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ABSTRACT

It is proposed to solve large-scale finite-element equation systems
arising in structural and solid mechanics by way of an element~by-element
approximate factorization technique which obviates the need for a global
coefficient matrix. The procedure has considerable operation count and I/0
advantages over direct elimination schemes and it is easily implemented.
Numerical results demonstrate the effectiveness of the method and suggest

its potential for the analysis of large-scale systems.
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CHAPTER 1

INTRODUCTION

MostAproblems faced by engineers, in everyday practice, can be solved,
in principle, using the finite element method. However, large scale problems
either linear or nonlinear, require solution of large equation systems and con;
sequently require considerable amounts of in-core storage and computing time.

Fast core storage is limited, even on the advanced super computers such
as the CRAY and STAR and one needs to employ secondary storage devices (disks
and fapes) to accommodate the globél matrices. This results in more compli-
cated {(and thus slower) out ofrcore solvers which in turn causes much more time
to be spent on I/0 between the fast core énd the secondary storage devices than
on CPU.

The shortage of fast core storage is most apparent for three dimensional
dynamic nonlinear problems. For example consider a rectangular continuum
domain with twenty elements along a side having three degrees of freedom per
néde. This probiem requires 3.66 x 107 words of storage and 1.7 X 10lo opera-—
tions per step per iteration.

For these reasons thé research on new finite element techniques is con-
centrated on the following goals:

i) The reductién of stbrage requirements.

ii) A reduction in the number of operations required in the solution

of the equation systems.



Approximate factorization techniques were first suggested for global
operators arising from finite difference schemes. The idea is to replace
the global operator by a product of operatérs each requiring a smaller
storage space than the global matrix and which can be factorized more effi-
ciently than the governing global operator.

The ADI technique presented by Douglas and Rachford [D4, D5] approximates
the global finite difference operator in two and three dimensional spaces by
a product of one dimensional operators each of which is assumed to be effec~
tive through part of the time step. Works published By Yanenko and Marchuk
[Y1l, M3, M4] present an approximation of a global operator arising from finite
difference schemes of parabolic and hyperbélic equations by products of opera-
tors defined on subdomains of the problem and resulting in unconditionally sta-
ble second order accurate (in time step) approximétions having é‘very favourable
storage requirement and a relatively small number of operatioms.

A more recent work in the finite differenéeé,area by Beam, Warming and
Steger [W4] approximates a global multidimeﬁsional operator by a product of
one dimensional operators having the storage requirements and operation count
of a one dimensional operator and retaining the stability and accuracy of the
governing multidimensional operator.

All the methods suggested for finite differences inherit thé limitations
of being able to handle only regular domains and'simple‘boundary conditions.
Approximate factorization algprithms have also been proposed for global opera-
tors arising in the finite element method. Trujillo [T2, T3j presented a method
in which the global operator is replaced by a product of an upper triangular
operator and a lower triangular operator saving the entire factorization stage

of the solution but having no storage advantage over the governing operator.



This method was modified by Park [P3] to allow rigid body modes to pass thrbugh
tﬁe approximate operator and was shown to possess some superior numerical‘pro—
perties over the method suggested by Trujillo, but still has no storage advan-
tage over thé governing opérator.

The element-by-element (EBE) operator split was first proposed by Hughes,
Levit and Winget [Hli] for finite element schemes in heat conduction problems.
The method consists of factorizing the global finite element bperator into a
product of its natural primitives, namely the element operators. The method
was shown to retain the flexibility and versatility of the finite element
method and avoids the need for storage and factorization of a global operator.

In this work we present algorithms implgmenting the element-by-element
concept for a general class of linearized eqﬁation systems emanating from
finite element discretization of continuum mechanics and structural problem.
”The algorithms are applied to a linearized symmetric positive definite operator
which admits element level decomposition and are not othefwise limited to any
specific class of problems.

In chapter II a detailed formulation of linear equation systems emanating
from finite element formulations of linear and nonlinear problems in elasticity
are formulated for both the static and dynamic éases.

In chapter III the dynamic regularization method is employed for solving
linear equation systems, an element-by-element approximation algorithm is pre~
sented and studied and numerical solution techniques (line searches and quasi-
Newton updates) are implemented in conjunction with the EBE algorithms and are
éhown to improve the numerical characteristics of the suggested schemes.

Chapter IV describes the computer program written for implementing the EBE

algorithms and presents numerical examples of dynamic linear and nonlinear



problems solved using the EBE algorithm.
Appendix I includes algorithmic and communication flow charts of the

finite element system program written for this work.



CHAPTER II

FORMULATION OF LINEAR EQUATION SYSTEMS IN FINITE ELEMENT ANALYSIS

In this chapter, detailed formulations of linear equation systems in
finite element analysis for/a variety of problems in structural analysis and
continuum mechanics are presented. The emphasis in this chapter is on linear
and nonlineaf classes of problems in elastostatics and elastodynamics. Although
other.problems in mechanical engineering, such as plasticity, visco plasticity,
heat conduction, fluid mechanics, etc., can be cast into similar formats, they -

are not treated in this chapter.

'2,1. Linear Elastostatics

n .
Let 2 be a bounded region in R Sd, where n.y 1is the number of space

dimensions. Assume  has a piecewise smooth boundary T . Let X-= {Xi}’

i=1,2,..., n_g s denote a general point in § and let n = {n,} be the
. ~ i

unit outer normal vector to I . Further, assume [ admits the following

decomposition:

T = T U T (no sum) (2.1.1)
g fy o ,
i=1,2 ,..., n_g
;91 r\‘réi = ¢ (no sum) (2.1.2)
i=1,2,..., N g4

where ﬁy and T, are subsets of T , the superposed bar, in (2.1.1),
i i

represents set closure and ¢ , in (2.1.2), denotes the empty set.



Further, assume the following functions are given:

/; s 0 > R (body force) (2.1.3)
75 ¢ Qy > R (prescribed displacement), (2.1.4)
i
hy ¢ qé > (prescribed traction) (2.1.5)
i

2.1.1 Strong form of the Boundary Value Problem (B.V.P.)

The mathematical statement of the B.V.P. is as follows:

(" Given ;?, Fi» ﬁi as in (2.1.3) - (2.1.5)
Find:
u; 2 > W (2.1.6)
such that:
(s) ﬁ .
Oij,j + /g‘= 0 on Q (2.1.7)
ui = ?E on 2yi (2.1.8)
g =
g i nj Ai ~on Féi (2.1.9)
where u(x) = {ui(g)} is the displacement field vector, o(x) = [Oij(x)]

is the Cauchy stress tensor, the comma in (2.1.7) denotes spatial differen-

tiation (i.e. O

.. . = 80../9x.) and the summation convention on repeated
13,3 i3 J

. .th .
indices is assumed in.force. ny is the J component of the unit outward

normal vector on Eé . Equation (2.1.7) is the equilibrium equation,
' i

(2.1.8) is the prescribed displacement boundary condition, frequently called

" g-type" B.C. or "essential" B.C., and equation (2.1.9) is the prescribed



traction boundary condition referred to as " 4-type" B.C. or "natural" B.C.
To complete the system of field equations we introduce the strain and

stress-strain relations as follows:

€13 = Ye,i) - (uy gty /2 (2.1.10)

Uij = Cijk% €a, (2.1.11)

-.where € = [eij] is the infinitesimal strain tensor defined as the symmetric
part of the displacement gradient and C = {Cijkﬂ] is the elastic response
tensor. In this work we shall assume that the elastic response tensor C

possess the major symmetry and the two minor symmetries with respect to the

indices 1ijk% (e.g. linear elastic solid), namely:

Cisue = Ckaiz = Cjixe (2.1.12)
2.1.2 Weighted Residual Form of the Boundary Value Problem
We define the trial soliation spaces 5? as follows:
,y;: = {ui I ui == gi on Fyi} i=1 9 2 geccy nSd‘ (2.1.133.)
and the variation spaces 12 as:
v, = {wi | w, = 0 on T, } oi=1,2,..0.5 05  (2.1.13h)
i

Multiply (2.1.7) by v, € 7; ,k and integrate over the domain Q .

The result, together with (2.1.8) and (2.1.9), gives the following weak form:



(" Given /i’ 75 and /zi as before
Find u, € &, S.T. for every w, € 7
i i i i
wly,w) = @, A + G, &, (2.1.14)
@ <
d(y, E) = v}(l,j) Cijqu; u(ksz)dg‘l
0
@ H = [w;f a0
Q
sd
L (w, i’t)r = fW £, a4l = E f Wiﬁi dar
; T i=l T
PA -
Remarks :

1. @ (=, *) , (*, *)} & (+, °)p are symmetric bilinear forms.
2. 1If certain smoothness conditions are satisfied then (8) <=> (W)..
3. (W) is referred to in mechanics as the "Principle of Virtual Work" and

w, as "Yirtual Displacement'.

2.1.3 FLubnov-Galerkin Approximation of the B.V.P.

Let ”Vf’ C“/é , =1, 2 ,... n.g' be subspaces spanned by a finite pumber

of given linearly independent functions, NA , A=1,2,..., n, such that:

n

wte - Luth Y. . # =
vy = U’i] vk = ;LNA(}f)dAi ;e 0 on I‘yi}

i=1,2,...,n, (2.1.15
where the d,. /'s are ;nodal quantities.

Let g{‘ 619';1 (i.e. J’f= ‘?i on I} ) and define the approximate solution
i



spaces 5?? through:

(-/i . /1 /I — IA . /t { =
,f’i = {ui ! ui = ti +4 yl} C.?;,_ 1 1,2 seons nsd (2.1.16)

The Bubnov-Galerkin analog of (2.1.14) is;

Given /. & and # as before

~ ~

) Find uf = ﬂf + yféyiﬁ S.T. for every wa‘Vf (2.1.17)
a5 = wh D o @ g -t g

4 . "
and e are vector functions which can be

-~

#

Note that in (2.1.17) both w

represented as linear combinations of the same finite set of functions, N

A. 2
A=1,2,...,n.
2.1.4 Vectorial Notation
To simplify future writing, we shall introduce the strain "vector':
Y1,1 l
o in 2 - D
2,2 : _
(n4 = 2)
vi,2 T Y21
e ~
“1,1 |
e(w) = {g; 1} = Uy, 7 4 (2.1.18)
u
2 3,3 . in3-D
(n_, =3
2,3 ¥ U3,2 sa =
Y31t Us
R tuy1




where wu.
19

10

12/

in 2 - D
(nsd = 2)
in'3 - D
(n 4 = 3)

L= Bui/ij (L =1, 2, 3) and similarly the stress "vector":

(2.1.19)

Next we shall introduce the matrix form of the fourth order elastic response

‘tensor C :

where:

11 = Cisx

Dy; Dyp

in 2 - D

2)

in3 -D
(nsd =3)

(2.1.290)
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The relationship between the (I, J) and (i, j, k, %) indices is given in

the following tables:

| 2 -D (ng4=2) 3-D (nsd = 3)
LT i1 Ll 2% 7%
1 1| 1 1 1 1
3 1| 2 6 1 2
3 2 1 5 1 3
2 2 2 6 2 1
2 2 2
6 |2 | 3
5 3 1
4 3 2
3 3 3

For the 3 - D isotropic case the elastic response tensor, Ci’kl , takes the
: J

following forua:

u(ﬁik chz + 612 6jk) + A8 8

C..
ijkl iy k&

2

where ﬂ and A are the Lamé moduli and sij is the Kronecker delta.

¥or this case the D matrix is given by:

o

A+ 2y A A 0 0 o
A+ 2u A 0 0 0
D = Araco 0o (2.1.22)
w0 0
H 0
U

Symm,
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Finally, we shall introduce the §A(§) matrix associated with a given function

NA(}.S):
NA,l 0
0 N in 2 -D
2
As (nSd = 2)
| Ya,2 T4,
-N -
ALl 0 0
B, = (2.1.23)
0 0 N
‘A133
in3 - D
0 N N
A:3 A,2 (nSd - 3)
N3 9 My
| Ma,2 M1 0
L.
where NA,i = BNA(§)/Bxi~
If N, is an interpolation function, the B, matrix represents the re-

~A
lationship between the strain "vector” € at a point X, ¢ Q and the appro-

ximate displacement field uﬁ at that point.

~

2.1.5. Matrix Finite-Element Form of the B.V.P,

Consider a discretization of § into bounded element subdomains Qe

3
e=1,2,..., 0., where n_o is the number of elements. Let [° denote

the boundary of Q¢ and assume:

oC

&l
B
=

(2.1.24)

0ot o= 8 (2.1.25)
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Further, assume that 0 and ?y contain n and jy nodal points respec-
: i i
tively (n, ¢ n). (n and n are sets.)
& &5

Consider interpolation functions which satisfy:

EA

1
NAKX) = A, B €n (2.1.26)
h 0 xp A#B

(34
i

[
It

vwhere X, and Xn are position vectors of nodes A and B respectively.

Fig. 1 illustrates a 2 - D example of N (5). Clearly the N A=1,2 ,...,

A 2

n, functions constitute a basis for the Galerkin spaces &?f and 'zg?u

Thus we can write:

el = 20 N, (x)d, evfi=1,2,...,n
i™s ~7T1A i sd
Aen -n
£
. (z.1.27)
# = Pt .
7l = A;ﬂ N € =1, 2,0, gy
£
where d,, and &, are constant nodal values.*®
Define the following vector quantities:
4 _ £
R
#
gt sle, (2.1.28)
wé= wf"‘e;
where ei's are unit vectors in the 1 h space dimension direction:
(2.1.29)
e, {e .} '
=i = ij
1 i=3
e = 8., = i,3=1,2,..., 0
1] 1] 0 1i# j ©

*

It is assumed that the g-boundary data are approximated by nodal interpo-

lation via the NA's.
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Substituting (2.1.28) into the Galerkin approximation (2.1.17) and using
the vectorial definitions of the previous section one obtains the following

system of linear equations:

b

d = F _ (2.1.30)

where K 1is the stiffness matrix, d vector of nodal displacement and F

is the load vector.

