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Abstract

The results of accurate quantum dynamical calculations on one,
two and three dimensional atom plus diatomic molecule electronically
adiabatic chemical reactions are presented.

In papers 1 and 2, comparisons between quantum, quasi-classical
and semi-classical results fo;r’ the collinear ¥ + Hy and F =+ Dz_ rea'ctions,
are examined.- Paper 3 discusses the role:of reactive
and nonreactive collisions in producing vibrational deactivation in the
collinear H+ FH, D + FD, H+ FD and D + FH systems.

The extension of reactive scattering calculational methods to
atom diatom collisions on a plane and in three dimensions is presented
in papers 4 and 6, respectively.. In both applications, the Schrodinger
équation is solved by a coupled equation method in each of the three
arrangement channel regions. This is followed by a matching procedure
in which the wave function is made smooth and continuous at the |
boundaries of these regions. In the three dimensional case, the use
of body fixed coordinates is erucial to obtaining an efficient coordinate
transformation between arrangement channels.

Applications of these 2D and 3D methods to the H + H, exchange
reaction are presented in papers 5 and 7. Integral and differential
Cross sectiené, reaction probabilities, product and reagent state
rotational distributions, and other dynamical information are discussed
in the papers, and these results are extensively compared with those
of previous quasi-classical, semi~-classical and approximate quantum
calculations. The results of a very simple angular momentum decoupling

approximation are considered in paper 7.
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In papers 8 and 9 the relative importance of direct versus
resonant (shape or. Feshbach) mechanisms for several atom diatom
reactions is examined. A number of techniques for characterizing
both mechanisms are discussed, including time delays, eigenphase
shifts, Argand diagrams and the collision lifetime matrix. Extension
of these 1D resonances to the 2D and 3D reactions is examined in

paper 10 for the simple case of H + Hy .
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Introduction

In the 10 papers which comprise this thesis, we are interested
in the dynamics of electronically adiabatic atom plus diatom chemical
reactions. We shall concentrate almost exclusively on a quantum
description of the collision processes as obtained from the Schrodinger
equation. Only very recently has it become possible to solve this
equation accurately for three: dimensional reactions. Therefore, fully
2/3 of this thesis is devoted to the study of the considerably simpler
dynamical models which are obtained by accurately solving the
Schrédinger equation for an atom diatom system of reduced collision
dimensionality. Although the results of these 1D and 2D calculations
cannot be directly compared with experiment, we can compare them
~with the results of approximate dynamical methods such as the quasi-
classical and semi~classical methods. These comparisons should
give us some indication of how accurate the approximate theories
should be when applied to three dimensional reactions. In addition,
the use of iD and 2D models enables us to characterize the nature
and importance of quantum dynamical effects such as tunnelling,
interferences and resonances. In papers 1 and 2 we examine the
collinear F + H, and F + Dy, reactions within the context of the above
considerations. These strongly exothermic reactions produce highly
inverted product vibrational distributions, so the primary emphasis of
these two papers is towards characterizing the distributions obtained
from accurate quantum, quasi-classical and semi-classical methods.
In paper 3,‘ the role of reactive and nonreactive collisions in producing

vibrational deactivation in the collinear H + FH, D+ FD, H + FD and
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D + FH systems is examined. For many of the reactions studied

in papers 1 - 3, 3D classical trajectory results are available for
comparison, and these comparisons reveal both similarities and
differences between comparable results with different collision dimen-
sionality.

Papers 4 and 5 are concerned with the theory and résults for
the coplanar (2D} atom diatom reaction dynamics. In many respects,
the 2D and 3D worlds are very closely related {for atom diatom
collisions. In both cases, the full interaction potential is sampled,
and the concept of reaction path bifurcation,which is so cr"ucial to an
application to H + szis common to both calculations (but not to the
1D calculation). This makes the 2D application a very realistic
attempt to describe the reaction dynamics, and the 2D-3D comparisons
given in paper 7 support this contention.

Papers 6 and 7 deal with the three dimensional collision dynamics.
Paper 6 describes the theoretical procedure used for accurately
solving the Schrédinger eguation. The internal variables are treated
in a manner very analogous to the 2D treatment of paper 4 while the
external variables are treated through the use of a rotating body fixed
coordinate system. In the application of this theoretical method to
3DH+ Hy (paper 7), we examine the dynamical information (cross
sections, trénsition probabilities, rotational distributions) from a
number of different viewpoints in an attempt to characterize the results
as completely as possible. Comparisons are made between our accurate
quantum results and those of a number of earlier approximate calcula-

tions, and many of the strengths and weaknesses of the approximate



theories are revealed.

Finally, in papers 8 - 10, we concentrate on the role of direct
and resonant processes in atom diatom chemicali reactions. Papefs
8 and 9 include studies of collinear systems, using such quantities
and time delays, Argand diagrams, eigenphase shifts and the lifetime
matrix to characterize the resonant and direct mechanisms and their
interferences. Paper 10 includes an extension to the 2D and 3D reactions
using the methods of papers 4 and 6, and presents the important

discovery of a resonance in 3D H + Hy.



1. EXACT QUANTUM, QUASI-CLASSICAL, AND SEMI-CLASSICAL
REACTION PROBABILITIES FOR THE COLLINEAR F + H, —
FH + H REACTION

¥ This paper appeared in the dournal of Chemical Physics 63, 674 (1975).
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Exact Quantum, Quasi-Classical and Semi-Classical reaction

Faara e g NS

- - - » *
Prohabilities for the Collinear F + H, -~ FH + H Reaction.

7§

George C. Schatzj Joel M. Bowman' *and Aron XKuppermann -
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(Received -
Exact cmag.rz‘z:mn5 quasi-classical and semi-classical reactimi ,
probabilities and rate constants for the collinear reaction F + H, -~
FH + H are presented and compared. The exact quantum results
indicate a large degree of population inversion in ihe FH product With
R R |

P, and P,, being the dominant reaction probabilities. The energy

dependence of these two probabilities at low translational energies are
R

o2 Shows an effective threshold of 0.005eV which

' quite different. P
¢an largely be interpreted as resulting irom tunnelling through a
vibrationally adiabatic barrier. Pf; has a mucﬁ iarger effective
threshold (0.045eV) apparently resulting from dynamical effects.
Quasi-classical probabilities for the collinear F + H, reaction were
“calculated by both the forward (initial conditions chosen fér reagent

¥ + H;) and reverse (initial conditions for product H + FH) trajectory

>§i“Ji‘/”or]}: supported in part by the United States Air Force Office of
Scientific Research.
| v?W ork performed in partial fulfullment of .the- requifements for the
.§Present ‘address: Department of Chemistry, Jllinois Institute of
Technology, Chicago, Ill. 60616
_ **Cantribution No. 4988.

Ph. D. degree in Chemistry at the California Institute of Technology.
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methods. The results of both calculations correctly indicate that

Polj and Polj should be the dominant reaction probabilities. However,

the threshold behavior of the quasi-classical forward PQ? disagreesl
strongly with the corresponding exact quantum threshold energy
dependence. By contrast, there is good agreement between thé re-
versed trajectory results and the exact quantum ones. The uniform
semi-classical resulis also agree well with the corresponding exact
gouantum ones indicating that the guasi-classical reverse and the
semi-classical methods are préferame to the quasi-classical idrwa,rd
method for this reaction. The important differences between the
threshold behavior of the exact quantum and quasi-classical forward
reaction probabilities arémaniﬁested in the cofi*ewonding rate con~
stants primarily as large differences in their activation energies.
Additional exact quantum results at higher total energies indicate that
threshold effects are no longer important for reactions with vibra-
i:i@naliy excited H,. Resonances play an important role in certain
reaction probabilities primarily at higher relative translational

energies.



1, Introduction

The reactions ¥ + H, (D,, DH) - FH (FD) + H (D) bave recently
been the subject of several experimental studies in which very detailed
rate constants and cross sections for these réactions have been
measured. Relative rate constants into specific vibrational (and
sometimes vibrational-rotational) staﬁes, of the products have been
measured by both-infmrec’i 'chemiixmﬁnescencei and chemical iaserz
. technigues and, quite reéen’a‘i;:,g both methods have been used to Study"
the terﬁperaturedependences of these relative rates';iff‘ 2d Angular
distributions for specific product vibrational states of the F + D,
reaciéian have been studied at several incident energies by a crossed
molecular beam a,ppfaaratus;3 In addition, there exist several (usually
indiréct) determinations of the overall bulk rate constants for the
F+H, reacti0n4 and more récen‘cly studies of isotope effects
for the ¥+ H,;, F+D,, F+HD and ¥ + DH series. 5 A vefy
important application of these reactions has been to the fluorine-

2a5€i where F + H, = FH + B serves as the

hydrogen chemical lasers
‘main pumping reaction.
Complementing these experimental studies have been several

7,8,9 7,30,11

quasi-classical trajectory studies on F + H, , B D, and -

F 4+ DH (HD)7y 9 and one recent semi-classical study on collinear

¥+, 2

The results of the quasi-classgical studies have generally
been in réasonably gsyoc“i agreement with the detailed rate constants
obtained by infrared chemilwminescence and chemical laser experi-
ments but in much poorer agreement with the angular distribulions

obtained by the molecular beam experiments. There also exists some
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disagreement between experiment and the classical calculations on the

T and on isotope

rotational distribution of the detailed rate constants,
effects,5 Additional theoretical developments have been the character-
ization of the product state distributions by temperature-like para-
meters, 13 and the establishment of a relationship between these para-
meters and certain details of the potential energy surface.M All of

the classical theoretical studies have employed semi empirical poten~

tial energy surfaces. 11
| i5

An ab initio potential energy surface has
also been calculated™ ™ and the sémi~empirical surfaces are in reason-
able agreement with it. | |
Aside from possible defects in the potentiai energy surface
- used, the most important sources of disagreement between the qu,asi%
~classical trajectory calculations and experiment are: (a) electronically
non-adiabatic effects, and (b) quantum dynamical effects. The first

16,17,18 hut its

gﬁro’blem has beén discussed by various investigators
impartance is not completely understood at present and we shall not
consider it here.

In this paper, we é’ﬁudy the importance _of quantum dynamical
ef:fé‘cts in the ¥ + H, = FH + H reaction by comparing the results Of
accurate quantﬁm mechanical solutions to the Schrodinger equétion for
the collinear coilisions to the results of the ccrresponding quasi-
classical and semi-classical calculations. In the folléwing paper
(hereafter referred 'é:cxr as I}, we make the analogous stﬁdy f@f the
F 4 D, reaction and also examine exact quantum results for F + BZ.D(DH)& '

inndicated that quantum effects

were (uite important in the collinear ¥ + H, veaction'?

Results of our preliminary studies™ %

and, in fact,
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the disagreement between the quasi-classical and exact quax1ﬁ1m
reaction probabilities at low reagent relative translational energies
was quite large. In the present paper, we give a more detailed
analysis of the reaction probabilities for F + H, as calculated by four
different methods: an exact qua,}ntum mechanical solution, the quasi-
classical forward and quasi-classical réverse trajectory methods and
the wniform sémimclassical method., We also present and compare
the corresponding rate constants obtained from the results of these
four methods. In addition, we examine resonances, tunnelling and
energy partitioning in this reaction, and examine the results of exact
guantum c:éieu)iaﬁwﬁ at total energies for which tw'o vibrational states
of the reagent H, are é;ccessible. A

In all cases, we restrict our considerations to collinearycdlli«
sions of a fluorine atom with a hydrogen molecule where the two
hydrogen atoms are considered to be distinguishable. The resulting
eross sections are in the form of &hﬁensionless probabilities of
reaction between specific vibrational states of the reagents to form
products in specific states and are nol directly (iomparabie Wi‘iﬁh.
experiment {although certain other quantities such as fin;a}: state
distributions can, with caution, be subject to such a comparison). Oﬁr
justification for studying collinear dynamics lies mainly in its use as
a predictive model for the enérgy release behavior in actual three
dimensional coel}_isic;nfx.szi and as a i:eéting ground for approxixﬁa.te
‘ thearieé of chemical dynamicsezz 'Exact quantum dynamics is cur-
rentiy feasible for many types of collinear reactions and thus the.

boportance of quantum effects in chemical reactions can readily be
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established within the collinear restriction. How these quantum

effects will be modified in two or three dimensional systems has not
yet been fully established but some progress has been made towards
obtaining exact quantum solutions to these 1:)1,“oblelrn_s23 and quite
recently accurate converged.results have been obtained for 'thé H+ H?
coplanar and 3-D exchange reaction. 24
In section 2 the potential energy surface used in our calcula-

tions is described. In section 3 we compare the quantum, ‘quasi,-?
classical and semi-classical reaction probabilities for ¥ + H, and in
| section 4 we compare the corresponding rate constants. Reaction
probabilities for ¥ 4 H, in the higher total energy range where two
reagent vibrational states are open are discussed in section 5 and in

section 6 is a short summary.
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2. Potential Energz Surface

We used the semi-empirical LEPS potential energy surface

12,25 (his surface 5). This surface is intermediate in

of Muckerman
character between his surfaces 2 and 3 of refe)."e»nce b and was

chosen to optimize agreement between his three dimensional
trajectory results and experiment. T, 12 Using Muckerman's notation,
the parameters describing the %ﬁemeﬁ LEPS su:face are D, @ ) =
6.1229eV, B, (HF) =2.2187 A7 R, (BF) = .9170 A, A (IF) =

0.167, D, (H,) = 4.7462eV, B, (H,) = 1. 9420 A, R, (H,) = 0.749 &

and & (H,) = 0.106. The excthermicity is 1.3767eV (31.76 kcal/mole)
énd the barfierheighwt 0.0461eV (1,06 keal/mole). Fig. 1 shobwsva.n
eguipotential contour plot of the coﬁineai: surface along with the
minimum energy path. The coordinate system for the plot (and for

all calculations) 13 chosen to diagonalize the kinetic energy with a

single reduced mass and is deﬁned'by:zs

e T HF "mH "HE |

L R N
Fe T (T’""‘W) (rpy)

'Where I is the shorter of the two HF bond distances inthe H-H-F

HF .
linear geometry. The analogous coordinate system appropriate for

the product arrangement channel (FH + B) is:



1 M
. Heg, P ® Ky
§ ) " o
z," = ) (IHH -P-mmv' ]HF}
\ HEg : Ny
| - i
HF e
zaf — ( ) (rHF)
Hu, FH/

These coordinate systerus have the acivan{:age ovezf othersw in that
the transformation between the (%", x,') coordinate system appro-
priate for reagents and the (z,", =, ) system appropriate for the
products, is orthogonal. | _ |
 Since the vibrational spacing in H, is about 12 keal/mole and
that in HF is 11 keal/mole, four vibrational states of HF are nor-
mally accessible for thermal distributions of reé_gen’c H, due to the

exothermicity of the reaction.
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3. Quantum, Quasi-Classical and Semi-Ciassical Reaction

Probabilities for Collinear ¥ +H, > FH +H

3. 1 Exact Quantum Reaction Probabilities
8. 1.7 Numerical Method

We used the close coupling propagation method of
Kup;:)ermann28 to solve the Schrodinger equation for the collinear
system F + H,. The method involves dividing the configuration
space depicted in Fig. 1 into différent regions d,))d then propagating
-though a given region in a coordinate system appropriate to that. |
region. In particular, rectangular coordinates were used in the
near aSymptotic regions appropriate to reagents and products and
polar coordinates in the strong interaction region with the origin of
the coordinate system chosen in the claéSically inaccessible plateau
area corresponding to dissociation. A basis set of pseudo vibra-

tional eigenfunctions describing motion transverse to the direction of

propagation was used for expanding the wave functions. These
eigeﬁ_functian;s were calculated by a finite difference procedure, 29
and the basis set was changed ofteﬁ during the propagation to insure.
an.effiéieni: representation of the wave function. Contributions from
continuum Vibrationai channels are not included in this method. The
integration of the coupled Schridinger equation was done with an
Adams-Moulton 4th order predictor -~ 4th order corrector method
(with a 4th order Runge-Kutta-Gill initiator). The procedure for
extracting fzhe probab;i}iity matrices from the asymptotic solutions is
similar to that used by Truhlar and Kuppermann. 22 Convergence

of the final reaction probahi}.ii:ies was carefully checked by observing

the effect of varying the location of the origin of the polar coordinate
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system, location of the end point of the integration, 30

number of
closed vibrational channels, number of intégration steps, and
number of grid points in the finite difference eigenfunction deter-
mination. Using 12 to 15 vibrational channels throughout the inte-
gration, we obtained a sciattéring matrix for which unitarity and
symmetry were deemed adequate (flux conservation.to 0.5% and
symmetry to 5% or better) in the reagent translational energy x;a,nge :
(relativetov = () E; = 0.0 to 1.10eV. rhe computation time for a |
13 channel calculation on an IBM 370-158 compﬁtef»was awroxﬁﬁately
32 rin. for the initial caléulatiéri in which a large amount of energy
independent information was stored on d1sk: for subseguent use and |
5 min. per energy thereafter.
3, 1. 2. Results | |

We gefine the probability of reactiori from an initial state v
(of the reagent H,) to a final state v’ (of the product HF) by the
symbol Pv?’ . (This symbol will also be used as a shorthand notation
for the phrase *y-y’ reactive couision,‘”) The total reaction
probability }?VR from a gi;ven incident state » is the sum of Pv};{f over'
all accessible ». The exact quantum (EQ) reaction probabilities
R PR R -

Pias and Py for F + H, in the f.mnslatmnal energy range

Eq = 0.0 to 0.4eV are presented in Fig. 2. 'The reaction pr_ob«

abilities for the transitions Pﬁ and Pg , Which are also allowed in

this E, rangesi are pidti:ed in Fig. 3. We see that Pﬁ and Pﬁ’ have
an energy dependence very similar to P(E , but with much smaller
values (P e 6x10 PR Pg, e 1x10 POIE)-» As a result, only

Pﬁ &nd PR contribute appreciably to PQR in the energy range con-
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1
sidered. As was pointed out previously,g, POIE and Pﬁ have remarkably

different threshold behaviors. We shall define the effective threshold

energy 'ET for the v—=v’ transition as the difference between the (lowest)

R
vy

maximum value attained by this qué,ntity and the energy at which the v-u/’

energy for which the corresponding P, is equal to, say, 1% of the
process becomes energetically possible. With this definition, POI; has an
effective threshold of 0.005eV ‘whiiez» for P‘CE .(Whiczli is energé’z:ica.lly for-
bidden until E, =0.013eV) E.. is 0.045. Note that while the barrier
‘height is 0.0461eV, the zero point' energy of H, is 0.268eV, sothe
transition P(E is classically allowed even at zero translational energy;'
Likewise the 03 feactz‘i&re transition is classically allowed as the

HF (3) channel opens up at E; = 0.013eV. _One possible explanation
“for why the effective threshold of POR; is greater than zero is that

ine excndnge OI energy between motion transverse to the reaction
coordinate and that along the reaction coordinate is not efficient

(at least in the entrance channel region of confi;guratiorz spa‘ce.where
the saddle point lies). Truhlar and Kuppermann have shown2? that

a more realistic estimate of the effective barriexr height inH + H,

is obtained from vibrationally adiabatic theory. 'The vibrationally
adiabatic barrier (for zero curvature and using the harmonic approxi-
mation) for F + H, is 0.26eV which is still appreciably larger than

the effective quantum threshold energy for Pof: (0. 005eV) although it

is quite Vclosé to the PPGR2 guasi-classical threshold energy (. 025eV)
(see section 3.2.2). This difference between the quantum and quasi-
ciassical threshold energies could in part be due to tunnelling

through the one dimensional adiabatic barrier, within the framework

of an adiabatic description of the quantum dynamics in the neighbor-
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hood of the saddle point. In II we shall see that the results for

F + D,, F+ HD and F + DH support this conclusion. The high |
threshold energy for Po}s is not easily explained as resulting from
one dimensional adiabatic barrier tunnelling and 13 probably due -
to a dynamical effect as will be discussed in section 3. 2. 2.

The sharp spike in the POIQ curve at energies slightly above
threshhold is reminiscent of the Feshbach type internal e;;gcitat§;5)11,
‘resonances observed in the collinear H + 1, :v:*eact:‘ionF31 A dis-
| cussibn of other resonances in the F + B, reaction is presented in
section 5.

| ﬁimultanegusly" with the reactive transition probabilities, we
have ca.lc:ulafce_d the nonreactive ones corresponding to the collisioﬁs
F +H,(0) ~F + H,(0) and FH () + H ~FH(') + H. The probabilities
for the first of these nonreactive processes are simply the difference
~ between unity and the total reaction proba.bmty }?f (as long as v = 1
of H, is sléséd)e  The transition ‘pz‘csba,bﬂii:ies for the H + BE@")
inelastic (v’ + v) processes are all quite small (generally less thaﬁ ‘
6. é‘}rﬁ;}‘ up to E, = 0.4eV and vary relatively slowly with energy. o
Unitaﬁty 6f the scattering matrix then forces the elastic probabilities
A‘fcr H + HF({) collisions to be foughly ‘eqml to the cliffereﬁce betweén; '
unity and the probability for the F + H, (0)~FH(/) + H reactive
~process. The behavior of the ineiastic t’ransitioﬁ probabilities for -
- nonreactive H + HF éoliisiens contrasts strongly with ‘i:hé corres-
ponding inelastic transition probabilities for collinear H + FH |

32

eoﬁ.iéionsa In the latter case we find that the probability of an

_inelastic collision is comparable in magnitude to the elastic transition
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probabilities and, in addition, the probabilities of multiquantum
ju.fnp transitions are often greater than the probabilities of single

quantum jump transitions. A more complete discussion of the

results for collinear H + FH will be given in ref. 32.
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3. 2 gaasi~ Classical Reaction Probabilities

The classical trajectory calculations were carried out in the’

33, 34 The initial phase angle

same way as in a previous H + H, study.
variable for the vibration of the ground state of H, was varied uniform-
ly over a grid of typiéally 100 points in the in’cerval 0 to 2y. The final
action number of the product HF was eompufed for each reactive ha

jectory and assigned a quantum number by rounding off the action num-

¥

ber to the nearest integer. Thus, the transition probability P(,};/- was
defined as the fraction of reactive trajectories with final guantum
number p’.

~ When this procedure is carried out in the direction
F +H, (v=0)~FH (') + H we term the quasi-classical transition
probabilities *Quasi-Classical Forward"” (QC¥). For the reverse
reaction the quasi-classical transition probabilities are termed
*Quasi-Classical Reverse' (QCR). Quantum mechanically, the
forward and reverse probabilities are rigorously equal at the same

20 \
20 Therefore,

total energy, but quasi-classically they are not.
either of the two quasi-«cziassical re&ults, QCF or QCR, could be
used to represtént the probabﬂitiés for the (forward) reactive
collisions. Since there is'presently no a priori way of deciding
which of these two procedures will give results closer to the EQ
ones, we have used them both and corres?onding results are

~ presented below.
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3. 2. 2 Results
" In Fig. 4 we plot the QCF and EQ reaction probabilities
}?013, PGIS and P}} versus the transiational energy E,, as well as
the corresponding exact quantum ones given in F:Lg 2. Qut of the

R R
1 = Pog =0

100 trajectories, none yielded HF withv =0 or 1 (i.e, P,
probably to within 0. 01 or less). There are two important points

to be noted in comparing the EQ and QCF résu];ts., First, both ﬁhe :
exact quantum and the quasi-classical results predict roﬁghly the
same amount of vibrational excitat‘ioﬁ in the H¥ product on the
average. Indeed, if we define fv as the fraction of the total energy
which ends Wg as vibrational energy in the product HF, then in Fig. 5
we see that fv is roughly 0.81 and nearly independent of EO. in the
QCF results, and fluctuates between 0.66 and 0.89 with an average
‘{rame of 0.79 in the BEQ results. From this, we conclude that the
guantum and quasi-classical dynamics agree (on the average) with
respect to partitioning of product energy between translational and
‘vibratianai degrees of freedom. Second, despite this average
agreement, there are very‘gigniﬁcant differences between the EQ
and QCF ’reactiojn probabilities partiétﬂarly with respect to the Pol;{
threshold and the Pt/ PoX ratio. In Fig. G this ratio is displayed
~ as a function of E; for both the EQ and QCF results. As has been
pointed out previousiy, m the lack of agreement between the individual
transition probabilities Pg and Pﬂ“?- can be partially explained as
arising from the reasonable but nevertheless arbitrary way of
assigning & discrete guantum numbex to a continuous product vibra -

tional energy. However, the large differences in the energy
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dependence of the EQ and QCF P&E(v = 2,3) suggests that this is
probably not the whole explanation and that other éignificant
differences exist between the classical and quantum dynamics in this
system. In addition, this arbitrariness in the definition of a product
q-uantum number is not present in the total reaction probabilities P(;R,
yet the differences in magnitude and energy dependence of the EQ and
QCF results are still very si‘gnificant& |
It is also of interest to analyze the EQ and QCF reaction proba-

bilities by an information theoretic approach. 13 In order to include a
study of isotope effects in this analysis, we defer a discussion of this
to paper Ii.. |

| ‘In Fig. T are plotted the QCR and EQ reaction probabilities
P(,I;, Poli and PgR versus E,. The transition probability POE{ is non
zero at zero reagent translational energies. This can occur because
of the convention of rounding classical vibrational qﬁantum numbers
to the nearest iﬁtegez‘;zc’ 33,34

The QCR results in Fig. 7 aré in much better agreement with

the qﬁantum probabilities than are the QCF Iresullts in Fig. 4. This is
true not only of the total reaction probahilities PF, but also of the indi-
vidual transition probabilities especiaﬂy P(,};@ The fact that th‘eb threshold
behavior of the POI;E transition can be described correctly by a quasi- ‘
classical method suggests that the 0.045 eV effective threshold energy
in PE(EQ) is a dynamical effect related to motion through classically
accessible regions of configuration space. The fact that the reverse

rather than the forward trajectory method produces the best agreement .

with the exact quantum results must be regarded as an empirical obser-
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vation at present. It would be interestil}g to further analyze the quasi-
classical results from the viewpoint of what regions of configuration
space are being sampled by the QCR and QCF trajectories and with
what velocities, and how well the current density fields derived from
these trajectories agree with the correy_sponding exact quantum current
densities. 39 The good agreement between the QCR and EQ results
suggests that the QCR procedure should be applied to a three dimensional
trajectory calculation. If the differences between the one dimensional
QCR and QCF results are also found in three dimensional calculations,.
this could be indicative of the presence of important quantum dynamical
effects in the three dimensional reaction. Wiﬂ,’;ins% has completed a
three dimensional QCF study of the reaction FH (v) + H ~H,(v') + F
'(v varying from 1 through 6). His results can be considered to be QCR
calculations for the reaction F + H, (¢') ~FH (v) + H. He has also »
published QCF rate constant calculationsga for the latter reaction with
v =0. It would be very interesting to compare the corresponding
{QCR and QCTF) cross sections. Perry et algk{ have recently published
a three dimensional comparison of the QCR and QC¥F cross sections for
the endothermic I+ H, ~ HI + I reaction at one total energy. They found
that microscopic reversibility was approximately obeyed at this energy
but made no detailed study of the energy dependence of the cross sections

and did not investigate threshold effects.
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3.3 Semi-Classical Reaction Probabilities

For most energies, unifcrfn semi~classical reaction prob=-
abilities were calculated according to the procedure described in
reference 34. However, for translational energies E, greater than
0.10 eV the transition Pg was computed by a simple analytical con-

tinuation technique, 38 similar in spirit to that of Miller. 39

This was -
necessary in order to obtain a non-vanishing value of this transition
probability since in the above energy range, although energetically

allowed, it is dynamically forbidden, 5% 39

In addition, it was found
that P}E was ill-deterrained near threshold in that a plot of f"inal FH
vibrational action number me VErsus initial H, vibrational phase angle
{go) revealed "raggedness' (i.e., very rapid variation of m, with do)
for Mg near the value 3040 Raggedness was also observed over a range
of energies for the F+D, (v = 0) — FD (v'= 4) + D reaction by us (see

following paper IIj and by Whitlock and Muckerman. 12

We managed to
overcome this difficulty at several energies by doing the semi-classical
analysis for the reverse fea&ﬁam} i.e., Ha+ HF (v =3) — H, (v=0)4 ¥, 43
For this reaction, the results were considerably less ‘'ragged' for .
approximately equal to 0 than they were for the forward reaction around

‘mf = 3. A more complete discussion of this procedure is givén in

paper II for the F + D, reaction.
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The semi-classical reaction probabilities P, and POR

5 for

F + H, are presented in Fig. 8 along with the corresponding exact
quantum probabilities. In the abgsence of considering complex-
valued trajectories (in complex phase space at complex times),
vanishing quasi-classical reaction probabilities implies that the
corresponding semi-classical ones also vanish. Therefore,

Polf‘ (USC) = Pﬁ (USC) = 0. Fromthe appeéLz*aza,Cte of the reaction
probabilities in Fig. 8, we see that the qualitative agreement between
the EQ and USC results is quite good. There are large differences
between the magnituﬁes of the USC and EQ pz:oba.bilii:ies at certain
energies, but such differences are not usually too important forv the
resulting collinear rate constants (see section 4). Of more serious
consequence for such rate constants is the small difference betwe'en
the threshold energies of the POE curves. As pointed out in section
3. 2. 1., ‘this threshold difference of about 0.020eV could be partly
due to an adiabatic tunnelling effect and it may be possible to improve
the agreemén‘t between the EQ and USC results by using complex

trajectoriesﬁz’ 43
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3.4 Comparison of EQ, QCF, QCR and USC Reagtion Probabilities
NN NSNS NS NN NSNS

In Figs. 9 and 10 we compare the exact quantum, quasi-
classical forward, quasi-classical reverse and semi~classical reaction

probabilities POE ) POI§

and POR for ¥ + H, as a function of the reagent
translational energy. Note that the QCR results resemble the USC

ones much more than the QCF results do. Obviously, the USC threshold
energy must be larger than or equal to both the QCF and QCR threshold
energies. However, we cannot presently put forward an a M‘reason
that would have permitted us to predict which of the latter two energies
is greater nor which of ‘the quasi-~classical reaction probabilities should
be closer to the USC ones. If is also very interesting to note that ih_,e
QCR results resemble the EQ ones mbre than the USC ones do.- One

should, however; be cautious not to generalize this observation. As

shown in paper II, the reverse behavior is found for the F + D, reaction.
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4. EQ, QCF, QCR and USC Rate Constants for F + H,
e e e g i N Ve T W NP W N W N W W N

The detailed y—~p’ rate constant for a one-dimensional bi-

molecular reaction such as ¥ + H, (V)~FH (v') + H is defined as

R ' R
kvv’ (T) = <Vu Pw' (Vv) >T

i

w VRV
f@ (V) Vv, B (v,) av,

where V  is the initial relative velocity of the reagents F + H, (1)
and fT (VV} is the one-dimensional Boltzmanﬁ relative vélocity
- distribution function. Changing the integratidn _-variable from:.

‘ - 22
expression becomes
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Note that for one-dimensional systems, number densities are ex-

pressed in molecule/ cm so that a bimolecular rate constant has

the units cm/ (molecule - sec.).

" Using the reaction probabilities presented in Fig. 7, we
have calculated the rate constants k‘g,and kolz from the EQ, QCF,
QCR and USC reaction probabilities. Arrhenius plots of these rate
constants are presented in Fig. 11. We see that for kg‘ all plots
are nearly linear at high temperatures. Because of the extremely

small effective threshold energies of PO}“E, the Arrhenius plots of

kolg are only linear at low temperature (< 500 K). At high tempera-
i:ui*e, the temyperature dependence of 1<§ approaches ’1‘TJDE which is

| chafacteristic of a reaction with zero activation energy. Arrhenius

activation energies E;z and ans and pre-exponential factors Aéz and

A

03; Which were determined by a least squares fit to the 200-400 K »

results and to the 900-120C X results, are given in Table I. It is
clear from Fig. 11 and Table I that k=%, (QCF) has an activation
energy which is significantly lower than the activation energies of
kﬁ (EQ, QCR Or'USC). This is an obvious consequence of the

" different effective threshold enérgies of the reaction probabilities
(Fig. 9) and illustrates how these threshold differences can affect
the detailed rate constants. As might be expected from Fig. 9,

kolz (QCR) and ki USC) are in quite good agreement with kf“; (EQ).

The relative agreement among the corresponding three kg

rate constants is much less satisfactory at low temperatures, the
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difference between kiy (EQ) and kI (USC) is mainly determined by
the 0.02eV difference in the threshold energies of the PL reaction
probabilities, Since Pﬁ (QCR) has its effective threshold at zero
translational energy, koRg (QCR) has a smaller activation energy
than ko% (EQ) which in turn has a smaller activation energy than kofg
(QCF or USC). The total rate constant koR which is essentially due
to the contributions of koff and kg does not exhibit simple Arrhenius
behavior because it is the sum of two Arrhenius expréssions which |
are of equal magnitude near T = 1000 K, but which have quite
different activation energies. Note that the experimental activation
energy (which is1.71 k@al/mole)M seems to représent an average
of the present EQ values of‘ E: and E?:&

. In Flg 10 we plot the ratio kg / koR; as a function of tempera-
ture. The large difference between the temperature variation of the
QCF ratio and that of the EQ, QCR or USC ratios is again a conseé
quence of the difference in the reaction pfobabilities in Fig. 9. It is
interesting to nofe that the three dimensional quasi-classical forward
trajectory method yields a rate constant ratio which is riearly
independent of temperature, %2 in agreement Wiﬁl the one dimensidnal :
QCF results presented here. An experlmental measurement of the
temperature dependence of k03 / 1%{ seems to agree reasonably well

with the three dlmensmnal QCF resultg

and consequently disagrees
with our EQ result. Thls may mdmate that the strong difference |
between the activation energies of }%3{ and k§§ observed here is
largely averaged out in three dimensions. On the othex_‘ hand, for the

F + D, reaction, the agreement between experiment and the quasi-
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classical results is ‘hot as consistent as it is for F + H, (to be discuss-
ed in paper II), so it is possible that the averaging process in three
dimensions does not completely destroy the important differences
between the results of quantum and classical mechanics as reported
in this paper. | | |

In contrast to the k2 / k2 ratio, kX (EQ) / k} (EQ) is nearly
constant in the témperature range considered here, This agrees with
the temperature variations of both the e:»f;:pe—rmmentalzd and three
dimeﬁsionai QCF% results, although the absolute magnitudes of the
ratios are quite different (~ 90 for 1-D versus ~ 3 for 3-D). We also
found that kQR1 (EQ) / kélz (EQ) is néa.riy independent of teraperature
‘with a value of roughly 210_, Therefore kﬁ“ (EQ) and k,ﬁ (EQ) are

respectively about 2 and 4 orders of magnitude smaller than k}; (EQ).



30
9. Exact Quantum Reaction Probabilities for Vibrationally Excited
NMWW"\’WWW\M/WWVWVVWVVW\ANW\IWW\M,VWW

Reagents |

In order to observe the effect of vibrational excitation of the
reagent H, on the resulting reaction probabilities, we extended ‘the
range of our exact quantum ca’icﬁlations to total energies of 1.4 eV.
In Fig. 13 we plot POI;’, P§ and PE’, the three largest reaction
prabab‘zhtles for ¥ + H, in this energy range, as a function of energy.
There are several important points to note about this figure.

First, the transition _‘PE has virtually zero effective threshold
energy but otherwise has a similar translational energy dependence
to that of PQI«} {(which has the same ¥« v value as P ) The absence
of a significant threshold energy in Pllz’ indicates that the dynamical
effects responsible for the appearance of a significant effective
energy threshold in POI} are no longer szgniflcam in PR
This will lead to lower activation energies and higher rates of réaction
for reagents which are initially vibratiqnally excited. The similérity
between PII} and 'PQ}} implies that for the most significént reaction
probabilities, an inamasé in the Vibraticmal eﬁérgy of the reagent
results in a correspendiho“ increase in the vibrational energy of the

product. This agrees with expenmental observatmns for F + D,. 1f

Second the reachon probabilities P§ and P§ have sharp
peaks at E; = 0.425eV and 0.823eV respectively. An analysis of the
energydependence of the scattering matrix elémenté corresponding’
to similarly shapeci reaction probability curves in the H + H,

45 .
31,45 and in several other model rea.ction546

collinear reaction
showed that narrow peaks (or dips} in the reaction prob-

abilities were the result of the presence of internal excitation
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(Feshbach) resonances. These resonances are associated with

exéitation_s of virtual states of the intermediate triatomic complex
(FHH in the present case). From Fig. 13 we see that the contri-
butions of the direct processes seem to be rather small in regions
of energy where the resonance processes are important. This
results in only small interference ef}fectsvbetwéen direct and com-
pound state cantributios to the scattering ampﬁmde and the resulting
reaction probabilities have nearly symmetrical peaks as a functibix
of enérgy near the resonance energies. The resonance widths are
about . 0leV and only one non-negligible reaction probability seems
to show resonant behavior at either of the two resonance energies.
There seems to be a correlation between the appearance of an o
internal excitation resonance and the openirig of a spe(:ific vibrational -
state of the product (as in the resonance at 0.823eV, which is close
to the opening of the v =5 channel in HF at 0. 839%eV). This indicates
a correlation of the resonance state with the reaction prodﬁcts rather
than with the reagents or with thévtrans'ition state. We shall analyze
this phenomeneﬁ further in paper II when we examine the high energy
¥ + D, reaction probabilities. ,
Although the total E in Figure 13 extends to v1. 16eV only, we
have done caiculations up to E = 1.4eV but found all reaction proba-
bilities in this higher energy range to be less than 0.01. This
behavior seems to be related to ”céntrifugal” effects associated to
the angle between the x"l, and z: axes (_i.,e,, the skew angle between
the asymptotic portions of the minimum energy path for the pbtential

of Fig. 1) and will be further discussed in paper I.
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Many of the dynamical effects presented in this paper will
be further examined in paper II to whefe we will relegate a more |
extensive smnma,ry of quantum effects in the F + H, reaction. In
this paper we have seen that there are very serious differences
between the results of quantum and standard quasi-classical mechanics
for collinear F + H,, most not_a;bly in the energy dependencé of the
reaction probability PGE_E near threshold. These differences in the -
behavior of the reaction probabilit_ies result in importarit differences in
~ the detailed thermal ré.te constants., The fact that the quasi;classical
- forward reaction érobabﬂities and rate constants disagree quite strongly
~ with the exact quantum results is of great significance since nearly all
the tra.jectory studies done to date on this reaction have been of {he quasi-
classical forward type. For the present reactioh, both the Quasi-ciassi(;al :
reverse and uniforfn semi~classical methc’)dsl provide us with more
accurate ways of approximating the exact @zmtum resulls. This sug-
gésts that it might be of interest to use these mefhods in thfee dimensions.
Indeed, it may be possible to use the results of écilinear calculatidns
such as the ones presented here aé a guide line when choosing an
approximate method for doing three dimensional calculations.

