
Hard X-Ray Detection and Timing of 
Accretion-Powered Pulsars with BATSE 

Thesis by 

Deepto Chakrabarty 

In Partial Fulfillment of the Requirements 

for the Degree of 

Doctor of Philosophy 

California Institute of Technology 

Pasadena, California 

1996 

(Submitted December 21, 1995) 



And this is my Quest, 
To fallow that star, 
No matter how hopeless, 
No matter how far ... 

-Joe Darion, The Man of La Mancha (1965) 

© 1996 

Deepto Chakrabarty 

All rights reserved 

11 



Acknowledgements 

Unwept, unhonor'd, and unsung. 

-Sir Walter Scott (1805) 

lll 

I am indebted to Tom Prince for being an outstanding advisor and mentor. I 

am full of admiration for the various attributes which constitute his style of doing science: 

the skill at choosing important problems to study, the rigorous approach to posing and 

defining the boundaries of these problems, the elegant and ambitious tools aggressively 

applied to solve them, the polished communication of the results, and the cool, professional 

detachment with which unexpected difficulties are confronted, appraised, and overcome. 

The sheer number of projects he is able to pursue successfully is mind-boggling. I very much 

appreciate Tom's indulgence in allowing me to pursue a wide variety of projects myself, and 

also his admonitions to maintain sufficient focus to make important contributions rather 

than merely skim the surface. 

I am also grateful to Lars Bildsten, who has played a very large role in my devel­

opment as an astrophysicist. His unerring ability to a reduce a problem to its basic physics 

after a few minutes at the blackboard, the clarity of his explanations and insights, and his 

seemingly endless and encyclopedic knowledge of astronomy and astrophysics have been an 

education in how to think about problems and what questions to ask. His practical insights 

and candid advice on the daily trials of doing science and his cheerful willingness to always 

look at "just one more cool plot" were also greatly appreciated. 

In working on the BATSE Pulsar Key Project, I have been fortunate to collabo­

rate with some outstanding researchers, especially John Grunsfeld and my fellow graduate 

student Danny Koh here at Caltech, and Mark Finger of the BATSE instrument team at 

NASA/MSFC. I owe special thanks to John, who trained me in the day-to-day business of 

high-energy astrophysics and oversaw much of my work during my first two years here. His 

enthusiasm, ambition, and tenacity were a lesson by example. I am glad that I overlapped 

with the recent arrival of Brian Vaughan, and with the even more recent arrival of Rob 

Nelson; they were both welcome additions to the Caltech effort. Thanks to Jerry Fishman, 

Bob Wilson and the entire BATSE group at MSFC for many useful discussions throughout 

my thesis work, and especially during my visits to Huntsville; and to Jerry Fishman in 



IV 

particular for acting as agency sponsor for a NASA graduate fellowship. Special thanks are 

due to the entire BATSE instrument team, which has had the difficult task of supporting 

BATSE, its operations, and its guest investigators, while also pursuing a wide range of 

science topics. 

One of the privileges of working in astrophysics at Caltech is the large number 

of faculty, staff, and postdoctoral scientists on hand to learn from. I happily acknowledge 

many useful discussions with Stuart Anderson, Lee Armus, Roger Blandford, John Carl­

strom, Curt Cutler, Melvyn Davies, Fiona Harrison, Vicky Kaspi, Dong Lai, Rob Nelson, 

Gerry Neugebauer, Neill Reid, Maarten Schmidt, Tom Soifer, Steve Thorsett, Marten van 

Kerkwijk, and Brian Vaughan. One of Caltech's most precious resources in astrophysics 

has been its Astrophysics Library and its librarians, Helen Knudsen and Anne Snyder. Our 

community has suffered a serious loss with Helen's recent retirement. I have been further 

privileged to work in Caltech's Space Radiation Laboratory. Thanks to Frances Spalding 

and Louise Sartain at SRL for flawlessly navigating me through administrative hurdles; 

Laura Carriere, Minerva Calderon, and Bruce Sears for working day and night (literally) to 

keep our computers crunching numbers and exchanging e-mail; and Debby Kubly for doing 

her best to find me good mail every day. 

I have pursued several optical follow-up projects related to my thesis work. These 

efforts have been both productive and fun, in large part due to my long-time collaborator 

in much of this work, Paul Roche. Thank you to Malcolm Coe for his hospitality and 

support during a visit to Southampton work with Paul. Jim McCarthy, Xiaopei Pan, Mar­

shall Cohen, Angela Putney, Ian Thompson, and Bob Hill answered many questions while 

I was learning to use the instruments at Palomar Observatory, and Skip Staples and Jean 

Mueller kept things running smoothly during the observations. I am grateful to my old 

friend Stephen Levine for helping to put together a productive visit to the Observatorio As­

tron6mico Nacional 2.1-m telescope on an isolated mountain top in San Pedro Martir, Baja 

California, and I thank Luis Aguilar and the UNAM Insituto de Astronomia in Ensenada 

for covering my expenses during this trip. I am also grateful for a generous travel grant 

and observing time allocation from the Cerro Tololo Inter-American Observatory in Chile 

for thesis-related work. It is a pleasure to thank Andy Layden, Ramon Galvez, Patricio 

Ugarte, Arlo Landolt, and Bruce Margan for helpful assistance, discussions, and guidance 

during my visit to CTIO. Thanks also to Paul Eskridge and Stefanie Wachter for taking 

some finder images for me on other CTIO telescopes. 



v 

I probably would not have been invited to study at Caltech had it not been for the 

research opportunities given me by Richard Muller at LBL, and I would not have thought to 

contact Rich about a job after finishing at MIT had it not been suggested by my old friend 

Don Alvarez. Thanks to both of them for helping to get me here. Since then, my 5.2 years at 

Caltech have been made much easier by the wonderful friends I've met here. From the very 

first day on campus, no physics graduate student at Caltech can fail to appreciate the care 

with which Donna Driscoll looks after us. Getting through the first year courses would have 

much more unpleasant without the weekly late-night get-togethers in the LIGO conference 

room with Ruth Brain, Aaron Gillespie, James Larkin, Torrey Lyons, Sima Setayeshgar, 

Selmer Wong, and our other classmates. For close friendships forged through work, lunch, 

coffee, dinner, spirited arguments, idle chatting, and evenings of random cosmopolitanism 

(kudos to Charlene Reichert for coining this apt term), I would especially like to thank 

Paul Ray, Biff Heindl, Fiona Harrison, Lars Bildsten, Steve Thorsett, Andrea Ghez, Tom 

LaTourrette, Alycia Weinberger, David Hogg, Vicky Kaspi, Dominic Benford, and Alan 

Wiseman. Some of these people left Caltech before me, while others will remain after I 

leave, but they are all a large part of what I will remember when I think back to these 

years. 

I have been lucky to share a spacious and comfortable apartment with my friend 

Robert Knop. I thank Robert for his patience with me and for endless hours of shared 

zaniness involving musical revues, physics, theatre, neural nets, chamber music, waltz or­

chestras, pizza, ice cream, the Oph object, Unix, and various incarnations of Star Trek. I 

also thank him in advance for teaching me to solder. A large fraction of my waking hours 

have been spent at the lab, and these hours have been made more fun and interesting by 

my office-mates: David Palmer, Jeff Hammond, Tim Shippert, Alycia Weinberger, Stinson 

Gibner, Biff Heindl, Daniel Williams, Yu Cao, Song Wang, and Stephane Corbel. I thank 

Shirley Marneus, Delores Bing, and Allen Gross for my providing me with opportunities to 

indulge my interests in the arts. In these activities, I have had the pleasure of working with 

some fine musicians, especially Tom LaTourrette, Diana Lorden, Jamie Schlessman, Russ 

Litchfield, Peter Hofstee, Jerome Claverie, Ari Kaplan, Missy Richmond, and Elizabeth 

Boer. 

Life in graduate school is a lengthy and trying effort, especially in the bizarre land 

that is Los Angeles, and the connections to my family and old friends back in civilized 

places like New York, Boston, and the Bay Area were necessary to get through it. All 



Vl 

the visits and talks with people like Beth Multer, Larry Arnold, Corinne Wayshak, Patrick 

Beard, and Tim Sasseen were essential to maintaining my sanity. For the last two years, 

getting to know my very special and sweet friend Susan Elia has brought me great joy. For 

more than half a lifetime, I have been able to depend on one of my oldest and best friends, 

Nina Sonenberg. But I am most grateful for the lifelong and unconditional love, support, 

and encouragement always offered by my parents and my sister, even when they did not 

understand what I was doing or why. 

It is a pleasure to acknowledge support from a National Aeronautics and Space 

Administration Graduate Student Research Program fellowship, under grant NGT-51184. 

I also thank the National Science Foundation for generous travel support which allowed me 

to attend two NATO Advanced Study Institutes: "The Gamma-Ray Sky with Compton 

GRO and SIGMA" in Les Houches, France, in January 1994; and "Evolutionary Processes 

in Binary Stars" in Cambridge, England, in July 1995. The research in this thesis was 

supported in part by the NASA Compton Observatory Guest Observer Program, under 

grant NAG 5-1458; and by the NASA Long-Term Space Astrophysics Program, under grant 

NAGW-4517. 



vu 

Hard X-Ray Detection and Timing of Accretion-Powered Pulsars with BATSE 

Deepto Chakrabarty 

California Institute of Technology 

Abstract 

The BATSE all-sky monitor on the Compton Gamma Ray Observatory is a superb 

tool for the study of accretion-powered pulsars. In the first part of this thesis, I describe its 

capabilities for hard X-ray observations above 20 keV, present techniques for timing analysis 

of the BATSE data, and discuss general statistical issues for the detection of pulsed periodic 

signals in both the time and frequency domains. BATSE's 1-day pulsed sensitivity in the 

20-60 keV range is ~ 15 mCrab for pulse periods 2 s;:;; Ppulse ;:;;400 s, covering most of the 

known accreting pulsars. Its sensitivity degrades substantially outside of this range. 

In the second part of this thesis, I present the results of several science investiga­

tions applying these techniques. Half the 42 known accreting pulsars have been detected 

with BATSE and are monitored whenever they are active. Except for a few which lie out­

side of BATSE's sensitivity range, the rest are all transient sources which may eventually 

be detected in outburst. The detected systems include four new transients discovered by 

BATSE, one of which is discussed in detail. A new technique used to localize this source, 

GRO J1948+32, is described. 

Observations of the 38-s pulsar OAO 1657-415 discovered that it is in a 10.4-d 

eccentric orbit and undergoes regular X-ray eclipses by its massive companion, making it 

only the seventh known eclipsing X-ray pulsar. Constraints placed by the pulsar mass 

function and the eclipse duration indicate that the undetected binary companion must be 

an OB supergiant. If the companion can be identified and its orbital velocity measured, the 

neutron star mass can be determined. 

The 7.7-s pulsar 4U 1626-67 was found to be in an extended spin-down state, 

ending over a decade of rapid, steady spin-up. It is only the second steady-state disk 

accreter known to have undergone a torque reversal. The other, the 2-min pulsar GX 1 +4, 

underwent two torque reversals during our observations and is detected up to 160 keV. 

During spin-down, we find that pulsed flux and torque in GX 1 +4 are anticorrelated, the 

opposite of what is predicted by the usual theories of magnetic accretion torques. 

Thesis supervisor: Thomas A. Prince, Professor of Physics 
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XVI 

Note on Terms, Units, and Names 

In this thesis, soft X-ray refers to a photon with energy ;:::; 10 keV, while hard X­

ray or soft gamma-ray refers to a photon with energy ;<; 10 keV. These terms are historical 

artifacts arising from the observational techniques used to detect these photons. 

Physical quantities in this thesis are generally quoted in the standard Gaussian 

CGS system, with a few exceptions. Photon energy is quoted in kilo-electron-volts (keV), 

where 1 keV = 1.6 x 10-9 erg. Orbital distances are quoted in light-seconds (lt-s), where 

1 lt-s = 3x1010 cm. Stellar distances are quoted in kiloparsecs (kpc), where 1kpc=3x1021 

cm. Masses and radii of stellar objects are quoted in solar masses (M8 ) and solar radii 

(R8 ), where 1 M 8 = 2 x 1033 g and 1 R8 = 8 x 1010 cm. In standard astronomical usage, 

dates are quoted using the Julian date (JD) system, which gives the time in days elapsed 

since Greenwich mean noon on 4713 B.C. January 1, Julian proleptic calendar. I quote 

dates using Modified Julian dates (MJD), which are defined by MJD = JD - 2,400,000.5. 

In BATSE operations work, dates are often quoted as Truncated Julian dates (TJD), which 

are defined as TJD = JD - 2,440,000.5 = MJD - 40,000.0. Note that while dates on the 

JD system begin at Greenwich mean noon, dates on the MJD and TJD systems (as well as, 

obviously, UT civil dates) begin at Greenwich mean midnight. This is an endless source of 

confusion in the astrophysical literature. 

It is often useful in X-ray and gamma-ray astronomy to refer the photon flux in 

a given bandpass to a known fiducial, the total emission of the Crab Nebula in the same 

bandpass. In this usage, 

where photon energy is measured in keV. The Crab is also sometimes used as a fiducial 

for flux density in a bandpass. These usages are equivalent for Crab-like spectra. Both 

comparisons are of limited utility for spectral shapes dissimilar to the Crab. 



XVll 

The standard naming conventions for cosmic X-ray and gamma-ray sources fall 

into three categories. The oldest bright X-ray sources were named in order of discovery in 

the nearest constellation (e.g., Cygnus X-1). Now that many more sources are known, they 

are generally named according to their celestial coordinates. Some X-ray sources lying in the 

Galactic plane were named according to their Galactic longitude and latitude; for example, 

G X 301-2 lies near l = 301 ° and b = - 2°. More commonly, sources are named according 

to their right ascension and declination, along with a prefix indicating the spacecraft which 

discovered the source or the catalog listing it. For example, GRO 1948+32 was discovered 

by BATSE on the Compton Gamma Ray Observatory and lies near a =19h 48m and 8 = 32°. 



Chapter 1 

Accretion-Powered Pulsars and BATSE 

You can observe a lot by watching. 

-Yogi Berra 

1.1 Overview and Project History 

1.1.1 Accretion-Powered Pulsars and the Role of BATSE 

1 

Accretion-powered binary X-ray pulsars are rotating, highly magnetized neutron 

stars which are capturing matter from a stellar companion. As in rotation-powered (radio) 

pulsars, the dipole axis of the magnetosphere is thought to be tilted with respect to the 

spin axis of the neutron star. Accreting matter is channeled by the magnetosphere onto the 

magnetic poles and is gravitationally accelerated to a velocity"' 0.lc by the time it reaches 

the neutron star surface. The rapid deceleration of this matter at the polar surface releases 

gravitational potential energy as X-rays, and the rotation of these X-ray hot spots through 

our line of sight gives rise to periodic pulsed emission. Since the discovery of pulsations 

from Centaurus X-3 a quarter century ago, over 40 accretion-powered pulsars have been 

detected. These objects are a valuable laboratory for a wide variety of topics, including 

binary evolution, neutron star structure, accretion physics, and the physics of radiation and 

plasma in a strong magnetic field. 

Throughout the 1970s and 1980s, a series of X-ray telescopes accumulated detailed 

observations of accreting pulsars. Although these sensitive missions built up a rich archive 

of data on many sources, there were limitations imposed by the sparse time sampling inher­

ent in the use of pointed telescopes. X-ray sources tend to be dramatically time-variable, 
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sometimes undergoing a bright outburst and then remaining dormant for months or years. 

Observations of some sources depended upon serendipitously scheduled paintings, hamper­

ing measurement of orbital parameters and timing histories. Although scanning wide-field 

instruments capable of rudimentary all-sky coverage did exist in these years, they typically 

had limited sensitivity and poor time resolution. 

The launch of the Burst and Transient Source Experiment (BATSE) on the Comp­

ton Gamma Ray Observatory in 1991 April revolutionized timing studies of accreting pul­

sars. The continuous, all-sky coverage provided by BATSE allows simultaneous study of a 

large fraction of the known pulsars on a wide variety of time scales (from a few seconds to 

several years), with no bias against transient systems. The large area of the BATSE detec­

tors makes them substantially more sensitive then previous wide-field monitors. The good 

(1.024 s) timing resolution allows coverage of most of the pulsation phase space (P > 2 s) of 

the known accreting pulsars. In addition, the rapid (within 1 day) availability of the data 

for processing allows BATSE to act as a trigger for multiwavelength follow-up of unusual 

events. 

BATSE does suffer from some important limitations. While most of the luminosity 

of accreting pulsars is emitted at energies below 20 keV, BATSE is only sensitive to emission 

above 20 keV. Moreover, because its detectors are totally uncollimated and the pulsar 

observations are background-limited, only the pulsed component of the flux can be easily 

detected. The steady unpulsed component is indistinguishable from the background unless 

the source is bright enough to detect using Earth occultations. The strong modulation 

of the background on Compton orbital time scales makes long-period (P ~ 500 s) pulsars 

difficult to detect. At the same time, the normal 1-s sampling rate excludes very short 

period (P ;:; 2 s) pulsars, perpetuating an observational bias which has existed for some 

time. Finally, BATSE's poor spatial resolution leaves it unable to localize new pulsars to 

better than "" 1 °, insufficient for identification of an optical companion. 

Despite these limitations, BATSE has proven a superb tool for the study of ac­

creting pulsars. Immediately after the launch of Compton, a program to explore BATSE's 

capabilities in this area was begun at Caltech under the overall direction of Prof. Thomas 

Prince, in close cooperation with the BATSE instrument team at NASA Marshall Space 

Flight Center (MSFC) in Huntsville, Alabama. As part of that effort, a "first generation" 

system for reducing and analyzing BATSE timing observations was developed at Caltech 

by the author, in collaboration with Prof. Prince, Dr. John Grunsfeld, Dr. Lars Bild-
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sten, and graduate student Towsian Koh. Investigations with this first generation system 

concentrated on several known accreting pulsars as a way to develop the necessary tools, 

characterize the data, and optimize the analysis. Searches for new pulsars were also pur­

sued. Related work was pursued in parallel at MSFC by Dr. Mark Finger and Dr. Robert 

Wilson. 

These first generation efforts have concentrated on three general scientific topics: 

• Population and Activity. More than half the known accreting pulsars are transient 

sources which were discovered during bright outbursts. Due to incomplete and non­

uniform sky coverage in the past, the population and recurrence history of transient 

systems are poorly determined. Studies with Ginga suggest that there is a very 

large number of undiscovered, low-luminosity transients in the Galaxy (Koyama et 

al. 1989). BATSE's long-term uniform coverage is ideal for probing this population, 

and it retains good sensitivity in the Galactic plane since hard X-ray emission is not 

subject to any significant interstellar absorption. Of the 42 accreting pulsars currently 

known, 20 have already been detected with BATSE as of this writing (Table 1.1) and 

are monitored whenever they are active. Of the remaining systems, 7 have pulse 

periods outside of BATSE's sensitivity range and 3 have spectra known to cut off 

below 20 keV, but most of the rest are transients which may eventually be detected 

in outburst. The detected systems include four new transients discovered by BATSE. 

• Orbital Parameters and Neutron Star Masses. Precise measurement of binary 

orbital parameters are possible with accreting pulsars. Measurement of orbital evo­

lution in these systems provides a sensitive probe of the role of tidal torques in the 

evolution of massive binaries. In systems which undergo X-ray eclipses by the pulsar's 

companion, it is possible to use pulsar orbital measurements to constrain the mass 

of the neutron star if a radial velocity curve is available for the companion. This 

has been done in only 6 eclipsing X-ray pulsar systems, and these types of measure­

ments may eventually be able to point out any evolutionary differences between these 

neutron stars and ones in radio pulsar binaries. BATSE has measured or improved 

orbital parameters in 9 of the 15 systems in which these parameters are known (Table 

1.2). BATSE has also discovered X-ray eclipses in a seventh accreting pulsar system, 

raising the possibility of a new neutron star mass measurement. 

• Accretion torques. The torque exerted on an accreting star is an important issue in 
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binary evolution, star formation, neutron star structure, and the origin of millisecond 

radio pulsars. Accreting pulsars are the best available laboratory for studying these 

torques. BATSE discovered the extended spin-down state of the accreting pulsar 

4U 1626-67, identifying only the second steady disk-accreter to undergo a torque 

reversal. BATSE has also discovered an anticorrelation between torque and luminosity 

in another accreting pulsar, GX 1 +4. This behavior is the opposite of what is predicted 

by most theories of disk accretion. 

In light of the outstanding success of the first generation program and the experience gained 

in developing it, Caltech and MSFC have embarked on a joint effort for a systematic 

and comprehensive reanalysis of the BATSE data with the goal of producing a uniform 

data archive for the known accreting pulsars. At Caltech, the second generation analy­

sis is currently being developed and executed by graduate student Towsian Koh and Dr. 

Brian Vaughan in collaboration with the investigators listed above. This analysis is still in 

progress, and its results will be presented elsewhere. 

1.1.2 Thesis Organization 

This thesis describes BATSE's technical capabilities as a tool for the detection 

and timing of accretion-powered pulsars and presents the results of several science investi­

gations by the author and collaborators with the first generation analysis. The remainder 

of this chapter gives a brief introduction to accreting pulsars. Chapter 2 describes the 

BATSE instrument, its capabilities for observations of pulsed X-ray sources, and methods 

for analyzing BATSE data. Chapter 3 reviews statistical issues involving the detection and 

strength measurement of pulsed signals in both the time domain and the frequency domain. 

Chapter 4 presents BATSE timing observations of the 38 s accreting X-ray pulsar 

OAO 1657-415, which have revealed a 10.4-d binary orbit with a 2-d X-ray eclipse by the 

stellar companion. A pulse arrival time analysis of 20-60 ke V data was used to determine 

the binary orbital parameters. From the pulsar mass function [fx(M) = 11.7±0.2 Mcv] and 

the measured eclipse half-angle (Oe = 29°.7±1°.3), it is inferred that the stellar companion 

is a supergiant of spectral class BO-B6. If the companion can be identified and its orbital 

velocity measured, the neutron star mass can be constrained. Both intrinsic spin-up and 

spin-down of the pulsar were observed. 

Chapter 5 describes the discovery of an 18.7 s transient X-ray pulsar in the Cygnus 
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region. GRO J1948+32 has been localized to within 10 deg2 using a method developed for 

positioning weak pulsed sources with BATSE. During the 33 d outburst, the phase-averaged 

20-75 keV pulsed flux rose from 25 mCrab to 50 mCrab over 10 days and then decayed below 

our detection threshold over nearly 25 days. A photon spectral index of I = 2.65 ± 0.15 

(assuming photon flux density dN/dE ex: E-') was measured during a bright interval. The 

observed modulation of the neutron star's pulse frequency is suggestive of orbital variation 

over less than one orbit cycle. Assuming a constant spin frequency derivative over the 

outburst, we can place limits on the pulsar parameters: orbital period 35 d < Porb < 70 d; 

orbital radius 75 lt-s < ax sin i < 300 lt-s, eccentricity e < 0.25, spin frequency derivative 

5 x 10-13 Hz s-1 < v < 2.5 x 10-11 Hz s-1 , X-ray mass function 0.5M0 < fx(M) < 5M0. 

The stellar type of the mass donor is still not known. 

Chapter 6 reports on over 4 years of monitoring of the 7.66 s accretion-powered 

pulsar 4U 1626-67. These observations revealed that the source is now steadily spinning 

down, in marked contrast to the steady spin-up observed during 1977-1989. Remarkably, 

the magnitudes of the spin-up and spin-down torques differ by only 15%, with the neutron 

star spin changing on a time scale Iv /vi ~ 5000 yr in both states. This is only the second 

accreting pulsar (the other is GX 1+4) which has shown extended, steady intervals of both 

spin-up and spin-down. The current spin-down rate of 4U 1626-67 is itself decreasing on a 

time scale Iv /iii ~ 12 yr. After subtracting the v and ii trends, the pulse phase residuals 

show aperiodic oscillatory excursions consistent with a random walk in pulse frequency of 

strength,...., 10-22 Hz2 s-1 . The spin frequency second derivative ii is too large to arise from 

this random walk process. 

Chapter 7 reports on almost five years of continuous observations of the 2 min 

accretion-powered pulsar GX 1+4. Pulsed emission was detected at energies up to 160 keV. 

On average, the neutron star is spinning down rapidly on a time scale Iv/vi~ 70 yr. This 

trend was interrupted in 1994 November by a brief interval of spin-up which ended in 1995 

March. The mean spin-down rate is itself decreasing on a time scale Iv /iii ~ 10 yr. After 

subtracting the v and ii trends, the timing data show 1/ f fluctuations in torque, similar to 

Cen X-3 but in marked contrast to Her X-1, Vela X-1, and 4U 1626-67. The hard X-ray 

pulsed flux history consists of a steady, quiescent level with a number of short (,...., 20 d) flares 

superimposed, as well as a sustained (200 d) bright state during the spin-up episode. During 

spin down, the pulsed flux and torque are anticorrelated, with the short flares in luminosity 

accompanied by an enhanced spin-down torque. If the hard X-ray pulsed intensity is a good 
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tracer of accretion rate, then this spin-down behavior is the opposite of what is predicted 

by the usual theories of magnetic disk accretion. 

1.2 Background on Accretion-Powered Pulsars 

1.2.1 Early History1 

The study of compact objects began with the discovery of white dwarfs, stars 

with mass ,....., 1 M0 but with a very small radius ,....., 104 km (Adams 1915, 1925). The 

contemporaneous revolution in physics soon provided an explanation for these surprising 

objects, and Fowler (1926) was able to point out that electron degeneracy pressure must 

prevent the gravitational collapse of these cold stars, immediately following the development 

of Fermi-Dirac statistics (Dirac 1926). Chandrasekhar (1931) and Landau (1932) computed 

models for white dwarf structure and showed that there is a maximum stable mass of 

,....., 1.3 M 0 for a degenerate electron gas. It was soon realized that a similar limit applied to 

a degenerate neutron gas. 

That realization was made possible by the discovery of the neutron (Chadwick 

1932). Shortly thereafter, Baade & Zwicky (1934) proposed the existence of neutron stars, 

which they suggested might be formed in supernova explosions. Oppenheimer & Volkoff 

(1939) made the first calculations for the structure of a star composed of a degenerate 

neutron gas. There was speculation at this time that the formation of neutron cores might 

be a power source for massive normal stars (Gamow 1937; Landau 1938; Oppenheimer & 

Serber 1938), but the overwhelming success of nuclear fusion models for stellar evolution 

soon put this idea to rest. Neutron stars remained little more than an intellectual curiosity 

for the next 20 years (see Harrison et al. 1965). 

The discovery of Scorpius X-1 with a rocket-borne experiment (Giacconi et al. 

1962) heralded the dawn of high energy astrophysics and revived theoretical interest in 

neutron stars. During the next few years, a series of rocket and balloon experiments discov­

ered more than a dozen cosmic X-ray sources. The identification of an optical counterpart 

of Seo X-1 (Sandage et al. 1966) led Shklovsky (1967) to propose that the X-ray emission 

arises from the accretion of gas onto a neutron star from a close binary stellar companion. 

11 have drawn heavily from the detailed historical sketches given by Shapiro & Teukolsky (1983) and 
Harrison et al. (1965). A wonderful personal account of the observational history of X-ray binaries is given 
by Lewin (1994). 
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Table 1.1 
Known Accretion-Powered Pulsars 

System a Pspin (s) Porb (d) References 
Low-mass binaries 

• 4U I656+354 (Her X-I) 1.24 1.7 Wilson, Finger, & Scott I994 

• 4U I626-67 7.66 0.02 Chapter 6 of this thesis 

• 4U I728-247 (GX I+4) I20 ? Chapter 7 of this thesis 
High-mass supergiant and giant systems 
4U 0115-737 (SMC X-I) 0.717 3.89 Levine et al. I 993 

• 4U 11I9-603 (Cen X-3) 4.8 2.09 Finger, Wilson, & Fishman I994 
RX J0648.I-44I9 (HD 49798) I3.I8 1.54 Israel et al. I995 
4U 0532-66 (LMC X-4) I3.5 1.408 Levine et al. I99I 

• OAO I657-4I5 37.7 10.4 Chapter 4 of this thesis 

• 4U 0900-40 (Vela X-I) 283 8.96 see Nagase 1989 
IE 1145-6I4 297 5.648 see Nagase I989 
4U 1907+09 438 8.38 see Nagase 1989 

• 4U I538-52 530 3.73 Rubin et al. I994 

• 4U I223-624 (GX 30I-2) 68I 41.5 Koh et al. I996 
Transient Be-binary systems 
A 0535-668 0.069 16.66 see Nagase I989 

• 4U 0115+63 3.6 24.3I Cominsky et al. I 994 
v 033I+53 4.37 34.25 see Nagase 1989 
IE 1048-593 6.44 ? see Nagase 1989 
2E 0050.I-7247 8.9 ? Israel et al. 1995 
2S I553-542 9.26 30.7 see Nagase 1989 

• 2S I4I7-624 I7.6 42.I Finger et al. I996 

• EXO 2030+375 41.8 46.03 Stollberg et al. I994 

• GRO Jl008-57 93.5 260 Wilson et al. 1994a 

• A 0535+26 105 110.58 Finger, Wilson, & Harmon I996 
4U I258-6I (GX 304-I) 272 I33 see Nagase I989 

• 4U 1145-6I9 292 I87.5 see Nagase I989 

• A I118-6I6 405 ? see Nagase I989 
4U 0352+309 (X Per) 835 ? see Nagase 1989 
RX JOI46.9+6I2I (LSI +6I 0 235) I4I3 ? Hellier 1994 
Transient systems with an undetermined companion 

• RX J0059.2-7138 2.7632 ? Hughes 1994 
RX J0502.9-6626 4.0635 ? Schmidtke et al. 1995 

• GRO JI 750-27 4.4 ? Koh et al. I995 
RX JI838.4-030I 5.45 ? Schwentker I994 
IE 2259+586 6.98 ? see Nagase 1989 
4U OI42+6I4 8.7 ? Israel et al. 1994 

• GS 0834-430 I2.3 110.5 Wilson et al. I996 

• GRO JI948+32 I8.7 ? Chapter 5 of this thesis 
GS 1843+00 29.5 ? see Nagase 1989 
GS 2I37+57 (Cep X-4) 66.2 ? see Nagase I989 
GS 1843-024 94.8 ? see Nagase 1989 
4U I833-076 (Set X-1) 111 ? see Nagase 1989 

• G RO J2058+42 198 ? Wilson et al. I995 
G PS 1722-363 4I3 ? see Nagase 1989 

a Sources marked with bullets ( •) have been detected with BAT SE. 



Table 1.2 
Orbital Parameters of Accreting Pulsar Systemsa 

Source Name Orbital epoch [MJD] Porb [d] ax sin i [It-sec] e W [OJ fx(M) [M0] Refs. 6 

Low-mass system 

• Her X-1 48799.61235(1)c 1.700167412(40)9 13.1853(2) < 1.3 x 10-4 (2a) . .. 0.8517(1) (1], (2] 
High-mass supergiant systems 
LMC X-4 4 77 41.9904(2)d l.40839(1)i 26.31(3) 0.006(2) ... 9.86(3) [3] 

• Cen X-3 48561.656702(71)c 2.08706533( 49) 39.627(18) < 1.6 x 10-3 (3a) ... 15.343(21) [4] 

• 4U 1538-52 45278.979(20)C 3. 72840(3)h 52.8(18)1 . .. . .. 11.4(12) [5], [6], [7] 
SMC X-1 4 77 40.35906(3)c 3.89229118( 48)e 53.4876(4) < 0.00004 (3a) ... 10.8481(2) [8] 
4U 1907+09 45575.465(35); 8.3745(42) 80.2(72) 0 15+0.14 . -0.11 330+18 

-56 7.9(21) [9], [10] 

• Vela X-1 48563.5364(33)c 8.964416( 49)1 113.61(30) 0.0883(23) 153.2(17) 19.60(16) [11], (12] 

• OAO 1657-415 48515.99(5)c 10 .44809 ( 30) 106.0(5) 0.104(5) 93(5) 11. 7(2) [13], (22] 
GX 301-2 43906.06(16)d 41.508(7) 371.2(33) 0.472(11) 309.9(26) 31.9(8) [14] 
Be-binary systems 

• 4U 0115+63 48355.206( 4)d 24.309(10)1 140.13(8)1 0.3402(2)1 47.66(3) 5.00(1) (15], [16] 
2S 1553-54 42596.67(3)c 30.2(1) 162.7(10) ... . .. 5.0(1) [17] 
v 0332+53 45651.5(1)d 34.25(10) 48(4) 0.31(3) 313(10) 0.10(2) (18] 

• EXO 2030+375 48798.2(7)d 46.03(1) 268(25) 0.33(3) 228.2(57) 9.8(27) (19] 

• A 0535+26 49058. 7(06)d 110.3(3) 267(13) 0.47(2) 130(5) 1.64(23) [20] 
System with undetermined companion 

• GS 0834-430 48594.3(6)c 110.5(3) 211(7) 0.12(2) 265(7) 0.83(10) [21] 

a Orbital elements for sources marked with bullets ( •) have been measured with BATSE. Porb=orbital period, ax sin i=projected semimajor axis, 
e=eccentricity, w=longitude of periastron, and fx(M)=X-ray mass function. 

bREFERENCES: [1] Deeter et al. 1991; [2] Wilson et al. 1994b; [3] Levine et al. 1991; [4] Finger et al. 1993; [5] Makishima et al. 1987; [6] Corbet et 
al. 1993; [7] Rubin et al. 1994; [8] Levine et al. 1993; [9] Makishima et al. 1984; [10] Cook & Page 1987; [11] Deeter et al. 1987; [12] Finger 1993; [13] 
Chakrabarty et al. 1993; [14] Sato et al. 1986; [15] Rappaport et al. 1978; [16] Cominsky et al. 1994; [17] Kelley et al. 1983; [18] Stella et al. 1985; [19] 
Stollberg et al. 1994; [20] Finger et al. 1994; [21] Wilson et al. 1996; [22] Finger 1995. 

cTtr; 2 =epoch of 90° mean orbital longitude. 
dT0 = epoch of periastron passage. 
eEpoch MJD 42836.18277 ± 0.00020. Forb/ Porb = (-3.36 ± 0.02) X 10-6 yr- 1

. 

f This element held fixed at this value in fitting other elements. 
9 0rbital period for specified orbital epoch, computed using Porb and Porb from Deeter et al. 1991. Held fixed in fitting other elements. 
hOrbital period for specified orbital epoch, computed using Porb and Porb from Rubin et al. (1994). 
;Orbital epoch for longitude 309° ± 15°. Held fixed in fitting other elements. 
jEpoch MJD 43067.5. Forb/ Porb = (1.1 ± 0.8) X 10-6 yr- 1
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It is interesting to note that, at this point, there was observational evidence for neither the 

binary nor the compact nature of these sources. 