K and F are assembled from the elements contributions via:

ey,
K = k
- oy~
(2.1.31)
Teg,
r - A /¢
e=1 "~

%
where [\ is the finite element assembly operator, k€ and /e are the eth

~

element stiffness matrix and load vector respectively given by:

(K& = Ik ] 1<p,qsng

e _ T T )

kpq = e §a P %j (2.1.32)
< 0°

e _ re}

[° =

e _ F—
S fp T .[Na /idS“-/., Ny 4 d 2;; Pq q (2.1.33)
: Qe remr/z q

W i eme equati n =n b1} : number
here n_. is the number of element equations ( ce en X Dad

*The finite element assembly operator maps the element local degrees of freedom
to the global degrees of freedom and adds the element contribution to the global
array.
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of element nodes times number of element degrees of freedom per node). a , b
are local element node numbers and the relationship between the element equation

numbers, (p,q), and node numbers, (a,b), is given by:

p = n {(a-1) +1 1<a,b<n
ed en (2.1.34)
q—ned(b—1)+3 lii’jf—ned
Finally, yz's are defined through:
?j(xe) if >~<§ € ny
e e h]
" = g = 2.1.35
yq bi ( )
0 otherwise
2.2 Linear Elastodynamics
et 2, T, Fy and Pﬁ be as in section 2.1, and assume the follow-
i i
ing functions are given:
p: Q> R .(mass density) (2.2.1)
4w ax]o, T[> m (2.2.2)
g5 ¢ Fyi xJo, [ mw (2.2.3)
A% 1o x 0, Tl R (2.2.4)
li 3
us ok -+ R (initial displacement) (2.2.5)
a.: -+ MW (initial velocity) (2.2.6)

oi
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2.2.1 Strong Form of the Initial Boundary Value Problem (I.B.V.P.)

The mathematical statement of the I.B.V.P. is as follows:

( Given p, f;, g, 4;, u,; and &Oi as in (2.2.1) - (2.2.6)
Find :
u; @ QX [0, T} » R (2.2.7)
such that:
pu;, = Gij,j + /; on © x Jo, T[ (2.2.8)
(s) ﬁ '
' u; = g, on Qy. x 1o, T[ (2.2.9)
1
Gij nj = Ai on Téi x Jo, T[ (2.2.10)
u, (%, 0 = u,;&x
on £ ; (2.2.11)
. ai(§’ 0 = &oi(§)

where the superposed dot denotes time differentiation in the inertial reference

frame (i.e. &i = Bui/Bt) and all the definitions and conventions -0f sectiom

2.1.1 a;e enforced.

2.2.2 Weighted Residual Form of the I.B.V.P.

Let 92 and 7§ be the trial solution spaces*.and variation spaces
respectively defined through equations (2.1.13a) and (2.1.13b). Multiplying
(2.2.8) and (2.2.11) by w, € 75, integrating over ! and use of the bound-
ary conditions (2.2.9) and (2.2.10) we obtain the following weak form of the

I.B.V.P.:

x
The trial solution spaces are now time dependent due to (2.2.9).
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Given P, fi, g » #; s Uyy 8nd Uyy as in (2.2.1) - (2.2.6)

Find uy : [0, T; ~ 52 §.T. for every w, € vy

w)y < . )
(w, p @) + @, w = (w, ) + (v, £) (2.2.12)
(ys 13: (%: 0) - 1;10) =0 (2.2«13)
(w, u(x, 0) ~0 ) =0 (2.2.14)
. ~ ~ ~

where «(°, *), (¢, *) and (-, ')P are the same symmetric bilinear

forms defined in (2.1.14)

2.2.3 Bubnov Galerkin Approximation of the I.B.V.P.

Let Zgé and éﬁé‘be the subspaces defined through (2.1.15) and (2.1.16) and
use 126 and 5§4 as approximations for 1; and 5? in the weighted residual

form to obtain:

- Given p ) f; s F5 s éi , u,; and ﬁoi as in (2.2.1) - (2.2.6)

Find:
u;.t’ = “f + gfi (o, r} - %ﬁ §$.T. for every wiE ',',»;Lﬁ
© SR S ratwh o = wh D+t e -
ko - e g 2219
(‘iﬁ: «Hx, 0)) = (‘jﬁ, u, - _gﬁ(z;, 0)) (2.2.16)

2.2.4 Semidiscretized Equation of Motion

We proceed as in section 2.1.5 by discretizing {! into bounded subdomains

Q s, e=1,2 ,.c., nez. let n and n be the same sets as in 2.1.5 and
L3
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NA(§)'S be the interpolation functions defined by equation (2.1.26).construct-

ing the basis of the Bubnov-Galerkin spaces 7?4 and 6@%,

Thus:
'u./‘(x, t) = Z N (x) d4.,.(t) + [0, T] = gt
i~ ACS iA i
AETT—-ﬂy
i (2.2.18)
yi/’(§, t) = Z N, (%) yiA(t) : [0, T] ~ .9’15
AeT
£
where diA(t) and yiA(t) are nodal values at time t .
Define the vector valued functions vé, gé and ggé through equations

(2.1.28) and substitute the above into the Bubnov-Galerkin form of the I.B.V.P.

.(equations (2.2.15) - (2.2.17)) to obtain the following semidiscretized form:

»

Given M , K and F(t)
Find: oy
d: [0,T] » R
{ such that:
M d(r) + Kd(t) = F(t) (2.2.19)
o] K] ]
L a(0) =d” ; d(0) = d (2.2.20)

where M is the mass matrix, K is the stiffness matrix, E(t) is the
load vector at time t and d(t) is the vector of nodal displacement at
time t . do and d° emanate from consistent approximations of the

initial conditions via:

u (x) = 2, N, (x)d° (2.2.21)
oi '~ Aen AT TSA
SCONE D I e 'd,‘;A (2.2.22)

Aen
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The stiffness matrix, K , is defined similarly to the static case and

its element components are given by equation (2.1.32).

The mass matrix, M , and the vector of applied forces, F(t) , are
defined as follows:
Teg,
u = A ; n® = [m ]
¥ e=1 ~ Pq
e _ . =
mpq 013 fp(*{) N, (zi) Nb (Z()d.Q Pp,q=1,2, ..., n_ (2.2.23)
e
a Q
eg
- e . e - e
F(t) = él P sy = )
e
o) = LNa (x) f (&, ©)de + _/; N, () 4, (x, ©)dl
Q T vF\FA
n
ee
- k t) + t =1 , 2 4cee, 2.2.24
?;L[quq() me Fo(®)] p n, ( )

where !\ is the finite element assembly operator. The relationship between
the local node numbers, (a,b), and the element equation numbers, (p,q), is
given by equation (2.1.34).

The semidiscretized g-type data are defined by:

. gj(§§, t) for §§ € hfi
yq(t) = bi(t) = (2.2.25)

0 otherwise

and similarly

. oo
5ﬁ(§b’ t) for xb €Ny
jo(e) = o (v) = !
g
q J

0 otherwise (2.2.26)
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We shall introduce the damping matrix C which represents the observed
damping properties of structures. C does not emanate from classical elasti-

~

city theory.and usually is written in the so called Rayleigh Damping ﬁZl] form:
|
C = aM + bK (2.2.27)

where a and b are constants referred to as the external and internal
damping coefficients respectively. Including the damping matrix, the semi~-

discretized I.B.V.P. can be stated as follows:

Given M, C, X and F(t) as before

Find:
d: [0, T] » ®

such that:
M d(t) + ¢ d(r) + K d(r) = F(t) (2.2.28)
\ a) =d°; d©@ = & (2.2.29)

Equation (2.2.28) répresents a system of ordinary differential equations and
(2.2.29) the corresponding initial conditions. From this point on we shall
assume that M is a symmetric positive definite matrix and that C and K
are symmetric positive semi-definite matrices.

To reduce (2.2.28) to a system of linear algebraic equations we need to

discretize the time domain of the problem.

2.2.5 Temporal Discretization

The subject of temporal or time domain discretization for second order
systems has been intensively explored since the appearance of the first digital

computers. Consequently, a variety of remarkable wpfks have been published
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on this subject and many algorithms suggested.

The existing techniques can be classified into two main categories:

1. Single step methods
2. Linear multi-step methods (L.M.S.)

The first includes all methods for which we can advance the solution to the
next time step using only the known state—vector‘of the previous step and
the latter requires state-vectors of more than one previous step.

Well known members of the first category are the Neﬁmark B-method [N1],
the Wilson O-method [W1], the collocation method [H1] and the Hilber, Hughes
and Taylor a-method [H2]. As members of the second category we shall mention
the Park method [P1l] and the Houbolt method [H3].

In this work, for reasons that will become clear in the subsequent

sections, the Newmark B-method is used.

2.2.6 The Newmark B-Method

The Newmark family of algorithms is given by the following equations:

f —
Ma g 8V ¥ ¥4 =5 (2.2.30)
d =d + At V_ + AEZ (1 - 28) + AtZB (2.2.31)
~n+1 “n ~n 2 2 2o+l i
< Yn+]_ = Yn + Ac(l - Y)%ﬂ + At vy %n+l (2_2.32)
a =4° ; v =4&°
~0 ~ ~0 ~
‘—l (2.2.33)
. g, =1 {Eo -CV,-K go}

where dn+l is the approximation of the spatially discretized displacement

vector d(t) at t = (n+ 1)At , At is a time step, F

F 4 1s the load

n+1
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vector E(t) at tn+l R Yn+1 and §n+l are the approximations of the first
and second time derivatives of g(t) , respectively, at thl (velocity and
acceleration) and B , 7Y are parameters which control the stability and accu-
racy of the method.

" To study the characteristics of the Newmark family we must reduce (2.2.30)
to single degree of freedom (S.D.0.F.) equations via moda£ decomposition and

write them in first order form.

2.2.7 Modal Decomposition and First Order Form of the Equation of Motion

Recall the undamped eigenproblem:

[k - xwM]

~

e

=0 (2.2.34)

where A 1is an eigenvalue and f the corresponding eigenvector. The

solution of (2.2.34) leads to neq pairs of eigenvalues and eigenvectors
I _

{Xﬁ . WQ}Zziq - The eigenvectors satisfy the following orthogonality

conditions:

T ~ _
vp MYy = by (2.2.35)
gz Ry = A dgm, (no sum) (2.2.36)

Further, if we assume Rayleigh type damping is present then:
C = aM + bK (2.2.37)
T
¥2 c gm = (a+b AZ)SQm (no sum) (2.2.38}

We define the gth modal damping factor 52 as:

EQ. = (a/wﬂ,+ b wz)/z (2.2.38)
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Applying modal decomposition to the Newmark equations leads to the

following $.D.0.F. form of the algorithm (drop £ subscripts):

2
f -
q4p T2E W Vg Y0 diy = P (2.2.39)
4 —a 4 acv +2%0 Coya wacks a (2.2.40)
ntl  n n 2 n n+l <o
< Vo =Vt At(l - Y)an + At ya 4 | (2.2.41)
d , V are given
o (o]
2 =F -26wvV -wd (2.2.42)
o] [o] o] o] . e

where dn s Vn and an are the zth components of the generalized dis-
placement, velocity and acceleration vectors, respectively, at time tn and Fn
is the ¢fh  component of the generalized load vector at .

Equations (2.2.39) - (2.2.41) can be written in the following first order

form:

g = AY, L (2.2.43)
2 |
n
Y = - 2.2.44
~n {Vh } ( )
A = aTla (2.2.45)
~ ~l ~2 . . °

o Ta+a®d) @Al w
W - , (2.2.46)
| (At Y W) (1 + 2 AtYE w)

-

At2 2.
[1- 75—(1 - 28)w°] At[l - At(l - 2B)E w]
A, = (2.2.47)
[ - AL - y)w?] (1 -2 Al - E w]
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ég?[(l - 28)F 4+ 2R F_,.]
L= aAt{2 n o+l (2.2.48)

~n ~1
A[(L - VF + v F_ ]
where A is the algorithmic amplification matrix and Ln is the load vector.

2.2.8 Accuracy Analysis of the Newmark Family of Algorithms

To analyze the accuracy of an algorithm some accuracy measure is needed.

We define the '"“local truncation error vector", T(tn) , as follows

() = (e ) - Ax() - L) (2.2.49)
, d(t )
(e ) =
~ I
v(t )

T(tn) measures how the exact solution of the S.D.OLF. equation:
d(r) + 28 w d(t) + w? d(t) = F(t) (2.2.50)

fits the algorithmic approximation given by equation (2.2.43). If we
further assume that the exact solution of (2.2.50) satisfies (2.2.43) at
tn , then E(tn) measures the local error gccumulated by the algorithm
between step n and step ntl .

Expanding X(tn+l) about g(tn) using a Taylor series with remainder
and use of equation (2.2.50) and time derivatives of (2.2.50) together with

(2.2.49) leads to:

C Atk+l

[g(tn)l = (2.2.51)
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where C 1is some constant and k dis the order of accuracy of the algorithm.

One obtains the following results for the Newmark family:

(2.2.52)
k=1 for y#% , velo,1]

So the Newmark algorithms are second order accurate for Y =% and first

order accurate otherwise.

2.2.9 Stability Analysis of the Newmark Family of Algorithms

For stability analysis we consider the homogen?ous version of equation

(2.2.43) (i.e. L = 0 .

~ ~

The stability criteriom is:
p(é) < 1~ (2.2.53)

where p(é) is the spectral radius of the amplification matrix A defined

through:

p(4) = max |A;(4)] (2.2.54)
i=l,...,m

where Ai(A) is the ith eigenvalue of A and m is the dimension of A .

For the Newmark family, m = 2 , and for the case ‘AlgA) = AZ(A) we

require that p(A) be strictly less than 1. Hughes [H4] obtains the follow-

ing stability conditions for the Newmark algorithms:

28 > v > 4 unconditional stability

Y > %
{ 0 < 28 < ¥y conditional stability (2.2.55)
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E(y =) + [V/2 = B + E2(y = 1) 2"
72 - B)

erit crit

2.2.10 Some Commonly Used Members of the Newmark Family

(i) Trapezoidal rule (B = % , v = %): An implicit second order accurate

unconditionally stable algorithm.

- . . 1 . . s
(ii) Linear acceleration (B = “6 , Y = %): An implicit second order accu-

rate algorithm with conditional stability. For the undamped case

= 2/ 3

crit

(iii) Central Differences (B = 0 , Y = %): An explicit second order accu-

rate algorithm. The stability limit in the undamped case is:

. = 2
crit

Since this algorithm is explicit (i.e. no system of linear equation
need be solved to advance the solution from one step to the next

if the mass matrix is diagonal and only external damping is pre-
sent) it is used efficiently to analyze transient problems when rela-

tively small time steps are required.

