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Abstract

In the first part, we study the one-dimensional half-line Schrédinger operator

d2
H, = —gat cos(z”)  z € [0,00) (1)

with 0 < v < 1. For each @ € [0, 7), let H? denote the unique self-adjoint realization
of H, on L?(0, c0) with boundary condition at 0 given by u(0) cos8+u'(0) sin§ = 0.

By studying the integrated density of states, we prove the existence of the
Lyapunov exponent and the Thouless fdrmula for (1). This yields an explicit formula
for these Lyapunov exponents. By applying rank one perturbation theory, we also

obtain some spectral consequences. Our main results are the following

Theorem. Let o(E) = [max(0, —E)]? and ko(E) = 7~ [max(0, E)|Z. Then for
all E ¢ R,, where R, is the resonance set for (1) which has both Lebesgue measure

zero and Hausdorff dimension zero, we have

o0

(E) = 10(E) + / In|E — E'ld(k — ko) (E')

where y(E) is the Lyapunov exponent for H,, and k(E) is the integrated density of

states for H,.

Theorem. For all E ¢ R,, where R, is the resonance set for (1) which has both
Lebesgue measure zero and Hausdorff dimension zero, the operator H, in (1) has

Lyapunov behavior with the Lyapunov exponent given by

v(E) = -2—1; i [max(0, cosz — E)|? da. (2)

-7

Theorem. For a.e. § € [0,7) (with respect to Lebesque measure), HY has dense
pure point spectrum on (—1,1), and the eigenfunction of HY to all eigenvalues
E € (—1,1) decay like e E)* at 0o for almost every 6, where y(E) is the Lyapunov

exponent for (1) which is given by (2).



iv
Theorem. For0 # %, the singular continuous part, (dug)sc, of the spectral measure

dpg for H® is supported on a Hausdorff dimension zero set.

In the second part, we extend the above arguments to the Jacobi matrix on

L?(Z*) which is a discrete analog of the Schrodinger operator (1). Let
(h(r, Nu)(n) = u(n+ 1) +u(n — 1) + Acos(n”)u(n) neZ* (3)

with |A| <2and 0 < v < 1.

Similarly, by studying the integrated density of states for (3), we can prove
the existence of the Lyapunov exponents and the Thouless formula for (3). Then,
we can compute an explicit formula for these Lyapunov exponents. By applying
rank one perturbation theory again, we can also obtain some interesting spectral

consequences for h(v, A). We have the following theorems.

Theorem. There exists a Lebesque measure zero and Hausdorff dimension zero set
R,, which we call the resonance set for (3). For all E ¢ R,, h(v,\) has Lyapunov
behavior with the Lyapunov exponent given by

1" 1 E—Acosz
W(E)—zﬂ_/ Re cosh ( 2 )dz. (4)

-

Theorem. For almost all |\| < 2 (with respect to Lebesque measure), h(v, A) has
dense pure point spectrum on (—2—|\|, —2+|A|)U(2—|A|,24+]|A]), and the eigenvec-
tors to all eigenvalues E decay like e~V B at infinity, where v(E) is the Lyapunov

exponent for (3) which is given by (4).

Theorem. For A # 0, (duy)sc, the singular continuous part of the spectral measure

duy for h(v, A), is supported on a Hausdorff dimension zero set.
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Chapter 1

Introduction

Our goal here is to prove Lyapunov behavior and compute Lyapunov exponents

for the one-dimensional half-line Schrodinger operator

H, = + cos(z”) z € [0, 00) (1.1)

~dz?

on L?[0, 00) and the one-dimension half-line Jacobi matrix which is a discrete analog

of the Schrédinger operator (1.1)
(h(v, Nu)(n) = u{n + 1) + u(n — 1) + Acos(n”)u(n) neZ" (1.2)

on ¢2(Z*), where 0 < v < 1 and |A| < 2.

We first study the Schrédinger operator H, in detail. Then without many
difficulties, we can extend the argument to the Jacobi matrix h(v, A).

It’s clear that H, is regular at 0 and is limit point at infinity (for the definition
of regular and limit point, see [26] or [17]). Therefore, for each 6 € [0,7), H, has a

unique self-adjoint realization on L?[0, co) with boundary condition at 0 given by
u(0) cos 8 + u/(0) sinf = 0

which will be denoted by H?.

In the spectral theory of Schrodinger operators, most work has concentrated
on the potential V' (z), either V(z) — 0 as |x| = oo or V(z) is periodic or almost
periodic. Such models have been investigated particularly well. Comparatively new
are the models with oscillating but not periodic nor almost periodic potentials. Due
to recent discoveries of H. Behncke ([2]), W. Kirsch, S.A. Molchanov and L.A. Pastur
([13], [14]) and G. Stolz ([23], [24]), it is clear that some such models may yield very
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interesting spectrum. As two of his particular examples, Stolz has studied the
spectral properties for (1.1) and (1.2) in his papers [24] and [23]. Let o(H), o..(H),
Osing(H), 0sc(H) and opp(H) denote the spectrum, absolutely continuous spectrum,
singular spectrum, singular continuous spectrum and pure point spectrum resp. for

H. Then from Stolz’s papers, we know that

(1) For (1.1), we have o(H,) = [~1,00), 0ac(Hy) = [1,00), and oging(H,) =
[-1,1];

(2) For (1.2), we have a(h(v, X)) = [-2~|A|, 2+]|A]], oac(h(¥, A)) = [-2+|),2—
IAll, and oging(h(v, X)) = [-2 — |AL, =2+ [ AJU[2 = A, 2+ |A]

We already see that these two models have some subtle and fascinating spectral
properties, especially, for E € (-1, 1) in the continuous case, and E € (—2—|\|, -2+
[AJU(2—|A],2—|A|) in the discere case. We will continue working on these models.
In particular, we will prove Lyapunov behavior and compute Lyapunov exponents

for these two models.

We know that the Lyapunov exponent is an important tool in the spectral
theory for one-dimensional Schrédinger operators and Jacobi matrix operators with
almost periodic or random potentials. In {20, 21|, the rank one perturbation theory
shows that Lyapunov behavior can also be used to study Schrédinger operators
with deterministic potentials. However, for almost periodic or random potentials,
we have the subadditive ergodic theorem to guarantee the existence of the Lyapunov
exponent, but for deterministic potentials, it is often difficult to prove Lyapunov
behavior. But at least there are two ways we can try. At the beginning, we tried to
compute a Lyapunov exponent by directly constructing the solutions using the WKB
approximation solutions. Since WKB solutions are singular at each classical turning
point and there are infinite many turning points in our models, it’s quite difficult to

justify an approximation solution. We haven’t succeeded in this approach. However,
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this heuristic argument does reveal the mystery of the beautiful Lyapunov exponent
formulae. In the Schrédinger operator case, if we use the WKB solutions and the
connection formula (see [9], [10]) around each turning point without justifying them,
then we can easily obtain the Lyapunov exponent formula (3.22) and the resonance
set in Simon’s conjecture (see the remark after our definition of resonance set in
section 3.1). In the Jacobi matrices case, in fact, physicists have already found
the Lyapunov exponent formula for h(v, A) (see [5]) by using WKB approximation
solutions without mathematically justifying them. Also, they haven’t considered the
resonance set in [5). However, they do give a lot of numerical results in [5] to support
the Lyapunov exponent formula. In any way, we need to find a mathematical proof
for all these formulae. Our approach here is by first studying the integrated density
of states and proving the Thouless formula.

In reference, the Thouless formula was only proved for random potentials and
almost periodic potentials (see [1]). The reason for this is that to prove the Thouless
formula, we first need to know the existence of the Lyapunov exponents. For random
potentials and almost periodic potentials, the existence of the Lyapunov exponents
is a standard consequence of the subadditive ergodic theorem (see [16]). In our
case, to prove the Thouless formulae for both the Schrodinger operator (1.1) and
the Jacobi matrix (1.2), we can closely follow the proof given in [1]. However, since
there is no subadditive ergodic theorem that we can use, we will prove the existence
of the Lyapunov exponent directly by using information on the integrated density
of states.

We first note that the potential in (1.1) (the same is true for (1.2)) is slowly

varying. It has the property of “locally constancy” for large z. In fact, we have

sin/z
2yz

This asymptotic property makes the Dirichlet-Neumann bracketing technique and

av

dx

— 0, for x — oo.
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WKB technique work perfectly. When we restrict H, to any finite interval [0, L]
(L > 0), we can estimate the integrated density of states, k(L(E), by using the
Dirichlet-Neumann bracketing technique (or together with the WKB technique).
Therefore, we know how k(%)(E) converges to k(E), the integrated density of states
for H, on [0,00). We'll use this information and all the techniques given in [1] to
prove the existence of Lyapunov exponents and the Thouless formula. In fact, our
method works for much more general cases.

Since variations of boundary condition are rank one perturbations (see [20}),
we can apply the rank one perturbation theory to our model. By doing this, we will
obtain some interesting facts. First, we know that there are always a lot of energies
E (in fact, it’s a dense G; set) in some intervals for which there is no Lyapunov
behavior (see [20] or [6]). Therefore, the existence of the Lyapunov exponent can
only be proved for a.e. F in some intervals. There is no way to remove the resonance
sets in Theorem 3.2, 3.3 and Theorem 4.2, 4.3. Second, del Rio et al. [7] prove that
for a dense G; of 8, the spectrum of HY in [—1,1] is purely singular continuous.
Following our formulae for y(E), we show that for a.e. §, the spectrum of HY in
[-1,1] is purely point spectrum. Similar statement is true in the Jacobi matrix
case. Third, our formula for v(F) in Theorem 3.2, E € (-1, 1), which we prove of
an explicitly given set of measure zero, it’s strictly positive. It is known (see [8])
that since [-1,1] C ¢(H,), the complement of { E|v(E) exists and is positive} is a
dense G; in [—1, 1]. By our construction, this dense G5 has Lebesgue measure zero;
indeed, it has Hausdorff dimension zero. This give us some interesting information
on the singular continuous part of the spectral measure.