The existence of neutron stars was finally confirmed with the 1967 discovery of 

radio pulsars (Hewish et al. 1968). Just prior to this discovery, Pacini (1967) had pro­

posed that a rapidly rotating, magnetized neutron star was powering the Crab nebula; and 

just after the discovery, Gold (1968) independently showed that such a star could explain 

the observations and correctly predicted very slow spin-down due to the loss of rotational 

energy to radiation. The subsequent discovery of rapid (Pspin < 1 s) pulsars in the Crab 

and Vela supernova remnants (too fast for white dwarf pulsar models) and the detection of 

spin-down in the Crab pulsar secured the neutron star model for these systems. Today, over 

600 radio pulsars are known with periods ranging from 1.6 ms to ,__,5 s (Taylor, Manchster, 

& Lyne 1993). The identification of cosmic X-ray sources with compact objects was finally 

established a few years later with the discovery of X-ray pulsations from Centaurus X-3 by 

the Uhuru mission (Giacconi et al. 1971). The further discovery that these pulsations un­

dergo periodic Doppler shifts and regular X-ray eclipses clearly indicated the binary nature 

of these sources (Schreier et al. 1972). The basic picture of the interaction between the ac­

creting matter and the pulsar magnetosphere was worked out from these early observations 

(Pringle & Rees 1972; Davidson & Ostriker 1973; Lamb, Pethick, & Pines 1973). 

It is useful to note that, in recent years, pulsed X-ray and gamma-ray emission 

has been detected from several young radio pulsars. The emission mechanism in these 

isolated, rotation-powered pulsars is completely different than in the accretion-powered 

binary pulsars. Historically, the term X-ray pulsar is usually reserved for accretion-powered 

binary pulsars, and that will be the usage in this thesis. (Likewise, the term gamma-ray 

pulsar generally refers to rotation-powered pulsars, even though gamma-ray emission has 

been seen from some accretion-powered pulsars.) 

1.2.2 Observed Characteristics 

A comprehensive review of accretion-powered pulsars was given by Nagase (1989), 

and X-ray binaries in general are reviewed by White, Nagase, & Parmar (1995). We briefly 

summarize the essential points here. 

Nearly 40 accreting pulsars are known as of this writing, with pulse periods ranging 

from 0.069 s to 23.5 minutes. Most of these lie in the Galactic plane; a few are observed in 
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the Magellanic clouds, and a few others are high-latitude Galactic sources (see Figure 1.1). 

The systems can be divided into three categories: 

• High-mass X-ray binaries with OB supergiant companions. These can be further 

divided into two subcategories: systems with short pulse periods and high X-ray 

luminosities (e.g., SMC X-1, Cen X-3), in which the mass transfer occurs via Roche 

lobe overflow mediated by an accretion disk; and systems with long pulse periods and 

moderate X-ray luminosities (e.g., Vela X-1), in which the mass transfer is due to 

accretion of the supergiant's stellar wind. These systems are steady X-ray sources 

and tend to be very luminous (> 1037 erg s-1 ). 

• (High-mass) Be-star X-ray binaries with rapidly-rotating main sequence Be com­

panions (e.g., 4U 0115+63, A0535+62). These systems are transient X-ray sources, 

with outbursts often occurring near the periastron passage of an eccentric orbit. They 

are sometimes in quiescence for months or years; the X-ray outbursts do not always 

occur regularly. 
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• Low-mass X-ray binaries with late type or degenerate dwarf companions (e.g., Her 

X-1, GX 1+4, 4U 1626-67). These systems are steady, low-luminosity X-ray sources. 

The high-mass systems can be roughly organized by plotting spin period versus orbital 

period (Figure 1.2). The disk-fed supergiant systems have short spin periods and short 

orbital periods. The short orbital period tends to ensure Roche-lobe overflow and a large 

disk-fed accretion rate. The resulting steady accretion torque rapidly spins the pulsar up to 

an equilibrium period (typically ,....., 1 s; see, e.g., Frank, King, & Raine 1992). In the wind­

fed supergiants, the orbital separations are large enough that the companions do not fill 

their Roche lobe. Instead, the pulsar accretes erratically from the strong supersonic wind 

of the supergiant, without any strong trend in the torque. A rough correlation between 

orbital period and spin period is observed in the Be-star/X-ray binary pulsars (Corbet 

1986; Waters & van Kerkwijk 1989). 

The emission from X-ray binaries is powered by the release of gravitational energy, 

(1.1) 

where Lx is the bolometric X-ray luminosity, Mx and Rx are the mass and radius of the 
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neutron star, and Mis the mass accretion rate. The free-fall velocity of the accreting matter 

when it reaches the surface of the neutron star is ,....., O.lc. The characteristic blackbody 

temperature of this emission 

Tbb = ( 47rf:.iCTsb) 1/4 ,....., 107 K (1.2) 

corresponds to kT,....., 1 keV, clearly indicating the X-ray nature of these sources. However, 

the energy spectrum of accreting pulsars is highly non-thermal. The typical spectrum can 

be described by a broken power law, with a photon index,....., 1 below the break energy and 

,....., 3 above the break energy, with the break occurring at ,....,20 keV. Individual sources vary 

widely (see White, Swank, & Holt 1983). Comparing the typical spectrum with BATSE's 

energy response (see Figure 2.3), we see that BATSE is probing only the high-energy tail of 

the pulsar emission. Pulsars with low break energies (e.g., LMC X-4) are difficult to detect 

at all with BATSE. 

Radiation pressure on the infalling matter will set an upper limit on steady accre­

tion. We can calculate this limit, called the Eddington luminosity, by equating radiation 

pressure and gravity. Assuming spherical accretion of pure hydrogen, we find 

L 47rcGMxmp l 8 l038 _1 ( Mx ) 
Edd = = . x erg s , 

CTT 1.4 M0 
(1.3) 

where mp is the proton mass and CTT is the Thomson scattering cross-section. Note that 

this limit only applies to steady accretion. The assumption of spherical symmetry is not 

really applicable to accreting pulsars, since the accretion is channeled onto the polar caps. 

Still, the above expression is useful to set the luminosity scale. Most accreting pulsars have 

luminosities well below LEdd. 

Accreting pulsars are strongly magnetized, with surface magnetic fields B ;<; 

1012 G. Close to the neutron star, the field disrupts the accretion flow, attaching mat­

ter onto the field lines and channeling it onto the magnetic poles. The resulting accretion 

luminosity thus emanates from two restricted "hot spots" on the neutron star. The pulsed 

emission is thought to arise from a misalignment of the magnetic axis and the spin axis 

which causes the hot spots to sweep across our line of sight at the spin period. The pulse 

profiles of X-ray pulsars tend to be fairly broad and sinusoidal, particularly above 10 ke V. 

This is especially true in comparison to the sharp, narrow profiles typically observed in the 

radio pulsars. The pulse shapes can be roughly described as either single-peaked or double­

peaked (although some have complex substructure, particularly at low energies). This is 
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believed to reflect whether the emission from one or both magnetic poles is crossing our line 

of sight. Some accreting pulsars (e.g., Vela X-1, GX 301-2) which are single peaked at soft 

X-ray energies become double peaked in BATSE's energy range. 
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Chapter 2 

Acquisition and Reduction of BATSE Data 

There is likely to be a still undetected but entirely 
measurable flux of "(-rays bearing astronomical 

information of the highest interest. 

-Philip Morrison (1958) 

It is important to understand your background 
at least as well as you understand your signal. 

-Thomas A. Prince (1992) 

2.1 The Compton Gamma Ray Observatory 
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The Compton Gamma Ray Observatory ( GRO; Figure 2.1) was launched from 

NASA Kennedy Space Center, Cape Canaveral, Florida, on the space shuttle Atlantis (STS-

37) on 1991 April 5. The 15900 kg satellite, which is the heaviest unmanned scientific 

payload ever deployed in space, is in a 400 km orbit inclined 28.5° with respect to Earth's 

equator. Compton is the second of four planned elements of the NASA Great Observatories 

program1. It carries four instruments which span the 20 keV-30 GeV gamma-ray spectrum. 

The Burst and Transient Source Experiment (BATSE; Fishman et al. 1989) provides a 

nearly continuous all-sky monitor of the gamma-ray sky in the 20 keV-1.8 MeV range 

using uncollimated Nal scintillators. The Oriented Scintillation Spectroscopy Experiment 

(OSSE; Johnson et al. 1993) measures gamma-ray spectra in the 50 keV-10 MeV range 

using collimated NaI/CsI scintillators. The Compton Telescope (COMPTEL; Schonfelder et 

1The others are the Hubble Space Telescope (HST), launched in 1990; the Advanced X-ray Astrophysics 
Facility (AXAF; see Weisskopf 1988), scheduled for launch in 1998; and the Space Infrared Telescope Facility 
(SIRTF; see Fazio & Eisenhardt 1990), scheduled for launch in 2001. 
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Figure 2.1: The Compton Gamma Ray Observatory. The 8 BATSE detector modules are 
situated on the corners of the spacecraft's main body. Modules 0, 2, 4, and 6 are visible 
in this diagram. 

18 

al. 1993) provides imaging observations in the 1-30 MeV range using a combination liquid 

scintillator/Na! scintillator detector. The Energetic Gamma Ray Experiment Telescope 

(EGRET; Thompson et al. 1993) provides imaging in the 20 MeV-30 GeV range using 

a spark chamber detector. A recent review of Compton Observatory science was given by 

Shrader & Gehrels (1995). 

2.2 The Burst and Transient Source Experiment 

BATSE, whose instrumentation is described in detail by Fishman et al. (1989) 

and Horack (1991), consists of eight identical uncollimated detector modules arranged on 

the corners of the Compton spacecraft. Each detector module contains three detectors: a 

large-area detector (LAD), a smaller spectroscopy detector (SD), and a charged-particle 
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Figure 2.2: A BATSE detector module. The investigations in this thesis all employ data 
from the large area detectors. 
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detector (CPD). Our pulsar studies deal entirely with data from the LADs, each of which 

contains a NaI(Tl) scintillation crystal 1.27 cm thick and 50.8 cm in diameter, viewed in 

a light collection housing by three 12. 7 cm diameter photomultiplier tubes. The LADs are 

shielded in front by a 1 mm aluminum window and by the CPDs, which are 0.63 cm thick 

polystyrene scintillators operated in anticoincidence with the LADs to provide a charged 

particle veto. The LADs have an effective energy range of 20 ke V-1.8 Me V. Below 30 ke V, 

the sensitivity is severely attenuated by the aluminum and plastic shielding. The rear of 

each detector module is protected by a passive lead-tin shield which is opaque to photons 

below 300 ke V. 

Scintillation pulses from the LADs are processed in two parallel paths: a fast 

(1.5 µs deadtime), four-channel discriminator circuit and a slower (2.5-25 µs deadtime, de­

pending on photon energy) multi-channel pulse height analyzer. The nominal energies for 
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Table 2.1. Energy Channels in BATSE DISCLA and CONT Data 

Energy Range Background Rate 
Channel (keV) (count s-1 ) 

DISCLA 1 20-60 1500 
DISCLA 2 60-110 1200 
DISCLA 3 110-320 1000 
DISCLA 4 >320 700 

CONTO 20-24 250 
CONT 1 24-33 450 
CONT 2 33-42 500 
CONT3 42-55 500 
CONT4 55-74 500 
CONT 5 74-99 450 
CONT 6 99-124 300 
CONT 7 124-165 300 
CONT 8 165-232 300 
CONT 9 232-318 200 
CONT 10 318-426 130 
CONT 11 426-590 130 
CONT 12 590-745 50 
CONT 13 745-1103 80 
CONT 14 1103-1828 80 
CONT 15 >1828 200 

NOTE: These channel boundaries are approximate, and 
are averaged over the eight detectors. Each detector has 
slightly different edges. The CONT edges are programma­
ble; the displayed values are typical. 
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the upper three discriminators are 60 keV, 110 keV, and 320 keV. The lower level discrim­

inators are programmable and are currently set to approximately 20 keV. The pulse height 

analyzer constructs 128-channel high energy resolution (HER) spectra from the LAD data. 

The mapping between HER channel number and energy is calibrated separately for each 

detector using ground test data and flight observations of the Crab Nebula (Pendleton et al. 

1994). The calibration is maintained during flight by an automatic correction scheme which 

adjusts the detector gain to keep the 511 keV line feature in the gamma-ray background 

aligned in the correct HER channel. 

The BATSE data types fall into four categories. 
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• Background data. These consist of the background DISCLA and CONT products, 

which are available continuously. The 4-channel LAD discriminator rates (DISCLA 

data) are sampled every 1.024 s. The 128-channel high energy resolution (HER) spectra 

are mapped into medium-resolution 16-channel spectra every 2.048 s, called continuous 

(CONT) data. The mapping of HER channels to CONT channels is programmable, 

and is occasionally changed temporarily to optimize the tradeoff between energy and 

time resolutions for a particular science investigation. The typical energy channel 

boundaries for the DISCLA and CONT data are given in Table 2.1. 

• Housekeeping data. The HKG product contains information on the spacecraft ori­

entation as well as its geocentric position at 2.048 s intervals. These positions are 

accurate to '"" 6 km (3o"). The QUAL product contains diagnostic information on 

data quality, identifying intervals which should be excluded from data analysis due to 

telemetry errors, spacecraft reorientations, etc. We also use the QUAL information to 

exclude intervals containing gamma-ray bursts from pulsar timing analysis. 

• Scheduled data. There are several data products which can be specially scheduled 

and provide high time or energy resolution. Several pulsar modes are available which 

can provide time resolution as short 16 ms for limited observation intervals. 

• Burst trigger data. A variety of special data products are activated with high time 

and energy resolution when triggered by on-board identification of a gamma-ray burst 

in the BATSE LAD data stream. These data products are not relevant for pulsar 

studies. 

2.3 Detector Response 

The effective area for the LADs at normal incidence as a function of energy is 

shown in Figure 2.3. The solid curve represents the effective area for any interaction in 

the detector, while the dashed curve shows the effective area for full energy deposition. 

Despite the fact that the photoelectric absorption cross-section of NaI increases steeply at 

low energies, the effective area curve below 100 keV is dropping rapidly. This is due to the 

attenuation of low energy photons by the aluminum window and the CPD. 

Figure 2.4 shows the angular response of the LADs to a monochromatic photon 

beam at various energies, computed using the detector response matrices of Pendleton et 
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Figure 2.3: Effective area of a BATSE large area detector at normal incidence. The solid 
curve denotes the total response of the detector, including interactions where the incident 
photon energy is only partially deposited. The dashed curve denotes the response for full 
energy deposition in the detector. The feature near 30 keV is due to the iodine K edge. 
Adapted from Fishman et al. (1989). 

al. (1995). The dominant effect governing this response is the projected detector area along 

the line of sight to the source, which varies as cos(} (where (} is the viewing angle between 

the detector normal and the source). However, while the response to 100 keV photons 

is approximately cos(}, the response at energies both above and below 100 ke V diverge 

from this for different reasons. At higher energies, the photon attenuation length in Nal is 

comparable to the thickness of the crystal, so any interactions tend to occur deep in the 

crystal. The decrease in projected geometric area with increasing() is partially offset by the 

increase in path length through the detector, both of which have a cos(} dependence. This 

results in a relatively fl.at angular response for (} ~ 50° at high energies. The response does 

not fall to zero at 90° incidence due to the finite thickness of the crystal. 
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Figure 2.4: Angular response of a BATSE large area detector to photons of various energies. 
For comparison, a cos() response is indicated by the dotted curve. The secondary maximum 
in the 20 keV response at large angles is due to a gap in the detector support structure at 
the edge of the LADs. Computed using the detector response matrices of Pendleton et al. 
(1995). 

At low energies, the attenuation length is very short and the interactions occur 

near the surface of the crystal, making its effective thickness irrelevant. However, the path 

length through the shielding in this case increases with(), and the resulting attenuation of 

flux incident on the LAD causes the response to fall more steeply than cos 0. The secondary 

maximum in the large-angle response for low energies is due to the geometry of the support 

structure at the edge of the LADs. There is a gap through which low energy photons in 

that restricted angular range can reach the Nal crystal without passing through most of 

the shielding. This feature is poorly calibrated and may not be azimuthally symmetric. 

A consequence of the variation of angular response with energy is that the inte­

grated angular response to a source is dependent upon its intrinsic energy spectrum. Typical 
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Figure 2.5: BATSE LAD angular response to an incident photon power-law spectrum 
dN / dE ex: E-', for 'Y = 2 and "'( = 5. For comparison, cos() response (dotted line) and 
cos2 () response (dashed line) are also shown. 

accreting pulsar spectra in the 20-100 ke V range can be modeled by a photon power-law 

of the form dN / dE ex E-1 with photon index 2 < 'Y < 5. Figure 2.5 shows the angular 

response to a 20-75 ke V photon power law spectrum for the extreme cases of 'Y = 2 and 

'Y = 5. For comparison, cos() and cos2 ()responses are also plotted. We see that the predicted 

response falls off more quickly than cos() because the large number of incident low-energy 

photons dominate despite the attenuation by the shield. As expected, this effect is more 

pronounced for the steeper power-law index, where the proportion of incident high-energy 

photons is even lower. By comparison, Brock et al. (1991) predict an approximately cos() 

response for gamma-ray bursts, which they model as having a 50-300 keV photon power 

law with a low-energy cutoff. In general, the integrated response varies approximately as 

cos() for small angles (0;:; 25°), independent of photon index. At larger angles, cos2 () is a 
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more conservative general assumption if the source spectrum is unknown. 

2.4 Optimal Combination of Detectors 

Because of the octahedral arrangement of the BATSE detector planes, an astro­

physical source is visible in four BATSE detectors during any given spacecraft pointing. 

(The spacecraft is typically reoriented at two-week intervals.) We consider here how to 

optimally combine data from these four detectors in order to maximize the signal-to-noise 

ratio. For the purposes of this calculation, we will consider background-limited observations 

of a constant source and will assume that the background noise is constant, isotropic, and 

governed by Poisson statistics. Then, the signal-to-noise ratio is given by 

(2.1) 

where Sis the source count rate in a single detector at normal incidence, Bis the background 

count rate in each detector, ei is the source viewing angle for ith detector, r(O) is the angular 

response function of the detector, and w(O) is the detector weighting function which we are 

trying to optimize. It is more convenient to work with the signal-to-noise relative to that 

of a single detector at normal incidence, 

1 . SNR 2: [w(Bi)/ max(w)] r(Bi) re ative = . JE [w(Oi)/ max(w)] 
(2.2) 

The optimal choice of weighting function w(B) will depend on the form of the detector 

angular response r(O). However, we showed in the previous section that the form of r(B) 

depends upon the intrinsic energy spectrum of the source. In what follows, we will assume 

that the source of interest is an accreting pulsar with a 20-75 ke V photon power law 

spectrum and that the angular response function as r(B) = cos2 e. 
For a given spacecraft orientation, BATSE is more sensitive to some areas of the sky 

than others. The highest sensitivity is at the eight points in the sky which lie on the BATSE 

detector normals (i.e., the direction vector for normal incidence), while the lowest sensitivity 

is at six points in the sky which lie equidistant from the four incident detector normals. The 

weighting function for summing detectors which optimizes the tradeoff between maximizing 

signal and minimizing noise, as parametrized in Equation (2.1), depends upon where in 

the sky the source is relative to the detector normals. For a source lying along one of 

the detector normals, adding in the data from any of the other three viewing detectors 
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(which each have 70° incidence) with any non-zero weight will reduce sensitivity. On the 

other hand, the best sensitivity for a source equidistant from the four detector normals is 

obtained by combining the four detectors with equal weight. 

Indeed, it is interesting to note that an unweighted combination of the four incident 

detectors yields uniform sensitivity over the whole sky, under our assumptions. Specifically, 

this is a consequence of the assumed cos2 response of the detectors, as we now show. Con­

sider a source at azimuth A and altitude a relative to the spacecraft axes. For definiteness, 

let us suppose that this source is incident upon detectors 0, 1, 4, and 5. From the al­

tazimuth direction vectors for the corresponding detector normals (see Appendix A), the 

detector viewing angles are given by 

cos Bo 

cos Bl 

~(cos A cos a+ sinAcosa + sina) 

~(cos A cos a+ sinAcosa - sina) 

1 vl3 ( - cos A cos a + sin A cos a + sin a) 

~ ( - cos A cos a + sin A cos a - sin a). 

Taking w(B) = 1 for an unweighted sum and inserting into Equation (2.2), we find that 

relative SNR = cos2 Bo + cos2 Bl + cos2 B4 + cos2 Bs 

2 

3' 

J4 

independent of sky position. However, this isotropic response sacrifices the increased sensi­

tivity possible at certain sky locations. 

We have calculated sensitivity as a function of sky position for weighting functions 

of the form cosn B, with n = 0, 1, 2, 3, 4. The results are shown in Figure 2.6 and summarized 

in Table 2.2. All the results are quoted relative to the sensitivity of a single detector at 

normal incidence. The best overall sensitivity is achieved by choosing the detector weighting 

adaptively based on the altazimuth position of the source. The detector weighting used in 

all the analyses presented in this thesis was w(B) = cos2 B. 

An alternative family of weighting schemes is unweighted sums of subsets of the 

four incident detectors: singles, pairs, triples, and quads. This set of schemes is especially 

relevant for blind searches, since unweighted combinations can provide good sky coverage 

and sensitivity without resorting to an inefficient grid search. We have calculated the relative 
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Figure 2.6: Optimal detector weighting for known sky positions. Sky coordinates are 
shown in the altazimuth system with respect to the spacecraft axes. 
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Table 2.2 
Relative sensitivity of various detector weighting schemes 

Sensitivity 
Weighting Minimum Maximum Mean 

1 0.67 0.67 0.67 
cose 0.63 0.93 0.76 
cos2 e 0.60 0.94 0.79 
cos3 e 0.58 0.96 0.80 
cos4 0 0.56 0.99 0.80 

adaptive 0.67 0.99 0.81 
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Figure 2.8: View directions for the various BATSE detector combinations. Each digit 
represents the corresponding detector. Sky coordinates are shown in the altazimuth system 
with respect to the spacecraft axes. 
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Table 2.3 
Relative sensitivity of various detector combinations 

Sensitivity 
Search pattern Minimum Maximum Mean Efficiency 

singles (8) 0.33 1.00 0.75 9.4% 
pairs (12) 0.47 0.94 0.81 6.8% 
triples (24) 0.58 0.77 0.74 3.1% 
quads (6) 0.67 0.67 0.67 11.0% 
singles+pairs+quads (26) 0.67 1.00 0.85 3.2% 
all combinations (50) 0.67 1.00 0.85 1.7% 
singles+pairs (20) 0.47 1.00 0.84 4.2% 

sensitivity of the various unweighted combination schemes, along with the overall efficiency 

(defined as the mean sensitivity divided by the number of possible combinations). The 

results are shown in Figure 2. 7 and summarized in Table 2.3. For each sky position in a given 

scheme, the most sensitive combination was chosen; the possibility of correlating information 

from overlapping combinations was not considered. The altazimuth sky positions for the 

various detector combinations is shown in Figure 2.8. 

In the context of blind searches, we see again that the exclusive use of quads 

(i.e., unweighted 4-detector sums) provides uniform sky coverage at the expense of some 

loss in sensitivity. This might be desirable for certain kinds of investigations. The use of 

unweighted singles+pairs+quads gives better overall sensitivity than the adaptive cosn () 

weighting scheme. Adaptive selection of this unweighted scheme (or else the addition of 

unweighted pairs to the adaptive cosn () scheme) is the overall best weighting choice. 

2.5 Earth Occultation 

Viewed from an altitude of 400 km, the Earth covers about 33% of the sky and 

subtends an angle of 140°. Over the course of a spacecraft orbit at this altitude, 93% of the 

sky (corresponding to angles ~ 20° from the orbital poles) is subject to occultation. The 

Compton orbital plane is inclined 28.5° with respect to the Earth's equator, and the orbital 

poles precess around the Earth's polar axis with a >::::: 53 d period due to perturbations by the 

Earth's equatorial bulge (see Figure 2.12). The entire sky is subject to Earth occultation 

over at least some portion of the precession period. Bright sources subject to occultation will 
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Figure 2.9: Earth occultation of Cygnus X-1, as observed in the 20-60 keV channel of the 
BATSE large area detector facing the source. (Figure adapted from Zhang et al. 1994.) 
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be visible as sharp edges in the BATSE data stream as the source passes behind the Earth's 

limb and then reemerges (see Figure 2.9); the height of these edges is a direct measure of 

the total (pulsed+unpulsed) instantaneous flux. By timing these edges, one can localize 

sources along the arc corresponding to the limb of the Earth across the sky. For a given sky 

region, the orientation of these limbs rotate over the 53-d Compton orbital precession period, 

eventually providing source localization within,....., 0.1°, limited by the time resolution of the 

data and variations in the gamma-ray opacity of the Earth's upper atmosphere (Harmon 

et al. 1992; Zhang et al. 1994). Fainter sources require averaging of multiple edges; the 

detection threshold for 1 day of 20-60 keV DISCLA data is~ 100 mCrab. 

Knowledge of the occultation times for a given sky direction is important for any 

BATSE data analysis (pulsed or unpulsed), since the signal-to-noise ratio of an observation 

can always be improved by discarding data during occultations. For most of the analyses 
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presented in this thesis, occultation times were calculated by assuming the Earth is spherical 

and modeling its atmosphere as opaque to gamma-rays below an altitude of h = 70 km and 

transparent above this altitude. A source is occulted when the impact parameter of the line 

of sight with respect to the Earth is less than RtJJ + h. The impact parameter obeys the 

relation 

b2 = r2 + s2 + 2r · s, (2.3) 

where bis the impact parameter, r = (x, y, z) is the geocentric equatorial spacecraft position 

vector, s = su is the line-of-sight vector from the spacecraft to the impact parameter vector, 

and u = (cos 6 cos a, cos 6 sin a, sin 6) is the equatorial direction vector for a source at right 

ascension a and declination 6. 

We can compute the impact parameter more accurately by accounting for the 

Earth's oblateness as follows2 . The surface of an oblate spheroid is given by 

r = q(l - f sin2 <P) (2.4) 

where q is the equatorial radius, f = (q - c)/q is the flattening factor, c is the polar radius, 

and <P is the latitude. It is reasonable to assume that atmospheric density is a function 

of gravitational potential and that the equipotential surfaces are similar oblate spheroids. 

Given a position vector r = (x, y, z), the equatorial radius of the equipotential passing 

through that position is given by 

r2 

(1 - f sin2 ¢) 2 

r 2[1+2f sin2 <P + 0(!2)] (2.5) 

~ x2 + y2 + z2(1 + 2!). 

We can now define an effective impact parameter in terms of 

b~ff = As2 + B s + C, (2.6) 

with 

A u; + u~ + u;(l + 2!) 

B 2xux + 2yuy + 2zuz(l + 2!) 

C x2 + y2 + z2(1 + 2!). 
2Based on a suggestion by W. A. Wheaton of JPL. 
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Minimizing with respect to s, we find that the effective impact parameter is 

( 
B2) 1/2 

beff = C -
4

A (2.7) 

We can achieve additional accuracy by abandoning the step-function model for the 

occultation edges and instead calculating the relative atmospheric transmission along the 

line of sight. We will assume an exponential atmosphere with density 

(2.8) 

where h is the scale height of the atmosphere. The optical depth of the atmosphere along 

this line of sight is 

T = 2µ fo00 

p(q)ds, (2.9) 

whereµ is the mass attenuation coefficient of air and we have assumed that the spacecraft is 

well outside the atmosphere. Noting that s = q sin() and making a substitution of variables, 

we have 

r1
2 

[ beff ( 1 )] d() 
T=2µbeffP(beff)J

0 
exp---,; cos0-1 cos2()' 

Assuming beff » h, we can effectively make a small angle approximation, 

T ~ 2µbeff P(beff) fo00 

exp (-b;~()
2

) d() 

µp( beff) J27rbeff h. 

(2.10) 

(2.11) 

(2.12) 

The occultation transmission function is then given by e-7
, which varies monotonically 

between zero and one over an occultation step. Typical parameter values are h = 6 km, 

p(70 km)= 3 x 10-3 g cm-3 , andµ= 0.3 cm2 g- 1 . 

2.6 Detector Background 

Gamma-ray observations in low Earth orbit must contend with a low instantaneous 

signal-to-noise ratio due to the high background count rate. A detailed review of the gamma­

ray background for low-Earth orbit instruments in general is given by Dean, Lei, & Knight 

(1991); a discussion of the background for BATSE in particular is given by Rubin et al. 

(1996). The typical BATSE background as a function of energy is shown in Figure 2.10. 

The background count rate in the 20-100 ke V range is over two orders of magnitude larger 

than the count rate for a typical accreting pulsar in BATSE data. 
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For pulsar studies, we are mainly interested in energies below 100 keV. In this 

regime, the dominant background component is diffuse cosmic emission. The raw 20-60 

keV BATSE LAD count rates for one day of data are shown in Figure 2.11. The quasi­

sinusoidal variations with a ~ 93 min period are due to the spacecraft orbital modulation of 

sky area visible to the detectors. At these energies, the maximum background occurs when 

the detector is facing away from Earth, and the minimum occurs when the detector is facing 

toward Earth. The large gaps in the data occur during passages of the spacecraft through 

a region of extremely high background known as the South Atlantic magnetic anomaly 

(SAA; see Tascione 1988). Due to the extremely high flux of trapped charged particles in 

this region, the detector high voltage is turned off to prevent electrical breakdown damage. 

Smaller gaps due to brief telemetry errors are also sometimes present. 

It is instructive to consider the power spectral properties of the BATSE background 

in the frequency domain. The mean raw background rate in the 20-60 keV DISCLA data 

is 1500 counts s-1 . A steady, unmodulated photon background of this strength would 

be a Poisson process and would have a power spectral density of 1500 counts2 s-2 Hz-1 , 
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independent of frequency. However, as is evident in Figure 2.11, the BATSE background 

is by no means steady and unmodulated. The strong 93 min orbital modulation results 

in a large excess of power at frequencies near llGRO ~ 2 x 10-4 Hz. In addition, the 

complicated time structure of the SAA gaps and the sharp occultation edges caused by 

bright astrophysical sources are also modulated at the orbital period, introducing significant 

power at higher harmonics of llGRO· There are also power contributions at beat frequencies 

of llGRO and its harmonics with the Earth's daily rotation period. For analysis of long time 

series of BATSE data, power contributions at harmonics of the precession frequency of the 

spacecraft orbit, as well as at beats with these frequencies, are also important. Periodic and 

secular variations in the spacecraft orbital parameters caused by the tidal perturbations 

and atmospheric drag (see Figure 2.12) result in a modulation of the relevant families of 

low-frequency noise peaks in the power spectrum. 

The complex low-frequency noise contributions to the BATSE background result in 

a significant departure from Poisson statistics in the raw data, especially at long time scales 

(top curve of Figure 2.13). We can improve our sensitivity to pulsed signals by attempting 
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Figure 2.13: Typical pulse frequency dependence of the BATSE LAD background in the 
20-60 ke V range. The top curve is for the unprocessed raw data. The middle curve is 
for the raw data after subtraction of an ad hoc background model. The bottom curve is 
for the raw data after subtraction of the Rubin et al. (1996) physical background model. 
The dotted line shows the Poisson noise level expected for the raw count rates. For both 
versions of the background subtraction, the background fluctuations are consistent with 
the Poisson level on time scales ;S 100 s. The data shown are for DISCLA channel 1 (20-60 
keV) from LAD 0 on 1994 June 2 (MJD 49505). A peak near 0.28 Hz due to the pulsar 
4U 0115+63 is visible in the background-subtracted data. 

to remove the background contributions. There are two basic approaches to this task: 
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• Ad hoc background model. We can construct an ad hoc model for the background 

by removing impulsive spikes and interpolating over gaps in the raw data and then 

smoothing. The resulting time series is a good approximation to the orbital background 

variation, which can be subtracted from the raw data. Any sort of smoothing or 

averaging will affect low-frequency signals as well as background. To keep track of 

this explicitly, we perform the smoothing in the frequency domain by multiplying the 

Fourier transform of the interpolated raw time series by a frequency-dependent (low 

pass) filter function 

R(v) = { ~ (i+cosn;,) for v < vo 

for Vo < v < VNyq 

(2.13) 
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where v0 is the cutoff frequency of the low-pass filter and ZINyq is the Nyquist frequency 

of the time series. (For all of the analysis presented in this thesis, vo = 1.6 x 10-3 

Hz). We then use the inverse Fourier transform of this product as an approximate 

background model, which we subtract from the raw time series. After this subtraction, 

we discard the interpolated segments by reintroducing the original gap structure into 

the background-subtracted time series. The power spectrum of a time series with the 

ad hoc background model subtracted is shown in the middle curve of Figure 2.13. 

Most of the noise reduction is from the elimination of broadband "ringing" harmonics 

introduced by spikes and gaps. We emphasize the explicit side effect of this technique, 

that real signals with periods ~ 1/vo ::::::; 640 s are attenuated along with the noise 

background. 

• Physical background model. Both the BATSE instrument team (Rubin et al. 

1996) and investigators at JPL (Skelton et al. 1993) have developed semi-empirical 

physical models for the known sources of background in the BATSE data. The Rubin et 

al. (1996) model includes the diffuse cosmic gamma-ray background, the atmospheric 

gamma-ray background caused by cosmic ray interactions, the prompt background 

due to cosmic ray interactions with material on the spacecraft, the delayed internal 

background caused by activation of spacecraft material by cosmic rays and trapped 

particles in the SAA, and occultation edges due to bright astrophysical sources. This 

technique assumes the presence of periodic behavior at harmonics of the orbital period, 

so some attenuation of low frequency signal as well is inevitable in the fitting process. 

For both methods of background subtraction, the noise power is consistent with the Poisson 

level on time scales ;:; 80 s. However, at longer time scales, a strong noise red-noise compo­

nent is still present, although at a substantially reduced level compared to the original time 

series. The physical background model performs somewhat better than the ad hoc model 

at long time scales, yielding a factor of ,......, 3 reduction in the noise power (corresponding to 

a factor of ,......, J3 improvement in sensitivity at these pulse frequencies). 
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2. 7 Sensitivity to Pulsed Signals 

2.7.1 General Principles 

Astrophysical observations with non-imaging instruments require a way to distin­

guish source emission from background. The usual approach is to split the observation into 

two adjacent paintings of equal duration: an on-source interval and an off-source interval, 

with as much overlap in the background regions as possible. This technique is ineffective 

with BATSE due to its large field of view and highly variable background. Earth occulta­

tion measurements provide the only means to make a background-limited observation of a 

steady source with BATSE. In this case, the occultation step provides the differentiation 

between on-source and off-source within the same pointing. In a similar vein, pulsations 

also provide a way to distinguish between source and background within the same pointing. 

However, in this case, only the pulsed component can be measured; the steady component 

is indistinguishable from the background. All of the observations described in this thesis 

fall into this last category. 