2.2.11 Dahlquist's Theorem

To conclude this section about time integration algorithms and justify
the use of thé Newmark Algorithms in this work, we shall quote Dahlquist's
theorem:

1. An explicit A-stable L.M.S. method does not exist.

2. A third order accurate A-stable L.M.S. method does not exist.

3. The second order accurate A-stable L.M.S. method with the smallest

error constant is the Trapezoidal Rule.
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Remark:
The notion of A=-stable method (see [H4]) is slightly different from the
notion of spectral stability used to analyze the algorithms in this work,

spectral stability being more restrictive.

2.2.12 Residual Form of the I.B.V.P.

Eliminating §n+1 and Yn+l in equation (2.2.30) using (2.2.31) and

(2.2.32) results in the following equation:

g =
g Aén §n (2.2.56)
where:
Agn = a1 En (2.2.57)
M* = M+AtYC+AtZBK
At2
Bn = En+l - [g + At'g + 75. §]§ - [9 + At EJYn - E én (2.2.59)

Thus, for every time step, a set of linear algebraic equations, given by
(2.2.56), must be solved in order to advance the solution to the next time
step. a ., 1is calculated using (2.2.57) then Yn+1 and §n+l are obtained
from equations (2.2.31) and (2.2.32).

;

§.2.13 Implicit—Explicit Algorithm

There are two classes of algorithms for dynamic problems: implicit and
explicit. Implicit algorithms are usually numerically stable and allow the
solution to be advanced in relatively large time steps but the cost per time

step is high and the storage requirements tend to increase dramatically with
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the size of the mesh. Explicit algorithms, on the other hand, are inexpen-
sive per step and require very small storage; however, stability requirements
dictate very small time steps.

In everyday structural engineering and solid mechanics problems large
finite element models are employed with different mesh refinements at various
regions of the same problem and neither method is efficient. Hughes and Liu
[H5, H6] suggest the following algérithm which combines both implicit and
explicit methods by defining part of the mesh as a region of implicit elements
and the rest as a region of explicit elements.

The algorithm is formulated in predictor-corrector fashion and the super-

scripts E and I denote contributions from explicit and implicit elements

respectively.
d = d_+ AtV +é-t—2(1-2s) (2.2.60)
~n+l ~n ~n ) in e
predictor
Yn+l = Yn + Ae (1l - Y)gn (2.2.61)
% = TF*% §
¥ a1 E o4l solution phase (2.2.62)
d = g + Atzﬁ a 3
e+l Sn+l An+l (2.2.63)
corrector
Yn+1 = Va4l + Aty A+l (2.2.64)
where:
. E . I
Mx = (MF)T + (%) , (2.2.65)
B E
()= = M (2.2.66)
(bj*)I - M+ Aty gl + ae2g F (2.2.67)



29

r ¢ Varl ~ K én+l (2.2.68)

% = -
~n+1 }:n+l

Stability analysis of the above algorithm leads to the following results

(see [H6]). For:
y>k, B= (y+ 192 /4 (2.2.69)

unconditional stability is achieved in the undamped case for the implicit
elements.

And

= W At

crit crit (2.2.70)

{
< <

for the explicit elements.

2.3 Nonlinear Elastostatics

Two classes of nonlinearity are treated in this section, the first
involves nonlinearity due to material behavior and the second includes non-
linear effects due to finite deformations.

For the purpose of the second class of problems rate constitutive equa-
tions are presented and incremental linearized stress-strain equations are

derived.

2.3.1 Nonlinear Material: Mathematical Statement of the Problem

Assumptions:

1. Small strains

2. No initial stresses

3. ©Nonlinearity enters only through material behavior

Further, we shall assume that there exists a strain-energy potential function
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¢(e) , scalar valued, such that:

csij(g) = 0 qb(g)/asij (2.3.1)
© = 30, (/0 S Cp () (2.3.2)
C.. £ = g,.{e)/0E = R = .. (€ 3.
ijke v< ij°= kL asij8€k£ kiij = |
Let 0 , qy and Fﬁ be as in section 2.1. Then the mathematical state-
i i

ment of thebproblem is as follows:

(( Given /} , & and éi as in (2.1.3) -~ (2.1.5)
Find:
ug Q - R (2.3.3)
such that:
(8) <
I + /g = 0 (2.3.4)
u, = 93 on Fyi (2.3.5)
g = ed e
L ijnj ; on r (2.3.6)

where all the definitions and conventions are the same as in section 2.1.1

except for the Cauchy Stress tensor which is given by equation (2.3.1).

2.3.2 Nonlinear Material: Weak and Bubnov-Galerkin Forms

The weighted residual and Bubnov-Galerkin forms of the nonlinear material
B.V.P. are same as in sections 2.1.2 and 2.1.3 with ﬂ(y, u) replacing a(y, E)

where:

nw, u) = _{w(i,j)oij(g)dsz (2.3.7)
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2.3.3 Nonlinear Material: Matrix Form

We proceed using the vectorial notation of section 2.1.4 and the defini-

tions of section 2.1.5 to obtain the following matrix form of the nonlinear

B.V.P.:
N(d) = F 2.3.7)

~

where N(d) 1is the nonlinear vector of internal forces and F 1is the

external load vector.

n
el
N = A\ n%@d® (2.3.8)
il an
@ = {079} (2.3.9)
nS(d® = e f B. o(e)df (2.3.10)
P~ ~1i ,Qe a <
Beg, R
F o= {" (2.3.11)
h e=1 ~
= {f° (2.3.12)
fr=
e
fp ™ . N, f, 4+ fe N, 4, dT (2.3.13)
Q I f\Tﬂ.
1
P = ngy (a-1) + 1 (2.3.14)

A set of nonlinear algebraic equations in the form of (2.3.7)fcannot
be solved directly and some iterative solver is required. In the next section
a Newton-Raphson method is applied to equation (2.3.7) and an iterative algo-

rithm is formulated.
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2.3.4 The Newton-Raphson Method (N.R.)

The Newton-Raphson method is based on local linearization of the non-
linear algebraic equations. When applied to equation (2.3.7) it yields the

following algorithm:

.
PN(d4y) Bdegy = Ryyy (2.3.15)
1 e = 4 d
dharny T Yy T Bdey (2.3.16)
< oy =9 (2.3.17)

where (i) is the iteration index, Dg(g(i)) is the local tangent stiffness

at iteratiomn 1 , Ad(i) is the nodal displacement increment at the i

th

iteration and R(i) is the residual load vector.

The matrix forms of DN(di) and Ri are given by:

n
el
- e, e
DN(d(4)) = eél Do (d¢yy) (2.3.18)
= 1 & &
pn(dy,y) (oS (d5y)] (2.3.19)
Das (degy) = 3 n (4173 48 )

- gff Tag(gm B, d2e; -
e

f ~(1)
_ T T (2.3.20)
= e j-?a ClE(q)) By a0 ¢

Qe

13(1} = E-N(d(l)) (2.3.21)
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Termination of iterative procedures, such as the N.R. method, depends

upon some convergence criteria such as:

(2.3.22)
Ryl < &g HRegl|

i!Aé(i)“ §.€21I4(1+1)Il (2.3.23)

where €1 and 82 are some small prescribed values.
It should be mentioned here that the N.R. method is rarely applied in
its present form and more efficient techniques such as modified N.R., incre-

mental N.R. and quasi-N.R. updates are commonly used. These will be discussed

in chapter III.

2.3.5 A Class of Rate-type Constitutive Equations for Inviscid Materials

Consider the following rate-type constitutive equations:

G* = e - . _ % e
ij O:'Lj Sijkl “lk,1] ¢ i3kl Y(k,1) (2.3.24)
where:
g - C : (2.3.25
%3 T gkl Y(k,D) | .3.25)
Sijkl' = (Gildjk + ojléik - Gichjl - Ojvk(sil)/,z (2.3.26)
L) - @ + Py
Y T k1 L)/ (2.3.27)
U, 1] T (g1t w072 (2.3.28)
Here u and &[k 1] are the symmetric and skew-symmetric parts,

(k,1)

respectively, of the velocity gradient and the superposed dot denotes time
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differentiation.
o%_ is called the "objective stress rate" and is required to transform

as a tensor under rigid body motion. The second term in the R.H.S. of (2.3.24)

(S44k1 Y[k,1p I8 ¢

mined by the tenmsor rotation requirement or "objectivity" (for details consult

he rotational part of the objective stress rate and is deter-

[T1, BX]). The numerical aspects of this term are discussed in a paper by Hughes
and Winget [H7]. The third term in the right-hand side of equation (2.3.24)

* L4
(Cijkl u(k,l)) is required to be objective but is otherwise arbitrary. In this

%
work we shall employ the Truesdell Stress Rate where Cij is given by:

k1

S

* = = + §
i i1 13 Okl

(oil jk+Gjl éik +

+ O, 64 + Ojk Sil)lz | (2.3.29)

For further details on this subject the reader is urged to consult [H8, H9].

*

The tensors Sijkl and Cijkl possess the following symmetries:
= - 2.3 .3
Sijx1 S§ik1 Sij1k ( 0
c — - C 2.3.31
Cijla €y T Cijk , ( )

Combining (2.3.24), (2.3.25) and (2.3.29) we can write the rate consti-

tutive equation as follows:

.= Y + S, .4 U 2.3.32
935 Ciir1 B(k,1) T Skl Y[k,1) ( )

A

Ciskt = Cigra T Cijia | (2.3.33)
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Note that in (2.3.32), .Eijkl accounts for material nonlinear response

while Sijkl accounts for finite rotations.

Equation (2.3.32) can be approximated by an incremental version using the

following approximations:

. Ac
& oz = (2.3.34)
~ At
. Au
U= o (2.3.35)
combining the above with equation (2.3.32) we obtain:
i3 Cagm By Sigm Mg (2.3.36)

The reason for introducing equations of this form is that it allows
simple generalization to elastic-plastic phenomena. We note that all (hyper-
elastic) constitutive equations can be put in the form (2.3.32) by way of time

differentiation.

2.3.6 Linearized Variatjonal Equations

Define a scalar valued functional, f , through:
f(g, u) = J/:Ji,j Oij'dQ (2.3.37)

where (! is the current configuration of the domain. Both £ and 3/2x]

depend on u .

The directional derivative of £ 1is defined by:

e df (0 + € AG,u + £ Au) (2;5-38)
de

where € 1s some small parameter. Evaluating (2.3.38) at e=0 leads to the
following linearized variational equation:

fwi,j(AOij + Gij Auk,k - Auj,k Uki)dﬂ =.[Wi /i dan + fwi Ai ar -
£ ‘ Q qé

- leﬂ. ., 0., dR (2.3.39)
Q 1,3 11
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Use the incremental constitutive equation (2.3.36) to obtain:

j;i’j 4y Buy 1 42 = fwi f; 40 +fwi 4o dT - fwi,j 0y 49 (2.3.40)
Q Q T, Q

where:
dijkl = Cijkl + Ujl 6ik (2.3.41)

Remarks

1. The 931 § term in (2.3.41) is the initial stress stiffness.

ik
2. dijkl possesses the major symmetry (dijkl = dklij) which yields
a symmetric tangent stiffness matrix.
3. The right hand side of (2.3.40) is the same as In the materially non-
linear small deformation except for £ and I being in the current

configuration.
For further details on derivation of linearized variational equations see

[H8, H9, H10].

2.3.7 Matrix Counterparts of the Incremental Constitutive Equation

Equation (2.3.36) can be written in the following matrix form:

b = CAY + S A8 _ (2.3.42)
where
Ao = {Ao } (2.3.43)
hoy = oy ‘ (2.3.44)
C=c+ § : (2.3.45)

¢ = [Cpy] (2.3.46)
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2.3.47
Cig Cijxt ( )
C = [Cfl (2.3.48)
C c 2.3.4
Crg Ci511 ( 9
/Auf,l h
4 4
Aul,Z + Auz’l
A '
en e ALL2,2
AY = B! Ad° = 4 e (2.3.50)
) g—f‘l e 3 buz 3
4 4
buy 3 + Duy
pA 4
\,Aul,3 + Au3,1 D
% A
n__ J Aul,z - Auz,l
e
0 e _ # 7
A8 = Z:l B, Ad, = buff 5 - buy 5 ¢ (2.3.51)
N LAu/‘ e J
3,1 1,3
B
Q = ~e' (2.3.52)
Ba
3-D
N, 1 0 0
N2 Ma1 0 2-D
0 Na,z 0 Na,l 0
BY = | (2.3.53)
~a 0 0 Na,3 9 Na,2 Na,l
0 Ya,3 Ma 0 N2
Na,3 0 Na,l
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3-D
— D
Na,Z Na,l 0 2D
6
B, = 0 N, 3 N, ’[Na,Z "Na,l:l (3.2.54)
Na,l 0 _Na,3

and the relationship between the indices, (IJ) , and the indices, (ijkl) ,

is given in the following table:

I i J
J k 1
1 1 1
2 1 2
3 2 2
4 3 3
5 2 3
6 3 1

2.3.8 Large Deformations: Matrix Form

The matrix form emanating from the Bubnov-Galerkin approximation of the

weak form (equation (2.3.40)) can be cast into the following N.R. framework:

DN(d(5)) Aoy = Ry (2.3.52)
ey = 4w Y M (2.3.53)
Q(O) =0 (2.3.54)

where R(i) is the same residual load vector defined in section 2.3.4 except

for being integrated over the updated geometry. Dg(g(i)) is given by:
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oy,
N(d, . = €q®
DN(d(4y) Ql Dn®(a® ;)
e e r e e
pn-(d, =
Dt = eT.fBTDBbdQe
Pq ~i g, e v v =
Q
Y 0
6 X 6 6 X
9 =
9 x9 0 0
L3%x6 3%
O, 0 0 0 o
2 2
o +0 c 0 o o
13 _2 _5 -5
4 2 4
o 0 o 0
3 -5
2
% %% %
2 2
g 40 g
3 _2
4 &
g 40
&
4
symm.

+ T (in 3 ~D)

% 9 Y%
2 2
% % T
4 4 4
-0 g 0
-2 -1
2 2
0 o} o
=5 _6
2 2
- - o
% %% L
4 4 4
o - 0 -0
5 —2 1 4
4 4 4
O 40 -0 -g
1 3 6 5
4 4 4
o 40 -0
3 4 2
4 4
o 40

(2.3.55)

(2.3.56)

(2.3.57)

(2.3.58)

(2.3.59)
(in 3-D)
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2.3.9 Large Rotations

Hughes and Winget [H7] suggest the following constitutive algorithm

which allows large rotations within a single increment.