We are unaware of any other explicit (non-random) Schrédinger operators with
a computable positive Lyapunov exponent. The explicit formula for y(E) is quasi-

classical.



5

Chapter 2

The Integrated Density of States

for Schrodinger Operators

To prove the Thouless formula in the next chapter, we need to study the inte-
grated density of states, k(F), and the existence of the Lyapunov exponent. Also,
as we mentioned in chapter 1, we need information how rapidly £ (E) converges
to k(E) to establish the existence of the Lyapunov exponent. So, in this chapter, we
first study the main technical object, the integrated density of states for equation
(1.1), in detailed. We will prove a formula for the integrated density states, and
more important, we will estimate how fast k()(E) converges to k(E). The rate of
the convergence will determine how large of the resonance set we need. That’s why
we present section 3 where we give faster convergent of k(9 (E) to k(E).

The basic idea to compute the integrated density of states uses the standard
Dirichlet-Neumann bracketing technique. This technique says that if we break a
domain into several subdomains and use constant potential on each subdomain to
estimate the number of eigenvalues of the restricted operator, then by summing
them together, we can get the number of eigenvalues of the operator on the whole
domain. Since the potentials in our problem are slowly oscillating, i.e., the potentials
have the property of locally constant. Dirichlet-Neumann bracketing technique
works perfectly. In section 2, we will introduce the Dirichlet-Neumann bracketing
technique and use it to estimate the k()(E) for the special case H, with v = %. Of
course, for general H, with 0 < v < 1, it can be handled in a similar way.

The idea and the approach in section 2 are simple, but the result is not very
good, i.e., the convergence of k(¥)(E) to k(E) is quite slow. Although this result

is enough to prove the Thouless formula in the next chapter, we will need to use a
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larger resonant set than the one we will give in the next chapter. Of course, if we
don’t care about the resonant set very much (in any way, it’s a Lebesgue measure
zero and Hausdorff dimension zero set!), then we may skip the more complicating
analysis in section 3. However, the method we used in section 3 is quite interesting.
Therefore, we still like to present it here.

The basic idea in section 3 is that we will combine the Dirichlet-Neumann
bracketing technique with the basic WKB technique. By the results of oscillation
theory for regular Sturm-Liouville operator, we know that the number of eigenvalues
is equal to the number of zeros (plus or minus a constant) for a real solution. Due to
the property of locally constant, WKB solutions away from turning points should be
quite accurate in some sense. In fact, we show that it’s accurate enough to estimate
the number of zeros for an exact solution. However, the WKB approximation
breaks down in the vicinity of a classical turning point. So, we need to break the
nth potential well into several parts. In the part where the potential is far away
from the turning points, we will construct an exact (real) solution by using WKB
solutions. However, when the potential is near the turning points, we need to use

the Dirichlet-Neumann bracketing technique again.

2.1 Notations and Definitions

In this section, we will give some definitions and notations which will be needed
in the following sections and the next chapter. In the following, when we write H,
or H for short, we always mean the Schrédinger operator given by (1.1).

For convenience, we introduce the following notations. Define
L=5,00=02r0, Q=[S,(-1),5,£)], foré=12,--.

Q is the 1th potential well for potential V(z) = cosz” (0 < v < 1). Let Hp(Q?),
(resp. Hn(9)) denotes the self-adjoint operator Hy + V(z) on L%(f2) with Dirich-
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let (resp. Neumann) boundary conditions, where Hy = —A. When = (0, L),
we use Hp(L), (resp. Hn(L)) to denote Hp(2), (resp. Hn(Q2)). In this case,
we use Hpy (L), (resp. Hnyp(L)) denotes the self-adjoint operator Hy + V(z) on
L?(0, L) with Dirichlet (resp. Neumann) boundary condition at 0 and Neumann

(resp. Dirichlet) boundary condition at L.

Definition. For any self-adjoint operator A, define

N(E,A) = dim P_o gy(4) = Y 1
E.<FE
where P(A) is the spectral projection for the operator A, and {E}} are the eigen-

valuesowaithE1§E2§E3§-~~.

Now, let Hp.(S(£)) be any self-adjoint realization of H, which is given by (1.1)
on L?(0, S(£)) with some given boundary conditions at 0 and S(£). Let Ny.(E, £) =
N(E, Hy.(5(£)))-

Definition. Let Ny .(F,¢) be as above. We define
1
(l) = = N} (E)
kY (E) Su(e)NbC(E,E) and k(E) El_l:n K(E) .

Then k(E) is called the integrated density of states for (1.1).

We will show that in the above definition, the limit k(E) exists and is inde-
pendent of the choice of boundary conditions. Therefore, we may use N(FE, Q) to
denote N(E, Hp(Q2)).

Finally, to develop the Dirichlet-Neumann bracketing technique, we need the
following definition |

Definition (see [18]). Let A and B be self-adjoint operators that are nonnegative

where A is defined on a dense subset of a Hilbert space H and B is defined on a

dense subset of a Hilbert subspace H; C ‘H. We write 0 < A < B if and only if
(1) Q(B) C Q(A), where Q(A) and Q(B) are the formal domain of A and B

resp., and



(2) For any ¥ € Q(B),

0< (v, Ay) < (¥, By).

2.2 The Integrated Density of States I:

Dirichlet-Neumann Bracketing Technique

For simplicity, we only study the v = % case in this section. Of course, the same
argument works for the general case. Therefore, the H in this section is referred to

the following operator

d?
H= =ﬁ +CGS(“/E) re [0, OO)

—~~
NS
[k

g

Also, for convenience, we use S(£) = (2w¢)? instead of Sy/2().
The goal in this section is to compute the integrated density of states for (2.1)
using the standard Dirichlet-Neumann bracketing technique, which is based on the

following two lemmas.

Lemma 2.1 (See [18]). If0 < A < B, then

dim Py, g)(A) = dim Py g)(B), for all E > 0.

Lemma 2.2 (see [18]). Let Ap(Q) (resp. Ap(f)) be the free Laplance on L?(()
with Dirichlet (resp. Neumann ) boundary condition. Then we have
(a) fQC, then0< -Ap() < -Ap(Q).
(b) For any Q, 0 < -An(Q) < -Ap (D).
(c) LetQyq, Qo be disjoint open subsets of an open set 2 so that mmt =,
and Q\ Q, U Qy has Lebesque measure 0. Then



and

0< —AN(Ql U Qz) < —AN(Q)

Under our notations which are given in section 2.1 and by using these two

lemmas, we have the following inequalities

£ 14
Y " N(E,Hp(?;)) < N(E,Hp(L)) < N(E, Hy(L)) < > N(E, Hn(Qy)). (22)
j=1

j=1
Now, we will prove the existence of the integrated density of states in three

steps.

(1). Eigenvalues of free Laplance.
It’s easy to check that

(a). The eigenvalues of —Ap on L%(a,b) are

with the corresponding eigenfunctions

(452) " Feoslg (2 - 25)], fork=1,3,-;
Di(x) =

(b52) ¥ sin[gT(z - 5], fork =24,

(b). The eigenvalues of —Ax on L%(a,b) are

2
Ekz(kﬂ') k=0,1,2,3, -

b—a
with the corresponding eigenfunctions
(b—;—‘l)—% sin[b—k_’%(x - ‘—’-2*'—”)], for k=1,3,--;

Ui(z) = { (52)7% cos[ A (z — 2£2)], fork=2,4,--;

for k=0.

(102
)

Therefore, we have the following
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Lemma 2.3. If we let Np(E;a,b) (respectively, Ny(E; a,b)) denote the dimension
of the spectral projection P(_o g) for —Ap (respectively, —An) on (a,b). Then for

E <0, we have

Np(FE;a,b) = Ny(FE;a,b) =0 (2.3)
and for E > 0, we have

Np(E;a,b) - —\/;—E(b— a)| <1, (2.4)

Nn(E;a,b) - g(b— a)] <1. (2.5)

(2). Estimation of N(F, Hp(Q;)) and N(E, Hy(Q;))
Let ai, by, be as in the figure 1 such that Ug[ak, bx] = Q;. Let I,ij) = (ak, bx) C

Q;, with by — ay = j* for some 0 < o < 1, and let

VP =sup{V(z) |z € [ak, bx]} and V¥ =inf{V(z) |z € [ak, bk]}-

/:v\ : cos\/z
: ax by =ay, :

7 I

FIGURE 1: THE jTH POTENTIAL WELL, {;
Define Bp(I¥) = ~Ap(I9) + VP and By(I¥) = ~Ax(I) + V¥, then
0 < Hp(I{") = —Ap(I{") + V(2) < Bo(I{")

and

0< BN(I) < ~ANII) +V(2) = Hy(I9).
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Thus, by lemma 2.1, we have
N(E, Bp(ID)) < N(E,Hp(I{)),  N(E,Hn(ID)) < N(E, By(IP)).
Now, by lemma 2.2, we have

N(E, Hp(Q;)) > N(E, Hp(UI?))

and

N(E, Hx(9;)) < N(E, Hy(UI))

= SN, HNIP)) < ST N(E, By(IP).  (@27)
k k

Therefore, to estimate N(E, Hp(£;)) and N(E, Hy(£;)), we only need to estimate
N(E, By(I®)) and N(E, Bp(I)). But by (2.3) and (2.5),

N(E, Bn(I9)) = Ny (E; a, by)

) { VEVE (b — ag) + Colk), if E >V,
0, if E< VY
where |Cy(k)| < 1 for all k.
Thus, if we define [f(z)]+ = max{0, f(z)}, then we have

N(E, By(I)) =

E“_ﬁzvii(bk — ax) + Co(k, E). (2.8)

where Cy(k, E) = Co(k) if E > V¥ and Cy(k,E) =0 if E < V}N. Since Cp(k) < 1
for all k, we also have Cy(k, F) < 1 for all £k and E.