To compute the signal-to-noise ratio of pulsed signal in the presence of a back­

ground which may depend upon pulsed frequency, it is convenient to work in the frequency 

domain. For a sinusoidal signal with amplitude a and frequency vo, the signal strength is 

characterized by the root-mean-squared amplitudes= a/./2. The noise is given by 

n = Ja'f + a~(v), (2.14) 

where a; is the variance of the signal strength and a~ is the variance of the background 

level. For a steady pulsed signal, the signal variance is simply given by Poisson statistics, 

2 a a 
as = ./2i:J..v = T./2' (2.15) 

where i:J..v = 1/T is the frequency resolution of the observation, T is the duration of the 

observation, and the result is independent of vo. The variance of the background is 

2 [dP] 1 [dP] ab(vo) = i:J..v - = - -
dv v=vo T dv v=vo ' 

(2.16) 

where dP / dv is the power spectral density of the background fluctuations. Our pulsar 

observations are in the background-limited regime (ab » as), so the signal-to-noise ratio 

(SNR) is given by 
aT1/2 [dp]-1/2 

SNR=-- - . 
./2 dv v=vo 

(2.17) 
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Figure 2.14: Typical BATSE pulsar detection sensitivity as a function of energy, for 1 day 
of data. The solid line denotes the count flux density required for a signal-to-noise ratio 
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It is interesting to compare this to the usual (time-domain) expression for SNR m a 

background-limited observation, 

SNR= s{f, (2.18) 

where b is the mean background rate. We can evidently regard dP/dv as numerically 

equivalent to an effective background rate. Indeed, we saw in the previous section that 

dP/dv is numerically identical to the mean BATSE background rate at high frequencies 

where Poisson statistics are operative. We also note the factor of J2 reduction in the SNR 

for a sinusoidally pulsed signal. This is because of the reduced duty cycle of a sinusoid 

compared to a constant signal. The SNR for a more complicated pulse shape can be 

computed by superposition of appropriately scaled harmonics. In this case, the background 

power should be computed separately for each harmonic. 

2.7.2 BATSE Sensitivity as a Function of Energy 

We can use the count spectrum of the background in Figure 2.10 to estimate the 

energy dependence of BATSE's pulsed source sensitivity. Let us confine ourselves to pulse 

periods P ;:; 80 s, so that we can assume Poisson statistics for dP / dv. The detection 
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Figure 2.15: Typical BATSE pulsar detection sensitivity as a function of pulse frequency, 
for 1 day of 20-60 ke V DISCLA data. The upturn above 0.2 Hz is due to the 1.024 s binning 
of the data. At low frequencies, the physical model-subtracted data is at least a factor of 2 
more sensitive than the ad hoc model-subtracted data, which has reduced sensitivity below 
1.6 x 10-3 Hz due to signal attenuation by the digital filtering process. The low-frequency 
sensitivity shown for the physical model-subtracted data does not take into account the 
loss of sensitivity caused by "absorption" of signal power in the background-fitting process. 
Data shown are from LAD 0 on 1994 June 2 (MJD 49505). 
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threshold for SNR=5 in 1 day of data is shown with the solid curve in Figure 2.14. The 

dotted lines represent the expected count spectrum for sources with spectra similar to the 

Crab Nebula ('y = 2.15) incident photon power-law spectrum, with intensities of 15 mCrab 

and 100 mCrab. We see that the 15 mCrab source is only detected below below 30 keV, 

while the 100 mCrab source can be detected well above 100 keV. Actual accreting pulsars 

tend to have spectral cutoffs in the 20-40 ke V range, with their spectra falling faster than 

the Crab's above this energy. 

2. 7 .3 BATSE Sensitivity as a Function of Pulse Frequency 

Since most of our pulsar detection studies are done with the 20-60 keV DISCLA 

data, it is of particular interest to determine the pulse frequency dependence of BATSE's 

sensitivity in this energy range. We have used the frequency-dependent noise background 

measurement in Figure 2.13 to compute the sensitivity achieved in a 1-day observation of 

a source at normal incidence using background-subtracted data. The results are plotted in 
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Table 2.4. Leap Seconds 

Starting Epoch 
Date MJD 

1991Jan1 
1992 Jul 1 
1993 Jul 1 
1994 Jul 1 
1996 Jan 1 

48257.0 
48804.0 
49169.0 
49534.0 
50083.0 

TAI-UTC 
(s) 

26.0 
27.0 
28.0 
29.0 
30.0 

New updates of the leap second schedule can be ob­
tained from the U.S. Naval Observatory via WWW 
(file://maia.usno.navy.mil/ser7 /tai-utc.dat). 
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Figure 2.15. BATSE's sensitivity degrades rapidly for pulse frequencies;:; 0.01 Hz, although 

the physical model-subtracted data degrade more slowly than the ad hoc model-subtracted 

data. Above 0.2 Hz, there is a loss of sensitivity due to binning of the data (see §3.2.3). 

The expected response for high-frequency (aliased) signals is indicated by the dashed line. 

2.8 Time Systems and Reference Frames 

The Compton Observatory orbits Earth and Earth orbits the Sun. Both these 

effects will introduce periodic advances and delays in the BATSE measurements of astro­

physical pulse arrival times, or equivalently periodic Doppler shifts in measurements of pulse 

frequencies. These effects are removed by transforming to a reference frame at the solar 

system barycenter which is inertial with respect to the pulsar3 . 

A more subtle correction is necessary as well. Pulsar timing measurements can 

probe small time variations over long time scales and consequently require extraordinarily 

careful attention to the terrestrial time standards to which measurements are referred. 

Indeed, some millisecond radio pulsars have such superb intrinsic temporal stability, and 

can be timed with such high precision, that they provide an experimental probe of theories 

of gravity. By contrast, the accreting pulsars studied in this thesis are very noisy clocks. 

Moreover, their substantially slower rotation periods ease the required timing accuracy of 

30f course, there will also be a periodic variation due to the binary motion of the pulsar, but this is 
one of the things we want to measure! Once the pulsar orbital parameters are known, the observations can 
be further transformed to a frame which is inertial with respect to the center of mass of the pulsar binary, 
allowing us to probe the rotation history of the neutron star without orbital contamination. 
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the observations by three orders of magnitude. Still, it is essential to reduce the observations 

to an inertial, uniform dynamical time system. 

There are several time scale systems which are relevant to our observations4 . At 

present, the most precise determination of time available is provided by atomic clocks. 

International Atomic Time (TAI) is a time scale constructed by averaging a large number 

of atomic clocks worldwide and provides the basis for the SI second. Coordinated Universal 

Time (UTC) is the basis of civil timekeeping. It is closely tied to the observationally 

determined time scale UTl, which is related to the mean apparent motion of the Sun due 

both to the rotation and the orbit of Earth. Due to irregularities in Earth's rotation, UTl 

gradually accumulates discrepancies with respect to TAI. UTC is an artificial time scale 

which differs from TAI by an exact integer number of seconds, and is maintained within 0.9 

s of UTl by the intermittent introduction of leap seconds (see Table 2.4). 

The time system which we want to refer our data to is dynamical time. This 

theoretical time scale is the independent variable in physical equations of motion. Due to 

relativistic effects, this time scale depends upon the reference frame in which it is measured. 

Motion referred to a geocentric reference frame can be expressed in terms of Terrestrial 

Dynamical Time (TDT), while motion referred to the solar system barycenter is expressed 

in terms of Barycentric Dynamical Time (TDB). TDT is specified with respect to TAI and 

is currently set as TDT = TAI + 32.184 s (exactly), so that they are identical except for a 

constant offset. TDB is specified with respect to TDT through a relativistic correction for 

gravitational redshift and time dilation due to the motion of the Earth with respect to the 

solar system barycenter. For the analyses in this thesis, a more-than-sufficiently accurate 

relation (Seidelmann, Guinot, & Doggett 1992) is 

TDB = TDT + (0.001658 s) sinM + (0.000014 s) sin2M, (2.19) 

where M, the mean anomaly of Earth, is given by 

M = 357.53° + 0.98560028° (MJD - 51544.5). (2.20) 

In pulsar astrophysics, this relativistic correction is called the solar system Einstein delay. 

In summary, there are a series of corrections which must be applied to the BATSE 

observation times. BATSE data are recorded with UTC measurement times at the space­

craft. By adding the appropriate number of leap seconds (Table 2.4) and a constant 32.184 s 

4The discussion that follows draws from Seidelmann, Guinot, & Doggett (1992). 
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offset, we readily obtain TDT at the spacecraft (tGRo). To obtain TDB at the solar system 

barycenter (tb), we can follow Taylor & Weisberg (1989) by writing 

(2.21) 

The second term on the right-hand side is the projected light travel time correction from 

the spacecraft to the barycenter along the line of sight to the pulsar, sometimes called the 

solar system Romer delay; r is the position vector of Compton with respect to the solar 

system barycenter, and s is the unit vector toward the pulsar. The spacecraft barycentric 

position is calculated as 

r = RGRO +r$. (2.22) 

The geocentric spacecraft vector RGRO is recorded in the BATSE housekeeping data (§2.2), 

and the barycentric vector for the Earth r$ is computed using the Jet Propulsion Laboratory 

DE-200 solar system ephemeris (Standish et al. 1992). The third term in Equation (2.21), 

b..E0 , is the solar system Einstein delay given in Equation (2.19). The final term in Equation 

(2.21), Lls0 , is a relativistic correction for the propagation of the pulsar photons through 

the gravitational field of the Sun. This effect, called the solar system Shapiro delay, is of 

order 5 µs and thus utterly negligible for our purposes. 

2.9 Standard Analysis Procedure 

The standard pulsed source analysis consists of the following steps (see Figure 2.16): 

• Background-subtraction. The four detectors viewing the direction of interest are 

conditioned to remove the orbital background. Timing studies using the DISCLA data 

were background-subtracted using the ad hoc model technique. Spectral studies using 

the CONT data were processed with the Rubin et al. 1996 background model. 

• Optimal combination of detectors. The four detectors are summed using a cos2 () 

weighting scheme. 

• Mask out bad data and Earth-occulted intervals. Bad time intervals, as in­

dicated by the QUAL file information, are masked out of the summed time series. 

Intervals during Earth occultation of the direction of interest are also masked out. 
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Figure 2.16: Standard BATSE analysis sequence. The data shown are for LAD 0 on 1994 
June 2 (MJD 49505). The top panel shows the raw time series. The second panel shows 
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power. The pulsed signal due to 4U 0115+63 is evident. 
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• Apply barycenter correction. If the source position is known accurately, then 

the data are transformed from UTC times at the spacecraft to an inertial frame in 

terms of TDB times at the solar system barycenter. If the source position is not well 

known but the observation is long enough that ignoring the barycenter correction would 

introduce decoherence effects (see Appendix B), then an approximate source position 

can be used to apply a rough barycenter correction. Operationally, the barycenter 

correction consists of five steps: 

1. Measure UTC time at Compton. 

2. Add appropriate number of leap seconds to obtain TAI time at Compton. 

3. Add 32.184 s to obtain TDT at Compton. 

4. Add solar system Einstein delay to obtain TDB at Compton. 

5. Add light travel time correction to obtain TDB at barycenter. 

All pulsar timing parameters in this thesis are referred to TDB at the solar system barycen­

ter. The time series obtained after the above steps is the basic data set used for our pulsar 

studies at Caltech. 
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Chapter 3 

Detection and Estimation of 

Periodic Pulsed Signals 

3.1 Introduction 

Noise proves nothing. 
-Mark Twain (1897) 

48 

Detection of a periodic signal in noisy data and estimation of the signal strength 

are properly treated as distinct questions. The detection problem involves testing the 

hypothesis of uniformity for the observed data. Only if this null hypothesis can be rejected 

with reasonable significance is a strength estimate meaningful. In this chapter, we will 

consider the statistics of these issues. 

3.2 Detection of Periodic Pulsed Signals 

3.2.1 Time Domain: Epoch Folding 

The most intuitive way to search a time series for a periodicity with period P is to 

fold the data modulo P and look for departures from a uniform distribution. Specifically, 

we divide P into some number Nbins of phase intervals in the range [O, 1] (or, in terms of 

angular phase, [O, 27r]), assign each time series datum a phase according to 

(3.1) 



CHAPTER 3. PERIODIC PULSED SIGNALS 49 

and build up a histogram of phases hj(</>), where j = 1, ... , Nbins· This is called epoch 

folding. If the time series itself is binned, then the histogram can be constructed in one 

of two ways. Where a time series bin straddles two or more phase bins, one can split the 

time series bin and increment each phase bin in proportion to the overlap, making the 

assumption that the accumulated counts were distributed evenly across the time series bin. 

Alternatively, one can treat each time series bin as a delta function at the bin center and 

add it entirely into the single appropriate phase bin. The latter approach has the advantage 

of keeping the phase bins statistically independent, and it is the approach we favor with the 

BATSE data 1 . 

For a uniform background in the absence of a periodic signal, the histogram will 

be statistically consistent with a fiat line. In the presence of a periodic signal component at 

period P, the histogram will have statistically significant structure. In pulsar timing, such 

a histogram is called a pulse profile and is used to represent the mean pulse shape emitted 

by the neutron star. Pulse profiles are an example of a class of data variously referred to 

as circular, directional, or angular due to their intrinsically periodic nature. The statistics 

of such data are common to a wide variety of applications (see Mardia 1972; Fisher 1993). 

The detection of pulsed signals in epoch-folded data was reviewed recently by de 

Jager ( 1994). The most commonly employed test for uniformity is the classical Pearson x2 

test (Leahy et al. 1983). We define the statistic 

S = ~ (xj - (x) )2 
~ 2 ' 
j=l aj 

(3.2) 

where Xj is the jth time series bin, (x) is the mean value of the time series, and aJ is the 

variance of the jth time series bin. In the limit of large count rates (including background), 

S is a x2 random variable with N - 1 degrees of freedom in the absence of a periodic signal. 

Values of S » N - 1 thus lead to rejection of the uniform hypothesis and indicate the 

presence of a pulsed signal. An alternative statistic is the Z~ test of Buccheri et al. (1983) 

and Buccheri & Sacco (1985), which is constructed from the sum of the Fourier powers of 

the first m harmonics of the pulse frequency2 . 

1 Our simulations have shown that if the background exhibits large stochastic variations on long time scales 
(as in the BATSE data), then the introduction of correlations between phase bins can produce fluctuations 
which falsely mimic a pulsed signal. 

2Throughout this thesis, we will adopt the convention that the mv = m/ P is the mth harmonic of the 
fundamental frequency v = 1/ P. Thus, the fundamental frequency is called the first harmonic. 
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A drawback of both the x2 test and the Z~ test is the lack of an objective cri­

terion for selecting the smoothing parameter Nbins or m, respectively. The choice of these 

parameters governs the power of these tests to detect pulses of different shapes, with larger 

values required for pulse shapes with lower duty cycle (i.e., which are sharper). De Jager et 

al. (1989) have advocated use of the H-test, a modification of the Z~ test which specifies an 

objective criterion for selecting m. These issues are of lesser importance in BATSE studies 

of accreting pulsars, since the pulse shapes tend to be quite broad and sinusoidal. 

Epoch folding is an attractively simple method for searching for a signal at a 

specific period. However, it is an extremely inefficient technique for searching a wide range 

of periods. The development of the fast Fourier transform (FFT) algorithm makes frequency 

domain techniques much more attractive for large pulsation searches. 

3.2.2 Frequency Domain: Fourier Analysis 

A good basic review of Fourier transforms is given by Press et al. (1992), and 

a detailed review of Fourier analysis techniques in X-ray timing is given by van der Klis 

(1988). In this section, we summarize the essential results from these reviews and elaborate 

on certain specific topics relevant to the BATSE analysis. 

Consider a uniformly-sampled time series { hj} with mean zero and spacing b.t. 

The discrete Fourier transform (DFT) of this time series is given by 

N-1 

Hk = L hje27rijk/N. (3.3) 
j=O 

The corresponding Fourier power, 

(3.4) 

is an estimate of the variance at frequency v = k/T, where T = N b.t is the length of the 

time series. The power spectrum consists of N /2 such estimates up to a maximum, called 

the Nyquist frequency, which is ZINyq = N /2T. If the background has a flat power spectral 

density, then it is convenient to renormalize the power spectrum relative to the mean noise 

power, 

(3.5) 

If the background does not have a flat power spectrum, we can still effectively normalize 

the power with respect to the local noise power in the region of the frequency of interest. 
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The advantage of this renormalization is that if the power spectrum of the background is 

at least locally fiat, then the probability that any given normalized Fourier power bin will 

exceed a threshold value Po is just 

Pr(P > Po) = e-Po. (3.6) 

This relation provides a straightforward way to evaluate the statistical significance of a peak 

in the power spectrum. 

If the discrete Fourier power spectrum were an ideal spectral estimator, it would 

have a fiat frequency response across a frequency bin; that is, the power in bin k would be 

equally sensitive to any sinusoidal signal in the frequency range [(k -1/2)/T, (k + 1/2)/T]. 

Unfortunately, the Fourier power spectrum is less sensitive to signals at frequencies nearly 

halfway between two Fourier frequencies. Due to the finite length of the time series T, the 

power spectral response in the kth Fourier frequency bin (where Vk = k/T) to a periodic 

signal with frequency vo,is given by 

(3.7) 
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This response function is plotted in Figure 3.1. We see that the response is not at all fiat 

across the frequency bin. 

At first inspection, this loss of sensitivity at intermediate frequencies may seem 

to contradict the Fourier sampling theorem, which holds that the frequency content of a 

uniformly-sampled time series is completely determined by the discrete Fourier transform of 

the time series for all lvl < VNyq (see Press et al. 1992). The explanation is that information 

is lost from the complex-valued DFT in constructing the real-valued power spectrum. We 

can recover information at intermediate frequencies by shifting our Fourier frequency values 

by a fraction E of a bin, yielding fk+E with 0 < E < 1. The shifted DFT is given by 

N-1 

Hk+E = L hje21rij(k+E)/N (3.8) 
j=O 

N-1 L (hje27rijEf N)e27rijk/N (3.9) 
j=O 

N-1 L y)E) e21rijk/N (3.10) 
j=O 

where y)E) is just the original time series multiplied by complex phase factors e27rijE/N. Note 

that while the N shifted power spectrum bins {Pk+E} are statistically independent of each 

other, they are not independent of the original power spectrum {Pk}. Generalizing this 

process, we can construct an n-times oversampled DFT by interleaving the bins from the 

original DFT and n-1 frequency-shifted DFTs. Operationally, this is equivalent to padding 

the original N point time series with (n - l)N zeros and taking the nN point DFT of the 

padded time series. Use of an oversampled power spectrum gives more uniform frequency 

sensitivity at the expense of independent frequency bins. 

The oversampled spectrum also provides a convenient way to make a precise de­

termination of the pulse frequency of a periodic signal. The precision possible depends on 

the signal-to-noise ratio, and can be much better than the independent Fourier frequency 

spacing 1/T for strong signals. Since we know that a periodic signal will appear in the 

Fourier power spectrum as Equation (3. 7) plus noise, we can use the oversampled powers 

to calculate the exact position of the peak. If the highest power due to the signal occurs in 

frequency bin k (where k need not be an integer), then Middleditch (1976) has shown that 
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Figure 3.2: Frequency response to pulsed signals in binned data. The solid curve shows 
the pulsed amplitude response, and the dashed curve shows the Fourier power response. 
Signals in the shaded region will be aliased. 

the best estimate of the signal frequency is given by 

(3.11) 

where P is normalized power, Tis the length of the time series, and n = 1/E is the over­

sampling factor. The uncertainty on the frequency determination (Middleditch 1976; Mid­

dleditch & Nelson 1976) is given by 

(3.12) 

3.2.3 Aliasing and Pulsed Sensitivity in Binned Data 

Signals with v > VNyq in the power spectrum of a uniformly-sampled time series 

will be aliased back into range 0 ~ v ~ VNyq according to 

{ 

v mod VNyq for (v mod 2VNyq) ~ VNyq 
VaJias = 

VNyq - v mod VNyq for (v mod 2VNyq) > VNyq 
(3.13) 
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This can be understood as the result of the uniform sampling process, equivalent to mul­

tiplying the continuous function by a sum of delta functions L:f=01 o(t - jtlt). By the 

Fourier convolution theorem, this is equivalent to convolving the Fourier transform of the 

continuous function with a sum of delta functions, which results in aliasing in the power 

spectrum (see, e.g., Brigham 1974; Press et al. 1992). For time series which only samples 

a continuous function in this way, the aliased power of the signal will not be attenuated. 

However, binning of photon data integrates the flux over intervals of finite duration. This is 

equivalent to convolving the time series with a rectangular window function with full-width 

flt equal to the time spacing of the data. By the Fourier deconvolution theorem, this is 

equivalent to multiplying the Fourier transform of the continuous flux history by the Fourier 

transform of the window function. As a result, the DFT will have a frequency-dependent 

response, 
R(v) = sin(7rv/2VNyq), 

7rl/ /21/Nyq 
(3.14) 

and the corresponding power spectral response will be R 2(v). These curves are shown in Fig-

ure 3.2. The aliased frequencies are strongly attenuated and do not contribute significantly 

for frequencies v ;;c; 21/Nyq· Note, however, that there is also a frequency dependence for the 

response below the Nyquist frequency. This effect applies in both the time domain and the 

frequency domain and is intrinsic to binned data. Pulsed flux and sensitivity measurements 

must take this response into account. 

3.3 Estimation of Pulse Strength in Periodic Signals 

Pulsed amplitude measurements in noisy data are inherently biased: one will ob­

tain always obtain a positive value even in the absence of a real signal. This bias must be 

accounted for in order to estimate the true signal strength or to place a meaningful upper 

limit for a non-detection. Given a weak periodic signal of true amplitude s in the presence 

of noise with root-mean-squared strength n, the probability distribution for the measured 

amplitude a is given by (Thomas 1969; Goodman 1985) 

2a r-(a2 + s2
)] (2as) p(a/s, n)da = n 2 exp n 2 Io n 2 da (a> 0), (3.15) 

where In is the nth order modified Bessel function of the first kind (Abramowitz & Stegun 

1965). This function is plotted in the top panel of Figure 3.3 for several values of the true 
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Figure 3.3: Top panel: Probability density for detected pulsed amplitude a, given true 
pulsed signal strength s and RMS noise strength n. Note that even in the absence of a 
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density for the true pulsed signal amplitude s, given a measured amplitude a and RMS 
noise strength n. The distribution is highly skewed when a/n ~ 1, but approaches a 
Gaussian for strong detections. 
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signal-to-noise ratio 8/n. Note that even in the absence of a signal, the likeliest value for 

the measured amplitude is ,...., n. The distribution approaches a Gaussian for large 8/n. 

To infer the true signal strength from the measured amplitude, we need to know 

p(81a, n), which is related to p(a18, n) by Bayes's theorem (e.g., Eadie et al. 1971), 

( I )d p(8)p(al8,n)d8 ( ) 
p 8 a, n 8 = fooo p(8 )p(al8, n)d8. 3.16 

To invert this equation and solve for p(81a, n), we must make an assumption about the prior 

distribution of possible signals, p( 8). This takes us into the controversial area of Bayesian 

statistics (see, e.g., Cousins 1995). De Jager (1994) reviews various choices of priors for 

this problem. For strong signals (8 » n), the inversion is not sensitive to the choice of 

prior. For weak signals, a conservative assumption is to assign all signal strengths equal 

prior probability, p(8) =constant. Substituting into Bayes's theorem, we find 

2 {f [-(a2 + 282
)] Io(~) 

p(81a, n)d8 = -;;,y:; exp 2n2 Io(~) d8 (a> 0). (3.17) 

This function is plotted in the bottom panel of Figure 3.3. For small values of the measured 

amplitude (a/n;::; 2), the distribution is highly skewed towards zero signal. The distribution 

approaches a Gaussian for large a/n. 

We can calculate the relevant moments of these distributions, 

(81a, n) = 100 

8p(8la; n)d8 = {f nexp( ~~)
2

) 
o 1r Io 2W" 

roo 2 n2 exp(~) (-a2) 
(8

2 1a, n) Jo 8 p(8la; n)d8 = 2 ( a 2 ) L1;2 - 2 o Io 2W" n 

n2 [( a2) a2 Ii(~)] - 1+- +----
2 n2 n2 I ( a2 ) ' 

1 2W" 

where Ln is a Laguerre polynomial (Abramowitz & Stegun 1965). Similarly, 

(al8, n) 

(a218,n) 

CJyJr (-82) 
-2-exp 2CJ2 

82 + n2. 

[ ( 1 + ~) Io (i:_) + 
82 

Ii (i:_) l n2 2n2 n2 2n2 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

For a strong signal, we can use an asymptotic expansion for the modified Bessel functions 

(Abramowitz & Stegun 1965) to show 

p(al8, n) ~ p(81a, n) ~ ~exp [-(a~ 8 )

2
] 

V7rn2 n 
for 8, a>> n. (3.23) 
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As expected, the distribution in the strong signal limit is a Gaussian with variance a 2 = 

n 2 /2. 
Equation (3.17) is used to calculate confidence intervals for measurement of a 

pulsed signal in BATSE data. The resulting signal amplitude must be corrected for the 

frequency-dependent response in Equation (3.14). For a non-sinusoidal pulse shape, the 

pulse can be decomposed into harmonics. Unless the noise background has a flat power 

spectrum, the root-mean-squared noise strength n will depend on the harmonic frequency. 

3.4 Flux and Spectral Estimation 

Photons incident on a detector may fail to deposit their full energy. The difficulty 

of inferring the incident photon spectrum from a measured count spectrum arises from this 

simple fact. In the discussion that follows (which is equally applicable to pulsed and un­

pulsed measurements), we will distinguish between incident (input) energy E' and measured 

(output) energy E. For an idealized detector (one with perfect energy resolution), we can 

write 

dC(E) = rooo dE' a2N I dA ( ') 
dE Jo 8E18A (E) x dE E,E ' 

......__.... ..______._.., '--v-" 
(3.24) 

[count s- 1 kev- 1] [ph cm- 2 s- 1 keV- 1] [cm2 keV- 1] 

where dC I dE is the measured count flux density, 82 NI 8E' a A is the incident source photon 

spectrum, and dA/dE is the detector resolution (response) kernel. Conceptually, the inci­

dent spectrum is convolved with the non-diagonal detector response to yield the observed 

spectrum. Mathematically, this is called a Fredholm integral equation of the first kind, 

g(y) =lb f(x) K(x, y) dx, (3.25) 

with f (x) consisting of both a homogeneous and a particular solution 

f (x) = fh(x) + fp(x ), (3.26) 

where 

0 =lb fh(x)K(x, y). (3.27) 

One cannot solve such equations generally for J(x) without making an assumption about 

its functional form (see Jeffrey & Rosner 1986 for a discussion). For the particular problem 

of spectral fitting, this means that we must make a choice of spectral model before trying 
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to fit the data. There is a substantial literature discussing numerical approaches to this 

issue, often referred to as the inverse problem in astronomy (see Craig & Brown 1986 for a 

review). 

We can parametrize the problem for BATSE as follows. BATSE data are count 

rates in discrete output energy channels (16 in the case of the CONT data). For each BATSE 

detector, Pendleton et al. (1995) have computed the effective area of output channel i as a 

function of incident photon energy E' and viewing angle (), 

I I 1E;+1 dA I 
Ai(E) = A(Ei < E < Ei+l, E) = dE-(E, E ). 

E; dE 
(3.28) 

Operationally, a numerical integration is performed to compute a detector response matrix 

which gives the mean response of the detector to a series of narrow ranges of incident energy, 

1 1E'i+1 1E;+1 dA 
Aij = E'· -E'· dE' dEdE(E,E'). 

J+l J E'j E; 
(3.29) 

Thus, the measured count rate in output channel i is modeled as 

Ci = 1 [ 00 [Ei+l EP N dA 
E'j+l - E'j Jo dE' }E; dE 8E'8A dE(E,E') (3.30) 

{E'H1 a2N 
~ ~Aij }E'i dE' 8E18A' (3.31) 

In this thesis, two different choices of spectral model are employed. The first is a 

photon power law, 

dN = C E'-1 
dE' o ' (3.32) 

where 'Y is the photon index and C30 is a normalization constant. The second uses the 

functional form for optically-thin thermal bremsstrahlung, 

dN Co _ ( , ) ( '/ ) dE' = E' 9ff E ,kT exp -E kT, (3.33) 

where kT is a characteristic thermal energy and §ff(E', kT) is the velocity-averaged free­

free Gaunt factor (Rybicki & Lightman 1979). For most of our observations, the spectral 

quality is not high enough to detect curvature of the photon spectrum on a logarithmic 

scale, so we employ the power-law model as the simplest description. However, for the 

long-duration GX 1 +4 spectra in Chapter 7, a power-law fit is clearly inadequate. It should 

be emphasized that the choice of a bremsstrahlung model is made because it is a convenient 

parametrization and is in wide use by observers of this source. The BATSE spectra are not 

of sufficient quality to distinguish between this model and other exponential forms. 
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Chapter 4 

Discovery of the Orbit of the Accreting 

X-Ray Pulsar OAO 1657-415* 

Something hidden. Go and find it. Go and look behind the Ranges­
Something lost behind the Ranges. Lost and waiting for you. Go! 

-Rudyard Kipling (1903) 

4.1 Introduction 

60 

There are currently six known eclipsing X-ray binary pulsars with well-determined 

orbits and optical spectroscopy, all of which yield important constraints on the neutron 

star mass range (see Nagase 1989). These measurements are complementary to the more 

accurate ones made in binary radio pulsar systems and might point out any evolutionary 

differences between these two types of systems. This chapter reports the detection of orbital 

motion and X-ray eclipses for a seventh X-ray binary pulsar, OAO 1657-415. Optical 

identification of the undiscovered companion followed by orbital phase spectroscopy and 

photometry will provide constraints on the neutron star mass. 

The X-ray source OAO 1657-415 (l = 344°, b = 0°.3) was first detected by the 

Copernicus satellite (Polidan et al. 1978) in the 4-9 keV range and was initially misidentified 

as the companion to the massive spectroscopic binary V861 Seo. Subsequent observations 

by the HEAO 1 satellite (Byrne et al. 1979; Armstrong et al. 1980) and the Einstein 

*Adapted with changes from "Discovery of the Orbit of the X-Ray Pulsar OAO 1657-415" in The As­
trophysical Journal, 403, L33-L37 (1993 January 20), by D. Chakrabarty, J. M. Grunsfeld, T. A. Prince, L. 
Bildsten, M. H. Finger, R. B. Wilson, G. J. Fishman, C. A. Meegan, & W. S. Paciesas. Used by permission 
of the authors. © 1993 by The American Astronomical Society. 
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Observatory (Parmar et al. 1980) yielded a position error box which excludes V861 Seo. 

HEAO 1 observations also showed 38.22 s pulsations in the 1-40 keV (White & Pravda 

1979) and 40-80 keV (Byrne et al. 1981) X-ray flux. More recent observations have shown 

both spin-up and spin-down of the pulse period (Kamata et al. 1990; Gilfanov et al. 1991; 

Mereghetti et al. 1991; Sunyaev et al. 1991). 

We have made daily pulse period measurements of OAO 1657-415 with the Burst 

and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory 

(GRO) since 1991 April as part of a joint MSFC/Caltech pulsar detection program. These 

observations show clear evidence of binary motion and eclipses of the X-ray source by 

its companion. Preliminary results of a pulse period analysis were given by Finger et al. 

(1992). In this chapter, we report on an accurate determination of the orbital parameters 

using an arrival time analysis. The implications for the stellar type of the still-unidentified 

companion are outlined. 

4.2 Observations and Timing Analysis 

BATSE consists of eight identical uncollimated detector modules arranged on the 

corners of the Compton spacecraft, providing an all-sky monitor of hard X-ray and ")'-ray 

flux (Fishman et al. 1989). Except for source occultation by Earth, the instrument provides 

nearly continuous observations of discrete sources. We are reporting on observations with 

the BATSE large-area detectors (LADs), each of which contains a NaI(Tl) scintillation 

crystal 1.27 cm thick and 50.8 cm in diameter, viewed in a light collection housing by 

three 12. 7 cm diameter photomultiplier tubes. The LADs have an effective energy range of 

20 keV-1.8 MeV. In our analysis, only the data in the approximate range 20-60 keV were 

used, where each LAD has an effective area of ~ 1000 cm2 . 

A number of standard data types are generated from the LADs at various time and 

energy resolutions. The DISCLA data contain the photon count rate from the discriminators 

of each LAD in four energy channels at 1.024 s resolution. Our analysis of OAO 1657-415 is 

based on the lowest DISCLA energy channel data from 1991 April 23-1992 March 3 (MJD 

48370-48685). DISCLA data are available for this entire period except for short segments 

during South Atlantic Anomaly crossings when the high voltage to the detectors was turned 

off, and for occasional data gaps due to telemetry and onboard tape recorder errors. 

The DISCLA data were processed to construct, for each day, a single time series 
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at 1.024 s resolution on which a timing analysis was performed. For any given spacecraft 

orientation, OAO 1657-415 is visible in four detectors except when occulted by Earth (once 

each orbit). Only data from those detectors were analyzed, using intervals when the source 

was not occulted. A model of the background in each of the four detectors was generated 

by passing the data through a low pass filter; this was subtracted from the detector signals 

to remove the large (factor of 2) variations in count rate due to the changing background 

in the ~ 93 min orbit of the spacecraft around Earth. The signals from the four detectors 

were then optimally weighted for the view direction of OAO 1657-415 and combined to 

form a single time series. The spacecraft times of the count rate bins were transformed to 

arrival times at the solar system barycenter using corrections based on the Jet Propulsion 

Laboratory DE200 solar system ephemeris (see §2.8). 

Preliminary timing analysis was performed by producing a Fourier power spectrum 

for each one day time series and searching a small period range near the previously observed 

pulse period of OAO 1657-415. Since the LADs are uncollimated, and other bright X-ray 

sources are in the large field of view, this analysis used only the pulsed flux information con­

tained in the data. Having optimized the time series for the view direction of OAO 1657-415 

and searched a narrow range of periods near 38 s, we attributed any statistically significant 

signal to OAO 1657-415. A strong signal was detected on approximately 2/3 of the days, 

and the resulting period history was used to derive a preliminary orbit. 

Using the preliminary orbit as a provisional ephemeris, a pulse profile template 

was constructed by folding data from 71 days when the signal was strong. We selected 

these days from an interval (MJD 48370-48460) where the source showed roughly linear 

spin-up. We then folded 0.2 day segments of our time series at the pulsar ephemeris period 

and cross-correlated with the template to obtain pulse times of arrival (TOAs) for each 

segment. These TOAs were fit over short intervals using a Taylor expansion for intrinsic 

changes in the pulse period and a standard model for the orbital Doppler delays. Writing 

the pulse emission times as (e.g., Deeter, Boynton, & Pravdo 1981) 

I I 1 2 ' 
tn = t0 + nPo + 2n P Po (4.1) 

where t0 is the emission time epoch and Po and P are the pulse period and its derivative 

at t0, the arrival times can be represented by 

tn = t~ + J (t~) (4.2) 
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where f (t~), the orbital Doppler delay, is parametrized by five Keplerian orbital parameters: 

projected semi-major axis ax sin i (where i is the inclination angle between the line of sight 

and the orbital angular momentum vector, defined to lie in the first quadrant), orbital 

period Porb, eccentricity e, longitude of periastron w, and orbital epoch1 T7f;2 (defined as 

the epoch where the mean longitude is 90°). The orbit parametrization is discussed in more 

detail in Appendix D. 