( Sy = Y@y * 09 (2.3.60)
Mgy = OB (i (2.3.61)

<
941y = 29 QT (2.3.62)
L e =1+ I-a AQ(i+a))~l A9(1+u) (2.3.63)

where Az(i+u) and Ag(i+u) are in the & configuration of the body
(i.e. Xeiq) = (i) T © Ag(i) for every x € ). Hughes and Winget show
that for o =% and !AQ! < 180° then Q is a proper orthogonal matrix

and the algorithm is second order accurate in AO .

2.4 Nonlinear Elastodynamics

In this section the nonlinear elastostatics theory, presented in section
2.3, is generalized for the nonlinear elastodynamic case.

We shall show that most quantities emanating from the nonlinear I.B.V.P.
are similar to those previeusly defined for the nonlinear B.V.P., except for
being time-dependent, and that the only additional terms are due to inertia
forces and damping effects.

We shall formulate the semi-discrete nonlinear algebraic equations, and;
as in the linear case, we shall use the Newmark g-method as the time integra-

tor. Finally, an implicit-explicit algorithm written in N.R. fashion will be

presented.
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2.4.1 Mathematical Statement of the Nonlinear Initial Boundary Value

Problem of Elastodynamics

Let &, T, Fy and ?4 be as in section 2.1 and assume the
i i
following scalar valued functions o , /g s #y o éi s Uy and uoi are

given as in (2.2.1)-(2.2.6).

The strong form of the nonlinear I.B.V.P. is:

¢ Find:
ugr 8x [0, 7] » R (2.4.1)
such that:
pug = Oy j + /i on Q x ]0,T[ (2.4.2)
u, = . on T x 10,T 2.4.3
(s) { 5 % s, lo,T{ ( )
i3 = Ai on qéi x Jo,T| (2.4.4)
u.(x, 0) = uoi(g) (2.4.5)
. . for every x € S5
u (%, 0 = u . (x) (2.4.6)
.
Here Q, &, T, Ty’ and Fﬁ are in current geometry (the deformed con-
i i

figuration at time t) and Qo is the initial geometry (the undeformed con-

figuration at time t=0).
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2.4.2 Weighted Residual Form of the Nonlinear I.B.V.P. of Elastodynamics

Let egg and Z;, i=1, 2 ,..., n_g o be the trial solution spaces and
variation spaces, respectively, given by equations (2.1.3a) and (2.1.3b). Pro-
ceeding as in section 2.2.2 the following weak form of the nonlinear I.B.V.P.

is obtained:

"~ Given p , /; A Ai s Uy and ﬁoi as before
Find:
w, [0, 7] - & (2.4.7)

W) < such that for every w, € f{

(w, pi) + nlw, W) = w, H + (w, A (2.4.8)
(w, ulx, 0) —u) = 0
. . on (2.4.9)
N (2’\7: E(}Ss O) - EO) = G

Here (+, <) and (-, ')r are the same symmetric bilinear forms defined in
section 2.1.2 except for being integrated over the current domain and n(-, <)
is the same as in the nonlinear B.V.P. case (equation (2.3.7)).

The Bubnov-Galerkin approximation of the weak-form leads to the same

results as in section 2.2.3 with n(¢, °) replacing e(°, °) ..

2.4.3 Semidiscrete Nonlinear Equation of Motion

Following the same recipe as in section 2.2.4, the following semi-discrete

system is obtained:

[

Md(r) + Nd(R) = F(t) (2.4.10)

0 o

a0) = d°; d(o)

il
b ="

(2.4.11)
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where N(d(t)) is the internal force vector given in section 2.3.4 (integrated
over the updated geometry) and F(t) is the same as in the linear case.

The mass matrix M is given by:

Nag
e
I‘j = m (2.4.12)
Ife = [mgq] (2.4.13)
e . . r JE- LYo NP r ¥ AT - ~ N J v
mPq = sij-/e pN_N de = 6ij°,e pJ NN aq, = éij -/; Py M Ny dﬂo‘
Q Qo Q-

o]

(2.4.14)

Thus, the mass matrix is integrated once and for all over the initial configu-
ration as in the linear case.

To include damping effects in the system we replace N(d) by:

N = N, V) (2.4.15)

The consistent tangent stiffness, ET , and tangent damping’ gT , are

defined as follows:
Kold, V) = =@, V) (2.4.16)

Cp(ds V) = (4, V) (2.4.17)

2.4.4 The Newmark Method

Applying the Newmark method, described in section 2.2.6, to the nonlinear

I.B.V.P. leads to the following system of nonlinear algebraic equations:



A

Ma g +Ndgs Vo) = En (2.4.18)
At 2
dppp = 4 AV +TE (1 -28)a, tAtBa (2.4.19)
Vor = YV, t At - va, +Atya (2.4.20)
4, = ¢° (2.4.21)
v, = & (2.4.22)
o = <o ~ 2o’ ~o oG

. {
As in the nonlinear static case, equations (2.4.18)~(2.4.23)£cannot be
solved directly and for each time step an iterative solver is required. In
the following sections a predictor multi-corrector algorithm is presented and

generalized to include implicit-explicit formulationm.

2.4.5 Predictor Multi-Corrector Algorithm

We shall assume that our mesh consists of implicit and explicit elements
denoted by I and E superscripts respectively and further, we shall assume

that the internal force vector, N , admits the following decomposition:

Nd, V) = N, W+ N, D) (2.4.24)

Let (i) be an iteration index and n be a time step number. Consider

the following predictor multi-corrector scheme:

2
~ At
d . g+ be YV + o5 (1- 28 (2.4.25)

Predictor

Yn+l = yn+ Ae(l - Y)"in " (2.4.26)
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(i+1) _ 3 w2a G o 4 (5)
dot1 N §n+l + AET8 2041 = +1 + Ad (2.4.27)
Corrector
(i 3 (1+1) _ (1)
LA A U Nt S A (2.4.28)
(i+1) (1)
N (2.4.29)

Solving equations (2.4.27) and (2.4.28) for Ag and AV we obtain:

pd = At%8 pa (2.4.30)
AV = At Yy Aa (2.4.31)
. . . (i+1) (i+1) (1+1)
Using the above approximations, d ntl R Yn+l and a i can be

written in terms of Aa and we can define the following vector valued func-

~

tion, £ :

+ +1 +1
FBa) = Eny - Mags - T s V) -
(i+1) (1+1) 3
- X (§ ol A ) = 0 (2.4.32)

where superscripts I and E denote implicit and explicit parts, respectively
‘ ¥

and £ , is the so-called "kick" force or "out-off-balance" force. Linearizing

(2.4.32) via:

£(0) + 2L (0)aa = 0 (2.4.33)
~oT dha ~ ~

-~

-~

and combining the linearized equation with the predictor-corrector equations,

we obtain the following algorithm:

2

G B _ Ar
~n+l h §n+l én + At Yn + 3 1 - 28) l (2.4.34)
Predictor
(0) . S phase
Vo= Yn+1» = V, + el - Y)gn (2.4.35)
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M* Aa = ~§ii Solution phase
(i+1)  (4)
ﬁ §n+l - §n+l + A%
~éi;l) = ~iii + At y Aa Corrector phase
(1+l) ~ L1 2
L dom d4p T At BAa
where:
MY = M+ AtyC?l:‘ + ac’s Kp
I
A RLE) B C O
~T 817 ~n+l * ~n_+]_
I
oo B W N
~T ad dot1 > Yo+l
(1) _ (i) _ (1) (i)
Rl Fopp ~ Mapy ~ N VD)

As for the nonlinear static case, we need some convergence criteria

terminate the iterative solution.

Two candidate criteria are:

RSB ] < e 1R I
[[oa]] < e, [[a3HD]]

where €4 and € are some small prescribed values and

2

the Euclidian norm.

=11

(2.4.36)

(2.4.37)

(2.4.38)

(2.4.39)

(2.4.40)

(2.4.41)

(2.4.42)

(2.4.43)

to

(2.4.44)

(2.4.45)
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2.5 F¥Final Remarks

In this chapter we formed some linear algebraic equation systems asso-
ciated with various areas of finite element applications in elasticity. We
should emphasize that other classes of problems in mechanical engineering can
be cast into similar frame-work of finite element formulation and lead to

similar linear algebraic systems.

All results of this chapter lead to linear systems of the form:

A

~

3]

= b (2.4.46)

and a summary of the definitions of A, x and b for the cases treated

in this chapter are given in table 1.
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CHAPTER III

PARABOLIC REGULARIZATION USING ELEMENT-BY-ELEMENT ALGORITHMS

In this chapter, a solution technique for linear algebraic systems
(i.e. é X = E) via a parabolic regularization method is derived, element-
by-element approximation algorithms are presented and studied and, finally,
improved numerical solution schemes are introduced and implemented with the

preceding theory.

3.1 Parabolic Regularization Method

The problem in hand is to solve
Ax = b (3.1.1)

We shall assume, throughout this chapter, that A is a given constant,
symmetric positive-definite matrix and b is a given vector.

There are two main methods of transforming a étaﬁic problem, as (3.1.1),
into a dynamic one:

1. Dynamic relaxation method

2. Parabolic regularization method

The first method transform the static problem to a second order

problem:

. Find the steady-state solution of:

3

v

L]
e

+ C + Ax = F(1) =b u(T) (3.1.2)

x(t = 0)

x(1=0 = 0 (3.1.3)
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where M and C are an artificial mass matrix and damping matrix, respec-
tively, T is the relaxation time variable, u(t) 1is a step function and the

. . ‘o . . Jx
superposed dots denote time differentiation (i.e. x = For further

FL
information on the dynamic relaxation method consult [01, D1, W2, W3, B2].

The parabolic regularization method transforms the static problem into

a first order parabolic problem as follows:

Find the steady-state solution of:

It

M F(1) = b u(1) (3.1.4)

1.

+ A x

~

| xc-0 - o (3.1.5)

where g is a pseudo-mass matrix. We shall choose g to be a diagonal posi-
tive-definite matrix and the choice of this matrix will be discussed later in
this chapter. The asymptotic solution of equation (3.1.4) (i.e. x(T. -~ «))
satisfies:

k(1> » a7y (3.1.6)

~

In other words, the steady-state solution of the regularized problem (3.1.4)
converges to the solution of the static problem (3.1.1).
To numerically solve a first order parabolic equatiom, such as (3.1.4),

we need to employ some time integration algorithm. In the next section a

suitable family of integrators is presented.

3.1.1 The Generalized o~Method

The generalized o~method is given by the following equations:

Mx tAX L T B (3.1.7)

X+l T % + ATl - a)§n + At o X+l (3.1.8)
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where the n subscript is a step number (i.e. X = §(Tn) = x(n A1)) and «
is a parameter which controls the stability and accuracy of the method.

Eliminating X from the equations, the following form of the o-method

~n+1
is obtained:
(M + o At Az 4 0= (M- 0 -oAt Ak, + ATE o (3.1.9)
where:
Ftg = E<Tn+0(,) = (1 - a)gn +a F oy (3.1.10)
. B . —_— Vs - A Y
Tt = T, t o« AT (3.1.11)

Before exploring the stability of the a-method, we must reduce equation
(3.1.9) to a single-degree-of-freedom (S.D.0.F.) equation by modal decomposi-
tion.

Repeating the process of section (2.2.6) with det (A - X M) as the char-

acteristic equation, the following S.D.0.F. equation is obtained:
(1 + o AT K)xn+l = [1 - (1 - a)AT AIEh + F (3.1.12)

n+x

where the superposed bar denotes generalized quantity and A is an eigenvalue.

3.1.2. Stability Analysis of the a-Method

For stability analysis the homogeneous version of (3.1.12) (i.e. ?£+a = 0)
is considered.

Define

X4 = n(a, AT)xn (3.1.13)

where n(e, *) is the amplification function.
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For stability we require that
In] < 1 (3.1.14)

 From (3.1.12) and (3.1.13) we obtain:

1 - (l-a) ATA
n(e, AT) = =T oA (3.1.15)

Applying the stability condition to n , the following results are obtained:

1>a>% unconditional stability
(3.1.16)
2
i R .
O<a<? BTerit (T-20) A
max

"3.1.3 Accuracy Analysis of the o-Method

The local truncation error, (see section 2.2.7), is defined as follows:
Tt ) = y(1 ) - e, AT) y (t) - L(T) (3.1.17)

Here y(t) is the solution of:

y(O + Ay = F(D) (3.1.18).
and L(Tn) is given by:
— ___l___. f{
L(Tn) T 1+ o ATA Tn) (3.1.19)

T(Tn) measures how well the exact solution (i.e. y(T)) satisfies the

discretized algorithmic equation (equation (3.1.12)). In addition, if we
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assume that y(T) satisfies the algorithmic equation at T_, then T(T )

n n
measures the "local" error introduced by the algorithmic approximation between
step n and step ntl .

Expanding y(Tn+l)' about y(Tn) by a Taylor series with remainder, use

of equation (3.1.18) and its derivatives w.r.t T yields the following results:
(r ) = c(an)H (3.1.20)

where C 1is some constant determined by the remainder term of the Taylor

1

expansion, and k is defined to be the order of accuracy of the algorithm.

One obtains the following results for k :

k

it
[N

if a = %
(3.1.21)
Lk

it
ot

if o # %, oe€l0, 1]

The generalized 0 -method is second order accurate in T for O = L (tra-

pezoidal rule) and first order accurate in T otherwise.

3.1.4 Numerical Dissipation

The exact solution of the homogeneous version of equation (3.1.18) is:

y(Tn)' = ?c'oe_knm- (3.1.22)

The algorithmic solution of the homogeneous problem leads to:

n = A nAT —
x = ni(a A1) x5 A e X 7 (3.1.23)

*
where A  is the algorithmic eigenvalue.
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%
Solving (3.1.23) for A, we obtain:

* 1
A= -z In n(o, At)
Define:
Q = AtA
R
Then:
* 1 - (1-0)Q
@ = -In [ 1+af

* .
Define the algorithm dissipation ratio, & , as:

Figure 2 shows the algorithmic amplification factor,

vs. log (8) for various values of a .

