
tations are outlined below,

The diffracted compression fronts from the reflector corners
are assumed to have zero shock strength., These fronts travel with
speed ap. This results in a misfit between this diffraction front and
the converging shock (Fig, 46). The misfit is eliminated by assuming

that, in this region, the shockfront is a straight line tangent to the two
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fronts. This approximation is based on the shapes of shockfronts
observed in Figs. 15 and 16,

The distribution of shock strength on this shockfront is expected
to follow the trends shown in Fig, 22 (the shock-jump variation along
the diffraction-affected shockfront, before focus}, Such a distribution
is simulated with the following assumptions., The shock strength has
its maximum value at point A as predicted by acoustics (Fig. 46). The
shock strength falls exponentially along the converging shockfront and
reaches its half value at point B, (This is partially justified because,
in the diffraction field behind a discontinuity in the amplitude of an
acoustic shock, the amplitude is the mean of the amplitudes across the
discontinuity.) Along the straight shock segment it varies linearly
and becomes zero at point C,

It is possible to continue the computation with the above approxi-
mations for the shape and strength of the shockfront, The good
agreement obtained between the results and the observations suggests
that the errors introduced by the approximations are small, In other

words, the results are not very sensitive to such crude approximations.
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TABLE I

CONDITIONS FOR PRODUCING VARIOUS SHOCKS

IN THE GALCIT 17" SHOCK TUBE

Diaphragm
Ms material thickness Py atm
(in inches)
1,005 Mylar . 00025 1.0
1.01 " . 0005 1.0
1.02 " .001 1.0
1.03 Al 1100-0 .003 1.0
1.1 " . 006 1.0
1.2 " .01 .67
1.3 " .02 .67
1.5 " .02 .33

Note: #1 set of crossed straight knife-blades was used,



-99.-

*(seyour ur) _A(G1210°0) - LA(G°0) = x

odeys e Jo uOTIO9[JoI O13SNOdL U 9oNnpoad 03 poudisop seM I0309[Io1

isel 9y ‘(9 °¢ "O9s 99s) afJeq popPUNOI Yjoows ' Ul pue 91jyeq

je[J & UI POJUNOW OS[B POSN SBM JI0JDO3[JOI ISITI @Y °°qnj oyl

JO UOTJ09Ss SSOID STOYM 93 POI[IJ PUB XSAUOD dwiedaq ATrenpeis
yoIyMm ‘103097701 3sel 9y3 jdooxe ‘so3po dieys pey SIO0I0LTOI I[V ‘°ION

. spus je
00T 00°1 o191® 58 sugm m,>mumoo 9
. g 92 °¢ It . 2A®OUOD
o00T 99 ¢ :oﬂm.p‘mo 5¢°6 SrIjowIuifAs B s
. snoog jutrod . proroqexed
o091 sLe e j093x0d 0°8 OTIJoWIIASIX® v
Oww m o@ il i [} m
OO@ SL°¥ " 1 1 (4
. SN 0J QUIY . I9PUITAD
o091 sLe ¢ 3o93xad 0°8 o170qeIed I
9ouad I9AuU0D) (soyour u) ST OJ (souout ug) adeys *ON
j0 o18uy Eccm UIptm
UOT}02TIoY I0309TF9Y

SOILSTHH LD VIVHD ¥IFHI ANV SYOLDHATAAYT

¢ H1dV.L




-100-

(o301%)
S°T- €°1 o021 001 o138MED padsno | 9
poInsest 00 7 S13sSned Yjoows | G
jou o001 99 :
2°1- 171 o091 GLE "2 snoog jurod joe310d | §
ol 'S¥ 20°T-10°1 20°T-10°1 087 G'6 snooy surf 3oeyrad | ¢
05 16 SLO'T-6S0°T I°1-€0°1 olb SL'¥ sno0y Julf 3o931ad | 7
o€ 091 221 2°1 5091 SLE"T sno03 dulf o9Iad | 1
aouadaoAuo) (eBueax (e3ueax aoueldxaauon| (seyour ur) snoo I JO odAT |"ON
Jjo I0 anyea) I0 onjeas) I0 ﬁdﬂm
o18u o18u
Isuy uHZ uHZ suy
SNOILVINdANOD SNOILVAYHSHO

INOYAIXDOHS HHI 40 AYLEAWOED

HHI NI NOILISNVY.L 9404 SHIONIYLS JID0OHS TVOILIYD

¢ dIdVL