Determination of the neutron star orbital elements from the observed pulse history 

is complicated by the need to decouple the effects of the orbital Doppler delays and intrinsic 

changes in the neutron star rotation rate. Preliminary fits indicated that P changed over 

orbital time scales. Thus, we have employed a "hybrid" approach to determining the orbit. 

The gaps in our data caused by eclipses of the X-ray source over its 10.4 day orbit naturally 

divide our TOA data into ,....., 8 day segments separated by ,....., 2 days. The five orbital 

parameters were fit simultaneously for all the segments, along with an independent t~, Po 

and P for each segment. This approach is especially attractive because it does not require 

an unambiguous pulse count to be maintained across eclipse intervals. To minimize the 

effect of rotation fluctuations on the orbital parameters, we confined our analysis to an 

interval where the pulse period history could be approximately represented by a single P 
term (MJD 48370 - 48460). 

4.3 Results 

Table 4.1 presents our best fit orbital elements, measured eclipse information, and 

several derived quantities. Figure 4.1 shows the best-fit Doppler delay curve for OAO 1657-

415 with our best model of the intrinsic spin period variations removed. The fit residuals are 

plotted on a 5x expanded scale. Figure 4.2 shows the spin period history of OAO 1657-415 

for days MJD 48370-48685, where our best-fit orbital Doppler delays have been removed. 

OAO 1657-415 exhibited both spin-up at P / P ~ -8 x 10-3 yr-1 and spin-down at P / P ~ 

2 x 10-3 yr- 1. The long term trend since 1979 has been for secular spin-up with P / P ~ 

-10-3 yr-1. 

A Monte Carlo analysis was used to estimate the single-parameter lo- confidence 

limits for the orbital elements by generating simulated data with O"sim = 2 s Gaussian 

errors in the TOAs. We chose O"sim to be larger than the RMS arrival time fit residual 

1See Deeter et al. (1981) for a discussion of the advantages of this particular choice of orbital epoch. 
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Table 4.1 
OAO 1657-415 Parameters 

Parameter Symbol Valuea 
Best-fit orbital parameters and eclipse measurements 
Orbital period . . . . . . . . . . . Porb 10.4436b ± 0.0038 d 
Projected semi-major axis 
Eccentricity ............. . 
Longitude of periastron .. 
Orbital epoch ........... . 
Eclipse ingressc ......... . 
Eclipse egressc .......... . 

Derived quantities 
Pulsar mass function .... . 
Eclipse half-angle ....... . 

Inferred constraints d 

Orbital inclination ...... . 
Companion mass ....... . 
Companion radius ...... . 
Re-Roche radius ratio ... . 

ax sin i 
e 

w 

T7r/2 
le,in 

le,out 

106.0 ± 0.5 It-sec 
0.104 ± 0.005 
93° ± 5° 
JD 2448516.49 ± 0.05 TDB 
57°.l ± 1°.8 
116°.5 ± 1°.8 

11.7 ± 0.2M0 
29°.7 ± 1°.3 

;;::; 60° 
14-18 M0 
25-32 R0 
;;::; 0.85 

aQuoted uncertainties are single-parameter la confidence limits. 
b A recent analysis of additional BATSE data measured Porb = 10.44809 ± 0.00030 d 

(Finger 1995, personal communcation). 
cMean longitude. 
dFor Mx = 1.4 M 0 and the companion inside its critical lobe at periastron. 
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Figure 4.1: Doppler delays for the pulse arrival times as a function of the 10.4436 day 
orbit of OAO 1657-415 after removing our best model for the intrinsic variations in spin 
period. The data plotted are from the interval MJD 48370-48460. The solid circles are 
the delay times, the solid curve is the best-fit orbital model, and the open circles are the 
residuals ( 5 x expanded scale). 
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arms = 1.5 s and the typical TOA measurement uncertainty atoa ,...., 1 s in order to allow for 

the possibility that red noise fluctuations in the pulsar rotation may have contributed to the 

parameter uncertainties. We believe this ad hoc approach correctly bounds the parameter 

uncertainties even though an explicit red-noise model was not included in our simulations. 

A more detailed study of red noise fluctuations in the rotation of OAO 1657-415 will be 

presented elsewhere. Boynton et al. (1986) have modeled such variability in Vela X-1 as a 

random walk (red noise) in spin frequency due to white noise torque fluctuations and found 

that torque noise was the dominant contribution to the orbital parameter uncertainties. 

An eclipse centered near periastron (w = 93° ± 5°) is evident in Figure 4.1. We 

have measured the eclipse duration by dividing our entire data set into 100 orbital phase 

bins and folding each phase bin at the pulsar spin period. Each of these light curves was 

correlated with our template to determine in which orbital phase bins no signal was seen. 
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Figure 4.2: Spin period history for OAO 1657-415 derived from BATSE data with the 
orbital Doppler shifts removed. Only data for which a significant signal was detected are 
shown. 
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To obtain further precision, we then repeated the process, shifting the orbital phase "zero" 

by 1/2 phase bin. We measured eclipse ingress at mean longitude le,in = 57°.l ± 1°.8 and 

eclipse egress at le,out = 116°.5 ± 1°.8, yielding an eclipse half-angle Be = 29°.7 ± 1°.3. A 

comparison of the BATSE-derived eclipse ephemeris with the orbital phase (assuming our 

values of Porb and Trr;2 ) for the ten previous observations2 of pulsed flux from OAO 1657-

415 (White & Pravdo 1979; Parmar et al. 1980; Kamata et al. 1990; Mereghetti et al. 

1991; Gilfanov et al. 1991; Sunyaev et al. 1991) shows that none of these detections 

lies inside a predicted eclipse interval, providing an additional consistency check on our 

orbit fit. In particular, the 1983 July Tenma detections of pulsed flux (Kamata et al. 

1990) restrict the allowed values of orbital period consistent with our data to the interval 

10.4420 d ;:; Porb ;:; 10.4450 d. The previous observations provide a weak limit on the 

orbital evolution rate, IPorb/ Porbl ;:; 10-5 yr- 1 . 

2We included a 1983 detection by the EXOSAT ME experiment using data from the High Energy Astro­
physics Science Archive Research Center at NASA Goddard Space Flight Center. 
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We can use the derived orbital parameters to constrain the undiscovered compan­

ion's mass and radius. For a particular choice of neutron star mass Mx, the X-ray mass 

function 

f (M) = 4n
2
(ax sin i) 3 = (Mc sin i)

3 = 11 7 ± O 2 M 
x GP2 (M M )2 . . 0 orb x + c 

(4.3) 

(derived from our measured values of ax sin i and Porb) yields a lower limit for the companion 

mass Mc, for which sin i = 1. Choosing a value for Mc, we calculate sin i and the mean 

orbital separation a = ax + ac. We can then use the measured eclipse angle to estimate 

the radius of the companion. (See Appendix E.l for a detailed discussion.) For an eclipse 

centered at periastron of an eccentric orbit, we have 

Re ~ a(l - e
2

) ( cos2 i + sin2 i sin2 ef>e) 112 , 
1 + ecosef>e 

(4.4) 

where ef>e, the eclipse half-angle in true longitude, can be written in terms of the usual 

eclipse half-angle Oe using the standard elliptic expansion for true anomaly in terms of 

mean anomaly3 (Brouwer & Clemence 1961), 

(4.5) 

By requiring that Re be less than the radius of the critical potential lobe RL at periastron, 

we obtain an upper limit on the companion mass. To show the largest possible parameter 

space, we only consider slow rotation of the companion (Pc » Porb), in which case the Joss 

& Rappaport (1984) parameterization of RL simply scales to the separation at periastron 

(Avni 1976). 

Figure 4.3 shows the resulting Mc-Re curves under this constraint and the assump­

tion that Mx > 1.0 M0 . The dark solid lines bound the allowed region while the light solid 

lines indicate the Mc-Re relations for different neutron star masses with varying inclina­

tions. The allowed region for co-rotating (i.e., Pc = Porb) companions is extremely small. 

The dark solid line on the left corresponds to inclination i = 90°, while the dark solid curve 

at the top is the boundary for Re < RL. The dark solid curve at the bottom corresponds 

to Mx = l.OM0 . If we assume a neutron star mass of Mx = l.4M0 , then a non-rotating 

companion has 14M0 ~Mc~ 18M0 and 25R0 ~Re~ 32R0 . These estimates are based 

on the smallest eclipse angle consistent with our measurements (Oe ~ 28°), which places the 

3 For an eclipse centered at periastron, Be and ef>e are identical to the eclipse egress values of the mean 
and true anomalies, respectively. 
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Figure 4.3: Constraints on the mass and radius of the companion of OAO 1657-415, 
based on the measured orbital parameters and assuming an eclipse half-angle Oe = 28°. 
The region inside of the dark solid curves shows the allowed Mc-Re values for inclination 
i < 90° (left curve), for a companion that does not overfill its critical lobe at periastron 
(top curve), and for neutron star mass Mx > 1 M0 (bottom curve). The light solid lines 
indicate the Mc-Re relation for neutron star mass Mx = 1.4 M0 and 2.0 M0 . The dashed 
lines show the extended Mc-Re relations if the star is allowed to overflow the critical lobe 
at periastron. 
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weakest limits. If the star is inside of the critical lobe at periastron, then our measurements 

also constrain i ;<:; 60°, and Re/ R1 ;<:; 0.85. Since the question of overflow at periastron is a 

dynamical one when the star is close to filling the critical lobe, we have arbitrarily extended 

the Mc-Re relations to the point where Re= R1 at 0.95a (dashed lines). This provides an 

extreme upper limit since it implies that Re > R1 for ,...., 40% of the orbit. 

The constraints on Mc and Re allow us to locate the star on the theoretical 

Hertzsprung-Russell diagram (see Maeder & Meynet 1989), yielding a blue supergiant of 

stellar type BO-B6 with absolute visual magnitude Mv ~ -6.3, corresponding to luminosity 
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class Ia-lab. 

4.4 Discussion 

We have measured the eccentric binary orbit and eclipse duration of the accretion­

powered X-ray pulsar OAO 1657-415. Our rneasurernents imply that the mass-giving com­

panion is a blue supergiant of rnass 14-18 M0 . Optical identification of the companion 

followed by a rneasurernent of its orbital velocity and accurate orbital phase photometry 

would place important constraints on the neutron star rnass. 

The distance to OAO 1657-415 is still unknown. However, we can set a lower 

limit to the distance frorn our observation of steady spin-up (see Appendix C). Accretion 

is difficult, if not impossible, when the Alfven radius (where the kinetic energy density of 

the accreting matter is equal to the magnetic energy density) lies outside the co-rotation 

radius rco (where the spin period is equal to the Keplerian period). The rnaxirnurn torque 

exerted on the neutron star, Nmax = M(GMxrc0 )
112 , occurs when the Alfven radius and 

the co-rotation radius are equal. The observed values of the pulsar spin period and its 

derivative during the steady spin-up interval (MJD 48370-48460) then imply 

GM M ( M )4/3 ( R ) 
Lx ~ R: ;:('; 1.6 x 1037 erg s-1 1.4 !.t0 10 {rn ' (4.6) 

where we have used Ix = (2/5)Mx~· A preliminary analysis of the 16 channel CONT 

data frorn BATSE for the spin-up interval indicates that the spectral index and hard X-ray 

pulsed flux were similar to the values measured during the 1978 September observation by 

HEAO 1 (Byrne et al. 1981). Assuming the sarne pulsed fraction, we can use the total 

X-ray flux measured during the HEAO 1 pointing, Fx ~ 10-9 erg s-1 crn-2 (White & 

Pravda 1979), to obtain the limit 

d llk ( Mx )2/3( Rx )1/2( Fx )-1/2 
;:('; pc 1.4 M0 10 krn 10-9 erg s-1 crn-2 ' 

(4.7) 

consistent with the source's low galactic latitude. 

Corbet (1986) showed that massive X-ray binaries fall into three separate groups 

when the pulse period is plotted versus the orbital period (see Figure 1.2). Those systems 

with unevolved Be companions have a strong correlation between the orbital and spin 

periods (see Waters & van Kerkwijk 1989 for an updated discussion), while systems with 

OB supergiant companions fall into two separate broad regions of the diagram. Systems 
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with optical photometric evidence for accretion disks (LMC X-4, Cen X-3, and SMC X-1; 

see van Paradijs 1991) and nearly steady spin-up have the shortest spin and orbital periods, 

while those without such evidence have much longer spin periods(;<:; 100 s) and show torque 

reversals characteristic of accretion from the wind of the supergiant (Blondin et al. 1990). 

Interestingly, OAO 1657-415 falls between these two groups, both on the Corbet diagram 

and in terms of its observed spin period history. Its short spin period relative to the wind 

accreters probably results from the long intervals (,....., 100 d) of steady spin-up which we 

observe. Whether these spin-up episodes are due to transient disk accretion can be resolved 

through optical photometry, which is sensitive to emission from an accretion disk. 
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Chapter 5 

Discovery of the 18.7-Second Accreting 

X-Ray Pulsar GRO J1948+32* 

5.1 Introduction 

Ships that pass in the night, and speak each other in passing, 
Only a signal shown and a distant voice in the darkness; 

-Henry Longfellow (1874) 
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Since the discovery of pulsations from Centaurus X-3 over twenty years ago (Gi­

acconi et al. 1971), more than thirty accretion-powered X-ray pulsars have been detected 

(see Nagase 1989). Nearly half of these pulsars are transient sources which were discovered 

during bright outbursts. However, due to incomplete and non-uniform sky coverage, the 

population and recurrence history of these transients is poorly determined. The Burst and 

Tuansient Source Experiment (BATSE) on the Compton Gamma Ray Observatory (GRO) 

has provided a nearly continuous all-sky monitor of pulsed hard X-ray (~ 20 keV) emission 

since its launch in 1991 April (Prince et al. 1994). On 1994 April 6 BATSE first detected 

18. 7 s pulsed hard X-ray emission from a previously unknown source in the Cygnus region 

of the Galactic plane (Finger, Wilson, & Fishman 1994). The source was detected at en­

ergies as high as 75 keV and reached phase-averaged pulsed intensities ~ 50 mCrab in the 

20-75 keV band during the 33 day outburst. BATSE data taken prior to 1994 April fail to 

*Adapted with changes from "Discovery of the 18.7 Second Accreting X-Ray Pulsar GRO J1948+32" in 
The Astrophysical Journal, 446, 826-831 (1995 June 20), by D. Chakrabarty, T. Koh, L. Bildsten, T. A. 
Prince, M. H. Finger, R. B. Wilson, G. N. Pendleton, & B. C. Rubin. Used by permission of the authors. 
© 1995 by The American Astronomical Society. 
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show any pulsed emission near 18. 7 s from this region of the sky, indicating that the new 

source is transient or at least highly variable. 

In this chapter, we present a detailed analysis of the BATSE observations of GRO 

J1948+32 as well as a refined estimate (10 deg2 solid angle with 99% confidence) for its 

position. The approximate Galactic coordinates of the source are l ,...., 65°, b ,...., 2°. A 

preliminary position estimate for the source (originally designated GRO J2014+34) yielded 

a 68% confidence error circle with 8° radius, corresponding to a solid angle of 200 deg2 

(Finger, Wilson, & Fishman 1994). Further observations yielded an improved position with 

a 90% confidence error box covering a solid angle of 15 deg2 and led to a redesignation of 

the source as GRO J1948+32 (Chakrabarty et al. 1994; see Appendix I). A preliminary 

search of the brightest sources in this region in archival data from the ROSAT/PSPC soft 

X-ray (0.1-2.4 keV) all-sky survey failed to detect any sources with a similar pulse period 

(Kahabka et al. 1994). A 6° x 6° optical R-band plate of the region was obtained during 

the X-ray outburst, using the Palomar Observatory 1.2-m Oschin Schmidt telescope (I. N. 

Reid 1994, private communication). Comparison of the 10 deg2 source error box on this 

plate with archival plates from the Palomar sky survey (Reid et al. 1991) may aid in the 

identification of the optical companion. 

5.2 Observations and Analysis 

BATSE is an all-sky monitor of 20 keV-1.8 MeV 1-ray flux (see Fishman et al. 

1989 for a description). Our standard detection and timing analysis uses the 20-60 keV 

channel of the 1.024 s resolution DISCLA data type (see Chapter 2). GRO J1948+32 was 

initially detected in a routine search of the Fourier power spectra of these data for 1994 April 

7. Once the source was discovered, a systematic search of the entire BATSE DISCLA data 

archive from 1991 April 22 to 1994 November 9 (MJD 48369-49665) was made. The Fourier 

power spectrum of the data for each day (optimized for the source direction) was searched 

for a statistically significant pulsed signal with a pulse period in the range 18.6 s~ Ppulse ~ 

18.8 s. The only detections were during the outburst, from 1994 April 6 to May 12 (MJD 

49448-49482). The detection threshold for this analysis was ::::::: 25 mCrab (20-60 keV). 

For those days where a significant signal was detected in the DISCLA data, the 

CONT data (20 keV-2 MeV count rates, in 16 energy channels at 2.048 s resolution) were 

also analyzed. The raw data were pre-processed using the orbital background and bright 
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source occultation model developed by Rubin et al. (1993). Pulse profiles for each of the 

16 channels in the background-subtracted CONT data were generated from two-day folds 

of the time series corresponding to the outburst. Only data from the detector with the 

smallest viewing angle to the source were used. 

In order to simplify estimation of the measurement uncertainties, we used a single­

harmonic model for the pulse to obtain phase-averaged pulsed-component count rates from 

these pulse profiles (see §3.3). For GRO J1948+32, a single-harmonic model systematically 

underestimates the pulsed intensity by 25%, due to the small but significant non-sinusoidal 

component of the pulse shape. We corrected all of the measured pulsed count rates for 

this factor. Goodman (1985) gives the probability distribution p(als, n) for the measured 

harmonic amplitude a given a signal amplitude s and noise strength n. We used Bayes's 

theorem to invert this function to obtain the probability distribution p(sla, n) for the signal 

amplitude, allowing an estimate of the pulsed count rate in a noisy pulse profile. 1 These 

count rates are well fit by assuming a power-law photon spectrum of the form dN/dE = 

C30 (E/30 keV)-'Y and accounting for the BATSE instrumental response. Fluxes for the 

individual channels are obtained by folding the best-fit values of C30 and / through the 

BATSE instrumental response. (See Heindl et al. 1993 for a detailed discussion of the 

procedure for converting count rates to fluxes.) The unpulsed flux of GRO J1948+32 was 

too faint (;:; 100 mCrab) to be detected using the standard Earth occultation technique 

described by Harmon et al. (1993). 

All the two-day folds of the background-subtracted CONT data over the outburst 

yielded statistically significant pulse flux detections in channels 1-4 (approximately 20-

75 ke V), and several folds yielded detections in channel 5 (approximately 75-100 ke V). 

Figure 5.1 shows the 20-75 keV pulsed flux history of the outburst. (If significant channel 5 

contributions were to be included in this plot for the appropriate segments, the quoted fluxes 

would change by< 10%.) The pulsed flux increased from (2.2 ± 0.5) x 10-10 erg cm-2 s- 1 

to (4.9 ± 0.5) x 10-10 erg cm-2 s-1 over 10 days before decaying to the minimum detectable 

level over 25 days. The photon spectral index for these two-day fits had a mean value 

1We assumed a prior probability p(s) =constant; see de Jager (1994) for a discussion of the strengths 
and weaknesses of this choice. For a » n, p(sla, n) is approximately a Gaussian distribution centered at 
s = a, with an associated 1 CT error defined by the symmetrical 68% confidence interval of the distribution. 
In this case, the computed flux is not sensitive to the choice of prior, and the Bayesian result is identical 
to that obtained with other methods commonly employed at high signal-to-noise. However, for a ~ n, the 
distribution is highly skewed and peaks near s = 0. In such cases, we quote a 2CT upper limit Sui on the 
count rate, implicitly defined by J

0
•ui p(sla, n)ds = 0.95. See §3.3 for a more detailed discussion. 
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Figure 5.1: Pulse-phase-averaged 20-75 keV pulsed flux history of GRO J1948+32. The 
vertical bars show the 1 () uncertainties in the flux measurements. 
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(1) = 2.29±0.08, with individual values varying between 1.25±0.35 and 2.82±0.39. There 

was not a statistically significant correlation of the spectral index with either time or pulsed 

intensity. 

It is advantageous to phase-connect longer intervals of data in order to probe the 

high-energy spectrum of the source. However, as the spacecraft orientation is changed 

(which happens at rvlO day intervals), different detectors will have the best source viewing 

angle. Because the effective area of the BATSE detectors is a very sensitive function of 

energy and viewing angle in the 20-100 ke V range and since each detector has slightly 

different energy channel edges, it is difficult to produce count spectra from data combined 

over more than one pointing. There were three different Compton paintings during the 

outburst, each with a different best viewing angle to the source: 22.8° for detector 7 on 

MJD 49448-49461, 3.6° for detector 0 on MJD 49462-49468, and 26° for detector 6 on 

MJD 49468-49482. There was no statistically significant change in the source spectral index 

during these three paintings. Figure 5.2 shows the measured spectrum during the bright 
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pointing with the most favorable viewing angle, MJD 49462-49468. The left panel shows 

the measured pulsed count spectrum from a 7-day fold across this interval, and the right 

panel shows the inferred source photon spectrum assuming a power-law spectral model. In 

determining upper limits for the flux in the higher channels, no assumption was made about 

the phase relationship with the pulse component in the lower channels. The pulse profiles 

for this interval as a function of energy are shown in Figure 5.3. For display purposes, 

these profiles are about twice-overresolved. The best-fit 20-120 keV power-law spectral 

parameters for the phase-averaged pulsed component during this interval are I= 2.65±0.15 

and C30 = (3.4 ± 0.2) x 10-4 photons cm-2 s- 1 kev- 1 . 

The crosses in Figure 5.4 denote the pulse frequency history observed by BATSE. 
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The quasi-sinusoidal variation may be due to orbital motion of the source; if so, a complete 

orbital cycle has not yet been observed. Consequently, it is not possible to reliably decouple 

orbital effects from variations in the intrinsic spin period due to accretion torques, and 

the orbital parameter estimates remain highly correlated. A wide range of degenerate 

solutions exist which provide a good fit to the data (solid curve in Figure 5.4). However, 

it is possible to constrain the allowed parameter space (see Appendix F for details). If 

we assume a circular orbit and a constant spin frequency derivative, then the following 

95%-confidence limits can be placed: orbital period 35 d < Porb < 44 d; orbital radius 95 lt­

s < ax sin i < 165 lt-s; spin frequency derivative 2 x 10-12 Hz s-1 < v < 6 x 10-12 Hz s- 1 , 

X-ray mass function 0.7 M0 < fx(M) < 2.3 M0 . If we permit eccentric solutions, the 

allowed 95%-confidence parameter ranges are broader: eccentricity e < 0.25; orbital period 

35 d < Porb < 70 d; orbital radius 75 lt-s < ax sin i < 300 lt-s; spin frequency derivative 

5 x 10-13 Hz s-1 < v < 2.5 x 10-11 Hz s-1 ; X-ray mass function 0.5 M0 < fx(M) < 5 M0 . 

It should be noted that these ranges are the individual confidence regions for each of the 

parameters separately, computed by allowing all the other parameters to vary. 

A revised position estimate for GRO J1948+32 was made using the method de­

scribed in Appendix G with the 20-60 keV DISCLA data for MJD 49448-49482. The 

frequency, amplitude, and phase of the pulsed signal were assumed constant for each day 

but were allowed to vary from day to day. We computed the likelihood function for an 

8° x 12° grid of positions, spaced by 0.5° and centered at an earlier position estimate 

(Chakrabarty et al. 1994; see Appendix I). The formal confidence contours were calculated 

by interpolation between the grid points. These are shown in Figure 5.5, along with the 

earlier estimate by Chakrabarty et al. (1994) for comparison. 

5.3 Discussion 

GRO J1948+32 is certainly a neutron star; the lower limit on the spin frequency 

derivative exceeds, by an order of magnitude, the maximum possible spin-up rate for a 

white dwarf pulsar (6 x 10-14 Hz s-1 for accretion at the Eddington critical rate, assuming 

radius Rx = 109 cm, mass Mx = l.4M0, and spin period Pspin = 18.7 s). If we assume 

steady spin-up over the outburst duration, we can further exploit our lower limit on v to 

infer that the total X-ray luminosity Lx ~ 1036 erg s-1 (see Appendix C). The upper 

limit on v, which is within a factor of 3 of the maximum spin-up rate for a neutron star 
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(6 x 10-11 Hz s-1 assuming Rx = 106 cm, Mx = l.4M8 , and Pspin = 18.7 s), corresponds 

to Lx ;::; 8 x 1037 erg s-1. Since we have no measure of the bolometric X-ray flux, we are 

unable to place useful limits on the distance to the source. 

The nature of the mass transfer in this system is not clear. The values of Pspin and 

Porb are consistent with the correlation generally observed in Be/X-ray binaries (Corbet 

1986; Waters & van Kerkwijk 1989; see also Figure 1.2), and the inferred mass function 

range is also consistent with this classification. Unlike GRO J1948+32, the known Be/X­

ray binary systems are typically in highly eccentric orbits (e ;<; 0.3), but this may be an 

observational selection effect. The system has some similarities to the 12.3 s transient X-ray 

pulsar GS 0834-430, which has a wide, mildly eccentric (e = 0.128±0.063), 112 d orbit with 

a small mass function (Wilson et al. 1994). Both systems exhibit transient outbursts which 

last for a large fraction of the orbital period, but both systems also go for multiple orbital 

cycles without any detectable emission. (BATSE has observed only one outburst from 
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GRO J1948+32 despite > 18 orbital cycles of the pulsar since the launch of the Compton 
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Chapter 6 

Extended Spin-Down of the Accreting 

X-Ray Pulsar 4U 1626-67* 

6.1 Introduction 

What goes up must come down. 

-American proverb 

82 

Early studies of X-ray pulsars accreting from disks found that the observed long­

term spin-up time scale (Tsu= lvspin/zispinl ;:; 104 yr) was much less than the X-ray emitting 

lifetime (rx ;<; 106 yr), implying that long-term spin-up cannot be the steady-state behavior 

of these systems (Elsner, Ghosh, & Lamb 1980). The discovery of prolonged spin-down 

(Makishima et al. 1988) and subsequent additional torque reversals (see Chapter 7) in 

GX 1+4 was a dramatic illustration of this for the source with the shortest spin-up time 

(Tsu ~ 40 yr). At the same time, it raised questions about what sets the time scale of rvyears 

for these torque sign reversals. In this chapter, we report the discovery of a torque reversal 

and extended spin-down in a second pulsar, 4U 1626-67. 

The X-ray source 4U 1626-67 (l = 321°, b = -13°) was discovered in the 2-20 keV 

band by Uhuru (Giacconi et al. 1972). Subsequent 1.5-30 keV observations with SAS-3 

revealed 7.68 s pulsations (Rappaport et al. 1977) and provided a sufficiently accurate 

position (Bradt et al. 1977) to identify the optical counterpart, KZ 'frA (McClintock et al. 

1977). Optical pulsations with 2% amplitude were detected at the same frequency as the 

*Adapted from a manuscript in preparation for The Astrophysical Journal by D. Chakrabarty, L. Bildsten, 
J. M. Grunsfeld, T. Koh, T. A. Prince, B. Vaughan, M. H. Finger, D. M. Scott, & R. B. Wilson. 
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X-ray pulsations (Ilovaisky, Match, & Chevalier 1978) and are understood as reprocessing 

of the pulsed X-ray flux by the accretion disk (Chester 1979). The system shows strong, 

correlated X-ray/optical flares every~ 1000 s that are of undetermined origin (Joss, Avni, 

& Rappaport 1978; McClintock et al. 1980; Li et al. 1980) and show no X-ray spectral 

changes (Kii et al. 1986). A ~ 40 mHz quasi-periodic oscillation was detected in X-ray 

observations by Ginga and ASCA (Shinoda et al. 1990; Angelini et al. 1995), and has been 

recently detected in optical observations as well (see Appendix H). 

Further timing of the optical pulsations detected weak, persistent pulsations in a 

sidelobe of the "direct" (X-ray) pulse frequency, which were attributed to a beat frequency 

with a ,..._,40 min binary orbit arising from reprocessing on the companion surface (Middled­

itch et al. 1981; see also Appendix H). X-ray timing measurements place an upper limit 

of ax sin i < 10.5 It-ms on a neutron star orbit with this binary period, giving an upper 

limit on the X-ray mass function of fx(M) ~ 1.3 x 10-6 M0 (Levine et al. 1988). The most 

likely Roche-lobe filling companion consistent with these limits is a low mass (0.02-0.06 

M 0 ) degenerate helium or carbon-oxygen dwarf; more massive stars require very unlikely 

inclination angles (see Verbunt, Wijers & Burm 1990 for a complete discussion). Recent 

ASCA observations detected a strong complex of neon emission lines near 1 keV (Angelini 

et al. 1995). 

For more than a decade after its discovery, accretion was steadily spinning up 4U 

1626-67 at the rate Tsu ~ 5000 yr. However, long-term 20-60 keV monitoring of the source 

with the Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray 

Observatory found that the accretion torque changed sign, causing spin-down at nearly 

the same rate (Wilson et al. 1993; Bildsten et al. 1994). This change of state has been 

subsequently confirmed in 3-60 keV observations with the ART-P instrument on Granat 

(Lutovinov et al. 1994), 0.2-2.4 keV observations with ROSAT/PSPC (Angelini, Ghosh, 

& White 1994), and 0.5-10 keV observations with ASCA (Angelini et al. 1995). In this 

chapter we report on four years of continuous BATSE timing and spectral data. 
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6.2 Observations and Analysis 

6.2.1 Pulse Timing 

BATSE is a nearly continuous all-sky monitor of 20 keV-1.8 MeV hard X-ray/r­

ray flux (see Fishman et al. 1989 for a description). Our standard BATSE pulsed source 

detection and timing analysis uses the 20-60 keV channel of the 4 channel/1.024 s resolution 

DISCLA data type (see Chapter 2). The barycentric pulse frequency history of 4U 1626-67 

from 1991 April to 1995 November was determined by dividing the BATSE data into short 

(,..._,few days) segments and searching the Fourier power spectrum of each segment for the 

strongest signal in a small range around a pulse period of 7. 7 s. The length of data used was 

always much shorter than the time scale for signal decoherence caused by the large pulse 

frequency derivative (Tdecoh = /17fVT ~ 13 days; see Appendix B). 

Figure 6.1 shows the pulse frequency history of 4U 1626-67. During 1977-1989, 

the source underwent steady spin-up at a mean rate v = 8.54(7) x 10-13 Hz s-1 . Levine et 

al. (1988) found a significant quadratic term in the pulse period history (IP/Pl~ 40 yr) 

when doing an unweighted fit of a subset of these data. However, we find that a polynomial 

model of fourth order or higher is necessary to obtain an acceptable weighted fit to the pre-

1990 data. The ROSAT and ART-P observations show a clear decrease in the spin-up rate 

and suggest that the torque reversal occurred during 1990 (see bottom panel of Figure 6.1). 

The pulse frequency history observed by BATSE from 1991 April to 1995 Novem­

ber (MJD 48360-50030) shows a significant quadratic component and is well fit (reduced 

x2 =1.46 with 320 degrees of freedom) by 

v(t) = llO + vo(t - to)+ ~ii(t - to) 2
, (6.1) 

with v0 = 0.13048862(2) Hz, vo = -7.1795(41) x 10-13 Hz s-1 , and ii = 9.41(16) x 

10-22 Hz s-2 , referenced to the epoch to = MJD 49000 TDB. Thus, the spin-down torque 

is decreasing in magnitude on the time scale Iv/iii ~12 yr, similar to thee-folding scale for 

the spin-up rate which was reported by Levine et al. (1988). Higher order terms do not 

significantly improve the fit. We can probe the rotation history of the pulsar more sensi­

tively using a pulse arrival time (phase) analysis; a description of this technique is given 

in Chapter 4. The pulsar's behavior is very stable, and we can maintain an unambiguous 

pulse count over the entire BATSE observation history. In the absence of a clear binary 
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orbital signature, we fit the resulting pulse phase history to a descriptive model of the form 

<f>(t) =<Po+ vo(t - to)+ ~zio(t - to) 2 + ~iio(t - to) 3 + 2~ ·7; (t - to)4
, (6.2) 

where pulse phase is defined relative to the maximum of the fundamental harmonic of the 

20-60 ke V pulse profile. (The pulse shape is dominated by this harmonic.) The resulting 

best-fit parameters are: </Jo = 0.864(28), vo = 0.1304884979(13) Hz, zio = -7.18492(56) x 

10-13 Hz s-1, ii0 = 1.119( 4) x 10-21 Hz s-2 , and v·= 5.8(2) x 10-30 Hz s-3 , referenced to 

the epoch to= MJD 49000 TDB. 

The pulse phase residuals with respect to the fit to Equation 6.2 are shown in 

Figure 6.2. Slowly varying excursions from the model on time scales of a few hundred days 

are evident. These variations are not periodic and thus cannot arise from a binary orbit. 1 

We can use the Fourier amplitude spectrum of the pulse phase residuals to set an upper 

limit on the possible size of a long-period orbit (Levine et al. 1988). (Because BATSE 

requires rvl d to acquire a significant detection of 4U 1626-67, we cannot constrain the size 

of orbits with Porb ;:; 2 d with our data.) Combining our results with earlier measurements 

1We note that while the size and aperiodicity of the phase residuals limit the utility of Equation 6.2 as 
a predictive pulse phase ephemeris, Equation 6.1 is an excellent (0.0002% RMS) ephemeris for the pulse 
frequency. 
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by SAS-3 and Ginga (Rappaport et al. 1977; Joss, Avni, & Rappaport 1978; Shinoda et al. 

1990), we can set following upper limits on the projected orbital radius: 

8 lt-ms (3a) for 10 min;:; Porb ;:;1 d ( Ginga) 

ax sin i ;::;; 
100 lt-ms (2a) for 1 d;:; Porb ;:;2 d (SAS-3) 

(6.3) 
60 lt-ms (2a) for 2 d;:; Porb ;:;60 d (BATSE) 

150 lt-ms (2a) for 60 d;:; Porb ;:;1300 d (BATSE). 

The limit for orbital periods longer than rv60 dis less stringent due to a substantial 

increase in noise power fluctuations at low frequencies. Nevertheless, these limits effectively 

rule out the possibility of a long-period orbit. 

6.2.2 Phase Residual Analysis 

Since the phase residuals in Figure 6.2 cannot be explained by a binary orbit, 

it is useful to characterize the statistical properties of the pulse frequency fluctuations. 

The strong correlations evident on long time scales indicate the presence of a strong "red 

noise" component (a power spectral component which rises with decreasing frequency) in 

the pulse frequency fluctuations. The presence of red noise can bias an unwindowed Fourier 

analysis of the power spectrum continuum due to power leakage through the broad sidelobe 

response of sinusoidal basis functions (Deeter & Boynton 1982). Spectral leakage can be 

suppressed (at a cost in frequency resolution) by judicious use of data windowing (Harris 

1978). Before computing the power spectrum, we multiplied the pulse frequency residuals 

by a window function of the form Wj = cos4 (j7r / N) with j = -N /2, · · · , N /2, substantially 

suppressing the sidelobe response of the Fourier transform (Harris 1978). To preserve the 

proper normalization, we rescaled the power spectrum by a factor N /I: w. 