Notice that we can write

b
(B - VN2 (b — ax) = /[E-V,j\’jfdz.

ak
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Therefore,
by

E-V e -an - [ E-V@)d

235

- bk{[E VN - [E-V(2))2}dz & nJ (2.9)

Ak

Since

{[E-VMi-E-V(@)2)

+- i
——

<|E-VEE - (E-V@IE{E- VY +(E-VE)]

1
2./ak

By Schwarz inequality, we have,

<

(b — ak) forxel,ij).

bi 1 1 %
915 2oe - o[ [ (B - V@l - 1B - vy e

215

1 -1
S \/iﬂ.a‘k‘(bk ——ak)

3
2

< G523 (2.10)

where C] is a constant which is independent of j (j > 1), k and a.

Therefore, by (2.8)-(2.10), we have
) 1 bk 1 , .
N(E, Bn(I{")) < ;/ [E-V(z)|2dz +C1j7*"2 + 1.
273

By summing over & and using (2.7),

5(8)
NEH@) <2 [ [E-V@lde+Cit0+ v oyt @1
S(e—1)

where C, > 0 and C3 > 0 are constants.

Similarly, if we use (2.4) and (2.6) instead of (2.5)and (2.7), then we have

S .
NEH@) 21 [ (B-V@lde -Gt~y 212)
S(e-1)
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(3). The existence of the integrated density of states

First, let’s compute

1 @/~ 1
ETE—)N(E’ Hp(L)), kY(E)= g-a;)-N(E, Hn(L)).

KD (B) =
By summing over j in (2.11), (2.12) and using (2.2),
1 [S® N .
- / [E-V(2)]? dz — C2¢3G+® — C362~* < N(E, Hp(L))
0

s 1
N(E, Hy(L)) < % / B - V(@)]} do + Coe3 3+ 4 cy2-e
0

So, if we take o = 1/3, then we have

1 /S“’[E V(@) de - C6} < N(E, Hp(L))
0

™

1 56 i 5
< N(E, Hy(L)) < = / E - V(@))} do + Ctt
0

(2.13)
where C = Cy + C3 > 0 is a constant.
Also, we have the following estimation
L vt L 54
S—(e)-/o [E-V(z)|} w—ms/ﬂ z|E — cosz]} dz
= — 2z|E — cos |2 dx
(2me)? k; /2(lc—1)1r [ E
1 < [° i
= —_— 2z + 4km)|E — cosz|2 dz
T | ) H
= I + II]
where
1 ¢ 0 1 1
I= 0P 2/2 2z[E —cos 2]2 dz, (27r€ E Z/ 4km[E ~cos z]2 dz.
k=17 74T
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Since f(—)QTr 2z[E — cos z]?lr dz, and f(_),“[E — cos z}é dz are bounded,

I:O(%), and

41 [T

1 T
I = ——
I 2rl J_ .

O O G S g
[E cosx]+dx—27r _,,[E cosz]+dz+0(€>.

Thus, by the above estimations and (2.13), we have

1 s 1 1
Kp(E) = 55 | B cosalidz| =0(%),
(2.14)
O g 1 WE }de| = O}
O )_.2_;_2__[ —cosz|?dz| = O£ 3).

Since variations of boundary condition are rank one perturbations (see [20]),

we have

|N(E, Hn(L)) — N(E, Hpe(L))| < 2 (2.15)

where N(E, Hy.(L) is defined by any other self-adjoint boundary conditions.
Thus, by (2.14) and (2.15), we have proved the following theorem.

Theorem 2.1. The integrated density of states for Schrédinger operator (2.1) ez-
ists, which is independent of the boundary conditions, and is given by

1 [ 1
k(E) = ) _"[E —cosz|Z? dx.

Moreover, we have the following estimation

[k@O(E) ~ k(E)| = O(7%). (2.16)

2.3 The Integrated Density of Sfates II:
WKB Technique

In this section, we will study the integrated density of states for equation (1.1)
with general 0 < v < 1, especially, we will obtain faster convergent of k() (E) to

k(E).
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First, we will need some standard results of the oscillation theory for regular
Sturm-Liouville operator. These results can be found in the ordinary differential

equations textbook [3, for example] or [26].

Lemma 2.3[26]. Let Tu(z) = —u"(z)+q(z)u(z) be a regular Sturm-Liouville oper-
ator on (a,b), A be a self-adjoint realization of T with separated boundary conditions

at a and b given by
u(a)cosa — u'(a)sina =0, u(b) cos 8 — u'(b)sin3 =0

with a € [0,7) and B € (0,x]. Then the eigenvalues of A are bounded from below.

If the eigenvalues are arranged such that
Fo<Ei<Ey<E3<---<E,— 00,

then the eigenfunction u,(x) corresponding to E, has exactly n zeros in (a,b).

Lemma 2.4 [26]. Let T be a reqular Sturm-Liouville operator, A be any self-adjoint
realization with separated boundary conditions. If (T— E)u(x) = 0 has a real solution
with n zeros in (a,b), then the number, N(E), of eigenvalues of A in (—oo, E]
satisfies

n—1<NE)<n+2

Remark. If A is any self-adjoint realization of 7, then we have the estimation (see
[26]): n—2< N(E)<n+3.

Now, we are ready to estimate N(E, Hp.(Qn)), the number of eigenvalues of
Hy.(Q,) in (—oc, E]. We will use the notations introduced in section 2.1. In the
following, we let E € (—1,1) be fixed. Let p(z) = E — V(z), and a, and b, be
the two turning points in the nth potential well, that is, an, b, € 2, such that

p(an) = p(by) = 0. Let d,, = C4(2mn)* with a = %%l, where Cj is a constant
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(independent of n) which will be determined later. Now, we can divide the nth

potential well 0, into several pieces
P :{xlan‘*‘dngxsbn"dn};
P2:{:clan<x<an+dn}U{x|bn—dn<m<bn};
Py ={z|p(z) <0} ={z|S(n—-1) <z < a,} U {z|bp <z < S(n)}.

According to the decomposition of 2,,, we divide the estimation of N(E, H (1))

into three steps.

(1). The control of N(E, Hy.(P1))

First, we prove the following lemma

Lemma 2.5. If p(z) > 0 on (an,Br) C Qn, and the following integral is very

small, say
/ﬂn p“%(z)| h)’%(:c)]"| dzr < L : (2.17)
an 100

Then there exists a real solution of
v (z) + p(z)u(z) =0 T € (an,Bn) (2.18)

which vanishes K times on the interval (an, Bn), where

and C, is a constant (independent of n).

Proof. We will use the WKB approximation solutions. Let

pel@) =p H@e®  with (o) = | " ph(s) ds.

Then a simple computation shows that 1. (z) satisfy the following differential equa-

tion of second order

i (z) +p(x)¥£(z) = F(z)9=(2)
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where

F(z) = pi(2)[p~% (z)]". (2.19)

We only need to study the v, (z) case. For convenience, let ¢(z) = ¥4 (z). Now,
assume that u,(z) = £, (z)¥(z) is an exact solution to (2.18) with ¢4 (an) = 1 and

e’ (an) = 0. Then e, (x) satisfies

(@)l (@) + 20/ (2)¢s (2) + F(2)p(z)es () =0 o)
2.20
er(on) =1, € (an)=0.
Since the above equation is equivalent to
(W2 (2)ey (z)) = —F(z)¥?(z)e+(2)
er(an) =1, € (an)=0,
we can write the equation (2.20) as the following integral equation
T t
er(@)=1- [ ¥72(@) | F(s)¥?(s)e+(s) dsdt,
that is,
e (z)=1— / K(z,t)F(t)es () dt (2.21)
where
K(x,t) = ¥2(t) / Y 2(s)ds for t < z. (2.22)
t

Let C[an, Br] denote all the continuous functions on [an, Bn]. For f € C [an, Bl
the norm of f is defined by || f|| = max,, <z<g.] |f(2)|. If we define T': Clan, Bn] —
Clon, Bn] by

T(f)@) =1- [ K@OF@i®d

On

then by (2.21), e1(z)¥(z) is an exact solution to (2.18) if and only if e, (z) is a
fixed point of the operator T.
(i) The existence of the fized point of T. We have

Bn
IT(f)@) - T@) )| <|If-gll [ [K(z,t)F()|dt.
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But by (2.22), we know that

K(z,t) = ¥*(t) /; ’ Y2(s)ds = %p—% (£) [2in®=n@) _q].

So,

1

IK(m t)|<p’5(t) for a, <t <z < B,

Thus,
|K(z, ) Ft)| <pit) [ 2@)])" (@) ]-

Therefore, by the hypothesis of the lemma, the Lipschiz norm of T satisfies that
IT|lLip < 155- By the Lipschiz fixed point theorem, there exists a fixed point, e, (z),
of T.