Additional exact quantum results for F + H, show that
threshold effects are no longer important when the reagent H, is
initially vibrationally excited. The dominant transitions appear to
be those which channel additional vibrational energy in the reagents

into additional vibrational energy in the products. Internal excitation

resonances are found to play an important role in the reaction prob-
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abilities at certain translational energies. There seems to be a one

to one correspondence between the energy at which a resonance
occurs and the energy at which a related product vibrational channel

opens.
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TABLE I. Arrhenius Rate Constant Parameters for F + H, = FH + H(a)

a

em/ (molec - sec).

Emmmkmmmmmm@ﬁmm

Temp.
Range EQ QCF QCR UscC
02 200"’ ‘
Ey 400 K .411 -.791 . 230 .66
s  200- -
Ea 400 2.279 853 2,596  2.495
200~ |
A 4 4 4 4
0z 400 1.620x10°  2.424x10°  1.669x10° 1.486x10
200-
A 4 4 4 4
03 400 2,667x10°  2.492x10°  3.377x10° 4.621x10
. 62 ‘ QQO" y
Ey 1200 293 .750 .086 .390
Ey 1200 2.628 1.444 2.869 2,368
900~
Aoz 1200 1.450x10"  2.558x10"  1.628x10" 1.182x10°
900~ - |
Ass 1200 4.433x10°  4.464x10°  4.689x10° 4.499x10
(a) k . (T) = A . ex;i (- E® / RT) where
01 O1 &
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Figure Captions

Equipotential contour plot of the FH, collinear potential energy
surface used in all calculations reported here. Energies given
are relative to the minimum in the H, diatomic potential curve,
Coordinate system is defined in text. Heavy line denotes the

minimum energy path with saddle point indicated by a cross.

Exact quantum reaction probabilities for collinear ¥ + H, as a
function of relative translational energy E, and total energy E

(relative to minimum in H, diatomic potential energy curve).

{a) Total reaction probability 15’9R from v =0 of Hz (b) Reaction

probabilities P, and P, (defined in text). Vertical arrow in
abscissa indicates the energy at which v = 3 of HF becomes
accessible. |

Exact quantum reaction probabilities POI;{ and Polj (similar to

Fig. 2).
Quasi-classical forward and exact quanturn reaction pmbabﬂities

for F+ H,: (a) PR, (b) P,X and P,R. Dashed line indicates QCF

'resuits with their associated statistical errors indicated by

vertical bars. Soiid line indicates EQ results (as in Fig. 2).

Fraction (fv} of the total reagent energy ~(ir1 excess of product zero

- point energy) which ends up as vibrational energy in the product

HF as a function of the reagent translational energy Ié}@ and total

energy E. Solid line indicates EQ results and dashed line QCF

results. Other notation analogous to Fig. 2.
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il.

12,

- 13.

L2

Ratio of reaction probabilities PR / P2

» versus translational

. energy E, and total energy E. ‘Solid line indicates EQ results

and dashed line QCF results. Other notation analogous to Fig. 2.

Quasi-classical reverse and exact quantum reaction probabilities
for F + H,: (a) PDR, (b) ‘POI; and POI; Dashed line indicates QCR
results with their associated statistical errors indicated by
vertical bars. Solid line indicates EQ results (as in Fig. 2).
Uniform semi-'cla,séical and exact quantum reaction probabilities
for F+Hy: () BE, (b) P,X and P,¥. Dashed line indicates USC

results, solid line EQ results as in Fig. 2.

EQ (solid), QCF (short dash), QCR (dash dot) and USC (long dash)
reaction probabilities P(,? (a) and pf} () for F + Hz (from

Figs. 2, 4, 7-8).

EQ (solid), QCF (short dash), QCR (dash dot) and USC (long dash)
total reaction probability PoR for ¥ + H, (from Figs. 2, 4, 7-8).

Arrhenius plot of EQ (solid), QCF (short dash), QC‘R (dash dot)
and USC (long dash) rate constants for ¥ + H,: (@) kol,}; (o) kolj&

1.3 for F + H, as a function of

Ratios of rate constants k‘j? / k,
temperature. EQ (solid), QCF (short dash), QCR (dash dot), and
USC (long dash). |

Exact quantum reaction probabilities Pcl,f, .Pols and P§ for F + H,

af translational energies higher than those in Fig. 2. Arrows near
E, = 0.44eV and 0. 84eV indicate the opening of v = 4 and 5 respec-
tively of HF while that at §.51eV indicates the energy E, at which

v =1 of H, becomes accessible.
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2. EXACT QUANTUM, QUASI-CLASSICAL, AND SEMI-CILASSICAL
REACTION PROBABILITIES FOR THE COLLINEAR F + Dy
¥
FD + D REACTION

This paper appeared in the Journal of Chemical Physics 63, 685 (1975).
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George C. SchatzT, Joel M. BowmanT §.and Aron Kuppermann
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(Received )

Exact quantum, quasi-classical and vsemi-cvlassical reaction
probabilities and rate constants for the collinear reaction F + D, —
FD + D are présented. In all calculations, a high degree of popula-
tion inversion is predicted with P os and Py, R being the dominant
reaction probabilities. In analogy with the F + H2 reaction (ref. 1,
preceding paper), the exact quantum 0 —3 and 0 —4 probabi]_itiés
show markedly different energy de‘pendehce with Pé? having a much
smaller effective threshhold energy (ET =0.014 eV) than PMR

(0.055 eV) - The corresponding quasi-classical forward probabilities

R
Py

while their quasi-classical reverse and semi-classical counterparts

and Pof{ are in poor agreement with the exact quantum ones,

provide much better approximations to the exact results. Similar
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comparisons are also made in the analyéis-of the corresponding EQ,
QCF, QCR and USC rate constants. An information theoretic analysis

of the EQ and QCF reaction probabilities indicates non-linear surprisal
behavior as well as a significant isotopé dependence. Additional quantum
results at higher energies are presented and discussed in terms of .
threshold behavior and resonances. Exact quantum reaction probabiliti_es
for the related F + HD — FH + D and F + DH — FD + H reactions are

given and an attempt to explain the observed isotope effects is made.
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1. Introduction
In the preceding paperl (hereafter referred to as I) we
compared the exact qﬁantum (EQ), quasi-classical forward (QCF),
qﬁasi-classical reverse {(QCR) and uniform semi-classical (USC)
reaction probabilities for the collinear F + H2 — FH + H reaction.
The results of all four methods agréed in their prediction of a high
degree of population inversion in the products of this exothermic reaction.
However, the QCF probabilities were found to differ substantially from
the corresponding EQ results in thresholq behavior anc% energy depen-
dence. This could have important consequences regarding the validity
of the standard three-dimensional quasi-classical méthod which has been
‘used on F + H, (D,) and which is the three—«dimeﬁlsional version of the
QCTF method.  We found much better agreement between the exact
quantum probabilities and both the quasi-classical reversé and >the uni-
form semi-classical results thus indicating that either of the last two
methods might be preferred to the quasi-classical forward one in
three-dimensional calculations. |
In this paper we pfesent the analogous EQ, QCF, QCR and
USC results for the collinear F + D, reaction over roughly the same
range of translational energies as was uséd in I. We shall also make
an analysié of the surprisal function for the EQ and QCF results for
F+ Dz.(and F+ :H.‘,) to determine if an information theoretic description
of the product state distrvibutions can be useful. In addition, | exact
quantum piobabilities for the reactions ¥ + HD (DH) — FH ( FD) + H (D)
are given. We also study the importance of tunnelling and resonances

in F «su'}}z,‘ F + HD and F + DH. These calculations were done in order



60

to assess the effect of isotopic substitution on the magnitude of the
guantum effects and on the validity of the approximate methods.
The potential energy surface used in these calculations is

2 1n addition, most of the numerical

identical to tha:c described in 1.
techniqxies are the same as was used in I and will not be described
again here except to note changes made.

In Section 2 we discuss the EQ, QCF, QCR and USC reaction
probabilities for F + D, and the corresponding collinear rate constants
are presented in Section 3. Section 4 contains a study of tiue b‘ehavior of .
the reaction probabilities at energies sufficiently high to excite the first
two vibrational states of reagent D,. In addition, we discuss resohances‘ :
in this reaction, giving specific comparisons between the results of the
exact quantum, and approximate methods in the vicinity of these reso-
nances. Section 5 contains a description of the EQ reaction probabili~
ties for F + HD (DH) and in Section 6 we present a summafy of conclusions.
2. Q@ntu‘rﬁ; Quésiiéléséicé_l.énd Sem1~CmmM%§£s

fDr Collmear F + Dy — FD + D
Mﬂg\wm reactmn Erobabxhtles

Since the vibrational spacing in D, is roughly 9 kcal/mole and
that in FD is about 8 kcal‘/mqle, and the reaction is exothermic by
32 kcal/mole approfcimately, at least five vibrational levels of DF are
~accessible when D, has an initial quantum number v = 0. By coincidence,
the v = 3 and 4 vibrational levels of DF have nearly the same total
energies as the v =2 and 3 vvibrationai levels of HF, respectively; This
results in remarkable similarities hetween these two feactions despite

the significant difference in the corresponding reduced masses
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(“F, Hz/“F, D, = 0.548). As in I, we will designate by Pwl:}, the

reaction probability for a reagent initially in state v to form pro-

R

duct in state v’ , and by PV the total reaction pr’obébility from

initial state v (i.e., 7 PV VR,). In Figure 1 we present the exact
quantum reaction prgbabilities PG}}, POI§ and P? for F.+ D, at
relative translational energies (E,) in the range 0.0 to 0.25 eV. The

R R R

corresponding probabilities P,,, Py, and P,, are plotted in

Figure 2. It is apparent from these figures that Polz and Polz‘ are the
most significant contributors to P(,R'in this E, range. The P,E , P(,:?

and Pag curves are all very similar in appearance to the Polj one, but

With‘greatly reduced magnitudes (POE ~6.8x107° POI:}, PE ~5x107*
| PO};{,.‘P;,? ~6x107° POI;). There is a very significant difference
bétween the threshold behavior of _Pol;: and that of PO‘E{ qﬁite avbnalogous‘ |
to what was observed in I for the reaction probabilities P()l; and PQI;{
of F+ H,. Asinl, it is convenient to definé an effective threshold
energy ET for the v — v’ reaction as the difference between the
(lowest) energy for which the corresponding Puf‘: is equal-, say, to 1%
-of the maximum vahie attained by this quantity and thé energy at
which the v — v’ process becomes energetically possible. Table I
contains the values of E’I‘ for several important reaction probabilities
for the reactions of F with H,, D,, HD and DH as well as the correspond-
ing vibrationally adiabatic zero curvature barrier héights EV AZC
(described in I). From it we see that for F+ ‘Dz the value of ET for
PG};{(EQ), 0.014 eV, is appreciably lower than the'EV Az value of

0.032 eV. This can be interpreted as an indication of the extent of
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vibréi:ionally adiabatic one-dimensional tunnelling (see paper 1) in
this system. The value of Ep for POE (QCF) of 0.030 eV is very
close to Evazc: This suggesf:s that the chemical motion for this
system is nearly vibrationally adiabatic in the approach coordinate
in the sense that the local action number for the motion transverse
to the reaction coordinate should vary relatively little between the
separated reagent region and the saddle point region. The correvspond~
ing values of Erp and EVAZC for POIs (EQ) of ¥ + H, are 0.005 eV and
0.028 eV, indicating somewhat more tunnelling in this system than
in F + D, as expected. The effective threshold energy of PR
(F + D,)(Eq = 0.055 eV)is similar to that of Pgx (¥ + ) (0.045 eV).
" The near coincidence in energy between the v = 3 and 4 vibr&tiohal
levels of FD and v =2 and 3 of FH is probably responsible for the
very similar appearance of the corresponding EQ reaction probabili-
ties. (Compare Figure 2 of I with Figure 1 of the present paper.)
There are, however, differences in the maximum values of certain
analogous reaction probabilities especially POI§ (F+ D,) and Pol;
(F + H,) (which have maximum values of 0.66 and 0.44 respectively).
We shall see in Section 4 that the differences between analogous reac-
tion probabilities for the two reactions become even more important
for E,> 0.25 eV.

In Figure 3 are plotted the QCF and EQ reaction probabilities
POI;, Poff and Pf{ for F+ D,. No reactive trajectories yield DF with

v/ =0 or 1 but there is a small probability of reaction to v' =2 (always
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< 0.1 and vanishing for E, > 0.12 eV). The corresponding QCR
reaction probabilities for the same energy range (0.0 < E, < 0.12 eV).
are plotted in Figure 4. In Figure 3 we see that there is a very large

difference between the threshold behavior of Pol;:} (EQ) and Polff (RCF).

In analogy with the ¥ + H, P.X behavior, !

classical reverse PLS of F + D, (Figure 4) has a threshold behavior

we find that the guasi-

which is much closer to the exact quantum one than is the QCF
threshold. Unlike Pol;j (F + H,), the energy dependence of PE (F + D,)
is pfedicted somewhat more accurately by the QCF method than by
the QCR method. The EQ and QCF total reaction probabilities P(;R
(Figure 3) are in somewhat better average agreement than are the
EQ and QCF total reaction probabilities in F + H, (Fiéure 40fY).
This seems to indicate that the differences between guantum and
classical dynamics are less severe for F + D, than for ¥ + H,.
However, at least for collinear }reactions‘, these differehces are
still quite significant.

| In Figure b we plotas a fun¢tio11 of E, the fraction fv of the
total energy which appears as vibrational energy of the DF product
for the EQ and QCF calculations. It can be seen that fv(QC F) is
nearly independent of E, and has an average value of 0.79. The
cafresponding?‘ EQ eurvé has a more pronounced E,; dependence but
about the same average value over the E, range considered. We find
that the average value of fv‘is' almost the saméfor both F + H, and
F + I,. This independence of isotopic substitution agrees with the

corresponding experimental resu};tz and with the predictions of
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three-dimensional trajectory calculations4 although our value of

fV (0.79) which ignores rotational degrees) of freedom is somewhat
higher than the experimental result (0. 66)3-. This general average
agreement between the EQ and QCF fv versus E, curves indicates =
that the dynamic processes governing the average energy disposal
between vibrational and translational degrees of freedom of the
products can be well approximated by the classical trajectory method.
However, one should keep in mind that this is not so for the distribu-
tion of this vibrational energy among the available vibrational stai:es,
i.e., that large differences between product state population ratios
obtained from the EQ and QCF methods do exist, as indicated in

- Figure 6.

2.3 Semi-classical reaction Erobabilities

Figure 7 shows the uniform semi»classicél reaction probabilities
PE and PY along with the corresponding EQ results. The USC results
are similar to the ones obtained independently by Whitlock and

Muckerman in an analogous calcula.tion.2b

It was noted in paper I
(Section 3.3) that "raggedness' (i.e., very rapid variation of m, with o)

- in the final action number mi(qo; v, E) 'as a function of initial
vibrational phase q, caused difficulties in calculating USC transition
probabilities at the thfeshold of the F + H,(0) — FH(3) + (H) reaction.

The same problem occurred for the 0 — 4 transition in the F+D, reaction,
and was also encountered by Whitlock and Muckerman. We were able to
overcome this difficulty by using the reverse final action number function,
n(qgy; m, E), which was found to be smooth for m = 4 and n around 0.

The justification for using this procedure was given in I. = The

curves for the forward and reverse values of me for this

0 — 4 transition at an energy E = 0.3107 eV (E; = 0.12 eV) are given
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in Figure 8. When all the relevant semi-classical quantities

are well-behaved ('mon-ragged") functions of g, ,. the USC transition
probabilities obey microscopic reversibilitys‘and it is not necessary
to calculate both the forward and reverse results. However, as the
example above demonstrates, when "raggedness' exists, it is advis-
able to consider the forward and the reverse results. In our example,
the reverse results are the preferfed ones since i:hére is no ragged-
ness in the region corresponding to D + DF(4) — D,(0) + F. These |

were the ones used in calculating POI} (and Polj for the F + H, reaction)

in its threshold region. The USC‘POI‘E transition probabilities at
E, =0.08 eV and 0.085 eV were calculated in the statistical approxi-
| maﬁon. 6 At these energies the reverse reacﬁon showed that the
4 — 0 transition was dynamically forbidden. However, since statis-
tical (i.e., ragged) behavior was evident in the forward réaction we
did calculate a non-zero value for Polfat the two energies just
mentioned.

The USC probabilities in Figure 7 are in much .be‘tter agree-
- ment with the corresponding EQ results than are the qﬁasi-classical
" ones. As was the case with the QCF POI;‘ threshold, there is a small |
difference between the PCE (USC) and P(E (EQ) threshold energies,
but vth‘e UsC result may be improved by using compléx trajector'ie-s.( T
The oscillations in PL (USC) in the E, range 0,10 eV - 0.25 eV do
not have any analog in the quantum results. These oscillations are due
to phase intérf_erences ‘arisi.‘ng from a relatively rapid variation with
energy of thé differences in phases associatedeith the two contributing

_trajectories; One might expect that the raggedness in the plot of final

‘action versus initial phase (see Figure 8a) could be an indication of
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resonant behavior in this energy range, but the quantum results of
Figﬁre 1 do not substantiate this. In Section 4 we discuss the possible

relationship between resonances in the EQ results and “'raggedness' .

in the USC ones.
One significant aspect of the comparison between the USC and
EQ results in Figure 7 is that the maximum values of the EQ and USC

reaction probabilities P(E and Polz

are nearly identical. This con-
trasts with the results of both the QCF and QCR calculations whicﬁ- 7
generally tend to underestimate the maximum values Qf the probabilities
(Figures 3 and 4). The significant improvement‘in"the guality of the |
results obtained in going from the 'quasi-classical to the semi—
classical approximation suggests that an eQﬁivalent improvement may

| occur for the three-dimensional F + D, reaction and that the semi- .
classical results may be quite reliable for this case. However, we
must stress that the utilization of uniform rather than primitive semi-
classical techniques is essential to the success of this method for the
collinear reaction and thus it seems likeiy that an anélogous uniform

procedure will be required in the three-dimensionrl problem.8

| 2.4 Comparison of EQ, QCF, QCR and USC reaction probabilities
: ; R

In Figure 9 we compare the reaction probabilities POE{ and Pg,
" of F+ D, as cal¢u1ated by all four methods EQ, QCF, QCR and USC.
Figure 10 presents.the analogous comparison for the total reaction
probability PR It is apparent from both figures that the USC method

gives the best agreement with the EQ reaction probabilities for this

reaction. .
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2.5 Information theoretic analysis of EQ and QCF reaction'erobabﬂities

‘ It is also of interest to perform an information- theoretic analysis
- of the EQ and QCF results. In this section, we shall consider both the
F + D, reaction probabilities discussed above and the F + H, probabili» |
ties described in I. | |

In analogy with the equations used in three~dimensional studies, 8.

we have used a one-dimensionalform of the surprisal for a vibrational

distribution given by:
. o o
i, )= -Wm[P(£,,)/P (£,)]

- P(f V,} is the normalized reaction probability to product vibrational
. state v’ expressed as a function of the fraction of thé total energy which
becomes vibrational eneréy in the product DF or HF (exclusive of pro-
- duct zém point energy). ;1?'0 (fv,) is the sta,tisticalvreaction probability
to state v/ and is given by: |

: i
(1-1,,)°%

4]

P(fu!)vx BETYE -
2 (-£,)72

.yt’:(} ’

where tﬁe‘ sum ié over all accessible product vibrational states. Note

| that this expre/ssion‘ for Pﬁ(fy,) predicts inverted statistical vibrational
population distributions.» This rather surprisiﬁg result for such a dis-
ﬁribﬁtion; is a straightforward consequence of the use of/ a one-dimensional
density of states function (which varies as (E, },)m% where EV, is the

translational energj relative to( vibratioﬁal_ state v’ ) rather than the

i
corresponding three-dimensional density (which varies as E, 2.
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Figure 11 depicts the EQ and QCF surprisal functions I(f v')
versus { e for F + D, and F + H, at three different relativé translational
energies. We sée that none of the EQ or QCF plots has the straight
line dependence on fu , required if the distribution is to be characterized
by a single information theoretic temperature parameter. The most
- severe deviations of the EQ results from Iin_earity o‘ccuf at the lowest
enérgies and are a direct consequence of the unusual threéhold behavior
of P(,I,f in ¥+ Dz and Pol,j in F + H,. This threshold effeét‘is not presént
in the QCF results and yet the surprisal functions .assoc.iétedy with these
probabilities show strong deviations from linearity. The curves in
Fig. 11 indicate th-t at least in this caées the information theoretic
| analysis has limited usefglness asa predictive tool for estimating
- 'unknown reaction probabilities from known ones. For example, if we
assume;i a linear surprisal function and used the results of the two
largest EQ probabilities to’ predict the third lérgest by linear extrapola-
tion, we would be in errof by at least one ordér of magnitude in most
of the examples depxcted in Fig. 11. ‘ |
Figure 11 also indicates that in many snuatlons, the surpricsal

function is not independent of isotopic substitution. This is especially
true of the EQ results with »* = 0,1 where the differences between the
surprisal iunctiorisi for F+ D, and F + H, are qilite large:. However, at
higher energies (Fig. 11a especially) and for higher vibrational gquantum
numbers (v"" = 2-4), the EQ points fof both F + D, and F + H, fall on
essentially the same c‘u‘fve In addmon the QCF results for F + D,
and ¥ + H, in both Flgs 1la and 11b seem to form a single curve and

for this reason, only one dashed line was drawn through the points. -
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‘This indicates that at certain energies and for certain ranges of fy, s

the surprisal function is independent of isotopic Substitution, but this
property is not generally valid. |
The behavior of the surprisal functions (non-linearity and dependence

on isolopic substiiution) observed in these collinear results contrasts
strongly with the shape of the corresponding surprisal functions
obtained from three-dimensional trajectory calculations and experi-
ments on the same reactions. 9 In the three-dimensional case, linear
surprisal functions which are nearly independent of isotopic Sub'stitutioh
were obtained in an analysis of the detailed rate-constants (rather than
reaction probabilities) from both quasiclassical trajectory calculations
and from iﬁfrared chemiluminescence experiments' (which are, of c'ourrse,
quantum mechanical). We have analyzed the surprisal functions for

our collinear EQ rate constants for both F +H, and F + D, (Section 3)

and ﬁnd no marked change from the results depicted in Fig. 11, the
non-linearity and dependence on isotopic substitution being esSentially

as pronounced as for the reaction probabilities. |

Rebently, the relationship between the one- and three-dimensional

classical surprisal functi;ms was computationally investigated, 10a

and it was proposedlob that the surprisal function should be approximately
dimensionally invariant. Our comparisdn of the one~ and three-dimensional
surprisal functions for F +H, and F + D, indicates that this dimenéional
invariance does not hold for these reactions. Although the valfdity of
our conclusion depends in part on the accuracy of the potential energy
surface used in our calculations, we would not expect it to be qualitatively
changed if é‘ more accurate potential energy surface Were used. In4
addition, we note that three-diniensional quasiclassicﬂ results for

_— . 4 .
F +H, and F + D, on similar approximate surfaces™ agree with
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experiment in their prediction of a linear surprisal functlon 9 The

computational comparison of one- and three-dimensional surprisal
funcf':ions of Ref. 10a involved several model potential energy surfaces

but none of these similated the attractive nature of the F + H,

interaction. ‘We »conclude that‘the invariance of the surprisal function
with respect to the dimensionaiity of the collision may dépend significantly
on the characteristics of the potential energy surface being considered.
Therefore, caution must be exercised in attempting to obtain 3-D

reactlon cross sections from collinear reactlon probabﬂltles 10b

. EQ, CF, C‘CR and USC Rate Constants for F+D

The rate constants kX and kX obtained from the EQ, QCF,
QCR and USC reac.tion probabilities P(E and P(E for F + D, are
plotted in Figure 12, The expression for‘ these rate constants-is the
same as the one given in I. 1 The corres'ponding Arrhenius parémeters
obtained from fits to the rate constants in the 200 to 400 K and
900to 1200 K temperature ranges are listed in Table II. The
difference between kolf (QCF) and ko}z (EQ) (which ‘revsults,from the
different threshold properties of the Po};{"s in Figure 9) is qui:te
noticeable and leads to a 0.8 kcal difference betwe n the correspond-
ing high temperature activation energies in Table I. In analogy
with our F + H, study, * the GCR and USC rate constants k.% and
corresponding activation energies Eo% agree with the EQ ones better
than do the QCF quantities. The similar comparison for the rate
constants kR is much less satisfactory. The low temperature diffex'm
ences between the various kOI;'s are determined to a Ia.rge extent by
the different threshold energies»of'the corresponding reaction proba-

bilities Polz. The transition probability P(E (QCR) has zero threshold



energy and thus the largest rate constant at low temperatures, while

the EQ, USC and QCF PDI?,{’S have successively higher threshold
energies and therefore successively lower rate constants. (See
Figure 9b.) This illustrates that the low energy (< 0.03 eV) |
behavior of the reaction probabilities (or cross sections) can be

exceedingly important in determining the low temperature (< 300 X)

behavior of the corresponding rate constants for these reactions.

The ratios kgj /kf; are plotted as a function of temperature in
Figure 13. We see that the QCF ratio is nearly temperature inde-
pendent while the EQ, QCR and USC ratios increase monotonically
with increasing temperature, approaching the QCF ratio at high
tempevraturesu These kif /k,;[j ratios are quite similar in appearance
_to the kg/kg ratios for the F + H, reaction given in Figure 12 of I,
but the F + D, ratios actually increase somewhat more slowly with
temperature than do the F + H, onés.

The QCF ratio Xgh /Koy is 0.63 at 300 K in approximate
agreement with the experimental valuenof 0.66. The results of
threewdimexﬁsienal classical trajectory calculations indicate that this

t,lz If this is also true

ratio is not strongly temperature dependen
'experimentaﬂy then, in analogy with F + H,, we would have evidence
that the collinear model overestimat.es the effects of threshold differ-
ences on reaction rates to \dif_f}erent product vibrational states. Wé -

12, 13'h,av<-3 measured the

might note, however, that Lee and coworkers
ratio of cross sections ¢,,/0,, at three different energies and they find
that it increases rapidly with increasing energy from 0.75 at

E, =0.034eVito3.5at B, =0.11 eV. If we consider the analogous
collinear ratio P‘S/Pff (Figure 6} we find that it also increases rapidly

with increasing energy (much more rapidly than Lee's cross section
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ratio) from near zero at zero translational energy to roughly a value

of 4.3 for E, ~0.12 eV. The ratios of cross sections from three-
diménsional QCT trajectory calculations over a family of several
potential energy sﬁrfaces do not reproduce this energy dependence
(Ref. 12, Table VI). This may indicate that the differences between
quantum and quasi-classical results are still significantvin three
dimensions and, indeed, are observable in experiments which are at

least partially state selected such as cross section measurements.

Figure 14 shows the higher energy exact quantum reaction
probabilities Pox, Pox, P.X, PX and PX for F + D, in the transia-
tional energy range E, = 0.25 to 0.70 eV. Those transition probabi-

- lities not plotted are all small (usually < 0.02). Polz (QCR) is also -
plotte& in Figure 14 in the energy range 0. 25 to 0.42 eV for reasons
to be discﬁssed in detail below. This figure is Vanalogous_ in mé,ny
ways to Figure 13 of I, although the closé correlation between the
reaction probabilities of F + H, and the related F + D, ones (see

end of Section 2. 1) becomes less important as the energy,is increased.
: Ne\%erthele'ss-, 7many of our remarks concerning the ¥ + H, reaction
probabilities describéd in I are also applicable here. We note that

the transition probabilities P in Figure 14 and P,Y in Figure 1 have
similar translational energy dependences except near threshold. This.
confirms our statement in I that rea,étion probabilities for reagents

-initially in » =1 are virtually insensitive to the presence of a barrier

in the F + H, (D,) reagent channel. In addition, PIE is significantly

R

" with ¥ < 5 over the energy range considered.

larger than the other Py
This implies that the additional vibrational energy in the reagents is
being predominantly channelled into additional vibrational energy in

the products; 14
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The transition prdbability P(E exhibits a rather unuéual energy
dependence. As shown in Figure 14, it remains quite small (< 0.01),
even though energetically allowed, until the total energy becomes
high enough to excite v = 1 of D2 at which point it risés suddenly to a
peak value of 0.34 before finally levelling off at about 0.13. Itis
not obvious how simple resonance or threshold theories can explain
this unusual behavior since the effective threshold is apparently
related to the opening of aﬁvibrational state not involved in the transi--
tion asymptotically. One possible explanation for the influence of the
v=1 ’state of D, on this transition probability can be formulated by
observing that the inelastic 0 — 1 transition probability for F + D,
~ is quite appreciablel5 (0.10 to 0.25) and, as noted above, P,E.is quite
large. This Suggests that the U — 5» reaciive transition occurs almost
exclusively with v = 1 as an intermediate state. It is also significant
that it is not sufficient for this state to be accessible via virtual transi-
tions but rather it must be open asymptotically. This seems to indi--
cate that a high degree of vibrational excitation must be maintained -
over a considérable region in configuration space. This wouid only
be possible if the v = 1 vibrational state is open and heﬁce there is no
enhancement of PO'E when thé state is closed. _ ‘

For the transitions PO}E at E, = 0.327 eV and P}? at B, = O 589 eV"
we see peaks in the reaction probabilities suggestive of iﬁternal excita-
tion resonances.m In contrast to the resonances observed in I in

F+ H,, the direct processes in F + D, still seem to be quite important

in the vicinity of the resonances. The resultant interference between
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the direct and resonant contributions to the scattering amplitude leads
to characteristic oscillations in the reaction probabilities in the
vicinities of the resonance energies quite similar to what was ob-

served in the H + H, reaction’0? -/

~As in the F + H, reaction, we see
an approximate correspondence between the appearance of a resonance
and the opening of a specif'ic vibrational state of the product DF. |
(v=5at B, =0.29 eV and v = 6 at E, = 0.59 eV). This implies that -
the virtual states of the triatomic . complex may have energy levels
vresémblingb product states more than reagent states. The relation is
probably complicated, however, since the correspondence between
the resonance energy and the energy of the associated prbduct vibra-
~tional level is not always in the same direction (i.e. ',, the resonance
'energy is sometimes greater and sometimes smaller than the corre-
"sponding vibrational energy as can be seen in Figure 13 of I and
Figure 14 in the present paper).

It is interesting to note that the QCR reaction probabiljty Pg
depicted in Figure 14 seems to "aﬁerage out' the quantum oscillations
in PR (EQ) in the vicinity of the E, = 0.327 6V resonance. It is also of
interest to examine the semi-classical reé,ults at this energy. Rankin
and Miller have répbrted extensive statiétical behavior in the final

action number function, my, for the H + Cl, collision. 6

From th‘i_s

" behavior, they inferred that a converged quantum treatment of that
reaction would yield internal excitation resonances. Howevér, as
Figure 15 shows, mf, at the resonance energy, is a reaSonably émooth
function of ¢, with about the same degrée of "raggedness' {(i.e., very

rapid variation of m, with q,) as seen previously away from resonance
f 0 . ,



in Figure 8b. An accurate EQ7§tudy of the collinear H + H, reaction has
shown that Pg, has a broad resonance at 0.90 eV total energy and a narrow
one at 1. 28 eV, and that both are due to interference effects between direct
and ccmpound—state mechanisms,. 16 Recently, Stine and Iv’.[arcu.s18
searched for and' found snarled (i.e., multiple collision) trajectories in
the narrow region of q, between the reactive and nonreactive branches of |
the m, (qo; v, E) curve. They showed that the broad resonance at 0.90 eV
could be genéra‘ced semi~classically if interferénce effects between direct
- and snarled trajectories zire,included, a result consistent with the life-
time analysis of the accurate quantum calculations. 16 Were it not for
the knowlédge of the existence of this resonance derived from fhe EQ
calculations, it Wduld be easy to miss such snarled irajectories in a

‘ semi-classical calculation in which the density of the Qe grid were not
high ,enough,S’ 19 Inclusion of a search of these trajectories and vof their
effects on {he reaction probabilities significantly increases the compu-
tational effort involved in the semi-classical approach. Narrow resonances,
such as the one occurring at 1.28 eV in cqﬂinear H + H,, may be even

more difficult to calculate semi»classically, since its long lifemtimele’
suggests that it may correspond to extfemely Snérl:;d trajectories,

- requiring inclusion of multiple collisions Qf high 01;'dler18 and use of

an extremely high density g, grid. Tn the present papér,, we have only
included the effect of direct (i.e., non-snarled) trajectories in thé semi-
classical calculations. :»It would be interesting to add the effect of

snarled ones, in order to verify whether they could reproduce the .

resonant behavior of PX at E, = 0.327 eV.
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We conclude that "raggedneséf’ in the m £ (do; v, E) curves could
perhaps be a necessary condition for the existence of quantum mechanical
iriternal excitation resonances, but it is certainly not a suificient one,
as’shovm by the preSence of raggedness in Figure 85, calculated at a

non-resonant energy.

We have also calculated the exact quantum reaction probabili~

ties for F + HD — FH + D and F + DH — FD + H hereafter designated

- F + HD and F + DH respectively. In three dimensions, these two

. reactions represent different produc{ arrangement channels of the
Same collision system. In collinear collisions, however, they must
be considered entirely separately. This implies that coupling between
these two product arrangement channels is ignored in our collinear
calculations.

The largest reaction probabilities for fhe two reactions are
plotted in Figure 1620 as a function of the reagent ‘ranslational
energy E; (relative to v = 0 of HD) in the range 0to 0.25 eV. For
/F + HD, the only reaction probability greater than 0. Oé5 in the energy
range studied is P£ while PO%E, PoI:} and POI;{ are"t_he major contribu-

tors to the total reaction probability in F + DH (P(E is always less than
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0. 10)>. From Figure 16 it is apparen-t that the reaction probabilities
POI:\ and PCI; of ¥ + DH are very similar in shape to the corresponding
probabilities POIE and POI;{ of ¥ + D, (Figure 10), although the sharp
differences between the threshold energies of POI‘} and POI;{ (F+D,)
are reduced considerably for POE{ and POI§ (F + DH). In contrast, the
results for F + HD do not show a strong resemblance to those for

F + H, (Figure 2 of I). Instead, we see that PO}? (Figure 16) consists
of one very sharp (width ~ 0.0005 eV) spike near 0.012 eV and then
remains quite small (< 0.02) for the remainder of the energy range
studied. POI;, which is energetically forbidden until &, = 0.039 eV
is quife small throughout the energy range considered here. The
‘rather dramatic differences between the resulté for ¥+ HD ané

¥ + DH can propbably be explained as resulting irom the difierence in
the mass of the atom being exchanged in the collinear triatomic colli-
sion system. The small mass 6f thé H atom in F + HD in comparison
with that of the D atom in F + DH results in much more important
pseudo-centrifugal barriers in "tufning the corner” in the former
reactioﬁ than in the latter. That this Should be the case is apparent -
from a é(‘)mpariscn of the skew angles (defined in I) for these two
syétems., For F + HD, this angle is 37.3° while for F + DH it is 56.7;
thus indicating that the curvature along the reaction path should be
much larger for F + HD than for F + DH. Only at low translational
energies do the centrifugal effects become small enough to render

F + HD dynamically allowed. For F + DH, on the other hand, thé

centrifugal effects are not important in the energy range studied and
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thus we observed very large reaction probabilities throughout that
energy range.
From Figure 16, we can also conclude that the rate constant
for formation of DF is predicted to be greater than that for formation
of HF (except at very low temperatures (< 150°) where the slightly
smaller effective threshold of ¥ + HD becomes important). This
disagrees with the experimental r*e::-;uh*:z1 that the rate of H atom
transfer is a factor of 1. 45 faster than that for D atom transfer |
at 298 K. The disagreement can probably be explained by noting
| that the distance of the H atom from the center of mass of HD is -
about twice that of the D atom from the same center of mass. This
means that H sweeps through a larger vdlume of space than D when
HD rotates and thus 1S more ‘'visible” to ithe attacking ¥ atom. Since ile
barrier height is quite low (except near the "pefpendic:ular” orientationl 2),
one would expect that H shouid be preferentially abstracted. For |
collinear reactions, this three-diniensional effect is ignored and we
find, instead, that dynamical effects such as pseudkomcel.ltrifugal
barriers are important in the reaction. These centrifugal effects
favor reaction with the D atom and thus explain why the collinear
results differ from the experimenf:al ones. A similar argument has
been used to explain the J dependénce of three«dimensional q-uasi-*
classical cross sections for the s:ame reactionslia., " One might add
that for a reaction with a high barrier, which simultaneously favors

reaction through collinear geometries, the three dimensional effect

should be less important and the collinear results should be more
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representative of the experimental results. This has indeed been

observed for the Cl + HD (DH) reactions. 22

We s}nxall now summarize the differences between the resulis
of the exzict quaﬁtu_m, quasi-classical and semi-classical methods
for studying the F + H, (paper I) and F + Dzireactionso The most
important of these differences may be categorized into three divisions:
vibrationally adiabatic tunnelling, resonances and threshold dynamical
éffectse These effects may, however, be coupled to one another to a
‘lesser or greater extent. |

Vibrationally adiabatic tunnellihg seems to be most significant
at very low energies especially for F + H, and for those transitions for
'wiﬁch at threshold there are no strongly restrictive dynamical effects
{of the type occurring in ng; for F + H,). Such tunnelling appears _
to be responsible for important differences between EQ and QCF rate
constants at low temperatures (Figufes 1la'in I and also 12a n this
paper}. The semi-classical complex trajectory method iWhiCh was not
. studied here) may be able to describe tunnelling qﬁanti’catively.s’ 7 Internal
excitation resonances seem to be very important at higher translational
energies an& will therefore not be significant in thermal experiments.
They may be important in beam apd hot’ atom experiments if these reso-
nance effects c./a,rry over without strong attenuation into three dimensions.
The current semi-~classical theories do not seem to furnish a computa-
tionally practical description of the interference effects associated with

‘these resonances. 20 Threshold dynamical effects are very significant
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for collinear F + H, and F + D, and this leads to important differences
between exact quantum and quasi-classical reaction probabilities and
rate constants for thermal distributions of reagents. These threshold
effects are partially classical in nature since we found that the QCR
method was capable of describing roughly the proper threshold
behavior within a completely classical framework. An important
result of this paper was the demonstration that the»uniform semi-
classical method provides a greatly improved description of threshold
behavior of the quantum results in comparison with the QCF method.
How important these threshold effects will be in tiu‘ee dimensions is
not entirely clear from an analysis of existing experimental and
theoretical studies, but it appears that the effects are at least
partially attenu_ated by the avelfaging that inevitably occurs in experi-
mental measurements. They may, however, still be important for

experiments which are sufficiently state selected.
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Table I. Effective threshold energies (ET) for the most significant

reaction probabilities in the F+ H,, ¥+ D,, F+ DH and

E ¥+ HD reactions.a

F+ H, : F + HD
E(Por(EQ)) 0.005 0.010
B (Pox(QCF)) 0.025 N.c.?
Ep (P (EQ) 0.045 | 0.071
Ep(Pr(QCF) 0,012 nc.P
Eypzc 0.026 0.028

F+ D, F+ DH
E(Por(EQ) 0.014 0.011
En(PRQCH) 0.030 N.C.P
E(Pos(EQ) 0.055 0.022
Ep(Por(QCE)) | 0.030 © Nnc.b
Byazc 0.032 0.028

2 An energies are in eV,

b No QCF calculations were done for this transition.
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Table 1I. Arrhenius rate constant parameters for F + D, —FD + D.?