(3.1.24)

(3.1.25)

(3.1.26)

(3.1.27)

(3.1.28)

Clearly, the algorithm dissipation increases as O approaches one (i.e.

Backward Fuler).

"3.1.5 Operator Approximations

Equation (3.1.9) can be written in the following form:

1

M2 x = g(a,,AT)g% x + AT

I
——ry
Mz
~ ~ntl ~

(=>4

where:

En+a

(3.1.29)
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1 1
1 35
C = M AM (3.1.30)
~ ~q-1
B(a, AT) = [1 + oAt €] (3.1.31)
Ao, AD) = B(a, ADI[1 = (1 - o)AT C] (3.1.32)
Consider the following approximations:
A %
Ao, A1) = Ao, AT) + O(ATY) (3.1.33)
B(a, AT) = B(a, AT) + O(AT™) (3.1.34)
th

Assume equation (3.1.29) emanates from a generalized o-method which is k
order accurate.

By writing the local truncation error with the approximate operators
é and g replacing the exact algorithmic operétors %_ and § and requiring

that the overall order of accuracy be retained, yields the following relations:

(3.1.35)

which means that the approximation to the g operator should be one order
higher than the order of accuracy of the original equations and that the
approximation of the E operator should be of the same order as the original
equations so as to retain the order of accﬁracy of the governing algorithm.

In the following sections element-by-element approximations of the glo-

bal operators are presented and studied.

3.2 Element-By-Element Algorithms

Assume that the A matrix of equation (3.1.1) admits the following

decomposition:
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el Doy,
A = D A% = a® (3.2.1)
~ e=1 "~ e=1
where A% and a® are the eth element contributions to A in global

and local degrees of freedom, respectively, and l\ is the finite element

assembly operator.

Define:
ne A o,e
C- = MTATHM (3.2.2)
~e ~e, -1
B = (% + 0t ¢ ) (3.2.3)
A° = 8% - @-wat 89 (3.2.4)

~ e . - .
We shall assume that A~ , e=1, 2 ,..., 0 g» are symmetric positive semi-

definite matrices.

Next we shall present element-by-element algorithms based on element

decomposition of A .

3.2.1 One-Pass Element-By-Element Algorithm

Consider the following operator approximations:

0
el
A, AT) = w1 AS(a, AT) (3.2.5)
> -1 -
~ nez ~
‘B(a, AT) = & §e(a, AT) (3.2.6)
- e=1

where 77 is the product operator.

e

Substituting % for A and E for B in equation (3.1.29) we obtain

‘the following one-pass element-by-element algorithm :
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n

1 el ~a 1 el ~e -1
M2 x 7 A%, AT) | MZx + AT | T B, AT) M F
~ ~tl o=l ~ ~ ~n e=1 ~ ~ ~n+Q

n

(3.2.7)

Next, the stability and accuracy of the suggested algorithm will be studied.

3.2.2. One-Pass Element-By-Element:

Stability Analysis

Consider the homogeneous problem (i.

define:

1.
— 2
=T M

70

Now consider the following sequence

Each problem in (3.2.9) corresponds to the

. set =
e ‘ Enl

X
~n

of problems:

ze_l e =1 s 2 g oo

generalized O scheme with

9 in (3.2.7)) and

(3.2.8)

(3.2.9)

1

~

for the mass matrix (capacity matrix in the context of heat conduction case)

~e ‘oo i s
and C~ for the A array (conductivity matrix in the context of heat con-

duction) therefore, using the stability condition for the generalized O-method

(see section 3.1.2), we have:
For a > %

T T .
Ye*Ye = de-1 ° Le-1

seees Mg

Repeated use of the above in (3.2.9) leads to:
For a > %
yT D/ <VT'z
Z Z —_ % 0
Deg Deg 0
Substituting for vy and ¥y, we get:
~n <0
el
For a > %
(§n+l’ % §n+l) (Xn’ x )

(3.2.10)

(3.2.11)

(3.2.12)
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Conclusion: the element-by-element approximation retains the stability range

of the governing generalized O-scheme.

3.2.3 One-Pass Llement-By-Element: Accuracy Analysis

In section 3.1.5 we showed that if the order of accuracy, k , of the
governing algorithm is to be retained the approximation to the A operator

should be of order (k + 1) and the approximation for the 8 operator should

be of order k . Therefore, for generalized a-method (say trapezoidal rule)

L=k+1=13 ; m=k=2 (3.2.13)

To find the order of approximation we must expand the operators using a Taylor

series in At as follows

RGs, a1) = 1-808 + —AZ—T & + o) (3.2.14)
~ AT ~ 2
BCs, AT) = 1 -=- C + 0(AT) (3.2.15)
n
el 2
s, ) = 7 A%Cs, am) =1 -at ¢ + AT 8% 4
- e=1 "~ ~ - 2 -~
2 Tep Tegp , v
A ”~ ~ ol A
+ = G gf -8+ o (3.2.16)
2 &1 fert v
~ nejL ~ A 2
Bls, AT) = T B%(4, AT) =1 - -21 C + O(AT") (3.2.17)
B i L

Clearly, ﬁ(%, A1) satisfies the aceuracy condition (E = E + O(ATZ)). How-

4]
<
]
1
“
P
~
[t
>
~
S’

has an additional second order term which violates the accuracy
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requirements for this term (unless the element matrices, §e's commute, which
is not the case in general).

The one-pass element-by-element algorithm is, therefore, only first
order accurate (even for the trapezoidal rule). Note that the additional term

~ ATZ neQ, neQ/
in the é(%, AT) expansion is a skew-symmetric term (the ET

e=]l f=etl

(§ cr - §f ée) term). Next we shall introduce a symmetric two-pass element-

by~-element algorithm which is second order accurate.

3.2.4 Two-Pass Element-By—Element Algorithm

Consider the following operator approximations:

~ i l ~e i =ne;2, ~ T
Ao, AT) = T A (e, A/ || 7 A%, A1/2) (3.2.18)
e=n e=]1
. el 4L .
' -1 . T et | ]
Bla, AT) = ™ B%(a, AT/2)|| 7 B®%(a, AT/2) (3.2.19)
| e=n g | né?l i

Substituting the above approximations into equation (3.1.29), we obtain the

following algorithm:

1 1 A ney’ ~e 1.
MEx 0= 7’7 A%(o, AT/2) T A (a, DU/DMP x +
e=ne2' e=]
1 e Dgg . s
+ AT T B™(a, AT/2) 7 3%, A/DMPE, (3.2.20)
e=neQI e=] - -

In the next sections we shall present the stability and accuracy analyses of

the two-pass algorithm.
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3.2.5 Two-Pass Element—By—Elemeﬁt: Stability Analysis

Following the same arguments as for the one-pass element-by-element
N
algorithm with 1 as the capacity matrix and % Qe as the conductivity matrix

leads to the following stability condition:

For o

v
Bx‘

unconditionally stable

(3.2.21)
0 <acx<ly conditionally stable

So the two-pass element-by-element possesses the same stability region as

the governing a-scheme.

3.2.6 Two-Pass Flement-By-Element: Accuracy Analysis

Expanding the two-pass operator approximations in Taylor series yield:

Lo el At~
BCs, &) = om0 B%Cs, AU/2)  m BSCh, A/2) =l-5- C o+
e=n - e=]1
el
2y _ A 2
+ 0(AT") = B(g, AT) + 0(AT) (3.2,22)
1 Dag . AT A
A, by = 7w A%Cs, AT/2) A%Cs, a/2) = J1 -3 €+
~ e=ne£ -~ e=1 ~
' 1 1
AT2 a2 , At? . ce of _ of gey 4 o(ard .
S S VIR MR R T

~ ne,Q, neﬂl Ae,\f A,c,\e 3
- EH g Y S @ -T e o] -
e=1 f=e+tl

2 A~
= l-AMC+5 C + O(AT3) (3.2.23)

SO
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K(s, A1) = 4Cs, AT) + O(AT?) (3.2.24)
§0s, AT = 804, BT) + O(ATY) (3.2.25)

Thus the two-pass element-by-element algorithm is second order accurate when
employed together with trapezoidal rule and first order accurate otherwise.
For implementation of element-by-element algorithms in transient heat

conduction analysis and generalization of the theory for the nonlinear case

see [H11].

- 3.2.7 Implementation of Element-By-Element Algorithms

th
We shall assume that the solution at the n step (i.e. §n) is known

and for advancing the solution to the next step either equation (3.2.7) or

(3.2.20) is to be solved.

The following algorithmic flowchart shows the solution procedure:

1
2

e
1. Xn+l ¥ fn

~li
F < ATMCF

~n+0
—# 2.  Loop on number of passes 1, Noass (1 or 2)
= 3, Loop on element e =1, ngg 1st pass
d
e=mnp, 1 20 pass
Localize: x - xe
B & . S
e
AL Fea — E
~e re
. Get A (a, AT/NpaSS), B (a, Ar/NpaSS)
Solve: ge A 5? §e
Fe « B® §e
Globalize: X+l - {e
e
13n+0t h E
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« M2 )

+
§n+l §n+l §n+a

The localizing step in 3. means that entries in global d.o.f. are
mapped to local d.o.f. (i.e. element d.o.f.) and the globalizing step in 3
is the reverse process.
Note that the solution algorithm does not involve any global matrices.
The connectivity among the elementsris introduced Anly through the localization

and globalization of the solution vectors.

3.2.8 Steady-State Solution of First-Order Parabolic Equations

As shown in section 3.1 the solution of the linear static problem can
be found as the steady-étate solution of a first order parabolic equation.

In seeking for an asymptotic solution we want the solution algorithm
to possess the following properties:

i) algorithmic dissipation: this causes the transient response

to decay quickly to the steady-state.

ii) homogeneous convergence: a narrow spectrum of eigenvalues o6f

the regularized problem.

iii) stability: a large stable AT step will allow the solution to

reach steady-state rapidly.
In view of properties (i) and (iii) we should select an integration algorithm
unconditionally stable with the maximum possible numerical dissipation. The
obvious candidate, aﬁong the generalized-o family, is the Backward-Euler method,
o= 1.
In the next sections we shall formulate the element-by-element algorithms
"within the Backward-Euler framework, discuss the choice of the regularization

mass matrix and introduce a numerical criterion for maximum allowable AT .
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For o =
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1, equation (3.1.9) becomes:

<¥ + At é)§n+l = g §n + At E (3.2.26)
which can be written in residual form as:
' AL 3
(1 +ATOM* ix = ATM*? N (3.2.27)
L+l x, T Ax (3.2.28).
where:
R, =B - Ax, (3.2.29)

The one-pass elément—bymelement

equation is:

R

Xntl

where:

A (1, A1)

algorithm emanating from the above

n

el R Ry

™ A (1, AT)M * R (3.2.30)
e=1 "€ ~oo-n
= §n + Ag (3.2.31)
= 1+ At §e)"l (3.2.32)

To modify the above algorithm for the two-pass form replace the 7 product

in (3.2.30) by double 7 product and

ge(l, AT) by ée(l, AT/2). Note

that the governing algorithm (Backward-Euler) is only first order accurate

in AT and such are both its one-pass and two-pass element-by-element analogs.
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However, our experience with the method indicates that the constant term in
Athe local truncation error, is much smaller for the two-pass algorithm. The
reader should note that the residual formulation presented in equations (3.2.27)
~ (3.2.29) differs from the algorithms presented in sections 3.2.1 and 3.2.3
and [H11] which are unconditionally stable algorithms. For the residual for-

mulation of the element-by-element algorithm unconditional stability cannot be

guaranteed without further embellishment. This is dealt with shortly.

3.2.10 The Regularization Mass Matrix

As stated in section 3.2.7, we would like the spectrum of participating
modes to be as narrow as possible, in other words we would like to minimize the

ratio:

A — 1 (3.2.33)

where kmax and A in 2re the maximum and minimum eigenvalues of:
m

det|a - A M| =0 | (3.2.34)

Remark: Since A is symmetric positive definite and M diagonal positive
definite all Ai , =1, 2 ,... neq’ are positive real quantities.

There are several methods in the engineering literature for treating
this problem. The first one, which is commonly used in dynamic relaxation
schemes, is to choose the element lumped mass matriées in such a way that the
transit time for information transfer for d.o.f. i to adjacent and sbnilar;deg-

|

grees of . freedom is constant in all the elements which, in turn, leads to a
Courant-Friedricks-Lewy [Cl] type condition.
This method was first proposed by Welsh [W2] and implemented for finite-

element analysis by Key [K1]. Explicit expressions for several structural type
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elements, such as beams, plates and shells, were derived by Cassell [C2, C3]

for finite aifference schemes. However, the first approach is very cumbersome
for structures containing several types of elements [see Ul]. Another method

is based on application of Gerschgorin's theorem [S1]. This theorem states that:
"Every eigenvalue of § lies in at least one of the circles € , &

1 g st

' , where %, 1s centered at the diagonal entry Cii and has radius
n i
eq

n
eq .
ri = g; lcijl ", The method suggested by Cassell [C2] consists of scaling
iF : |
all the rows of C such that the absolute sum along every row is identical
‘and then estimating the spectum of eigenvalues using the Gerschgorin theorem.

The third approach was proposed by Papadakakis [P2]. He assumes

Vel
= : =/ 3.2.35
Mij m, Gij ;omy 5 Ciyq (no sum) ( )

The simplicity of the last approach makes it a favorable candidate and this is
the method we chose to adopt in this work.
After we select the regularization mass matrix we must calculate the

maximum allowable AT step, using accuracy considerations, as will be shown

in the next section.