(ii) Estimation of e+ (z) and €' (z) on (an,Bn). Since

IT(1) =1 = e+ - 1) - T(e) +TM)[[ 2 (1 - ) flex — 1

100

and
1

”T()-—l“— max, /K:ct)F(t)dtl 160"

we have |le; — 1]| < &5, ie.,
1
ler(z) =1 < 9 for all = € [ap, Bn]- (2.23)
Also, we have
el (@)] = | [T (e )(@)]']

= |K(z,z)F(z)e+(x / V)2 () F(t)ey (t) dt

pi(z)  forall z € [an, B - (2.24)
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So, we have proved that u;(z) = 4 (z)¥+(z) is an exact solution to equation
(2.18), where £ (z) satisfies (2.23) and (2.24). Now, since the coefficients in equa-
tion (2.18) are real, the complex conjugate of ui(z) is also a solution of (2.18).
Thus, if we take e_(x) = e, (z), the complex conjugate, then uz(z) = e_(z)¢-(z)
is also an exact solution to equation (2.18) with

le—(z) - 1] < %, le”_(z)| < -ggp%(z) for all z € [an, Bn]. (2.25)

(iii) Finish the proof of the lemma. Now, let u(z) = ey (z)9+(z) +e-(z)¥-(z),

then u(z) is a real solution to equation (2.18). We can write u(z) as

u(z) = 2p~% (z){cosn(z) + €7@ (e, (z) = 1) + e (e_(z) — 1)}

= 2p~ % (z){cosn(z) + 8(z)}

where 8(z) = e®) (e (z) — 1) + e~ (e_(z) — 1).
By the estimation (2.23)—(2.25), it’s easy to see that §(z) satisfies

6(z)] < %, |6 (z)| < 99 pi(z) for all z € [an, Bn]- (2.26)

Since p~%(z) > 0 on (an, Br), the number of zeros of u(z) is the same as the

number of zeros of v(z) = cosn(z) + §(z). Now, let

0t = {2 € (an ) | cosn(a)] < g5 |

FIGURE 2: THE INTERVAL I; AROUND THE ZERO OF cos7(T)
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Then outside UI;, v(z) has the same signs as cosn(z). Inside I;, as cosn(x)

vanishes once, v(z) vanishes at least once in each I;. Also, by (2.26), we have

of—

V(z) = p* () sinn(z) + §'(z)

2[ 1~<§2§>2—§§]p2(x) (for & € I,)
> 0.

This means that v(x) vanishes at most once in each I;. Thus, in (ay, 3n), u(z) (or
v(x)) vanishes as many times as cos n(z)+C with some constant |C| < 2. Therefore,

K, the number of zeros of u(z) in (o, Bp), satisfies

'K— -};/Bnp%(z)dm

Now, let ap, = a, + d, and B8, = b, — d,. To apply the lemma 2.5, we only

<4. O

need to check the inequality (2.17). In fact, our d, is chosen in such a way that
(2.17) holds. For p(z) = E — cos(z*) with p(a,) = p(bn) = 0, it’s easy to show that
forx € P,

1—-v

p(z) 2 p(bn — dn) 2 Cidnb;—l = Cidpn™ v (2.27)
and
@ @) = @) + o @) @)

__1p” % (x) [v(v — 1) sin(z?) + 12 cos(z¥)

4 r2-2v v
5V2 _5 .
+ mp 5(:13) smz(z"). (228)

Therefore, by (2.27) and (2.28),

|p~ x)[p"(x)]"’ ngz 5P (:r) < Czd;% ns
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and

| pi@l el de < Cadet 0’ (b, — an) < Cade 5
Py

.y 5
= (2m)~ =2 005 2.

Thus, if we choose Cy so large that

_8(1-v)

Cq > (100C,) % (2m)~ "5, (2.29)

then we have
I X -1 " 1
i 3 dr < —.
/pl” 2)| o4 @))"] de <

Therefore, by choosing C4 such that (2.29) holds, we have shown that (2.17) holds.
So, by lemma 2.4 and lemma 2.5, the number, N(E, Hp(P;)), of eigenvalues of H

in (—o0, E| satisfies

N(E, Hye(Py)) - }r / pi(z)dz| < C

Py

where C is a constant (independent of n).

(2). The control of N(E, Hy.(Pz))

On the interval P,, we will again use the Dirichlet-Neumann bracketing tech-
nique. All of the computation is exactly like what we did in section 2. So, we will
not repeat that computation. Like in section 2, we can break the P into some small

pieces with each having length n3'7*. Then, we have

1—-v

= O(nt=").

N(E, HoelP2)) - = /P p} () dz

(3). The control of N(E, Hy.(Ps))
On P3, p(z) < 0. Therefore, by the argument in section 2, N(E, Hy(P3)) < 2.
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Now, by step 1, 2 and 3, together with the Dirichlet-Neumann bracketing tech-

nique, we have proved that

1 1 —v
.N(E,Hbc(ﬂn)) - ;/ E - V(2)]? dz| = O(nis5%).
£2n
Therefore
1 5@ L 4 1-v
NE D) -1 [ (B-Vielde] - 0@E ). @
0
Theorem 2.2. For Schrodinger
d2
H,,=—EF+cos(z' ) z € [0, 00)
with 0 < v < 1, the integrated density of states is given by
1 [7 3
k(E) = 52 _W[E — cosz|? d.
Moreover, we have the following estimation
kO (E) — k(E)| = O(¢~") (2.31)
where
11—y
k(v) = rmn{ TR 1}. (2.32)

Proof. In fact, we already compute it in section 2.3. Here we only want to em-
phasize that for all 0 < v < 1, we have the same formula for k(E). Also, we need
to give the explicit formula of the convergencev for all 0 < v < 1, i.e., to give the
formula (2.31) and (2.32).

Recall that S, (£) = (2r€)+, and by the definition of integrated density of states,

_ N(B, Ho(L))

k(“')(E) 3 (Z)
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So, by the estimation (2.30), we have

1 S5.(8) s )
kO (E) = 0 /0 [E — cosz”]2 dz + O(S;* Pk +1)
1 2nf . _l_l_v
1 [4

= ————12/ (2 + 2km) L [E — cos 2]2 dz + O(¢~ #*5*)
mw(2nl)v =1/

1 £

= -————I—Z (2km) “1/ [E—cosz]idz+0(€ L)+ 0@ 155)
v (2rl)v = —r
- L i [E — cos x]% dz + O(£""))
272 | . +
where «(v) is defined by (2.32).
Therefore,
1 [T 1
k(E) = hm kO(E) = 7% / [E —cosz|2 dx
and
IkO(E) - k(E)| = 0(~"™). O
Remark. When v = %, we have shown that |k (E) — k(E)| = O(¢~ 1%), compare

with the result of theorem 2.1 in section 2, the convergence is much faster here.
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Chapter 3

The Thouless Formula and Lyapunov Exponent

for Schrodinger Operators

Now, we begin to study the Lyapunov exponent by first proving the Thouless
formula which relates the Lyapunov exponent to the integrated density of states
for the Schrédinger operators H,. In (1], Thouless formula is proved for almost
periodic potentials and random potentials. In their proof, they need to use the
subadditive ergodic theorem to guarantee the existence of the Lyapunov exponent.
To prove the Thouless formula in our case, we can closely follow the proof given in
[1] for Schrodinger operators. However, we will prove the existence of the Lyapunov
exponent by using information on how fast k(E) converges to k(E) which is given
in Theorem 2.2.

In the section 1, we will introduce some definitions and notations that are
needed in this chapter. Especially, we will define a resonant set and prove that it‘
has both Lebesgue measure and Hausdorff dimension zero. In section 2, we will
prove the Thouless formula for the Schrédinger operator (1.1). In section 3, we will
compute an explicit formula of Lyapunov exponent by using the integrated density

of states formula which is given in Chapter 2 and the Thouless formula.

3.1 Preliminary

First, we define the transfer matrix for the Schrédinger operator (1.1) as follows.
Let u(z,a, E), v(z,a, E) (a > 0,z > 0) solve the equation —¢" + (V(z) - E)¢ =0
with the boundary conditions at a given by u(a) =0, v/(a) = 1; v(a) = 1, v'(a) = 0.

Then the transfer matrix is defined by

v(z,a, E) u(z,a,F)
. (3.1)
dv(z,a,E) du(z,a,E)

oz T

Toz(E) = (
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In particular, when a = 0, we use T (E) to denote Tp .(F).

Definition. For a given E, if v(E) = lim;_,00 27! In||T;(E)]| exists, then we say
that for the energy E, H has Lyapunov behavior, and v(E) is called the Lyapunov

exponent for H.

Remark. In general, to define a Lyapunov exponent, we need to take the limit over
|z| = oo. But in our case, we only consider the positive half line, as H, is defined
on L?[0, o).

To give the Thouless formula, we first need to define the resonant set. In
chapter 2 section 1, we have defined the operators Hp(L), Hnx(L), Hpn(L) and
Hnp(L). Now, let {Ex(¢, D)}, {Ex(¢,N)}, {Ex(¢, DN)}, and {Ek(¢, ND)} be the
corresponding eigenvalues. Also, recall that in theorem 2.2, we defined a function

. r11(1—v
k(v) for each v € (0,1) by x(v) = min —%572, 1}.

Definition. For each given v € (0,1), let €, > 0 be a fixed number such that ¢,
is much small than x(v), where x(v) is defined by (2.16). Then the resonance set,
R,, for the operator H, is defined by

R,=RpURNURpNURpND (3.2)

Ro= N U U{E€l-d.d||E - Ek(n,D)| < exp(-n"""*)}. (33)
k

Similarly, we can define Ry, Rpn and Ryp by replacing {Ex(¢, D)} in (3.3) by
{Ex(¢,N)},{Ex(¢, DN)} and {Ei(€, ND)} resp.

Remark. In Simon’s conjecture, instead of (3.2) and (3.3), the resonant set in (-1, 1]

is defined by

H
DY

U U{Eel-11]| IE-EM < exp(-n'7")}
k

In=m
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where {E,(c")} are the eigenvalues of H, = Hp + V(z) on the nth potential well,
[(2nm — 2m)2, (2n7)2], with the Dirichlet boundary conditions. We believe that this
is the reasonable definition of the resonant set. However, in our proof of Thouless
formula, we need to use the resonant set defined by (3.2) and (3.3) which is larger
than that in Simon’s conjecture. Also, it should be possible that we can reduce our
resonant set to that in Simon’s conjecture, but we will not study this here.