Temp. Range EQ QCF QCR USsC
E_ 200 - 400 K- 0. 676 0.935 0.266 0. 852
E,"" 200 - 400 2,167 0.990 2.576  2.471
Ay, 200 - 400 2.551x10" 2.443x10°  1.884x10° 2.340x10°
A,, 200 - 400 2.775x10° 1.686x10°  2.502x10° 3.269x10°
04 - . .- .
E.° 900 - 1200 0.361 0.912 0.416  0.611
E, 900 - 1200 2,108 1.343 2,742 2.344
Ay, 900 - 1200 2.104x10° 2.674x10"  2.402x10" 2.082x10"
A, 900 - 1200 3.240x10" 2.604x10°  3.261x10° 3.365x10"

a o0, . A
E, isin kecal/mole and A _ is in cm/(molec - sec).
oi
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Figure Cagtions

Figure 1: Exact quantum reaction probabilities for F + D,asa
function of relative translational energy E, and total
energy E (relative to minimum in D, diatomic potential |
curve). (a) Total reaction probability POR- (b) Reaction

probabilities P(',lg and PCE.

Figure 2: Exact quantum reaction probabilities PQ]?, Po}i? and Polo%
for F + D, (similar to Figure 1). |
Figure 3: Quasi-classical forward (da,eshed curve) and exact q—uantum
(solid curve) reaction probabilities for F + D,: (a) P(:,R,'
(b} Polif and Pglf., | é
Figure 4: Quasi-classical reverse (dashed curve) and exact guantum
(solid curve) reaction probabilities for ¥ +D,: (a) POR,
(b) P, and B, |
Figure 5: Fraction (fv) of the total reagent enefgy (exclusive of
product zero point energy) which ends up as vibrational
energy in the product DF ﬁlotted as a function of the reagent
- translational énergy E, and total 'enei‘gy E. Solid line
indicates EQ results and dashed line QCF ones. Other
notation analogous to Figure 1.
Figure 6: Ratio of reaction probabilities Porf/ Po}z versus translational
| energy E, and total energy E. Solid line indicates EQ
results and dashed line QCF ones. Other not;;tioh analo-

gous to Figure 1.
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Figure 7: Uniform semi-classical (dashed curve) and exact quantum

(solid curve) reaction probabilities for F + D,: (a) Pg{,
(b) PX and PX,
Figure 8: (a) m, versus g, for the forward F + D,(0) — FD(m f) + Dy
at a total energy E of 0.3107 eV; (b) mf.vei*sus d, for the
reverse reaction D + DF(4) — Dz(mf) + F, at the same total
energy E. The solid curves represent the majority of the
reactive trajectories compqtedt The do’cé and crosses
represent, respectively, reactive and non-reactive tra-
jectories in regions of ''raggedness, " for which m £ varies very
rapidly with q,. Since the Fvalﬁes of m for non-reactive
trajectories correspond to a differeht range of varfation than
the reactive onésy the crosses were placed at an arbitrary
ordinate, and are only meant to indicate the values of q, for
which such trajectories occur.
Figure 9: EQ (solid), QCF (short dash), QCR (dash dot) and USC (long

dash) reaction probabilities Pg (a) and Pﬁ (b). (From
Figures 1, 3-4, 1.) -

Figure 10: EQ (solid), QCF (short dash), QCR (dash dot) and USC (long
dash} total reaction probabilities P? for F+ D,. (From
Figures 1, 3-4, 7.)

Figure 11: Surprisal function I(fui) versus fraction fu' of the total
product energy which is in pl;;oduct vibrational state p’
(exclusive of zero point energy). Symbols plotted have the
following meanings: circles - EQ results for F + D,, tri- |

angles ~EQ results for F + H,, squares - QCF results for



Figure 12:

Figure 13:

Figure 14:

Figure 15:

Figure 16:

88
F + D,, and crosses - QCF results for F + H,. (a) E,; =

0.12 eV, (b) E,=0.03 eV, (c) E,=0.005¢eV. The F+ D,
(EQ) results are connected by a solid line while a dashed-
dotted line connects the F + H, (EQ) results. A dashed line
approximately connects both F + H, and F + D, (QCF) resuits.
Note that at the lowest energy considered (Fig. 10c), only
v’ = 0-2 of HF are energetically accessible and all QCF
reaction probabilities are Zero. |
Arrhenius plot of EQ (solid), QCF (short dash), QCR (éash
dot) and USC (long dash) rate constants for ¥ + DZL: (a) koli,
(b) kog- o g
Ratios of rate constants kos /koi{ for F + D,; EQ (solid),
QCF (short dash); QCR (dash dot), USC (long dash).

Exact quantam reaction probabilities at translational

R

energies higher than those in Figure 1. (a) Polz, Py, and

PR () PR and PE. Also shown in (a) is the QCR Pgy

curve (dashed). Arrows near E, = 0.29 eV and 0.59 eV

indicate the opening of v =5 and 6 re’spectively of DF while

that at 0. é? eV indicates the energy E, at which » =1 of

D, becomes accessible.

m, versus q, for the reverse reaction D + DF (4) —

D, (mf) + F at the resonance vezie_rgy 0.5107 eV (corresponding

to E, = 0.32 eV). See Figure 8 for explanation of dots and crosses.
Exact quantum reaction probabilities PO}§ for ¥ + HD, and

{E and Pc,l;{ for F + DH as a function of relative transla-

- tional energy E, and total energy E'(relative to minimum

in HD diatomic potential curve). Arrow near 0.04 eV

indicates the energy at which v = 3 of HF becomes accessible.
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Figure 11
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3. AN EXACT QUANTUM STUDY OF VIBRATIONAL DEACTIVATION
BY REACTIVE AND NONREACTIVE COLLISIONS IN COLLINEAR
H+ FH, D+ FD, H+ FD AND D + FH.
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Accurate quantum mechanical transition probabilities and rate
‘constants for vibrational deactivation via reactive and nonreactive
collisions in coilinear H + FH(v), D+ FD(v), H+ FD(Vv) and D + FH(V)
are presented. In all cases, the reactive inelastic rate constants are
larger than the nonreactive ones for the same initial and final vibra-
tional states, but the ratios of these reactive and nonreactive rate
constants depend strongly on the vibrational quantum number v and on
isotopic composition of the reagents. Nonreactive and reactive
transition probabilities for multiquantum jump transitions are generally
comparable to those for single quantum transitions. This vibrationally
non’édiabéﬁcf‘ beha%rior‘ is a direct consequence of the severe distortion
of the diatomic that occurs in a collision on a reactive potential
surface, and makes H or D more efficient deactivators Qf HF or DF
than are nonreactive collision partners. Most conclusions are in
qualitative and even quantitative agreement with those of Wilkins' three

dimensional quasi-classical trajectory study on the same systems.
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1, INTRODUC TION
The success of the HF chemical laser depends to a large extent
on the relative rates of (a) the F + HZ pumping reaction which produces
vibrationally excited HF, and (b) deactivation of HF(v) by collisions
with Hz, F, H, buffer gas and HF itself. Although the deactivation of

HF by Hz,1 F2 and HF S

has been both experimentally and theoretically
well charaéterized with generally good agreement between experiment
and theory, the situation is far less satisfactory for H + FH and its
isotopic counterparts D + FD, H+ FD and D + FH. The three experi-
mental determinations of the H + FH (v = 1) deactivation rateza’4’ 5
give rate constants at 300 K of < (7 + 4)x 10" 4‘, =9x10° % ang
.4 £0.4)x 10u 5 cmg/mole sec, thus disagreeing with one another
by amounts well outside their respective error limits. Agreement
with the results of a theoretical (classical trajectory) calculation of

6 is no better with a predicted value of 2.2 x 10"

this rate constant
cm3/mole sec at SOO K. Similar experimental and theoretical com-
parisons of the rate constants for the deactivation of D+ FD(v = 1),
D+ FH(v=1) and H+ FD (v = 1) are alsc poor.5

There are two important approximations in the quasi-classical
method, either of which could be important in the above mentioned
disagreement between theoretical and experimental deactivation rates.
First, the electronic potential surfate could be in error, either
because of nonadiabatic effects or because of an inaccurate determina-
tion of that surface. Second, the use of classical rather than guantum

mechanics could be a poor approximation. In the trajectory studies

of hoth Wilkins@ rsmd"]i‘hxompsonhZ on H + FH and its isotopic counter-
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parts, the potential surfaces used were of the LEPS type and were

optimized for oﬁly F+ H2 configurations. The use of these same
surfaces for H + FH configurations is certainly questionab1e8 although

this same procedure has been quite successful for F + HF. 20,9,10

Recently, Bender M.ll has shown that the barrier to reaction in
H + FH can be very seriously in error if this procedure is used

(1.4 kcal/mole for Wilkins LEPS surfac:e6 versus 49.0 kcal/mole for
Bender's ab initio CI resultll) . The Bender result seems to be too
high to explain the experimental rate constants adequately, 5 but it
certainly indicates that the LEPS surfaces are probably not too
accurate. The approximation of classical dynamics has been analyzed

in detail for the F + H2 12

and F + D, 13 Leactions and its most
important consequences for reactive collisions were found to be
(a) an inadequate description of resonances, (b) neglect of tunnelling
and (c) dynamical threshold effects. In considering vibrational
deactivation processes, we must also examine the validity of the
quasi-classical prediction6 that multiguantum jump transitions are
extremely important in deactivating collisions (both nonreactive and
reactive) for H + FH. If true, it could be important, for it would mean
that H atoms can be very efficient deactivators of HF. In addition, much
of the theoretical analysis is predicated on the assumption of the
dominance of single quantum jump transitions. 7

In this papér, we examine the dynamics of reactive and non-
reactive H + FH and its isotopic counterparts using accurate quantum

mechanical methods. In all calculations, we restrict our considerations

to collinear collisions, an approximation which renders the quantum
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mechanical problem tractable while still retaining many of the

14,15

important dynami'éal features. The specific systems we will

investigate are:

H+FH(v=0-3)—HF(v'=0-2)+H

R.1)
— H+FH(v' =0-2)
D+FD{(v=0-1)—-DF(v'=0)+D
(R.2)
— D+ FD (v' =0)
D+FH(v=0,1) > DF(v'=0)+H _
(R.3)
— D+ FH (v' =0)
H+FD(v=0,1)-HF (v'=0)+ H
(R.4)

— H+ FD (v' =0)

Reactions R. 3 and R. 4 are actually considered in the same calculation,
since transitions between all possible open states of both reagents and
products are determined simultaneously. In all the above reactions,
the linear collision complex has the F atom between the hydrogens

or deuteriums. The actual three dimensional collision includes other
configurations, such as H + HF where the F atom is on one end of the

3-atom system. We will show that nonreactive collisions such as
H+HF(v=1— H+ HF (v' =0) (R.5)

are unimportant in comparison to R.1 above, and that R.1 is more
representative of the actual 3D situation.

The purpose of these collinear calculations was to examine the
nature of deactivation processes on a chemically reactive surface. We

will examine the significance of the multiquantum jump transitions
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mentioned above, and we will analyze the relative importance of

reactive and nonreactive mechanisms of collisional deactivation
(Section 3). The validity of the potential surface (described in Section
2) will not be examined, although the influence of that surface on the
collision dynamics will. A summary of the conclusions of this paper

is presented in Section 4.

2. THE CALCULATION

A close coupling propagation technique16 was used to solve the
Schridinger equation for the collinear reactive and nonreactive

colIisions; This method has been previously applied to H + Hz, 17

12,18 and F + Dq, 13 and is more thoroughly described in Ref. 12.

F+Hy
Bétween 10 and 12 channels were included in the vibrational basis sets
with 1 to 4 open and the rest closed. Convergence of the transition
probabilities with respect to the addition of closed channels was
tested, and this, together with tests of flux conservation and micro-
scopic reversibility indicate that the results presented are accurate
to 1% or better. The potential surface used was Muckerman's Surface

R 19,20 the LEPS parameters of which are given in Ref. 12.21

5
Fig. 1 depicts equipotential contours of this surface. The barrier
height is 1.23 keal/mole (0.054 eV) which is quite similar to that of
Wilkins (1.4 kcal/moleG). No wells or hollows are apparent in the
surface. | The vibrational energy levels (including zero point energy)
of HF are 5.8, 17.1, 27.8 and 38.1 kcal/mole for v =0, 1, 2 and 3,
respectively. For DF, they are 4.2, 12.5, 20.5 and 28.1 kcal/mole

for these same levels.

The primary results of the calculation are the transition .
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probabilities (which are analogous to the 3D cross sections) and the
one dimensional thermal rate constants. These results cannot be
directly compared with those of 3D calculations or with experiment
without additional assumptions such as the assignment of an impact
parameter dependence to the reaction probability. 15 Alterhatively,
ratios of rate constants can be compared. This is a dangerdus
procedure if no allowance for rotational states is made (as is done
in Ref. 22}, for example) but often gives qualitatively useful compari-

sons as will be apparent in Section 3.2.

3. RESULTS

3,1 Transition Probabilities

We denote the transition probability from vibrational state v
of the reagent to state v' of the product by the symbol P S— If the
collision is reactive, we use the superscript R (i.e. Pvfé‘) and if
nonreactive, the superscript V (PVVY . To identify the different
reactions R.1 - R.4 above, we specify the reagents in parenthesis
after the transition probability. Thus, Pl% (H + FD) means the
reaction probability for H+ FD (v = 1) — HF (v' =0) + D while
Plg (H + FD) implies the nonreactive probability for H+ FD (v = 1) —
H+ FD (v' = 0).

We first consider the ground vibrational state reaction proba-
bilities Py (H + FH), Pga (D + FD) and B3 (D + FH). These are
plotted in Fig. 2 as a function of the reagent reiative translational
energy E,. (More generally, we let EV be the translational energy
relative to vibrational state v of the reagent Mdiatomic molecule.)

PO% (H + FD) can be obtained from POR0 (D + FH) by shifting the latter
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curve in Fig. 2 upwards in energy by 0.069 eV (which is the difference
between the HF and DF zero point energies). The PO% curves are
quite similar in shape to the analogous reaction probability PORO (H + H2)

23,24 At low energies

which has been analyzed previously in detail.
(E; < 0.05 eV) the reaction probabilities are small. This is the
expected behavior when barrier tunnelling (in an adiabatic sense)n is
occurring. The PORd curves then show a sudden rise to nearly unit |
probability. The energies at which P(}% equals 0.01 are E;, =0.04 eV
for H+ FH, 0.050 eV for D+ FD, 0.030 eV for D+ FH and 0.099 eV
for H+ FD. These effective threshold energies may be explained
by examinihg the vibrationally adiabatic barriers as was done for -
F + Hy and F + D, in Refs. 12 and 13, and for the isotopically related
series H+ H,, D+ Hé, H+ D, and D + D, in Ref. 25 At higher
energies, the PO% curves show sudden dips due to internal excitation
resonances. 17 These resonances are at 0.412’ eV for H+ FH,
0.302 eV for D+ FDand D + FH and 0.371 eV for H + FD. We shall
present a more complete analysis of the H + FH resonance in a
separate paperazs The effect of the resonances on thermal rate
constants is small so we shall not be concerned with them here.

The vibrationally inelastic transition probabilities Pllg and

PIX for H + FH are presented in Fig. 3. E, in that figure is the

translational energy relative to v = 1 of HF. We see that both Pl%

A"
and PIG

have very small effective threshold energies (< 0.01 eV).
Above threshold, the reactive probability is significantly Iarger than
the nonreactive one over much of the energy range scanned. Only in

the vicinity of resonances (at E; ~9.3 eV, 0.9 eV and 1.2 eV) do the
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two curves cross. In regions where the two curves are smooth

(where the direct processes dominate) P1R0 is usually 5 to 10 times
larger than Plg, This indicates that reactive collisions are more
important than nonreactive ones in producing vibrational deactivation
in H+ FH (v = 1) collisions. The same conclusion is usually also
true for H+ FH (v =2, 3), as is shown in Figs. 4 - 8. In Fig. 4 we
plot Py3 and P,y while Pyx and P, are depicted in Fig. 5. In both
figures, there is essentially zero effective threshold energy for the
deactivation processes. Above threshold, we find that Pz%'is 2 to 20
times larger than Poy. Pyj is also significantly larger than Py,

but only for the important range of energies below E, =0.15eV. If
the probabilities in Figs. 4 and 5 are compared, we finc‘i that the 2 — 0
and 2 — 1 transition probabilities are generally comparable in magni-
tude. This contrasts with the dominance of the v' = v - 1 probability
which is often obtained (or assumed) in purely nonreactive sy‘si:ems.zrz

As might be expected, the relative strength of the individual PV‘X or

R
vv'

and nature of the interaction potential. For many nonreactive systems,

P__, for fixed v and varying v' is usually dependent on the strength

the interaction potential is weak so that all inelastic transition proba-.
bilities are small with the v' = v - 1 being the largest (similar to
trangsitions in a perturbed harmonic oscillator). For a reactive surface
such as exists for H+ FH (Fig‘ 1), severe distortion of the re’é.gent
diatomic can occur during the collision so that all inelastic transition
probabilities become comparable (and large as well). In Figs. 6 - 9
we plot the inelastic transition probabilifies from v = 3 of HF. Again

we see the dominance of the reactive over the nonreactive probabilities
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(for the same v — v' process). In addition, the probabilities for
multiquantum jump transitions are coinparable to (or larger than)
those for single jump transitions. Both the preceding conclusions
are in agreement with the analogous 3D results of Wilkins. 6

In Ref. 12, the collinear H + HF probabilities analogoﬁ-s to
those for H+ FH in Figs. 2 - 8 were calculated. Over the range of
E, from 0.0 to 0.4 eV (important for thermal rate constants) we find
that P,} (H+ HF) =< 107 P}, (H + FH) so that the deactivation proba-
bilities are strongly dependent on the orientation of H with respect to
HF during a collision. Similar conclusions are valid for the inelastic
probabilities from v =2 and 3 of HF as well. Also of interest is the
fact that for H + HF collisions, PZX{ is usﬁally over 1,000 times larger
than P,7, and P,Y ~ 100 P,V ~ 10" PV

20° 32 31~ 30°
of the v' =v - 1 transition probabilities for H + HF, in contrast to

This indicates the dominance

the behavior of the same probabilities for H+ FH. Such behavior is
most easily understood by examining the potential energy surfaces
involved. The H + HF surface (see Ref. 12) has a largely repulsive
nonreactivé 'appearance. (The reactive channel is closed for E, (HF)
= 1.4 eV.) This implies that the HF is not significantly stretched or
compressed in linear H + HF collisions whereas it clearly will be
significantly stretched in H + FH (Fig. 1), thus explaining the different
behavior of the two sets of transition probabilities. Finally we should
remark that the behavior to be expected in three dimensional collisions
ldepends oh the orientation dependence of the interaction potential.

For most orientations of H with respect to HF, we find potentials

similar to the H + FH one in Fig. 1.28 Only a small range of orienta~
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tions gives a potential similar to the H + HF linear potential thus
indicating that the H + FH system should be representative of the
majority of collisions. That this conclusion is correct is evident
from the qualitative agreement between our 1D and Wilkins' 3D
results mentioned at the end of the previous paragraph. |

We now consider the v =1 to v' = 0 inelastic probabiliﬁes for
D+ FD, D+ FHand H+ FD. These are shown in Figs. 9 and 10.
In Fig. 10 we have plotted the D + FH and H + FD results on an absolute
energy scale so as to show the important relationships of the proba-
bilities to one another. Both Figs. 9 and 10 indicate that the reactive
probabilities dominate over the nonreactive ones for analogous transi-
tions. However, at low collision energies, Pi‘g (H + FD) is only
slightly smaller than Pl% (H + FD) so the corresponding rate constants
should be quite similar in magnitude. This will be examined in the

next section.

3.2 Rate Constants

The one dimensional thermal rate constants kvv' are obtained-
from the appropriate Boltzman average of reagent velocity times
transition probability. As shown in Ref. 12, we can write this
relationship as

wEV/kT

kvvf(T) = (ZﬂukT)"% fO va'(Ev) e dEv (3.1)

- where p is the relative motion reduced mass and k has units of
cm/(molec X sec). Note that while a Boltzman velocity distribution
has been assumed, a Boltzman distribution of vibrational states has not,

for we are interested in reagents initially in a single vibrational state v.
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Using the above expression, rate constants for all of the transitions

- considered in Figs. 2 - 10 have been calculated. The resulting
Arrhenius type plots are given in Figs. 11 - 16 and we shall now
examine these plots individually. ‘

Fig. 11 depicts the vibrationally elastic rate constants kO% |
for H+ FH, D+ FD, H+ ¥FD and D + FH. The curves are all reasoﬁably
linear with activation energies of 1.8, 1.8, 3.1 and 1.5 kecal/mole
at 300 K for H+ FH, D+ FD, H+ FD and D + FH, respectively; and
2.5, 2.2, 3.6 and 2.0 kcal/mole at 1,100 K for these same reactions.
These activation energies are all somewhat higher than the effective
threshold energies (Section 3.1). This probably occurs because the
latter energies are so low that the peaks in POIS X exp(«Ev/kT') (and
hence the dominant contributions to the integral in Eq. 3.1) occur for
E\V well above the effective thresholds.

Figs. 12 and 13 depict the H + FH rate constants k;5, kY,

R V . R V . R V R V R v

curves in these two figures are nonlinear. This results from the

fact that the é:orresponding transition. probabilitie‘s' have essentially zero
threshold energies and often oscillatory behavior zibove.thresholde As the
temperature changes, the largest contributions to the integral in

Eq. 3.1 come from gradually changing energies and this results in the
changing of the slopes in the Arrhenius plots. To examine the degree

of dominance of reactive over nonreactive deactivation mechanisms,

4y at 300 K. We find that

Ryg = 8.3, Rog =10.4, Ryq =7.1, Rgp = 5.3, Rgq =2.83 and Rgg =

‘ ) . . R
let us consider the ratio vav = kvvr /&

1.89. This implies that the reactive and nonreactive rate constants
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approach each other as v approaches v'. The total inelastic rate

constants k}é and kX, obtained by summing kvx]r%

v' = v are plotted in Fig. 14. Here, the ratio R = kls /k.X has the

Vv
and kvv' over all

value 8.3 for v = 1“, 8.5for v=2and3.5for v=3so0 there is no
systematic variation of Rv with increasing v. The total deaétivation
rate constant k _ k? + k“: is plotted in Fig. 15, The k V's ail have
similar temperature dependence with differences in magnitude pri-
marily determined by differences in the total inelastic transition
probabilities (obtained by summing the probabilities in Figs. 3,
4 - 5and 6 - 8). The ratio kz/k1 has the value 2.1 at 300 K while
ks/ky =0.94 at the same temperaﬁzre. In his classical trajectory
study, 6 Wilkins found kz/k1 =~ 3.9, and k3/k2 =~ 1.8 so his numbers
(using a different potential surface) are somewhat higher than ours.
In Fig. 16 we plot the rate constants k3 and k;} for H+ FH,
D+ FD, H+ FDand D+ FH. If we calculate the ratio Ry, = k5 /k10;
at 300 Kwe get 8.3 for H+ FHand D+ FD, 1.4 for H+ FD and 12.0
for D+ FH. The low value for H + FD is clearly a consequence of the
great similarity of P{ (H + FD) and P (H + FD) in Fig. 10. The
corresponding ratio RIG calculated from Wilkins' results (see Ref. 5)
are 3.2 for H+ FH, 9.0 for D + ¥D, 1.3 for H+ FD and 9.0 for
D + HF. These numbers are in reasonable agreement with ours

indicating that the isotopic dependence of the deactivation processes

is correctly described classically.
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4. SUMMARY )

We nowrsummarize the important results of this paper. First,
for all transition probabilities and rate constants, the reactive
mechanism dominates over the nonreactive one . in producing vibra-
tional excitation. This result is apparently of general validity over a
wide range of impact parameters since the same conclusions (even
the same ratios of rate constants) were obtained by Wilkins in his 3D
classical calculations. Second, multiguantum jump transition proba-
bilities are comparable in magnitude to single quantum jump transi-
tion probabilities. This is clearly a consequence of the use of a
reactive potential energy surface since the analogous H + HF results
(for a surface which ié nonreactive at the energies considered)
indicate that single quantum jump transition probabilities are orders
of magnitude larger than all others.

We should add that none of our results for H+ FHor D+ FD
explicitly include for the effects of indistinguishability of particles.
Such considerations are really meaningless for collinear collisions
since the parficles are actually spatially disi:inguishable29 whereas
in 2D and 3D they are not. For D + FH and H + FD, the reactive and
nonreactive collisions may be experimentally distinguished and the
measurement of kf; and kl‘(; (or their ratio) for these reactions would
provide a sensitive test of the nature of the potential surface.

| Finally we should again state that the potential surface used in
this study is of questionable validity. Nevertheless, even if it is
seriously in error for H + FH, there are a large number of similar

chemically reactive systems which could be important in vibrational
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deactivation to which the surface used might be applicable. The

present results should be a useful guide to understanding them.



120

*Research supported in'part by the United States Air Force Office of
Scientific Research.

TWork performed in partial fulfillment of the requirements for the
Ph.D. in Chemistry at the California Institute of Technology.
iContribution No.

lJn F. Hancock and W. H. Green, J. Chem. Phys. 56, 2474 (1972);
ibid., 57, 4515 (1972).

2(a) G. P. Quigley and G. J. Wolga,Chem. Phys. Lett. ﬁ, 276
(1974); (b) R. L. Wilkins, J. Chem. Phys. 59, 698 (1973).

J. F. Bott, J. Chem. Phys. ﬂ, 3414 (1974).

M. A. Kwok and R. L.Wilkins, J. Chem. Phys. QQ, 2189 (1974).

R. F. Heidner and J. F. Bott, Report SAMSO-TR-75-80, The

3
4
5

Aerospace Corporation, El Segundo, CA, March 1975.

R. L. Wilkins, J. Chem. Phys. 58, 3038 (1973).

D. L. Thompson, J. Chem. Phys. 56, 3570 (1972).

C. A. Parr and D. G. Truhlar, J. Phys. Chem. 75, 1844 (1971).

D. L. Thompson, J. Chem. Phys. 57, 4164 (1972).

105 . O'Neill, H. F. Schaefer and C. F. Bender, Proc. Nat'l.
Acad. Sci. USA Z};, 104 (1974).

H’C, F. Bender, B. J. Garrison and H. F. Schaefer, J. Chem. Phys.

62, 1188 (1975).

12G. C. Schatz, J. M. Bowman, and A. Kuppermann, J. Chem.

Phys., 63, 674 (1975).
13(}. C. Schatz, J. M. Bowman and A. Kuppermann, J. Chem. Phys.,

63, 685 (1975).



121

14
15

G. C. Schatz and ‘A. Kuppermann, Phys. Rev. Lett., submitted.
G. C. Schatz and A. Kuppermann, J. Chem. Phys., in preparation.

16(a) A. Kuppermann, Potential Energy Surfaces in Chemistry,

Ed. W. A. Lester (University of California at Santa Cruz, August,
1970), p. 121-»129; (b) Abstracts of papers, VII International
Conference on the Physics of Electronic and Atomic Collisions,
Amsterdam, 1971.
17& C. Schatz and A. Kuppermann, J. Chem. Phys. 59, 964 (1973).
18(}., C. Schatz, J. M. Bowman, and A. Kuppermann, J. Chem. Phys}
58, 4023 (1973).
%) 5. T. Muckerman, J. Chem. Phys. 54, 1155 (1971); (b) ibid. ,

56, 2997 (1972).
20

21

J. T. Muckerman, private communication.

The value of Be(HF) used in these calculations was 2.2087 A~
(not 2.2187 A" as was used in Ref. 12).

ZZCL Rebick, R. D. Levine and R. B. Bernstein, J. Chem. Phys. 60,
49717 (1974) ; R. B. Bernstein and R, D. Levine, preprint.

23
24
25

D. G. Truhlar and A. Kuppermann, J. Chem. Phys. 56, 2232 (1972).
D. J. Diestler, J. Chem. Phys. 54, 4547 (1971).

D. G. Truhlar, A. Kuppermann and J. T. Adams, J. Chem. Phys.
59, 395 (1973). | |

26G. C. Schatz, Ph.D. thesis, California Institute of Technology,

(unpublished), 1975.

27 . . . . N
For a review of nonreactive vibrational deactivation processes, see

D. Rapp and T. Kassal, Chem. Rev. 69, 61 (196&5)*



122

28
29

G. C. Schatz and A. Kuppermann, unpublished results.
This is true because the two hydrogens in H + FH cannot exchange

with one another as long as the atoms are constrained to be collinear.



123
FIG. 1. Equipotential contours for the collinear H + FH surface as

a functibn of the two HF diatomic internuclear distances THF and

THF" i

FIG. 2. Reaction probability PO% for H + FH (solid curve and circles),
D + FD (dashed curve and squares) and D + FH (dash-dotted curve and

triangles) as a function of the reagent relative translational energy

E, appropriate for each collision system.

FIG. 3. Transition probabilities Pl}é (circles) and Pl\g (squares) for
H + FH as a function of the reagent relative translational energy E,.
Arrows in abscissa indicate the energies at which v =2 and v =3 of

HF open (E, - 0.466 eV and E, =0.908 eV, respectively).

FIG. 4. Transition probabilities Pz% (circles) and P,;)(squares)
for H + FH as a function of the reagent relative translational energy E,.

Arrow at E, = 0.444 eV indicates the energy at which v = 3 of HF opens.

FIG. 5. Transition probabilities szjf (circles) and PQ’Z (squares) for
H + FH analogous to Fig. 4.

FIG. 6. Transition probabilities ngé (circles) and Psg (squares) for

H + FH as a function of the reagent relative translational energy E,.

FIG. 7. Transition probabilities Pﬁ (circles) and P:-X (squares) for
H + FH analogous to Fig. 6.

FIG. 8. Transition probabilities ngz‘é (circles) and P;lf (squares) for
H + FH analogous to Fig. 6.
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FIG. 9. Transition probabilities P|3 (circles) and P,V (squares)
for D + FD as a function of E,. Arrow at E; =0.345 eV indicates the

energy at which v = 2 of DF opens.

FIG. 10. Transition probabilities Pjs (H + FD) (circles), 14

(H + FD) (triangles), Pl% (D + FH) (squares) and Plg (‘D + FH)
(triangles and dashed curve) as a function of E; (H + FD) (lower scale)
and E, (D + FH) (upper scale). The vv: 1 state of HF opens at E,

(H+ FD) =0.199 eV so the H + FD and D + FH scales have been

displaced by that amount.

FIG. 11. Arrhenius plot of the rate constants kglg for H + FH (solid),
D + FD (long dashed), D + FH (short dashes) and H + FD (dash-dotted).

FIG. 12. Arrhenius plot of the rate constants kllg, klg (solid curves),
Kyos Koy (dashed) and ky3, ko) (dash-dotted).

FIG. 13. Arrhenius plot of the rate constants k3fé, ks‘()r (solid curves),
kg3, k) (dashed), and kg5, Ky (dash-dotted).

FIG. 14. Arrhenius plot of the total inelastic rate constants kR, kY

(solid curves), kY, kY (dashed) and kX, kY (dash-dotted).
5> Ko 3

FIG. 15. Arrhenius plot of the total inelastic rate constant s k1 (solid‘j{

curve), kKo (dash-dotted), and kq (dashed).

FIG. 16. Arrhenius plot of the rate constants kllg and klg for H+ FH

(solid curves), D + FD (long dashes), D + FH (short dashes) and
H + FD (dash-dotted).
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4. QUANTUM MECHANICAL REACTIVE SCATTERING: THEORY
FOR PLANAR ATOM PLUS DIATOM SYSTEMS
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Quantum mechanical reactive scattering: Theory for
N N NN NI NSNS NS NN LNT SN NS AN NS OIS Nk N NN N N N NSNS N NSNS N NSNS N NS NSNS NSNS NSt NSNS,
planar atom plus diatom szstems*

by A. KUPPERMANN, G. C. SCHATZT and M. BAER}

Arthur A. Noyes Laboratory of Chemical Physics$

California Institute of Technology, 'Pésaden’a, California 91125
(Received : )

A method is presented for accurately solving the

- Schrodinger equation for the reactive collision of an atom

- with a diatomic molecule on a space fixed plane. The

~ procedure consists prixﬁarﬂy of two sequential steps.
First, the Schrodinger equation in each ol the ihree
arrangement channel regions is transformed into a

set of coupled differential equations and numerically
integrated in each of these regions to gene'rate} primitive
solutions. ‘The rotational part of the vibration rotation
basis functions involved is not changed from its asymptotic
form during this propagation, but the vibrational eigen-
functions as well as the integration variable are changed
periodically so as to follow the vibrational motions in a
nearly adiabatic manner. Inthe second step, the primitive
solutions generated in each of the fhree arrangement
channels are smoothiy matched to each other on a set of

appropriately chosen matching surfaces. The resulting
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solutions are then linearly combined to satisfy the proper

~ asymptotic boundary conditions, and the scattering matrix,A

scattering amplitudes and cross sections are determined.
Application of this procedure to the special case of the

H + H, reaction is discussed in detail including simplifi-

cations arising from the additional syinmetries’ involved,

and the inclusion of effects resulting ffom indistinguishability

of identical particles.



144

1. INTRODUCTION

In recent years, much interest hés developed in the ab initio
calculation of bimolecular reaction cross sections on realistic
potential energy surfaces by accurate quantum mechanical techniques.
The motivation for such calculations has been to intérpret the.resuits

of crossed molecular beam experiments, to understand the effect of
the relative translational energy of the reactants and of their internal
state on such cross sections and on the disposal of energy among the
reaction products, to elucidate the role of direct and compound state
dynamicé,l mechanisms, to test the range and degree of validity of
~ approximate reaction models (such as the adiabatic and statistical
ones), to develop new physical models of known reliability, to examine
the correctness of the dynamical assumptions of transition state
theory, to establish thé conditions of applicability of the quasi-
classical trajectory calculations and of semi-c1a§sical imprdvemen’cs
thereof and last, but not least, to make detailed qualitative and
quantitative predictions from first principles about i'eactions difficult
to investigate expermlen;callye

Due in part to the lack of appropriéte numerical techniques and

to limitations of the memory size and computatibnal speed and cost of
presenfnday large é‘ompz:ztersS most of these quantum calculations so
far have been performed for collinear atom-diatom reactions [LIS] .
In recent years, several attempts have been made to do calculations
for non-linear triatomic systems. Saxon and Light [14] and Alten-

berger-Siczek and Light [ 15] have investigated the coplanar H + H,
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eyxcl.lange reaction by a close-coupling technique which excluded closed
vibrational channels. WolkenandKarplus {16] have made a study of this
same reaction in three dimensions, also ignoring closed vibrational
channels. Wyatt and coworkefs [17] have developed techniques which
include cloSed vibrations in calculations on one and two reaction path
atom plus diatom reactions, and Elkowitz and Wyatt [17a] have applied
these methods to the three-dimensional H + H, reaction. Baer and
Kouri [18] have done fully converged calculations in three dimensions
on a model {(one reaction path) triatomic system in which one of the
atoms was assumed infinitely heavy and in which the simple potential
used allowed a partially analytic treatment.

In an earlier communication [19] we presente'd preliminary
results of the first fully converged quantum mechanical calculation for
a coplanar reaction on a realistic electronically adiabatic potential
energy surface, that for H + H,. These resulis indicated that the
guantitative differences between calculatioﬂs in which closed vibi*ations
are included and those for which they are not can be quite serious.
In this paper, we will present a detailed description of the method
used to perform such calculations. We will formulate the method for
a general atom plus diatomic molecule collision on a single reactive '
pateniial energy surface using H + H, as a specific example. A
detailed description of the results of our extensive calculations on
coplanar H + H, will be given elsewhere [20].

The method is based on an earlier close-coupling propagation

technique [5] which has been extensively applied to the collinear H + ¥,
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and F + H, reactions [10]. The spirit of the collinear method is to
choose different variables and diffefent pseudo vibrational basis
functions for expansion of the solutions of the Schrodinger equation
in different local regions of the (eollinear) configuration space so as
to minimize the number of terms needed for aécurate convergence
of the expansions. This concept is retained for the vibrational motion
in our application of the method to coplanar éollisioxlst ‘However, the
variables and basis functions describing rotational motion are not
changed (and hence retain their asymptotic meanings) during the
integration into the interaction region from each of the three separated
arrangement channel reglons of internal conflouratmn space. As a
result, an additional step is required at the completion of the inte-
| gration in which the primitive solutions in each of the three arrange-Q
ment channel regions are smoothly matched to each other on a set of
three appropriately chosezﬁ surfaces which separate these three regions
[21]. The restriction that the three atoms should be confined
to a space-fixed plane was introduced for computatibnal conveniencer
to test out the effectiveness of the method without excessive expendi-
ture of compution time. Extension to reactions in three-dimensional
space is reasonably straightforward and has recen‘cly been unplemented
by Kuppermann and Schatz [22] for 3-D H + H, .ih the first fully con~ -
: verged quantum mechanical treatment of a chemical reacfgion‘dn a -

. realistic potential energy surface.