3.2.11 Numerical Criterion for Choosing the Maximum Regularized Problem Step

Size

Qur iterative solution scheme for the regularized problem is as follows:

X5 = 9 (3.2.36)

s N -3

M* Ax = AT AL, AT TR (3.2.37)
= A 3.2.38

§n+1 En + A§ (3.2.38)

where :
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n 8
eﬂ‘ ~ eQ’ ~e —1
A1, at) = 7w AS(L, AT) = w (1L + AT C) (3.2.39)
v e=1 "~ e=1
R, = b-Ax (3.2.40)

To account for the two-pass algorithm proceed as in section 3.2.8. A conver-
gence criterion for the algorithm is satisfied when Ax — 0. This can occur
in one of two cases:

1

a) R — 0 <> x — A b
~n ~ ~Il ~ =

b) A(1, A1) is an ill-conditioned array, in this case A possesses

=]

one or more eigenvalues, say Xi(é), i=1,2,... k.ﬁ_neq, such
that: ‘

where €1 and €, are some small positive comnstants. Let gi be an eigen-
vector corresponding to »Ai(A)' Then it is possible that the convergence

1

—y
criterion will be satisfied when the vector M 2 gn converges to a linear

combination of the low modes:

k
1
-3

M ° R - Z c, Y. (3.2.41)
~ ~T1 i=1 i ~i
n =«

.where Ci are some constants (not all zeroes). In this case:

k
[ el | = e & 25, ll = ot & G242
1:

n > ®

Cleafly if Eé is small ‘enough, the convergence criterion for &x will be

satisfied.
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o At
The smallest eigenvalue of A(l,'ﬁrass) can be controlled by the AT step.
~ P

To see an éxample of such ill-conditioned behavior consider the linear
static test problem shown in figure 3 (case 1). The three degrees of freedom
linear structure was subjected to one static loading case. Figure 4. shows a
plot of the displacement at node no. 3 vs, Athe number of iterations for two-

AT steps. In this case the regularization mass was taken as the diagonal en-
tries of the stiffness matrix and the asymptotic results were virtually exact
for At <1 however, when we continued to increase AT , more and more patho-
logical behavior was observed.

When using a CDC6600 computer (60 bit machine) ill-conditioned behavior
started when the minimum eigenvalue of the regularizéd problem was < lOMS.

We suggest the following empirical criterion for determining the maxi-

mum AT step as follows:
A (B > € (3.2.43)

where ¢ 1is machine-dependent constant defined, once-and-for-all, for the

machine in hand as follows:

machine word-length
(bits) &
60 ~ 64 4 10"'4
32 102
16 1071

Next we shall present a numerical procedure for calculating AT .
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3.2.12 Numerical Procedure for AT Calculation

As a first estimation of AT we shall use an approximation for the

~

smallest eigenvalue of the exact operator A .

Recall:
A, b0 = @ +ar O (3.2.44)

Assume that C is defined using a regularizatibn mass equal to the diagonal

~

of A . Applying Gerschgorin's theorem to @ we obtain:

Amax(g) <1+ rmax(g) (3.2.45)
where :
. néq Neq A
r (C) = max z [cij{ (3.2.46)
i=l j=1
i
Thus:
AR > 1 — (3.2.47)
min = 1+ AL+, (©)

Then AT can be calculated from:

1 .~ T
w o e @ (201 (3.2.48)
max

where g is the machine-~-dependent tolerance discussed in the previous section.

The algorithm for the above calculation is:
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l. r+—9

~

—@> 2. loop on elements e =1, 1y

~ 1 B
Get €° = M T AT M
r———b loop on elements d.o.f.'s i =1, n_.
n
e 3 12|
r, < C..
i i=1 ij
341

e
assemble r+«—7r1 + [

neq

4. dt— Fe-Dra+r )

The next step is to check whether the smallest eigenvalue of the element-

by-element approximate operator 5(1, At) satisfies:

~

A A > € (3.2.49)

This can be done using Rayleigh's quotient:

Ain® 2 T < AL (3.2.50)

n
for every e« € IR €q

In this section we showed how to calculate the AT step. Unfortunately,
{ v
in many cases the limits imposed on the AT step dictate many iterations
using straightforward , N.R. before the steady-state solution is reached.

To overcome this difficulty, we shall introduce, in the last sections of

this chapter, some numerical methods which allow us to reach the steady-state

solution in only a few iterations regardless of step size.
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3.3 Quasi-Newton Updates

The methods that shall be described in the next sections were originally

developed for improving the convergence of nonlinear problems of the form:

N(x) = b (3.3.1)

~

where N(x) is a given nonlinear vector valued function of x and b ‘is
a given constant vector.

Writing (3.3.1) in N.R. format, yields:

o

D N(x;) &x = Ry 2 b - NGxy) (3.3.2)

~

}-E(:H-].) = }f(l) + Ax (3.3.3)

-~

where D g(ﬁ(i)) is the consistent tangent stiffness [H10] and E(i) the

residual load vector (see section 2.3.4 for details).
In the context of the element-by-element solution of the regularized

problem the analog of D §(§(i)) is the Z(l, AT) operator and the analog

of the internal force vector, N(x(i)), is A X

The basic idea of the following methods is to improve the solution,

x(Iiter + 1), using information based on current and historical . data (i.e.

Ax, X(1) and B(i)’ 1=1,2 ,...4 Iiter)'

3.3.1 Line Searches

The idea of this method is to scale OAx by a constant S such that the
residual load vector will become perpendicular to Ax (i.e. minimizing the

out-of-balance force in the Ax direction). For this purpose, a search



70

function, G(S), i1s defined as follows:

G(8) = xT e (b - Nlxegy + S Ax))

The algorithm for implementing the search is:

11»2
S l‘-‘j’c o = ~=. o S - g v - %
B 3 S s, ( 9 l)GZ; 6, GZ;
bo Gy = GLS)
S. Convergence check
A gt < e r TS tes A

T ‘ K J—

}_\}QM/GSfG} > 07 N Yes
‘\\\ o /

Retrtourn

1

= G G, <= G
S - g 5, e
°, 5, ¢ 8
e ]

(3.3.4)

Wote that step 3 “» merely & linear interpolation to the zere pofme. Lz

should be menti-..od that some other versions with slight variatioms of the

%

above ale cithm sxist. As an example we shall mention the Illingis algorithm

"< which bisects the initial search interval (i.e. the [0,1] interval) he—

fore starting the search to get a better closure on the zero poimg.
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In our case, N(x) is a linear vector function, (i.e A xn), therefore
the line search converges in a single iteration to the zero point. For the

linear case, G(S) takes the following form:

G(S) = ax" - [b - AGx_ +S M) (3.3.5)

[l

c(s) AxT R -5 AT A ax (3.3.6)

requiring G(S) = 0 leads to:

T
Ax” Ry

5 = - (3.3.7)
Ax™ A Ax
One should notice that the search parameter S can be viewed as minimum

value of the total potential function P(S) in Ax direction namely:

X4 = X + S Ax (3.3.8)

b-3 Ax

P(S) = 2 ~n+1

§n£l ( ) (3.3.9)

Minimizing the total potential with respect to S leads to the same result
given-by (3.3.7). Thus for A symmetric positive definite the stability of
the overall algorithm is not compromised if we employ a line search in each
solution iteration. The one directional line search minimizes the total po-
tential energy in a one dimensional subspace spanned by A§. However, improved
results can be obtained if we minimize the potential energy in a higher order

subspace. Next we shall present a two directiomal search which we found to

be most successful when implemented with the element-by-element algorithms.
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3.3.2 Two-Directional Search

Our experiments with the element-by-element algorithm indicate a very
good low mode behavior and a lack of high mode accuracy. Thus we would like
to introduce the high mode accuracy by introduciﬁg a second search direction
which is accurate for high modes. Fortunately such a direction is readily
available without need of any additional computation. We refer to the Jécobi
iterative technique [Z1], a method which is very accurate in high modes. In

fact, one can show that the amplification factor of the Jacobi method at the

nth iteration is given by:

A\ *
1 - —
A) (3.3.10)
A
max
Clearly the amplification is of order €’ in the high modes and (1 - €)™ for
“the low modes where £ << 1.
The Jacobi method can be employed with the preceding theory by simply
1
replacing the left hand side operator of equation (3.2.27) (namely g% M*
(L + At C)gz) by an identity matrix. Thus we propose to use Ax and Rn

as search directions and to minimize the total potential function in these

directions:

§n+l = X + Sl A}E + S2 gn (3.3.11)
P(S., S.) = xb. . (b -
B(5y5 59) = x4 (b3 4.9 (3.3.12)
oP
Sgd =0 o=1, 2 (3.3.13)

which yield:
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(AXTA Ax) (ggé Ax) sl_ (A;ST 13) - (:55 Ax)
= : (3.3.14)
T T T T
(RoA ) RARD] LS, ® D) - G R

The line-search methods are very efficient and usually cause a fast
convergence for "well behaved" nonlinear problem. However, since the search
is done in a direction calculated using an approximation to the tangent ma-
trix, DN , or in the case of element—by—eiement approximation, é(l, A1),
this direction may not point to the neighborhood of thé final solution point
and severél iterations may be required for convergence.

In the next sections we shall introduce two quasi-Newton methods which

aim to find a better search direction for the line-search algorithm.

3.3. Broyden Updatés

The method proposed by Broyden [D3] is to replace the operator approxima-

tion, %(l, AT), by A*(1, At) given by:

-1
~ _ Ty . T .
- ~1
cee 0 L4y Ax) -+ AL, AD) (3.3.15)

where N is the number of updates in each iteration (step) and the Ci s
i=1 , 2 ,..., N, are vectors defined by Ax and previous states as will
be shown later.

The computation algorithm is as follows (implemented with the element-by-

element formulation):
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2~ L
1. Ax —— AT M * A(1, AT)M 2 Bn(E)
2 Line search to obtain S

1 ~ 1
— -1 35 .
3. A§O ~— AT M é(l, AT)% gn(§n + SA§)

4. [:.Loop on no. of updates k=1, 2 ,..., N-1

+ (Ax - Bx o

-1 S

A§k = P

5. cy— Q- oax - &g 1/ [bx - (Agﬁ_l - A9) ]
6. Mg <= bxg o+ (bx - Mg )C
7. Store {A§N, QN}
8. Line search in A§N direction
9. Ax SA§N
Remarks:

1. The pair of vectors {Qk, A§k} may be stored on a secondary storage
device.,
2. Only a fixed number of updates are performed in each iteration and
the earliest data 2are discarded as new data are obtained
The Broyden method béing a rank one update, yields a nonsymmetric abproxi—
mation é*(l, AT)‘ even in cases where é(l, AT) 1is symmetric (e.g.’the two~
bpass element-by-element) .

Next we shall introduce a rank two update, the BFGS method, which produces

a symmetric approximation whenever A(l, A1) is symmetric.
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3.3.4 BFGS Updates

The method suggested by Broyden-Fletcher-Goldfarb-Shanno [M1] is based

on the following rank-two update:

-1
* = Ty .,
A*(1, AT) (1 + v W) L+ Vg g W )o@+ 7, W)
-1 T
. - ( Ve (L WV
A(1, A1) @+ W, ~1) ( W ~N) (3.3.16)

where N is the number of updates and V Wk are the update pairs which
~ 5 ~
will be defined later.
For the element-by-element algorithms, the BFGS method is implemented

using the following algorithm:

-1
1. Ax <At M ? R, DU ° R (%)

2. Line search in Ax direction to get S
3. YN T Ax - R hx
~ -n
¢
W~ R (x + SAx) - (1- SR (x)
~N ~N ~ ~ ~Tl ~
Store {YN’ HN}

4. R gn(x + SAX)

5. Loop k=N, N-1,...,1

-<—.1—ik + (V « R W

~k-1 ~k" ~k

. PR
6. Axo «— AT M g A(l, At)M * R,
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7. Loop k=1, N

8 By = Xy T W B Y

9. Line search in Agﬁ direction

10. X +— %X + SAxy
11. If more iterations are required repeat steps 3. - 10.

The two quasi-Newton update methods, Broyden andeFGS, require essen-
tially the same storage and data handling capabilities; however, operations-
wise, the BFGS update is a more expensive method to use.

In the next section of this chapter we shall present numerical examples
using both methods and_attembt to draw some conclusions regarding the practi-

cal implementation of quasi-Newton updates.

3.3.5 Quasi-Newton Updates: Examples

We solved a test problem, shown iﬁ figure 3, as a three d.o.f. linear
dynamic problem under one dynamic loading case. The structure shown was
solved with two different stiffness and nodal mass configurations denoted
"case 2" and "case 3", in figure 3.

For case 2 the eigenvalues of the associated dynamic problem (i.e. det

(K - wzg) = 0) were:

w = .352
w, = 2.378
w, = 5.180
and the central difference critical time step was Atcrit = .386.
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The problem was solved using time step At = 1. (about 3 times Atcrit)
and for each time step the regularized ﬁroblem was formed and solved using
only one iteration and a single quasi-Newton update. The results were com-
pared to those of an implicit global trapezoidal algorithm. Figures 5a and
ob show the displacement time history for node 3 obtained using the one-pass
elemenﬁwby-element algorithm together with Broyden and BFGS updates. Figures
5c and 5d show the results obtained using the two-pass element-by-element
algorithm with the same updates.

The results obtaiﬁed show excellent convergence in all cases (only a sin-
gle update was needed) for this problem which indicates that whenever the parti-
cipating-modes are in a narrow band (only one order of magnitude apart in this
case) the one-pass element-by~element together with the Broyden update is the

economical method.

For case 3 the eigenvalues were:

Wy o= . 0576
wz ;= 12.26
0.)3 = 141.60

Note that in this problem the eigenvalues have four orders of magnitude spread.
The explicit critical time step was Atcrit = .0141.

Here, again, we solved the problem using At = 1. (70 times AtC ) and

rit
used the two-pass element-by-elemeﬁt algorithm together with 3 quasi-Newton
updates per step.

Figures 6a and 6b show the displacement time history for node 3 obtained

using Broyden and BFGS updates compared with the results of the governing

implicit algorithm (the trapezoidal rule).
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The results obtained using the Broyden updates did not converge after
three updates? however, three BFGS updates were virtually exact.

The conclusion is to adopt the BFGS method as the updating procedure and
to use the two-pass element-by-element algorithm whenever we expect a wide
band (over 4 orders of mégnitudé) of participating modes.

The quasi-Newton updates cannot be implemented in conjunction with the
two directional search technique introduced in section 3.3.2. We shall pre-

sent a new class of updates, which we shall refer to as complementary updates,

enabling us to use the new search technique.

3.3.6 Complementary Updates

The quasi-Newton updates above satisfy the following conditions:

i) axlpe = AR
ii) A*z = Az for every z L Ax
iii) A* = A if R =0

‘Condition (i) is the secant equation condition, (ii) implies that the previous
.approximation will not be changed in any direction but the updating direction
Ax and the last condition implies convergence of the operator approximation

as the solution converges.