Next, we show that the resonant set R, defined by (3.2) and (3.3) has both
Lebesgue measure and Hausdorff dimension zero. So, first, we introduce the general
notations of Hausdorff a-dimensional measure and Hausdorff dimension.

Let M c R™ be fixed. and let A(M, p) be the collection of all open cover of M

with diameter less than or equal to p, i.e,,

o0
A(M,p) = {{E,}] MC U E;, E; (i=1,2,---) are open sets with diamFE; < p}

i=1
where

diamE; = sup {|z —y|}.
z,yeE;

Then we define

o0
Ha(M.p) = {E‘-}éﬁfw,p){z(dlmm }

i=1
Definition. Ho(M) = lim,,o Ho(M,p) is called the Hausdorff a-dimensional

measure of M.

It’s clear that if p; > p2, then Ho(M, p1) < Ho(M, p2). So, the limit in the
above definition exists (may be infinite). Also, we can show that if H, (M) < oo,

than for all a < o, H., (M) = 0. Therefore, we can define

Definition. For M C R", dimyg M = inf{a|H.(M) = 0} is called the Hausdorff

dimension of M.
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Lemma 3.1. If Y ;| |An| < oo, then we have

o o] oo
|lim sup A, | = ‘ ) U 4nl=0
nroo m=1n=m
where | - | denotes the Lebesgue measure.

Proof. Let By, = U3, Ay, then By 2 B3 2 B3 2 ---. Thus,
o0

limsup An| = lim |Bn|< lim 3 |44 =0. O

n—+00 n=m

Lemma 3.2 [27]. If dimyg A, = d for each A, in a countable collection {A,},
then dimg({J,, 4n) = d.

Theorem 3.1. Let R, be the resonant set for H which is defined by (3.2) and
(3.3). Then
|Ry| = dimH R,,, = 0.

Proof. For any fixed d > 0, let
0o 00
Sa = ﬂ U U{E € [~d, d] ’ |E — Ex(n,D)| < exp(_n"(”)—éu)}
m=1ln=m k

where ¢, is given in the definition of R,. Then by lemma 3.2, it’s enough to prove
that |S4| = dimg S4 = 0.
Let Ank = {E € [d,d|| |E—Ei(n, D)| < e}, and B, = %, Uy Ansk-
Then N> _,s Bm = Sq for any M > 1.
From chapter 2, we know that the number of the eigenvalues {Eg(n,D)} in

[~d, d] is at most, say, Cn* (C is a constant). Therefore,

3 Akl < - Cnv exp(—n'"%) < oo.
U4k <Y
n=1' g n=1

By lemma 3.1, |S4| = |limsup,, o, Uy, An,k| = 0. Thus, |R,| =0.
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To prove that dimg Sq = 0, by definition, it’s equivalent to prove that Ya > 0
and Vp > 0, we have Ho(S4,p) = 0. Now, let @ > 0 and p > 0 be given and
fixed. It’s enough to prove that Ve > 0, there exists an open cover of Sy, {E;}, with

diameter < p such that
o0
Z(diamEi)a <e.
i=1
For the given p > 0, 3N; > 1 such that
diamA, ; = exp(—n*¥) %) < p  whenn > Nj. (3.4)

Since diam(Ap x)* < Cn» exp(—n~"~¢), for the given a > 0 and ¢ > 0,
k ’ -

3N, > 1 such that

i Zdiam(An,k)a <e.

n=N2 k
Now, let N = max{Ny, Na}. As Uy Uie; Anx = By 2 Sy, and by (3.4),

{An,k| n > N, and all possible k} is an open cover of Sy with diameter less than p.
Thus, we have proved that H,(Sg4, p) = 0 for any p > 0 and a > 0. So, dimg Sy = 0.
Therefore, dimg B, = 0. O

3.2 The Thouless Formula

Our goal in this section is to prove the following:

Theorem 3.2 (Thouless formula). Let H, be the Schrédinger operator given by
(1.1). Let v (E) = [max(0, —E)|? and ko(E) = 7~ ![max(0, E)|3. Then for any
E ¢ R,, where R, is defined by (3.2) and (3.3), we have

o o]

(E) = 10(E) + / In|E — E|d(k — ko)(E') (35)

—0oQ

where y(E) is the Lyapunov ezponent for H,, and k(E) is the integrated density of

states for H,.

To prove this theorem, we will divide it into several steps. The first 3 steps are

already given in [1]. So, we will not give the detailed proof for these results.
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Step 1. Control of £~ Inuo(x, E). Let up(z, Ey = sin(zvE)/VE. Then we

have

Lemma 3.3 [1]. For a.e. E,
lim ¢! nuo(¢, E)| = vo(E), (3.6)
£—00

the limit being though the integers.

Proof. For E < 0, this is easy. For E > 0, we note that for a.e. E, we have that
|eVE + mj| > cle|™ (3.7)

for suitable ¢, m. Then uo(¢vE) > ¢/|¢|~™, so the limit in question is 0. O
Step 2. Finite eigenvalue estimates. By general principals, we have

Lemma 3.4 [1]. Let E\(£) be the eigenvalue of H, on L%0,S,(£)] with vanishing
boundary conditions. E,(co) (€) = (mk/S.(£))? be the corresponding eigenvalue of Hy.
Then

Be®) - B < IV lloo = 1. (38)

Step 3. Product formula in finite volume. Recall that S,(¢) = (2m€)* and
{E(£)} (resp. {E’,(co) (€)}) are eigenvalues of H (resp. Hp) on L2[0, S, (¢)]. We claim

that

Lemma 3.5 [1]. For a fized ¢, we have that

u(S, (), E) X[ E— Ey0)
up(S,(£),E) J;[l[E_ E,E,O)(Z)]. (3.9)

Lemma (3.4) implies the absolute convergence of the production in (3.9) as

well as that in [[}o, E',(CO) (¢)/Ex(¢). Standard integral equation techniques show
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that for ¢ fixed, (a) limg_ oo u/ug = 1. (b) |uo(S.(€), E)| < C1(€) exp(Ca(€)\/|E])
for complex E. Thus, by the Hadamard product formulas:

= H (1- E;'E),

I|

uo(S,(6), E ﬁ ~(B")E).

From this and (3.8) (to justify some interchanges of product), we obtain (3.9) up

to an overall constant

oo
cd ™t T B/ Bx
k=1

in front. Since u/ug — 1 as E — —o0o, we see that this constant must be 1.

Step 4. Control of the limit at infinity. From [1], we have the following limit

lim [ / In|E — E'| dk(E') ~ / In|E — E'| dko(E")
k(E")<M ko(E")<M

M—oo

= /m In|E — E'|d(k — ko)(E"). (3.10)

)
Step 5. Control of F:lmln]u(s,,(é),E)] when £ — oo. This is the key step to

prove the Thouless formula. First, we will prove the following lemma

Lemma 3.6. For all E ¢ Rp, we have

I E-Bel) | _ [ 1n1E - B'ld(k ~ ko)(E) (3.11)
elﬁts (0) __nl (k = ko) (7). :

Proof. For a given E ¢ Rp, without loss of generality, we can also suppose that E ¢

R(DO), where Rg) is the corresponding resonance set for Hy with Dirichlet boundary

condition. From now on, we always suppose that E is fixed and E ¢ Rp U Rg)).
For each fixed E, we can choose M(?¢) such that M(¢) — oc as £ — oo and

a;(£) > E+1 (i =0,1), where

ao(8) = sup{E' | K (E) < M(0)},  a1(€) = sup{E’ | KO (E') < M(0)}.
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For convenience, we define

oo

fo(E seH

Then we have

E-E(f) [ / /
5500 } _/ In|E ~ E'| d(k — ko)(E").

—o0

“wm [ E-E@VIE-EQ @)

k<M(£)S,(£)

m [ |E-E@VIE-EX®) - f(E)I

k>M(£)S, (€)

0,1(3)
g|/ In|E — E'|d(k® — k)(E")

|fe(E) — f(E)| =

1
+S—U@

ao(€) o ,
- In|E — E'|d(ky” — ko)(E")

—Co

+ / In|E — E'| dk(E') — / In|E — E'| dko(E)
a1 () ao(£)
1 (0)
+lexln [ E-E@VIE-E (f)][l.
5.(6) k>M(£)S. () (3.12)

By (3.10), we have

lim (3.13)
£—o0

o o] o o]
/ In|E — E'| dk(E') - / In|E — E'| dko(E")| =
01(2) ao(l)

Since E{” () =(7rk/S,,(€))2, by using lemma 3.4, we have

In H

- Ex(f) - B
E-Ew(0) | _ Y m)i+ k(f) — By

E-EO | t
1050 E-BO O or@s. EQ@) - E
< Y SHO/In** - SL(O)E]
k>M(£)S. (£)

o) dz
< —_—
- Su(e) /AJ(E) Tl'2172 - E

Therefore,

L - - EO —o( ). 14
s, JI IE-EdoyiE - Ol -0(55) B
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So, it remains to estimate

ay(f) ao(f)
Jo = ‘/ In|E ~ E'| d(k® - k)(E") - / In|E — E'| d(k$ — ko)(E")).
—00 —o0
We define
L(E)=[E-6,E+6), 6= %exp(—@"(”)_e") (3.15)

where k(v) is defined by (2.16) and ¢, is given in definition of the resonance set.

