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ABSTRACT

We investigate smoothness properties of the integrated density of states ( ids ) for random Schrödinger operators on a multidimensional strip lattice, where only the potentials on the “top surface” of this lattice have a distribution with some regularity.We view the eigenvalue equation on the strip as the action of an abstract group on some homogeneous space, from where we derive a representation of the ids in terms of a distinguished measure on that homogeneous space.This representation allows us to conclude that using minimal smoothness of thepotential distribution on the “top surface”, combined with a negative momentcondition for the distribution of all other potentials, is enough to obtain smoothness ofthe ids. This includes the original Anderson model.We also discuss cases, where the distribution of the potentials below the “topsurface” is Bernoulli, satisfying this negative moment condition.
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§ 1 INTRODUCTION

Let H be the discrete random Schrôdinger operator defined on l2(Zd) by
Hωu (n) = u(m) + Vω(n) u(n) n,mε ^li (1.1)∣∣n-τn∣∣=l

where { Vω(n), nε 1i } is a family of independent random variables and we will assume that the potential is bounded, that is, the distribution of the Vω(n) has compact support. It is well known, that Hω is a selfadjoint operator and if Vω is ani.i.d. family with distribution dμ, that the spectrum is almost surely the setσ(Hω) = [-2d,2d] + supp dμ.In addition, if d=l, the spectrum is pure point with exponentially decayingeigenfunctions.We will be interested in random Schrôdinger operators on a ‘strip’, that is on l2(Sm), where Sm = 2 x {l,...,m}d, a horizontal, (d+l)-dimensional strip of width m. The reason for studying the strip is that one can observe phenomena not occurring in one dimension, giving some hints to what might happen in higher dimensions. At the same time, while techniques to study the higher dimensional case have not yet proven to be powerful enough to obtain conjectured results, the strip can be studied by onedimensional techniques.We are mainly interested in regularity results of the integrated density of states on the strip, defined below, where we will focus on Co° results.
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For the finite box A, = ( nε 2d, ∣ni∣ ≤ 1 }, let Hω,, denote the restriction of H to A, with Dirichlet boundary conditions. This makes Hω,i a ∣Λ,∣ x ∣Λ,∣ matrix.The integrated density of states , (ids), is defined by

k(E) =llit∏o ∣Λ,∣^1 # { °f eigenvalues of Hu,,, ≤ E }. (1.2)
As a consequence of the ergodic theorem, (see e.g. Carmona [1] ), one obtains
Theorem:
For all E, the limit in (1.2) exists for a.e. ω and is independent of the boundary 
condition chosen for Hu l.

If Ii is replaced by Sm, the definition of k (E) remains the same, if the boxes A, cover the whole width and are horizontaly restrained to -1,. . . ,1.
The ids and in particular regularity properties thereof have been studied extensively in recent years. One of the first results was Pastur’s proof of the continuity of k in one dimension ([1]). For arbitrary dimension, Simon-Craig, [1], showed that k is log- Hölder continuous. Other results in higher dimensions had to assume large disorder or high energies, as the result of Constantinescu, Fröhlich and Spencer ,[1], who showed, in the i.i.d. case, that if the potential distribution has an analytic extension around the real axis, then so does k. More recent results include the proof of Bovier et al.,[l], showing smoothness of k for a class of potential distributions that includes the
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uniform distribution, again at high disorder.The first Co° result for k( E) with minimal regularity assumptions for the distribution of the potential was obtained by Simon-Taylor, ([1]), in the one dimensional case with1.1. d potential distribution. The result was later extended by Klein-Speis,([1]), to i.i.d potential distributions having a Fourier transform with all derivatives bounded and decaying to 0 at ∞.Recently, Klein - Speis, (K.-S. [1]), proved k(E) to be Co° on Sm for d = 1 and i.i.d potential distributions dμ having first two moments and satisfying