The quasi-Newton updates use the solution increment, Ax , to update the

-operator. We shall use the complementary part of the solution vector, namely

X to update the operator and replace condition (ii) by:

~

i1) A%l x = ALy

where A is the exact operator. The following are rank one and rank two updates
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emanating from the above conditions:

Rank one update:

-1 v T
(A% = ALV W)
ﬁ Yg = 7 - Z}En

RERY
~ ~=1
N

Rank two update:

-1 -1
(" A% = (1+VWT)A(1+'VT)
W = X
~ ~n
< . 1
v = - T [o b -A ]
- alx b) -oom
~11
-1
xnh %, |
.o = T”
X b
~T1 ~

Clearly the implementation of the above updates is identical to the imple-
mentation of the corresponding rank one and rank two quasi-Newton updates
described in sections 3.3.3 and 3.3.4. An important advantage of the complemen-
tary updates is that there is only one update per iteration unl{ke the quasi-
Newton updates which accumulate.

x =~ may be looked upon asvany given vector and may include the two direc-
tional line search as part of its construction.

. In the numerical implementation and examples chapter of this work a com-
parison of the results obtained using the above methods to those of the classi-

cal quasi-Newton techniques is presented in conjunction with element-by-element

algorithms and the Jacobi algorithm.
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3.4 Substructures

In some practical problems, parts of the mesh can be treated as "super-
‘elements" having internal nodes and boundary nodes common with neighboring
supereléments.,

In general, such substructures aim to cut down the computational cost of
large‘scale'problems. The idea can be viewed as a physical method for maﬁhe-
matical matrix partitioning, where each superelement is a submatrix of the
global problem having a small band width.

In regular finite element formulations, each substructure is solved sepa-
ratel& and the global solution is obtained by solving compatibility equations
along the boundaries of the substructures. A very similar idea can be imple-

mented with the element-by-element algorithms.

.3.4.1 Superelement~by-Superelement Algorithms

Assume that the structure is divided into NSuper superelements. Define:
A Negs
s ne _
c” = ;f} €%, 8= 1,2, ..., No o (3.4.1)

where N Py is the number of elements in the sth superelement and l\ is
els

the regular finite element assembly operator.
Let

gs(l, AT) = (1 + At &L (3.4.2)

then the one-pass form of the algorithm becomes:

N
super

AL, AT) = A
A o1 2

S, av) (3.4.3)

and the two-pass form:



81

- 1 ~g super o
A(L, AT) = 7 A (1, At/2) m A (1, At/2) (3.4.4)

S=N §=1
super

. . . ne '
Since the symmetry and positive semi-definiteness of C  lead to the

. R ~S S
same properties in C

e

is symmetric positive definite. The stability
and accuracy results for the element-by-element algorithms hold for the super-

element-by-superelement algorithms as well.

Note that for Nsuper = Neﬁ this algorithm is reduced to the element-by-

element algorithm,'and for Nsuper = 1 a global solution scheme is obtained.
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CHAPTER IV

IMPLEMENTATION AND NUMERICAL EXAMPLES

In this chapter, the structure of a finite element code employing ele-
ment-by-element algorithms is described and numerical examples are used for
comparing the techniques described in chapter III to other iterative methods.
The results are evaluated and.guide lines are drawn for choosing the most

‘suitable technique for solving a given problem.

4.1 Computer Program

As was mentioned in the introduction to this work, the proposed element-
by-element algorithms offer a very attractive data structure for implementé—
tion with the new generation of small, inexpensive, mini/micro computers.

The first step in writing a computer code is to select a computer language.
A variety of new high level structured languages were introduced in the last
years, such as "C", "RATFOR" and "ALGOL 68'", however the existence of exten-
sive software written in the traditional "FORTRAN IV" and the lack of compilers,
especially for small ﬁachines, makes the usage of these languagés difficult
when one wishes to produce a machine independent code.

The only language supported by the majority of the new generation of compu-
ters and suitable for engineering code writing is "FORTRAN 77". Although "FOR-
TRAN 77" still suffers from many of the deficiencies of "FORTRAN IV" it offers
the capability of structured programming which simplifies the writing (and

reading...) of complex codes.
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Our next step was to segregate the code into three separate codes which
interact and communicate with each other through disk files. The motivations
for doing this are.several. Firstly, one should realize that a complex finite
element object code requires a significant in-core storage space which reduces
memory space available for the data itself. Secondarily, there afe different
and distinct tasks in a finite element analysis program which are performed
sequentially and allow "natural" segregation of the code simplifying the writ-
ing and debugging stages.

Our finite element system consists of the following codes:

1. CINPUT’— data generator

2. CONTINUUM - finite element analyzer

3. CPLOT - graphic post-processor
A eommunication chart for the three codes is included in appendix I.

Next we shall describe each module and explain its tasks in the finite

element system.

.‘4.1.1 CINPUT ~ Data Generator

Preparing input data files for the finite element anélysis of a large
scale problem is a very tedious and time consuming task. For this reason a
data generation code usually accompanies a finite element analyzer and is
considered an integral part of the system. The idea is to minimize the amount
of data supplied by the user and generate the majority of data required by the
analyzer within the computer itself.

CINPUT includeé 1-D, 2-D and 3-D linear and quadratic mesh generators
which are powerful enough to handle the complex geometries arising in common

engineering problems.
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The communication with the user is through labeled unformatted input
files which utilize the flexibility of unformatted data together with the new
"NAMELiST"* option added to the "FORTRAN 77" compilers to produce a readable
unformatted input file.

A new idea implemented in CINPUT is a global fﬁnction library. The glo-
bal function library is a collection of user defined functions which allows the
genefation of data profiles in temporal and spatial domains. As an example,
assume that one wishes to employ a prescribed displacement field, §(§’ t),
which admits the following decomposition:

g, ) = X, () Y, () z,(2) T,(6)
where Xi’ Yi’ Zi’ Ti: IR —- IR are given, user defined, library functions.
The data required by CINPUT arethe definition of the library functions and a
set of integer identification numbers associating tﬁe prescribed displacement
field, Z(g, t), with ité spatial and temporal interpolation functions. .

CINPUT allows the user to define aﬁy of the problem fields (initial states,
'férces, body-force, etc.) and material properties (nonhomogeneous material) as
an. extrapolated data similar to the above example so that even very complex
problems réquire only modest input data files.

Afﬁer the problem data are generated CINPUT allocates the ﬁemory for the run
(dynamic memory allocation routines), creates a restart file for CONTINUUM (a
core‘image dump) and provides the user with a list of generated data and a MESH

file for graphic mesh verification.

) .
The "NAMELIST" option was implemented differently on different compilers. Thus
we added a "NAMELIST" simulator to CINPUT which makes it a machine independent
code and offers some extensions to the original "NAMELIST" option.
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4.1.2 CONTINUUM - Finite Element Analyzer

CONTINUUM implements the algorithms presented in chapter III together
with linear and nonlinear 2-D (axisymmetric, plane strain and plane stress)
and 3-D elasticipyg CONTINUUM employs the four-node isoparametric quadrila-.
teral elements for the 2-D cases and the eight-node trilinear brick elemeﬁts
for 3-D problems. The code is capable of solving static and dynamic problems
using either a global implicit technique or an element~by—element‘approach (one
or ﬁwo pass formulation) and has a substructuring option (superelement-by-super-
element) built into it.

CONTINUUM is an implicit/explicit (15, H6] predictor ﬁulti—corrector code

and implements the following nonlinear theories:

i)} finite deformations
ii) finite rotations [H7]

iii) Key-Krieg [K1] plasticity model

An algorithmic flow chart of CONTINUUM is included in appendix I.

For detailed theory derivations consult chapters II and III.

4.1.3 CPLOT - Graphic Post-Processor

Evaluating and understanding the results of a finite element program, for
large scale problems, is a task in itself. Associating the enofmous data pro-
duced by the code to the physical problem in hand is sometimes very difficult,
time consuming and one may lose the overall picture and misinterpret the results.
For these reasons we included a graphic post-processing code as part of the
- finite element system. A graphic output allows ué tb take the output data that
need « to be evaluated by the user and present them in a way which is easy to

understand so that the overall picture is never lost.
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CPLOT was written to serve two purposes:

i) produce mesh plots

ii) produce graphic results

The mesh plots are used as a clear visual check for the data generated by
CINPUT and allows the user to verify his input data file before submitting
an expensive run. The graphic post processing capabilities of CPLOT aref
a) broduction of time history plots of any point in the structure (displace-
ment, veiocity or acceleration), b) production of stress contour line plots
on the deformed configuration for any stress component.

Samples of CPLOT graphic results are presented in the numerical examples

section of this work.

4,2 Numerical Examples
We selected to test the techniques upon beam problems as these problems
exhibit a relatively rich response spectrum (from fast wave propogation to slow

bending modes) and are difficult to handle with regular iterative techniques.

"Observe that in all cases the same solution as that of the globally implicit

algorithm is attained if convergence is achieved. Throughout a value of

AT = 1 was employed.

4,2.1 Example 1: Cantilever Beam

The geometrical definition of the problem is shown in figure 7a. The upper
half of the beam was discretized into a 32 element mesh as shown in figure 7b.

The beam was subjected to two loading conditions:

i) - prescribed traction load:

t (16, y) =03 £ (0, y) =C(y -2)
t (16, y) = Cy y(2 - y)
ty( 0, y) =-C, y(2 - y)
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where tx’ ty are the traction components in x and y directions respectively.

ii) initial displacements in first bending mode [M2]:

v(x) = (sin B;L - sinh B,L) (sin 5132 - sinh B, X)) +
(cos BlL + cosh BlL) (cos Bif —~ cosh Bi§)
Bl = 1.875/L. ; L =16
X = x-16

where_ v{(x) - is the displacement of the neutral axis of the beam iﬁ the y-
direction.

The remainder of the initial displacement field was calculated using
the classical assumption that straight lines perpendicular to the neutral
axis remain so in the deformed configuration.

The problem was solved with two different time steps:

a 18.7 A .
) Ae terit

187 At .,
crit

b) At

where Atc was calculated as the shortest element side divided by the

3y

rit

‘dilatational wave velocity (Atcrit = 1.336 X 10.~

Tables 2 and 3 compare tﬁe number of iterations required per step by the
element-by~element algorithm and the Jacobi iterative scheme for loading cases
(i)vand (ii) respectively. The superiority of the elementnby-eiement algorithm
over the Jacobi technique, in this problem, is clearly shown and the important
effect of the line searches and updating techniqﬁes on the number of iterations
required for éonvergence is demonstrated. Figure 8 compares the displacement
histories of the beamrend (node 45) for loading case (ii) obtained using an
implicit solutiom to those obtained by the element—by—élement algorithm with
the BFGS update and tﬁen with the complementary update. ?igure 9 shows the

~

normalized search parameters (Sl-and S2) in the #Ax and R directions for
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loading case (i) . The second search direction contributes less than 4 percent
to the solution in this case since the response is a low mode which is captured

by the element-by-element algorithm and not by the Jacobi method (see 3.3.2).

4.2.2 Example 2: Cantilever Beam With Built-in Root

The geometrical definition of this problem is identical to the previous
example except for the left hand side boundary conditions of the béam model (see
figure 7b) which Qere replaced by built-in boundary conditions. The loading
case employed was a prescribed traction (shear) on the right hand side having
the same distribution as in example 1 loading case (i). Table 4 is a comparison
between the number of iterations required for convergence by the Jacobi method
and the element-by-element aigorithms.

The built-in boundary condition introduces smaller time scales to the re-~
-sponse (rigidity due to boundary conditions) and a singular point at the corner
point on the boundary. However, in this problem, as in the previous one, the
element-by-element algorithm performed better than the Jacobi method. Figure
‘lO compares the stress Gxx contour lines and deformed configurations obtained
using implicit solution with those obtained using the element-by-element algo-
rithm. The results were accurate to four significant digits in all the methods

tested.

4.2.3 Example 3: Elastié-Perfectly Plastic Uniform Béam

The ggometrical definition of this problem is identical to those of examples
1 and 2 except that’the entire beam is discretized by a 64 element mesh (the
iower part of the beam was added to the mesh of examples 1 and 2). We employed

the following boundary conditions:
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(6,00, y, ©) = u (0,0, ) = 0 t€ [0, T],yel-c, c]
J u (0, C, t) = u (0, -C, t) = O te [0, T]
t (L t) = Q(l - XE_) (Zt/r ) t € [0, T]
.y’ v c2 1 ’
y € [_Ca C]

where Q = 1000, T, =T = .04, C = 2.

The Key - Krieg plasticity model was used for an elastic-perfectly-plastic
material having a uniaxial yield stress.of Oy = 3,000. Small deformations were
assumed. The elastic stiffness was used on the left-hand side throughout.

Figures 11 and 12 compare the elastic and plastic stress distributions
at t = .036. A fully developed plastic hinge is present at the root of the
beam in the plastic case. The elastic critical time step of this problem is

At . =1.336 x 10™° and the time step used was:
crit

At = 2.5 x 1073 = 187 At
crit

We employed the BFGS update method and the compiementary update method for

both the elastic and plastic solutions. The average number of updates was 4

for both updating methods for the elastic and and the plastic solutions.

4.2.4 Example 4: Elastic?Perfectly—Plastic Beam
The geometric definition of the problem is shown in figure 13a.

The beam was discretized using a 500 element meéh (figure 13b). We em~

ployed the following kinematic and stress boundary conditions:

it
o

ux(oa Yo t) y € [‘4’ 4]: t e [O: T]

]
o

u (0, 0, t) t € [0, T]
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ty(28, y, t) = Q(l ~ﬁ)( t ) y € [-4, 4]
t € [0, T]

Q = 250

The Rey-Krieg [K1] plasticity model was employed for an elastic perfectly
plastic material behavior having a yield stress Gy = 1000.

Figure 14 compares the elastic displacement time history at the tip
of the beam to the plastic solution. Figures 15 and 16 show the stfess distri-
butions at time t = 0.09 for the elastic and plastic solutions. A fully deve-
loped plastic hinge is present at the end of the beam and a secondary plastic
hinge has partially developed in the stress concentration zone (plastic regions
are shown dashed in figure 16c).

We repeated the solution using element—by—element algorithms with both
'BFGS and complementary.updates. The critical time step for this problem was

At = 5.41 X 10—6 (calculated as the smallest element size in the mesh de-

crit
vided by the dilatational wave velocity ).