In Section 2 of this paper we formulate the Schrodinger equation

for the problem and describe the partialv wave expansion used to obtain
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the partial differential equations in internal configuration coordinates
which must be solved, The method used to integrate these equations
in the different regions of configuration space is described in |
Section 3, and in Section 4 we describe how we smoothly match the ‘
solutions obtained from these integrations. The asymptotic analysis
is developed in Section 5 including the methods of calculating the
reactance and scattering matrices, the scattering amplitudes and‘thé
cross sections. Fmally, in Section 6 we describe the sunphflcatmqs
and changes mvolved in anwapphcatmn of the method to the H + H,
exchange reaction due to the identicity of the three a.toms including a
discussion of the technique of anti—symmetrizing the scattering wave

- function (post antisymmetrization).

2. FORMULATION OF THE PROBLEM

2.1. General considerations

We are interested in calculating cross sections for the exchange
reaction A + BC in which the threé atoms A, B z;nd C are conf‘ined to
remain on a space fixed plane. We assume that the Born-Oppenheimer
. separation approximation between the electron and nuclear motions is
valid and that the resulting grqund electronic state potential energy
 surface V is known. We further assume that all higher potential
energy functions are sufficiently greater than the total energy E of
the system everywhere in configuration space for us to be able to
neglect their influence. This "single potential energy surface' model
is applicable to a high degree of accuracy to niany triatonic reactions.

We alsc assume that E is sufficiently low for the existence and effect
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of break-up collisions of the type A + BC—~ A + B + Cto be negligible.
‘Finally we assume thatthe interactions between the nuclear spin and
nuclear orbital angular momenta are negligible.

Let ry, rp 2nd r be the position vectors of nuclei A, B and C,
respectively, with respect to their center of mass. We wish to obtain
a solution to the time independent Schrﬁding:er equation for the motion
of the nuclei which satisfies the following three cvonditions;

(@) In configuration space Ip, Ips Lo itis eVerywhere single
’ valued and continuous and has gradients which are everywhere
continuous (except at points where two of the three atoms coincide).

(b) It is antisymmetric (symmetric) with respect to exchange of |
~ the space and spin coordinates of any two identical nuclei of half odd-
integral (integrai) nuciear spin.. 7

(c) It satisfies the asymptotic conditions describing the collision
phenomenon under consideration, i.e., the collision of A and BC with
‘a given rellative kinetic energy and a given initiial internal quantum
state of BC, to produce receding product A + BC, AB + C, or AC + B
. m all possible internal states of the diatom compatible with the total
energy of the system. |

If we can find a sufficient number of independent solutions
satisfying condition (a), it is possible to ‘obtain linear combinations
of them which, in addition, satisfy conditions (b) (by post-anti-
symmetrization methods [23]) and (¢) (by reactance or écatteri,ng

matrix analysis technignes [24]).
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2.2. The Schrédingel: equation

Let E o be the position vector of A with respect to the center
of mass of BC and fa the posi{ion vector of C with respect to B,
as indicated in Fig. 1, As R o~ ® Wwith 'fa finite, we denote the
corresponding configuratiém as arrangement channel a = (A, BC).
Let (T o0 a) and (ﬁ ar X oz) be respectively the planar polar
coordinates of fa and R ~with respect to a fixed system of
reference attached to the plane (all angles being measured from the
x axis of Fig. 1). The reduced mass associated to the motion of B
with respect to C is denoted pg,, and that associated to atom A
- with respect to molecule BC is p o, By We define analogous

—

vectors T,. R, and ?‘Y”’” ﬁy {(Fig. 1) and associated coordinates
and reduced masses so that as Rﬁ — o QOr R’)’ — o with ?B or ¥

finite, we obtain the arrangement channels B = (B,CA) and !
y = (C,AB), respectively. Note that ihe directions of vectors in
Fig. 1 are defined in a cyclic manner in the indices afy.

Finally, let xwk represent any one of the three possible cyclic
-permutations afy, Byoe and ydﬁa

In the system of coordinates characterized by index

X (=a, Bor v}, the Schrédinger eguation describing the internal

" motion of the three particle system is



2 N 2
- (’Rl a‘i‘z R”é% ’ ’}’212 a\a«zJ
x Oy r . By @xy
v VA (T Ey%:@}\xfx(?’éa X.) = 0 2.1)
AT AT B :

where V* is the potential energy function of the system expressed
in A coordinates and E its total enerQy. Yy is by definition the
angle in the range -7/2 = Yy = 3r/2 equal to N ~‘X}\ modulo 27,
and is related to the angle between E)\ énd EA [25]. In the absence
of external fields, the potential function depends only on the internal

variables R,, r and satisfies the relation V*([R,,T,,7,) =

2
VMR, T, 21 - 7, ).
Let us now introduce a set of coordinates used previously by
Delves [26] and by Jepsen and Hirs chielder [2’2] . Theyhave the advantage
of leading to an equation containing an efiective ﬁass in&ependent of

the arrangement channel A, which simplifies many of the equations

- presented below. These coordinates are:

[ S (5§ '

r, =a I, (2.2a)

R, =3 R, (2.2b)
where a, is a dimensionless scaling constant defined by

A



151

W [t

A\ (“A,wc /by 0) 2.3)

Substitution into Eq. 2.1 leads to:

2 2 ' - 2 -
{"fzﬁ“[l T ; o7 * 1 a; Rha; +R12 882}
pATy Ory A0 3y 90y Ry ORy S SR

+ Vx(r } ‘Im(r?x’RX’eh’Xh) =0 - | (2“4)

;\9 ) -

where the circular polar angles of ’137\, I, are the same as those of

;3 A‘ and p is the effective mass alluded to above and defined by
. L 1
po= oy, u}tjv,{) (m mﬁm,y/M)Z_ (2.5)
: 'Wherve

M= m, M,
Lng ¥

b

is the total mass of the system and m, mﬁ and my are the masses
of atoms A, B and C respectively. We now change from the angular
variables 8,, X, to 7, X,, obtaining the following expression
~from Eq. 2.5: |

2

Cp w2 - .
{un[i o . 8 . 1 @ 1 8 p @

. 2- -
2p L Ty 9ry X9y 1‘; dyy, R, 2R, A OR,
I 2° } A |
+ - 2 + + V T Y,
R? <axg NN ay;} @y Byo7,)
ae E} \I{A(rksthyﬁx?k) = (. ‘ ‘ (Z., 6)

This is called the body-fixed Schriédinger equation because 7y is the
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angle of Iy with respect to R)\’ and Iy '1s attached to the triatom
instead of to the laboratory fixed x axis. ‘Similarly, R )‘A’ SN
are called the body—ﬁxed A coordinates. The independence of VA
on X in the above equation infroduces very convenievnt simplifications

as is shown in the next section.

2.3. Partial Wave Expansion

The total angular momentum J of the triatomic syStem (with
respect to its center of més.s) is a constant of the motion which
commutes with the Hamiltonian H. The solution of the Schrédinger

equation we are seeking, satisfying conditions (a), (b), and (c) above,

is nbt an eigenfunction of J [28] It is however convenient to perform the
coplanar analog of partial wave analysis by expanding ¥* in terms of
the simultaneous eigenfunctions \Irg of H and J.

| In the system of coordinates Ty RP\’ 0,5 Xy the operator :)1 is

given by
i1 0 .
1=[5(%), + & ) ] @.7)
~ i -_.‘axk 9}t | aeA
X = a,B,7 '

where % is the unit vector perpendicular to the fixed plane of motion

of the three particles. We reccgnize from Eq. 2.7 that J is the

algebraic sum of the rotational anérula,r momentum j v =}i1 (£—~)X Z
;1 A . A X
and the orbltal angular momentum E h ( 9 ), Z.
| Xy 9

Transformmo J to the angular variables XA’yA’ we get
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. B (_.?__) 5 N=a.By @.8)
~~ 1 aXh .),A

which may be physically interpreted as indicating that if »,_ is

A
maintained constant, a variation of the angular coordinate XA of BA
produces a rotation of the ‘entire triatomic system.

The orthonormal eigenfunctions of | J are given by [29]
g .
¢y (X,) = @m)7% expiJX, J=0,%1,£2, ... (2.9)

The simultaneous eigenfunctions of H with energy E and of J with

total angular momentum Jh are of the form

A,

QJ (rhﬂ R}l, ‘y}kixh) - GDJ‘ (XA’} th (r)l’ RA.’ '}'}\) (2‘10)
where -
{’ fi [ 1 3 2 .1 2® 1 @ d
R el B r + + = R
3 . 2 "y 2
2y r, ary A ar, re a,/h Rk IR, X 9R,
1, 2 a8 ] Ay
+ ﬁf ( J 2155’5{“ + a”fi yl + V (r}\,RA,'YA)
% o e
- E} gDJ (rK,RA,’V;&)} = 0. (2.11)
Any solution ¥ of the Schrb‘dinger equation, which is not
necessarily an eigenfunction of J can be written as
@ <I“X, R){?Y}Q& X}t) = j?«@@ a‘J \IIJ (r?t’ R}\} y)\} X)t) © ; (2‘12)

The constant coefficients a§ appmpriaté for the problem being
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considered will be determined by the a.symptotic conditions specified

in requirement (c) of Section 2.1 and will be discussed in Section
5.2, ‘ .
We now simplify Eq. 2.11 by defining 2 new function Fg by

2 R _L
FJ (rA’RA’YA) = (r;\R)\,) 2 Yy (r}\’R)x’yk)' (2.13)

Substituting this into Eq. 2.11, we obtain

{_‘_ﬁ_z_[»_z_}i%'aé +—1~——§i ~J7- 21 J-———-—-{‘——-—-)]

2 2 2 2 + 2 (
21 ar)t aR}\k xS ary Ry '}’ a7y
+ V' - E Ff; (rx, Rh,y)\) 0. (2.14)

This equation is solved numerically by the method described in

Sections 3 and 4.~

" 3. INTEGRATION OF THE SCHRODINGER EQUATION

-3.1. The partitioning of .configuration space into arrangement

" . channel regions -

- We now wish to expand IF;'L (r A,'y } in terms of sets of two
. variable internal state basis func‘cwns in order to reduce the partial
differential Eq. 2. 12 to a system of coﬁpled ordinary differential
equations. Qur choice for the internal state basis functions and the
corresponding variables will be different in different regiong of the

| thréé-dimensional internal cbnﬁguration space r ,R)\,')/)‘ and will
be largely determined by the local sh’ipc, of the potential energy

function VK(;&)‘? R VA)‘ This is done in order to represent solutions
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to the full Schrédinger equation in an efficient manner in all regions
of configuration space so as to reduce computation time as nmch as
possible. A useful conceptualization of the nature of the problem can
be gained by noting thé appearance of the potential energy function

\& (rA’RA’?A)’ This function is most conveniently displayed with the
aid of 2 mapping procedure previously developed for this purpose [30].

In this mapping we consider a space OX, Y,Z, in which a point P

has spherical polar coordinates ¢ » @557y where the radial variable ¢

is defined by
. .1 R .
- 2\5 ,
¢ = (PA+RA)Z : | (3,12,)

- and is independent of ) as shown in Eq. A.6 of Appendix A, and the

polar angle wh is defined by

i, . - ' ‘
w, = 2tan (rk/RA}_,,()sw}‘sw . (3.1b)

The azimuthal angle Yy has been defined after‘ Eq. 2.1, Using the
example of the H + H, reaction, the resulting contour plot of the
Porter Xarplus [31} puténtial forsix differexit‘ values-of % is depicted
in Fig. 2. This representation has the advantage of treéﬁng ail three
arrangement ch&nnels equivalently in that a chénge from coordinates
% to coordinates v 'produces a clockwise rotation without distortion
of Fig. 2 around the OY, axis by an angle of 120°[27]. We see from
the F{ikgure that the accéssible areas of configuration space are in the

form of three tube~like regions whose mutual intersection defines the

three particle interaction region. For less symmetric potentials
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Fig. 2 would be less symmetric, but the considerations below have

general validity.
Qur approach for solifing the Schrddinger equation consists of

dividing the configuration space depicted in Fig.' 2 into three sub-~

spaces called arrangement channel regions and labelled by the indices
‘A,V,k. Each of these three arrangement’c}_zannel regions includes

one of the three tubes correspondiﬁg toa separatéd atom plus diatom,
along with that part of the interaction region which retains the
“'general appearance' of that particular tube. For the H + H, system,
a very natural separation of the three arrangement channel regions is
obtained by the use of the three half planes 7., 7, and m,, whose
common edge is the Yh axis and which intersect the OX}LZ‘A plane in
the symmetrical positions depicted in Fig. 2a. A general definition

of these three half-planes which is also applicable to reactions other

than H + H, is

Y| S o
v (3.23)

= -’---E-$ '$£
r;& Ty 2 'y)& 2
vt L L ey <X (3.2b)
v~ K 2 v 9 ' <
T g T o<y < I (3. 2¢)
K~ T 9 'k 9 ‘

A proof that these equations do indeed define half-planes whose edge
is the Y, axis, as graphically indicated in Fig. 2a, is given in

- Appendix A along with the equations describing the ) to v coordinate
transformation. For some reactions, the half-planes defined above

may be inadequate as they may not separate the three arrangement
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channel regions into physically intuitivg ones as determined by the
shape of the potential functions. In these cases, alternative surfaces
may then be chosen and treated by a straightforward extension of the
theory presented in this paper. For the reactions H + H,, D +H,,
H +D,, etc., the half~planes of Egs. 3.1 are quite satisfactory, so
we shall proceed to formulate our théory using the arrangement
channel regions into which they divide internal configuration space.
With these arrangement channel regions thus defined, we
organize the work involved in solving Eq. 2.14 into two sequential
steps. First, within each of the three arrangement channel regions,
we integrate the Schrodinger equation using rotational coordinates and
basis functions appropriate to the asymptotic part of that afrangement
~ channel but changing vibrational coordinates and basis functions ina
Way which transtorms ''smoothly" from one arrangement channel to
another. Then, we match the resulting three-sets of solutions to one

another on the three hélf—planes s described above (and

vat Tuwr Tk
hereafter called the matching surfaces). Since the vibrational

coordinates are designed'to transform smoothly from one arrangement
channell to the others, it is primarily the rotational parts of the wave
functions which must be considered in the matching procedure. Qur
rotational expansion is Simil?,r toe that of Saxon and Light[14] butnot
to that of Wyatt and coworkers [1"2] who allow both their vibrational and
~ rotational coordinates to transform smoothly in going from one
arrangém ent channel to the nexﬂ

In the remainder of this section, we will detail the method used
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for integrating the Schrodinger equation in each of the arrangement

channel regions., The crucial smooth matching procedure is outlined

in Section 4.

3.2 The rotationally coupled Schridinger equations

We now consider thé solution of Eq. 2.14 in each of the thvfee
arrangement channel regions x = «,8,7v.

The body-fixed rotational arigu}.ar momentum operator ] N
assomared with I is defined as

i, = &2

3.3
i, xRt (_)

Yy Ny

A

and its eigenfunctions are

@,

iy (YA) = (fo) exp (}"IA 7. ) iy = 0,+1,+2, ., (3.4)

The expansion of FA , defined by Eq. 2.13, in terms of these

eigenfunctions is

FM R,y ?.,.um@}ge’\ (r, By (3.5)

) =
A
Y )
Substituting this into Eq. 2.14 and taking the sc:alar product of both
~ sides by fpj , we obtain the following set of coupled partial differential

equations in the two scaled distances Iy R)\:
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(3.6)

_E [ A Iy~ - (Jnjk)z—% }Gkv (r.,R,)
2p Lory © GRY ol TRE IR T
0
+3’: _ V]Z;j;k (rk’RA) G}j;\ (r R ) = E GJ, (r RA)
J,jk-:O,il,i—Z,..,
where

A y Adsr
V2 Ry = V)

gw/z

-

@f)Vh@f,R n’)w @ NEVY

3.7

) A o P . .
Since V (PA’RA’?A) =V (r)‘s,RA,Zr' yA), we can expand the potential

in terms of a cosine Fourier series

» oo
A D IR T
V@, R,,7,) = k%lé Vi (1, Ry) cos (57,)

where
X 2 . A
Vi Ry = @+o, Jr ({ cos (k7y) V2, By o) A7y,

Substzt*atmcr Eq. 3.8 into 3.7 and integrating, we find that

X - 1 A
V:;,\I’“ B = 373 Y5

(3. 82)

(3. 8b)

3. 9)
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Equation 3.9 shows that Vg‘ i’ depends on j;\ and j’A only through
lj>L - j; | . We can write Eq. 3.6 in a condensed matrix notation by
S

regarding Q}‘ (r;\, RA) as a column vector whose elements are the

A
GJjA(r)\’RA)v' We get.

™Gy Y G) =BG @-10)

where ’I‘?‘“ is the kinetic energy operator

Y i ( 8° 92 ) | |
™ = - 1 - o (3.11)
21 E)RA‘ 81‘;\

and the yj}e (rA’RA) is an effective potential energy matrix defined by
e (r,R,) = ¥ @, R) + ¥3° (xy,R,) (3.12)

Yf is the J-independent interaction potential matrix whose elements
are the VE‘ .» defined by Eq. 3.9 while y’fc is the diagonal centri-

fugal potential matrix defined by

o2

, | .
. 2 [§5-% @=§) -3
[ y° {rA,RA)}j " = n { A e — A 5 (3.13)

2!1 r)” _ R)x by

From Eqgs. 3.6 and 3.9 we conclude that the Gg\h for different jk are
coupled through the Vié (r}\,R;\) functions with k >0, Vg} representing

a non-coupling potential,
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3.8. The division of ¥, R, space into regions and the choice

S

of variables in each region

We now consider the expansion of the function G}jx (rA’RA) in
terms of a set of single-variable fun‘ctiors which describe a vibration-
like motion. To pick this vibration variable and the corresponding
| vibrational basis set it is convenient to examine the behavior of
Vg“ (rx,R}t)" since, as one can cénclude from the remark at the end of
- Section 3;2,, this function together with the centrifugal potential

%/ 2p) (ji - 1/4)/1“;" determines the rA~dépendence of G}j in the
absence of jk {i.e., rqtational) coupling. For the H + H, reaction,
equipotentials of Vg‘ (rk’Rh) are represented in Fig. 3, together with
| the corresponding line L of steepest ascenté and descents. Cuis of
Vok normal to L look Iﬂce diatomic internuclear potential energy
functions, displaying 2 minimum on L, a dissociation plateau in the
direction away from the coordinate axes émd a stéep rep{llsive' point in
the opposite direction. These characteri,étics are analogous to those
presented by collinear triatomic potential e‘nergy fvactions, and
suggest %ha;t we divide the Iy R;\ space in regions in a manner analo-
gous to that employed for collinear reactions [5,10}, using different
coordinates and/or vibration basisv functions in each region. The
corresponding vibration.coordinates will be a distance along the lines
which are more or less transverse to L. In each region, in addition
i’:o such vibration coordinétes, there will be a "propagation'’ coordinate
in terms of which Eq. 3.6 will be expressed as-a system of coupled

ordinary differential equations. For H + H, we indicate a convenient
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choice for these regions in Fig. 3. 'Ih‘ey.are denoted as: I - the
asymptotic region, II - the weak interaction region; III - the strong
interaction region, and IV - the matching region. The boundary points
P,, P, and P, in Fig. 3 are chosen as follows. The abscissa T *
of P, and P, is chosen so that these points lie in the classically
~ forbidden plateau area whére the wave function may be assumed to
vanish. The ordinate R’ of P is picked'large enoucrh so that the
potential VZ; (r R ) is 1ndependent of R for R R)\o Rko is
determined by the requirement that P, he on the line whose equation
is obtained from A.11 of Appendix A by settmg Yy =0, i.e.,

Ri\o = r%‘tan (on:)\/Z)' (3,1{})
P, (r;\ , R, ) élso lies high in the plateau region, on the line deitermiined

157 "y

from Eq. A.11 by setting 7y = /2, i.e.,

The reasons for the necessity of imposing Egs. 3. 14 and 3.15 on the
positions of PG and I, will be explained subsequently.

The coordinate systemé used in each of these four regioris are
as follows. In the a,symptotic region (I) and in the weak interaction
region (II), we use the Cartesian coordinates ry R as vibration and
propagation coordinates respectively. In the strong interaction region
(III) we switch to the polar coordinates N (as dep1cted in Fig. 4)
Wlth P, (r R)\ﬂ} as origin and related to ry R by
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ry=71r, -p, cOS ¢ (8.16a)

R,= R, -p, sin @ (3.16b)

N is the vibration and qo}t the propagation coordinate for this region.
In the matching region (IV), we use another set of polar coordinates
(€, Ti}t) which have their origin at Q ‘(Fig“ 4) and which are related to

Iy Rh by
= ¢ sin g, , | | (3.17a)
= § cos . | (3.17b)

¢ (=0)and gy (in range 0 to 7/2) are respectively the vibration and
propagavion variables for region IV. We note that the € defined here
is identical to that given by Eq. 3.1a while the angles w, and 7 5 are

related, as can be seen from Egs. 3.17 and 3.16, by

w, = 2, (3.18)

Once we know the. GJ; functions for a fixed N aud variable ¢,

Eq.3.5furnishes the Wa.vefunctmn FJ on a cone of constant Wy (= 277)\)

in the OX}‘YAZA coordinate system, as depicted in Fig. da.

We actually want to determine this wave function on the matching
surfaces Ty and Tk rather than on the W, = constant cones since
it is on these surfaces thai we will smoothly match the solutions

obtained from the integration of the Schridinger equation in the three
arrangement channels ) = «,8,¥. However, f or a given Wy (within

a certain range) we do have the wave functions on the lines of inter-
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section of the constant w, cone with the half-planes T,y and 7, (See

Fig. 5a). The relation between w, and v, at the lines of inter-

A

section with T is given by Eq A.14 of Appendlx A, As wk is

scanned from on = ano to wk1 = 2';7M (Figs. 3 and 5), these

intersection lines scan the entire z ™ matching half-plane and thus we

can obta.m the desired wave function FEI" on it from a knowledge of the

GJ (Csﬂﬁ for Ty in the range "M to Ty, The angles} w}\O and w}\l

Iy
correspond to the intersection of Tys, with the 7’?\ =0 and 'yA = 7/2

 half-plane respectively (in OX YAZ internal configuration 'Space)‘

A

N T, and cukl ::’77/2c These

values determine the values of 1;){ and T, of Fig. 3 through Eq. 3.18

From Eq. A.14 we find that w

- and corsacuently tha positions of P, and P, [32]. Indeed, by using Eqs.

17 aud 3.18 togeiher wilh the vaiues of w, and w, given above, |
(4] 1

we obtain the Egs. 3.14 and 3.15 that were previously used in locating

P, and P,. One additional complication in this procedure arises when

m, #m, (for the integration in arrangement channel 3). In that case,
the angles %,y and oy, are different (sée Eq. A.3) so that the value
A ST Vk) is different from w;\c for

In order to obtain the wavefunction on both of the

of w. for g

Ao - (i.e., w

, P e
?T?\K (wko - 77 a}\’c)o
matching surfaces 5 . and 7 we modify our definition of w, to

VX AK Ao
w% = min (7 - Qs T - afm) . (3.19)
w, , on thef other hand, is mass-independent and always equal to 7/2
) 3 .

for the choice of matching surfaces given by Eq. 3.2.

Having defined the four regions of each r X k space ()\ a,B )
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and their associated vibration-propagation coordinate systems, we
are ready to introduce a vibrational expansion into the Schrodinger
equations Eq. 3.6 (or theif matrix counterpart Eq. 3.9), thus
obtaining the actual ordinary coupled differential equations to be inte-—
grated. We shall do this for each region separately starting with the

asymptotic region.

3.4. The coupled Schrodinger equations in the propagation variable

3.4.1. The asymptotic region

As mentioned above, the vibration and propagation variables for

s S . X(p )
this region are r, and Rh’ respectively. The function V7 A’R/\’ )_')\)

becomes the isolated diatomic potential v)\‘(rl) for R) = 'R;ﬂ . and the
potential matrix jjk appearing in the right hand side of Eq. 3.12

becomes diagonal:

X! L

where [ is the identity matrix. This leads to a total decoupling of

Egs. 3.6 and 3.10. For a given J and N we obtain:

{ﬁz{az 2 G- 3) (J-ﬂjk)z“:%}

g z z " g *F P

. 2 Srh BRA ‘r)t Ry

; v}‘} M@ | g @ o (3.21)
JJ}\ J]k :

where the superscript (a) refers to the asymptotic region. This
equation may be solved by separation of variables, The solution

can be expanded as
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A (@) Al) A(@)
N (ry » E gyv i, ) v E)- (3.22)

where qS ( ) is a vibrational eigenfunction with vibrational energy

@) Vala
7‘ i satisfying the equation
Yl

{w R* _d® {VK (r,) + M}},p?‘(a) g (@) ¢$@ (3.23)

2

2p dr? ry Wao T T
r(a) A(@) B x(@)
W1th boundary conditions qb v, 3)\ 0) = ¢vAjh (rAO) = 0. Eyv JA (RA)

describes the translational motion associated with the propaoatlon

vamable R and satisfies the equation .

N

+H‘tr -E E"‘{“’))ﬂ M (3.24)
~E_C ) re, s =0, .
O J} Valx

f-nﬂ
H
o

Zp,, dRA

This equation is closely related to the Bessel equation and its general

solution can be written as

n Aa) @)
; J &5 R )+ BA (&, )
L BEAS N N Ty 3. Iy Wy
for EMB') < E
. Vala
f
Afa) r@) 1y (open channels)
. ®R,) = &, ; R)? ]
IV AT T A @) "
' | A A @ rla
JVAXKJI AJI JV]A J} i Ajl )
for Ek(a) > E

PUY
(closed channels)
(3.25)
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where

Do

@)y _ 1 1)
k)\] _g[z E - EAJA)J (3.26)

is the wavenumber for the vibra’cion rotation state with quantum
numbers V}\jx The functions J ) and Y!Z are respectively the regular
and irregular ordinary Bessel functions [33] of order £ and have the

é.stptotic behavior

X2, () ~ (2/n)F cos (x - 4n/2 - n/4) (3.272)
x>0 ’

X2 Y, () ~ (/m)?sin(x- n/2-n/8) (3. 27b)
X~ 0

whereas 1, and K, are the modified Bessel functions [33] and have

the asymptotic behavior

x2 I, x) ~ (2r) & exp (X) | | (3'.288,)
X~
, 0~ @22 ep(x) . | (3. 28b)

X~ 0

In Section § we will conszder scattering asymptotic conditions which

) A
wﬁl determine the constants A and B .
| Jvh}k JVA] X |
Let us rewrite Eqgs. 3. 94 and 3.25 in matrix notation, which
will appreciably sunnhfy the equations in the rest of the paper. Let

M )( k) be the column vector whose elements, labeled by the V}\jA

index pair, are given by Eq. 3.25. When replaced into Egs. 3.22,

3.5 and 2.13, it furnishes a single ztf;;‘(}?)\, rk,')'A), corresponding to a
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. A A . « ' .
single AT’ By column vector pair, the elements of which are the

A
JVA]
of Section 2.1, we will need all of the possible linearly independent

and B} of Eq. 3.25. In order to satisfy condition (c)

A
JVAJR

solutions to the Schrodinger equation. The number of such solutions
is twice the number of v,J;, channels included in the expansions of
Egs. 3.22 and 3.5, We can assemble the corresponding gJ( )

vectors to form two square matrices which we shall label g M )*(R ) and

g}@’) (RX)G In each of these two matrices, the rows will be labelled by

{v. ,1 _} pairs and the columns by (v! ) pairs. Inthe course of our

A
integration, we will obtain the solutions labelled (+) by a propagation

from region I to IV and those labelled (-) by a propagation in the

+
opposite direction. If we similarly form the matrices A; and Bﬁ
from the corresponding {é and ;}j vectors, we can rewrite
Eqgs. 3.24 and 3.25 as:

2 dzgk(a)i ex afa): A@) (e ;
R J Erar (@
- d + V = 3.29
2u 'dR; mJ: &J ~ éf . ( )
and
MOy L srmy Aty v R B 3. 30)
g PUERG B Y B SVt .
where,
35 [@-3,) -4 v
[VC" ®,)] K L v"jk 3.31)
zJ 2uRy Ty
A a9 vi‘ jl
i oOxA

?xh
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2
Iy 6 R
( A
for Ei;(ai) < E
Vljl i k]A ;\JK
[ X - R? 5 "M x 4 ' | (3.33)
a
[kx(}) E )
Vala
K for E}® > g
MUY
x(@)
4 @ R
{/ I3, T,
! for B2 < g
I'Ji i }\]}\ ) VA]A
[¥}] kX RY 0, (3.34)
AN Yadn ,
K, . [kM&)iR )
NN
l\ for E > E
MUY

In Egs. 3.31 through 3.34 the subscripts in a matrix element represents
its row label, and the superscript its column label. Note that the
centrifugal potential matrix Y? in Eq. 3.31 is r‘;ot\ the same as the
V3¢ inEq. 3.13. Equations analogous to Eq. 3.29 will be developed
gor each of the other three subregions. Equation 3.30 and similar

equations will be used in the reactance matrix analysis (Section 5).
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3.4.2. The weak interaction region

In this region, we retain the vibration-propagation variables

rA’RA' However, since V* (r ,R 27y, ) and XA (r ,R ) do vary with
RA’ the asymptotic vibrational e1oenfu11ct1ons qb’\‘(?) are not
) ?t A

necessarily the best basis for expandmor the GS‘J (r}\, R ) To optimize
A

a choice of basis functmns we divide region II into n]:r subrec‘lons
II (i=1,2, )‘) by constant R lines having

ey b . ot
Rk = (R)\O’R ,7” . R Rlo)’ The mgge of RK for the i sub

. P y ’ ¢ | :
region is R)\'i“l = RA = R}\i . Let R;Li bfa a selected value of R;\ in

this range, such as its midpoint. We choose as a basis set for
expansion in this subregion the functions gb)‘(w) (r R‘; ) which satisfy

Vala
the eigenvalue equation

(-3 e +[Pustem, T QA;)E}} o3

2 dry 2pr Y
»~E"<W) ®)e™ (3.35)
A N,

with boundary conditions ¢2¥) (0; R ) = qb}‘(\y) (c. R ) = 0. The

superscript (w) refers to the weak interaction region. Vref(rA;R; )
i
is a reference potentlal for vibrational mo’uon which is, in principle,

arbltrary but which, in practice, must be chosen so that the

- vibrational basis functions cp?‘(;‘r} serve as an effzclent representatlon
k X

of the r_  dependence of the functions GA (r,,R,). Examples of
A JJ.\ AT
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possible reference potentials are (a) the first coefficient in the Fourier
- expansion (Eq. 3.8) Vf)‘ (rA’RA)’ and (b) the exact potential

v (R,,T,,7,) for afixed ¥, . One important test of vibrational

convergence in our method is the invariance of the final results to the

choice of Vref "~ Eq. 3.35 is the radial Schrodinger equation of a

pseudo molecule whose interatomic potential is Vkef (rK,R ),

characteristic of subregion II,, rather than v’\ (r ) which charactemzes

the asymptotic region. (Its centrifugal potential is however not the

normal j. (., + DR%/2pr} one) The qSMW) and EXY) gre obtained
, AR A ) v.]

, Yalx ; ATh

by numerically solving Eq. 3.35, subject to the boundary conditions

jusf mentioned.

‘We now expand G J3 (rR,R}\) in terms of the above vibrational
' A

basis functions:

- A (w) = A (w) RO
G, EnRy) ZngVJ ®yR) 63 CRL) (3.36)

Substituting this into Bq. 3.6, multiplying by ¢,rs (r,;R] ) and
- ala i

,» then interchanging v, and v; and expressing

the resulting coupled equations in the matrix form of the previous

.integrating over r

section we get

A(wW)x

H#2 4° R(W)d:
' J

s en(w)
P e S (R )+ V
Z
2u dR} zv}“

]
vy B ) g

- A (W) @) g (3.37)
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where the effective potential matrix ' V§>‘(W)

~

is defined by

ex(w ' ;
vy srg ) = O @) - v ey - T R )

(3.38)
The diagonal matrices V CX ang 8 AW) gre defined by Egs. 3.31 and

3.32, respectlvely, w 1th the superscrlpt (a) replaced by (W) in Eq. 3.32.
The potential matrix v’*(“’) (R,:RC ) is given by
; :

oA (W) 6 ?t}?\ A (W) o X(‘V . T30
(M@ R = (8 @RI 5 6y, RA)l¢v£ji(xA,RAi)>

u<ga LR <r>,R°>ivK<rh,R\,v)Isb“w)(r\,R")so N

= vy [V i) * | (3.39)

and the reference potential matrix V;‘g") (R;’\ ) is given by
| i

[vA ) go 1 “ <¢>‘<“’)<1 K[V e sR ) [0 (v RO Y6,

(3.40)

As long as the anisotropy of the potential remains 'small and the
" reference potential provides an efficient vibrational basis set for

. expanding the functions G}J érk;RA) within each Sﬁbregion, the
. )\' . .

potential matrix I’«f? (w) should be nearly diagonal and Egs. 3.37 are
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oniy weakly coupled. The number and size of the subregions into
which region II is divided depends on the steepness of the variation

of the potential matrix VMW) with R,. This number is generally

A
small (i.e., less than 3). |

As we propégate the solutions of Eq. 3.37 through region II
‘towards regions I or III, the wavefunctions 1,//32‘ (rx,R}\’ryA) must
remain continuous and smooth during the change of basis functions
that occurs at the boundaries of neighboring subregions. This

requirement leads to the following relations between the functions

(W) (R R}"\') and g?]‘(w) (R ; } and their derivatives at the
i a i1

boun;dary of subregions i and i+l:

J

(3. 41a)

\W}’t ¢ 0  arw) Mw):h

g (R, R, ) =55 (R, )

< i M ! J 7\ )‘

awlt A (W)t :
B @R ) - e LR | 3.41
R — 5 b= —— (R ;R . .41b

dR, A Ay & dR, Ry "i) ( )
where the overlap matrix S%(lw) is given by
Es”“’)} W o 1 (O3 @ Re. )!«;b““’) (R D . B.42)

A}k A i+ AJ.)L i

An important criterion for the choice of the size of the subregions is

that the §§‘(W) should be nearly orthogonal matrices. Lack of ortho-
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gonality implies lack of completeness of the basis sets c,b}‘(\;) and
results in the loss of information about the wavefunction R
as a result of the transformation of Eqs. 3.41. The relations at the
boundary separating regions I and II is achieved by setting i = 0 in
Eqgs.3.41 and ‘interpreting R to mean R! and q&h(;v) (r ;O) to

A(@) o
mean ¢ ] (r )
}\

3.4.3. The strong interaction region

In this region we use the polar coordinates Pys Py regarding
¢, as the propagation variable. If we transform Eq. 3.10 to these
polar coordinates with the aid of Eq. 3.16, we obtain the vector

equation

Tx(s)gg(S) @A’¢A)+X§G(S)9}(S) - 93‘(8) (5.43)

where the superscript s refers to 'strong interaction region.

T)'“(S) is given by

| . 2

A(s) i @ 1 9

T : ( + b= ) (3.44)
f"ph Py Oy By 29

| . Ae(s) . Y- -
and the matrix Xg (ph ,qak} is simply ZJ" | (rA’RA) expressed
in the coordinates 'ph,qak. |

For a typical reference potenhal V)\ef such as the, V>‘ (r R)\)
defined by Eq. 3.8b and plotted in Fig. 3 for B + H,, the shape of the
potential as a functxonr of Py, for a fixed N 0= ¢, = »(p‘xo) is very

much like that for a diatomic molecule. The deep potential well
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character of these cuts at constant qu' permits oneto use their bound
state eigenfunctions to efficiently represent the Py dependence of the
wavefunction in this region. Accordingly, we divide region III into
n%n subregions T, (i=1,2,- -« D%II) by lines of constant

Py ('P)\ =0, %:9;\ s 9?& AR 2% IRII’ = 99}\ }. For each such subregion,
we choose a cut at a specific value gax of @ (where

¢y, = go% gﬁx } to define our v1brat10na1 ba,sva functions

i-3
¢k(‘~‘i) (p?\, g@k } and energy eigenvalues E"}(‘S) (c,o?\ } as the solutlonq

of the Schmdmger equatmn

2

- dg';; # Vhog (950} ¢”S> 0y 395, )—-F"i” (¢A)¢3,f>
(3.4b).

satisfying the boundary condltxons ¢}\(S) (p)t = 0) = ¢MS) ( Py = PA )=0
Vi 6N

where p)t is the value of N at the intersection of the line N cpA
with the R axis (Fig. 3). The potential Vhef (pk, <p>\) is one of the
reference potentials V}i f(rx,}’c } defined in Section 3.4.2
expressed in P55 Py coordinates. Note that we have not included any
j'h dependent centrifugal terms in the Hamiltonian of Eq. 3.45 (all of
these terms being included in the "propagation part' of the Hamiltonian),
and hence our eigenvalues and eigenfunctions depend only on the

vibrational c}pantﬂm number v, . This is done for compufational

}Lﬁ;
convenience and does not seriously hinder the rate of convergence of
our close coupling expansion,

We now expand the solutions §§(S) of Eqg. 3.43 in terms of the
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vibrational functions 1)
A
QA (py,0,) = PP D &0 (co-go°)¢"‘s)<p 00 ) (3.46)
33, PO T R Sav i, Wy Py Py =0

The counterpart of Eq. 3.37 becomes

w2 & A A(s A(S) o ME)E | .
{“fzeﬁ«m—a—iw + yRE) 598k g ) _ =& (ezkl g] (3.47)

where the effective "'potential” matrix (which has physical dimensions

of an energy times the square of a distance) is partitioned as

ex (s) ca(s)

_ 2 0
{s el vy | P
VM‘\ / (qohycph ) = zvr f ((pli)} ’ (3'48)
with the matrix pi given by
Lo @)1 Wl g e . C (6.49)
0 }\ v j A J?\}
AA ‘ v
The potential matrix VMS)' and reference potential matrix V;‘S) are
quite similar to those in Eqs. 3.39 and 3.40 and are given by
A(s) x" A orye |
[V = (v iV” vy (3. 50)
?\)g AR ,
and
S A A
A ?gg] = (v V2 lv) s, (3.51)

NN



177
respectively,but the centrifugal potential matrix is now defined as

T 2 1
C)\(S) V)k]} :ﬁz ]A" 4
[vi" (@0 ) M7 =(y { : -
~d AN AN A2 (r)‘o.— p, cos 90)\).
@-3,)0~ % |
4 A - 19 HV;’L) 5. i » (3.52)
®, -p,sing )’ 40} Ida
0

|

where the first term in the curled bracket in Eq. 3.52 arises from the
rotation of the diatom, the second from rotation of the atom-diatom
system é.nd the third is a pseudo-centrifugal potential arising from the
use of the pw ? coordinates and associated with the non-physical

- swinging motion around the point P, of Fig. 3 as N is changed.
The matrix g 1 (s) is equal to the product of :’3; and a diagonal matrix

§ x(s) which is andlogous to £>‘ of Eq. 3.32 with the superscript (s)

ex(s)
ref

In addition to the usual potential coupling

replacing (@). The matrices. VC?"(.S) and V are diagonal in

et
f~4 ~

by 1; but not in v, , V}Zc
resuli:ing from the off-diagonal terms of ;7)“ (s) we also have coupling
arising from the nondiagonal gi matrix which éppaars in Eq. 3.48
as a result of the swinging motion around P,. The neglect of this
latter coupling cquid introduce serious errors since B; has large
off-diagonal elements. Such an avpproximation has ne;ertheless often
been used [14,15] ; since it is one of the consequences of the one
vibratianai basis functioh approximation. Note also that the effective
potential matrix g?(S}

is not symmetric,v but is the product of two

symmetric matrices as can be seen from Eq. 3.48. In Section 3.5 we
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discuss the Gordon method [35] used to integrate Eq. 3.47, and the
modifications of it which are required when dealing with matrices of
this type.