α( IT t2)2 dμ ε L1, a>⅜

While they used a ‘supersymmetric replica trick’ to prove their results, we are going to follow Simon-Taylor and use the group action approach to obtain regularity results for the ids. In higher dimensions, it is expected that the ids is smooth for all1.1. d. potentials, in particular for potentials with a pure point potential, including the ones for which the one dimensional ids is singular continuous ( Carmona et al., [1] ). The main object of this thesis is, to not only generalize one dimensional regularity results for the ids to the multidimensional strip, but also to obtain results that can be considered as natural “interpolated results” between known facts in one dimension and conjectured results in higher dimensions. As such a result, we derive smoothness of the ids by only using minimal regularity of the potentials on the “top surface”, while the potential below the “top surface” won’t have to satisfy any regularity conditions. The extension of the one dimensional result in Simon-Taylor, [1], to the multidimensional strip is a consequence of this. In particular, we investigate what
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happens, if the variables below the “top surface” have pure point distribution.

dFor our purpose, it will be convenient to redefine Hu as an operator on Rra - vectors, acting in the following way:Hωu (n) = u(n+l) + u(n-l) + Vu,(n) u(n) , nε TL (1.3)
dwhere u(i)ε Rm and

Wnl idid wn2 idVu,(n) (1.4)
id idW nm

where the blocks are symmetric md-1x md-1 matrices and Wnf have again the same structure as in (1.4), just with md-2 x md-2 blocks. The m x m diagonal blocks of (1.4) are of the form
xnt,. 1 1 0V2,(n) = ,nε 2, k,∙ε {1, . . ,m}d, i=l, . . ,m (1.5)

o ∙∙ ∙∙. 1 

1 ×nfc.∙

xnk. is the potential at site (n,ki).The Vω are just d- dimensional Schrödinger operators, restricted to Λm
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For d = 1, i.e., for the 2-dimensional strip, (1.4) takes the form of (1.5).
Associated to (1.3) are, for each energy E, the so called transfer matrices (see more in § 2), that are of the form

gn(ω,E):= E-Vω(n) -idid 0
where the blocks are rnd x md.These matrices are elements of the symplectic group Sp(md), (again, more in § 2).The condition we require for the potential distribution below the “top surface”, will bestated in terms of products of transfer matrices. More precisely, consider, for fixed E, 

d .the map ψ∙. R"m → Sp(md) given by≠(x11, . . . ,x d) := gn ∙ ∙ ∙ gι nmwhere n will be specified later.We will show in § 3, that ≠ is for a.e. fixed realization of the potentials below the “topsurface” a diffeomorphism a.e. in the “top surface” - variables. If τ∕>c denotes therestriction of ψ for such a typical realization of the below-litop surface” variables, then d-1 .
ψc : R"m -→ Sp(md) is a diffeomorphism a.e. and the Jacobian determinant will locally be of the formdet D≠c = α(c) ∕3(c,x) , cε Rn^m , xs Rnm , (1.6)with a and β polynomial.For our results, we require the following condition on the distribution of the potentialsbelow the “top surface”:
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(Cl) If dτj denotes the distribution of the xijfc for i = 1, . . . ,n andkε {1, . . ,m}d with k(d) < m and n = 2m2m + rnd ( = dim Sp(md) ), then there exists t > 0 such that for all Eα-i(x-E) drç(x) < ∞where a is a polynomial in x, given by (1.6)
Theorem 1:
Let xij for iε Z and jε {1, . . ,m}d with j(d) — m, (the top surface variables), be i.i.d. 
random variables with distribution F(x)dx with supp F compact and Fε Lia for some 
a > 0, L1a the usual Sobolev space.

Let xij for iε 2 and jε {1, . . ,m}d with j(d) < m, (the variables below the top 
surface), be i.i.d. random variables, mutually independent of the top surface variables, 
with distribution satisfying (Cl) and having compact support.

Then k(E) is a Cx function.