We employed two time steps for these runs: At = 10><AtCrit and At = 50 %

Atcrit and for the first time step both updating methods converged after a
~ single update and for the second time step (A£‘= 50 Atcrit) the BFGS update
fequired 7 updatesband the complementary update 6 updates.

A word about generating the contour line for the graphic post-processing.

The finite element ahalyzer, CONTINUUM, calculates the stresses at the integra-

tion points. The dat% are then extrapolated to the nodal points by means of a
- i

weighted average of all the integration points in the interior domains of all

eléments connected to the nodal point. The weights are taken as the inverse

* ,
Note that for the majority of elements in this problem (all elements outside the

hole region) the critical time step is 3.38 x 10~-5 = 6,25 At ipe
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of the distance between the integration point and the nodal point.

This type of data smoothing ensures that the values obtained at the
nodal points will be bounded by the data calculated at the integration points
which is an essential property when plastic stresses are present and ensures

continuity of stress contours between element domains. However, this method

has some drawbacks. For example, data which are antisymmetricabout the neutral
axis of the beam, such as Oll’ will result in linear distribution of contour
lines in all elements having the center line as part of their boundary even in
the case where these elements have a uniform stress distribution (part of a

plastic hinge). Data with symmetry with respect to the neutral axis, such as

the Von-Mises stress, will not suffer from this type of smoothing.

4,3 OQOperator Storage and Operations Count

In this section we shall compare the storage requirement and the number

of operations required per step by an implicit solver and the element-by-element

algorithms.

4.3.1 Operator Storage

The element-~by-element algorithms require only a single element operator

in core at all times.

The implicit solver requires global operator storage and uéing optimal
node numbering (minimum band-width) and compact column storage for the global

operator, the following results are obtained:

Examples 1 & 2: 1,260 words of storage
Example 3: 3,564 words of storage

Example 4: 50,232 words of storage

Thus the storage saved by the element-by-element algorithm, even in these small
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size problems is significant.
Note: The element-by-element operator storage remains the same regardless of

problem size.

4.3.2 Operations Count

The element-by-element algorithm differs from the implicit solver iﬁ two
basic operations: The LDU factorization of the operator and the forward
reduction and baék substitution sweeps required in every step.

The number of operations required for the operator factorization are

given by:

implicit operator: 1/3 Reg X b2

X 1/3 n 3

element-by-element operator: n_o ce

The number of operations required for the forward reduction and back substi-

tution sweeps are given by:

implicit ¢ 2n X b

eq
element-bv-element: n_, X n X n X (n2 +n_ )
el pass iter ee ' Tee
where:
neq - number of equations
b - mean half band-width of the global operator
n - number of elements
el
n,, ~ number of element equations

npass - number of passes in the algorithm
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Dyt er number of iterations required for convergence
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CHAPTER V

CONCLUSIONS

In this work we presented new element-by-element algorithms for finite
element equation systems which arise in the linear and nonlinear statics and
dynamics of solids and structures. These new algofithms present a new point
of view for the finite element approach in which the element operator is
treated as an independent operator and not as a part of some global operator.

We formulated the regularized problem associated with a linearized equa-
tion system emanating from the finite element discretization of problems in
continuum mechanics and structural analysis. The element-by-element approxi-
mate factorization comcept was then applied to the regulérized problem resulting
in algorithms possessing stability and accuracy properties of global implicit
schemes and having data structures similar to those of explicit algorithms.

The new element~-by-~element algorithms take advantage of the fact that the
connectivity among elements is a local property (elements are connected and
effected directly only by neighboring elements). By solving the equations on
the element level and'localizing and globalizing only the solution vectors,
the need for a costly heavily populated global operator* is circumvented.

This new way of thinking about the finite element method opens the door
for a new type of algorithm, based on the product of element operators, and

avoids the need for a costly (storage wise) global operator. As was shown in

*

The global implicit operator is heavily populated since the local connectivity
among elements is introduced through the finite element assembly operator employ-
ing a mapping of local equation numbers to global ones.
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the examples of this work, the element-by-element algorithms maintain the
desired properties of their governing implicit algorithms (stability and accu-
racy) while having a data base similar to that of an explicit algorithm.
Future research on this new generation of element-~by-element algorithms
will be concentrated on generalizing these ideas to other areas of engineering

such as heat conduction, fluid mechanics and eigenvalue analysis.
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FLOW CHARTS
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1. INPUT PHASE

read restart file containing:
(1) generated data
(11) integer arrays (LM, IEN and {p)
(ii1) blank common pointers

clear arrays.

2. CALCULATE AND STORE ELEMENT MATRICES
loop on element groups: Igroup =1, Ngroups

calculate shape functions in £ domain:

-~

N, ) N, e G Yoy oL,
~ int
a=l, 2,..., N
en
8> loop on elements within the group: e=l, N.o

call shape functions to obtain

g Mo N, G Yp g 5
~ int

a=l, 2,..., Nen

integrate and store elements matrices:

static problem: €

LR

dynamic problem: u°, ge, ge

assemble lumped mass vector: M, = ‘\ e

~E g
— e=1
3. INITIAL DATA CALCULATION
static problem: d <« 0 4 g

dynamic problem: g +*-é0 + f(O)

iR

Tz + 70
initial acceleration:

a — E(0)

'FLOW CHART II. Finite Element Analyzer: Global Driver



localize:
read:
calculate:

globalize:

-1

a <~ My, a + £(0)

TIME INTEGRATION LOOP: n=1, N

(N

steps = 1 for static

PREDICTOR PHASE

static problem: “~ d

~

R

dynamic problem:

iRl R

ITERATION LOOP: i=1, N
iter

(Niﬁer = 1 for linear problem)

' B 1oop on elements: e=l, Ne

problems)

2

e e
c, k
e e e e.e
a =+ -c v - kd
e
a<+—a+a

steps

2

— d + At g+%§ (1«—28)3

w g + At(l - Y)a

CALCULATE AND STORE ELEMENT ARRAYS

same as step 2. except omit mass calculation

(skip this step if i=1

REGULARIZATION MASS CALCULATION
yreg ~—0
loop on element: e=1, Nel

read elements matrices

\ e
define gre through:

FLOW CHART If (Cont'd.)

and n=1

or linear problem)
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static: M°_ +— diag(k®)
~reg ~

dynamic: ME diag(r_ge + At Y g? +

~Teg

+ at%g lf;)

e
ble: M -
assemble Meg blreg + }freg

9. FORM R.H.S. VECTOR b .

(1)

b+ F
~ ~n

—# 1o0p on elements: e=l, Nag

localize:
static: a(il) — g®
~n ~
dynamic: dr(li) — 4

(i) e
argi) L o e

o~

read element matrices

é calculate be:

e
static: bE {—k a¢ linear

e, e
-N (d7) nonlinear

dynamic: b€ —

o T T
4
I
1]

i
O
[
¢
1

i
X
m

tE ="
(0]

assemble: 13 e 13 +

10.

11.

SOLVE REGULARIZED PROBLEM A X

[}
1o

call ELBYEL
(see flow chart III)

CORRECTOR PHASE

static: d(i+1)<——- d(i) +
~n ~n

e X

FLOW CHART II (Cont‘d.)

linear

nonlinear
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dynamic: a(i+1) **-a(i) + x
~n ~n ~

L) (D)
~il ~0

d(i+l) *-—-d(i) + BAc2 x

+ YAt x

(note

LR
i
B
=y

in static problem

and Z Aa in dynamic problem)

L

12. UPDATE GEOMETRY COORDINATES X
(only for large deformation problem)

x+—x + (D 4D
~ ~ ~L ~T

13. CONVERGENCE TEST (nonlinear problem)

B x oy |l 1711a{F |
(1+1)
" b — |1/
dynamic: b *“'BAtz x

tol

tol

A

L>l4- OUTPUT PHASE

‘k print state vectors, reactions and stresses and update’

graphic post-processor files

15. sTop

FLOW CHART II (Cont‘'d.)
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1. INITIALIZATION PHASE

x<— 0

~

2. ASSEMBLE AND STORE SUPER-ELEMENT OPERATORS
(this step is executed only for 1=1 and n=1 in
linear case)

——@> loop on super-elements: iSuper =1, Nsupers

= 1 - implicit
supers
Neﬁ -  element-by-element
Llx f-Nel - substructuring

clear super-element operator

A <~ 0
~1super -

A —@= loop on elements: e=1, Ne?.

read element matrices
e

calculate A :

e e
static: A < k

dynamic: A% —n® 4+ Aty c? + AtZB Ee

assemble: A ~—— A, + A%
~isuper ~lsuper ~
decompose: a7t ~— (1 + ————l-——-M_;i A M'_li y-L
~isuper Npass ~reg ~lgyper ~T€8
store A, : a7l on disk file

: :
~lsuper ~lsuper

3. ITERATION/UPDATE LOOP: Iiter =1, Niters

4, FORM R.H.S. VECTOR, R .

R <~—b

FLOW CHART III. Element By Element Solver
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——8# loop on super-elements: isuper =1, Nsuperé
read: 4y
~*super
% localize: x —* Xy
~ ~iguper
globalize: R =~ R - Ai xi
~ ~  ~isuper ~*super

5. SOLUTION PHASE

o
Ax ~— M_2 R

~ ~Teg ~
— loop on number of passes: lpass =1, Npass
—@8 loop on super elements: isuper =1, Ngupers
localize: Ax —r x
~1 ~isuper
read: A;
“*super
solve: Ax, = Atl Axi
~Isuper . “~Isuper “~“super
globalize:  Ax «— Axi
S ““*super
flip order of super elements

1
M“1

Ax b4
= ~reg ~

6. QUASI NEWTON/COMPLEMENTARY UPDATE

(see chapter III for details)

7. CONVERGENCE TEST

x o |laxl 17|

reor < HRI/1B]]

xtol-i El
NO t
g and YES - Return

<
ol = €22

FLOW CHART III (Cont®d.)



TABLES AND FIGURES



103

(G=X

V) Alo11se|3 ul suoilenb3 djeiqably Jesul

1 3149Vl

| +ud +u A4udtus] gy [SavdHidivh  [sowsuspoisers
L Gy e (md] BY |
| + =4I leauljuopn
~ s n S
(Wpyfi-3=18 Opy|  (Wpya SOHEIS0ISEIT
1eauljUON
Ltupg bl by by LU AV I+ D1VA solweudpoise|3
i +N=yi |  deeun
~ ~ ~ gdllelsoj}se
5 5 v_ ejsoisels
leaul
q X v




104

pue poyls lqooepr oy} usamjlag uosiiedwon: | sjdwexy

(1 eseo peo]) wyiobly 3g3 oyl

‘cd14dvl

(SuoT3BILIT QT I940 - )

- yolesas auj] |BUOI}D8IIP OM] --"S"] O-2

YOJESS OUJ| [BUOI}OAJIP BUO --"G"] d-1

1 £9 v G |'S’1 g-¢ pue EmEmEm_anL
14 ©0 14 99 ‘S"7] d-1 pue Alejuswas|dwon
b 1z 5 Gl 'S™ d-| pue §94g
g e 8 — 's"1 a-¢
9 GL 6 8€ 'S a-1
91 o0 'a! 66 oised
3g3 | !qooer | 3Ig3 | 1qooer
‘WIogxrgL=1v | WuxegL=1v suoijelay] jo Jaqunn



105

(11 8582 pPEO))

wyiiobly 393 syl

pue poyie [qooer ay} usamiag uosiedwon: | ojdwexsy

'€ d74d9v .l

(SuoT1eI91T QO 19A0 —- )

yoJeos 8ul| [BUOIIOBIIP OM} ——"S"] d-2

yoleas aul| jeuol}oalip auo--'g"] g-1

74 rA € Sl 'S"1 d-¢ pue Aiejuswsjdwon
G mm_ € 6l 'S -1 pue >._fcm,Em_aEcU
9 ) £ 6 '§'1 0~} PUE SDAg
9 — € —_— 'S a-¢
9 GE v 02 'S a-1
Ll = Gl 9% olseg

393 | lqo%er | Igd lqooer

HidwxegL=1v | MhuxLgL=1v SUOI}BJ9}| 4O JaqUINN



106

wyiiiobly 393 syl
pue pouisiy Iqooer ayj usemlag uosiiedwon:z sjdwexy v J1gV L

(MOTII9A0 DSUTYOBW = { ®)

(SuoT1'IDLlT QQC I9A0 —— )

yoleas auj| |BUCIID8IIP OM) —-"G"] 0~

YyoJeas auj| |BUOI}08IIp 8UO —- 8" (-1

ve ©o 8 69 'S™1 d-¢ pue EmEmEm_ano
G2 oo 8 co ‘S d-1 pue Aiejuswsjdwon
0o oo g o0 'S™1 a-1 puB §o4d |
EP — Pl EE— ‘ST d-¢
8t ©o 91 LGl ‘ST d-t
ccl co 04 vvv olsed
4483 Iqooef ERSE lqooer
.Eﬁqx.EFnE HI% gL gL=1v suoljeta}| Jo Joquny



107

N

uoijoungd adeys d-¢ 'L IHADIA

X




jo}oe4 uolleoyljdwy poyis|N b pazijeisuay ‘g JHNHIL

(U )boT

108

U “1010e4 uoijeoljljduy

a's 11 4 o' 0’2 01 0'6- - 09~
| ] 1 l ] & -
o
o
O
IIN
3]
o
B2
o
7 o
& . o
§0=p —g— |°
/]
A/ /]l o o
- % @ ,. 00'5 Il.glllt _lw
058 -5 55 e
gy L'0=p —e— |,
(Cas S o€ -~ ‘ e
; go=p —0— |°
&9 -6 ° 5 %
60=0 —O— [}
[~
(o4}
Pyt 5T x.x\aur\»\\gx w._l
T - - [}
[=]



109

L

k1

Ik5 m
d1i k2
casellcase?2|case3

(
l P m2 K4  [$313000 | f3(1) | F3(D)
45 k3 %
£3(t)

I m3 O 3500 T/\
d3 ' {3 " . AN

o
5 10 t

casellcase?case’ casellcase?2|case3
k1| 6.2 6.2 1. mi O 50 1
k2] 62.| 62. 100. m2 0 50 1
k3l 620.| 620.|10000. m3 0 50 1

k4| 124.| 124. | 200.
k5| 12.4| 12.4 2.

FIGURE 3. Test Problem
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a. Two Directional Line Search
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b. Complementary Update
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FIGURE 9. Comparison Between Search Directions
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