The smooth matching across the boundary separating any two
neighboring subregions I]Ii is achieved through expressions analogous

to Egs. 3.41 in which the overlap matrix §§‘ is given by
5 v
ST @I = 4 ¢ (9 s )M“S) (pyigy ) @.59)

and has elements which are independent of jX"j:\ . Since the general
| characteristics of the Py dependence of the reference potential
| V?ef(ph, %a) usually change quite rapidly as @ is changed, the
number of subregions in region ITI required to keep gi‘ nearly ortho-
gonal for a truncated vibrational basis set is generally large (on the
order of 20 to 30).
A

The smooth matching of the wavefunction VJ across the

‘boundary betweenregions II and III is achieved by the relations

GMEE () _ g0y o pE AW 0 .
ey =l =pg T ®GR L) (3. 54a)
o |

and
dgg(s)ﬁ N d’%(w)d |

e (0, = 0;90 )=~ p2 T (R, GR® 3.54b
de, A A5 o\ @ (Ao N 7'\') - (3.54b)

A ny |

where
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b WA ) A0 o
() m'< v, TRLRIEY TECREY “»62\]A (3.55)

3.4.4. The matching region

As described in Section 3.3, the coordinates used in this region
are the polar variablés ¢, T, depicted in Fig. 4 with N being the .
propagation variable. The Schrodinger equation in region IV is very
.similar to that in region III (see Eqs. 3‘43 to 3.52) with Py Py |
replaced by ¢, 7 - From Egs. 3.17 in Eq. 3.10 we obtain the
counterpart to Eq. 3. 4_3

) ) ¢, nA)+V"e{m) (€,m,) G Ghlm) - £ g} (3.56)
where _
pm) RS9t 1 a1 ot (.57

2 8LZ € ot gF op?

The supprSCPipt (m) denates "matching region" and Vge(m) ¢, 77)\) is'
obtained from VRe (rk, ) by using Eq. 3.17. The division of region
IV into subregions is anaiogous to that for regions II and III, and the
vibrational basis functions <p7‘( m) (€; nk } with eigenvalue Fx(m) (n®)
satisfy the equation " e A
{- w4

3o aEr * Vhet Gy )} &‘m) E’*@m( @&)fm))' (3.58)

with boundary conditions qbi;(m} (0) = cp‘i‘(m} (¢=¢,) =0. The potential
’ A X »
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Vref (C,nh) is one of the reference potentials Vhef defined in Sections .

3.42 and 3.43 but expressed in ¢,

N coordinates. Writing
-5 A(m ) A(m) y
GM™) - B M (g o ) @A) (650 ) (3.59)

the counterpart of Eq. 3.47 becomes

2 2%
-+ d‘; 2 )} 6 ing ) = 01 ) es0)

where the effective ""potential matrix (again having physical dimensions

of energy times square of distance) is

VM) e (v s+ Y im0 ) - P )} 60
o = N ~ “1 - !
with ,g};
eI el @)
= )\h ATX '

v ang yﬁg‘?) are given by Eqs. 3.50 and 3.51, respectively,

“with (m) replacing (s), while th'e centrifugal poténtial matrix is given by

T

[

¢ i
[ v (nhm")l RN R
8 sin N

+ hd V *
gzcosz-;;A 4§ By
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The energy matrix is equal to ¢ 5 Am) where &

ZMm) 1s defined by

Eq. 3.32 (without the bar) with (m) substituted for (a).
Smooth transformation between subregions in region IV involves

Eqgs. 3.41 with the overlap matrix S? given by

A (0 }\A }\(m) A(m) o 3. 64
[SE ol 5 = 05y 96 o CORAR (?;,n)li)j (3.64)

and the transformation between regions III and IV is achieved with

equations
M)+ oy _ p7 a(s)x o
By m) = g @598 ) . (3.652)
a1
and
ﬁgf}!(m)’& ) 2 dg }\(S):{: | .3
o ; =g . 65b
dn; UNSLW e 7, (qo)to,st’hn%n) (3. 65b)

where

ol W - <<b“m><c )l =g -«:;’ }czs’*‘g’)uaA NN
] i
Vala , ”m

T
Hi
i
K,m

(3. 66)

3.5. Integration of the Schrodinger equation

We generate solutions gh‘“ and their derivatives with respect

(d

to the propagation variable by cheoosing at RA = R;\ ~arbitrary initial
! 0 ,
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values for these two matrices and integrating numerically Eqgs. 3.37,

3.47 and 3.60 from the beginning of region II to the end of region IV.
Similarly, we generate the S}"’ solutions and their derivatives by
choosing arbitrary initial values for these two ma‘crlces at h = nhl
and integrating numerically these equations from the end of region IV
to the beginning of region II. |

Any appropriate numerical procedure may be employed to
integrate the coupled equations. The one we used, which is well suited
‘to equations of’the type of Egs. 3.37, 3.47 and 3. 60, is the one
developed by Gordon [30]. In region I, it can be applied without
modification [36], but in regions M1 and IV, the noﬁ‘symmetric nature
~ of the effective interaction potential matrices (Egs. 3.48 and 3. 61)
requires a short modification of the method. As formulated by
Gordon [35], in propagating a system of coupled equations, a ’cré,ns-
formation to a representation in which the effective potential matrix
(say g) becomes diagonal is required This necessitates finding the
eiwem:;lues of U. Inthe special case where U is symmetric, these
eigenvalues aref;‘eal 2nd the e1crenvector matr:x is orthogonal. This
simplifies the calculation and allows for an efficient program. The
effective potential matrices of Regions IIT and 1V as given by Eqs. 3.48
and 3.61 are real but non-symmetric and thus could have complex
eigénvalues and eigenvectors. These potential matrices are, however,
equal to the product of two symmetric matrices, one of which (p for
Regmn 1II and § for region IV) is the matrix representation of a

positive defzmte operator ( p; or ¢£?) and hence has positive definite
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eigenvalues. By using these Speciai propefties to define the "square
root” of 827\ and §2 , it is shown in Appendix B that both the eigen~
values an:i eigenve?:tors of the effective potential matrix are always
l'éal but the eigenvector mairix is not generaﬂly orthbgonal. This
allows us to use real variables throughout the integration with the only
major program changes from the usual Gordon method being in the

routines needed to find the eigenvalues and eigenvectors of the effective

potential matrix, and in the manipulation of the eigenvector matrices.

3.6. Restrictions and limitations

We should at this point summarize the possible limitations and
~ restrictions on the method other than those inherent in the numerical
procedures involved or those arising from computer limitations.

First, the choice of matching surfaces in Egs. 3.2 is Iargely
determined by the shape of the potential energy surface in Fig. 2 and
for many reactions, an. efficient choice will require somewhat
different matchiﬁg planes. A change in the exact mathematical form
of the matching surfaces can Significantlyv affect the details of the
integ.fation in region IV and in the matehing procedure although the
pasic concepts will be preserved. In choosing the matching surfaces
for a given reaction, primary consideration should be given to obtaining
an efficient representation of the wavefunction in the vicinity of the
matching surfaces. This requires us to avoid too large a potential
anisotropy in the matching region, for in that case, our close coupling
solution will require many closed retatiénal channels for convergence.

At the same time, too small a potential anisotropy (resulting in
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considerable flux ""leakage" through. V= 7/2 configurations in the
matching region can result in poor convergence of the matching
procedure (as Will be discussed in Sectioh 4). One therefore needs
to be clever in choosing these surfaces and it is possible that
for certain reactions, no choice satisfies all of the above criteria
and simultaneously leads to a mathematically Lractcxble matching
procedure , . ‘ 7
One case where the choice of surfaces specified by‘ Egs. 3.2
leads to a set of coupled equations in the matching regioh (Eqs. 3.60),
.which is not easily solvéd without including a large number of closed
rotational channels ,,,1s when @ (or a, )2 3x/4. The reason for
this is that when this meguahty is sat1sfied, integration in the matching
region will extendinto those regions of configuration space for which
{or rK} = (; and hence will sample the very high potential energy
in those configurétions [fo'r which ¥, =0 (or w-)] while possibly

sampling low potential energy for otl?;er conf1gurat1ons (near y.k =7/ 2).5
That this is the case can be verified by noting that durmg the |
integration in the matching region, uN must scan the range from

tr ~ m )/2 to 7/4 (from Egs. 3.14, 3.15 and 3.17) and that Eq. A.5
y1eids r, = 0 When 'y)\ = 0 and o "~ = 317/4 at some 772" within this
range. From Eqs A.3 we note that a,,, = ~ 37/4 implies

m, (m;ﬁ m, +m )< m, m, = S0 that this restriction a,pp11es primarily |
to reactions with one atom of the triafcomic system considerably lighter

than the other two, We should also point out that this problem can be

eliminated by the use of a different coordinate system in the matching
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region or by the use of '"'rotationally adiabatic' rotational basis

functions [rather than gpjh(yk)] .

When one of the three arrangement channels is closed, the method
must be somewhat modified [21], but this is not a complication. Other
practical limitations to the method occur for reactions where break-up
collisions are allowed or for which virtual excitations to closed
dissociative channels influence thé other reactive and non-reactive
processes significantly, The present method is not capable of treating
any dissociation process, but this is not a serious limitation for many
reactions at energies of chemical interest. A more general method
which wutilizes generalized hyperspherical functions is currently being
developed in these laboratories for the purpose of treating both break-

up and rearrangement collisions.

4. THE MATCHING

4.,1.1. Projection of the wavefunction onto the matching surface basis

&

functions

At the completion of the integration in arrangement channel
reg'ion X, we have gen‘efated solutions which satisfy the Schrédinger
. equation in that region, but which do not, in general, match smoothly
with the corresponding Wavefunctions obtained from the integrations
in the other arrangement channel regions r and k. Inthis section
we describe the procedure for accomplishing this smooth matching.
This procedure may conveniently be broken up into two parts. First,
we consider the prbjection of the full wavefunction and its normal

derivative to the matching surface onto a set of orthonormal basis
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functions which span the two-dimensional matching surfaces. Second,
we take linear combinations of the wavefunctions in each arrangement
channel region and match them to linear combinations of the corre-
sponding wavéfunctiom in the other arrangement channel regions.
The resulting matrix equations can be solved t‘b yield a set of smoothly
matched solutions which can subsequently (see Section 5.1) be used to
form the scattering solutions.

Let us consider the proj ectidn procedure for the matching
surface LN (Fig. 2a). The analogous equations for T, 20d Tyx 2Ye
obtained from those derived below by cyclic permutation of the indices
awk. We first consider the wavefunction on LN 6btained from the
integration in arrangement channel . Using Egs. 3.59, 3.5, 2.138 and

2.10, we get the following expression for the wavefunction in region IV

{(subregion i):

Feop ' \/‘2 ( )
AV ], @+ (X o .
PN (X, 8,7 ) = A { 2 g () 8] (55
~ £2 (sin2p)®  x'n Ao
V}\Viji:t:' BV
v g, (nh,nki)} (4.1)

Throughout Section 4 we will consider Superscr‘ipt (m) of Section 3.4.4

to be present implicitly and will omit writing it explicitly. We have,
F=
Al
dent solutions obtained by using different initial conditions in the

however, added the indices v to denote different Iineérly indepen-

numerical solution of the Schridinger equation. As explained in



187

Section 3.4.1, if we truncate the close coupling expansion after N
vibration-rotation basis functions, there will be N sets of indices
v;éi inEq. 4.1, |

The expression in brackets in Eq. 4.1 is expanded in terms of
a different set of vibrational functions qbi‘;}k (C;n;i) for each subregion
i of region IV. We now transform to a representation in terms of a
single set of vibration rotation basis functions Acpj (Yh) qbé () for al]:
of region IV. The actual functions qbi‘, (£) to be used are arbitrary
but for reactions such as H + H, which favor reaction through collinear
geometriesg ‘the most efficient set for this purpose (as will be explained
in more detail beldw)‘aré the functions ¢‘>>}\ (€; ﬂAO) defined along the
~cut n, =, , and which will be denoted by ¢‘}A (¢) simply..
The transformation equations associated with the change in the
vibrational basis set are given by equations similar to Egs. 3.41 and

3.53 where a different overlap matrix will be generated for each

subregion i. We will denote the new "g'" function thus obtained by

Av/ile |
xa (m, ) (we will omit the parametric T, ). With this change

gJ“V i
PADY ;\VA] '+
of vibrational basis, we can write a single expression for \IIJ A
valid throughout all of Region IV: |
'y 2 (X.) AV _ _ .
viit » v @ ;\J;\ ,
J | {2 (sin2y,)z
where
PANN 1 : '
USRS \d »
5002 F 00 9 @ Mada (n,) (4.3)
' Vx Py )\];\ ' ,
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On the maiching surface Ty T and ')’)t are related to each other

by the equation (from Egs. A.14 and 3.18):

- - . L
cotznx = cotam cos 7y 5 = 7)\ = 5 (4.4)

Hence if we substitute uN (77\) as obtained from Eq. 4.4 into Egs.

4,2 and 4.3 we obtain the desired wave function on Ty

In order to insure a smooth matching of the wave functions, we
need also to match the derivative of the wave function of Egs. 4,2 and
4,3 at the matching surfaces. Although many types of derivatives are

possible, the normal derivative 9/ 9 n, to the matching half plane

A
possesses many useful mathematical properties (some of which are

- seen below), and for this reason we will consider it in the following

discussion. Expressions for 3/¢n_. in termns of Yk‘t and ., are.
I on,,. e € .

derived in Appendix A (Eq. A.18). Since this derivative is defined in
terms of the internal variables Ty Ij,‘}fh we are free to choose one
exterpal variable (such as X)\ or X u) to hold constant during the

differentiation process. We must, however, use this same choice in
deriving all equations concerning the derivative matching on Ty

5 as this external variable and introducing Eq. A,18 into

Egs. 4.2 and 4. 3,.and then using Eq. 4.4 to express everything on the

Choosing X

matching surface, we obtain:

i |
A V2 ¢ (X, )sina AN |
a o= ) 5__ » .;i XJ (C; YA ) (40. 5)
ny}\ £z (SinZ:Qk) 2

where
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| do.”ajxi
STV, j
X' (e, v, Z q’> N ) A2
J dn,
+ cota. . (kcosv, +ij, siny )éh Aj}‘ [ (v )] “ 6)
VX 2 AT AN DRSY )

Note that the symbol X' does not mean that it is a derivative of X
(Eq. 4.3). The derivative dg/dnA must be evaluated by allowing 5,
to be independent of ¥, before the expression UN ='77)‘ (7/)\) is used.

A
o | AVyiy RANN
We now wish to expand the functions X J “and X J
 on the matching surface :ﬁvx in terms of a set of basis functions
| Tzkj which span that surface, ¢ and y, being the independent -
XX :
variables. We choose the T" A tobe
Vadx
VA -,
T, €)= ¢’\ (t) oy o) (4.7)
AKX ,

where the qbz; 's were defined above (in the paragraph preceding Eq.

4.2), and the D.';\}‘ ('y ) are a set of rotational functions which we shall

require to be orthonormal and complete on the domain - =y, =L,

2 A2
For convenience, we will also impose the condition that '
prA (v, ) be real and that
Ix A o ,

Vk (r,) = ”w ) (-1 | | (4.8)

This is not a significantly restrictive assumption, and will lead to
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matching equations involving only real quantities.

The crucial characteristic in our choice of basis functions in
Eq. 4.7 is the use of a set of rotational basis functions which is
complete for the domain of N from - 7/2 to /2. 'This contrasts
with the -7/2 to 37/2 interval over which the asymptotic rotational
functions gl)jh(‘}%) are compléte, What we have actually done is to
divide the domain of v, into two equal subdomains: (a) (-n/2, ©w/2)
on-which we choose the 7 |

VA
@/2, 37/2) where we use the analogous functions.

rotational functions Djm (7, ), and (b)
A

AK

Dy, &)

which span 7 The union D;; (‘V } of the two sets of functmns

AKS
{DW‘ D.M} forms a set of rotational functions which spans
(-7r/ 2 31}’)}2) and this allows us to establish a one-to-one correQ-pendence
between the rotational functions D}" Whmh span the matching surfaces,

~and the asymptotic functions co (7\ }. More Specﬂmany, if we have
N vibration rotation basis:'functmns asymptotically in arrangement -’
channel ), the sum of the number of TV and T functions must be
N. Fora symmetric reaction (i.e., onein Which channels v and «
are equivalent), we must use N/ 2‘ functions in each of these two sets.
In this caSe, the rotational guantum numbers 3A spanned by the
T‘g A‘j}\ (for each vibrational quantum number Vk)' include:. only one
half of those spanned by the asymptotienfunctions qux. The number of
the latter should in such cases be even, which is not a severe )
constraint. | |

We now discuss possible choices for the functions Djm . Two

‘ X
gsets of functions which are both orthonormal and complete over the
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-1 .. ;- v
range -r/2 =< 7, = /2 are (r) 28Xp21‘])\'}’>\ and (7) 4exp(2]R+1)1yA
for jk = 0,21,%2: -+, These do not satisfy the condition of Eq. 4.8,

‘ _1
but certain linear combinations of them do such as (@) () 2,

1 1 1 1
(2/7)2 cos 27}0 (2/7)2 sin2 Yy (2/7)2 cos4'}’>\, (2/7)2sindy and

NEEED
(b) (Z/w)‘ilf sin 7)\,»‘ (2/77)% cos ¥, , (Z/n)% sind7,, (2/7;»)'[5 Cos3Y, .
We can also choose mixtures of (a) and (b) above such as (c)

2/ ﬁ‘)%: COS 7y 5 {2/ w)%sin 27, (Z/H)% cos37,, <. This last set of
s = x7/2.

This makes these functions very efficient for expanding the wave-

functions has the property that all its members vanish at ¥

functions for certain feactions; as described below. An alternative
to analytical functions would be a numerically determined set such as
' the rotational eigenfunctions for some approximate potential on the
matching suriace. To see what these funciions might iook like for

H + H,, in Fig. 6 we plot contours of the exact potential V(rA’RA ,'}’k)

on the two-dimensional matching half plane T, The lines converging

3"

at the origin are intersectionsof m,, Wwith ¥, = constant planes and

VX
correspond therefore to constant values‘ of UN also. The figure

. indicatesthat only the region of the matching surface for which Y\ ‘is

in the range -60° to 60° (and uN in the range n?\: 30° to 36.9°) has a
a low enough potential energy to contribute significantly to the reaction
at energies less than 1leV, This implies that we should choose a basié
set TY* which describes the wa,véfunctionf best near Yy F 0, i.e.,
near NS 151)\0‘; For this reason, we previously chose the vibrational
eigenfunctions «;’)‘Z (¢} to be solutions to Eq. 3.5 for ni :,nko;

(See paragraph preceding Eq. 4.2.) Although there is no single
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'}’A—dtependent rotational potential which describes the rotational motion
on the matching surface correctly for all ¢, it should be clear from
Fig. 6 that rotational functions which are numerically determined |
from the potential on the ma’tching surface for a fixed ¢ (such as the
¢ for which this potential, at v, = 0, has a minimum) will be localized
= 0 and must be very nearly zero near ¥, =+7/2. For this

P\ A
reason, the analytical set (c) should be efficient for expanding the

near v

wavefunction on 7 y Fina,lly,' we should mention that an important

X
test of the correctness of the method is to demons;trate the invariance

of the final converged results to our choic'e of D}, ,

We now expand the functions X;” RUS 3 erkaj;\i )
A. (defined by Egs. 4.3 and 4. 6), in terms of the matching surface
functions T:;;\j)\ as follows: |

e ¥ F W 4
OBy, g o

) €,7,) | (4.9)
S V. ‘
J VA]K JVA],k | A _ A
AVRig £ ~ AVylyE
! M LB T SO (A (4.10)
vl 9N A

Whereas the indices vj.. assume N values, assume fewer

. v i
, ATA ATX
values than that. In view of our previous discussion, N/2 is a

convenient choice for this number for the highly symmetric H, system.
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— Av}t] ii Avkj A:k :
The coefficients h IV ; and I/ Jv . may be found by equating Eq. 4.3
. AA
on 7, ‘with Eq. 49, and Eg. 4.6 W1th Eq. 4.10, multiplying the
resultmg expressions by '1“’“’>t and integrating them over { and 'yh
)\ A ‘
using the orthonormality of the TW‘] functions on the matching
A A
surface and Eq. 4.8. We get
— /2 |
_avlix T - ] cos i’
ATA 2 3 VX ¢ Vada A "X
h = — f dy. D (')’ )c Y [‘I] (')/ )]{ ,
J‘}‘\,J)x /ﬁ j,x : A JZ& A JV)\ AN 1811‘1})")/}&
4.11
T AV @19
W 1 s "/ A
R MM . dy, DXA () | —22 (3 (7))
Ty Vo i ;{ S S NS an, @ (730)
- cos i’y } cos (3 +1)
A e w1
' + cot o <(3 +—~){
{ mm;g;’yx YA AUA T #7 Lisin (3>\+ 1) 'Y}\
C cos (§7 - 1)% ), 1
i oL A TR ,Zt
-y - =) { isin (7 - 1% },) Brv3 (m, (%, )) (4.12)

where the upper term in the curled brackets is to be used for even j)\’
and the lower for odd .jkc

We now must consider the expansion of the wave function obtained
from the integmtion in channel yp, inthe same matching surface basis

functions T 1 of Eq. 4.1. To do this we first express the wave-
Vala

function and its normal derivative in a form analogous to Eqs. 4.2,
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4.3, 4.4, 4.5 and 4.6. For the wavefunction we get

vv!ix Y2 0. (X)) A MM
w2 x Y, t,m) (4.18)
7 (a1 3 :
£ (Sln27;V)2

where

+

AN . AR
v @,) (4.14)

' ror
viv

X = 2 @, (v,)9Y ©g. .
J VV]V ]V v vll Jvz;])}

The vibrational basis function qbz (¢) is defined in a manner similar
‘ v

to qb?‘_‘; &) and‘,'in fact, inay be identical to it (for v, :V)\) if the reference
potentials are defined appropriately.. In terms of the v arrangement
channel coordinates, the relation between 1, and v, on the matching
surface 7 is given by:

VA

cot2q, = cotazy»h cos Y, (4.15)

This is easily derived from Eq. 4.4, using the relations A.,12 and
A.15 of the Appendix and Eq. 3.18. |

In calculating the normal derivative of the wavefunction of Eq.
4.13 on the matching surface T,ys We must remember that X, must
be held constant during the differentiation. It is therefore desirable

to express X in Eq. 4.13 in terms of XA
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X = X, + AX (4.16)

v A VA

where Axvh is a function of the internal variables RA’ N 'y}t only

as seen in Eqs. A.9 of the Appenaix,' If we express those two

equations in terms ©Of the variables N § and 7,, then find the normal
derivative of A“Xu;x using Eq. A. 18 and finally use Eq. 4.4 to express

all quantities on the matching surface 7z we obtain the very useml»

vA’
equation valid only on this surface:
dAX » v :
VA _
"“"“"‘“‘"““’a%x (gy"rl)ts?)\) = 0 ) (4‘°17)

A= a consequence of this simplification, we can express the normal

derivative of the wavefunction in arrangement channel v on Tyy by:

yvlﬁ‘ + . iJAX

e Y29 _(x,)e VA pvlige . '
- - A A TN (X (4.18)
where
| A
oy FIF oo bt
A Jv i
X)) = Zoey (n)dy (@){:% = ,
} v, | y . “17,, /=1, ('yv)

o vy, 1 + |
- cc){:af (3 cos?, + ij siny, } &1, (1}V (‘);,)) (4.19)
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vvvjvi , VVVjVﬂ:

We now expand the functions X 3 "~ and X J in terms of the

matching surface functions Tv ] (€, YA), Note that we use the )

arrangement channel variables to express the v arrangement channel
wave function, using the transformation equations A.12, A.14 and 3.18

to relate the ) and » sets of coordinate systems. The resulting

expansions are

12
y]

= fy . T 4.20

(§S A.) VV]V JVVJD v ] (C.’ VA) B ( )
yvvl,;;y ___,vv,jj,j:t I ]

Xy 7 &y = ‘%iy vy, Tog, ©%) (4.21)

where the expansion coefficients are given by:

— VV"j':E /2 ,
: vy 2 ) L" V?t 1753
frps = J& [ dx %, (1) D™ ()
JVVJV, T { A Vz'/v vyvy i, "

AN

cosj” -
X gJV,, ” (;; ( '}’A))) { v I 4.22)
-iginj” 'yh ,



PETA M

iy
viv 1 v SVA VA
f .- = e e dy < (-' ) S » D, (Y )
AN e (;[ A ; " iy dy A
v ' |
gJ'VII'II s 1 )
] cosy Y. %
% vy v A}‘—»cotcz ((j” L)
dn _isinjll,}, 5' VA \ 2
v m,=1, (YV (VAD VA

{ cos (jv"’”iwx } e { cos QV - 1)7/)\ }) gva]Vﬂ:( b o )))]
o o gem My 2 ¢ s foB JV ] nv v \ A
-isin (JV+1)?’A -isin (i, -1)%

where e

SAL = [ ey () () dt (4.24)
VV’VVf 6 VU Vvl

As beiore, {ne upper term inthe curied brackets is used for even

jv and the lower for odd jys

4.2. The matching equations

Withthe wavefunctions from the integrations in both channels v

and x expressed in terms of the basis set T%A(g , 'Vk) onw we can

22
now take the appropriate linear combinations of these solutiogs to yield
solutions to the full Schridinger equation which are continuous and
smooth tﬁroughout all of configuration space. Let us denote the fully
matched solutions thus obtained by q}&i)vj‘ There are N set of indices
vi and the superscripﬁ (i) can have the values 1, 2 or 3. The full set

of indices (i)vj thus scans 3N values and we will therefore obtain 3N

linearly independent solutions to the Schrddinger equatidn [37].
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‘ (i)vi AV
We now write @J in terms of the solutions \IrJ A°A and also
. : v,y
in terms of the \;{;J :
1)vi AV It ()vie AVir=  ({)vi-
‘I’fr) - { vy M Cx?'j’ vy J(A)V}j'
vl XA . ATA
vv'il+ [Dvi+ UV pver
= Z { ¥ vy C per 4+ N i C(I)VJITI } (4,25) '
Vz;j:r J JVVVJV J JVVI}]V
and
A 1Y 4 Faf
(1)vj A AVAIA .
825 > 1 %% @Dvi+ 8%y (i)vi-
3 " n - Cow'it e Covly
R V}J) \ 1721 ATA |2 Vi)
»v i vy, jl -
vy : v’y
oy Vi o¥ 1)vie ,
= E {“——i—-———- ng:f];gf + *——L-—— C}l}\f}," } (4¢26)
vz:]; anv}t Voly a“m v )
A .
" The coefficients C(l).vj,.f and C(I)VJ,:; are to be determined by
, .LU\,V}«\}}L JVVV}V .

applying these two sets of equations on 7, . (and similar equations

VA

on 7 and 7 and by imposing the scattering solution boundary

Ky }uc)’ . ( )
conditions as explained in Section 5.1, Equations 4.25 and 4.26, when -

evaluated on g comprise the smooth matching conditions.
) o

VX’ ;
By substituting Eqs. 4.2, 4.13 and 4.16 into Egs. 4.25, we

obtain the following expression
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Y . rir . N .
5 {XMAJA+ (1)vj+ X"VAJA (i)vj- }
J

7 il T g SINAR
V}LJA AA AA
TAXpy 5 VV;]';'% (i)Vj+~ VVlij;" (@)vj-
= e 2 X . J 10+ X CJVV'/‘" (4.27)
v J AN J vy

The analogous expression for the normal derivatives is obtained from
Eq. 4.27 by replacing X" by X’ in that equation. If we now
substitute the expansions given by Eqgs. 4.9, 4. 10, 4.20 and 4.21 into
Eq. 4.27 and its equivalent for the normal derivatives then multiply
through by Tzhj '{E’%\)’ use the relations between the ) and v
coordinates gi'&éﬁ by Egs. A. 12, A.14 and 3.18 and integrate over

£ and %, We obtain the following system of linear algebraic equations:
' L sy Pl o . T “ .
5 {Em’k]x*‘ cbvi+ =AM ()] ’ }

B . Fsr . L
vl LIy IR T I, Iy
N e |
= Q(sw;&.}.v i, &<t fJV i CJI)V'}' va j.o C‘J'VV,']" } 4.28)

Vil AR 50 vy vy vy vy J .

with the analogous equation for derivatives obtained by using h’ and

1 iﬁstead of h and T above. The matrix ngx is defined by
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/2 :
/ 2 [ DJ.A D; cosJAX,, d%
_ o

v
_J VVJI{ s o for i, +1i,=even
VA Vljl V){VV 1!-/2 R
21 j Dj)\ D].V stAXVA cil',v)L

4] . .
for Ity = odd

(4.29)

or, by the expression (which is only equivalent to it for a complete set

of functions T”M)
--aJ . ‘, Vh. -
S,y = €%p (1J§ ) (4.30)
where
o Y _ (VA ) S a1
@™y 5 <Tvajxim<;,,hz Ty, (4.31)

As should be evident from Eqgs. 4.30 and 4.31, the matrix ’sIJ is

VA
unitary. sgince Axy -is real and therefore . QVA is hermitian.

o~
~

A
By examining the definitions given in Eqs. 4.11, 4,12, 4,22,

4.23 and 4.29 for the various symbols used in Eq. 4.28 and its
equivalent for the derivatives, we find that the latter set of equations
imrolvé éither purely real terms or purély imaginary terms. Letus
omit the factor i appearing in Eqs; 4,11, 4. 12; 4.22 and 4.23, and
repla;ce it in Eq. 4.29 by (wi}-jv. We denote all of the real coefficients
thus obtained by removing the bars which previously appeared above

their symbols. Eq. 4.28 and its normal derivative counterpart
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continue to be valid for the unbarred qﬁan_tities, which permits all of

the calculations associated with the matching to be performed using

real number arithmetic, a considerable computational simplification.
Regarding the real coefficients appearing in these equations as elements.
of matrices, we can rewrite them as

Fo@ry phe ol 5, {7+ ¢y - o1 4 32

,a:::d

J U+ A pv=- A(1)- p
SR ER VAIL | G S S )

" where Sgk is orthogonal if the TY? form a complete set. As shown
. A . . 125
in the previous section, the number of basis functions T'{,‘}:jk used to

expand the wavefunction on 7 is N/2 where N is the total number of

VA
vibratijon-rotation functions used in the close coupling expansion. This
implies that there should only be N/2 rows in the matrices QM.

There are, however, N columns because the different columns denote
the N linearly independent solutions propagated in either the forward

(+) or backwards (-) integrations . Summarizing, the dimensions of

the various matrices in Eqgs. 4.32 or 4.33 are sjrmbolically represen-

ted as follows:
(N/Zx N) (NX N} + (N/2X N) (NX N)

= (N/2% N/2) { (N/2 X N) (xx N) + (N/2xX N) (NX N)}

(4.34)
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We can combine Egs. 4.32 and 4.33 into a.single expression which

centains only square N X N matrices by defining the augmented Nx N

. sAE ~J
matrices th , iT and S,y 38,
: pAt
\ By
fZ}:}:_ .
- ~J (4. 36)
= flu:{: .
: J
.~*J (fx/)\ 9
N R @31
VY Sa)

where O denotes an (N/2 X N/2) matrix of zeros. The resulting

matching equation on Ty becomes

o W - o) 2Tt WD, e ()1 o
Dy S vhy S = osa WSy A St (4.38)

In order to solve for the unknown matrix of coefficients C‘gzi, C&igi
{and ggz*), we must couple Eq. 4.38 with the corresponding equations
obtained from the matching on T, 2nd ’Tzuc; Using the same notation

as in Eq. 4.38, the matching equations on these two additional

surfaces are
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v+ 1)+ | cv- S)- _ 2d e+ L K- (1) -
by ¢ z§3 + Iy SJIZ = Sxv {,,gJ Cre + L5 Cix t (4.39)
and
S K+ (1)+ M- (1)~ P (i)+ A= ~()- '
h + K% C {f C}\+~fJ CJA} (4.40)

~d  =d ~d S dK = ~Ax

We can now combine Eqgs. 4.38, 4.39 and 4;40 into the following single

matrix equation which involves matrices of dimension 3N X 3N

NG5G = 0 (4.41)
Whére
1/ ;ﬁ,)'!‘:i - §.{ ﬂ}i o\
R VA me =
NT = o HY* L (4. 42)
md = wd Ky =J .
aJ 23 oo
B 5 AK ng 9 :QJ
IRLRE (2)t ()
S Cax Caa
* (13t {23k Lk
7 Cw S - Sy (4.43)
' pit - ) |
Cmi C;{zii C 3

~JK =JK ~JK -

and the O stands for-aimatrix of zeros of the a.ppropriate dimensionality.

Let us rearrange Eq. 4.41 to the form
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RS § - - ’
Cr(CyT = -0pT N (4.49)

Equation 4.44 is the essential result of the smooth matching procedure.
It expresses the p;nknown coefficients g; in terms of the known 21 Ji
and thus determines which linear combination of the solutions obtained -
from the integrations in each arrahgement channél;region will produce
smoothly matched wavefunctions,} Of course, Equation 4.44 supplies
only one 3Nx 3N matrix equation for the two 3N X 3N unknown
matrices g; This tells us that our‘matched solutions are not com-
pletely ﬁnique which is not unexpected since we have not yet Specified
the asymptotic conditions which our matched wavefunctions must

| satisfy. We will do so in the next section, and when these additional
conditions are combined with Eq. 4,43, we will obtain unique |

expressions for the coefficient matrices cE.

5. ASYMPTOTIC ANALYSIS

5.1, The reactance and scattering matrices

We will now describe how to obtain the reactance (g ,J) and
scattering (2 J} matrices from the asymptotic values of the primitive
(but smoothly matched) solutions ®§i)jp described in the previous
section. These functions are defined in the entire configuration space.
Their asymptotici behavior in each of the three arrangement channels :
A= a,ﬁ,v'y can be obtained from Egs. 3c22A, 3k5; 2.13 and 425, |

and is
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, A
~ (X.) -
J R~ P TN Jyr R

X A YO

(5.1)

" by

{ AV I (D)vi+ AV N (i)vi- }
A

g . C .y + 8 P Iy
v JVAJA JAV’}\]A JV)@A JAVA]A'

xX=a,B8,7

where we have dropped the superscript (a) as it will be implicit

: 1
throughout Section 5. The product functions r; 2 gaj blh) ¢7L . (y)\) are

) A A
the asymptotic *{ribratiOn-rotati:on wavefunctiohs of the diatomic mole~
. cule corresponding to the ) arrangement channel. We note that

(/)_Z“, ; (r,) vanishes in the asymptetic regions of arrangement channels
2‘. EE

Y
v and k because r, — e in these regions. As a result, Eq. 5.1

can be rewritten as

A . ,
» Q. )PS5 (T)) v
G L o (X)) Le e . (R)Y (5.2)
| AN VI, R, AL A
where
- Wwliv+ Neie o AVt o)
(1)\'} . ATA ‘ (1}VJ+ A ~‘()‘)V] - »
eJK\;’ j - g}‘)" ng j CJV”j” + gJV j (.,kall-n } (5.3)
Aa M X' XA A A'a

and A summation extends over arrangement channels «, 8 and vy.
-9 s - (Vi .
2 . 2

N ._(R}t ¢3'") is

The analogous expression for the function R
/ A
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AR

72 17 dg. .~

. . )LV,?L];& , gJV;\JA
obtained from Egs. 5.2 and 5.3 by replacing €1+ i by —£ L
AT

dRA

in the latter.

We now define the reactance and scatfering matrix solution for
each partial wave J. 1In analogy with their’ corresponding three-~
dimensional multichannel definitions [ 34], and using the asymptotic
behavior cof the coplanar solutions -given in Egs. 3. 25,; }We define the

reactance and scattering solutions and the corresponding matrices as

follows
f A
\Ifka'j"’ 2 oo (x,) 2, (pj?l(yk) qbvlj?\ Y 'bhlv"-'j}“’ R.)
R,SJ PO ! th}\ \[;;\E;& R,SJAVAJX b
(5.4)
where, for the R .. matrix solution,
' AV
ATA
(3 ) )R
J 3;\ Rxék,v ]A )\ )@ RA JRVI]A |
X VX'jJ( “Rk )%i o “(for the open channels)
RJAVA] 5 T, -
ASN R ANy
A AT A
I (K lR)G +X, . (k. [R)R
Y | VU J"Jad "}G‘x‘ 2 Rt NN
|-

(for the closed channels) -

(5.5)

and for the SJ matrix solution
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2) AJA' 1) V. j
H(m (s} 5 R,) 0, +H (1\ R )s A
( I-3y VJ AVA3 J'3A Vi JAV,J>~
7 o
)vajxf i “RA ).%4 (for the open channels)
SJAV}\JA i i . l }\j)\ ;J;\
L (K Ir)a (Ik IR) 85,7
J-j )\V)\J - LN J}LVX}A

K )\.A

(for the closed channels)

- (5.6)
and the Hankel functions HE' are related to the Bessel funétions
3y, Y, by |

2(1 2 3, + ;Yl (6.7

The R; and S, matrices defined in Egs. 5.5 and 5.6 have dimensions
3N X 3N and include both open and closed channel initial and final
states. Only the open — open transitions have direct physical signifi-

“cance and we will label these by the symbols Ij" and Sg It is these
open channel matrices g} and Sg which obey the usual properties
that 53 is real and symmetric and gg - is unitary and symmetric [24],
as a result of the time reversal invariance and conservation of flux
properties of the Schrb‘dingér equation. Actually, Egs. 5.4 through
5.7 are expressed in terms of the mass scaled varjables Iys §>\ of
Egs. 2.2a and 2.2b, whereas the reactive and scattering matrices

we are interested in, are defined in terms of equivalent expressions
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involving the unscaled i}\’R\' However, Eq. 5.4 and its unscaled
variable counterpart are proportional to one another and as a result
RJ and SJ are invariant under thfa rA’BA A’EA transformation;
this permits us to use directly the unbarred variable results to

calculate them. Using Eqs. 5.7 in Egs. 5.5 and 5.6, we can relate
the open channel subblocks of the reactance and scattering ma.trices

by the following expression [39]
= (I-1R )(I+1R°) (5. 8)

where % is the identity matrix. We will discuss the physical sig- ,
-~ nificance of the scattering matrix at the end of this section.