The resulting power spectral density of the pulse frequency fluctuations Pq, is 

shown in the left panel of Figure 6.3. The spectrum at analysis frequencies f < 10-7 Hz 

varies as Pq, ex 1-3.99±o.52 . The power spectrum for f > 10-7 Hz is dominated by the white 

noise process caused by the statistical uncertainties in the pulse phase measurements. (The 

measurement noise level indicated in the figure is not a fit to the power spectrum data but 

was calculated from the phase measurement uncertainties.) Although our measurements 

were made of pulse phases, it is of physical interest to study the fluctuations in pulse 

frequency derivative, since this quantity is proportional to the net torque on the neutron 

star. The power spectral density of fluctuations in pulse frequency derivative P,:, is simply 
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Figure 6.3: Fluctuation analysis of pulse phase residuals of 4U 1626-67. Left panel: Power 
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panel: Corresponding power spectrum of fluctuations in the pulse frequency derivative v. 
The spectrum below 10-7 Hz is consistent with a random walk in pulse frequency (dotted 

line), while the high frequency spectrum is consistent with measurement noise. 

related to Pef> by Pv = (27rf)4Pef> (see, e.g., Boynton 1981). This spectrum is shown in the 

right panel of Figure 6.3. At low frequencies, we see that the Pv is well described by white 

noise in the torque fluctuations, which is equivalent to a random walk in pulse frequency. 

Thus, the pulse phase variations are entirely consistent with phase measurement noise plus 

a random walk process in pulse frequency of strength Sv = R((8v) 2) = Pv ~ 1 x 10-22 

Hz2 s-1 , where R is the rate at which random walk steps of magnitude 8v occur. 

A random walk in pulse frequency is capable of inducing apparent high-order terms 

in the pulse timing model. Since the root-mean-squared variation in the pulse frequency 

induced by the random walk in a time Tis just v'Sv T, the apparent pulse frequency second 
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derivative induced over our 1600 d observation is 

.. 2.;s;;T 10-23 H -2 
Vrw ,....., T 2 ~ Z S • (6.4) 

This is two orders of magnitude smaller than the observed ii ~ 10-21 Hz s-2, suggesting 

that the rapid v evolution does not arise from the random walk but is due to some different 

process. The apparent pulse frequency third derivative induced is 

... 6.;s;;T ~ 3 10-31 H -3 
Vrwrv T 3 ~ X Z S . (6.5) 

This is within an order of magnitude of the measured value ii~ 6 x 10-3o Hz s-3 . Given the 

uncertainties in our measurement of the random walk strength, the observed ii is consistent 

with the random walk. 

6.2.3 Pulse Spectroscopy 

In order to measure the photon energy spectrum of the pulsed emission, we folded 

segments of the BATSE CONT data (16 energy channels, 2.048 s resolution) using the pulse 

frequency model of Equation 6.1. Spectral measurement of this source is difficult because 

it is usually only detected in the two lowest CONT energy channels (roughly 20-30 keV 

and 30-45 keV). We selected the data interval 1993 August 16-21 (MJD 49217-49222), 

during which the source was also detected in the next highest channel (45-60 keV). A 

single-harmonic pulse model was employed to measure the pulsed count rates in the pulse 

profiles (see Chapter 5). The inferred phase-averaged pulsed photon spectrum, assuming a 

power-law spectral model dN/dE = C3o(E/30 keV)-'Y, is shown in Figure 6.4. The best-fit 

spectral parameters are 'Y = 4.76(20) and C30 = 1.50(3) x 10-4 photons cm-2 s-1 kev-1. 

The pulse profiles from the CONT data are shown in Figure 6.5; no pulsed signal was 

detected in channel 4. The 20-60 keV pulsed intensity of 4U 1626-67 was relatively steady 

at 1.5 x 10-10 erg cm-2 s-1 over the entire BATSE observation interval, varying by less 

than 50%. 

6.3 Discussion 

The accretion torque exerted on the neutron star in 4U 1626-67 is very steady 

and smooth, most likely a sign of disk accretion. Our observations have found that the 

neutron star is now steadily spinning down as it accretes, in contrast to the spin-up 
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previously observed. This probably indicates that the pulsar is spinning near its equi­

librimn period, where the magnetospheric radius is comparable to the co-rotation radius 

reo = (GMx/47r2 v2
) 113 = 6.5 x 108 cm (assuming neutron star mass Mx = l.4M0 ). The 

characteristic torque Nehar = Mleo is set by the mass accretion rate M and the specific an­

gular momentum lea = ( GMxre0 )
112 of matter at the co-rotation radius. This torque would 

give a spin evolution rate of jzij = N/27rl:::::: 3.5 x 10-13 Hz s-1 , assuming M = 10-10 M 0 

yr-1 and moment of inertia I = 1045 g cm2 . As the actual torque might be less than 

NJ, we can use our measured value of zi to place a lower limit on the mass accretion rate, 

M ~ 2 x 10-10 M 0 yr-1 (see Appendix C). The source must then be further than 3 kpc 

away to give a flux consistent with Pravdo et al. (1978), implying that the system lies> 600 

pc above the Galactic plane. 

As Levine et al. (1988) have already noted, mass accretion rates of this order are 

consistent with a low-mass degenerate helium or carbon-oxygen companion whose evolution 

is driven by gravitational radiation. The surface magnetic field strength needed to place the 

magnetosphere at the co-rotation radius is B ~ 1012 G for these accretion rates. Though the 

magnetic field for this system has never been measured, previous authors have suggested 

a magnetic field strength of 6-8x1012 G on the basis of the cutoff energy in the X-ray 

spectrum (Pravdo et al. 1979) and the energy dependence of the pulse shape (Kii et al. 

1986). 

The various theories of magnetic accretion torques (Ghosh & Lamb 1979; Arons 

et al. 1984; Wang 1987) all agree that lower values of accretion rate will move the mag­

netosphere to larger radii and eventually lead to spin-down. The accretion luminosity has 

been measured during both spin-up and spin-down for this system. The best measurement 

during spin-up was Fx :::::: 2.4 x 10-9 erg cm-2 s-1 (0.7-60 keV; Pravdo et al. 1979). Our 

measurements found a 20-60 keV pulsed spectrum with the same power-law slope as the 

Pravdo et al. measurement (for the same bandpass), but with a factor of 3-4 reduction in 

overall normalization. This is not a bolometric measurement, as BATSE is only sensitive to 

the pulsed flux above 20 keV. However, a contemporaneous 0.5-10 keV ASCA observation 

found that the total flux in this bandpass was a factor of 3 lower than a 1979 (spin-up) mea­

surement in the same bandpass (Angelini et al. 1995). In addition, a 0.5-2.4 keV ROSAT 

observation made near the torque reversal also measured a total flux lower than the spin-up 

value in the same bandpass (Mavromatakis 1994). There is thus evidence for a reduction 

in the accretion rate onto the neutron star during the spin-down. 
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In the broader context of all the disk-fed accreting pulsars, a wide range of behavior 

is seen (Prince et al. 1994). As noted earlier, disk-fed pulsars with a characteristic spin-up 

time much shorter than their lifetime should be at or near their equilibrium spin period. 

These systems evidently oscillate about this equilibrium through alternating episodes of 

spin-up and spin-down. This scenario was checked by comparing the observed long-term 

(~years) mean torque Navg to the characteristic torque Nchar· For both 4U 1626-67 and GX 

1+4 (and also SMC X-1 and IE 2259+586, both of which have exhibited long-term spin-up 

and/or spin-down episodes), the observed long-term average torque always satisfies Navg ~ 

0.2Nchan which (within the uncertainties) is consistent with accretion from matter near 

the co-rotation radius. In contrast, the disk-fed source Her X-1 exhibits Navg "" 0.0lNchar· 

Some of these systems have frequency histories that are consistent with a random walk 

(Baykal & Ogelman 1993) that could arise if the torque had a value "" Nchan but changed 

signs on a shorter time scale. Recent short time scale (~10-20 d) torque measurements for 

Her X-1 and Cen X-3 by BATSE always find torques well in excess of Navg, but never in 

excess of Nchar (Wilson, Finger, & Scott 1994; Finger, Wilson, & Fishman 1994). 

This suggests that all disk-fed accreting pulsars show torques with magnitudes 

~ Nchar on short time scales and differentiate themselves by the torque switching time. 

This raises two new questions which need to be addressed: 

• Why is the magnitude of the torque during spin-up nearly the same as during 

spin-down? Ghosh & Lamb (1979) predicted that the torque would smoothly pass 

through zero before the magnetospheric radius moves outside of the co-rotation radius 

(the point where accretion might be halted by centrifugal effects), in which case one would 

expect a wide range of possible spin-down torque magnitudes. It is thus puzzling that 

the magnitude of the spin-up and spin-down torques in 4U 1626-67 are nearly identical. 

• What physics sets the time scale for the torque reversals? It seems unlikely to 

be set by the viscous time in the accretion disk, as this time scale (for an a = 1 Shakura­

Sunyaev accretion disk) is "" 104 seconds at the magnetosphere and a few days at the 

outer edge of the accretion disk. It might well arise from long-term cycles in the supply 

of matter from the companion, in which case the time scale is similar to the long-term 

cycles seen in other low-mass X-ray binaries (Smale & Lochner 1992). 

The neutron star in accreting X-ray pulsars is subject to both external and internal 

torques. The external torques arise from both the accretion of matter from the binary 
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companion and the interaction of the pulsar magnetosphere with the accretion disk. The 

internal torques arise from the response of the neutron star to these external torques and 

depend on the detailed interior structure of neutron stars. The pulse phase and its time 

derivatives provide a probe of these torque components. Among the accretion-powered 

pulsars, detailed statistical studies have been made of the disk-fed systems Her X-1 (Boynton 

1981) and Cen X-3 (Finger, Wilson, & Fishman 1994), and the wind-fed system Vela X-1 

(Deeter et al. 1989; Finger et al. 1996). Her X-1 and Vela X-1 both exhibit fluctuations 

consistent with a random walk in pulse frequency of strength 2 x 10-19 Hz2 s-1 and 2x10-20 

Hz2 s-1 , respectively. The power density of torque fluctuations for Cen X-3 exhibits a 1/ f 
spectrum of strength > 10-18 Hz2 s-1 below 10-6 Hz. By comparison, the frequency 

random walk of strength 10-22 Hz2 s-1 observed in 4U 1626-67 is a very quiet process. 

These contrasts may simply reflect differences in the stability of the accretion flows in these 

systems. 

It is also interesting to compare the torque noise in 4U 1626-67 with the timing 

irregularities seen in radio pulsars. Both timing noise and glitches are seen in many young 

radio pulsars (see Lyne 1993 for a review). For most of these pulsars, the timing noise can 

be described by a random walk in frequency (Cordes & Helfand 1980). The Crab pulsar, 

one of the youngest and noisiest radio pulsars, exhibits a random walk in frequency of 

strength 7 x 10-23 Hz2 s-1 (Boynton et al. 1972; Cordes & Helfand 1980), only a factor of 

2 weaker than what we observe in 4U 1626-67. Observations of glitches and timing noise in 

radio pulsars has motivated much theoretical work on the interactions between the crustal 

neutron superfluid and the charged component of the crust (see Alpar 1995 for a recent 

summary). Internal torques might be the source of the noise process we observe in 4U 

1626-67 (Lamb, Pines, & Shaham 1978). 

A comparison of the interior conditions of accreting X-ray pulsars and young radio 

pulsars is instructive. The neutron star's response to an external torque should depend 

mainly on the strength of the torque and the interior temperature of the star; whether the 

torque is caused by accretion or by radiative losses is most likely irrelevant. The torques in 

noisy radio pulsars are generally larger than what we see in 4U 1626-67 (zi = 3.6 x 10-10 

Hz s-1 in the Crab pulsar). However, the core temperature (which is important to most 

models of the glitching mechanisms and may be for timing noise as well) is comparable. 

Most of the noisiest radio pulsars are young (;;:; 104 yr) and still have relatively hot cores 

from their birth (Tc;:;:; 2 x 108 K) for a standard cooling curve (Nomoto & Tsuruta 1987). 
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The core temperatures in accreting neutron stars are also ~ 108 K, as the nuclear burning 

of the freshly accreted matter on the surface heats the interior to these temperatures in 

< 106 yr (Fujimoto et al. 1984). The steady-state core temperature of an accreting system 

is found by balancing the thermal heating from the hot blanket of burning matter with 

internal neutrino cooling. Ayasli and Joss (1982) showed that a system accreting at the 

10-10 M8 yr-1 rate relevant to 4U 1626-67 would equilibrate at Tc ~ 1 x 108 K. These 

similarities in temperatures might prove important in our eventual understanding of the 

torque noise in 4U 1626-67. 
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Chapter 7 

Torque-Luminosity Anticorrelation 

in the Accreting Pulsar GX 1+4* 

7.1 Introduction 

A fine wind is blowing the new direction of Time. 

-D. H. Lawrence (1920) 
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The torque exerted on an accreting star is of great interest in astrophysics, with 

relevance to binary evolution, star formation, neutron star structure, and the origin of 

millisecond radio pulsars. A widely studied scenario is disk accretion onto a rotating, 

magnetized star, usually a neutron star, white dwarf, or T Tauri star (see King 1995 for a 

recent review). As first discussed by Pringle & Rees (1972) and Lamb, Pethick, & Pines 

(1973), the Keplerian disk flow will be disrupted at the magnetospheric radius rm (where the 

Keplerian kinetic stress is equal to the magnetic stress), attaching matter to the magnetic 

field lines. If rm lies beyond the corotation radius reo (where the presumably corotating 

magnetic field lines are moving at the local Kepler velocity), then matter attached to the 

field lines will be centrifugally inhibited from accreting, potentially being expelled as in a 

propeller (Illarionov & Sunyaev 1975). Matter can easily accrete if rm < reo and flows along 

the field lines onto a restricted surface near the magnetic poles of the star, spinning up the 

star with specific angular momentum N = (GMxrm) 112 and giving rise to pulsed emission 

at the star's spin period. This phenomenon is seen in both accreting neutron stars (X-ray 

•Adapted from a manuscript in preparation for The Astrophysical Journal by D. Chakrabarty, L. Bildsten, 
J. M. Grunsfeld, T. Koh, T. A. Prince, B. Vaughan, M. H. Finger, R. B. Wilson, & B. C. Rubin. 
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pulsars; see White, Nagase, & Parmar 1995) and accreting white dwarfs (DQ Her systems; 

see Patterson 1994). 

Accreting neutron stars are the ideal laboratory for the study of accretion torques, 

since the bolometric X-ray intensity is proportional to the mass accretion rate, and the low 

moment of inertia permits torque measurements on short time scales. Early observations of 

X-ray pulsars found that the simple dimensional model for steady spin-up sketched above 

is inadequate; some X-ray pulsars are observed to spin up at rates smaller than predicted, 

or even to spin down for extended intervals while continuing to accrete matter. This led to 

the suggestion of mechanisms for a spin-down torque during accretion which could compete 

with or even dominate the spin-up torque. These suggestions fall into two categories. In 

the first, the magnetic field penetrates the accretion disk beyond Tm (Ghosh & Lamb 1979a, 

1979b; Wang 1987, 1995). In this magnetically-threaded disk (MTD) model, the spin-down 

torque arises from magnetic coupling of the neutron star with material beyond re0 , where 

the disk rotates more slowly than the pulsar. In the second category, the spin-down torque 

arises from the loss of angular momentum via matter outflow from some parts of the disk 

while accretion continues from other parts (Arons et al. 1984; Lovelace, Romanova, & 

Bisnovatyi-Kogan 1995). In the centrifugally-driven wind (CDW) model of Arons et al. 

(1984), the magnetic field does not thread the disk but penetrates a narrow boundary layer. 

Kelvin-Helmholtz instabilities load the magnetosphere with disk material, causing some 

field lines to be broken open by centrifugal stresses. A magnetohydrodynamic wind outflow 

results, which carries away angular momentum. 

The two scenarios differ dramatically in the topology of the magnetic field beyond 

Tm. The principal observational distinction is the outflow predicted by the CDW model, 

which would probably be supersonic. Otherwise, both scenarios share a number of features. 

They both predict an equilibrium spin period where the spin-up and spin-down torques 

balance, which occurs when rm ~ reo· At this equilibrium, there is no net torque on the 

star, but accretion continues to occur. They both predict that a higher mass accretion rate 

M should yield a smaller magnetospheric radius rm, resulting in a larger spin-up torque. 

They both predict that a reduced value of M increases rm, reducing the spin-up torque 

until a net spin down occurs and eventually leading to centrifugal inhibition of matter due 

to the propeller effect (Illarionov & Sunyaev 1975). 

The sparse, intermittent observations of X-ray pulsars during the 1970s and 1980s 

were generally consistent with either scenario (see Nagase 1989 and references therein). 
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Presently, the Burst and Transient Source Experiment (BATSE) on the Compton Gamma 

Ray Observatory ( GRO) has made daily measurements of a large sample of X-ray pulsars 

over a long (;<; 5 yr) time baseline available for the first time, allowing investigations on 

a wide variety of time scales. In some cases [e.g., A0535+26 (Finger, Wilson, & Harmon 

1996); 4U 1626-67 (Chapter 5)], the BATSE observations have also been compatible with 

both the MTD and CDW models of magnetic disk accretion. However, in this paper, we 

describe observations of a disk-fed X-ray pulsar which is not readily understood in these 

terms. 

The ~ 2 min accretion-powered binary pulsar GX 1+4 was discovered in an 18-

50 keV hard X-ray balloon experiment a quarter century ago (Lewin, Ricker, & McClintock 

1971) and was later identified with the 2-10 keV Uhuru source 4U 1728-247 (Forman et 

al. 1978). It was found to have the hardest X-ray spectrum among the persistent X-ray 

pulsars, well fit by a broken power law photon spectrum with soft index 11 ~ 1.3 (2-20 

keV; Becker et al. 1976) and hard index 12 ~ 2.5 (20-60 keV; Ricker et al. 1976). Several 

authors reported evidence that the true pulse period was ,...., 4 min. However, Doty et al. 

(1981) found that there is a significant excess of aperiodic variability in the source on time 

scales near 4 min, and that this excess noise was capable of explaining the apparent 4 min 

period in their SAS-3 observation1 . 

Armed with the 1 arcmin Uhuru X-ray position, Glass & Feast (1973) tentatively 

identified GX 1 +4 with the bright infrared star V2116 Oph. This association was strength­

ened by an improved 25 arcsec X-ray position circle centered within 8 arcsec of V2116 Oph 

(Doxsey et al. 1977). Optical spectroscopy found that V2116 Oph was the cool component 

of a symbiotic binary (see Kenyon 1986 for a review of symbiotic stars), with bright emission 

lines of H I (especially Ha) and He I superimposed on the cool continuum spectrum of a 

highly reddened (Av ~ 5) M6 III giant (Davidsen, Malina, & Bowyer 1977). In addition, 

the optical spectrum also contained emission lines of several highly ionized species, notably 

[Fe vn] and [Fe x], requiring the presence of ;<; 100 eV ionizing photons and suggesting 

that the hot secondary component is an X-ray source. A recent improved position (8 arcsec 

radius) for GX 1+4 lies within 2 arcsec of the optical position of V2116 Oph (Predehl, 

Friedrich, & Staubert 1995). This latest position must be viewed with some caution as it 

is derived from only 15 detected photons in a 22 arcsec radius. Nevertheless, the optical 

1 Viewed in hindsight, this may be evidence for a weak quasi-periodic oscillation, a phenomenon which 
was not known to exist in X-ray pulsars until 1988. See van der Klis (1995) for a recent review. 
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identification seems secure, making this system the only known neutron star symbiotic. 

Throughout the 1970s, GX 1+4 was repeatedly detected as a persistent source (see 

McClintock & Leventhal 1989 and references therein) and was spinning up rapidly on a time 

scale Iv /vi ~ 40 yr. However, a series of deep observations by EXOSAT in 1983 September 

and 1984 August-September failed to detect the source, establishing an upper limit two 

orders of magnitude below the previously observed intensity (Hall & Davelaar 1983; Dotani 

et al. 1989). Optical spectroscopy of V2116 Oph acquired during the X-ray low state in 

GX 1+4 found variability in the emission line features: strong Ha emission was detected in 

1983 August, no emission lines were detected in 1983 November, and strong Balmer emission 

had resumed in 1984 February (Whitelock, Menzies, & Feast 1983; Whitelock 1984). 

In 1987, observations with Ginga found the X-ray source at a low intensity and 

spinning down rapidly (Makishima et al. 1988). In order to interpret this torque reversal 

as the oscillation between spin-up and spin-down of a pulsar at its equilibrium spin period, 

an unusually high surface magnetic field of B ,..., 7 x 1013 G is required. As an alternative, 

Makishima et al. suggested that the spin-down may be due to accretion from the dense, 

slow wind of the M giant after disruption of an earlier accretion disk during spin-up. Subse­

quent observations found the source brightening somewhat over the next few years. Optical 

spectroscopy of V2116 Oph found strong H I and He r emission features, but the highly 

ionized [Fe) features observed during the 1970s were notably absent (Gotthelf, Halpern, & 

Szentgyorgyi 1988; Sood et al. 1991; Chakrabarty & Roche 1996). 

Our daily observations of GX 1+4 with the Compton/BATSE all-sky monitor be­

gan in 1991 April. These observations found relatively steady, persistent quiescent emission 

along with intermittent bright flares, most notably the widely observed 1993 September flare 

(Finger et al. 1993; Staubert et al. 1995). Several authors have claimed that this X-ray 

flare was accompanied by enhanced Ha emission (Manchanda et al. 1995; Greenhill et al. 

1995), although optical spectroscopic measurements do not support this (Chakrabarty & 

Roche 1996). In 1994 November, after several months of gradually increasing in intensity, 

GX 1+4 underwent a smooth torque reversal and began spinning up for several months 

(Chakrabarty et al. 1994; see Appendix I). By 1995 March, the X-ray flux had dropped 

back to its quiescent level and the source underwent another smooth torque reversal into a 

spin-down state (Chakrabarty et al. 1995; see Appendix I). In this chapter, we present a 

detailed analysis of the BATSE monitoring data. 
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7 .2 Observations and Analysis 

7.2.1 Timing 

BATSE is a nearly continuous all-sky monitor of 20 keV-1.8 MeV hard X-ray/1-

ray flux, consisting of eight identical uncollimated detectors arranged on the corners of the 

Compton spacecraft (see Fishman et al. 1989 for a description). Because the detectors 

are uncollimated, steady sources are indistinguishable from the background except when 

occulted by Earth's limb. Bright impulsive transients (e.g., solar flares and gamma ray 

bursts) are detected because their high intensity and short duration make them easily 

discriminated from the background. Periodic pulsed sources are also readily detectable. Our 

standard BATSE pulsed source detection and timing analysis uses the 20-60 ke V channel 

of the 4 channel/1.024 s resolution DISCLA data type (see Chapter 2). The barycentric 

pulse frequency history of GX 1+4 from 1991 April to 1995 November (MJD 48362-50031) 

was determined by dividing the BATSE data into five-day segments and searching the 

Fourier power spectrum of each segment for the strongest signal in the pulse period range 

110 s;::; Ppulse ;::; 130 s. 

Figure 7.1 shows the long-term pulse frequency history of GX 1+4, including 

both previous observations by various instruments as well as our BATSE observations (see 

Appendix J). During the 1970s, GX 1+4 was spinning up with mean rate v ~ 6.0 x 

10-12 Hz s-1 . From 1984 to date, the source has spun down at a mean rate v ~ -3.7 x 

10-12 Hz s-1 , similar in magnitude to the previous spin-up rate. A close inspection of the 

pulse frequency data shows significant deviations from simple linear trends. During the 

spin-up era, the post-1975 measurements were of high precision and show excursions from 

steady spin-up. 

The spin-down data during 1987-1991 (see bottom panel of Figure 7.1) show a 

clear quadratic trend, with the spin-down torque decreasing on a time scale Iv/ ii I ~ 10 

yr. Our BATSE observations (shown in detail in Figure 7.2) also display a significant 

quadratic trend with a similar time scale Iv/iii ~ 10 yr. However, the two quadratic 

trends are not consistent. Instead, they meet in a cusp around MJD 48300, indicating 

that a discontinuous change in the torque history occurred around this time. The SIGMA 

observations are approximately consistent with both trends. We observed a transition from 

spin-down to spin-up in 1994 November (Figure 7.3). Steady spin-up was observed for about 

100 d followed by a gradual transition back to spin-down. About 20 d after the resumption 
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Figure 7.1: Pulse frequency history of GX 1+4 at the solar system barycenter. Top panel: 
Long-term history of the source since its discovery. Bottom panel: Detailed spin-down 
history. The data for both panels are collected in Appendix J. Observations taken by 
other instruments after the start of BATSE monitoring have been omitted from this figure 
for clarity, but are also included in Appendix J. These measurements agree with the 
BATSE data. 
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Figure 7.2: Detailed view of the BATSE pulse frequency history of GX 1 +4. 

of spin-down, there was a dramatic increase in the spin-down rate which then gradually 

relaxed over the next 100 d. 

Despite the overall strong quadratic trend in the BATSE data, our pulse frequency 

measurements display significant systematic excursions. The BATSE pulse frequency resid­

uals with respect to the best-fit quadratic frequency model are shown in Figure 7.4. The 

oscillatory excursions evident on a ,...., 300 d time scale are too large to be attributed to 

orbital Doppler shifts. If we take b.v ,...., 5 µHz to be the Doppler amplitude of a ,...., 300 d 
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Figure 7.3: Pulse frequency history of two recent torque reversals in GX 1+4. 

orbit, we obtain for the mass function 

( 
b..v )

3 
( Porb ) 

fx(M) ~ 200 M0 5 µHz 300 d ' (7.1) 

too massive for any stellar companion, let alone a red giant. The excursions are most likely 

due to variations in accretion torque. It is possible that the torques exhibit an orbital 

modulation, in which case the orbital period may still be ,.._, 300 d. We note that Cutler et 

al. (1986) suggested the presence of a 304 d periodicity in the torque history of the 1970s 

spin-up era. 

It is useful to characterize the statistical properties of the pulse frequency fluctua­

tions. The strong correlations evident on long time scales indicate the presence of a strong 

"red noise" component (a power spectral component which rises with decreasing frequency) 

in the pulse frequency fluctuations. The presence of red noise can bias an unwindowed 

Fourier analysis of the power spectrum continuum due to power leakage through the broad 

sidelobe response of sinusoidal basis functions (Deeter & Boynton 1982). Spectral leakage 

can be suppressed (at a cost in frequency resolution) by judicious use of data windowing 



CHAPTER 7. TORQUE-LUMINOSITY ANTICORRELATION IN GX 1+4 107 

40 

,--.._ 
N 

I 
::l_ 

20 
.___,, 

0 
:::J 

""CJ 
(j) 
Q) 
!.... 

>, 0 
u 
c 
Q) 

:::J 
CY 
Q) 
!.... 

Q) 
(j) 

-20 :::J 
Q_ 

1992 

8500 

Year 
1993 1994 1995 

9000 

:~ ""V. 
"<\I 

9500 
Julian Date - 2,440,000.5 

' ;, 

1996 

10000 

Figure 7.4: Pulse frequency residuals of GX 1+4 with respect to a best-fit quadratic 
frequency model. 

(Harris 1978). Before computing the power spectrum, we multiplied the pulse frequency 

residuals by a window function of the form Wj = cos4 (j7r/N) with j = -N/2, · · ·, N/2, 

substantially suppressing the sidelobe response of the Fourier transform (Harris 1978). To 

preserve the proper normalization, we rescaled the power spectrum by a factor N /I: w. 

The resulting power spectral density of the pulse frequency fluctuations Pv is shown 

in the left panel of Figure 7.5. The spectrum at analysis frequencies f < 4 x 10-7 Hz varies 

as Pv ex: 1-2.so±o.17 . The power spectrum for f > 4 x 10-7 Hz is dominated by the white 

noise process caused by the statistical uncertainties in the frequency measurements. (The 

measurement noise level indicated in the figure is not a fit to the power spectrum data but 

was calculated from the frequency measurement uncertainties.) Although our measurements 

were made with pulse frequencies, it is of physical interest to study the fluctuations in pulse 

frequency derivative since this quantity is proportional to the net torque on the neutron 

star. The power spectral density of fluctuations in pulse frequency derivative Pv is simply 

related to Pv by Pv = (27r !)2 Pv (see, e.g., Boynton 1981). This spectrum is shown in the 
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Figure 7.5: Left panel: Power spectrum of fluctuations in the pulse frequency. The white 
noise level expected for the frequency measurement uncertainties is indicated. Right panel: 
Corresponding power spectrum of fluctuations in the pulse frequency derivative fl. Our 
measurements are consistent with 1/ f noise in the torque fluctuations. 

right panel of Figure 7.5. There is evidently a 1/ f red noise process in the torque fluctuation 

power for GX 1+4. This is similar to (although an order of magnitude weaker than) the 

torque fluctuations observed in Cen X-3 (Finger, Wilson, & Fishman 1994), but it is in 

marked contrast to the white noise torque processes observed in Her X-1 (Boynton 1981), 

Vela X-1 (Deeter et al. 1989), and 4U 1626-67 (Chapter 6). These systems are the only 

X-ray pulsars for which a detailed characterization of the torque noise process has been 

made. 

7.2.2 Pulse Profiles and Spectroscopy 

We measured the pulse-phase-averaged pulsed photon spectra for several different 

intensity states using the BATSE CONT data (16 energy channels at 2.048 s resolution). 
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These data were background-subtracted using the BATSE background model of Rubin et 

al. 1996 (Rubin et al. 1996). Three intervals were chosen: the bright extended spin­

up state during 1994 November-1995 March (MJD 49618-49798), a part of the bright 

1993 September flare (MJD 49239-49251), and a relatively quiescent interval during 1993 

January-April (MJD 49010-49100). The phase-averaged pulsed count rates were fit with 
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Table 7.1. BATSE Pulsed Spectrum Fits for GX 1+4 

Interval kT dN/dE at 70 keV 
Dates MJD (keV) (ph cm-2 s-1 kev- 1 ) Remarks 

1993 Jan 23-Apr 23 49010-49100 45.2 ± 1.3 (1.86 ± 0.06) x 10-5 spin-down, low 
1993 Sep 9-21 49239-49251 48.8 ± 2.1 (6.9 ± 0.3) x 10-5 spin-down, flare 
1994 Sep 23-1995 Mar 22 49618-49798 44.1±0.2 (7.19 ± 0.04) x 10-5 spin-up, high 

NOTE: These fits assume optically-thin thermal bremsstrahlung pulsed emission. 

an optically-thin thermal bremsstrahlung spectrum2 of the form 

dN Co 
dE = E 9tr(E, kT) exp(-E/kT), (7.2) 

where kT is a characteristic thermal energy and 9tr is the velocity-averaged free-free Gaunt 

factor (Rybicki & Lightman 1979). The best-fit spectral parameters are given in Table 7.1. 

The spectral shape did not change appreciably between the different intensity states. The 

spectrum for the bright spin-up interval is shown in Figure 7.6. The corresponding pulse 

profiles are shown in Figure 7.7. Pulsed emission is clearly detected at energies up to 160 

keV. An additional detection in the 590-745 keV channel has a formal significance of only 

2.60". 

The spectrum for the 1993 September flare is shown in Figure 7.8. A simultaneous 

measurement of the total (pulsed+unpulsed) spectrum of GX 1+4 in the 40-200 keV range 

was made with Compton/OSSE (Staubert et al. 1995). Before comparing the BATSE and 

OSSE spectra, two adjustments are required. First, a recent recalibration of the low-energy 

response of the OSSE detectors has found that observations reduced with the previous cal­

ibration underestimated the low-energy flux by an energy-dependent factor. The necessary 

correction factor is :::::: 1.2 at 50 keV and falls to unity at 100 keV (J. E. Grove 1995, per­

sonal communication). In addition, an intercomparison of BATSE and OSSE observations 

of the Crab Nebula has found that the BATSE fluxes are systematically ::::::20% higher than 

the OSSE fluxes (Much et al. 1996). Note that this is the discrepancy after applying 

the low-energy correction to the OSSE data; the discrepancy would be worse without the 

2 A power-law model did not produce an acceptable fit; the photon spectrum falls too quickly at high 
energies. We adopted the bremsstrahlung model because it is a convenient parametrization which is in wide 
use by other observers of this source. However, we emphasize that our data are of insufficient quality to 
discriminate between thermal bremsstrahlung and other exponential spectra. 
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100 

correction. The origin of this difference in overall normalization is unclear. However, to 

allow an intercomparison of the GX 1 +4 spectra from the two instruments, we applied the 

low-energy correction to the Staubert et al. (1995) OSSE spectrum and then multiplied the 

entire OSSE spectrum by 1.2. This should place both spectra on the same scale, although 

the overall normalization may be 20% too large. 

The best-fit thermal bremsstrahlung model for the OSSE data, corrected as de­

scribed, is plotted as a dotted curve in the left panel of Figure 7.8. The BATSE and OSSE 

fits agree at 120 keV but diverge at lower energies, differing by more than a factor of 2 at 

20 keV. (We cannot infer anything from the divergence above 100 keV since the BATSE 
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spectrum is unconstrained in this region.) The difference between the two spectra is con­

sistent with previous observations which showed that pulsed fraction increases with energy 

for most X-ray pulsars, including GX 1+4 (see Frontera & Dal Fiume 1989). Since OSSE 

is not an imaging instrument, part of the discrepancy may be due to a problem in the 

subtraction of the low energy background from the Galactic center region. BATSE, a wide 

field instrument which is also non-imaging, suffers from the same problem for observations 

of the total flux. However, by restricting the BATSE analysis to the pulsed flux, we obtain 

a proper background subtraction automatically. If we assume that the OSSE background 

is properly subtracted in the Staubert et al. observation, then we can estimate the pulsed 

fraction of GX 1+4 as a function of energy by simply dividing the BATSE spectral fit by 

the corrected OSSE spectral fit. The resulting estimate for the 20-100 ke V pulsed fraction, 

shown in the right panel of Figure 7.8, should be viewed with caution due to the several 

possible sources of systematic uncertainty. 

7.2.3 Flux and Torque 

We obtained a 20-60 keV pulsed flux history by folding five-day intervals of the 

DISCLA channel 1 data and correcting the resulting pulsed count rates for the BATSE 

instrumental response. Given that the spectrum of GX 1+4 does not change shape signifi­

cantly (see above), we assumed a fixed 20-60 keV power law photon spectrum of the form 

dN / dE ex E-'Y with 'Y = 2.5. The resulting hard X-ray pulsed flux history is given in Ap­

pendix J and is shown in the top panel of Figure 7.9. For most of the Compton mission, the 

pulsed flux history can be described by a quiescent level of~ 2 x 10-10 erg cm-2 s-1 with 

intermittent bright flares of "" 20 d duration superimposed. The centers or edges of some 

of these bright events are indicated by the vertical dotted lines in Figure 7.9. Around MJD 

49638, GX 1 +4 entered an extended bright state which lasted nearly 200 d, substantially 

longer than the usual flaring activity. 