Since £ ¢ Rp U Rg), there are no eigenvalues of Hp(L) and Hop(L) on the
interval I,(E) which is defined by (3.15). Thus, k@ (E), k{” (E) are constant on
the interval I;(E). Also, we notice that

[ wE-F|d&kE)

< Cgl|L(E)]*? (3.16)
JI(E) |

where Cg is a constant for a given E. So, we have

Jy = / In|E — E'|d(k® - k)(E') - / In|E — E'| d(k$P — ko) (E")
I,(E) I,(E)
- / In|E — E'| d(k - ko)(E")
(—00,a0 (O)\Ie(E)
+ / In|E - E'|d(k® — k)(E")
(~00,a1 (O\Ie(E)
< ' / In|E - E'|d(k© — k)(E")| + / In|E — E'| dk(E')
(~00,01 (O e(E) I(E)

+ l / In|E ~ E'|d(kP — ko)(E')
(—00,a0()\I2(E)

+ / In|E — E'| dko(E")]. (3.17)
I(E)
By (3.16), we know that
lim In|E - E'|dk(E") = 0. (3.18)
£—o0 I:(E)
Similarly,
lim In|E — E'|dko(E’') = 0. (3.19)

£—00 Iz(E)
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Using integration by parts, we have
l / In|E — E'|d(k® — k)(E')
(~00,a1 (O)\I(E)
< (k9 ~ k) (a1(8)) In|E — a1 (&)] + {(k") - k)(E + &¢)
® _ k\(E
—(k(£>—k)(E—6g)}lnég+|/ (&7 — R)(E')
(_

coam@Ne(E) B —E
By theorem 2.1 and (3.15), we know that

dE'|.

Jim (k® —k)(a1(€))In|E — a1(€)| =0
Jim {(k© — k)(E + 8) — (k' — k)(E ~ 6¢)} Indy = 0

and
|/ (kO — K)(E)
(oo @ON(B)y E' —FE

dE'| < ¢ e+

1
dE’

/<—oo,a1 @nNE) B - E

< 7 {Cy Indy + C3lnlai () — E|}

-0 as £ — oo.
Thus,
lim l / In|E — E'|d(k® — k)(E")| = 0. (3.20)
£—00{J(—00,a1 (O)\Ie(E)
Similarly,
lim ! / In|E — E'|d(k{? - ko)(E’)l. (3.21)
£=00(J(—00,a0 (O)]\I(E)
So, by (3.17)(3.21),
lim J, = 0. (3.22)
£—00

Now, by (3.12)-(3.14) and (3.22), we have proved that limy_. |f¢(E) — f(E)| = 0.

Therefore, Lemma 3.6 is proved. 0O

Now, by combining the results of Lemma 3.5 and Lemma 3.6, we have proved
the following result.

For all F ¢ Rp, we have that
_ 1 u(S,(¢), E)
M G 0. B

By using Lemma 3.3, we obtain the following control on the limit

_ /°° In|E — E'|d(k — ko) (E).

-0
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Lemma 3.7. For all E ¢ Rp, we have

oo

Jim o I u(S.(), B)] = 20(E) + [ mlE= Eldik - ko)(E),

Step 6. Completion of the proof for Thouless formula. Similar to the proof

of Lemma 3.7, by using different boundary conditions, we can obtain control of

n|v(S,(¢), E)|, 5 (g) Iau(s z(8), E)I and s,,l(e) 1n!av(su(e) E)} Therefore, we

1
5.(9)
obtain the control of 3777111 [Ts(e)(E)|, namely

Lemma 3.8. For E ¢ R,, where R, is the resonance set defined by (3.2) and
(3.3), then

o _ - , ,
Jim 57 I Ts0 ()] =0(B)+ [ n|E = Bl dlk = ko) E)

where || - || denotes the matriz norm, and T;(E) is defined by (3.1).

Now, Theorem 3.2 follows from Lemma 3.8 and the definition of the Lyapunov

exponent.

3.3 The Lyapunov Exponent Formula

In this section, we want to compute an explicit formula for the Lyapunov ex-
ponent by using the Thouless formula and the formula for integrated density of
states. First, (3.5) asserts that wk + iv is the boundary value of an analytic func-
tion in the upper half plane. Let F(z) = wk(z) + iy(z) for Imz > 0, and define

z) = & [T_\/z—cosz dz with branch cut from —1 to +oo along the real axis.
Then F(z) is analytic for Imz > 0 and by Theorem 2.1, Re F(z) 5> mk(E)asz— E
(Imz > 0, E € R). Therefore,

¥yE)= lim ImF(z)+C

Im 2>0,z—F

where C is a real constant. That is,

ki

1 1
v(E) = 5;/ [cosz — E]2 dz + C.

-7
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Notice that for E > 1, y(F£) = 0 and the integral in the right-hand side is also zero,

so C = 0. Therefore, we have

Theorem 3.3. For all E ¢ R,, where R, is defined by (3.2) and (3.3), the

operator H, in (1.1) has Lyapunov behavior with the Lyapunov exponent given

by

v(E) = 51; [cosz — E]i dr (3.23)

-7

where [f(z)]+ = max{0, f(z)}.

Remarks. 1. In fact, there is no mystery for this beautiful Lyapunov exponent
formula if we use the WKB (see [9],{10]) heuristic argument. However, it’s not easy
to justify the WKB solutions.

2. Note that while R, is v-dependent, the right-hand side of (3.23) is v-

independent!

3.4 Some Spectral Properties

As we have already proved that for a.e. E € [-1, 1], H, has positive Lyapunov
exponent, by simply applying the Kotani’s argument (see [15]) or the general the-
ory of rank one perturbations we can get dense pure points spectrum on (—1, 1) for
almost boundary conditions. Also, we can show that the eigenfunctions are expo-
nentially decaying. The result on pure point spectrum is an unpublished result by
Kirsch and Stolz which is stated in {14] by Kirsch, Molchanov and Pastur, and the
result on exponentially decaying is proved by Stolz in [25]. Now, we can give an
explicit decaying rate of eigenfunctions. A key fact needed is that the #-mean of
the Weyl-Titchmarsh spectral measures pg(E) of H, is absolutely continuous (see

(20, 21]), that is,

/0 "[dpg(E)] 9 = dE (3.24)
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in the sense that if f € L'(R,dE), then f € Ll(]R,dpg) for a.e. 6 € [0,7),
[ f(E)dpe(E) € L*(R, d8 and

[ ([ 1wramnie) ) as = [ (5 a5.

Another fact we will need is the following Osceledec lemma

Lemma 3.9 [16, 19]. Let T(z) be matrices of SL(2,R) for every r € R satisfying

. 1
xlgr;o p In||T(z)|| =v < and (3.25)
lim sup —In|T(z + 6)T_1(z)| = 0. (3.26)

I—o0 0S5$1 T

Then there exists a one-dimensional subspace V' of R so that
lim = In|T@ul =-y ifueV
Jim ~In|T(z ul| = -y ifueV,
lim ~In|T(jul =7 fugV
Jm —In (T)ul| =~ ifugV.

In our case, T(x) = T (E) which is defined by (3.1). So, for each F ¢ R,, the
condition (3.25) holds with v = v(F) by theorem 3.3 and condition (3.26) always

valids because |V (z)| < 1.

Theorem 3.4. Let HY be the operator H, given by (1.1) with the 8 boundary con-
dition at 0, u{0)cos@ + u’(0)sind = 0. Then for a.e. 6 € [0,7) (with respect to
Lebesgue measure), HY has dense pure point spectrum on (—1,1), and the eigen-
functions of H? to all eigenvalues E € (—1,1) decay like e~ F)* at 0o for almost

every 8, where y(E) is given by (3.23).

Proof. The first part is already contained in [15]. Also, it follows from the Simon
Wolff criterion (see the remark at the end of this section). So, we will not show

it here. Now, we want to show the exponential decay part. By theorem 3.3, and
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lemma 3.9, we know that for £ ¢ R,, H,u = Eu has a solution decaying like

e~ 7(E)T at oo. By (3.24) and theorem 3.1,

/0 " po(Ry)d8 = |Ry| = 0.

So, pg(R,) = 0 for a.e. 8 € [0,m). Also, by first part of the theorem, py is pure
point measure on (—1,1) for a.e. . Thus, if u(z) is an eigenfunction of HY with
eigenvalues E € (—1,1), then u(z) € L?(0,00), and u(z) satisfies equation (1.1).
Thus, (1.1) has an L2-solution and a solution decaying like e ~7(®)* at co. In view of
their Wronskian or using the limit point properties of H,, at +o0o, these two solutions
should coincide except a constant factor. This shows that the eigenfunctions are

decaying like e="(®)% at 0c0. O

Before we present another application of our theorem 3.1 and 3.3, we first
introduce some results from general rank one perturbation theory. All these results
can be found in [20, 21].

Let A be a positive self-adjoint operator on a separable Hilbert space H. Let
Aa=A+a37 B:(¢’)¢

By the spectral theorem, H is unitary equivalent to L?(R, dg) in such a way that
A is multiplication by z and ¢ = 1. Here dyg is the spectral measure of ¢ for A.

Also, we use du, to denote the spectral measure of ¢ for A,. Now, we define

F,(2) = de‘i%—)
and
G(z) = (‘i“j(:))z, B(z) = [G(z)] "~

Then from (20, 21], we have
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Lemma 3.10 [20, 21]. For an open interval (a,b). The following are equivalent:
(a) For a.e. a, A, has only point spectrum in (a,b).

(b) For a.e. z in (a,b), B(z) > 0.

Definition. For a given Borel measure n on R, we say that 7 is supported on A if

2(R\ A) = 0.

Lemma 3.11 [20, 21]. Let (duq)sc be the singular continuous part of the spectral
measure dpo. Then for a #0, (dpq)sc s supported on

Sa = {r € R| Fo(x +10) = —a™}; G(z) = 00}.

Recall that H? is the operator H, given by (1.1) with the boundary condition

at 0 given by

u(0) cos @ + u/(0)sind =0 € [0,m).

So, 6 = % is the Neumann boundary condition. Let A be the 8 = 3 operator, 4(z)

be the Dirac delta function and define
Ay = A+ ad(z).