Let us indicate how R can be obtained from the mmericaily
determined solutions e*gg“)vj . We rewrite Egs. 5.3 and 5.5 ixi

3N X 3N matrix form as

+ o~ -
RS e ©-9)
and ‘ ‘
i A
by = V2 [dy+ Y5 E;] (5.10)
where
v N Avoei, :
X A .
(f{;)hvﬁ S’ Byv | | (5.11)
AN, Vorjos 1 .
A D N
(V" )M’}J;K N 5"& (Vvkjk) 2 | (5.12a)
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A A
VA . = Bk} . 4 (5.12Db)
Vala a0
A
J. . (. R)
( Iy TV A
RN, Voo . 1 (open channels)
(3 A r e 00 (k. [R)Ex
=dav. ] AN VLT, v.i, A | |
A An Y R E S
I=Iy VLA
| \ (closed channels)
(5.13)
s -
Y. . & . R)
J Iy TN A
Wi Vydo 1 (open channels)
XN XX [ 2
zJ);\v; i O v (Ikvhj\iﬁx) X1 ‘
AA I8
Ky (k, 5 IR
Iy TR

and gy is the transpose of R.. The elements of the

(i)vj

" Py

{(i)yvi:

g AVA

a
Iy

matrices are the e

\

(closed channels)

(5.14)
Ly and by

respectively. In all these

matrix elements, the subscripts other than J denote the row and the

superscripts the column to which they belong.  The reactance matrix

Nvejoe

: A A
solution ‘I’RJ
o
solutions @J

can be obtained from our numerically determined

by taking linear combinations of the latter:
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. 3 ..
A'v AN v xv Py
o XA LT T v A 1

As was mentioned at the end of Section 4, ‘the matching equation

(Eq. 4.44) determines C (C‘J)"1 but not C'S or C} 1ndivid1ia11y ~To

III""

complete their evaluatmn we choose D =8; ]Ab‘ in Eq. 5.15 and re-
quire that the Q produce not only the correctly matched solutions,
but also the co;rect asymptotic solutions as well. We then substitute
Eqs. 5.2 and 5.4 into Eq. 5.15 and equate coefficients of terms having

the same arrangement channel ) and vibration rotation basis functions

r -3 cp (}’) qbv N (r ). Expressing the resulting equations in matrix

~ form and using Egs. 5.9 and 5.10, we obtain

GG+ 5 - YR LR (5.16)

Ryq

. . . - 3 1
The analogous equation for the derivatives (RA) 2 —é—ﬁ; [(RA)Z \IIRJ]
and (R,)" z {Rz r»J} is

o~ -~ ~

- & -y - y¥
(67" C7 + g7 €1 = ~yZ(§3 F Y5 Ry) (5.17)

where prime denotes differentiation with respect to RA’" with
A= @,B8,Y as appropriate. These last two equations and Eq. 4.44 can

then be simultaneously solved to yield the following expression for R Ry
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- 1
5 - . V2 ’ + o +/ [ R
R Wy gy 87 - d5 g5 ) (DTN

YR i P r ot +\ -1
Iy g - Jren) Wy g5 - Yy 85 ) (N7 NG

“(Y; 8y - Yy gy 1T wyvE  (5.18)
where
Y=5L-45% (6-19)

Transposition of Eq. 5.18 giveé BJ, and Eqs. 5.18 and 4.44 when

substituted into Egs. 5.16 or 5.17 will yield expressions for (,J and
: =

sy | |

The procedure just described furnishes the full R 3 matrix

Its closed channel parts may now be dlscarded and the open channel
part of the c:cattermo matrix SS; calculated from Eq. 3.8. S} may

' AN J)\ i
then be used to caiculate P th;‘ , the probability [40] of transition
’ Ay : '

from a given initial arrangement channel ) and internal state VA}A
to final arrangement channel )’ and internal state vy jX' (for a given

total anbmlar momentum quantum number J) through the relation
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A V?&' jhl ()A_’VAI j?\I 2

p.AA = s (5.20)
J)\\;\]A J AV

M

Note that this is a distinguishable atom transition probability. Effects
of indistinguishability of particles will not be considered until Section
6.2. As mentioned in Section 2.3, the total angular momentum is

simply equal to the algebraic sum of the rotational and orbital angular

momenta, i.e., J = j7x+ ﬁ)\‘ This allows us to reexpress
RfV N

‘ A A interms of initial and final orbital angular momenta £
JR.V)L}K , - A

and ,QA; . This has a useful semiclassical interpretation since the
initial orbital angular momentum quantum number ‘Qh is related to

the classical impact parameter b, through the relation

A
. = kM. b | (5.21)
xA oA
where Eg‘ i is the wave number in the mﬁ}k,i‘h coordinate system
. K .
(defined in Section 2. 2)
kA, = 2 E - B . )]2 | - 6.22)
Vh}k 2 \r}*}}h 4
= a. kx «

X | Vda
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5.2, Distinguishable atom scattering amplitudes and cross sections

In this section we define the "'physical’ scattering solution, and
the distinguishable atom scatterihg amplitudes and cross sections.
In addition, we derive a relation between the coplanar scattering
~amplitudes and scattering 'matrix analogous to that of the usual three-
dimensional partial wave theory. |

Let us consider a collision between atom A)\ and molecule
A,A,. Let the latter be in internal vibrational-rotational state Vi
and let the relative initial velocity of the colliding partners be
v‘};,xjh . In addition, we choose the direction of relative approach to Vbe
| th.e x axis of Fig. 1. The “pﬁysical" Wavefunctibn @gv

describes the outcome of such a collision is the solution of the

i
ATA which

Schrodinger equation (Eq. 2.1) which behaves aéyinptoticaﬂy at large
R)\’ R, or Rx as

ik* . R cos X,

—AV.]. Vydy A 1 - —
M e . @) r.2 ¢35 (1))
P - : HhLoMA ThRLY
af
.m}{ijf M...% VA’}X A .m“"z';“';‘ r -
+ ﬁZ‘,L f}kv? A (X?f) R}L’ e ga}., , (GX) rxf ¢i‘\,,i ) (rx)
Xyedy S22 X XX

(5. 23)

The summation extends over open and closed channels. For closed

channels, ﬁi‘f P
?‘:» j?‘é

[y

is a pure imaginary and e
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exponentially decreasing function of R The f corresponding to

i
open channels are the scattering amplitudes for the }‘vhjk —Xv N Jh
scattering processes, The first exponential factor in the righthand
side of Eq. 5.23 represents the incident relative motion line wave
(the 2-D equivalent of the 3-D plane wave) whereas for the open .

hannels the R exp (1L7‘ i R X) represent the scattered circular
k X

non-reactive ()" =) and reactive. (' 2 )\) waves. The

1

T 2 Q (6‘ ) qbv . (r ') are the planar motion vibrational-rotational

wavefunctions of the isolated A A molecule in state v_, and

RV
differ from the corresponding unbarred func,tmn only by the proportmn—
ality factor /a y) (see Eq. 2. 3)

The differential cross section for the AV 3 - A vy ]A process
(assuming that both these states are open at the total energy E - - :
considered) is defined as the ratio of the outgoing ré,dial flux per unit
Xy ‘angle to the incident line wave flux. In the 2-D imrld being
considered ithas dimensions of a length per unit angle. For the case
in which all three atoms are distinguishable, it is related to the
corresponding scattering amplitude by

Avorice
Y (Xyr) = (X A Ay )!f”? :
?\} A 2 Vala AT

A

o. (5.24)

AV

For either reactive or non-reactive collisions ka is the angle

between the initial and final velocity vectors of the atdm with respect



215

to the diatom (i.e., between the initial and final directions of motion

of the atom in the center of mass system--the G__ system of Fig. 1).

Xy
The integral cross section for the same process is

- : 2
XiV N XVJ
ACA
Qy S f RV} A (x y) Ay | (5.25)

0

" 1t has the dimensions of a length.
AV.UIL ’
We define the unbarred \pr ATA as a solution to the Schr'cidincrer :

| Eq. 2.4 (involving the mass-scaled coordmates T R ) which behaves

kﬁ

asymptotically at larcre R RV or R;c as given by Eq. 5.23, but with

A?
all bars removed. It is straightforward to prove that

AN j o
A -t Vala a
\pr = &, Irp | (5.286)

and as a result that

i
e a2, )&Vi} .
f ?;’L (Xy) = 2 £ X (Xy) (5.27)

If we now define the dimensionless scattering amplitude f by

. A i .
x”t)fj;\ o) m ¢ “lvv axN | ) 2 }\,Vhrlkz - ( ;
A X 5 = - f , X N 5.28)
AVain AVaIa

expression 5.24 becomes simply
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Av 'j?t' A r];

A ) A 2 |
o ) = = lhy P el (5.29)
: k
v.]
AA

Therefore, once the open channel dimensionless scattering amplitudes |
f are known, the differential and total distinguishable atom scattering
cross sections are easily calcuiated from Egs. 5.29 and 5.25, |

respectively.

In terms of the f the unbarred version of Eq. 5.23 can be

written as
’ ikx R.,cos X
AV, ] Av;j, Vorjor TN '}
o XA LT 5 zoe A +
, Y
. k> . Ro

H L ﬂkiV )7 1 Vel A 1 i

; PR Tre A T @0 el )
plv AT R% ' W N

Voriye

A A

| (5. 30)

We now relate the scattering amplitudes to the scattering matrix;
To do this, we expand the physical solution Eq. 5.30 in terms of the
scatftering matrix solution (Eqs‘. 5.4 and 5. 6) using an equation

analogous to 2.12
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v R
RO

P  J= oo sy

iy, Avd
MA g M (5.31)

AVy] .
To find expressions for the coefficients g JA A and the scattering

PO.NAAN) N
amplitudes f A TA , we first expand the X,,~-dependent portions
)W;\]A A

of Eg. 5.30 in terms of the eigenfunctions @y (XA')’ then express the

RA: -dependent portions of Eqs. 5.30 and 5.6 in their asymptotic forms

(Egs. 3.25 and 3. 26) involving exponentials., We finally equate the
coefficients of the corresponding R)f exponentials, ¢ 3 (th) and

rotation-vibration basis functions in both sides of Eq. 5.31 and solve
hvﬂ?&' '
SJ
(x/\,) in the Py (XA.')‘

the resulting equations for a and for the coefficients of the
. ,J\’ V}Lijhi
expression of wa) i,

The expansion for the line wave is [41]

,.Rp
ik R.,co8 X a0

LAS Mo A o WXy o |
e ACA = 2 i' e AQ,JJ (kz\:, ‘>'”RA’)
B Y WY
G .

. - k> - Ror .w
T 1 2 [ﬁ A e T

R e A. . i J:mOO" ‘

: X % kv?t’ 3;&, RAI

] i '
ATA T e 4J 0y (X, ) (5.32)
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As a result of the relation between ’;’k, X)\ and 9)\ given after
Eq. 2.1, and of Eq. 2.9 we have '

00 = BT o 0G0 e 05 (5.33)

Using Egs. 5.30 through 5,33 and following the procedure outlined

above we get

AV, | |
N eI ISCRNE 6-34)

and, for the dimensionless scattering amplitudes to open channels,

?hvﬁqk [ 1y T ]
AN (Xyr) = exp(l;lhka)exp 10, =3y~ 2) 5

&< ¥ 3 I 4 °
— P AR N AV i) .
23 [s" ;&Al -5, ?‘}goJ(xA,) (5.35)

Eq. 5.35 differs from that obtained by Walker and Wyatt [40] only by

the phase factor exp(wijA; XA

and of the result into Eq. 5.25 leads to the following rather simple

v+ ). Substitution of Eq. 5.35 into (5.29)

expression for the integral cross section:

)f'V rj?\i 1 °° ] oAV l} £ )Lfvh a2 ‘
- -5 (5.36)
AV}L]A, kh‘ J—~moo J?\V IA A\A]K
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Egs. 5.35 énd 5.36 may be written in terms of a sum over J {rom

0 to « by using the relation

AN, A’Vp-j'i
SO )\n. A — SO hn,. ). (5.37)
Ty Sy,

This expression is a consequence of the symmetry of the Hamiltonian.
with respect to reflection through fhe plane of motion. Additional

symmetry relations which follow from Eq. 5.37 are

RRTEIN AN
oA (x,) = £ AN (X)) (5.38)
AN Ty A AV A '
and
‘ ?&5‘72{ - 3){ }va}j j)\.}
Qv - T v, (5.39)
P ax

Egs. 5.37, through 5.39 are valid for any planar alom plus diatomic
molecule collision process. For reactions of higher symmetry such
as H +H,, there exist additional relationships some of which will be

discussed in the next section.
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6. APPLICATION TO PLANAR H +H,

6.1. The integration, matching and distinguishable atom asymptotic

analysis

In the application of the methods described in Sections 3 and 4
to the H + H, exchange reaction, a considerable reduction in compu- -
tation time can be realized by utilizing two important symmetry -
properties of this collision system. The first is the invariance of the
collision system and associated coordinate systems with respect toa
cyclic permutation of th‘e three atoms. Mathematiéally this means tﬁat
all equations derived in Sections 3, 4 and 5 are invariant to a cyciic
permutation of the indices }\wc; which implies (1) thét we need to
integrate the Schrédinger equation in only one of the three arrangement
channel regions depicted in Fig. 2, (2) that we ﬁeed only calculate the
projection coefficients h, b’, T and defined in Egs. 4.11, 4,12,
4.22 and 4.23 on one of the three matching surfaces (such as ”11}\)’
and (3) that the ) — v, y — x and k — ) distinguishable atom
scattering. amplitudes are all identical -as are v — ),
Ak, k —y, and x 7, v = u; kK — K SO we may restrict ouréelves
to a calculation of the ) — x; A — v and X — k scattering amplitudes
~only. The second symmetry property is related to the mvarlance of
the collision system (but not the associated coordinate systems) with
respect to an interchange of any two of the three atoms. This resulis
in a potential function VA (rh,HM}’A} which is symmetric about

‘}’}t:::(:‘zj/gz
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VA (rAS R/\J 77""}/}\) = VR (rA,, RA’ 'yl) ) ‘ (6' 1)

To a large extent, the consequences of this property depend on the
coordinate system being used, for while Eq. 6.1 is valid in all regions
of configuration space, the ) arrangement channel coordinates,

R are not themost convenient coordinates to use in all three - .

et |
arrangement channel regions. In arrangement channel region 3,

Eq. 6.1 has the immediate effect of decoupling rotational states of

even and odd quantum numbers 3A This means that the integration in
arrangement channel region x can be done in two .separate steps, one
. for even 3:& and one for odd 3}&; In each of these steps the total
number of basis functions required is only about half of vthat needed in
the a‘bsence of this decoupling. Smce the computation time varieé |
as N®  where N is the number of states being integrated, and a is
2 for N<10 and 3 for N> 30 [20], we see that a saving of factors
of 2 to 4 in computation time may be realized by this decoupling.

In a similar manner, the:calculation of the matching surface coefficients
of Egs. 4.11, 4,12, 4,22 and 4.23 may be done in two separate steps,
one for even j and one for odd i}ﬁ and the coefficient matrices

It

£V and £ Y hay be obtained from hT and by by using the

=dJ
simple reiatzons‘

AiV}

v
(o ghth (N (6.22)

hJ



LAB N i, +i v, i
AT sy A
€55 PR | (h'7F) 2 (6. 2b)
I T LU .

We must note, however, that the number of matching surface functions

T‘l:’xl is still N/2 where N is the total number of even plus odd jk
ATA

states. The matching procedure wltimately couples the even and odd

rotational states j)\ (through Eq; 4.44) so that decoupling beyond that

point is lost. However,i symmetry of the system about s t7/2

(Eq. 6.1) may be used to relate the A — v and ) — k scattering

amplitudes according to:

f;’;;’j' S NAS %‘;’;’]3 (6.3)
as is shown in Appendix C. Equation 6.3 may be used to reduce the
work involved in the asymptotic analysis to the calculation of only the
X ) and A -y scattering‘ amplitudes. An additional consequence
of Eq. 6.1 valid only for the ) — ) scattering é.mplitudes (i.e., the
non-reactive transitions) is the familiar relation (also derived in

Appendix C)

av’it . | o
f)\Vj = 0 for j-j =odd | (6.4)
and the incorporation of this relation into the asymptotic analysis can
also result in a reduction of computational effort. We should note,

however, that the two symmetries given by Egs. 6.3 and 6.4 depend on
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our use of a complete basis set TW\} for expandin(r the wave function
Vaa

on the matching surface and therefore may be used as a test of the con-

vergence of the method provided these symmetries are not built in fo

the calculations.

6.2. Post antisymmetrization

Up to this point, we have considered the three atoms to be
distinguiéhable. However, to calculate physically measurable -
guantities such as cross sections for reactions like H + H,, we must
include for effects dueto indistinguishability of the threeatoms and the
Pauli principle. Since the three hydrogen nuclei each have a spin of

£, it is necessary to antisymmetrize éur wavefunctions with respect
to inferchange of any two nuclei. This can be done by the well known
procedure of post antisymmetrizatio@ [23]. The application of this
procedure to the hydrogen exchange reaction is given in Appendix D
and the results, which were previously given by . Doll, George and

Miller [42] are summarized below (where the direct and exchange

amplitudes ff and ffj of that Appendix are relabelled as f;t and f;
respectively).
(@) para — para
pV} _ L ey 52
() = =5 FAMENCOI (x>l - (6.5a)
V]
(b} para — ortho
OV} _ 7V} .
() = _ﬁ {f’m o0l (6. 5b)

V]
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(c) ortho — para

1
EX]’ () = =5 ’XVJ ol (6. 5¢)
j

(d) ortho — ortho

ov;g 1 AV i /Y 2
oovi ) = =5 {lfm () + 273 0
V)

v V'] ,
+2 lfm (8 (6.5d)
Note that there is no reference to arrangement channel on the left
sides of Eqgs. 6.5 since this distinction has no meaning after the effect
of the i?auli principle is included. The corresponding integral cross

sections are:

(@) para — para

(2]
I

pv'y’ 1 oav'i’ OVV i’
vaV}f = kx J? ZSJm GVJ Jm ! (6. 62)
(b} para — ortho
ovi' . 3 3 |gonv¥ -
B ., SoA (6. 6D)
v kxitj Foweo  JAV]
(¢) ortho — para
@RV L L3 g (6. 6¢)
ovi T RAT gl I °\



225

(d) ortho — ortho

) S )
ov'jy _ 1 ) oav'i’ Vi qowVj 2
Qovi® = Py VJ____OO{ISJM 5\_73’ * S5
V]
P |sowvi |’y (6. 6d
RS0 - 8d)

As expected, the para — ortho and ortho — ‘ﬁara cross sections are
simply proportional to the distinguishable atom reactive cross sections
since only exchange scattering amplitudes contribute to them. These
cross sections furnish direct information on the reactive process alone.
The para — para and ortho — ortho cross sections will show effects
due to the interference between the reactive and non-reactive (i.e.,

| direct and exchange) scattering amplitudes. The interference effects
should be most important when these two amplitudes have comparable
magnitudes. We will discuss this interference phenomenon in more

detail when presenting our results for planar H+ H, [20].
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APPENDIX A. THE ) — vy TRANSFORMATION EQUATIONS
AND RELATIONS ON THE MATCHING SURFACES

In this Appendix we derive the important relations between the

" mass-scaled coordinates ,Ij)‘,;: (\=a,B,¥) defined by Eqgs. 2.2.

A
They permit us to change from coordinates appropriate for one

arrangement channel to those appropriate for another one, We alsb :
examine the simplifications that occur when these relationships are
evaluated on the matching surfaces defined by Eq. 3.2. This will allow
us to prove that these surfaces are half-planes whose edge is the Y |

A

axis in the OXAYAZA space introduced in Section 3,1. We will

7 consider only the relationships between the arrangement. channel

coordinates g;\,r and EV, r, explicitly. The corresponding

~A
relations between Bv, r, and R o o and between R Xk and -
Bk’ r, may be obtained by cyclic permutation of the indices )v«k.

- The following relations between the vectors :EA’EA and Ev,“fy,

valid for any configuration of the three atoms, follows from Fig. 1

m
mv:m}_}\“ m +'2\fﬁ““}:y
A K
— mv
o BA M.+ M. ~)
v K

From these and Egs. 2.2 we get
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R, Ry
= M (A.1)
£V ~ £h
where M is the 2 X 2 orthogonal matrix
=
y ) (COSQVA - sina,,, > (a.2)
& sina, cosa,,,.

o, being the angle between 7/2 and 7 determined by

Nl

[ mym,

cosga, . = - — B | (A.3a)
V){ . . .
, {(m}fx~ m ) (m, +m) J
and
o i
mKM 2
sin &, = B (A.3b)
| (m, + m, ) (m, + .mv) i
From these expressions we can get the equations for the XA" R)x’ Ty ’)'h"—*

X RT,07, transformation. 'Indeed, from Eqs. A.1 and A.2 and

footnote 25 we get

2 2 2 2 .
R® =R «R = cos R? + sin r* - sin 2@, r.R_ cos
Vo AP Ap a’V)\ A @ Py %

v YA AT A

(A.4)
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P =r +r = sin® au)x + cos® am rl + Sln2avA r)\.RA cos Y.

v ~ A~ A
(A.5)
and therefore
2 2 2 2
R, +1, = R}\ + T, (A.6)

which is a manifestation of the orthogonality of M. In addition, it
follows from Egs. A.1 and A. 2 that the cross products 5)\ N and
R X r_ are equal and therefore that

v o~y

Lol

R, r siny = Rh r, siny (A.T7a)
Since 7, is inthe range 0 to 27, in order to have it completely
specified we should obtain its cosine. From footnote 25 and Eqs. A.4

and A.5 we get

[ o ) .
v v o rag
cosy, = o= = wo [z’szanxw‘(R}\ r )+cosZa COSVA}
vy v
(A.Tb)
Egs. A.4, A.5 and A. 7 completely describe the RA’ NN —R,r,7,

Eransformation. To complete the » — v transformation we define the

angle Aka

AX . =X, = X

o= Xy = X “.9)

and express it in terms of the ) coordinates. We can write
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R ::R)L (cos X

R, X + SmXAZ)

A

= ) X i =L 7 )
r, rk[ cos (XA+ YA)A + sin (XA Yk)z ]
where x and § are the unit vectors along the laboratory-fixed axis

depicted in Fig. 1. From these eXpression'sy their » counterpart and

Bgs. A.1 and A.2 we can easily obtain the following expressions

which determine Axm modulo 27
R, cos AX, = RA cos QM - Ty S}naw& cos ¥y (A.92)
R, sinaXx,, = -T, sing,  siny) (A.9Db)

We see that AX,, is independent of X, and a function of Rk,r and

A A A
% only. This is due to the fact that these three variables uniquely
determine the internal configuration of the triatomic system and hence
the angle Aka between R, and R, (sge Flg 1).
Eguations A.4, A.b5 and A.7 through A. 9 completely describe
‘the 3 — v transformatijon. It is useful to obtain the expressions they

reduce to on the m,, surface defined by Eq 3.2a. In view of this

A
definition and of Eq. A.6 we have, onthis surface,

I'V = I‘"k' (A,l()a)

R, = R, (A.10D)

From these and Eq. A.4 we get the very useful relation
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X o 2
< = cotav cosy;\+(1+co‘ca

VA

. L
N cosz7'>\)-2 (A.11)

between R)‘/r)\ and 7y

among the internal variables are obtained by substituting Eqs.‘ A.10

on this surface. Other important relations

and A.11 into A.7. We find

sin = 8in
"y oY

and, after some algebraic effort,

cos 7;! = - CO8 ’)’A

- which imply that -

v, = w o J”>L {A.12)
: T T T 37
e . L g —_— = L —e .
Sinc ) % 5 we see that 5 yA 5 on m,,

From Eqgs. A.10 through A.12 plizs the expressions resulting
from replacing those equations in A. 9, the x — v transformation

equations on the g matching surface are completely specified.

VA
In addition, since from Egs. A.9and A.10

r
X = - si v (= a)
COSAX,, =cCosa, . -sina , cosy (Rk ) (A.133)
and
. : Y :
SINAX,. == (}T{“) sina,, siny, , (A.13b)

A
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and since from Eq. A. 11, ry /RA is a function of ¥, only (on “VA)’

S0 is AXVX’

We shall now show that Eq. A.11 when evaluated over the

range ~-72L <% < _7T2_. represents a half plane whose edge is the Y,
axis in the OXAY)\ZX space defined in Section 3. 1 and illustrated in

Fig. 2. From Eqs. 3.1 and A.11, we obtain the simple expression‘

cot w, = -~cota, . COS Y, (A.14)

2T <y <
A 12 A’ 2 N

nofxy

for the equation of T, in spherical polar“cqor'dina.tesﬁ In addition,

A

from Egs. 3.1b and A.10 we have, on L

124

@y TV | o , (A.15)

To display the geometrical character of 7, we switch from polar

VX
coordinates ﬁ,wh,y}“ to cartesian ones .XA’ Y)J’ ZK. Equation A.14
then becomes
R ;. T <y < I | .
Zh = cotam XA ; 5 <Yy S 5 | (A.16)

This is the equation of a half plane whose edge is the Y>\ axis and
which makes an angle of - a,,

(measured counter-clockwise from OZ)\ to Ty,

Another ,quantity of considerable importance in the matching

with respect to the Z}\ axis

as viewed from OYA)

procedure is the derivative operator 9/2 D

in the direction of increasing W, (Section 4.1). Since this surface is

normal to the surface Ty,
. V]
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a half plane, this operator is easily found by using the standard

expression

-y | ’ (A.17)

where n . is a unit vector normal to 7 . in the direction of increasing

~VA VA
wy and V is the gradient operator in X)LYAZ}\, coordinates. Expressing
Eq. A.17 in the spherical polar coordinates ¢, w, and % we find
1 Sina 3
- o - + Smwvh [ (aw ) + coto ksm'yk (-5-7... ]
A y X vyt B @yt
=Ll i+ ccszoz cos ) [(
c va a(I)A y}38
+ cota_ . siny, («-L) ]
VX A O wN‘E
1 Slna { A
= = VYA 2( + cota . siny (=2—) }
B stn k,a: O NS«

(A.18)
and the indicated differentiations must be done on the full wavefunction

with §,wk (or T;?\,) and % considered as independent variables before

the relation between w, (or 7])\) and % describing LN is used.

The third line of Eq. A.18 results from the use of N rather than Wy

as discussed in Section 3.2. Equation A.17 can also be evaluated in

terms of v arrangement channel coordinates in which case we find
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on,5

sing
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1 VX
- - cot sin?, (———

{ sinw, {( ')/ otay, SN (67’1; W, C}
L (sinzcznﬁt cos’ o 7\COS LY )2 {(__,._)

A V’C

- ccatczms‘imn')/?k (%_E_’__'.) o r
Yy w, ¢

1 'sinoe { d
w2 - cot i =

: sz? I ‘y Lo~ cota, sin¥ (= - ) n .t }

(A.19)
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~
~

APPENDIX B. EIGENVALUES OF A MA'i‘RIX OF THE FORM U =p2 V

In this Appendix we show that the potential matrices in the strong
interaction and matching regions (Eqs. 3.48 and 3. 61) always have real
eigenvalues even though théy are not symmetric. These matrices have

the general form:

¥
i

Y,

<

(B.1)

s

where the real matrix p* is the matrix representation of a positive
definitive operator (£q. 3.49) and therefore has positive real eigen-
© values.. V is-a réal symmetric matrix whose eigenvalues may be-
vositive, negative or zero.

The first step in finding the eigenvalues of U involves a

diagonalization of p?

2

nR2

4]

n R
il
2

(B.2)

where A is a diagonal matrix whose elements are the various (positive)

eigenvalues of p?, and K is the real orthogonal matrix of eigenvalues.

povd

We now form the réal matrix p by:

(21

(B.3)

no
1
n R
N
a =

4]

. ' ,
where the diagonal matrix é}i has diagonal elements which are the

square roots of those of A. p behaves as il it were the ""square root™

-~

of p® in many applications, since, from Egs. B.2 and B.3,



235

2 (B.4)

no
Qo

1
o

Next, we define the real matrix W as:

-1

(B.5)

nE

~
-~

1
o
i
o
U<
bty

where the second equality in Eq. B.5 follows from Eq. B.1. From
Eq. B.5, it is obvious that W is real symmetric, and it may therefore

be diagonalized by a real orthogonal matrix which we denote by T:

~

(B. 6)

Uk s
n s
=3
i
2t

- The diagonal matrix E contains the real eigenvalues of W.

Finally, if we define the nonorthogonal, but real matrix § by:

2
o

T (B.1)

we obtain, from Egs. B.5 and B. 6

o=k

(B. 8)

nm

2 e

ntn
i

2

which proves that the matrix $ diagonalizes U with the resulting

~
-~

real eigenvalues contained in E.

g
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APPENDIX C. RELATIONS BETWEEN DISTINGUISHABLE ATOM
'SCATTERING AMPLITUDES FOR ATOM DIATOM REACTIONS
INVOLVING HOMONUCLEAR DIATOMIC MOLECULES

In this Appendix we investigate the consequences of two-atom per-
mutational symmetry (as discussed in Section 6.1) on fhe distinguishable
atom scattering amplitudes. We show that in colli:sions for which Eq.
6.1 is valid (i.e., ccllisions of an atom with a homonuclear diatomic
moleéule), the resultant scattering amplitudes f;:;’l i) and f’;:;J] are
related by Eq. 6.3 and that f)i\\‘r;’ ' obeys Eq. 6.4. Thé circumflex on
f of Eq. 5.28 will be omitted tathis Appendix.)

We first rewrite the scattering solution Eq. 5.30 for collisions

" with incident linewave in channel

1>\ oA
A0 B 2 2% Py,
¥ S ¢. 6)
Y
k% ., R
o A N4H
+ 20 £ AN (X ) @ (0)
Ax X
¢ (x,) 1
AL PO
ik . R
v.i v
vy :/v j
e
~ 2 ””(,,)cp ©,)



6. . () 1
Wwh v - h 2
T, G T
v VvJV
K
elkvfcjx R KV 3 :
v B 5 ) g 6
R,y= o Vil R, ATA K
K
¢ij;{ (PK) - % . ‘
X \/. ( 'VK i ) : (Col)
r |3 s
K Vel

If the diatomic target in the incident channel is homonuclear, the
physical system should be invariant to the .opefator‘ Pu K which inter-
changes the two identical atoms Av and A « involved. If we perform
this interchange, the coordinates which define the system in each

arrangement channel become (by inspection of Fig. 1):

By X0 = By, X))
(ry,8,) — (ry,6, +m)
(Rz;f’ Xv) - (R;{" ch>
(r,.
RX) ™ R,X)

(r!{-z’ 3]{} - <rV§9V + 77)

(C.2)
9},} - (ricf‘ 9.‘{ +17)

If we make these substitutions into Eq. C.1 realizing that
3 (&X—% a) = (=12 goj (6}‘), and appropriately relabel quantum numbers
. A .
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which serve as summation indices, we obtain:

a1 A . A
AN N A R ERACY
P \pr ~- (-1)% e : ? (GA)M
R,— = | I wfr
1kA,3:R o
i PUS Y]
+E<1>>\em W?’\(xm(e)
Y A A
Cor(rl) .
w _aha (B y?
N lv, |
bUY
ik, § Ry
K K VV
B (1) 2 —— f1 f»(x)¢ ©,)
K vl{jf{ K AA K
¢y o (x)
x Vide K ( il )3
VT plv? .|
k Vx]x:.
ikt . R
53 1, e ol ¥ mr]
~ o e (1) W (x @ 6)
Rv © V1, RV W
¢ . (r) 1
X VV]V v ( h ) 2
VA7)

(C.S)
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‘ , i
The line wave part of C.3 differs only by a factor of (-1) A from
the corresponding part of C.1. Since the scattering solutions are
unique, this implies that the corresponding circular wave parts must

be related by the same proportionality constant, i.e.,

}\V;\J

I, avi ' ,
P Mty M (C.4)

VK z‘["p

Replacement of Eqs. C.1 and C.3 into C.4 and identification of the

corresponding outgoing wave parts in channel ) immediately yields

Y Fak

AV IR DN
f A';\. — (_1) )i ), )\‘ K (Ce 5)
ANIa | ANy

which is identical to Eq. 6.4. In order to compare the outgoing wave

solutions in channels v and k, we first must realize that the

¢¥ . (r) (and XY . ) of Eq. C.3, andthe ¢¥ . (r ) (and KX . ) of
Yelg ® Yilk ’ - Yide K , Yelx

- Eq. C.1 are identical since these represent vibrational wavefunctions

in the two product arrangement channels both of which are the same for

a homonuclear target. This allows us to compare the outgoing wave -

solutions in channels » and x in Eq. C.4, obtaining

AR i\ +1, kvi ' :
fLEKE o (ayr K g KK . {C.6)
KV}“IK }‘V?\])\

in both cases. Eq. C. 6 is identical to Eq. 6.3.
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APPENDIX D: POST ANTISYMMETRIZATION
FOR THE H + H, EXCHANGE REACTION

Although correct expressions for the indistinguishable (anti-
symmetrized) cross sections in terms of the distinguishable atom -
reactive and nonreactive amplifudes have been listed by Doll, George
and Miller [42], who have obtained their results using the integro-
differential equation approach described by Miller [43] ; there seems
to be some confusion in the use of these expressions so we shall derive
them here in order to clarify their meanings. We will follow the post-
antisymmetrization procedure outlined by Schiff [23] which is somewhat
‘more transparent than Miller's. Inall of éur_treatxnexlt below we
assume that the interaction potential is not spin-dependent and ihal ihere
are no external magnetic fields present.

We start by rewriting the asymptotic physical solution (Eq. 5.30)
for disiinguishable atom scattering (in the mass-scaled coordinate

system), using; for notational simplicity, thelabels A =1, v =2 and k = 3;

3 ikt,., R :
1V R — oy ik »“R V] 1 )
. ‘(1 2,3) e ~ Vit i 2:3) + 20 S Wi (2,3)
: v'i; VR Vidz
. l 1 1
st 1v’1
1]1 1
X C LT ()
ik’ . R
Valy 2 2 V.i. 2V,
R, — e . . (3.1 2lz 2J2
z,ftifw 2 YR, szlz( 1) C f}‘vl,}l (Xz)



241

iki’sjg RS . vV, j 3v, j...
ReZo 7y & 20 wli@,1) O £ 70 (x,)
Vila wfﬁz 3d3 U
(D.1)
where ,v for example,
i
@; (0,) by 5 ()
wl.o(2,3) = 2T (.2)
131 “[I‘I
and
VI’ jl ] % i
o 7 h D.3
( #[VV,j:l ) ( )
i3

For sﬁnplicity the circumflex on the scattering a.myplifude fof Eqg. 5. 3‘0
has been omitted. . Notéthat we have used the numbers 1, 2 and 3 as both
an é.rmngement channel label and a particle label. Provided that we al-
ways permute particles in a cyclic way in our arrangement channel label-
ing, the two designations are identical and we will consider this td be the
case here. This means that the coordinate r, is the internuclear vector
from particle 2 to particié 3 (inthe Ry, 1, coordinate system) and there-
fore ﬂiewz, § diatoraic molecule wavefunction ‘is a function of ‘3:1, We |
should also point out that for H + H,, ’théseparated arrangemenf

channel quantum states are all identical so the labels v,j,, v,j, and

v,i; are esse‘ntiauy dummy indices and do not impiy, for example,

that W;le szja or W‘isjs when

iy =iy =], and v, =v, =v,. As a consequence of the symmetry

differs in its functional form from W

property of Eq. 6.1 for H + sz and in view of the above discussion,

the wavefunctionin Eq. D.1 has the property
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Lv,j
P

1v,j j
v (1,2,8) = (D) ¥

(1:3:2) (D.4a)

This is valid in all three arrangement channels provided that Egs. 6.3

and 6.4 are satisfied. These two equations also imply that the behavior
2v,j '

of the wavefunction ¥, ur. (2,3,1) under the same permutation is:

Zvljl' 3v

h 11 |
‘I’p 2,3,1) = (-1) Wp (3,1,2) (D.4b)

Now consider the spin wavefunctions of the separated atom plus
diatom system in arrangement channel 1, Since the three hydrogen

., atoms have spin %, these wavefunctions are:

v, (1,2.3) = a(l) a2) a3) - (D.Ba)
v, 1,2,3) = (1) a2) a@®) | (D. 5b)
% (1,2,3) = — a)[a@) E) +6@) a@)] (D. 5¢)
v, (1,2,3) = 2 () [2@) 66) + 50) o) (. 54)
v, (1,2,3) = a(l)B@)BE) o (D. 5e)
ve (1,2,3) = B(1)B(2) BEB) N (D.5)
v, (1,2,3) = —;-}g a(t) [a@) 6O) - BER) a@)] (D. 5g)
v, (1,2,3) = 7%5@5{0:(2}3@ 8@ a®] (. 5h)

They are éigenfun’ctions of S, but not S? and have the symmetry property
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(v;1,2,3) i=1-6

v. (1,3,2) = | (D. 6)
1 2 5 s _r
l."vi (1;293) 1= Z,8
The correct separated atom plus diatom wavefunctions are then
lvljl(i) 13 3 — lvlji 2 %Y v 1 9293
& (‘“9 ’ ) - ‘I’p (19‘ 3 ) "]'_ ( _;Z’ ) (D' 7)

where (i) here designrates the spin state of the system. Since
«ibhljl (1,2,3) must be antisymmetric with respect to permutation of
particles 2 and 3, we have the requirements (in view of Eqs. D.4 and

D.6) that

fodd for i=1-6 (ortho states)
io= / - |

XA ' (D- R)
( even for i='7,8 (para states)

We now form the completely antisymmetric wavefunction
@Avijl(l} (1,2,3) by superimposing the functions @xv’“]l(l) (=1,2,3)

having the same initial states vj,:

. ge . I ¢ pe 2 v 3 £y 3 i (i
g;AVIh(l} - & v,3:(3) (1,2,3) + & vii (8) 2,3,1) + @ Vi () 3,1,2)
i=1-8 . ».9)

Eqgs. D.4, D.6 and D. 8 can be used to prove that ¥ 152 (3) is antisym-
metric undera pérmutai:ion of any two of the three particles in the

system. This then is the correct scattering solution, and its asymptotic
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behavior can be used to determine the correct antisymmetrized

scaftering amplitudes. This asymptotic behavior can be determined

Avi (i :
by evaluating ¥ vl () at large values of R, (or R, or R,) which
yields:
L _ |
Av,i. @ oo ko o Ry
¥ 11‘()(1,2,3) By e"’vﬂl S W, @, 3)v 1,2,3)
V!]i RI v e 1
]1 111
+Z3£~—-~——-W,(23)cl{f v(1?3)
vii YR, W vy
INAH 1V } ,
SRR Ny vi (3,1,2) (D.10)

This has the form of a physical scattering solution, but the expression
in brackets must be re-expressed in terms of the vs (1,2,3) spin

functions of the final separated atom-diatom (j = 1 to 8). Accordingly,

we write
V’jp 1 I}-I ' iv 131 . v
“i’\’xh (1 2 3) + fz Vi, (2 D)+ f3V] i(3,1,2)
& Ay, Q ‘ ;
= 2 f Yy (1,2,3 |
Z g, G029 (D.11)
Avi, . : . .
where f is the antisymmetrized scattering amplitude for

@)vid,
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scattering from initial state (i)v,j, (spin state i) to final state

G)v)i] (where Eq. D.8 must be satisfied for both of these states).
A(j)v 1]1

AN

integrating over all spin variables and then replacincr the index k by j

in the result, The resulting expressions for i(1)(1) S

“We can solve for the f by multiplying Eq. D.11 by v, (1,2,3),

j in terms of the
l 1

distinguishable atom scattering amplitudes are given in Table I.