Flux measurements with BATSE suffer from the limitation that we measure only 

the pulsed component in a restricted energy range. The bolometric total X-ray flux is 

related to the BATSE pulsed flux by Fbol = 'f}1'f}2FBATSE, where 'r/1 and 'r/2 are bolometric 

correction factors. The first factor is the 20-60 keV inverse pulsed fraction, 

Fx(20-60 keV total) 
'r/l = Fx(20-60 keV pulsed)' (7.3) 
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The second factor is an inverse hardness ratio, 

Fx(2-60 keV total) 
'TJ

2 = Fx(20-60 keV total) 
(7.4) 

Both 'T}1 and 'T}2 may vary with time. Repeated timing and spectroscopy with a broadband 

mission like the forthcoming X-Ray Timing Explore-? (Bradt, Swank, & Rothschild 1990) 

will be necessary to settle this question. However, if we assume that both factors are roughly 

constant, then we can estimate the bolometric correction for the BATSE data. Taking the 

pulsed fraction from Figure 7.8 and assuming that the incident 20-60 keV total photon 

spectrum is a power law with photon index 2.5, we find 'T}1 ~ 2.7. If we further assume 

that the incident 2-20 keV total photon spectrum is a power law with photon index 1.3, 

then we find 'T}2 ~ 2.3. Thus, we estimate that the bolometric correction factor for our 

BATSE pulsed flux measurements is (rJ1rJ2) ~ 6. This suggests that the brightest flux levels 

observed with BATSE are comparable to the bright states observed during spin-up in the 

1970s. 

In order to study the torque history of GX 1+4, we computed a running 3-point 

numerical derivative of the pulse frequency history. The resulting history of the pulse 

frequency derivative (i.e., the spin-up rate), which is proportional to the net torque applied 

to the neutron star if we can neglect orbital Doppler shifts, is shown in the middle panel 

of Figure 7.9. It is apparent that most of the bright flares were accompanied by enhanced 

spin down. We can write the net angular momentum transferred to the neutron star per 

unit mass of accreting matter as 

lnet = 
27rlv 

M 
27rlvGMx 

RxLx 

~ 1018 2 -1 ( v ) ( FBATSE )-l ('T}1'T}2 )-l 
cm s 10-12 Hz s- 1 10-10 erg cm-2 s-1 -6-

( 
d )-

2 
( I ) ( Mx ) ( Rx )-

1 

x 4 kpc 1045 g cm2 1.4 M0 10 km 

(7.5) 

(7.6) 

(7.7) 

This quantity is plotted in the bottom panel of Figure 7.9. For comparison, the Keplerian 

specific angular momentum at the corotation radius is Zco = JGMxrco = 8.7x 1017 cm2 s- 1. 

The net angular momentum per unit mass transferred to the neutron star during spin-down 

maintained a remarkably stable mean value (Znet) ~ -2 x 1018 cm2 s- 1 , even during the 

3Launched on 1995 December 30. 
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bright spin-down flares. Most of the excursions from this mean have large uncertainties 

due to a low flux level. A few of the excursions, particularly the one around MJD 49813, 

have high statistical significance and are consistent with "propeller" expulsion of matter 

(Illarionov & Sunyaev 1975). 

We can formalize the correlation between torque and luminosity by computing 

the cross-correlation of the two time series. We have done this separately for the long 

spin-down interval (MJD 48370-49610) and the spin-up interval (MJD 49620-49820). The 

resulting cross-correlation functions are shown in Figure 7.10. The spin-down data show 

a strong anticorrelation (i.e., negative correlation) of torque and luminosity with zero lag. 

Figure 7.11 plots the magnitude of the spin-down torque as a function of the observed flux 

during MJD 48370-49610. The correlation is clearly visible, but is evidently more complex 

than a power-law relationship. In contrast to the spin-down interval, the spin-up data show 

a strong positive correlation, also with zero lag (bottom panel of Figure 7.10). 

7 .3 Discussion 

7.3.1 Accretion 

There are several indications that the mass transfer in G X 1 +4 is mediated by 

an accretion disk. The long (""' years) intervals of steady spin-up and spin-down are more 

typical of disk-fed accreters rather than of the more erratic wind-fed X-ray pulsars (see 

Nagase 1989; Prince et al. 1994). Also, optical emission line diagnostics indicate that there 

is an 8 x 104 K photoionization source in the system (Chakrabarty & Roche 1996). This is 

too cool to be the neutron star's emission and much too hot to be the M giant; however, it 

is consistent with emission from the outer parts of an accretion disk. Finally, the possible 

presence of a 4 mHz quasi-periodic oscillation (QPO) (Doty, Hoffman, & Lewin 1981) can be 

understood in the context of a magnetosphere-disk beat frequency QPO model (see van der 

Klis 1995). This evidence, along with our observation of a steady, uninterrupted transition 

between spin-down and spin-up and then back again, allows us to rule out the suggestion 

of Makishima et al. (1988) that the spin-down results from the disruption and reformation 

of accretion disks with opposite senses of rotation. There are no observational constraints, 

however, on whether GX 1 +4 is a Roche-lobe-overflow system. It is plausible that the dense, 

subsonic wind of the M giant could form an accretion disk and supply enough matter to 
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Figure 7.11: Spin-down rate as a function of pulsed flux in GX 1+4 during spin-down. 

generate the observed luminosities. 

In the context of magnetic disk accretion, our observations raise two major ques-

tions: 

• What triggers the torque reversals in GX 1+4? Both the MTD and CDW accre­

tion models predict that a sufficiently increased mass transfer rate can cause a transition 

from spin-down to spin-up, consistent with our observations of the sustained bright state 

around MJD 49600. Yet the bright fl.are centered at MJD 49238 reached similar lumi­

nosities without triggering a torque reversal from spin-down to spin-up; indeed, it was 

accompanied by enhanced spin-down, even though the duration of the fl.are was much 

longer than the time scale required for rm to readjust to the higher mass accretion rate. 

Moreover, comparison of the BATSE flux history (with our estimated bolometric correc­

tion applied) with the 1970s flux monitoring from Uhuru and Ariel-5 suggest that the 

mean bolometric luminosity we observe now is close to the value observed in the 1970s 

during spin-up. 
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• Why are torque and luminosity anticorrelated in GX 1+4 during spin-down? 

Except for the sustained bright state during MJD 49600-49800, all of the BATSE data 

display this anticorrelation, both during gradual intensity variations and during impulsive 

flares. This behavior is exactly the opposite of what the MTD and CDM models predict. 

Also, the start of the sustained bright spin-up state does not appear different in flux 

history from the start of the spin-down flares, and yet for the MJD 49600 brightening 

the transition toward spin-up began immediately. For consistency with the other data, 

we would expect at least an initial enhancement of the spin-down torque. 

Both the MTD and CDW models are steady-state theories, so they may be un­

suitable for explaining time-dependent behavior. A qualitatively different spin-down model 

may be required for this system. In trying to understand the relationship between torque 

and luminosity in accreting pulsars, however, it is important to bear in mind that GX 1 +4 

may be an exceptional rather than a typical case. Certainly, the red giant companion and 

the presence of a dense, subsonic stellar wind set it apart from other systems, and so the 

torque-luminosity anticorrelation may also be unique this system. However, there are some 

indications of similar anticorrelation in GX 301-2 occurring as a regular function of orbital 

phase (Koh et al. 1996). 

7 .3.2 System Parameters 

GX 1 +4 has been widely assumed to lie near the Galactic center at a distance of 

;:::;:j 10 kpc. However, the estimated visual extinction of the companion, Av ;:::;:j 5 (Davidsen, 

Malina, & Bowyer 1977), suggests that the source is not quite so distant. We can place a 

lower limit on the distance and the X-ray luminosity from the steady spin-up of the source 

during the 1970s (see Appendix C). From the observed spin-up rate, we can infer 

. 1/3 

Lx = G~xM ;<:; 9 x 1036 erg s-1 ( ~ -1) (8 5 v H ) 
x 6 x 10- Hz s . m z 

(7.8) 

We can combine this with the bolometric X-ray flux measurement made during spin-up by 

SAS-3, Fx = 8 x 10-9 erg cm-2 s-1 (1.5-55 keV; Doty, Hoffman, & Lewin 1981), to obtain 

d ;<:; 3 kpc ( Fx )-1/2 
8 x 10-9 erg cm-2 s-1 (7.9) 

Moreover, a distance of ;:::;:j 4 kpc is required to make the observed infrared colors of V2116 

Oph (Glass 1979) consistent with those of a reddened M6 III giant. This implies that the 
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peak luminosity of GX 1+4 during the extended spin-up interval was "' 1.4 x 1037 erg s-1 

and that the quiescent luminosity during spin-down is"' 3x1036 erg s-1. The corresponding 

mass accretion rates are 1 x 10-9 M0 yr-1 and 2.5 x 10-10 M0 yr-1, respectively. As other 

authors have pointed out previously (e.g., Makishima et al. 1988), the assumption that 

GX 1 +4 is near its equilibrium spin frequency leads to a very high value for the surface 

magnetic field, 

B ~ 1013 G lleq x 
( ) 

6/7 ( L ) 1/2 

8.3 mHz 1037 erg s-1 (7.10) 

Our observations tend to support the equilibrium assumption. 

We can use the observed infrared magnitudes (Glass 1979) and the spectroscopic 

classification (Davidsen, Malina, & Bowyer 1977) of V2116 Oph to parametrize the red 

giant's radius as 

(7.11) 

where Teff is the effective temperature of the red giant. If we assume that the companion 

is no larger than its Roche lobe, then we can calculate a lower limit on the orbital period 
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as a function of the companion's mass. Eggleton (1983) has computed an approximate 

relationship between Roche lobe radius RL for a corotating star, orbital separation a, and 

the binary mass ratio q = Mcf Mx: 

RL 0.49q2/3 
~ ~ ~~~~~~~~-

0. 6q2/3 + ln(l + q113 ) · a 
(7.12) 

By taking RL = Re, we can use this to solve for the minimum allowed orbital separation 

and hence show that the orbital period must obey 

(7.13) 

For neutron star mass Mx = 1.4 M0 and a companion mass range typical of M giants, the 

minimum allowed orbital period is "'years (see Figure 7.12). If the mass transfer is not 

occurring via Roche lobe overflow, the orbital period for a given companion mass could be 

higher than what we calculated. 

Because the size of the torque fluctuations on time scales ;c 100 d is much larger 

than the expected orbital Doppler shifts, it is unlikely that X-ray timing observations will 

be able to determine the orbit of GX 1 +4. On the other hand, if the accretion torque or the 

mass transfer rate has an orbitally-modulated component, a sufficiently long-term X-ray 

flux and/or torque history might be able to establish the orbital period. The "'300 d time 

scale we observe in the pulse frequency residuals is intriguing, but will require a longer time 

baseline to check its coherence. 

The red giant companion may be a more accessible target for orbital period studies. 

Some symbiotics show systematic variations in the Ha emission line profile as a function 

of orbital phase (Kenyon 1986). Sood et al. (1995) have established a high-resolution 

spectroscopy program monitoring the bright Ha emission from V2116 Oph to search for 

this effect. Another possible approach would be a radial velocity study in the infrared, 

where the V2116 Oph is bright and its absorption spectrum relatively uncontaminated by 

emission lines. 
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Appendix A 

Spacecraft Coordinates and Sky Coordinates 

The fundamental coordinate system for Compton observations is defined by the 

spacecraft xyz-axes (see Figure A.1). The orientation of the spacecraft with respect to the 

sky is specified in terms of the right ascension (a) and declination ( 8) of the x and z-axes of 

the spacecraft. Let us denote the J2000.0 celestial equatorial direction vector of a celestial 

source as r and the spacecraft direction vector of the same source as r'. We can transform 

between these systems using 

[ : l [ A1 
.A2 :: ][ ~ l r= µ1 µ2 

111 112 

[ :: l ~ [ ~: µ1 :l [:], r' = µ2 

µ3 

where the direction cosines for the spacecraft x and z axes are given by 

.A1 = COS 8x COS ax A3 = COS 8z COS az 

µ1 = cos 8x sin ax µ3 = cos 8z sin az 

113 = sin 8z, 

and the direction cosines for the y-axis are given by 

.A2 = µ3111 - 113µ1 

µ2 = 113.A1 - ..\3111 

112 = .A3µ1 - µ3.Al. 

(A.l) 

(A.2) 

(A.3) 

(A.4) 

(A.5) 
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Figure A.l: Spacecraft axes for the Compton Gamma Ray Observatory. The 8 BATSE 
detector modules are situated on the corners of the spacecraft's main body. Modules 0, 2, 
4, and 6 are visible in this diagram. 

Table A.l. Spacecraft Direction Vectors for BATSE Detector Normals 

Detector x y z 

0 1/,/3 1/,/3 1/,/3 
1 1/,/3 1/,/3 -1/,/3 
2 1/,/3 -1/,/3 1/,/3 
3 1/,/3 -1/,/3 -1/,/3 
4 -1/,/3 1/,/3 1/,/3 
5 -1/,/3 1/,/3 -1/,/3 
6 -1/,/3 -1/,/3 1/,/3 
7 -1/,/3 -1/,/3 -1/,/3 

The relations between (x, y, z) and (a, 8) are 

x = cos8 cos a 

y = cos8sina 

z = sin8. 

a= tan-1 (y/x) 

8 = tan- 1(z/ Jx2 + y2 ) (A.6) 

The vectors for the BATSE detector normals in spacecraft coordinates are given in Ta­

ble A.l. The sky coordinates for the spacecraft axes for each of the Compton Observatory 

paintings are given in Table A.2. 
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Table A.2. Compton Observatory Pointing Table 

Viewing Starting Epoch Pointed z-axis x-axis 
Period Date MJD Target az (0

) Oz (°) ax (°) Ox (0
) 

Verification 

0.1 1991 Apr 15 48361 Testing 108.12 -6.52 19.04 8.05 

Phase 1 

0.2 1991 Apr 22 48368 Crab pulsar 86.76 22.09 357.03 -0.66 
0.3 1991 Apr 28 48374 Crab pulsar 89.77 15.24 342.47 47.50 
0.4 1991May1 48377 Crab pulsar 89.77 15.24 12.32 -38.58 
0.5 1991 May 4 48380 Crab pulsar 83.52 22.02 354.10 -1.42 
0.6 1991 May 7 48383 N. Gal hole 162.44 57.26 68.08 2.80 
0.7 1991May10 48386 Vela pulsar 135.19 -45.11 81.50 30.54 
1 1991May16 48392 Crab pulsar 88.07 17.14 339.12 46.48 
2 1991 May 30 48406 Cyg X-1 301.39 36.58 60.31 33.09 
2.5 1991 Jun 8 48415 Sun 87.83 12.47 338.68 56.03 
3 1991 Jun 15 48422 SN 1991T 191.54 2.62 101.49 1.04 
4 1991 Jun 28 48435 NGC 4151 179.84 41.52 57.38 31.23 
5 1991 Jul 12 48449 Gal center 270.39 -30.96 196.56 24.91 
6 1991 Jul 26 48463 SN 1987A 91.28 -67.97 153.97 10.52 
7.0 1991 Aug 8 48476 Cyg X-1 310.05 28.06 143.74 61.25 
7.5 1991 Aug 15 48483 Gal plane 25 291.98 -13.27 208.11 24.38 
8 1991 Aug 22 48490 Vela pulsar 124.96 -46.35 198.99 14.71 
9.0 1991 Sep 5 48504 GX 339-4 8.34 -32.31 244.20 -41.58 
9.5 1991Sep12 48511 Her X-1 251.28 36.89 142.05 23.69 
10 1991 Sep 19 48518 N Mus 30.91 -60.66 190.28 -27.75 
11 1991 Oct 3 48532 3C 273 189.02 1.06 278.42 -29.71 
12 1991 Oct 17 48546 Cen A 202.29 -40.09 221.48 48.29 
13.0 1991 Oct 31 48560 Gal plane 25 291.98 -13.27 208.11 24.38 
13.5 1991 Nov 7 48567 GX 339-4 8.34 -32.31 244.20 -41.58 
14 1991Nov14 48574 Gal center 156.83 -58.51 274.30 -15.78 
15 1991 Nov 28 48588 NGC 1275 52.00 40.24 293.36 29.53 
16 1991Dec12 48602 Gal center 248.36 -17.20 351.62 -36.55 
17 1991 Dec 27 48617 SN 1987 A 83.48 -72.27 266.22 -17.72 
18 1992 Jan 10 48631 M82 154.61 72.04 292.51 13.52 
19 1992 Jan 23 48644 Gal plane 331.40 -1.93 242.82 36.31 
20 1992 Feb 6 48658 SS 433 285.28 6.37 12.01 -27.04 
21 1992 Feb 20 48672 Gal center 39.09 -1.24 308.14 -37.66 
22 1992 Mar 5 48686 N Cyg 1992 216.00 70.74 329.43 7.91 
23 1992 Mar 19 48700 Cir X-1 227.43 -54.62 11.72 -29.97 
24.0 1992 Apr 2 48714 Gal center 223.34 11.03 302.52 -43.94 
24.5 1992 Apr 9 48721 Gal plane 5 223.34 11.03 304.56 -38.07 
25 1992 Apr 16 48728 Gal center 229.85 4.47 315.25 -45.69 
26 1992 Apr 23 48735 Mrk 335 1.59 20.20 73.89 -39.58 
27 1992 Apr 28 48740 4U 1543-47 241.11 -49.06 348.99 -14.92 
28 1992 May 7 48749 Mrk 335 1.59 20.20 73.89 -39.58 
29 1992 May 14 48756 3C 390.3 68.97 -25.09 53.03 64.04 
30 1992 Jun 4 48777 NGC 2992 149.50 -14.73 61.41 7.22 
31 1992 Jun 11 48784 MCG +8-11-11 88.87 49.44 86.22 -40.53 
32 1992 Jun 25 48798 NGC 3783 171.17 -36.81 92.97 15.28 
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Table A.2-Continued 

Viewing Starting Epoch Pointed z-axis x-axis 
Period Date MJD Target °'z (o) 8z (0) °'"' co) 8,, (0) 

33 1992 Jul 2 48805 NGC 2992 149.50 -14.73 61.41 7.22 
34 1992 Jul 16 48819 Cas A 345.77 57.49 100.24 14.79 
35 1992 Aug 6 48840 ESO 141-55 287.12 -61.21 144.32 -23.64 
36.0 1992 Aug 11 48845 GRO J0422+32 68.99 30.42 141.11 -27.60 
36.5 1992 Aug 12 48846 GRO J0422+32 69.39 32.90 168.57 13.86 
37 1992 Aug 20 48854 GRO J0422+32 358.75 18.82 98.42 26.22 
38 1992 Aug 27 48861 ESO 141-55 287.12 -61.21 144.32 -23.64 
39 1992 Sep 1 48866 GRO J0422+32 68.87 33.82 168.45 13.95 
40 1992 Sep 17 48882 NGC 4388 140.88 30.40 224.38 -10.90 
41 1992 Oct 8 48903 MCG -6-30-15 112.43 -12.05 210.43 -33.09 
42 1992 Oct 15 48910 PKS 2155-304 319.72 -41.67 189.66 -35.87 
43 1992 Oct 29 48924 Mrk 509 307.83 -13.95 204.08 -43.75 
44 1992 Nov 3 48929 MCG -6-30-15 112.43 -12.05 210.43 -33.09 

Phase 2 

201 1992 Nov 17 48943 Her X-1 253.15 42.26 266.02 -47.01 
202 1992 Nov 24 48950 Her X-1 251.55 45.40 270.04 -43.08 
203.0 1992 Dec 01 48957 Cygnus 306.59 39.34 258.44 -39.15 
203.3 1992 Dec 08 48964 Cygnus 306.59 39.34 264.05 -41.96 
203.6 1992 Dec 15 48971 Cygnus 306.59 39.34 258.44 -39.15 
204 1992 Dec 22 48978 3C 273 188.99 -0.74 279.50 -34.03 
205 1992 Dec 29 48985 3C 273 188.84 -1.03 279.32 -24.79 
206 1993 Jan 05 48992 3C 273 188.99 -0.74 279.50 -34.30 
207 1993 Jan 12 48999 IC 4329A 203.86 -30.41 293.35 0.86 
208 1993 Feb 02 49020 NGC 4507 198.47 -41.93 296.86 -9.24 
209 1993 Feb 09 49027 2CG 010-31 305.69 -40.81 297.95 48.93 
210 1993 Feb 22 49040 Gal center 257.65 -29.10 351.03 -6.03 
211 1993 Feb 25 49043 Gal 123-05 18.38 58.05 8.08 -31.53 
212 1993 Mar 09 49055 WR 140 298.65 50.54 341.61 -31.07 
213 1993 Mar 23 49069 Crab pulsar 80.30 22.29 348.47 4.44 
214 1993 Mar 29 49075 Gal center 257.65 -29.10 351.03 -6.03 
215 1993 Apr 01 49078 Cen A 203.26 -39.28 53.56 -46.55 
216 1993 Apr 06 49083 SN 1993J 143.64 71.46 3.37 14.47 
217 1993 Apr 12 49089 Cen A 203.26 -39.28 53.56 -46.55 
218 1993 Apr 20 49097 NGC 4151 180.75 43.09 31.04 42.71 
219.l 1993 May 04 49111 REBOOST THRUSTER TESTING 
219.4 1993 May 05 49112 Gal center 245.35 -27.22 341.26 -11.31 
219.7 1993 May 07 49114 REBOOST CALIBRATION BURN 
220 1993 May 08 49115 SMC 24.11 -72.07 69.97 12.70 
221 1993 May 13 49120 Crab pulsar 85.21 19.46 326.68 53.49 
222 1993 May 24 49131 NGC 4151 178.02 42.25 60.65 26.85 
223 1993 May 31 49138 Gal center 265.98 -29.72 316.33 48.19 
224 1993 Jun 03 49141 SMC 24.11 -72.07 69.97 12.70 
225 1993 Jun 15 49153 REBOOST 
226 1993 Jun 19 49157 Gal 355+05 258.44 -30.35 189.52 31.57 
227 1993 Jun 28 49166 SN 1993J 143.64 65.00 116.97 -22.62 
228 1993 Jul 13 49181 SN 1993J 145.33 63.18 131.74 -26.16 
230 1993 Jul 27 49195 Vela region 143.03 -54.64 127.10 34.31 
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Table A.2-Continued 

Viewing Starting Epoch Pointed z-axis x-axis 
Period Date MJD Target Oz (

0
) 8z (

0
) Ox (

0
) Dx (

0
) 

230.5 1993 Jul 30 49198 Vela region 149.86 -53.17 131.53 35.41 
231 1993 Aug 03 49202 NGC 6814 289.94 -15.33 186.93 -39.38 
229 1993 Aug 10 49209 Gal 5+05 264.60 -22.06 188.59 30.82 
229.3 1993 Aug 11 49210 PERSEID METEOR SHOWER 
229.5 1993 Aug 12 49211 Gal 5+05 264.60 -22.06 188.59 30.82 

Phase 3 

301 1993 Aug 17 49216 Vela pulsar 128.92 -45.18 161.94 39.80 
232 1993 Aug 24 49223 Gal 348+0 258.02 -39.35 188.46 23.07 
232.5 1993 Aug 26 49225 Gal 348+0 258.02 -39.35 182.10 16.48 
302.0 1993 Sep 07 49237 N Cyg 1992 307.63 52.63 202.99 10.92 
302.3 1993 Sep 09 49239 GX 1+4 258.64 -22.70 180.21 25.63 
303.0 1993 Sep 21 49251 GRS 1009-45 157.58 -42.88 217.43 28.41 
303.2 1993 Sep 22 49252 N Cyg 1992 307.63 52.63 202.99 10.92 
303.4 1993 Oct 01 49261 Cyg X-1 270.79 37.87 182.17 -1.77 
303.5 1993 Oct 04 49264 REBOOST 
303.7 1993 Oct 17 49277 N Cyg 1992 307.63 52.63 202.99 10.92 
304 1993 Oct 19 49279 Virgo 278+67 183.29 5.68 271.03 -21.61 
305 1993 Oct 25 49285 Virgo 278+63 181.58 2.06 270.59 -25.79 
306 1993 Nov 02 49293 Virgo 278+59 180.01 -1.62 270.91 -28.89 
307 1993 Nov 09 49300 Virgo 269+69 181.19 9.53 267.48 -21.06 
308.0 1993 Nov 16 49307 Virgo 283+ 75 187.61 12.59 261.40 -51.35 
308.3 1993 Nov 19 49310 REBOOST 
308.6 1993 Nov 23 49314 Virgo 283+ 75 187.61 12.59 261.40 -51.35 
310 1993 Dec 01 49322 Geminga 98.48 17.77 201.46 35.02 
311.0 1993 Dec 13 49334 Virgo 284+ 75 187.69 12.41 272.61 -21.93 
311.3 1993 Dec 15 49336 Virgo 284+ 75 187.69 12.41 272.61 -21.93 
312 1993 Dec 20 49341 Virgo 281+71 185.52 9.12 265.95 -46.00 
313 1993 Dec 27 49348 Virgo 289+ 79 190.10 16.12 270.42 -30.20 
314 1994 Jan 03 49355 PSR 1259-63 195.69 -63.83 277.5 53.99 
315 1994 Jan 16 49368 PSR 1259-63 195.69 -63.83 282.8 31.41 
316 1994 Jan 23 49375 Cen A 201.37 -43.02 310.35 -19.21 
318.1 1994 Feb 01 49384 Cyg X-1 301.26 30.92 332.98 -54.85 
321.1 1994 Feb 08 49391 lA 0535+262 84.73 26.32 10.50 -28.79 
321.5 1994 Feb 15 49398 lA 0535+262 84.73 26.32 9.37 -27.06 
317 1994 Feb 17 49400 3C 120 37.41 10.61 306.0 67.18 
319.0 1994 Mar 01 49412 QSO 0716+714 110.48 71.34 341.13 12.08 
320 1994 Mar 08 49419 NGC 7469 345.81 8.87 76.4 54.13 
319.5 1994 Mar 15 49426 Mrk 3 105.20 68.99 343.89 11.28 
323 1994 Mar 22 49433 1H 1822-371 276.44 -37.11 349.25 21.35 
322 1994 Apr 05 49447 QSO 1028+313 157.07 31.09 65.0 23.39 
324 1994 Apr 19 49461 Gal plane 15 269.39 -13.15 356.64 11.62 
325 1994 Apr 26 49468 GT 0236+610 49.07 46.94 67.24 -41.60 
326 1994 May 10 49482 QSO 1028+313 156.69 31.65 47.37 28.24 
327 1994 May 17 49489 NGC 7469 348.06 5.44 81.57 32.73 
328 1994 May 24 49496 Cyg X-3 298.76 28.07 69.89 50.97 
329 1994 May 31 49503 PSR J0437-47 69.26 -47.25 88.04 41.18 
331.0 1994 Jun 07 49510 Cyg X-3 298.76 28.07 69.89 50.97 
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Table A.2-Continued 

Viewing Starting Epoch Pointed z-axis x-axis 
Period Date MJD Target ltz (

0
) liz (

0
) ltx (

0
) lix (

0
) 

330 1994 Jun 10 49513 Gal plane 18 275.93 -13.26 341.41 60.41 
331.5 1994 Jun 14 49517 Cyg X-3 298.76 28.07 69.89 50.97 
332 1994 Jun 18 49521 Gal plane 18 275.93 -13.26 341.41 60.41 
333 1994 Jul 05 49538 Cyg X-3 298.76 28.07 69.89 50.97 
335.0 1994 Jul 12 49545 PSR J0437-47 69.26 -47.25 107.01 36.16 
334 1994 Jul 18 49551 Gal plane 16 279.49 -25.06 235.26 56.88 
335.5 1994 Jul 25 49558 PSR J0437-47 69.26 -47.25 107.01 36.16 
336 1994 Aug 01 49565 NGC 7469 349.67 9.72 106.56 69.25 
336.5 1994 Aug 04 49568 GRO J1655-40 249.14 -43.04 135.68 -23.09 
337 1994 Aug 09 49573 PSR 0656+14 87.70 0.98 178.49 39.05 
338.0 1994 Aug 29 49593 GRO J1655-40 253.50 -39.85 149.06 -16.64 
338.5 1994 Aug 31 49595 Vela pulsar 128.92 -45.18 200.60 17.34 
339 1994 Sep 20 49615 PG 1416-129 234.71 -1.82 143.62 -30.89 

Cycle 4 

401 1994 Oct 04 49629 Cas A 348.90 67.40 195.74 20.38 
402.0 1994 Oct 18 49643 Gal plane 310 211.71 -66.78 190.16 21.75 
402.5 1994 Oct 25 49650 Gal plane 310 202.34 -66.37 237.14 19.76 
403 1994 Nov 01 49657 Her X-1 254.46 35.34 205.10 -42.56 
403.5 1994 Nov 09 49665 OJ 287 133.70 20.11 217.85 -15.56 
404 1994 Nov 15 49671 S Gal pole 354.98 -33.17 257.34 -11.49 
405 1994 Nov 29 49685 3C 279 194.93 -6.27 288.32 -28.32 
405.5 1994 Dec 07 49693 GRO J1655-40 194.93 -6.27 290.58 -41.85 
406 1994 Dec 13 49699 Virgo 205.27 7.64 285.17 -52.56 
407 1994 Dec 20 49706 Virgo 206.58 3.50 293.10 -44.73 
408 1995 Jan 03 49720 3C 279 194.05 -5.79 288.35 -36.50 
409 1995 Jan 10 49727 LMC 68.52 -63.61 311.85 -12.56 
410 1995 Jan 24 49741 Gal 082-33 337.33 18.83 256.57 -25.23 
411.1 1995 Feb 14 49762 QSO 0716+714 98.49 69.75 328.38 13.37 
411.5 1995 Feb 21 49769 QSO 0716+ 714 93.91 71.03 344.06 6.65 
412 1995 Feb 28 49776 Gal anticenter 90.09 24.68 9.86 -20.28 
413 1995 Mar 07 49783 Gal anticenter 89.78 17.10 8.21 -25.49 
414 1995 Mar 21 49797 Vela 132.83 -65.69 11.02 -13.40 
414.3 1995 Mar 29 49805 GRO J1655-40 257.28 -39.14 337.80 11.44 
419.1 1995 Apr 04 49811 Orion 83.40 -3.84 352.77 -9.19 
415 1995 Apr 11 49818 LMC 104.00 -65.30 11.78 -1.02 
418 1995 Apr 25 49832 Mrk 421 173.20 45.55 53.92 25.64 
419.5 1995 May 09 49846 Orion 86.68 -6.99 7.94 57.87 
420 1995 May 23 49860 Orion 79.91 4.12 343.16 58.49 
421 1995 Jun 06 49874 Gal center 263.13 -32.68 54.66 -53.87 
422 1995 Jun 13 49881 Gal center 263.93 -33.02 165.35 -12.93 
423 1995 Jun 20 49888 Gal center 268.12 -26.82 142.45 -49.07 
423.5 1995 Jun 30 49898 PKS 1622-297 244.01 -31.94 127.51 -35.60 
424 1995 Jul 10 49908 Cen A 205.46 -42.88 112.68 -2.98 
425 1995 Jul 25 49923 Gal 137-47 22.90 14.43 113.29 1.50 
426 1995 Aug 08 49937 Gal anticenter 83.52 22.02 179.93 15.44 
427 1995 Aug 22 49951 Gal 154-10 55.91 42.35 160.61 15.55 
428 1995 Sep 07 49967 S Gal pole 17.68 -33.41 147.58 -44.21 
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Table A.2-Continued 

Viewing Starting Epoch Pointed z-axis x-axis 
Period Date MJD Target CTz (o) {Jz (o) ax (

0
) {Jx (o) 

429 1995 Sep 20 49980 Gal 018+04 272.51 -11.07 180.03 -12.47 
429.5 1995 Sep 27 49987 GRO J2058+42 326.22 36.72 215.19 25.69 

Cycle 5 

501 1995 Oct 03 49993 Gal 28+4 277.41 -2.77 187.15 -5.25 
502 1995 Oct 17 50007 PKS 0528+ 134 81.92 13.85 175.85 15.55 
505 1995 Oct 31 50021 Cas A-4 2.81 60.49 207.29 27.26 
506 1995 Nov 07 50028 Cas A-1 343.55 65.12 215.42 15.98 
503 1995 Nov 14 50035 Cas A-3 337.80 55.63 228.39 12.81 
504 1995 Nov 21 50042 Cas A-2 353.94 51.11 248.98 11.76 
507 1995 Nov 28 50049 CTA 102 338.15 11.73 248.10 0.25 
507.5 1995 Dec 07 50058 CTA 102 338.15 11.73 260.96 -46.86 
508 1995 Dec 14 50065 Gal 5+0 269.71 -24.29 145.76 -51.04 

Coordinates for more recent pointings are available from the Compton Observatory Science Support Center 
via WWW (http://cossc.gsfc.nasa.gov/cossc/cossc.html). 



132 

Appendix B 

Decoherence Time Scales in Pulse Timing 

In low signal-to-noise situations, it is necessary to integrate weak signals over 

long observations in order to obtain a significant detection. For pulse timing observations 

of a source whose pulse frequency is not constant, this can lead to signal decoherence as 

later pulses are added in out of phase with earlier pulses; it does not matter whether the 

measurement is in the time domain (epoch folding) or in the frequency domain (power 

spectra). In this Appendix, we calculate the time scale on which a signal will begin to 

become decoherent. Observation lengths much longer than this time scale will suffer loss 

of sensitivity due to pulse smearing. Pulse shapes with short duty cycles are considerably 

more susceptible to this problem. For X-ray pulsars, there are two common causes of signal 

decoherence: accretion torques and orbital Doppler shifts. 

B.1 Decoherence Due to Accretion Torque 

Let us consider the effect of a constant frequency derivative v on a pulse timing 

observation. The pulse phase is given by 

</> 
. 1 .. 2 

(B.1) = <Po + <f>t + -<Pt + .. · 
2 

</> l.2 (B.2) = o + vt + -vt + · · ·. 
2 

We will define decoherence as a phase residual of 180° (!1¢ = ~)with respect to a constant 

frequency model. Then, the decoherence condition can be written 

(B.3) 
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and the decoherence time scale is 

{f [P2 
T = Vf; = yp-· 
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(B.4) 

For longer observations, phase coherence can be recovered by "accelerating" the time series 

to compensate for the phase drift, essentially stretching or squeezing the size of the time 

bins (Middleditch 1989; Anderson et al. 1990; Wood et al. 1991; Johnston & Kulkarni 

1991). 