In [20], Simon has showed that H = A_ cot(8)- S0, variations of boundary condition

are precisely rank one perturbation. Also, we have

Lemma 3.12 [20]. Let A be as above. Then G(E) < oo if and only if both of the
following hold:
(a) E is not an eigenvalues of A;

(b) Equation H,(x) = Eu has a solution which is L? at +oo.

Now, our second result based on theorem 3.1 and 3.3 is a simply consequence

of the above lemmas.
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Theorem 3.5. Let HY be the operator H, given by (1.1) with the boundary con-
dition at 0 given by u(0) cos@ + u'(0)siné = 0 for 8 € [0,7). Then for 6 # %, the
singular continuous part, (dug)sc, of the spectral measure dug for H? is supported

on a Hausdorff dimension zero set.

Proof. We know that there is no singular spectrum outside [—1,1], and for
E € [-1,1]\ R, (R, is defined by (3.2) and (3.3)), there exists positive Lyapunov
exponent. So, by lemma 3.9, for such E, H,(z) = Eu has an L2?-solution (in fact,
it’s exponentially decaying solution) at +o0o. By lemma 3.11 and lemma 3.12, we

know that (dpg)sc is supported on
R, U{E € (=1,1)| E is an eigenvalue of H7/?}.

But the second part is a countable set, therefore has (dug)sc zero measure. Thus,

(dpg)sc is supported on R, and theorem 3.1 says that dimg R, =0. O

Remark. By lemma 3.12 and the above proof, we have showed that for all E €
(I-1,1]\ R,) N {E | E is not an eigenvalue of H,’,r/z}, we have G(E) < oo (or equiv-
alently, B(E) > 0). But the above set has full Lebesgue measure. Therefore, by
Simon Wolff criterion (lemma 3.10), we know that for a.e. 8 € [0, 7), HS has only

point spectrum. This gives a proof to the first part of theorem 3.4.
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Chapter 4

The Jacobi Matrix Operators

In this chapter, we will study the Jacobi matrix operators which are discrete

analogs of Schrédinger operators (1.1). Let
(hou)(n) = u(n+1) +u(n - 1)

and

(h{v, Mu)(n) = (hou){(n) + Acos(n”)u(n) neZt (4.1)

with |A\| < 2and 0 < v < 1. In the case that we don’t need to specify the dependence
of v and A, we will write h instead of A(v, A) for short.

The method and argument in this chapter are complete analogs of the Schrodinger
operator case. First, we study the integrated density of states for h(v, ), especially
we need to study how k()(E) convergent to k(E). By using this information, we
can prove the existence of the Lyapunov exponent and the Thouless formula. Then
we give the explicit formula of the Lyapunov exponent for h(v,A). After we have
shown that there exists positive Lyapunov exponent in some interval (for a.e. E),
we can use the rank one perturbation theory again and get some spectral properties

for h(v, A).

4.1 The Integrated Density of States

In this chapter, we will use the same notations as the previous chapter, but with
a little different meaning. For example, we will use S, (l) to denote the integral part

of of (27rl)%, and use 2, to denote all integers which lie in the nth potential well,

[Su(n —1),S.(n)].



a1
Let h{Y) denote the restriction of operator h(v, A) on ¢2([0, S, (1)]) with vanishing
boundary conditions, and let N®)(E) denote the number of eigenvalues of A") on
(—OO, E]

Definition. Let

1
S, (1) +1

Then k(F) is called the integrated density of states for (4.1).

kY(E) = NO(E), and k(E) = Jim kD (E).
—00

For more precise and mathematical definition of integrated density of states
and its relation with the above one, see [1].

First, let’s provide the explicit eigenvalues and eigenvectors of hg. Let
(hou)(n) = Eu(n) (4.2)

on £2(ny,ny) with boundary condition given by u(n1) = u(n2) = 0. We know that

N

the general solution to equation (4.2) is u(n) = Cy2f + C22%, where

21,2 = 2(E +VE? - 4). (4.3)

So, there are no eigenvalues on {E| |E| > 2}. Now, let E < 2, then the z;, which are

defined by (4.3) can be written as z; = e** with 2cosé = E, 2sinf = v4 - E?

| b

and @ € (0, 7). Thus, the eigenvalues in (—2,2) are

[y —ny — 1
E=2cosw, fork=0,1,..., M—],
Tig — Ny | 2
E =2cos 2km , fork=1,2,..., nz—nl]
Ng — N | 2

where the [-] denotes the integral part, with the corresponding eigenfunctions given

by
[(2k+1 ng —np — 2]
u(n):cos-(n—z-_——ﬁ)l—ﬂ(n—ﬁz—;ﬂ)], fork:O,l,...,-n—z—z—l—-A,
2k (ng —nq — 1]
u(n):cos_n2 —-ﬂnl (n_nz-;ﬂq)], fork=1,2,...,-£2——;—1— .
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Therefore, No(F), the number of eigenvalues on (—oo, EJ, is given by
0, if £ < -2
No(E) = ﬂziﬂlarccos(—%) +4(E), if |E| <2

ng —ny — 1, if E>2
where |§(E)| < 2.
If we notice that
0, ifx >1;
Imcosh™ !z = { arccosz, if|z| < 1;
, ifx < -1,

then we can rewrite (4.4) as

No(E) - 2 ; ™ Imcosh™? <__§->‘ <2

(4.4)

(4.5)

Now, we want to estimate N(F,h(Qy)), where h(Q2,) is the Jacobi operator

(4.1) restricted on the lattices which lie in 2, with vanishing boundary condition.

First, we divide §2,, into some small intervals {I. ,gn)} with |, ,(c")l = n®, where «

will be determined later. We can define h(I ,(c")) in a similar way as h(Q,). Let

IV = (ak, bi),
V(z) = Aoosz¥, Vi —sup{V(z) |z € law, bel}
and define B(I,(c")) = hg + V. Then by (4.5), we have

IN(E,B(I,(JL))) - bk_-TakImcosh—1 (K@-;—E>| <G

where C) is a constant.

Notice that

- _ b _
L % Im cosh™? (——Vk 5 E) _1 Imcosh™! (——Vk E) dzx

T T Ja, 2
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and

IA
Q)
X
S
N
R
|
N
<

2

for z € I and |I\™| = n°.

’Imcosh“1 (____V(ac) — E) ~ Imcosh™! (—Vk ; E)l

Then we have

b _ _ _
l/ Im cosh™! (M> dx — L - akImcosh‘1 (Vk 5 E)

T Jax 2

<Gy

1—-v
v

if we take a = % . Thus, like in section 2.3, by using the Dirichlet-Neumann

bracketing technique, we have

‘N(E, R(I™)) - % /a ™ Imcosh™! (W) do

k

S C31

by summing over all [ ,(c") in ,,, we have

N(Evh’(Qn)) - l ImCOSh_1 M dz| < C4 lQn' < 05n§ 1:1,,
T n 2 II,SH,)|

by summing over n from 1 to [, we have

Su(D) -
N(E,h®) - %/ Im cosh™? (I—/-@)z—E) dz
0

< G35t (46)

where all C; are some constants.

Theorem 4.1. The integrated density of states of (4.1) is given by

1 [ L[ Acosz— E
_ ~1[ACOST — H 4 7
k(E) o7 | Im cosh ( 2 ) dx (4.7)
Moreover, we have
kO (E) — k(E)| = 0(1"35%). (4.8)

Proof. By using 4.6, the proof is similar to the proof of theorem 2.2. So, we will

not give the detailed computation.

1 Sv (1) Acosz¥ — FE 21-v
O(py— = —1{ACOST — &) 4 135241
k\“(E) ORI {/0 Im cosh ( 5 ) z + O(l3 )
=L Imcosh™* Acosz — B dz +0O("3 ).
2n? J_,
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Therefore,

™

1 Acosz — F
= 1li (0) = — = =
k(E) lllm KV E) 53 Im cosh ( 5 ) dz

—T

and

l—v

>). O

[k(E) - k(E)| = O(~%

4.2 The Thouless Formula

For each fixed E, we consider the difference equation of second order
un+1)+urn-1)+(V(n) — E)u(n) =0

where V(n) = Acosn” with [A\| <2 and v € (0, 1).

For convenience, let u, = u(n), V, = V(n) and define
Un+1 E-V, -1
i(n) = , An(E) = )
Un 1 0
Then a function u(n) satisfies (4.9) if and only if it satisfies
a(n+1) = Ap1a(n).
Let

Ton(E) = Ap(EYApn—1(E) ... Ag+1(E) (a,n € Z, and a,n > 0),

(4.9)

(4.10)

(4.11)

then @(n) = T, n(E)i(a) defines a solution of (4.9) with the initial condition @(a) =

(ug+1 Uq)t. In particular, when a = 0, we use T,,(F) to denote Ty ,(E).

Definition. For a given E, if the limit v(E) = limy_,00 7! In||T;(E)]| exist, then

we say that h(v, A) which is given by (4.1) has Lyapunov behavior at E, and v(E)

is called the Lyapunov exponent.
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By (4.10) and (4.11), T,,(E) can be defined inductively,

E-V, -1

Ti(E) = A(E), TW(E)= ( ) T.-1(E) (n>2).