The expressions in that table have been simplified by the use of the

relation (see Egs. 6,3)5

1v}3; i +in AVi
£, 100 = (1) £, 1P .12
2v,iy (-1) 3v,i, (D.12) \
. j'
In the notation of Doll, George and Miller [42] flvlj ' is the direct
. 14 . V141
scattering amplitude while fzvl;l" is the exchange amplitude.
121
The state to state cross sections are (from Eqg. 5.29):
G(J)Vi it 3 1 S Gyviiy ‘ 2 (D.13)
(v, k i (1)"131 )
I3

and the cross sections of Eq. 6.5 are obtained by summing Eq. D. 13
‘over final spin states and averaging over initial ones. As an example,
the para to orthe cross section (Eq. 6.5b) is given by (dropping the |

'ijn vy j; indices but retaining the spin labels)

& 1 <
. a;ﬂe:r: +€r§ +G‘§+o*;+ Op + 0y ) = % ile? (D.14)
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[ N Y ‘
ROV Bl 2 | 3 | 4| 5| 6|7 ] s
NN 1=
it ~odd | odd | odd | odd | odd | odd || even | even
Tabel |
initial * | ortho | ortho | ortho |{ortho | ortho | ortho |} para | para
i| i [label |
1| odd | ortho | ££488] 6 | o | o | o | o || o | o
2! odd | ortho| 0 £ |v2g | o o | o [lvag, | o
3| odd | ortho| 0 [vV2f |f+f | 0 0 o || -5 | o
' 11 1 , 1
4} odd | ortho| © 0 0 |f+f, |Vaf, 0 0 £,
5{ odd | ortho | 0 0 o |v2f | f 0 0 |-v2 f%
6| odd | ortho | 0 o | o | o | o |fi+25] o | o
X. 1 1 I
7]even | para o |v2f, | f, 0 0 0 fif;,-f,| ©
8leven | para | 0 o | 0o |-f V2, | o | o |f-f

. Frf
Table 1. Antisymmetrized scattering amplitudes f((]i))‘;ﬂ.l and their

Fst
1Vily

relation to the distinguishable atom amplitudes fl"zjx and fzvljl .

;

N e
* o . Feh ! Vil
The indices v,j, and v;j; on the fﬂ";}:_ and

Y
2Vily

Wi

L
WVily %

are omitted.
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FIGURE CAPTIONS

FIG. 1. Vectors used to specify the location of the three atoms in the
A, B, C collision system relative to the center of mass G.

GBC’ G AC and G AB denote the locations of the centers of

mass of the diatomic, BC, AC and AB, respectively.

o -

R

R, I, Eﬁg Eﬁ; R, r,, are defined in text.

FIG. 2. Plot of potential contours for the H + H, reaction in the

X,Y, 2, space defined in the text using the spherical polar

coordinate mapping of Eq. 3.1, for six fixed values of the
azimuthal angle 7/;\.; (é@) % = 0°and 180°, (b) % = 45° and 225°,

{c}¥. = 90° and 270°. In (a) we also denict the lines af inter-
Vo A . .o s .

section of the % = 0, 180° plane with the half planes T

Beps Tyg defined by Eq. 3.2, which are used to divide

configuration space into three arrangement éhannel regions
A,V k. For each figure above, OWA is the interseetion ofv the
hatf plane deterfnined by OZA and the correéponding smallest
% With the OXAY plane. .

, Space into four regions I, II, IIT and

IV. The contours are equipotentials of the matrix element

FiG: 3. Division of the Rk,r

V(f‘ (rk’R)x) (see Eq. 3.8) in eV for the Porter Karplus H + H,
potential energy function. The dashed line I, i$ the line of

steepest ascents and descents for Vf,\ The locations of the
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points P;, P, and P, are discussed in Section 3.3 of the

text. Q is the origin of this space.

FIG. 4. The polar coordinates pys ¢, and ¢, 7, and their inter-

| relationships in RA,’ r_ space.

A

FIG. 5. (a) Plot of the matching half planes 7 , and 7, , and their

YA AK?

intersection with a cone of constant w, (v, <w, < w, )

o A PR S
showing the straight lines of intersection which occur at two
angles % (w}\) for which cot Wy == cot @, COS % and two
more for which cot w, = - cctaM cos Y
(b} Lines of intersection of Ty with constant w, cones at
intervals of Aw, = 5° for H + H, where Wy = 60° and

0

©, = 900°
W}tl ©

FIG. 6. Plot of equipotential contours on the matching surface LN

for the H + H, reaction in the Cartesian coordinate system

X
; . - 2 qin2 2 z2 ., 2 ‘
'S.T»”}\sY}i where W;\ (X‘;’\ sin“er,, + ZA eos’ ozpk) and the
system XA’YA’ ZA is the one described in Section 3.1,

Because of the symmetry of the H, system, Fig. 6 is equivalent

to the lower half' of Fig. 2c since the ZA < 0 half plane of the
o OYKZ}\ plane is for this system the same as the Ty matching

planee' The half-lines eménating from the oi:igin correspond

to constant values of ¥

A and My 38 indicatec.



255

Figure 1



256

Figure 2a
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Yy= 225° 7y =45°
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Figure 2b
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g}cc'urate uantum mechanical cross sections for planar atom diatom
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T

George C. Schatz and Aron Kuppermann

Arthur Amos Noyes Laboratory of Chemical Physics,
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Division of Chemistry and Chemical Engineering™,

California Institute of T'echnology, Pasadena, California 91125
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The results of an accurate guantum mechanical treatment of

_ the planar H + HZ exchange reaction on a realistic potential energy
surface are presented. Full vibration rotation convergence was
achieved in the calculations, and this, tbgether with a large number

of auxiliary convergence tests, indicates that the cross sections are
accurate ta 5% or better. The reactive differential cross sections

are always backward peaked over the range of,total enefgies from
0.3t0 0.65 eV. Non-reactive j=0toj' = 2"01‘0‘55 secfions are béck«
wards peaked at low energy (0.4 eV) shifting to sidewards peaking

for E> 0.5 ¢V. Quantum symmetry interferehce oscillations are

very significant in the j =0 to }' = 2 para to para cross sections for
E=0.6eV. Reactive integral cross sections show two distinct

kinds of energy dependence. At low energy (< 0.5 eV),ﬂ barrier tunnelling
gives them g lgr'gely expénentiai énergy dependence while above 0.5 eV
(the effective threshold energy) the cross sections are nearly linear.

Comparison of collinear and coplanar transition probabilities indicates
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similar 1D and 2D energy dependen.ce but -With a shift in energy

from 1D to 2D due to bending motions in the transition state. An
analysis of rotational distributions indicates surprisingly gdgyd corres-
pondence with temperaturemlike distributions. The results of a one
vibration approximation calculation are examined, and errors by

as much as three orders of magnitude are found with this method

at some energies. Sh;ioes of angular distributions are, howevef,
accurately predicted. Additional analyses include comparisons with
previous distorted wave and coupled channel results, and calculations

of thermal rate constants.
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A reaction of fundamental interest in the field of chemical
dynamics is the H + Hz hydrogen atom exchange reaction. This
simplest of chemical reactions has been the sub.ject of numerous
dynamical studies by quasi-classical, 1,2 semi—classicals’ 4 and

5-13

quantum mechanical methods and has been the focal point for

the development of lmany approximate reaction rate theories. 14
In addition, this system provides the fundamental example for
characterizing quantum effects in chemical reactions and determining
-their importance on experimenté,l cbservables. For thESe_reasons, _
the calculation of accurate quantum mechanical cross sections for
H+ H.2 is of greaﬁ importance. Unfortunately, until“recently there
exizted neither the proper methods for efficiently solving the Schriddinger
equation for this ‘system nor aééd&atély' powerful computers to handle
the computations invelved without the introduction of apprdximations
of uniémwn accu'ra‘cyc _ _

| In a previous paf,peri5 (hereéfter referred to as 1) we presented
a method for accurately and efﬁcyienﬂy solving Athe Schrodinger equation
for reactive coﬂisieﬁs of an atom with a diatomic molecule moving
on a fixed’pla‘ne. The planar motion restriction was introduced for
computational simplicity only with no fundamehtal limitations involved
in appljving a similar procedure to three dimensional'collisions as well.
In this paper, we present the results of an appiication of this method
to planar H + H, on a realistic potential energy surface. The results
to be discussed include reactive and non-reactive transition probabilities,

differential cross sections and integral cross sections, product
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rotational state distributions and rate constants. In a preliminary
communication, 8 we examined the importance of closed vibrational
channels in a vibration rotation close coupling expansion and found

that the errors associated with an early truncat_{on of the vibrational
basis set expansion could be very serious in many cases although
qualitative trends oﬁtained with the truncated basis were often properly
described. We will examine the one vibra,{ional basis function approxi-
mation in somewhat greater detail in this paper, and will, in addition,
compare our results with the approximate results of others in which
different methods, types of apprbximatioxxs and potential surfaces
were used.

As we pointed out in I, the method we have developed for
solving the Schridinger equation for planar atom plus diatomic
molecule collisions can be extended to 3D systems without significant
conceptual changes, so an additiqnai reason for undertaking the current .
calculations was to test the feasibility of the method in prepa,ration
for its application to 3D reactive systems. These calculations for
the 3D H + H2 system are currently in progress and will be presented
_in detail elsewhere. 16 A preliminary communication of the results
of this 3D work and its relationship with the coplanar results presented
Eiere has already been pgblished. 9

In Section 2 we describe the reactive scattering calculations,
including convergence tests and computational considerations, and
the représentation of the potential energy surface. The results of the

calculations are presented and discussed in Section 3. Seclion 4

contains a general summary and discussion.
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2. QUANTUM MECHANICAL CALCULATIONS FOR PLANAR

2.1 General Description of the Method

The method used to solve-the Schridinger equation for planar
reactive and non-reactive H + Hy collisions has been extensively -
described in I. As outlined there, the procedure for obtaining the |
full set of primitive solutions to the partial-wave Schrodinger equation
is divided into two stages. In the first one, a close coupling method
is used to generate solutions to the Schrddinger equation in
each of the three arrangement channel regions of internal configuration
space. These solutions are then smoothly matcheé to one another in

the second stage and the resulting primitive solutions,which are every-
Where smoothly continuous,are then linearly combin’ed to yield the
appropriate reactance and scattering matrix sohitions. This prdcedure
is then repeated for a sufficient number of partial waves J to obtain
~ converged reactive, inelastic and (if desired) elastic cross sections.
The potential energy surface used in all the calculations was the semi-
| empirical H3 surface of Porter and Karplu.sw (all coupling to excited
electronic surfaces being neglected). In solving the Schrédinger
équatian for these reactive collision sysfems, great care must be
exercised to insure adequate invariance of the results with respeci

to a change in (a) the number of vibration-rotation basis ﬁuhctions used,

(b} the reference potential Vr used to generate these functions,

ef
{c) the representation of the potential surface (see Section 2.2) and
{d) the nature of the functions used to represent the wave function on

the matching surface (i.e., the "matching surface basis functions' of I).
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As discussed in I, a number of symmetry properties inherent
in H+ H2 and similar systems may be utilized to reduce the computation
time involved in doing these calculations. Most significant in this
respect are (a) cyclic permutational symmetry of the three atom
system which allows one to consider ounly one arrangement channel
regioﬁ in doing all ealculations, and (b) two atom permutational symmetry,
which éﬂows one td decouple the even and odd rotational states throughout
most of the calculation. These same symmetry properties allow us to
reduce the number of different distinguishable atom scattering amplitudes
between a given initial vibration fotation state of the rea,genf H‘2 and a
given final state of the product H2 to just two: ohe reactive and one
-non~reactive amplitude. We shall denote the reagent diatomic_: states
by the vibration rotation quantum numbers vi 2nd the product ones
by v"j*; " DiSfinguishablé atom reactive trassitions will be designated
by the superscript R, non-reactive ones by N and (indistinguishable)
anti-symmetrized ones by A. In this notation, the relation between the
antisymmetrized differential cross sections and the distinguishable

~ atom dimensionless scattering amplitudes (Egs. 6.5 of 1) is:
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.1 ]fN fR ’2
I{v? vi=v'j' " Tvi—v'y’
(j, j' even, para - para)

3 R - R
k‘vj {fvj -~ v'j' l 3¢ vg - v'j’
A (j even, j' odd, para — ortho)
“vi—vi={ L kR 2R (2.1)
K,y ievil T ovie v
(j odd, j' even, ortho — para)
1 N R 2
kvi { ifvj - v fvj -~ '’ ' !fw e V’]'] }
" (i, i* odd, ortho - ortho)
where k vi 18 the (unscaled) wave number (Evj of 1), and f§ -y and
R vyt ewv'y . - )
fv;ﬁ v were denoted by f i and f?xvj , respectively in I'. For

planar systems, the rotational quantum number j is an algebraic inte-
ger and may be either positive, negative or zero. For j =0, the two
 states 3 and -j are degenerate and said to have different polarizations.

_ Lross secuons wmcn nave been summea over ima,i. rotational polariza-
t‘:mns and averaged over initial ones will be indicated by the symbols

Cyi §— vyt and {(for the integral cross sect1ons) Q—w

the 1ntegra1 cross section Qﬁl 02 is given by:

Vit ¥or example,

Q0102 = ft %1-»92 + Qm--s 5+ Qg 1-02 * Qo 1-0- 5] (2.2)

In I (Appendix C and Section 5¢2) we found that the symmetry of the
Hamiltonian with respect to reflection through the triatom plane leads

to the following relations between cross sections within the same
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rotational manifolds (valid for R, N or A transitions):

OVj *ijs(X) = UV-j . Vv_ji‘(z'ﬁ - X) ' (2‘3)

and

:Qv__j_,vf_jt (2.4)

-

Q

vi~ v'j’
As defined in I, the scattéring angle x is the angle between the directions
of motion of the final and initial H atoms in the center of mass system
and spans the range 0 < x =< 27. For reactive differential cross |
sections, the more customary angle to use is the angle XR of the
direction of the product H,, with respect to the direction of the incident

H, and is related to x by
XR =X + (MOd 27[) (2‘ 5)

Therefore, the backward reactive scattering direction corresponds to

Xp =7 and ¥ = 0.

- 2.2 Representation of the Potential Energy Surface.

In setting up the coupled differential equations which must be
solved in each arrangement channel region A = @, f,y, the potential
energy surface VA(rK,R}L,yA) is expanded (see definitidns inI)ina
cosine Fourier series of the angle 12} (Eg. 3.8a of I): |

(e

A | .
VAr, Ry, 7)) = ) Valr,, Ry)cos ky, (2.6)
k=0 »
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In th.e case of the H + H, reaction, -VX(I'A’RA’VR) is symmetric about

Yy =% 7/2 (Eq. 6.1 of I) so only even k terms need be included in

Eq. 2.6. Once the coefficients V;;(r)\,RA) are determined, the rotational
coupling in the Schridinger equation can be analyticallj evaluated

(as in Eq. 3.9 of 1) which greatly facilitates the determination of the
potential matrix elements needed in the integration procedure.
Unfortunately, in general, the VLR:(IA*R}\) must be calculated numerically

- from the relation
VAr, ,R,) = el [ eosky. VNEL R v Ay @T)
kTN TIOTF +"’5‘“Tk0 7 g COSEYY D EXSTAPY ‘

- and the effort invdlved in computing this integral ﬁegates the advantage
~ of using an analytical expression such as Eq. 2 6. However,.for the
- Porter-Karplus potential surfaceﬁ(a_nd for many others as well),
 in the regions of internal configuration space sampled in the calculation,
the expansion Eq. 2.6 converges véry rapidly (after only 3 or 4 terms).
We can then redefine ﬁhe Vﬁ by requiring that, instead of satisfying
Eqg. 2;7, they force Eq. 2.6, with a finite number n of even terms, to -
‘be satisfied exactly at n values of ?’A | For éxanip]e, if 3 terms are
included, then we can find V? 5 V’f ahd Vi\’ by solving the three algebraic
- equations obtained when Eq. 2.6, truncated after three even terms, is

evaluated at ¥ =0, /4 and .z /2. The result is:
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1
Vok(rk: RA.) %‘ 3 %f VX(I‘A, R)L’ »’}’A = O)
1 1
V:\(I')", R)k) = J 0 3 VA(I'A, RK’ Yy T 7T/4) (2.8)
VZ:\(I"X: R,) %; - % % V}\(rl, Ry, = 7/2)

For a small number of terms in the potential function expansion,

the above interpolative procedure yields a representation of the full
potential function V?‘(rwRMyR) Wﬁieh is aompﬁtaﬁonally more efﬁ;cient
but has about the same accuracy as thé one generated using Fq. 2.7.

Of co'ﬁrse, the gobdness of this procedure depends very significantly

on the nature of the potential energy surface being considered, but

for the Porter-Karplus H3 Surface? it allows an adeqguate representation
of the ‘potential while requiring an exact evaluation of V)L at only 3 or 4
values of Y (and the use of Eq. 2.6 for all others). In Figure 1,

we depict equipotential contours-of the potential 'enex?gy surface at -

Yy = 0, 7/4 and 7 /2, the values required in the evaluation of Eq. 2.8.

2.3 Convergence and Accuracy Tests

It is of cr_ucial importénce in cidse«-coupling c’alculations to

’ esté,blisl{ that the fesuitiﬁg reaction probabilities and éross sections
have converged adequately. Indeedv, we shall see later that premature.
iruncaticn of the ‘;fibrationwrc}tation basis set expansion éan result in

- €errors in‘ the final integral cross sections by several orders of magni«»
tude, even though other tests, such as cohservation'of flux, may be
aﬁproximately satisfie&. Furthermqre, .many approximate quantum
methods involve various kinds of truncations and/or other approxima-

tions,and it is highly desirable to obtain fully converged results which
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are of sufficient accuracy to assess the validity of those methods.

| The most obvious criteria which must be satisfied by the results
of an accurate quantum calculation are conservation of flux and timse
reversal invariance. These two principles require that the scattering
matrix §\J be vnitary symmetric for each total angular momentum
quantum mlmber J and therefore that the corresponding p‘robabili'ty
matrix EJ (defined by Eq. 5.20 of I) be synimetric and that the sum
of the elements of each of its rows (or columns) should equal unity.
These criteria are necessary but not sufficient to insure accurate
results. |

In the results to be discussed in detail in Section 3, we ccinsidér

a range of total energies E from 0.30 eV to 0 75 eV (translational
energies relative tothe v=0, j =0 reageht Hfz state of 0.029 to
0.479 eV). ‘Flux conservation and microscopic reversibility were
checked in each calculation, and for E<0.60 eV, deviations from
flux conservation were never worse than 1% and from symmetry
less than.about 5% (for nonanegligible tfé.nsitibns)‘ For
0.60ev< E= @75 eV, deviations from flux conservation were less
than 3% and from sjmxﬁetry less thaﬁ 10%. In order to insure
satisfai:tory convergence (better than 5%) in the calculation, vibration-
rotation basis sets inciuding 40 to 60 terms (channels) were required.
For energies less i:mﬁ 0. SQ.ev, a 40 channel basis consisting of 5
' vibratioﬁal vwave functions eo’mbmed with 1’0, 10, 8, 6 and 6 rotational
wave funétions for v> =0,1,2,3 and 4 resp’ectively were used in general.
In the 0.50 to 0.60 eV range, a 48 channél basis set of 4 vibrations

and 12 rotations per vibration was adequate while for energies above
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0.60 eV, a 60 channel basis of 5 vibrations and 12 rotations per vibra-
tion was used. Typical probability matrices from these calculations
{for a 48 channel calculation at 0.55 eV) are given in Table 1.

Both the reactive and non-reactive transition probability matrices
are highly symmetric and the sums of the probabilities in each row
differs from unity by a very small amount in every case. In Table II
we examine the convergence behavior of the transition probabilities
both as the number of vibrations per rotation is increased and as the
numbef of rotations per vibratidn ‘is increased (all at 0.6 eV).

In part (a) of that ta,ble— we see that the results ch,anore by less than

5% in going from 12 to 14 rotations per vibration anci bV somewhat
. larger amounts in going from 10 to 14. With fewer than 10 rotations,
errors of 10% tb nearly 100% are observed in certain transition
. probabilities. When vibrational convergence. is examined (part B of
Table II), we find that 2% convergence is attained with four vibrations
and that the use of fewer than that number can lead to errors as 1a,rge
-as 50% along with poor flux conservation.

- Another’* imp@*ﬁfan}: accuracy test in these Calculations is the

invariahce of the .results to changes in the character of the vibration

~ rotation basis set. There are two impof’cént ways to test this. First,
. one shmﬂd be able to change the numbei* of rotations per Wbratlon or
the number of vibrations per rotation without changing the results as
long as convergence has been attained. Second, the results should be
independent of the reference potential Vref(rA’RA) (Eq. 3.35 of I)
" which serves to define the vibrational basis functions as leng as Vr of

becomes equal to the correct diatomic potential v(rA) in the limit
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RA — In Table I we present the results of thes_e two kinds of
tests. The first column tabulates representative non-reactive and
reactive transition probabilities for E = 0.50 eV, J =0 calculations '
with a 48 channel basis (4 vibrations, 12 rotatiQns/vibration) and
a reference potential Vet = V(rk’Rk’ 7y = 0) (the one actually used
in most of the calculations). In the second column we give the corre-
sponding probabilities obtained when ’»the reference potential
Vier = Vah(rk, R,) is used (Eq. 2.6). Finally, in the last column
we give the_transition‘probabilities obtained with the Vo}“(rk, RA,)
reference potential and a 50 channel basis (5 vibrations, 12, 12, 10,
8 and 8 rotations in v=0,1,2,3 and 4, respectively). The deviatiéns
~ between the cerrespénding probabilities is less tﬁan 5%. This
result is tvoical of the accuracy for energies E= 0.60 eV. Somewhat
larger changés are found for 0.6 eV < E =< 0.75 eV but usually less
than 10%. |

Two additional accuracy tests are () cohvergence'of the results
with respect to the number of terms in the expansion of the potential
(Eg. 2.6), and (b) invariance of the results Withlr.-spect to a change
in the matching surface basis functions T~ (Eq. 4.7 of ). We find
that the reaction probabilities change by less than 5% in going from
3 to 4 terms in Eq. 2.6 and virtually not at all in going from 4 to 5
terms. = All calculations vreported in this_ paper were done with 3 terms
in Eq. 2.6 and using Eq. 2.8 to calculate Vo, V, and V,. The effects
of completeness of the expansion of the wave function on the matching
surface were studied in two ways. First, sevéral different choices

et , e s 1 . .
of matching surface basis functions T° " were used (different sine and
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cosine combinations (see I) and Legendre polynomials) and invariance
of the results to within 2% was found. Best unitarity of Ji was

obtained with the basis set (¢) of Section 4.1 of I and this choice was
used in all further calculations. Second, the degree of compléteness

VA determines the degree of

of the matching surface basis functions T
orthogonality of the matrix gg)t of Eq. 4.29}_ in I which transforms
the solution in v coordinates to that in coordinates A. This property
of Sun determines the unitarity property of the scattering i’natrix § 3
to a certain extent but it is also necessary if the non-reactive transition
probabilities between even and odd rotaticiﬁal states are to Vanisﬁ as
required by the symmetry of the Hy system (see Eq. 6.4 of I).

- Examples of the effects of a nonorthogonal g ik are seen in Table I
where the nonreactive ortho to para transition probabilities typically
have’ mﬁgnitﬁdes of 1(;3‘? rather than 107%° which is more typicaily the
s‘::asel8 when the orthogonality is built in through the use of Eq. 4.30

of I. In that equation, the matrix ?ng (the complex counterpart of

| A via

S 18 related to a real symmetric matrix A

=d L VA o
Sy =expiJa (2.9

- This éxpressienis inherently unitary even when a truncated basis is
used to caléulate gw‘, 1t should be apparent that this error is of
negligible importance for the example given, but asJ increases,
deviations from orthogonality of § ik also increase. Fortunately,

L the réaction probabilities decrease rapidly as this happens and since

a nonorthogonal matching procedure has no effect on inelastic transi-

tion probabilities in the absence of rea.ctionm', the pi'oblem with
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completeness of the matching surface functions disappears at higher J.
No artificial orthogonalization procedures were introduced in the
calculation (such as were used by Saxon and Light8) , and therefore
unitarity of 2 J and zero-ness of the even to odd ’reactive transition
probabilities are tests of the - completeness of TVA.

We conclude this section by quoting some computation times
for these calculations. Both the integration and lﬁatching times vary
roughly as N for N> 20 where N is the number of channels. For 48
channel calculations using an IBM 370«158 computei‘, about 22 minutes
of computation time per partial wave J’ was required, of which 17
miniltes was spent in the integraﬁon of the coupled equations and the
. rest in the matching and asymptotic analysis. About 13 partial waves
(J =0 - 12) were required for convergence of the reactive cross
sections and 30 partial Wa"ves'('i‘ =0 - '29) for convergence of the

inelastic nonreactive cross sections at energies near E = 0.50 eV.

2.4 The One Vibrational Basis Function Approximation (ova)

An often usedﬁm? {(but seldom justified) apiiroxinﬁétion in quantum
o caiculatiohs has been the neglect of closed vibrational channels in the
{ribratian«rotatidn' close coupling expansiam For H + Hz at low energieé,
only the ground vibrational level'is épen, | so this approximation involves
the use of only one vibrational basis function plus a complete set of |
~ rotational Tunctions for that vibrlaﬁen‘ The main reason for using this
approximation is the iarge reduction in coméutation time (by one-to two
orders of magnitude for H + Hz) compared toa v;ibratibnany cenverged

calculation. One of the objects of this paper is to examine the
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accuracy of this approximation by comparing the results of its a‘ppli-
cation with the fully converged ones. .

The procedure that we have used to perform these one vibration
approximation (OVA) calculations is almost identical to that outlined
in I. The following modifications are, however, needed:

(a) The overlap matrix ) i between the vibration-rotation
basis sets in _subregions iand i:- 1 (Eq. 3.42 of 1) is orthogonalized -
according to the ‘Schmidt procedure.zq This is required because ‘.
otherwise the strongly nonorthogonél overlap matrix associated with
this severe truncation of the vibrational expansion results in an excessive
lack of ﬂux conservatmn. |

(b) The effective potent1a1 matrix in the strong mteractmn |
region (and analogously in the matching region) is modified to
"'(see‘Eq..3.48 of I): |
(Ve)‘(s)) A : = (v, |p;[ Vj);- v + 0, {-V’tef + %;

Myt '’r
(2.10

- @5y -
4 W Y Z )}] ,V 1)

- (r\ plcos cp)L)2 (RA -p, Sin q&)f 4p 2

qu a complete vibration-rotation basis set expansion, this expression
is identical to that in Eq. 3.48 of I, but in the OVA it is different with
the ahove expression being the more conéistent one.21~

Even with these modifications, there are still many ambiguities
in the application of this pfocedure. The most serious of these is the
" lack of invariance of the results to our choice of Vref(i'h’ Rk). In

Section 3 we shall examine results for Ve = V(rA,RX,'yx =0) and
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for Vr of

by these two calculations is representative of what can generally be

= Vg‘(rh,RA) with the hope that the range of results provided

obtained in this approximation.

3.1 Transition Probabilities

In this section we shali examine thé energy and J dependence
of the distinguishable atom reactive and inelastic nonreactive transition
probabilities. The reactive probabilities for the v=0, j =0 —
v' =0, 1" =1 transition pR are plotted in Figures 2 and 3 for
_ J,00 ~ 01 ,
several energies as a function of J. The probabilities for negative J
are obtained from those for positive J th;ough the use of the relation

© (Eq. 5.37 of T) (valid for R or N probabilities)

Py vi—v =P, vej = vt (3.1)
Figures 2 and 3 indicate that Pi 00 - 01 has @ maximum near J = 0
for small E with the peak gradually shifting to small positive J as E
is increased. Furthermore, the range of J's which muét be included,
in order th&t the differential reaction cross sections (sée Eq. 5.35

of 1) should have converged to approximately 2%,increases with E
from about 9 at E = 0.30 eV (i.e., |J|= 4) to about 23 at E = 0.65 eV
(|7] = 11). The maximum in the reaction probabilities at small J
indicates that only sinall impact parameter collisions contribute
significantly to the reaction cross section. The semi_—classical

relation between the impact pararheter b and the orbital angular

momentum 1 (as derived in I) is:
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b =1/k (3.2)

where we define the sign of b te bé the same as that of 1, and kvj

is the wave number associated with the incident state. Sincel =J - j,
and j = 0 for the transitions considered in Figures 2 and 3, we see that

b is proportional to J, and thué the range of impact parameters which
contribute significantly to the reaction cross section increases with

E in those figures (from |b| = 1.74 bohr at 0.45 eV to |b|= 2.22 bohr
at 0.65 eV). In Figure 4 we plot the reaction probabilities versus J

at several energies for the transitionv =0, j =0 - v'=0, j' =0.
Equaﬁan 3.1 indicates that this transition probability should be éymmetric
about J = 0 but aside from that restriction, we find that the curves

in that figure are otherwise very similar in appearance to those in
Figure 3. This conclusion applies quite generally to the reaction
probability versus J plots obtained for most other reactive transitions.

A discussion of the energy dependence of the reaction probabilities

will be given in Section 3.4. |

| In Figure 5 we compare the convei*ged reaction probabilities
JITOO - 00 with the corresponding OVA result for a collinear reference

potential Veon = Vx(rka,'yk =0) at an energy of 0.60 eV. We see

P

that the OVA result has the correct functional dependence on J but that
the magnitudes of the probabilities at each J are nearly a factor of 2
too small. OVA calculations using V ref = VOA (r)\, RA) yield probabilities

results in

which are only slightly different from the V:C of = \Y% coll

Fig. 5. (For example, the V__. = V' reaction probability for J = 0 is

0.06337 compared to 0.0420 in Fig. 5). The analogous comparison at
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other energies between 0.3 and 0.6 eV indicates that the OVA pro-
babilities for the two choices of Vr of always have values within 30%

of one another. More important, the QVA probabilities and converged
results are geherally in good agreement in their J dependence, but
very poor agreement in energy dependence, and this difference in
energy dependence has a dominant infhluence‘ on the behavior of the
reaction cross seétions, as will be discussed in Section 3. 3.

In Figure 6 we piot the inelastic nonreactive probabilities for
the tra;nsition v=0,j=0—v"'=0, j' =2 versus J for several
energies E. The inelastic probabilities are seen to span a much
Iargér range of J's than the reactive ones,indicating that larger
- impact parameter colligsions can contribute sigﬁificantly to the
inelastic processes. At all energies in Fig. 6, the maximum
rotational excitation probability occurs for J positive (although some
smaller magnitude negative J peaks do appear at the higher energies).
The increased likelihood of exciting a positive rotational sublevel in
a nonreactive collision with J initially positive is in agréement with
the classical picture of the collision shown in- Figure 7 (Collision I)
in which the incident atom having a positive impact parameter (see
Eqg. 3,2)‘ impulsively strikes the "bottom' atom of the diatomic
molecule in Fig. 71(;1) thus exerting posii:ive torque on that molecule
and exciting it into a rotational state with positive j'. Following this
collision, one would expect the dominant scattering angle x to lie
between 180° and 360° relative to the x axis in Fig. 7. In the next
section we shall see that this is precisely what the differential cross

sections indicate. Still unexplained, however, are the double peaked
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distributions at the higher energies in Fig. 6. Intuitively, one would
expect that the positive J peak results from the mechanimﬁ described
above (Collision I in Fig. 7). The negative J peak must arise from

a different collision mechanism, quite possibly that pictured in
Collision IT of Fig. 7, in which the incident atom, having small
negative impact parameter, strikes the bottom atom of the diatom in

Fig. 61Ia and rebounds into the 0° = x = 180° hemisphere.

3.2 Differential Cross Sections

Figures 8, 9 and 10 depict the differential reactive cross
sections corresponding to the same transitions and energy ranges as
\'\.781‘8 used for the reaction probabilities in Figs. 2, 3 and 4,
respectively. The v =0, j =0 — v' =0, j' = 1 distinguishable atom
reactive cross sections of Figs. 8 and 9 can be trivially converted to
the corresponding antisymmetrized para — ortho quantities by multi-
plication by 3 (see Eq. 2.1). Because of Eq. 2.3, the curvesg in
Fig. 10 are exactly symmetric about XR = 180°. We see that all
reactive differential cross sections are strongly backward peaked.
This is in agreement with the results of 2 and 3 dimensioﬁal quasi-

classical calculations ’

D+ H, ,22 and H + Ty 23, and is consistent with a rebound-type

and with the resulls of experiments on

collision mechanism. The magnitudes of the differential cross

sections near XRg = 0° are all sufficiently small to allow us to conclude
that forward scattering contributions to the reactive angular distri-
butions are negligible. The small amplitude oscillations in some of the

higher energy differential cross sections in Figs. 9 and 10 are very
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likely spurious since they typically result from incomplete interference
between different partial waves. This type of oscillatory behavior can
be caused by as little as a 5% relative error in the matrix elements of

S . for a single partial wave, thus pointing out that equally accurate

Ad
calculations for each partial wave are necessary if spurious effects

of this type are to be avoided. Of course, if there were rotational
resonances in certain partial waves, then we would correctly expect
to see some form of oscillatory behavior in the angular distributions,
Rotational resonances have indeed been observed in calculations on
nonreactive atom diatom scattering, but these resonances have always

been associated with attractive wells in the potential surfaces used. 24 _

17

In the case of the purely repulsive Porter-Karplus™ potential, such

wells do not .exist and thus purely rotational resonances are lm11k€1y¢25
" The full width at half maximum (FWHM) of the backward scattered
peak in the differential cross section reméiﬁs relatively constant over
the ehergy range studied and roughly equal to 70°. (i.e., 145° = XR5215"
in Fig. 10). Some broadening does however occur at the higher energies.
The angula;r distributioﬁs for the OVA rés;.lts previously
considered in Fig. 5 are plotted in Fig. 11. As in Fig. 5, we see
that the shape of the converged curve is qualitatively well approximated
by that of the OVA one, but there is about a factor of two difference
in the magnitudes of the cross sections. This similarity and difference
continues to exist at other energies as well.
In Fig. 12 we plot the distinguishable atom nonreactive inelastic
differential cross sections O‘ggw_oz‘ at £ =0.40, 0.50, 0.60 and 0.70 eV.

These angular distributions clearly reflect the one or two peaked
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nature of the nonreactive probability plots of Fig. 6 and show pre-
dorﬁinantly backward to sidewards peaking with the position of the
maximum shifting gradually to a more forward direction with
increasing energy. The maximum value of aé‘é_,oz always occurs
for 180° = x = 360°, in agreement with our qualitative classical ideas
of Section 3.1. At higher energies we see double peaked distributions,
possibly corresponding to the two mechanisms pictured in Fig. 7.
There is little evidence of any high fréquency oscillations in any of the
cross sections plotted in Fig. 12 which indicates that the collision
process is predominantly direct (nonresonant).
Since the v=0, j=0— v' = 0, j' = 2 transition considefed in
Fig-, 1’2 corresponds to a para to para transition which can occur by
Aboth nonreactive and reactive mechanisms, the correct physically
measurable guantity (in a 2D world) to consider is the antiéymmetrized-
para to para cross sections which can be obtained through the use of
Eg. 2.1. In Figs. 13, 14 and 15 we plot the resulting antisymmetrized
‘angular distributions ¢ é% ~p2 (summed over degenera{e product rotational
polarizations) for total energies of 0.5, 0.6 and 0.7 eV, respectively.
- Also plotted for comparison are the cvorresponding distinguishable atom
nonreactive and reactive cross sections where, for consistency, the
angle ¥ rather than XR (see Eq. 2.5) is used for plotting the reactive
differential cross sections. In terms of x, the reactive cross section
is forward peaked *»V'hiie the nonreactive one is backward peaked at
0.5 eV shifting to sidewards peaking at the higher energies. At 0.50 eV
(Fig. 13), the reactive cross section has a maximum value of 0. 0045

bohr /rad which is over 200 times smaller than the maximum value of
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the nonreactive one, 0.92 bohr/rad. This implies that fVI]fI_.V,j,
in Eq. 2.1 has a much larger absolute value than fv?—-v’j' so that

the antisymmetrized and nonreactive differential cross sections are
nearly identical. Some small amplitude oscillations are seen in

o 0%__02 at small x in the neighborhood of the region where the
reactive cross section has a maximum'. These oscillations result
from interference between the direct and exchange coniributions to
the antisymmetrized cross section and are similar in origin to the
quantuin symmetry oscillations Which have been observed in atom-

26 As the energy is increased,

~atom elastic and inelastic scattering.
the reactive cross sections increase much more rapidly than do the
nonreactive ones (at all scattering angles), and (as is indicated in
Figs. 14 and 15) the oscillations in the antisymmetrized differential
cross sections become quite pfon‘ounced} in the for"»vard direction.
The frequency of oscillations in Figs. 13 ~ 15 seems to decrease x;vith
increésing scattering angle althoﬁgh for x near 180° the differences
between the antisymmetrized and nonreactive cross sections are too
small to allow an adequate characterization of ihis property. A small

increase in the oscillation frequency with increasing energy is also

apparent from the figures.