B.2 Decoherence Due to Orbital Motion 

A second cause of signal decoherence is periodic Doppler shifting of the pulse 

frequency due to a binary orbit. We will restrict our discussion to the case of a circular 

orbit. For this case, the pulse phase can be written 

</> = A. ). (ax/c) sin i ( 21ft "'') 
'!-'0 + '1-'t + cos -- + 'fl 

Ppulse Porb 
(B.5) 

(ax/c) sini [ 1 ( 21ft )
2 

1 ( 21ft )
4 

] </>o+vt+ 1-- -+'l/J + 1 -+'l/J +···, 
Ppulse 2 Porb 4. Porb 

(B.6) 

and the corresponding decoherence condition is given by 

b..<f>= (ax/c)sini [l-cos(21fT +'l/J)] 
Ppulse Porb 

1 
(B.7) -

2 

Since we are interested in the minimum decoherence time scale, we set the orbital phase 

'ljJ = 0. Then, the orbital decoherence time scale is 

1 -1 [ 1 Ppulse ] 
T = Porb -

2 
COS 1 - -

2 
( / ) . . . 

1f ax c sin i 
(B.8) 

This expression can be simplified for two special cases. If the light travel time across the 

orbit is long compared to the pulse period, then 

Porb [ Ppulse ] l/
2 £ (ax/c) sin i 1 

T ~ -- or ;::::; -
21f (ax/c)sini Ppulse 2· 

(B.9) 

However, for sufficiently small orbits ((ax/c)sini < Ppulse/4), the signal will not suffer 

from decoherence at all ( T = oo). Note that these calculations are not accurate for highly 

eccentric orbits. A plot of orbital decoherence time scale as a function of orbital size is 

shown in Figure B.l. The decoherence time scales for a number of systems is given in 

Table B.l. 
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Figure B.l: Decoherence time scale due to orbital motion as a function of projected orbital 
radius. 

Table B.l. Orbital Decoherence Time Scales 

ax sin i P0ulse Porb 
System (lt-s) s) (d) (ax/ C) sin i / Ppulse Tctecoh 

SMC X-1 53.5 0.7 3.89 76.4 1.70 h 
GS 0834-430 205.7 12.3 111 16.7 4.3 d 
Her X-1 13.2 1.2 1.7 11 1.96 h 
Cen X-3 39.6 4.8 2.09 8.2 2.79 h 
OAO 1657-415 106 37.7 10.4 2.8 1.0 d 
LMC X-4 26.3 13.5 1.408 1.9 3.94 h 
Vela X-1 113.6 141 8.96 0.8 1.7 d 
4U 1907+09 113.6 438 8.38 0.26 3.7 d 
4U 1538-52 52.8 530 3.73 0.1 00 

4U 1626-67 < 0.008 7.7 0.02 < 0.001 00 
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Appendix C 

Limits on Luminosity and Distance 

from Steady Spin-Up 
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When a bolometric X-ray flux measurement is available for an accreting pulsar 

undergoing steady spin-up, a lower limit can be placed on the distance to the source. The 

angular momentum of a rotating neutron star is given by 

l = 2Jrlv, (C.l) 

where v is the spin frequency and I is the moment of inertia of the neutron star. Differen­

tiating, we can write the torque on the neutron star as 

N = i = 2Jrlv. (C.2) 

In an accreting pulsar undergoing steady spin-up, the torque applied to the neutron star is 

set by the mass accretion rate and the specific angular momentum of the accreting matter 

at the magnetospheric radius rm (where the magnetic stress forces the matter to move along 

the magnetic field lines), and can be written 

(C.3) 

For a given mass accretion rate M in a disk-fed system, the maximum possible torque will 

occur when rm ::::::! rc0 , where the corotation radius rco is given by 

= ( GMx )1/3 
rco 4 2 2 

1f v 
(C.4) 

For rm > rc0 , matter will be centrifugally inhibited from accreting via the propeller effect. 
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Thus, setting N:::; Nmax, we find that the mass accretion rate must obey 

( 

4 ) 4/3 M >Iv 167r v 
- a2M2 ' 

x 
(C.5) 

and hence 

(C.6) 

Since Lx = 4nd2 Fx, we can use the observed bolometric X-ray flux Fx to set a lower limit 

on the distance to the source 

(C.7) 

Inserting typical values, we have 

d ~ 1.8 kpc 

( )1/6 , · )112 ( F )-112 
x o.t Hz (10-13 ~z s-1 I 10-9 erg ~m-2 s-1 I 

x( Mx )2/3(~)1/2(1/MxB;)l/2 (C.8) 
1.4 M0 10 km 0.2 ' 

or, in terms of spin period Pspin and its derivative P, 

d ~ 1.8 kpc 

x (i~ s)-7/6 ( 10-l;s s-1) 1/2 Co-9 er;;m-2 s-1 )-1/2 

x ( Mx )2/3 (~)1/2 (I/MxE1)1/2 (C.9) 
1.4 M0 10 km 0.2 
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Appendix D 

Binary Orbits 

D.1 Basic Concepts 

Consider the bound binary star system shown in Figure D.l, with component 

masses M 1 and M2. Both components are in an elliptical orbit, with their center of mass as 

a common focus F for the two orbits. The orbit of M1 has semimajor axis a1 and semiminor 

axis b1, and the orbit of M2 has semimajor axis a2 and semiminor axis b2. The two orbits 

have a common eccentricity given bye= Jar - bif a1 = Ja§ - b§/a2. The dimensions of 

the two orbits are related by M1a1 = M2a2. The separation between the center of mass 

and the point of closest approach of M1 (called periastron or, more generally, periapse) is 

a i ( 1 - e), and is denoted in Figure D .1 as P 1 . The separation to the most distant point in 

the orbit, called apastron or apoapse, is a1(l + e), and is denoted by A1. The corresponding 

points for M2 are labelled as P2 and A2. The line joining periastron and apastron is called 

the line of apsides. 

We will restrict our attention to the orbit of M 2 ; symmetry considerations imme­

diately give the corresponding results for M1. The physical phase angle v = M2FP2 of M2, 

measured along the orbit from periastron, is called the true anomaly. The instantaneous 

separation between F and M2 is given by 

a2(1 -e2) 
r2 = . 

1 + ecosv 
(D.1) 

It is not possible to write the time-dependence of v in closed form. Instead, we introduce 

an auxiliary angle E (see Figure D.1), called the eccentric anomaly, such that 

r2 = a2(1 - e cos E). (D.2) 
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Figure D.1: Binary geometry for two masses (M1 > M2 ) orbiting their common center­
of-mass F. The bold ellipses show the orbital paths. P1 and A1 are the periastron and 
apastron for M 1 , and P2 and A2 are the corresponding points for M 2. The true anomaly v, 
measured along the orbit from periastron, is angle M2FP2 (or M1FP1). The circumscribed 
circle used to construct the auxiliary quantity E (eccentric anomaly) is also shown. 

True anomaly v and eccentric anomaly E are related by 
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v'f=e2sinE 
sin v = ------

1 - ecosE 
(D.3) 

cosE- e 
cosv = l E' - ecos 

(D.4) 

and E can then be related to a third quantity M (called the mean anomaly), which varies 

linearly with time and is defined as 

M = 27r(t -To) = E - esinE, 
- p (D.5) 
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L=180° 

L=90° 

to observer 

L=270° 

L=0° 
sky tangent plane 

Figure D.2: Binary orbit geometry, projected along the observer's line of sight. The sense 
of orbital motion is this diagram is taken to be counterclockwise. Axes of true longitude 
L are shown. The orientation of the line of apsides with respect to the line of sight is 
specified through the longitude of periastron w. The semimajor axis of the projected orbit 
of M2 is az sin i. 
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where Pis the orbital period and To is a time of periastron passage. This is called Kepler's 

equation. Note that mean anomaly is not a physical angle for any non-zero value of e. It is 

equal to 211" times the fraction of the orbital period elapsed since periastron. 

In using the Doppler shifts of a binary pulsar to measure an orbit, we are only 

sensitive to motion projected along the line of sight. In general, the orbit plane will have 

some inclination angle i, defined as the angle between the orbital angular momentum vector 

and our line of sight. The observed orbital motion is then scaled by sin i; if i = 0, then we 

will observe no motion at all. To specify the orientation of the orbit with respect to the line 
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of sight, we introduce an angular coordinate L, called the true longitude (see Figure D.2), 

which is measured along the orbit from the ascending node (the point in the orbit where the 

plane tangent to the sky is crossed, moving away from the observer). We see that L = go0 

is the point of maximum distance from the observer. If sin i is sufficiently close to 1 to 

allow an eclipse of M2 by M1, then L = goo will roughly correspond to the mid-point of 

the eclipse (see Deeter et al. 1g31 for some subtleties related to this point). Since L is a 

physical phase angle, it is easily related to true anomaly by 

L = v+w, (D.6) 

where w is the longitude of periastron. In analogy to the mean anomaly, we can define mean 

longitude by 

l =M +w. (D.7) 

Like M, l is proportional to time but is not a physical angle (unless the orbit is circular). 

As e -+ 0, the concept of periastron becomes ill-defined, and thus so do w, T0 , 

v, E, and M. In this case, Deeter et al. (lg81) have pointed out that it is convenient to 

parametrize binary orbits in terms of quantities which remain equally well-defined for both 

elliptical and circular orbits. Instead of a sin i, P, e, w, and To, they suggest using a sin i, P, 

g = e sinw, h = e cos w, and T7r;2 , where this last quantity is an epoch when mean longitude 

l = go 0
• Some authors refer to T7r ; 2 as the mid-eclipse time. However, as we have noted, 

mean longitude is not a physical angle except for circular orbits, and l = go 0 can lie far 

from mid-eclipse for eccentric orbits (depending upon the value of w). 

D.2 Orbit-Fitting Equations 

D.2.1 Auxiliary Chain Rule Quantities 

In fitting binary orbit models to observations, it is convenient to know the partial 

derivatives of the observed quantity with respect to the orbital parameters. Because the 

equations of motion are implicit in time, we must calculate some auxiliary derivatives for 

chain rule manipulations. Note that E = E(t; e, P, To) and v = v(t; e, P, To) are both 

functions not only of t, but also of the orbital parameters e, P, and T0 . It is therefore 

necessary to compute the partial derivatives of these quantities with respect to the orbital 
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parameters. For eccentric anomaly, 

Similarly, for true anomaly, 

av 
ae 
av 
BP 

av 
8To 

BE 
Be 
BE 
f)p 

BE 
8To 

sinE 
1- ecosE 

-21f(t - To) 
P 2 ( 1 - e cos E) 

-271" 

P(l - ecosE) · 

sin2 E(2 - e cos E - e2) 
(1- ecosE)3 sinv 

-21f(t - To)(l - e2) sinE 
P2(1 - e cos E) 3 sin v 

-211"(1 - e2) sinE 
P(l - ecos E)3 sinv · 
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(D.8) 

(D.9) 

(D.10) 

(D.11) 

(D.12) 

(D.13) 

If using the alternate parameterization for low-eccentricity orbits, the partial de­

rivatives with respect to T0 are replaced by those with respect to Trr ; 2, 

Also, since 

P(l-ecosE) 

-211"(1 - e2) sinE 
P ( 1 - e cos E) 3 sin v · 

p 
Trr/2 =To-

2
7f(w-1f/2), 

E and v will have an w-dependence as well: 

BE 
aw 
av 
aw 

-1 

1 - ecosE 
(1- e2) sinE 

(1 - e cos E) 3 sin v · 

D.2.2 Pulse Frequency Measurements 

(D.14) 

(D.15) 

(D.16) 

(D.17) 

(D.18) 

For a pulsar with constant spin frequency vo, the observed pulse frequency history, 

including orbital effects (see, e.g., Green 1985), will be given by 

{ 
27fasini r } 

v = vo 1 - ~ [Cos(v + w) + ecosw] . 
P 1-e2 

(D.19) 
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The partial derivatives with respect to the orbital parameters are 

av 
avo 

av 
a(a sin i) 

av 
aw 
av 
ae 

av 
ap 

av 
aTo 

27ra sin i 
1 - rt-:? [cos(v + w) + ecosw] 

Pv 1- e2 

27rv0 
p~ [cos(v +w) + ecosw] 

27rvoa sin i . . 
p~ [sm(v+w)+esmw] 

-47rvoea sin i 
p~ [cos(v + w) + ecosw] + 

-27rvoa sin i 
-----x 
p~ 

{ 
sin2 E(2 - e cos E - e2)[sin(v + w) + e sinw]} 

cosw - . 
(1- ecosE)3 smv 

-47r2 v0~a sin i sin E sin( v + w) 
p3(1 - e cos E) 3 sin v + 

27rvoa sin i , , 
~ [COS\ v + w) + e cos w] 

P 2 v i - e-

-47r2vo~asinisinEsin(v + w) 
P 2(1 - e cos E)3 sin v 
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(D.20) 

(D.21) 

(D.22) 

(D.23) 

(D.24) 

(D.25) 

A slightly different set of derivatives will be necessary if the orbit is parametrized in terms 

of T1f;2 instead of To. 

D.2.3 Pulse Arrival Time Measurements 

The line-of-sight time delay associated with a binary orbit (see, e.g., Green 1985) 

is given by 

z(t) = asini[sinw(cosE- e) + ~coswsinE]. 

The partial derivatives with respect to the orbital parameters are 

av 
a(a sin i) 

av 
aw 
av 
ae 

av 
aP 

sin w( cos E - e) + ~cos w sin E 

= asini[cosw(cosE- e) + ~ sinwsinE] 

= -asini [sinw (1 + sin
2 

E ) + 
1- ecosE 

sinEcosw ( e - ~cosE)] 
~ 1-ecosE 

27r(t -To)asini . ~ 
= p 2 ( 1 _ e cos E) [sin w sm E - v 1 - e2 cos w cos E] 

(D.26) 

(D.27) 

(D.28) 

(D.29) 

(D.30) 
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av 
aTo 

21ra sin i [ . . E r;--z E] 
P( E) 

sm w sm - v 1 - eu cos w cos . 
1- ecos 
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(D.31) 

A slightly different set of derivatives will be necessary if the orbit is parametrized in terms 

of T1r ; 2 instead of To. 
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Appendix E 

Eclipse Constraints in OAO 1657-415 

This appendix reviews the geometric constraints placed on the companion radius 

and system inclination of OAO 1657-415 by the presence of an X-ray eclipse with half-angle 

Be. Note that the half-angle is defined as 7r times the duration of the eclipse; it is not a 

physical angle unless the orbit is circular. We will begin by assuming a circular orbit and a 

spherical companion. It is convenient to adopt a rotating coordinate system similar to that 

of Chanan, Middleditch, & Nelson (1976). We place the neutron star at the origin and the 

companion on the x-axis with coordinates (a, 0, 0), where a is the binary separation, and 

take the orbital angular momentum to be parallel to the z-axis. We then let the coordinate 

system rotate at the orbital period. In this coordinate system, the vector from the neutron 

star to an observer fixed in space will have a fixed angle 1/Jobs = i with the z-axis (where i is 

the inclination angle of the system), while the projection of this vector in the x-y plane will 

make an angle ¢obs with the x-axis which varies linearly with time over [O, 27r]. Mid-eclipse 

occurs when ¢obs = 0. We model the companion as a sphere with radius Re, whose surface 

is given in terms of spherical coordinates ( r, 1jJ, ¢) by 

r 2 + a2 
- 2aru sin 1jJ = R~, (E.1) 

where we have defined u = cos¢. For a circular orbit, the eclipse half-angle Be is equal to 

the maximum value of ¢obs for which the observer vector intersects the surface. To find 

this value, we set 1jJ = i in Equation (E. l) and solve for the extreme values of u = cos¢ by 

differentiating with respect tor and setting 8u/8r = 0, from which we find the constraint 

r = ausini. (E.2) 
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y-axis 
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companion 

Figure E.1: Eclipse angle geometry. The coordinate system rotates about the z-axis in 
the ¢, with one revolution per orbital period, so that the companion always lies on the 
x-axis with the neutron star at the origin. A fixed observer at infinity has a fixed polar 
angle 'I/Jobs = i, and an azimuthal angle </Jobs which varies through [O, 2n] over the orbital 
period. Mid-eclipse occurs when </Jobs = 0. The line of sight from the neutron star to the 
observer will intersect the companion surface on the closed curve shown. Eclipse ingress 
and egress occur at the extreme values of </Jobs, when the line of sight is tangent to this 
curve. 

Substituting into Equation (E. l), we find 
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Re a(l - cos2 ¢max sin2 i) 112 

= a( cos2 i + sin2 ¢max sin2 i) 1
/

2
, 

(E.3) 

(E.4) 

where ¢max is the measured eclipse half-angle Be. 

For an eccentric orbit, this relation is inaccurate for two reasons: the binary sep­

aration varies with orbital phase, and eclipse half-angle generally differs from the physical 

angle ¢max· In the case of OAO 1657-415, we can exploit the fact that mid-eclipse occurs 

at periastron (within the uncertainties) to note that ¢ is identical to the true anomaly of 

the relative binary orbit. Thus, the orbital separation in our coordinate system is just 

a(l - e2 ) 
p= . 

1 +eu 
(E.5) 
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Replacing a with pin Equation (E.1) and setting 8u/8r = 0, we find the new constraint 

au(l - e2 ) sin i 
r - ------'---

- l+eu ' 
(E.6) 

and thus 

R a(l-e
2

) ( 2 . 2A. . 2·)1/2 
c = COS i + sin 'f'max Sln 't . 

1 + ecos ¢max 
(E.7) 

However, since for an eccentric orbit the coordinate system is no longer rotating at a uniform 

rate, we no longer have Oe =¢max· To relate the observed quantity Oe to Equation (E.7), we 

can again exploit the location of periastron at mid-eclipse (¢ = 0). The distinction, in this 

case, between ¢max and Oe is identical to the distinction between true anomaly and mean 

anomaly (see Appendix D). Thus, we can use standard elliptic expansions (e.g., Brouwer 

& Clemence 1961, Taff 1985) to write 

¢max= Oe + 2esin0e + ~e2 sin We+ O(e3
). (E.8) 

A further improvement in accuracy could be obtained by replacing the spherical companion 

with one which fills its Roche lobe. Chanan et al. (1976) have derived a formalism for 

computing eclipses by a Roche-lobe-filling companion numerically. 
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Appendix F 

Limits on the Orbit of GRO J1948+32 

When you have eliminated the impossible, whatever 
remains, however improbable, must be the truth. 

-Arthur Conan Doyle (1890) 

Since many transient accreting pulsars do not remain active over their entire binary 

orbit, one frequently is faced with the problem of determining the binary parameters from 

incomplete sampling of the orbit. As an example of how to proceed in these circumstances, 

let us assume that the quasi-sinusoidal variation in the observed pulse frequency history 

of GRO Jl948+32 (Figure F.1) is due to a binary orbit plus a constant spin frequency 

derivative. What can we then infer about the orbital parameters? Because the observations 

clearly span less than one entire orbital cycle, the allowed parameter solutions are highly 

correlated; that is, a wide range of different parameter values can provide an acceptable fit 

to the data. The only way to remove this degeneracy is to observe multiple orbital cycles. 

We can see this degeneracy as follows. If we fit the most conservative model, a circular 

orbit with constant v, we obtain the following best-fit parameters: 

Porb 

ax sin i 

T7r/2 
v 
Reduced x2 

38.5 ± 0.7 d 
116.0 ± 2.5 lt-s 
MJD 49478.8 ± 0.3 
(3.4 ± 0.2) x 10-12 Hz s-1 

= 0.758 (12 degrees of freedom) 

This model, along with the data, is shown in Figure F.1. If we now fit an eccentric orbit 

to the data, we obtain virtually the same model curve, withe= 0.026 ± 0.014 and reduced 

x2 = 0.69 with 10 degrees of freedom. 

Since we cannot determine a unique solution, the best we can do is to identify 
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confidence intervals for the orbital parameters. We do this for a given parameter by holding 

it fixed at some value and then varying all the other parameters to find the best fit to the 

data, being careful to avoid local minima in the multidimensional x2 space. By doing this 

for a grid of fixed parameter values, we can compute the allowed region of parameter space 

corresponding to a given confidence level by excluding parameter values for which x2 is too 

high. That is, for a given confidence level C, we can set an maximum allowed x2 value, 

J~ p(x~)dx~ = 1- c, 
Xmax 

(F.l) 

where v = Ndata - Nparam is the number of degrees of freedom, Ndata is the number of data 

points, Nparam is the number of model parameters, and the x~ probability density (e.g., 

Eadie et al. 1971) is 

(F.2) 
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Table F.l. Circular Orbit Limits for GRO J1948+32 

Parameter Value 

Orbital period 
Projected orbital radius 
Spin frequency derivative 
Mass function 

36 d < Porb < 44 d 
95 lt-s < ax sin i < 165-lt-s 
2 x 10-12 Hz s-1 < ii < 6 x 10-12 Hz s-1 

0.7 M0 < fx(M) < 2.3 M0 

Upper limits are quoted at the 953-confidence level. 

Table F.2. Eccentric Orbit Limits for GRO J1948+32 

Parameter Value 

Eccentricity 
Orbital period 
Projected semimajor axis 
Spin frequency derivative 
Mass function 

e < 0.25 
36 d < Porb < 70 d 
75 lt-s < ax sin i < 300 lt-s 
5 x 10-13 Hz s-1 < ii < 2.5 x 10-11 Hz s-1 

0.5 M0 < fx(M) < 5 M0 

Upper limits are quoted at the 95%-confidence level. 

For example, for our eccentric orbit fits we have Ndata = 17, Npa:ram = 6, and v = 11. Then, 

for C = 0.95, we have reduced X~ax = 1. 789. Model with reduced x2 above this value are 

inconsistent with the data at the 953-confidence level. 

The results of such an analysis for circular orbit models are summarized in Ta­

ble F.l and shown in Figure F.2. The corresponding results for eccentric orbit models are 

summarized in Table F.2 and shown in Figure F.3. 
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Appendix G 

BATSE Localization of Faint Pulsed Sources* 

BATSE can localize intense transient sources (e.g., gamma-ray bursts) to within 

~ 5° accuracy by using the ratios of measured intensities in the various incident detectors 

(Brock et al. 1992; Fishman et al. 1994). Bright persistent sources are localized more 

precisely (rv 0.1°) using Earth occultation edge measurements (Harmon et al. 1993; Zhang 

et al. 1994). Neither of these techniques is directly applicable to sources like GRO J1948+32 

which are too faint (~ 100 mCrab) to localize using standard occultation edge techniques, 

even though their pulsed flux is detectable by integrating the data over some interval. For 

such sources, it is still possible to extract spatial information from Earth occultations by 

using them to define the time intervals over which the pulsed signal is integrated. The 

maximum Fourier power is used to determine the maximum-likelihood sky location, subject 

to the assumptions discussed below. 

For an assumed sky position (a, 8) and pulse frequency vo, we first construct a 

sinusoidal model time series 

(G.1) 

where A and ¢ are the amplitude and phase of the sinusoid, and Wj(a, 8) is a visibility 

window function whose value is taken to be zero or unity depending upon the assumed 

source location and the spacecraft position with respect to the Earth. If we assume Gaussian 

statistics for the observed data, then the probability of model { Mj} given an observed time 

•Adapted from the appendix of "Discovery of the 18.7 Second Accreting X-Ray Pulsar GRO J1948+32" 
in The Astrophysical Journal, 446, 826-831 (1995 June 20), by D. Chakrabarty, T. Koh, L. Bildsten, T. A. 
Prince, M. H. Finger, R. B. Wilson, G. N. Pendleton, & B. C. Rubin. Used by permission of the authors. 
© 1995 by The American Astronomical Society. 
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series { Sj} is 
N -(S -M) 2 /2a2 

II 
e J J 

Pr= 
r,:;--;) ' j=l v ~1f(r 

(G.2) 

where a is the standard deviation of the background noise level, assumed to be constant 

over the integration. We can then write the likelihood function 

1 N 
2lnPr = -- '°'(S· - M-)2 +constant a2 ~ J J 

j=l 
L = (G.3) 

2A N A2 N 
- 2 L Sj Wj cos(27rvotj + </>) - 2 L WJ cos2(27rvofj + </>), 
a j=l a j=l 

(G.4) 

where we have dropped the constant terms. Defining the duty fraction E = I: WJ / N = 
L: Wj/N and the trial time series Qj = SjWj, Equation (G.4) becomes 

L = 2A ~ Q ·e27rivotj+ic/> _ A
2 ~ W·e47rivotj+2ic/> _ EN A

2 
(G.5) 

a 2 ~ J 2a2 ~ J 2a2 
J=l J=l 

2A - "cf> A2 - 2"¢ ENA2 

= -Qkei - -W2ke i - -- (G.6) 
a 2 2a2 2a2 ' 

where Q and Ware the discrete Fourier transforms of Q and W respectively, and k is the 

frequency index corresponding to vo. Since Wis dominated by harmonics of the spacecraft 

orbital frequency VGRO « 2vo (where 1/vGRO ~ 93 min), we can generally assume IW2kl « 
EN and neglect the second term in Equation (G.6). 

For a given sky position (a, 8), the maximum-likelihood value is obtained by max­

imizing L with respect to A, </>, and vo, 

(G.7) 

where Pk= 1Qkl2 /ENa2 is the unity-normalized Fourier power at frequency v0 . (The factor 

of E in the denominator of this definition appears because a fraction 1 - E of the time series 

{ Q j} has been set to zero.) If we define Lopt as the maximum value of L found by varying 

all five parameters (A, </>, vo, a, 8) and define Ltrue as the maximum value of L found by 

varying only A, </>, and vo but holding a and 8 fixed at the (unknown) true coordinates of 

the source, then Cash (1979) has shown that the likelihood ratio statistic 

!1L Lopt - Ltrue 

2Popt - 2Ptrue 

2!1P 

(G.8) 

(G.9) 

(G.10) 
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is distributed as a x2 variable with two degrees of freedom, where we have assumed that 

the optimum and true coordinates are within"' 10° of each other so that Etrue :::::; Eopt :::::; E. 

We now estimate the celestial coordinates of a periodic pulsed source of known 

frequency by computing L for a grid of trial positions (a, 8). The maximum-likelihood 

estimate for the source position is the grid point with the optimum L value. Confidence 

intervals can be constructed using contours of ~x§ = ~L = Lopt - L. A 90% confidence 

region corresponds to a contour of ~x§ = 4.6 while a 99% confidence region corresponds 

to a contour of ~x§ = 9.2 (Lampton, Margon, & Bowyer 1976). Multiple time series can 

be treated in the same way. Each time series contributes an additional product series in 

Equation (G.2), or equivalently additional terms in Equation (G.7). Thus, despite a larger 

aggregate value of L, the ratio statistic ~L will still be distributed as x§. 
This method implicitly assumes a constant sinusoidal signal and a constant Gauss­

ian background over the entire interval of interest. Since real data depart from this idealiza­

tion, we expect that systematic errors will eventually limit the precision of the technique. 

To estimate this limit, we studied DISCLA data from the recent bright outburst of the 3.6 s 

accreting pulsar 4U 0115+63 (Wilson, Finger, & Scott 1994). For the 20-60 keV channel, 

the background level varied between 1000-2000 cts s-1 over the spacecraft orbit. Using a 

location grid spacing of 0.25° and 25 days of data, our estimated 99% confidence region was 

:::::; 1° across, centered on the true position of the source (which is known to within several 

arc seconds from optical astrometry of the companion). Given the strength of the signal 

in these data, we will adopt 0.5° as the systematic precision limit of this technique with 

DISCLA data. 
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Appendix H 

Optical Pulse Timing of 4U 1626-67* 

H.1 Introduction 

Here comes a pair of very strange beasts 

-Shakespeare, As You Like It (1599) 

Binary stellar systems comprising a collapsed primary and a hydrogen-depleted 

low-mass secondary can evolve to extraordinarily short (;;;;1 hr) orbital periods while main­

taining high mass transfer rates. Only a handful of these systems are currently known. 

These include the six AM CVn cataclysmic variables (see Warner 1995) and the X-ray 

burst sources 4U 1820-30 and 4U 1916-05 (see Nelson et al. 1986). The accreting pulsar 

4U 1626-67 is also thought to belong to this class of systems, based on the detection of weak 

optical pulsations interpreted as a beat with a 42-min binary orbital period (Middleditch et 

al. 1981). In this Appendix, I present the preliminary results of recent optical pulse timing 

observations. A more detailed analysis of these observations will be presented elsewhere 

(Chakrabarty 1996). 

H.2 Observations 

These observations were made during new moon on UT 1995 May 26-29, using the 

ASCAP single-channel photometer at the f /8 Ritchey-Chretien focus of the 4-m telescope 

*Based on observations made at the Cerro Tololo Inter-American Observatory, National Optical Astron­
omy Observatories, which are operated by the Association of Universities for Research in Astronomy, under 
contract to the National Science Foundation. 
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at the Cerro Tololo Inter-American Observatory (CTIO) in La Serena, Chile. The detector, 

a Varian VPM-159A photomultiplier tube cooled with dry ice, had good sensitivity from 

the ultraviolet out to 10000 A. The detected count rate was integrated every 1 ms. Absolute 

time accuracy within ±1.5 ms of UTC-NIST was maintained using a Kinemetrics/Truetime 

model 468-DC satellite-synchronized clock in conjunction with the GOES- West satellite 

operated by the National Oceanographic and Atmospheric Administration. 

H.3 Results 

Figure H.l shows the power spectral density of a 1.8 hr observation made on May 

26, using a Johnson U-band (3650 A) filter. At low analysis frequencies, the spectrum is 

dominated by red noise fluctuations in the sky background. At high analysis frequencies, 
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the spectrum is consistent with white noise (Poisson) counting statistics. A strong coherent 

pulsation is visible at a topocentric pulse frequency of 130.4378(42) mHz. When corrected 

to the solar system barycenter, this is in good agreement with the BATSE epmeheris for 

the X-ray pulsations (see Chapter 6). The second harmonic of this pulsation is visible as 

well. Also present is a strong quasi-periodic oscillation (QPO) near 0.048 Hz, consistent 

with the frequency at which an X-ray QPO was recently observed by ASCA (Angelini et 

al. 1995). This is the first detection of an optical QPO from an X-ray pulsar system. 

Figure H.2 shows a detailed view of the same power spectrum near the coherent 

pulsation frequency, normalized with respect to the local noise power level. In addition 

to the main pulsation, a significant lower-frequency sidelobe is also present with topocen­

tric frequency 130.0358(113) mHz. The spacing between the main peak and the sidelobe, 

0.4020(121) mHz, is nearly identical to the sidelobe spacing reported by Middleditch et al. 

(1981) and attributed to a binary orbit. 
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Additional observations were made in the B (4400 A), V (5500 A), R (7000 A), and 

I (9000 A) bands. The main pulsation was clearly detected in the B, V, and R bands, and 

was marginally detected in the I band. All these detections were at reduced significance 

compared to the U-band observation; this was at least partially due to worsening sky 

conditions. Unambiguous detections of the sidelobe feature were not obtained in the other 

observations. 
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IAU Circulars 

1.1 Position of GRO J1948+32 

!AU Circular, No. 5981, 1994 April 29 

GRO J1948+32 = GRO J2014+34 

161 

D. Chakrabarty and T. A. Prince, California Institute of Technology; M. H. Fin­

ger, Universities Space Research Association; R. B. Wilson, Marshall Space Flight Center, 

NASA; and G. N. Pendleton, University of Alabama, Huntsville, report for the Compton 

Gamma Ray Observatory BATSE team: "Further observations of the recently-discovered, 

18.7-s, transient hard X-ray pulsar in Cygnus (originally designated GRO J2014+34; see 

IAUC 5977) have yielded a more precise position. The estimated 90%-confidence error box is 

approximately a 2° .5 x 5° .5 quadrilateral, with corners at R.A. = 19h58m, Deel. = +29° .O; 

19h50m, +34° .O; 19h34m, +35° .0; 19h46m, +28° .0 (equinox 2000.0). In accordance with 

the substantially improved position, we have redesignated the source as GRO J1948+32. 

The pulsed emission was first detectable on Apr. 6 UT and continues to be visible as of 

April 28. Optical and soft-X-ray observations of the error box are strongly encouraged in 

order to further constrain the X-ray position and identify the accreting companion." 

1.2 Spin-Up of GX 1+4 

IA U Circular, No. 6105, 1994 November 16 

GX 1+4 

D. Chakrabarty and T. A. Prince, California Institute of Technology; M. H. Finger, 
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Universities Space Research Association; and R. B. Wilson, Marshall Space Flight Center, 

NASA, report for the Compton Gamma Ray Observatory BATSE team: "The accreting 

X-ray pulsar GX 1+4 has resumed spinning up, reversing the steady spin- down trend 

that had been observed since 1987. We observed a smooth decrease in the spin-down rate, 

from (3.8 ± 0.1) x 10-12 s-2 on June 20 to zero on about October 30. During the interval 

November 8-11, the spin-up rate was (2.7±0.3) x 10-12 s-2 , with a mean barycentric pulse 

frequency of (8.19033 ± 0.00003) x 10-3 s- 1 . The pulsed flux has increased by a factor of 

three since October 17, when the spin-down rate was (1.5 ± 0.2) x 10-12 s-2 . On November 

10, the 20-100 keV phase-averaged pulsed flux was 95 ± 10 mCrab, with a spectrum well 

fit by an optically-thin thermal bremsstrahlung model F(E) = (A/ E) exp(-E/kT), with 

temperature kT = 35±2 keV and F(50 keV) = (2.6±0.1) x 10-4 photons cm-2 s-1 kev-1 . 

The pulsed emission is brighter and harder than observed during a previous outburst (IAUC 

5859), and is continuing to increase in intensity." 

1.3 Spin-Down of GX 1+4 

IA U Circular, No. 6153, 1995 March 27 

GX 1+4 

D. Chakrabarty, T. Koh, T. A. Prince, and B. Vaughan, California Institute of 

Technology; M. H. Finger and M. Scott, Universities Space Research Association; and R. 