1 0

Thus, by induction argument, it’s easy to show that

( Pn(E) Qn—-l(E)>
Tn(E) = (n>2)
Pn—l(E) Qn—Z(E)

where P and Qi are polynomials of the degree k in the form Py(E) = EF + .-+
and Qx(E) = —E* + - ..
Notice that
u(n+ 1) = Py(E)u(l) + Qn-1(E)u(0). (4.12)

So, it’s easy to see that P,(FE) = 0 if and only if h(v, A\)hu = Eu has a solution with
u(0) = u(n+ 1) = 0; and Qn(F) = 0 if and only if A(v, \)u = Eu has a solution
with u(1) = u(n + 2) = 0. Therefore,

Pu(E) = ﬁ(E - BY),
k=1

Qn(E) = [[(E- E™)

k=1
where E,(c") (resp. E‘,(c")) are the eigenvalues of operator h(v,A) with boundary
condition 4(0) = u(n + 1) = 0 (resp. u(1l) = u(n+2) =0).
Recall that S, (n) is the integral part of (2mn)¥. So, we have just described the

E,(CS"(")) and E,(CS" () Now, we can define

Definition. The resonance set, R,, for A(v,A) is defined by R, = R,(Jl) U R;()z) ,

where
o0 oo L1
RY = U UHEel-4,4|IE - EZ™| < exp(-nt )},

m=1n=m k

T

(4.13)

e o} o0
R = (| U ULE € 4.4 1B - B> < exp(-nd 5},

m=1n=m k
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Lemma 4.1. For each v € (0,1), we have |R,| =dim R, =0.
Proof. See the proof of theorem 3.1 in chapter 3. [

Like in the Schrodinger operator case, we will prove that the Lyapunov exponent
exists outside the resonance set. First, we will show that the Thouless formula is

true outside the resonance set.

From our definition of k¥ (E), we know that

dkO(E —ESOh4E.

Define

f,(E)def In|Ps, oy (E)| = / In|E — E'|dkO(E).

5.0

Lemma 4.2. Let f(E) = [In|E—E'|dk(E'). Then there exists a subsequence {l;}

with l; = i™ (ng is a fized constant) such that for each E ¢ R,, we have

fi.(E) = f(E) as i — 0o.

Proof. Let E ¢ R, be fixed It’s enough to that

Z | frosa (B) — fi(E)] < 0. (4.14)

Let

I.(E) = [E - %exp(——n%), E+ %exp(—n%) .

Notice that dk()(E) (for all 1) have compact support, say, K = [-2 — |v[,2+ Iv1],
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and asE ¢ R,, kl+V(E), k") (E) are constant on the interval I;,,, (E). Thus,

[l (E) = fi,(E) = / In|E - E'|d(kt+) — k() (E")
K\Ii, , (E)
=Ind;q [ (E + 8;11) — kBB - §,44)]

—In8iy1 [KYN(E + 8i41) — kW(E = §;11)]

+ / (k;(li+1) - k(li))(E’) JE
K\l , (E) E-F

T+ T+ Js

l/

where 8; 11 = 3exp( lz4+1" )-

By theorem 4.1, it’s easy to see that

=0( 2 7),  and =00 T ),

As (k) — k) (B) = 0(; 35,

1 11-v _11—v

<o) [ B = oul ).

\IL,,,(B) |[E — E'|

Therefore, by (4.15) and (4.16),

E

|frons (B) ~ fu(B)| = OUZE ") + 0L 1]

Thus, for example, if we take [; = ila_f%, then we have

|fl1‘.+1(E) - fli (E)I = 0(2—3)

Therefore, (4.14) follows. O

(4.15)

(4.16)

Now, since the above argument also works if we use E’,g) instead of E,(cl). There-

fore, by lemma 4.2, we have in fact proved that
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36y
-v

Lemma 4.2'. Let f(E) = [In|E — E'|dk(E’) and |; = it
E ¢ R,, we have

Then for each

1
lim

dm oy PRI E) = F(B). (4.17)

Lemma 4.3. Let T,(E) be defined by (4.10) and (4.11). Then for each fized E,

there exists a constant ¢ > 0 such that

_ Ton+m(E)|l
gciml gm—seclm' a€Z,a>0). 4.18
ITon (Bl ( 20) (4.18)

Proof. By definition, T, ,(E) = Ap(E)An—1(E)--- Ag+1(E). Notice that for all

k >0, A, '(E) exists. It is easy to show that

- - - —1 -1 o Tan+m(E)
A 1m E 1 _ b .. 'Anl 1 < ” a9n+m
” n+ ( ) n+m 1( ) +1“ = “Ta,n(E)“
< ”An+m(E)An+m—1(E) o 'An+1“-

Now, since V;, is bounded, both || A (E)|| and ||4;'(E)| are bounded for all k > 0.
That is, there exists a constant ¢ > 0, such that ||Ax(E)|| < ¢ and [|A;!|| < €° for

all £ > 0. Thus, (4.18) follows. O
Now, we are ready to give one of our main results in this section.

Theorem 4.2 (Thouless formula). Let h(v,A) be the Jacobi matriz operator
defined by (4.1) and R, be the resonance set defined by (4.13). Then for E ¢ R,,

we have

v(E) = / In|E - E'| dk(E') (4.19)

where ¥(E) is the Lyapunov exponent and k(E) is the integrated densily of states
for h(v,A).
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Proof. Let’s fix E ¢ R,. By lemma 4.2’, we have a subsequence I; = iT=- such that
(4.17) is true.
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Now, let n; = S, (l;) = [(271')51'%]. Again, the [-| means the integral part. For
any m with n; < m < n;+1, by lemma 4.3, we have

e_c(ni+1_ni) < e—C(m—ni) < “Tm__(E)” < eC("iH—m)_
N Tns (Bl

Therefore,
In |T(B)| _ Il Tullne| _ mees = m
m ng m|" n,

Notice that by our choice of n;, we have

Rl ", 0, LN as t — 00.
n; m
Therefore,
i BUTnEN _ 1o T
m—0o0 m 1—00 n‘i

Together with lemma 4.2’, we have proved the Thouless formula. O

4.3 The Lyapunov Exponent

Using the explicit formula for integrated density of states and the Thouless
formula, we are ready to derive the explicit formula for the Lyapunov exponent. As
we will need to compute some integrals, we first quote some results from integral

tables.

Lemma 4.4. We have the following integral formulae

rr )

- (a> b >0), (4.20)

/ 1n(a-|—bcosa:)d:1:=7rlna+
0

% %
/ In|a? —sin®z|dz = / Inja? — cos?z|dr = —wIn2 (a2 < 1).
0 0 (4.21)

Proof. Check from integral tables. For example, see [11, pp527-528]. O
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Theorem 4.3. Let h(v,A) be the Jacobi matriz operator defined by (4.1) and R,
be the resonance set defined by (4.13). Then for E ¢ R,, h(v,\) has Lyapunov

behavior with Lyapunov exponent given by

s

Y(E) = o

Re cosh™} (E_-’\_S(ff) dz.
27

. (4.22)

-

Proof. Let f(z) 4 \cos z. First, by the formula for integrated density of states,
(4.7), we know that

{ 4E [T Re[1— (L2=E)?| 7% 4, for |f(z) — E| <2,
dk(E) =
0, for |f(z) — E| > 2.

Therefore, by Thouless formula,

2+ f(zx) _ 29—
2/ / In|E - E'| [1 - (M—E) ] dE'dzx
ot . 2+ f(z) 2

=52 [_" : In|E — f(z) + 2y| d arccosy dz (E' = f(z) - 2y)

[V

=53 /_ﬂ/ In|E - f(z)+ 2cosf|dfdz (@ = arccos y). )

Now, for each fixed = € [-m, ], we need to compute the integral

/ i / " In |E — f(z) + 2cos8| d6 & K(z). (4.24)
w JO

For a fixed z, let’s denote a = F — f(z).

(1) If |a| > 2, then by the integral formula (4.20), we have

T Va2 —
K(z)=/ ln|a—2cosz|dz=7rln|—§,—+—za——é.
0
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(2) If |a| < 2, then we will formula (4.21).

K(:c):/ ln2d0+/7ln|g—0050|d9+/ lnlg—cosﬂde
| b s 12
:7rln2+/2ln|—a--—cos<9|d9+/?ln|g + cos 6| df
0o 2 o 2

7 g2
=7rln2+/ ln|z—c0820|d9
0

=mln2—-7ln2=0.

Therefore,
-l |E—Acosz|+\/§m, for |E — Acosz| > 2
K(z) =
0, for |[E — Acosz| <2
= mRecosh™! (E.‘L’;ffﬂ) (4.25)

Combine (4.23)-(4.25), we have proved

1 [ 1 E—Acosz
v(E) = o Recosh (——-——2-—) dez. O

-T

4.4 Some Spectral Consequences

The Jacobi matrix operators are discrete analogs of Schrodinger operators. Es-
sentially, the same argument for Schrodinger operators is also valid for Jacobi ma-
trices. So, we will not give the detailed proof in this section.

Recall that the Jacobi matrix operator we discussed is
h(v,\) = hg + V(n), V(n) = Acos(n”) (4.26)

with0 < v < 1and || <2
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Let d; be the vector in ¢2 which is given by
50(77,) = 571.0-

Let P be the projection on &y3: P = (d9,-)do. Fix V and let A be the Jacobi matrix
associated to V — 0.0(V (0)). Then

h(v,A) = A+ V(0)P.

So, the variations of V' are precisely rank one perturbations. Therefore, by applying
the general rank one perturbation theory (see [20, 21]) and using the various known

facts (lemma 3.9, lemma 4.1, theorem 4.3 and etc.), we can show that

Theorem 4.4. Let h(v, \) be the Jacobi matriz operator given by (4.26). Then for
almost all |\| < 2 (with respect to Lebesgue measure), h(v, ) has dense pure point
spectrum on (=2 — ||, =2+ |A]) and (2 — |A|,2+|A]), and the eigenfunctions to all

the eigenvalues decay like eV E)™ at 0o, where ¥(E) is given (4.22).

Theorem 4.5. Let h(v,)) be the Jacobi matriz operator given by (4.26). Then
(du)sc, the singular continuous part of the spectral measure du, is supported on a

Hausdorff dimension zero set.
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