3.3 Integral Cross Sections

In Fig. 16 we plot the reactive integral cross sections
“Q(I){g...gp Q (1):{0_.,035 and Q (%.,.05 as a function of the total energy E
and translational energy E,. Both linear and semi-logarithmic scales

are used to show the functional dependence of these cross sections over -
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a wide range of energies. If we define the effective threshold energy
for a process as being that value of E for which the corresponding
integral cross section is 0.01 bohr, then the threshold energies for
Qo-01° Q09-03. and Qy~o5 are 0.491, 0.546 and > 0.75 oV,
respectively. A discussion of the significance of the effective threshold
energies will be deferred to Section 3.4 where we will also compare
our coplanar results with those of collinear calculations on the same ‘
i)otential energy surface. Above threshold, ﬁQ_.O%W o1 Trises in a nearly
linear manner up to about 0. 65 eV and achieves a maximum value of
0. 31 bohr at about E =0.70 eV. TQ"OIS_,% and @0%*05 increase
monotonically in the énergy range spanned by- this figure, but may
level off at highefr energies. At very low energies, the integral cross
sections exhibit approximate exponential behavior. A characteriz’.aﬁon
of the product rotational state distribution implicit in Fig. 16 will be
given in ‘Section' 3.5. We should finally note that the reactive cross
sections in Fig. 16 can be converted to the corresponding para — ortho
quéintities by multiplication by 3. |

In Fig. 17 we compare the reactive cross ~ection Q(;%
- (summed over all product states) with the OVA result (using 'Vref =
V(rA,Rk, Yy = 0)). As mentioned in Section 3. 1, ‘the results obtained
using V ref = V{?“(r ,R}\) have almost the identical energy dependence,
It is apparent from the figure that the vibrationally converged integral
cross section differs quite significantly from the OVA result over much
of the energy range considered, the difference being about 3 orders of
magnitude for total energies below 0.36 eV. The two curves do cross

near E =0.52 eV, which is quite interesting, since a previous analysis
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of the collinear H + H, system (on a slightly different potential
surface) indicated that this reaction is very nearly vibrationally
adiabatic at this energy.zr7 Since, as we shall see in the next section,
collinear and coplanar calculations can be related in a reasonably
accurate manner, one might be able to assess the accuracy of OVA
caleulations in 2 and 3 dimensions by analyzing the extent of vib_rational
adiabaticity in the corresponding collinear systems.

In Fig. 18 we compare the nonreaétive and antisymmetrized
integral cross sections “Q-gIO»OZ and QO%—»OZ as a function of E
and E,. The rotationally inelastic cross sections have much 1ai~ger
magnitudegs than the reé,ctive ones of Figs. 16 and} 17, with a peak value
of 3.76 bohr near E =0.54 eV. Since the v' =0, j' = 2 state of H,
- becomes energetically accessible at E = 0. 300 eV, we see that there
is essentially zerc threshold energy for the nonreactive process so
that § (‘%woz coincides almost exactly with its distinguishable atom
coxmterpart Q% —~pg atall energies below 0.50 eV. Thereafter,
@f‘% —po- becomes progressively larger than “Q“@é.,.-og with no appzirent
asciﬂatory behavior as a function of energy resﬁlting, in contrast to

the angular distributions of Figs. 13 - 15.

- 3.4 Comparigson of Coplanar and Collinear Results

Because planar cross sections have the dimensions of length
Whilé collinear ones are dimensionless (i.e., collinear cross section
eguals collinear reaction probability), a direct comparison of these
quantities is not possible. One could devise models for converting

collinear resulls into planar ones by assigning a model impact parameter
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dependence to the collinear reaction probabilities. A more straight-
forward comparison can be effected instead by examining the behavior

28,29 and coplanar reaction probabilities

of the corresponding collinear
(the latter for J = 0) as are plotted in Fig. 19. Probabilities for other
J's or different initial states vj could have been used, but those for

J =0and v =j =0 were chosen for this com?arison because they
correspond more closely to the collinear conditions. This choice is
furthermore justified by the fact that the form of the energy dependence
of the éoplanar probabilities for different J or j (for reasonably small
values of these quantum numbers)is essentially the same as that of

P?O (;T =0} as is demonstrated in Fvig. é() (where P&} (J =0), P(]?O (J=4)
and Pflfi (F =0) are pf‘iott‘ed)', Figure 19 indicates that the coplanar
results have nearly the same energy dependence with the energy scale
shifted upwards by about 0.055 eV in going from the collinear to the
coplanar curves. In addition, the maximum value of the collinear
reaction probability is 1.0 whereas that of the coplanar one is about

0.6. Both the energy shift and the difference in the maximum probability
are explainable in terms of relatively simple éoncepfs. To understand
the energy shift, we examine the nature of the triatomic Hgq system in its
transition state. In the linear case, this triatomic pseudomolecule has
two vibrational degrees of freedom: an ésymmetric stretch mode,

which is unstable and leads to motion along the reaction coordinate, and
a stable symmetric stretch mode. When the reaction occurs and the
system passes through the transition state region, the total energy
partitions itself between these two vibrational modes. Energy in the

symmetric stretch mode is not easily converted into the asymmetric
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stretch mode making it unavailable to overcome the potential surface
barrier. This is a partial physical interpretation of the fact that the
collinear threshold energy (the value of E at which the reaction
probability is 0,01) is 0.42 eV, which is somewhat larger than the
0.3% eV Porter-Karplus surface barrier height. Collinear threshold
phenomena such as this have been analyzed in detail elsewhere. 27, v30
- In going from a linear to a planar transition state we add one bending:
degree of freedom to the internal motion of the transition state which |
alsoc does not contribute to motion along the reaction coordinate and
which will also tie up some of the energy needed to overcome the
activation barrier. This additional energy in the bending motion is a

| plausible explanation for the 0.055 eV upward energy shift observed

| in Fig. 19,and is appfoximately equal to the zero point bending energy

o

of about 0.06 eV for the surface used.”* Much of the above explanation -
has its basis on an approximate statistical theofy proposed by Mar‘cus.,g?‘ ;
The difference in the maximum probabilities attained by the collinear
and coplanar results can be understood by examining the oriéntation
dependence of the reaction probability. In the planar case with j =0
initially, the diatomic molecule does not rotate and has equal probability
of being in any orientation with respect to the direc}tion of approach of
the i_neident atom. Since the barrier height of the potential erergy
surface is 0.386 eV for collinear colli‘sionvs and increases to 2.8 eV

for perpendicular oneé, we Would expect that in the eneréy range being
cdnsidered, tile'reaction probability should be greatest for linear

collisions and decrease to zero for perpendicular ones. The coplanar

probability should represent an-average over all initial orientations
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and if we assume unit reaction probability for yA] = 54° and, by
symn‘letry, for [180° - Yyl = 54° and zero probability elsewhere,
we obtain a coplanar reaction probability of 0.60 in agreement with
Fig. 19. The 54° cut-off angle is in reasonable agreement with
previous estimates of the orientation dependence of the reaction

probability obtained from distorted wave resultslz and from classical

trajectory resulis. 2

3.5 Product State P\ota’cional Distributions

In Fig. 21 we plot the integral cross section's 'Q“go —~ 0j"
(summed over final rotational polarizations) as a function of the pro-
duct rotational enei‘gy and quantum number for several tété:]. energies
E. We see from the figure that only small j' rotational states are

Vappreciably excited in these reactive collisions. The relative popula-
tion of final rotational states is not strongly dependent on total energy
although some broadening of the distribution does occur at higher E.
Not shown in the figure are the final rotational state distributions from
initial states j = 0. The qualitative shapes of these distributions are
not strongly dependent on j and look very much like those for j =0 in
Fig. 21. However, the magnitudes of the @g{j - 0 decrease mono-

tonically with increasing j for a given j'. 33

To a large extent, the distributions in Fig. 21 resemble
rotational Boltzman-like distributions with a single temperature
parameter. Distributions of this type ; for a planar system, may be

expected to have the forn134
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-E../kT(E
£.,(B) = A(E)(2 - éj,o),e J /_ (&)

j (3.3)

where A(E) and T(E) are energy dependent constants and 2 - 53“0 is

~R
Qg0 - 0j1) 252

a degeneracy factor. In Fig. 22 we plot logj 2~20j70
function of the product rotatioﬁal energy. The resulting curves for
different E are approximately linear (mdst nearly so at the higher

~ energies) in agreement with the predictions of Bg. 3.3, with temperature
pziramefers T(E) in the neighborhood: of 250 - 400 K. We should point
out that although the rotational distributions are temperature-like,

we find no evidence of long lived compound state (i.e., complex)
formation in this reaction.at the erergies being Consi.éeered‘ 28

Indeed, the rotational distributions seem to be determined to a large
extent by the shape of the potential energy surface in the transition

state region of configuration space (see lower half of Fig. 1c). In this
transition state, the asymptotic free rotational motion has become a
seriously restricted bending motion. This bending motion becomes
again a free rotational motion after the feéctiOn, and, at 1éast quali-
tatively, the distribution of different product rotatidnal states appears
to be determined by the overlap of this bending wave function and the
asymptotic free rotor wave function. If this reasoning is correct,

then the resemblance of the rotational distribution in Figs. 21 and 22

to a thermal distribution is at least partially coincidental. This
phenomenon should however be guite common since restricted bending
motion in the transition state region is a2 common feature of the potential
energy surfaces for many reactions.

In Fig. 23 we plot the OVA cross sections in a manner analogous
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to that done for the converged cross sections in Fig. 20. Fig. 23
indicates that the OVA rotational distributions fit the temperature-
like distribution given by Eq. 3.3 to about the same accuracy as the
converged results. However, the OVA temperature parameters are
somewhat highér (450 - 620 K) indicating that this approximate pro-
cedure predicts rotational distributions which are much broader than

the converged ones.

3 6 Comparisons with Other Coplanar Calculations

In Fig. 24 we plot our QOO 01 . (SK) along with the Correspondmcr
results of two other studies on coplanar H+ HZ' QOOwOl' (WW, SE)

and Q 00-01 (WW,WE) are the results of two different applications

12 on the

- of the distorted wave approximation by Walker and Wyatt
Porter-Karplus surface. SE and WE refer respectively to the strang
and weak expansion path choices of the nonreactive reference potential
used to generate the distorted wave functions. Qg})—»ﬂl (AL) is the |
closeécoupling result (using one variation of the OVA) of Altenberger-
Siczek and Ii,sig;hfci7 in which an earlier calculation of Saxon and Light o
is corrected. These calculations were done for an analytical surface
fitted to the ab initio &SMK35 surface. The two approximate calculations
of Walker and Wyatt seem to bracket our result at low energies, but

for E > 0.60 eV, the absence of conservation of flux in the distorted

- wave calculation results in a gross overestimation of the integral cross
sections. Thus, the distorted wave method remains accurate only when

the reaction probabilities or cross sections are small. A similar

conclusion was also drawn from an analogous collinear comparison. 36
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The distorted wave differential cross sections 05%»00 (Fig. 25)
are in good qualitative although not quantitative agreement with the.
corresponding results of our converged calculations, but a similar
compavrison of the cross sections GOROwOLL- in thsit figure indicates
serious disagreement, apparently the result of a much more rapid
fall off in the distorted wave reaction probabilities with decreasing
J (J <.0) than is the case with our results (as seen in Fig. 25(a)).
The results of Altenberger-Siczek and Li.ght7 cannot be
quantitatively compared with ours because of the difference in poten-
tial energy surfaces used in the two calculations but some qualitative
o‘bservétions afe nevertheless appropriate. First, the effective |
, threshoyld energies (defined in Section 3.3) of the integral cross
sections are about 0.502 eV for Q%G—»Gl«-(SK) and 0,531 eV for
QORO--OI (AL). The difference between these two numbers is identical
to the 0.029 eV difference between the respective potential barriers
(0.396 eV vs. 0.425 eV) in the surfaces used in the calculations. Since
the properties of the triatomic activated complexes are similaf, one
might expect that a small change in barrier height should ihdeed result
ina correspondingly small change in effective threshold energy as
observed. The fact that Qfy_q; (AL) is zn OVA result should be of
little significance in this argument since it was shown in Section 3.3
that our own OVA crbss sections have effective threshold energies in
good agreement with our converged ones. Second, except for some'
possibly spurious oscillations, the Altenberger-Siczek and Light
angular distributions (Figs. 8 - 10 of Ref. 7) have shapes which are

generally similar to ours (Figs. 9, 10 of this paper) for all transitions
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considered. The dominant peak near 180° in their angular distributions
is somewhat narrower than ours and their reaction probabilities fall

J

off more rapidly with increasing than do ours in Figs. 2 - 4.
Both of these differences could be a result of the different potential
surfaces used, since as seen in Figs. 5 and 11 the OVA does not

strongly affect the shapes of ¢ R versus X and PR versus J curves.

3.7 Rate Constants

In this section we will examine the behavior of the para — ortho

thermal rate constant k 5 =0 (T). The crtho — para rate constant can,
of course, be obtained from kp 0 by using the easily calculable

equilibrium constant for this reaction, 31 computed for the coplanar
world of this paper. To obtain kp _(T) we first require the para to

A gsummed over all final ortho states and

ortho cross sections Q
averaged gver initial (para} rotational polarizations). These are
listed in Table IV for both the converged and OVA calculations.

The planar para — ortho rate constant is given by

-E, /kT
Kol =5 Z Z 2-5,)e SC YR E RS
' v=( i=0
(3~even}
where
>z  -E_./kT
Q=7 L @-sge VT (3.5)
v=0 j=0 :

- {j=even)
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and
" -BE' /KT :
,A . 2 1 « V] ey A t !» ) ni
L.Vj (T) »—\rﬂ R*T fo e ‘ Q Vj (E Vj) \?E Vj dE Vj (3. G)

Evj is the vibratioyn-'rotation energy of the initial state with quantum
numbers vj and E' vi is the translational energy relative to that state
(E' vi © E - E ) 1L is the reduced mass associated with the relative
motion of the reabents and the factor 2 - OjO is introduced to account
explicitly for rotaticnal degeneracy; The initial spin degeneracy is 1
for all para states. The rate constant thus defined has the units
cmz/molec« sec which is appropriate for a planar world in which con-
centrations are measured in molec /cmz, |

Using Egs. 3.4 - 3.6 along with the data in Table I, k 5o (D)
has been calculated. and the 1-e£_su1tin0‘ Arrhenius plots for the vibra-
tionally converged and OVA <Vr of V(r?\, A’YA 0)) results are
presented in Fig. 26. As might be expected from the appearance of
the integral cross sections in Fig. 17, the OVA rate constant is
_ cohsiderably larger than the converged one at low temperatures with
the Tatio of the two being 12.4 and 2.83 at 200 K and 300 K, respectively.
At high temperatures, the two rate constants approach each other quite
closely, a reflection of the similar effective threshold energies of the
converged and OVA cross sections. The high temperature portions of
the Arrhenius plots in Fig. 26 are nearly linear with resulting Arrhenius
activation energies of 5.2 and 5.0 kcal/mole for the converged and OVA
results, respectively. The high temperature Arrheniugs straight line
corresponding to the converged results is represented by the dashed

line of Fig. 26. We will defer a detailed comparison of these rate
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constants with those of accurate 1 and 3 dimensional calculations and

with approximate theoretical and experimental ones to a separate

paper.

1t should be aﬂpparent from the wealth of 'dynamical information
presented in Section 3 that these calculations can be extremely useful
to our understanding of chemical d},;na,micsq We would like to stress
that these calculations are not overly time consuming but it is unlikely
that similar ones will be done on more than the very simplest
of chemical systems. Rather, the brimary emphasis is to use these
vesults as benchmarks against which approximate theories may be
compéred, with the hope that these theories may be in turn applied
‘to more complicated systems. The comparisons with approxiinate
calculations presented in Section 3.6 were incomplete in that the
‘results of quasi-»clalssical and semimcla.ssicai coplaﬁar calculations on
the Porter-Karplus H3 surface are needed to assess the quantitative
accuracy of these important approximate theories. Also requiring
further consideration is the use of collinear—type‘theoriesf to provide
approximate coplanar results,v and simila.rly of coplana,:{;
theories to describe the three dimensional world. 38 Tbis was discussed
brieﬂy in Section 34 and will be further investigated in a separate
‘ paperu16

The cvoplanar célculatx‘_ons are also important in elu.cidating
what kinds of phenomena are significant in chemical reactions. The

guantum symmetry oscillations in the para — para angular distributions
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(Section 3.2) but not in the corresponding integral cross sections as a
function of energy (Section 3. 3) are a good example. Such quantum
symmelry effects may eventually be a useful expefimental tool for
characterizing reactive potential surfaces. Also of great importance
is the characterization of the reaction in terms of direct and resonant
mechanisms. This was briefly mentioned in Section 3.2 where we
remarked that the reaction appeared to be completely dominated by the
direct mechanism. A more detailed analysis at energies higher than
were conSidered in this ;/VOI‘k indicates that in the neighborhood of
certain energies (suchas E ~ 0. 92 eV) this no 1onger~ seems to be
correct as very‘ significaﬁt resonant-like effects a‘re‘observede - The
importance of these resonant proces'sves is discussed elsewhere%.k

| Fina,lly, as was mentioned in the introduction, these calculations
are significant in that they demonstrate the feasibility of the method
outlined in paper I for doing quantum 2D scattering calculétionsn
'Extension of this method to the A‘BD problem has recently been
acccmplishedg and the results of these 3D calculations and their B
comparison With 2D rnd iD ones should bé ext_reinely useful to our

understanding {}f chemical dynamics.
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transition probabilities at E = 0.60 eV, J = 1.

Rotational and vibrational convergence of coplanar

(A) Rotational convergence (with 4 vibrations and N rotations per

vibration)
. a N |
N U' Plonoz Popepa P%%ﬁ*oo_‘ Po~01 Po1-0-1
6 1.035 0.293 0.435 0.0738 0.0667  0.0356
8 1.020 0.276 0.339 0.0743 0.0525  0.0380
10 1.010 0.202 0.257 0.0840  0.0706  0.0416
12 1.004 0.194 0.230 0.0829 0.0645 0.0396
1.002 0.221 0.0873  0.0397

14

0.189

0.0821

{B) Vibrational convergence (with M vibrations and 12 rotations per

&3

vibration)
-1 J R
M- .U Poo-02  Poi-o-1 Poo~00 Poo-o1 I%ﬁ-o-1
1®  1.003  0.259 0.260 0.0404 0.0372  0.0295
1.063  0.161 0.204  0.0895  0.0738  0.0477
1.063  0.238 0.315 0.0749 0.0578  0.0329
1.004  0.194 0.230 0.0829  0.0645  0.0396
1,007 0.195 0.233 0.0832 0.0646  0.0396

o e

AU indicates that sum of all transition probabilities from a specific vj

state which differs by the Ia‘rgest}amount from unity and hence is a

conservative measure of deviations from flux conservation.

- outlined in Section 2.4.

bThe one vibration result was calculated according to the procedure
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TABLE III. Nonreactive and reactive transition probabilities for

E =0.50 eV, J = 0.

N=48,V_ ,* N=48, VP N=50, 7, ¢

Poy - 00 0.180 0.180 0.183

P ouo 0.383 0.383 0.383

Po]fl - 0s1 0.207 0.207 0211

Py - %1 0.583 0.582 0.580

Pog. oo  0.787x107 0.787x107° 0.755x1072

Poy . 0.  0.580x107° 0. 578x10" 0.557x10”"
Pyi - 0s1 0.422x10™* 0.419x10™? 0.404xi0™?

P et 0.413x10™2 0. 410x10" 0.395x1072

2 48 channels (v = 0-3; 12 rotations/vibration), Vref = VCOLLV:
V(I’ :R)v '}’A = O)- -
b‘48’ channels (v = 0-3; 12 rbtations/vibration), Vr(‘f = V’ok(rk,RA) .

€ 50 channels (v=0-4;12, 12, 10, 8, 8 vibrations for v =0, 1, 2, 3, 4

reSpectively)‘, Vier = ng (rA’Rh)“



=r
(o}
3

"poridrynu s1 31 Suipadaad

Jsqunu yorysm £q 01 30 xemed sareoipurseseyjuaed Ul JOQWINU YV  ‘SUOTIBZIIEIOd [BUOIIRION TBIIIUL

I9A0 poSeIeAs put $978)S ([ PPO) OY3IO TRUI] IOA0 POLITINS USSQ OABY SUOT}08S SS0ID IV *Jyoq uJ

%
L ) LT Ueete T T es0T 02T cL*0
o i L ¥61°0 LL870 PET "1 0L°0
4 L i} Y2L0°0 6190 620°1 $9°0
L2L0°0 6£8°0 88570 ££20°0 19¢°0 158°0 09°0
05200 g91°0 ¥62°0 (2-)60¢°0 0%1°0 TBE 0 GG°0
(z-)ogg"0 94%0°0 - 816070 (g-)uz10 61€0°0 £%60°0 05°0
(€-)882°0 (g-)8g6°0 67200 (-)%01°0 (6-)T2L°0 Am«vmmmoo GF 0
(L-)822"0 (8-)9L6°0 (g-)08z 0 (F-)o0% 0 (5-)898°0 (F-)66¥ 0 0%°0
- (-)122°0 (€-)epE 0 ©o- (L-)L€1°0 (9-)%%1°0 g8 "0
- - ~(8-)ews o - - (T1-)95¢ 0 0£°0
%m w &m .%b @@,_ @w .
“yAO POSIBAUOD

@.*Nm + H 103 SU01109S SS0ID ﬁgmﬁﬁ,oﬁno 01 BIed Al STTIVL



305

"suonecdeaixe oy} woa] SulnSod SI0II9 oY} 948 SB [[BWS 918 SJUBISUOD 9JBJ 859U} 03 SUOTINQIIIUOD X18Y]
‘sjinsea A31sue xoySiy oAloAaul Aoy} esnedsg SUOTIETIOTBO JUBISUOD 838X 9y} Ul pPasn oJam (Seanpedoxd ]

UO1IB[CABIIXD SNOTIBA YSnoay)) senjeA JI19y} JO S91BWIISS mg pajyenoied jou _@A.BB SU011098 S80I 85aYJ, )

(*u0d) “AI ATEVL



306

*Work suppdrted in part by the United States Air Force Office of
Scientific Research.

TWork performed in partial fulfillment of the requirements for the
Ph.D. degree in Chemistry at the California Institute of Technology.

iContribution No.

'R. P. Saxonand J. C. Light, J. Chem. Phys. 57, 2758 (1972).

ZM Karplus, R. N. Porter and R. D. Sharma, J Chem. Phys 43,
3259 (1965);the classmal angular d1str1buuon is reported in Ref. 25,

3J,, D. Doll, T. F. George and W. H. Miller, J. Chem. Phys. 98,
1343 (1975)‘ A |

4Jf, J. Tyson, R. P. Saxon and J. C. Light, J. Chem. Phys. §§,
363 (1973).

°R. P. Sexon and J. C. Light, J. Chem. Phys. 56, 3874 (1972);

56, 3885 (1972). |

%G. Wolken and M. Karplus, J. Chem. Phys. 60, 351 (1974).

TA. Altenberger-Siczek and J. C. Light, J. Chem. Phys. 61,

- 4373 (1974). B o .

BA; Kuppermann, G. C. Schatz and M. Baer, J '“hem. Phys. QJI\,
4362 (1974). | o |

® A. Kuppermann and G. C. Schatz, J. Chem. Phys. 62, 2502 (1975).

'O%. T. Tang and M. Karplus, Phys. Rev. A4, 1844 (1971).
e |

12
13

K. T. Tang and B. H. Choi, J. Chem. Phys. §g, 3642 (1975).
R. B. Walker and R. E. Wyatt, J. Chem. Phys. 9\}\, 4839 (1974).
Reference 1 contains an extensive list of collinear studies of this

reaction.



307

14H. S. Johnston, Gas-Phase Reaction Rate Theory, Ronald Préss,

New York, 1966, Chap. 10 and references therein.

15A. Kuppermann, G. C. Schatz and M. Baer, Mol. Phys., submitted.

16
17

G. C. Schatz and A. Kuppermann, in preparation.

R. N. Porter and M. Karplus, J. Chem. Phys. 40, 1105 (1964).

18Double precision (64 bit) arithmetic was used fQi‘ all calculations.

lgAs J increases, the repulsive centrifugal potential incfeases,

; effectively raising the potential in the interaction region and decreasing
the reaction probability. As might be expected, the wave function |
should become smaller in the'ihteraction region as this happens.

In the integration procedure, those solutions generated by propagat-ing‘ |
'. into the interaction region (the plus solutions) will increase exponen- |
tially thefe (211 channels being closed in that region for lé,rge Ji.
whilé those generated by propa;gating out (the minus solutions) will
decrease exponentially (i.e., will increase exponentially in the
propagation direction). This occurs because of the dominance of
the increasing exponential solution over the decreasing-one in the |
direction of propagationw Only the physically meaningfuldecreasing
solutions (as one penetrates thé poténtial parrier in the strong |
interaction region) can be smoothly matched at the boundaries of the

arrangement channel regions, so the matching procedure gives zero

weight to the plus solutions (i.e.; € ;(C ) = 0 in Eq. 4.44 of I).

™

=1

From Egs. 5.9 - 5.14 and especially 5.18 of I, we see that gJ‘*(c J“)
= 0 leads to a reactance matrix which is independent of any additional
information about the matching, and hence the resulting nonreactive

transition probabilities will not be sensitive {o the lack of ortho-



308

' . P—— |
gonality of S)A

20}7‘01‘ example, s2e R. Courant and D. Hilbert, Methods of Mathemati-

cal Physics (Vol. I), Interscience, New York, 1970, p. 4.

21We have tested both expressions in doing the OVA calculations, and

have found that Eq. 3.48 of I leads to a much poorer approximation
to the converged results than does Eq. 2.10 of the present paper, and
that use of the former expression can actually lead to spurious
resonant-like behavior in some transition probabilities. This could
presumably result from the fact that in Eq. 2.10, we have analytically
assumed completeness in carrym‘g oﬁt»the matrix multiplication
present in Eq. 3.48 of I, so the effects of a severe basis set trunca-
tion might be less irriportant than in BEq. 3.48 of I, ‘.where this
completenvess is neither assumed nor explicitly included.

223, Geddes, H. F. Krause and W. L. Fite, J. Chem. Phys. 56,

3298 (1972).

G. H. Kwei, V. W. 8. Lo and E. A. Entemann, J. Chem. Phys. 59,

3421 (1973). o ' |

24, A. Micha, Phys. Rev. 162, 88 (1967); D. A. Micha, Chem.

23

Phys. Lett. 1, 133 (1967); R. D. Levine, B. R. Johnson, J. T.
Muckerman and R. B. Bernstein,‘J,. Chem. Phys. 49, 56 (1968);

R. D. Levine and R. B. Bernstein, J. Chem. Phys. 53, 686 (1970).

25This argument does not rule out vibrational Feshbach resonances.

These resonances have actually been observed in planar H + H, 28
(at higher energies than are considered in this paper). As one might

28

expect, however, they affect more than one partial wave“® and thus

are probably not responsible for the oscillations observed here.



309

26For examples, see: J. M. Farrer and Y. T. Lee, J. Chem. Phys.

58, 5801 (1972); P. E. Siska, J. M. Parson, T. P. Schafer and
Y. T. Lee, J. Chem. Phys. 55, 5762 (1971); J. M. Farrar and
Y. T. Lee, J. Chem. Phys. 57, 5492 (1972); H. Haberland, C. H.
Chen and Y. T. Lee, Atomic Physics 3, 333 (1973) B. Andresen

and A. Kuppermann, Mol. Phys in press.

27& M. Bowman, A. Kuppermann, J. T. Adams and D. G. Truhlar,

Chem. Phys. Letters 20, 229 (1973).
28

31

G. C. Schatz and A. Kuppermann, Phys. Rev. Lett., submitted.
29D, J. Diestler, J. Chem. Phys. 54, 4547 (1971).
305, G. Truhlar and A. Kuppermann, J. Chem. Phys. 56, 9232 (1972).
A. B. Elkowitz and R. E. Wyatt, J. Cliem. Phys., to be published.
32R ' A. Mareus, J. Chem. Phys. 48, 959 (1967).
33

The dependence of Q‘Ié} . 00 on j can be extracted from the
Q 00 — 9 in Fi‘g° 21 by multiplying the latter by the ratio
ZkO@/[ koz(l + 0 0)} where the wave numbers kg and ko refer to
thev =0, j= 0 and v=0, } = 2 states of HZ’ respechveiy, and
(1 + 0 ]O) /2 is a degeneracy factor. '
‘34The distribution may be derived from an information theoretic
- formalism [ see, for example, A. BenaShaui, R. D. Levine and
R. B. Bernstein, J. Chem. Phys. 57, 5427 (1972)] by assuming
that the sufprisal function is linear in the product}‘rota.tional energy.
Note that the 2D translgtional density of states is independent of Ej'
and is therefore omitted from Eq. 3.3.
3°L. Shavitt, R. M. Stevens, F. L. Minn and M. Karplus, J. Chem,

Phys. 48, 2700 (1968).



310

36
37

R. B. Walker and R. E. Wyatt, Chem. Phys. Lett. 16, 52 (1972),

A. Farkas, Orthohydrogen, Parahydroqen and Heavy Hydrogen,

(Cambridge University Press, 1935) p. 13.

38For a recent paper on this subject, see R. B. Walker and R. E.

Wyatt, Mol. Phys. 28, 101 (1974).



‘311

FIG. 1. DPlot of potential contours for the H + Hz reaction1 in the

' ) 2 2 2
X, ¥, %, space having spherical coordinat’es_( = (RA + Ty ),
w = 2 tan™ rA/RA and v, for 7, = 0 and 180° (a), 45° and 225° (b)
and 90° and 270° (c). In (a) we also depict the lines of intersection
of the v, =0, 180° plane with the half planes 7 ,, T Ty i defined
in I which form the matching surfaces of the calculation, ¥For each
figure above, C)W)L is the intersection of the half plane determined by
OZ, and the corresponding smallest y, with the OXAYX plane.

Because of arrangement channel permutational symmetry, the lower

half of (c) represents contours on the matching plane e

FIG. ’2. Converged copia,nar reaction probability PJ’ 00 - 01 (for
thev=0, j=0-—v'=0, j' =+1 transition) as a function of the total
angular momentum quantum number J for E = 0.30 eV (crosses),

0.35 eV (triangles), 0.40 eV (squares) and 0.45 eV (circles). S‘mooth

curves have been drawn through the points.

FIG. 3. Reaction probability P;'s ) o analogous to Fig. 2 at total
. b
energies of 0.50 eV (crosses), 0.55 eV (triangles), 0.60 eV (squares),

and 0.65 eV (circles).

FIG. 4. Converged coplanar reaction probability P R
J,00 - 90

(i.e.; v=0,j=0-—v'=0, j' =0) analagous to Fig. 2.

FIG. 5. Coplanar reaction probability pR for E =0.60 eV

| J,00 -~ 00 .
(translational energy E, = 0.33 eV) versus the total angular momentum
quantum number J. Sguares indicate the converged result while circles

indicate the OVA probability for collinear reference potential (V(, oll =
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V(l’k, R)\’ '}/)L = O))-

FIG. 6. Coplanar converged inelastic probability PJN00 .0z asa
. b

function of J for total energies E = 0.40 eV (dash-dot), 0.50 eV

(dashed), 0.60 eV (solid) and 0.70 eV (solid).

FIG. 7. Schematic representation of dominant collisions contributing

to the j =0 —j" > 0 collisional (noﬁreactive)- excitation process.

Shown are (a) the initial approach of the collision partners in the center
of mass coordinate system, (b) the collision itself with the directioh of
the rotational polarization indicated by curved ari:ows, and (c) the
receding scattered particles. Collision I considers a collision with 1
(and hence b) initially positive (relative to the coordinate system shown).
‘Coll.ision I considers hegative initial 1 and b. Note that the diatomic '
rotor with j = 0 is classically motionless with equal probability for

any rotational phase. The particular phé,se chosen was that believed

- to give significant rotational excitation for each situation pictured.

FIG. 8. Converged coplanar reactive differential cross section
00%;01 w}ersa’s the scattéring angle XR for energies E =0.30, 0. 35,

0.40 and 0.45 eV.

FIG. 9. Reactive differential cross section 0"‘0:% ~01 analogous to

Fig. 6 at total energies E = 0. 50, 0.55, 0.60 and 0.65 eV.

FIG. 10. Converged coplanar reactive differential cross section
@@% ~ o at same energies as in Fig. 8. These curves are symmetric

about X = 180°,
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FIG. 11. Vibrationally converged and OVA differential cross section
o (I):{O .o at E=0.600eV (B, =0.330 eV). OVA cross section was
computed with a collinear reference potential (Vcoll = V(rh, Ry, vy =0)).

The cross section for this transition is symmetric about x4 = 180°,

FIG. 12. Inelastic nonreactive (converged) differential cross section
for the coplanar v=0, j=0—-v' = O,v j' =+2 transition ‘at total energies
E =0.40 eV (dash~dot), 0.50 eV (dashed), 0.60 eV (solid) and 0.70 eV
(solid). | | ' |

. FIG. 18. Nonreactive {(solid), reactive (dashed) and antisymmetrized
(dash~dot) differential cross sections for the coplanar v =0, jA - 0~
A ’= 0, ! j* i = 2 transition (summed over final rotational polarizations)
at E = 0,500 eV (E, = 0.530 eV). Note that the &attering angle used

" is x and X = 0 corresponds, for reactive scattering, to XR = 180° (see

Eq. 2.5).

FIG. 14. Nonreactive, reactive and antisymmetrized differential ci'oss
sections analogous to Fig. 13 at E = 0.600 eV (E, = 0.330 eV). See

remark about x in the caption for that figure.

FIG. 15. Nonreactive, reactive and antisymmetrized differential cross
sections analogous to Fig. 13 at E =0.700 eV (E, =0.430 eV). See

remark about x in the caption of that figure.

"FIG. 16. Converged integral reactive cross sections ‘Qfé% ~01°

Q (?0 ~03 and é% 5 versus total energy E and translational energy

E,. (a) linear scale, {b) semi-logarithmic scale.
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FIG. 17. Integral reactive cross section Q‘& (summed over all
accessible final states) versus total energy E and relative energy E,.
Circles represent vibraticnally converged results and squares the OVA
ones using a collinear reférence potential.(a) linear scale, (b) semi-

logarithmic scale.

FIG. 18. Inclastic nonreactive integral cross sections Qé\g g9 and
Q 6‘6 ~.o2 (summed over f{inal polarizations) versus the total energy E

and relative translational energy E,.

FIG. 19. Total reaction probabiiities POR (collinear) and 'P‘OI({)

{coplanar, J =0, v =0, j =0 and summed over all final states)
_versus the total energy E and transiational energy E,. (a) linear scale ,

(b) semi-logarithmic scale.

FIG. 20. Coplanar total reaction -probabilities PO%(J = 0) {circles
- and solid curve), PISO (4 =4) (triangles and dashed curve) and Pé:{l

(J =0) (squares and dash-dotted curve) summed over all final states
versus total eﬁerg;y E and translational energy E,. (a) linear scale. -
(b) logarithmic scale. Note that the P§0(J’ =1 - 3) curves all lie

between the solid and dash-dotted curves in the figure.

FIG. 21. Converged coplanar integral reactive cross sections

?Q’Jg() - bj’ versus the final rotational energy at a fixed total energies
E = 0.50 eV (crosses), 0.55 eV{triangles), 0.60 eV (squares) and
0.65 eV (circles). | '
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FIG. 22. Semi-logarithmic plot of the integral reactive cross section
Q‘g{g ~ 05" (x2/02 - ﬁj,o)) versus the final rotational energy at a fixed
total energy for E =0.50, 0.55, 0.60 and 0.65 eV (symbols analogous
to Fig. 21). A straight line is drawn connecting the nearly linear low

j* points.

FIG. 23. Semi-logarithmic plot of the OVA reactive cross section
Q5o ot (x2/(2 - 6,,9)) at energies E =0.50, 0.55 and 0.60 eV

analogous to Fig., 22,

FIG. 24. Integral cross section Qé% - Olv‘versus E and E, for several
exact and approximate coplanar calculations. QI(;O'»OI (SI{)‘refers’

to the present results, Q' _ oy (WW, WE) and Q3 _ o1 (WW, SE) are
the results of distorted wave calculations of Ref. 12, and QROO 401(AL)
is the OVA result (ont a different potential surface and using a method

somewhat different from ours) of Ref. 7.

.~ FIG. 25. Reaction probabilities PJ?OO ~00 and P J:,ROO ~ 01 (a) and
differential cross sections o 0% pp and © 0% ~p1 (). WW refers to

the SE results of Ref. 12 with dashed curves referring to 00 — 00
transitiohs and dash-dot curves referrinkg to 00 ——> 01. SKrefersto

the results of this paper (Figs. 3, 4, 9, and 10) with solid curves for

00 — 00 and short dashed for 00 — 01. WW results are at E; = 0.340 eV
(E = 0.61 eV) while SK results are at E, = 0.330 e.V (E = 0.600 eV).



316

FIG. 26. Arrhenius plot of the converged and OVA para to ortho

coplanar thermal rate constants for H + H, for the converged and OVA

(collinear reference potential) results. The dashed straight line is

tangent to the converged one at high temperatures.
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