B. Wilson, Marshall Space Flight Center, NASA, report for the Compton Gamma Ray 

Observatory BATSE team: "The accreting X-ray pulsar GX 1 +4 has undergone another 

torque reversal, and resumed spinning down on around March 2, thereby ending an extended 

spin-up episode that began on 1994 October 30 (IAUC 6105). On March 17.0 UT, the 

barycentric pulse frequency was (8.21119 ± 0.00002) x 10-3 s-1 , with a mean frequency 

derivative of (-1.25 ± 0.04) x 10-12 s-2. The phase-averaged pulsed intensity on this date 

was (9.0 ± 0.9) x 10-4 photon cm-2 s-1 kev-1 at 30 keV, with a power-law photon index 

of 2.6 ± 0.2 for the 20-100 keV pulsed flux." 
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Appendix J 

GX 1+4 Observational Data 

To facilitate further torque-luminosity studies of GX 1+4, and also to provide an 

accurate pulse frequency ephemeris for this widely observed source, the archival timing data 

and the BATSE timing and flux data are summarized here. 
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Figure J.l: Pulse frequency history of GX 1+4 
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Table J.l. Archival Timing Observations of GX 1+4 

Epoch Pulse period 
Date MJD (s) Instrument Reference 

1970 Oct 16.5 40875.5 135(4) MIT balloon Lewin et al. 1971 

1972 Sep 11.5 41571.5 129.0(3) Copernicus White et al. 1976 
1972 Sep 18.5 41578.5 129.6(6) Copernicus White et al. 1976 

1973 Mar 25.5 41766.5 131. 7( 42) Copernicus White et al. 1976 

1974 Apr 2.5 42139.5 128.1(3) Rice balloon Koo and Haymes 1980 

1975 Sep 15.5 42670.5 122.46(3) 080-8 Becker et al. 1976 
1975 Oct 10.2 42695.2 122.34(6) 8A8-3 Doty et al. 1981 
1975 Dec 26.8 42772.8 121.367( 4) 8A8-3 Doty et al. 1981 

1976 Feb 4.1 42812.1 120.6589(3) 8A8-3 Doty et al. 1981 
1976 Mar 16.5 42853.5 120.493(3) 080-8 Cutler et al. 1986 
1976 May 11.3 42909.3 120.5(5) NRL balloon Strickman et al. 1980 
1976 Jul 4.2 42963.2 120.19(5) 8A8-3 Doty et al. 1981 

1977 Mar 11.5 43213.5 118.873(5) 080-8 Cutler et al. 1986 
1977 Apr 11.5 43244.5 118. 715(5) Ariel 5 Coe et al. 1981 
1977 Nov 23.6 43470.6 117.45(20) NRL balloon Strickman et al. 1980 

1978 Mar 26.5 43593.5 116.49(10) 080-8 Cutler et al. 1986 
1978 Sep 21.0 43772.0 114.254(11) 080-8 Cutler et al. 1986 
1978 Nov 22.5 43834.5 113. 75(25) MPI/ AIT balloon Kendziorra et al. 1982 

1979 Mar 20.5 43952.5 112.68(3) Einstein/MPG Elsner et al. 1985 
1979 Jul 8.95 44062.95 112.076(3) Ariel 6 Ricketts et al. 1982 

1980 Apr 17.95 44346.95 109.668(3) Ariel 6 Ricketts et al. 1982 

1984 Dec 18.0 46052.0 108.1(26) TIFR balloon Damle et al. 1988, Leahy 1989 

1986 Nov 20.25 46754.25 111.5(12) Tasmania balloon Greenhill et al. 1993 

1987 Mar 31.0 46885.0 110.233(3) Ging a Makishima et al. 1988 
1987 Oct 31.54 47099.54 111.03(2) Mir /K vant/HEXE Mony et al. 1991 

1988 Mar 27.3 47247.3 111.59(2) Ging a Dotani et al. 1989 
1988 Sep 25.6 47429.61 112.359(5) Mir /K vant/HEXE Mony et al. 1991 

1989 Aug 27.47 47765.47 113.626(2) Ging a Sakao et al. 1990 

1990 Aug 23.8 48126.8 114.540(62) Granat/ ART-P Lutovinov et al. 1994 
1990 Oct 7.7 48171. 7 114.657(14) Granat/ ART-P Lutovinov et al. 1994 

1991 Mar 22.87 48337.87 115.06(3) Granat/SIGMA Laurent et al. 1993 
1991 Apr 1.52 48347.52 115.086(5) Granat/SIGMA Laurent et al. 1993 
1991 Sep 8.7 48507.7 116.158(57) Granat/ ART-P Lutovinov et al. 1994 
1991 Oct 14.90 48543.90 116.38(10) Granat/SIGMA Laurent et al. 1993 
1991 Oct 18.39 48547.39 116.43(5) Granat/SIGMA Laurent et al. 1993 

1993 Dec 11.2 49332.2 121.0( 4) TIFR balloon Rao et al. 1994 
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Table J.2. BATSE Observations of GX 1 +4 

Epoch Pulse Frequency 20-60 ke V Pulsed Flux 
Date MJD (mHz) erg cm- 2 s- 1 

1991 Apr 22.50 48368.50 8.67845(12) 3.9(2) x 10-10 

1991 Apr 27.50 48373.50 8.67591(17) 3.0(3) x 10- 10 

1991 May 2.50 48378.50 8.67354(19) 3.8(4) x 10- 10 

1991 May 7.50 48383.50 8.67076(12) 4.7(5) x 10- 10 

1991 May 12.50 48388.50 8.66804(12) 5.9(5) x 10-10 

1991 May 17.50 48393.50 8.66467(11) 6.6(4) x 10-10 

1991 May 22.50 48398.50 8.66126(11) 5.6(4) x 10- 10 

1991 May 27.50 48403.50 8.65800(10) 5.6(4) x 10- 10 

1991 Jun 1.50 48408.50 8.65537(10) 4.3(4) x 10-10 

1991 Jun 6.50 48413.50 8.65301(13) 2. 7(3) x 10-10 

1991 Jun 11.50 48418.50 8.65068(19) 2.8(4) x 10- 10 

1991 Jun 16.50 48423.50 8.64810(16) 3.8( 4) x 10- 10 

1991 Jun 21.50 48428.50 8.64590(14) 3.0(4) x 10- 10 

1991 Jun 26.50 48433.50 8.64282(16) 3.3(2) x 10-10 

1991 Jul 1.50 48438.50 8.64022(12) 3.3(3) x 10- 10 

1991 Jul 6.50 48443.50 8.63790(15) 3.3(3) x 10- 10 

1991 Jul 11.50 48448.50 8.63490(17) 3.2(3) x 10- 10 

1991 Jul 16.50 48453.50 8.63199(13) 4.5( 4) x 10- 10 

1991 Jul 21.50 48458.50 8.62935(15) 3.9(4) x 10- 10 

1991 Jul 26.50 48463.50 8.62702(19) 2.8( 4) x 10-10 

1991 Jul 31.50 48468.50 8.62446(13) 2.5( 4) x 10-10 

1991 Aug 5.50 48473.50 8.62233(18) 2.7(3) x 10- 10 

1991 Aug 10.50 48478.50 8.61969(17) 3.6( 4) x 10- 10 

1991 Aug 15.50 48483.50 8.61785(46) 1.1(3) x 10- 10 

1991 Aug 20.50 48488.50 8.61587(39) 1.5(6) x 10- 10 

1991 Aug 25.50 48493.50 8.61460(28) 1.7(4) x 10-10 

1991 Aug 30.50 48498.50 8.61230(23) 1.8(5) x 10-10 

1991 Sep 4.50 48503.50 8.61036(30) 1.5(3) x 10- 10 

1991 Sep 9.50 48508.50 8.60887(20) 1.8(3) x 10- 10 

1991 Sep 14.50 48513.50 8.60734(16) 1.8(4) x 10- 10 

1991 Sep 19.50 48518.50 8.60496(74) 0.7(3) x 10- 10 

1991 Sep 24.50 48523.50 8.60258(74) 0.5(6) x 10- 10 

1991 Sep 29.50 48528.50 8.60021(74) 0.7(3) x 10- 10 

1991 Oct 4.50 48533.50 8.59783(32) 1.6(3) x 10-10 

1991 Oct 9.50 48538.50 8.59688(21) 2.7(4) x 10-10 

1991 Oct 14.50 48543.50 8.59318(10) 6.0(3) x 10-10 

1991 Oct 19.50 48548.50 8.58953(10) 6.8(4) x 10- 10 

1991 Oct 24.50 48553.50 8.58636(30) 1.8(2) x 10-10 

1991 Oct 29.50 48558.50 8.58554(39) 1.4( 4) x 10-10 

1991 Nov 3.50 48563.50 8.58301(21) 1.7(4) x 10- 10 

1991 Nov 8.50 48568.50 8.58059(25) 1.7(3) x 10- 10 

1991 Nov 13.50 48573.50 8.57800(11) 4.3( 4) x 10- 10 



APPENDIX J. GX 1+4 OBSERVATIONAL DATA 166 

Table J.2-Continued 

Epoch Pulse Frequency 20-60 keV Pulsed Flux 
Date MJD (mHz) erg cm- 2 s- 1 

1991 Nov 18.50 48578.50 8.57521(13) 3.7(4) x 10- 10 

1991 Nov 23.50 48583.50 8.57270(14) 3.3(3) x 10- 10 

1991 Nov 28.50 48588.50 8.56952(30) 1.8(3) x 10- 10 

1991 Dec 3.50 48593.50 8.56722(21) 1.9(10) x 10- 10 

1991 Dec 8.50 48598.50 8.56445(19) 2.8(3) x 10- 10 

1991 Dec 13.50 48603.50 8.56231(14) 4.0(3) x 10- 10 

1991 Dec 18.50 48608.50 8.55944(15) 3.7(4) x 10- 10 

1991 Dec 23.50 48613.50 8.55682(15) 3.7(4) x 10- 10 

1991 Dec 28.50 48618.50 8.55364(11) 5.2(5) x 10- 10 

1992 Jan 2.50 48623.50 8.55076(12) 4.3(5) x 10-10 

1992 Jan 7.50 48628.50 8.54 761 (11) 5.1(4) x 10-10 

1992 Jan 12.50 48633.50 8.54460(9) 6.9(4) x 10- 10 

1992 Jan 17.50 48638.50 8.54152(9) 5.2(2) x 10- 10 

1992 Jan 22.50 48643.50 8.53842(10) 4.7(2) x 10- 10 

1992 Jan 27.50 48648.50 8.53561(13) 3.7(2) x 10- 10 

1992 Feb 1.50 48653.50 8.53225(14) 3.9(3) x 10-10 

1992 Feb 6.50 48658.50 8.52951(14) 3.3(3) x 10-10 

1992 Feb 11.50 48663.50 8.52592(10) 4.3(3) x 10-10 

1992 Feb 16.50 48668.50 8.52277(8) 5.2(2) x 10- 10 

1992 Feb 21.50 48673.50 8.51944(9) 4.3(2) x 10- 10 

1992 Feb 26.50 48678.50 8.51625(10) 4.4(3) x 10- 10 

1992 Mar 2.50 48683.50 8.51321 (11) 3.5(2) x 10- 10 

1992 Mar 7.50 48688.50 8.51073(22) 2.8(2) x 10- 10 

1992 Mar 12.50 48693.50 8.50861(39) 2.8(1) x 10- 10 

1992 Mar 17.50 48698.50 8.50579(72) 2.1(1) x 10-10 

1992 Mar 22.50 48703.50 8.50297(20) 2.5(1) x 10-10 

1992 Mar 27.50 48708.50 8.50124(29) 1.5(1) x 10- 10 

1992 Apr 1.50 48713.50 8.49920(26) 2.2(1) x 10-10 

1992 Apr 6.50 48718.50 8.49659(17) 2.8(2) x 10- 10 

1992 Apr 11.50 48723.50 8.49415(25) 1. 7(2) x 10- 10 

1992 Apr 16.50 48728.50 8.49243(29) 1.5(2) x 10- 10 

1992 Apr 21.50 48733.50 8.49047(29) 2.2(2) x 10- 10 

1992 Apr 26.50 48738.50 8.48892(32) 1.8(3) x 10- 10 

1992 May 1.50 48743.50 8.48720( 42) 1.2(3) x 10- 10 

1992 May 6.50 48748.50 8.48503(19) 3.8(2) x 10- 10 

1992 May 11.50 48753.50 8.48321 (72) 1.9(2) x 10- 10 

1992 May 16.50 48758.50 8.48140(27) 1.9(3) x 10- 10 

1992 May 21.50 48763.50 8.47948(21) 2.6(2) x 10- 10 

1992 May 26.50 48768.50 8.47706(14) 2.3(2) x 10- 10 

1992 May 31.50 48773.50 8.47538(17) 1.8(2) x 10- 10 

1992 Jun 5.50 48778.50 8.47371(31) 1. 7(2) x 10- 10 

1992 Jun 10.50 48783.50 8.47166(72) 1.7(3) x 10- 10 
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Table J .2-Continued 

Epoch Pulse Frequency 20-60 ke V Pulsed Flux 
Date MJD (mHz) erg cm- 2 s- 1 

1992 Jun 15.50 48788.50 8.46961(33) 1.3(3) x 10-10 

1992 Jun 20.50 48793.50 8.46853(34) 1.3(2) x 10- 10 

1992 Jun 25.50 48798.50 8.46682(57) 1.4(3) x 10- 10 

1992 Jun 30.50 48803.50 8.46500(72) 1.4(6) x 10-10 

1992 Jul 5.50 48808.50 8.46319(38) 1.8(3) x 10-10 

1992 Jul 10.50 48813.50 8.46081(48) 1.1(2) x 10- 10 

1992 Jul 15.50 48818.50 8.45933(33) 1. 7(3) x 10-10 

1992 Jul 20.50 48823.50 8.45797(30) 1.6(2) x 10-10 

1992 Jul 25.50 48828.50 8 .45630 ( 44) 1.1(2) x 10-10 

1992 Jul 30.50 48833.50 8.45605(59) 1.1(2) x 10-10 

1992 Aug 4.50 48838.50 8.45362(36) 1.4( 4) x 10- 10 

1992 Aug 9.50 48843.50 8.45227(30) 1.4(5) x 10-10 

1992 Aug 14.50 48848.50 8 .45065 ( 40) 1.8(3) x 10-10 

1992 Aug 19.50 48853.50 8.44915(71) 0.9( 4) x 10- 10 

1992 Aug 24.50 48858.50 8.44765(26) 2.8(5) x 10- 10 

1992 Aug 29.50 48863.50 8.44594(51) 1.6(3) x 10- 10 

1992 Sep 3.50 48868.50 8.44536(31) 2.4(15) x 10- 10 

1992 Sep 8.50 48873.50 8.44249(18) 2.6(3) x 10-10 

1992 Sep 13.50 48878.50 8.44042(35) 1.3(3) x 10-10 

1992 Sep 18.50 48883.50 8.43816(51) 1.6(4) x 10- 10 

1992 Sep 23.50 48888.50 8.43646(32) 1.3(3) x 10- 10 

1992 Sep 28.50 48893.50 8.43464(23) 2.1(3) x 10- 10 

1992 Oct 3.50 48898.50 8.43215(17) 2. 7(2) x 10-10 

1992 Oct 8.50 48903.50 8.42979(15) 3.3(2) x 10-10 

1992 Oct 13.50 48908.50 8.42786(17) 2.8(2) x 10- 10 

1992 Oct 18.50 48913.50 8.42504(17) 2.8(2) x 10- 10 

1992 Oct 23.50 48918.50 8.42292(17) 2.7(2) x 10- 10 

1992 Oct 28.50 48923.50 8.42142(28) 1.8(2) x 10-10 

1992 Nov 2.50 48928.50 8.41959(26) 1.7(3) x 10-10 

1992 Nov 7.50 48933.50 8.41763(16) 2.6(3) x 10- 10 

1992 Nov 12.50 48938.50 8.41505(14) 3.5(2) x 10- 10 

1992 Nov 17.50 48943.50 8.41269(14) 3.6(2) x 10- 10 

1992 Nov 22.50 48948.50 8.41010(14) 3. 7(3) x 10- 10 

1992 Nov 27.50 48953.50 8.40789(19) 2.3(3) x 10- 10 

1992 Dec 2.50 48958.50 8.40589(32) 1.8(2) x 10- 10 

1992 Dec 7.50 48963.50 8.40324(18) 2.8(3) x 10- 10 

1992 Dec 12.50 48968.50 8.40146(27) 1.5(3) x 10- 10 

1992 Dec 17.50 48973.50 8.40032(28) 1.5(3) x 10- 10 

1992 Dec 22.50 48978.50 8.39784(21) 2.4(3) x 10- 10 

1992 Dec 27.50 48983.50 8.39556(16) 3.3(3) x 10-10 

1993 Jan 1.50 48988.50 8.39290(14) 4. 7(2) x 10- 10 

1993 Jan 6.50 48993.50 8.38969(14) 4.8(3) x 10- 10 



APPENDIX J. GX 1 +4 OBSERVATIONAL DATA 168 

Table J .2-Continued 

Epoch Pulse Frequency 20-60 ke V Pulsed Flux 
Date MJD (mHz) erg cm- 2 s- 1 

1993 Jan 11.50 48998.50 8.38663(14) 5. 7(2) x 10-10 

1993 Jan 16.50 49003.50 8.38386(20) 2.8(2) x 10-10 

1993 Jan 21.50 49008.50 8.38186(29) 1.3(2) x 10- 10 

1993 Jan 26.50 49013.50 8.37921(27) 1.5(2) x 10- 10 

1993 Jan 31.50 49018.50 8.37601(18) 2.7(2) x 10- 10 

1993 Feb 5.50 49023.50 8.37366(12) 2.9(2) x 10-10 

1993 Feb 10.50 49028.50 8.37136(14) 3.1(2) x 10- 10 

1993 Feb 15.50 49033.50 8.36900(16) 2.3(2) x 10- 10 

1993 Feb 20.50 49038.50 8.36760(19) 2.1(2) x 10- 10 

1993 Feb 25.50 49043.50 8.36563(31) 2.3(4) x 10- 10 

1993 Mar 2.50 49048.50 8.36427(19) 1.6(4) x 10-10 

1993 Mar 7.50 49053.50 8.36276(31) 1.4(2) x 10- 10 

1993 Mar 12.50 49058.50 8.36139(29) 2.0(3) x 10- 10 

1993 Mar 17.50 49063.50 8.36003(20) 2.6(2) x 10- 10 

1993 Mar 22.50 49068.50 8.35812(19) 2.3(3) x 10- 10 

1993 Mar 27.50 49073.50 8.3567 4(21) 2.1(4) x 10-10 

1993 Apr 1.50 49078.50 8.35465(22) 1.5(4) x 10- 10 

1993 Apr 6.50 49083.50 8.35344(33) 1.3(2) x 10- 10 

1993 Apr 11.50 49088.50 8.35176(30) 1.9(2) x 10- 10 

1993 Apr 16.50 49093.50 8.35046(32) 1.5(3) x 10- 10 

1993 Apr 21.50 49098.50 8.34882(29) 1. 7(2) x 10-10 

1993 Apr 26.50 49103.50 8.34817(54) 1.1(2) x 10- 10 

1993 May 1.50 49108.50 8.34621(20) 1.8(2) x 10- 10 

1993 May 6.50 49113.50 8.34481(70) 2.9(3) x 10- 10 

1993 May 11.50 49118.50 8.34341(33) 1.2(4) x 10- 10 

1993 May 16.50 49123.50 8.34260( 41) 1.1(3) x 10-10 

1993 May 21.50 49128.50 8.34100( 51) 1.6(3) x 10-10 

1993 May 26.50 49133.50 8.33959( 48) 1.2(3) x 10-10 

1993 May 31.50 49138.50 8.33825(27) 2.1(3) x 10-10 

1993 Jun 5.50 49143.50 8.33671(70) 1.5(5) x 10- 10 

1993 Jun 10.50 49148.50 8.33516(26) 1.7(4) x 10- 10 

1993 Jun 15.50 49153.50 8.33338(38) 1.6(4) x 10- 10 

1993 Jun 20.50 49158.50 8.33190(24) 3.5(4) x 10- 10 

1993 Jun 25.50 49163.50 8.33024(18) 2.9(3) x 10-10 

1993 Jun 30.50 49168.50 8.32801(12) 4.4(3) x 10-10 

1993 Jul 5.50 49173.50 8.32638(10) 3.1(5) x 10-10 

1993 Jul 10.50 49178.50 8.32450(11) 3.4(2) x 10- 10 

1993 Jul 15.50 49183.50 8.32241(12) 4.1(3) x 10- 10 

1993 Jul 20.50 49188.50 8.32014(12) 3.6(2) x 10-10 

1993 Jul 25.50 49193.50 8.31802(14) 3.4(2) x 10-10 

1993 Jul 30.50 49198.50 8.31570(19) 1.8(3) x 10- 10 

1993 Aug 4.50 49203.50 8.31254(29) 1.4(2) x 10- 10 
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Table J .2-Continued 

Epoch Pulse Frequency 20-60 ke V Pulsed Flux 
Date MJD (mHz) erg cm- 2 s- 1 

1993 Aug 9.50 49208.50 8.31083(39) 1.6(2) x 10- 10 

1993 Aug 14.50 49213.50 8.30585(54) 1.3(6) x 10- 10 

1993 Aug 19.50 49218.50 8.30503(19) 1.5(5) x 10-10 

1993 Aug 24.50 49223.50 8.30323(18) 2.1(2) x 10-10 

1993 Aug 29.50 49228.50 8.29961 (11) 5.0(3) x 10- 10 

1993 Sep 3.50 49233.50 8.29620(9) 8.7(3) x 10- 10 

1993 Sep 8.50 49238.50 8.29267(11) 12.4(3) x 10-10 

1993 Sep 13.50 49243.50 8.28869(10) 11.6( 4) x 10-10 

1993 Sep 18.50 49248.50 8.28489(20) 4.2( 4) x 10-10 

1993 Sep 23.50 49253.50 8.28328(29) 2.1(3) x 10-10 

1993 Sep 28.50 49258.50 8.28095(32) 2.0(3) x 10-10 

1993 Oct 3.50 49263.50 8.27994(24) 2.6(4) x 10- 10 

1993 Oct 8.50 49268.50 8.27721 (36) 1.5(3) x 10- 10 

1993 Oct 13.50 49273.50 8.27558(52) 0.9(4) x 10- 10 

1993 Oct 18.50 49278.50 8.27558(59) 1.3(2) x 10-10 

1993 Oct 23.50 49283.50 8.27539(68) 1.4(6) x 10- 10 

1993 Oct 28.50 49288.50 8.27521(29) 2.5(6) x 10-10 

1993 Nov 2.50 49293.50 8.27523(23) 3.6(7) x 10- 10 

1993 Nov 7.50 49298.50 8.27334(29) 3.1(5) x 10-10 

1993 Nov 12.50 49303.50 8.27114(31) 2.4(5) x 10- 10 

1993 Nov 17.50 49308.50 8.26878(22) 3.6(4) x 10- 10 

1993 Nov 22.50 49313.50 8.26638(17) 4.1(5) x 10- 10 

1993 Nov 27.50 49318.50 8.26389(13) 3.4(3) x 10- 10 

1993 Dec 2.50 49323.50 8.26158(13) 3.3(3) x 10- 10 

1993 Dec 7.50 49328.50 8.25921(14) 2. 7(3) x 10- 10 

1993 Dec 12.50 49333.50 8.25680(16) 3.4(2) x 10-10 

1993 Dec 17.50 49338.50 8.25447(14) 4.3(3) x 10-10 

1993 Dec 22.50 49343.50 8.25155(33) 2.5(4) x 10-10 

1993 Dec 27.50 49348.50 8.24900(68) 0.8(5) x 10- 10 

1994 Jan 1.50 49353.50 8.24645(68) 1.7(7) x 10- 10 

1994 Jan 6.50 49358.50 8.24390(68) 1.3(5) x 10- 10 

1994 Jan 11.50 49363.50 8.24135(29) 1.6(5) x 10- 10 

1994 Jan 16.50 49368.50 8.24093( 49) 1.0(3) x 10- 10 

1994 Jan 21.50 49373.50 8.24087(68) 0.9(4) x 10- 10 

1994 Jan 26.50 49378.50 8.24082(68) 0.7(5) x 10- 10 

1994 Jan 31.50 49383.50 8.24077(68) 0.9(5) x 10-10 

1994 Feb 5.50 49388.50 8.24072(33) 1.2(4) x 10- 10 

1994 Feb 10.50 49393.50 8.24003(68) 1.8(4) x 10- 10 

1994 Feb 15.50 49398.50 8.23934( 42) 2.3(10) x 10- 10 

1994 Feb 20.50 49403.50 8.23739(57) 1.1(6) x 10- 10 

1994 Feb 25.50 49408.50 8.23714( 47) 0.8( 4) x 10- 10 

1994 Mar 2.50 49413.50 8.23667(37) 1.3(2) x 10- 10 
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Table J.2-Continued 

Epoch Pulse Frequency 20-60 keV Pulsed Flux 
Date MJD (mHz) erg cm- 2 s- 1 

1994 Mar 7.50 49418.50 8.23605(31) 1.5(3) x 10- 10 

1994 Mar 12.50 49423.50 8.23442(20) 1.7(6) x 10- 10 

1994 Mar 17.50 49428.50 8.23430(68) 1.2(4) x 10- 10 

1994 Mar 22.50 49433.50 8.23417(68) 0.8( 4) x 10-10 

1994 Mar 27.50 49438.50 8.23404(54) 0.9(3) x 10- 10 

1994 Apr 1.50 49443.50 8.23240(22) 2.1(4) x 10- 10 

1994 Apr 6.50 49448.50 8.23150(18) 3.9(3) x 10- 10 

1994 Apr 11.50 49453.50 8.23098(18) 3.2(5) x 10-10 

1994 Apr 16.50 49458.50 8.22860(37) 1.7(3) x 10-10 

1994 Apr 21.50 49463.50 8.22736(68) 1.1(4) x 10-10 

1994 Apr 26.50 49468.50 8.22619(50) 1.0(6) x 10- 10 

1994 May 1.50 49473.50 8.22493(25) 1.2(5) x 10- 10 

1994 May 6.50 49478.50 8.22360(23) 1.4(3) x 10- 10 

1994 May 11.50 49483.50 8.22228(26) 2.2(2) x 10-10 

1994 May 16.50 49488.50 8.22145(30) 1.7(6) x 10-10 

1994 May 21.50 49493.50 8.22201(50) 1.3( 4) x 10-10 

1994 May 26.50 49498.50 8.22118(28) 1.9(7) x 10- 10 

1994 May 31.50 49503.50 8.21900( 42) 1.6(2) x 10- 10 

1994 Jun 5.50 49508.50 8.21847(28) 2.2(5) x 10- 10 

1994 Jun 10.50 49513.50 8.21612(50) 1.1(4) x 10-10 

1994 Jun 15.50 49518.50 8.21363(38) 1.9(7) x 10-10 

1994 Jun 20.50 49523.50 8.21328(29) 1.6( 4) x 10-10 

1994 Jun 25.50 49528.50 8.21092(25) 1.7(4) x 10-10 

1994 Jun 30.50 49533.50 8.20956(26) 1.5(4) x 10- 10 

1994 Jul 5.50 49538.50 8.20781(20) 2.3(3) x 10- 10 

1994 Jul 10.50 49543.50 8.20593(53) 1.1(3) x 10- 10 

1994 Jul 15.50 49548.50 8.20546(20) 2.2(3) x 10- 10 

1994 Jul 20.50 49553.50 8.20412(67) 1.9(4) x 10- 10 

1994 Jul 25.50 49558.50 8.20279(15) 4.3(3) x 10- 10 

1994 Jul 30.50 49563.50 8.20229(11) 6.1(3) x 10-10 

1994 Aug 4.50 49568.50 8.20139(27) 2.9(4) x 10-10 

1994 Aug 9.50 49573.50 8.19986(18) 2.6(4) x 10- 10 

1994 Aug 14.50 49578.50 8.19886(24) 1.1(3) x 10- 10 

1994 Aug 19.50 49583.50 8.19818(20) 1.4(2) x 10- 10 

1994 Aug 24.50 49588.50 8.19780(21) 1.4(2) x 10- 10 

1994 Aug 29.50 49593.50 8.19677(31) 1.5(2) x 10- 10 

1994 Sep 3.50 49598.50 8.19647(22) 1.6(3) x 10- 10 

1994 Sep 8.50 49603.50 8.19559(23) 2.3(3) x 10- 10 

1994 Sep 13.50 49608.50 8.19496(15) 2.3(3) x 10- 10 

1994 Sep 18.50 49613.50 8.19387(16) 3.1(3) x 10- 10 

1994 Sep 23.50 49618.50 8.19325(12) 2.8(4) x 10- 10 

1994 Sep 28.50 49623.50 8.19231(12) 2.9(2) x 10- 10 
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Table J .2-Continued 

Epoch Pulse Frequency 20-60 ke V Pulsed Flux 
Date MJD (mHz) erg cm- 2 s- 1 

1994 Oct 3.50 49628.50 8.19184(17) 2.6(2) x 10- 10 

1994 Oct 8.50 49633.50 8.19089(12) 3.1(4) x 10-10 

1994 Oct 13.50 49638.50 8.19010(9) 4.6(3) x 10- 10 

1994 Oct 18.50 49643.50 8.18958(10) 6.1(2) x 10- 10 

1994 Oct 23.50 49648.50 8.18915(10) 6.9(3) x 10- 10 

1994 Oct 28.50 49653.50 8.18883(9) 6.4(3) x 10- 10 

1994 Nov 2.50 49658.50 8.18894(8) 8.0(3) x 10-10 

1994 Nov 7.50 49663.50 8.18975(8) 8.6(3) x 10- 10 

1994 Nov 12.50 49668.50 8.19101(8) 9.0(3) x 10- 10 

1994 Nov 17.50 49673.50 8.19209(8) 9.5(2) x 10- 10 

1994 Nov 22.50 49678.50 8.19352(7) 9.6(3) x 10- 10 

1994 Nov 27.50 49683.50 8.19477(7) 12.3(4) x 10-10 

1994 Dec 2.50 49688.50 8.19613(7) 8.6(4) x 10- 10 

1994 Dec 7.50 49693.50 8.19752(8) 12.4(3) x 10- 10 

1994 Dec 12.50 49698.50 8.19891(8) 9.3(4) x 10- 10 

1994 Dec 17.50 49703.50 8.20004(8) 8.0(3) x 10- 10 

1994 Dec 22.50 49708.50 8.20112(8) 7.9(3) x 10- 10 

1994 Dec 27.50 49713.50 8.20239(8) 8.1(3) x 10-10 

1995 Jan 1.50 49718.50 8.20368(8) 9.5(3) x 10-10 

1995 Jan 6.50 49723.50 8.20481(8) 9.9(3) x 10- 10 

1995 Jan 11.50 49728.50 8.20578(8) 9.7(3) x 10- 10 

1995 Jan 16.50 49733.50 8.20665(6) 8.7(3) x 10- 10 

1995 Jan 21.50 49738.50 8.20760(6) 9.0(2) x 10- 10 

1995 Jan 26.50 49743.50 8.20840(9) 8.0(3) x 10- 10 

1995 Jan 31.50 49748.50 8.20940(9) 9.0(4) x 10- 10 

1995 Feb 5.50 49753.50 8.21009(9) 7.5( 4) x 10-10 

1995 Feb 10.50 49758.50 8.21066(10) 8.2( 4) x 10-10 

1995 Feb 15.50 49763.50 8.21117(10) 7.9( 4) x 10-10 

1995 Feb 20.50 49768.50 8.21165(7) 10.8(4) x 10- 10 

1995 Feb 25.50 49773.50 8.21178(8) 9.8(3) x 10- 10 

1995 Mar 2.50 49778.50 8.21186(10) 10.1(3) x 10- 10 

1995 Mar 7.50 49783.50 8.21187(8) 10.0(5) x 10- 10 

1995 Mar 12.50 49788.50 8.21158(8) 7.5(4) x 10- 10 

1995 Mar 17.50 49793.50 8.21095(8) 7.8(3) x 10-10 

1995 Mar 22.50 49798.50 8.21020(12) 6.1(4) x 10- 10 

1995 Mar 27.50 49803.50 8.20946(13) 4.9(4) x 10- 10 

1995 Apr 1.50 49808.50 8.20837(19) 3.1(4) x 10-10 

1995 Apr 6.50 49813.50 8.20750(31) 1.7(4) x 10-10 

1995 Apr 11.50 49818.50 8.20592( 46) 1.5(3) x 10- 10 

1995 Apr 16.50 49823.50 8.20070( 45) 1.3(6) x 10- 10 

1995 Apr 21.50 49828.50 8.19745(67) 0.8(3) x 10- 10 

1995 Apr 26.50 49833.50 8.19421(16) 3.4(5) x 10- 10 
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Table J.2-Continued 

Epoch Pulse Frequency 20-60 ke V Pulsed Flux 
Date MJD (mHz) erg cm- 2 s- 1 

1995 May 1.50 49838.50 8.18930(12) 3.6( 4) x 10-10 

1995 May 6.50 49843.50 8.18678(30) 1.2(3) x 10- 10 

1995 May 11.50 49848.50 8.18497(14) 3.4(4) x 10- 10 

1995 May 16.50 49853.50 8.18295(13) 4.4(3) x 10- 10 

1995 May 21.50 49858.50 8.18081(12) 6.7(3) x 10- 10 

1995 May 26.50 49863.50 8.17784(14) 4.7(4) x 10- 10 

1995 May 31.50 49868.50 8.17528(11) 7.5(3) x 10- 10 

1995 Jun 5.50 49873.50 8.17277(20) 6.5(4) x 10- 10 

1995 Jun 10.50 49878.50 8.17050(19) 3.3(5) x 10- 10 

1995 Jun 15.50 49883.50 8.16841(11) 8.6(6) x 10- 10 

1995 Jun 20.50 49888.50 8.16626(10) 6.5( 4) x 10-10 

1995 Jun 25.50 49893.50 8.16421(11) 5.5( 4) x 10-10 

1995 Jun 30.50 49898.50 8.16195(14) 4.9(4) x 10- 10 

1995 Jul 5.50 49903.50 8.16068(15) 4.0(4) x 10- 10 

1995 Jul 10.50 49908.50 8.15896(10) 7.4(3) x 10-10 

1995 Jul 15.50 49913.50 8.15747(11) 8.2(3) x 10- 10 

1995 Jul 20.50 49918.50 8.15660(12) 4.9(3) x 10- 10 

1995 Jul 25.50 49923.50 8.15475(10) 7.9(2) x 10- 10 

1995 Jul 30.50 49928.50 8.15195(12) 4.6(3) x 10-10 

1995 Aug 4.50 49933.50 8.15028(9) 6.0(3) x 10- 10 

1995 Aug 9.50 49938.50 8.14882(11) 5. 7(2) x 10- 10 

1995 Aug 14.50 49943.50 8.14712(15) 4.1(4) x 10-10 

1995 Aug 19.50 49948.50 8.14533(24) 2.1(4) x 10-10 

1995 Aug 24.50 49953.50 8.14542(10) 6.7(4) x 10-10 

1995 Aug 29.50 49958.50 8.14388(11) 5.8(3) x 10- 10 

1995 Sep 3.50 49963.50 8.14249(9) 12.2(3) x 10-10 

1995 Sep 8.50 49968.50 8.13965(13) 10.2( 4) x 10- 10 

1995 Sep 13.50 49973.50 8.13773(14) 5.5(5) x 10- 10 

1995 Sep 18.50 49978.50 8.13649(9) 15.7(4) x 10- 10 

1995 Sep 23.50 49983.50 8.13355(10) 6.5(5) x 10- 10 

1995 Sep 28.50 49988.50 8.13177(11) 6.0(3) x 10- 10 

1995 Oct 3.50 49993.50 8.13015(11) 5.1(4) x 10-10 

1995 Oct 8.50 49998.50 8.12903(10) 4.7(4) x 10- 10 

1995 Oct 13.50 50003.50 8.12765(9) 12.6(2) x 10- 10 

1995 Oct 18.50 50008.50 8.12537(11) 7.3(4) x 10- 10 

1995 Oct 23.50 50013.50 8.12235(10) 9.4(4) x 10- 10 

1995 Oct 28.50 50018.50 8.12007(11) 4.3(3) x 10- 10 

1995 Nov 2.50 50023.50 8.11853(10) 11.5(5) x 10- 10 
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