Remarks: (i) If the x,∙∙, iε 2, jε {1, . . ,m}d, j(d) < m are i.i.d. with absolutely continuous distribution, (Cl) is satisfied.(ii) If the family of all potentials is an i.i.d. family with distribution F(x)dx, Fε La, some a > 0, then (Cl) is satisfied. In particular, if all potentials have uniform distribution over some interval, k is Coo.
To emphasize that only smoothness on the “top surface” is needed to smoothen the ids, we are particularly interested in the case when the potentials below the “top surface” can only take two values a or b with complementary probabilities, i.e., when
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those variables have a Bernoulli (a,b) distribution with Prob (X = a) = p and Prob (X = b) = l-p, 0 < p < 1. We have
Theorem 2:(i) Let the distributions of the “top surface” potentials be as in Theorem 1 and 
all potentials independent. If supp F C K for some fixed compact K, there exists 
b0 > 0 such that if the variables below the “top surface” have Bernoulli (a,b) 
distribution with jfe-otj < b0, then k(E) is a Cx function.

(u) Let the distributions of the “top surface” potentials be as in Theorem 1 and 
all potentials independent. If the variables below the “top surface” have Bernoulli - 
(a,b) distribution, then, for any e > 0 and a.e. vector c = (cik)ε Be, where Bι is the 
ball of radius e around 0 in R , let xik — xik + cik, i = i mod n,

kε {1, . . m}d, k(d) < m. That is, the revised potential is the former one with an 
arbitrarily small periodic perturbation added to it. Then, for the perturbed model, 
k(E) is a Co° function.

(Hi) For d = 1, i.e. the 2-dimensional strip, and m = 2, let the distribution of the 
“top surface” potentials be as in Theorem 1 and all potentials independent. If the 
variables below the “top surface” have Bernoulli (a,b) distribution, k(E) is a C°° function.

Remarks: (i) The spectrum of the perturbed operator in part (ii) is pure point.(ii) Other results that follow easily the same way as (i) and (ii) are for all but finitely many Bernoulli (a,b), that is for all but finitely many values of ∣b-a∣, and all but finitely many energies E.
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Along the way, we also get a localisation result “for free” in the case where the potentials are constant along each horizontal line, if the top surface is perturbed by any i.i.d. random sequence with absolutely continuous distribution on R, that is, if such a pertubation is added, the spectrum of Hpert becomes pure point with exponentially decaying eigenfunctions. We will comment on this at the end of section4.
For our goal, to show smoothness of the ids, (1.2) is not a very useful expression to analyze. We will therefore derive a different representation for the ids, which willrelate the smoothness of the ids to smoothness of quantities, that are easier to analyze. Therefore, we will relate the number of eigenvalues as described in (1.2), with the number of solutions of a first order recurrence equation for symmetric matrices (see 1.7 below). Randomizing the initial condition of this recurrence equation and viewing it as the action of an abstract group G on the symmetric matrices, we obtain a relation between the ids and a measure dpj, on the set of symmetric matrices, which will satisfy dpg * dι∕g = dι∕g for a given measure dμ^ on the group G. First we will “generate” smoothness by taking convolution powers of dμ^,, using that this measure has a certain smoothness locally in one variable. By taking higher convolution powers, we obtain any desired smoothness of those powers. We will then obtain suitable E-smoothness of dι∕g by perturbation theory, from where wefinally conclude the smoothness of the ids.The setup of this will be done next and in section 2 we outline the group action approach. The smoothness of the convolution powers of dμ^, will be the purpose of section 3. In section 4, we relate this smoothness to smoothness of the invariant
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measure and make the final conclusions for Theorem 1. The proof of Theorem 2 willbe given in section 5.
The following negative eigenvalue theorem allows us to find a representation for k(E)in terms of quantities which’s studies will be the object of the following sections.
Let U(n) be the square matrix of order md, the j-th column of which is thesolution of Hω u (n) = E u(n) n= -1,...., 1with initial conditions u(-l-l) = (0,. . .,0) and u(-l) = (0,. .,1,. ∙,0), where the one is in the j-th coordinate.Then the U(n) satisfyU(n+1) + U(n-1) + ( Vω(n) - E) U(n) = 0 , π = -1,...,1 (1.7)
If U(n) is invertible, define X(n+1) := U(n+1) U(n)^1 for n = -1, . . ,1. X(n) is symmetric and depends on ω and E. If U(n) is not invertible, X(n) is not invertible. In this case let X(n)^1 denote the matrix with the same spectral decomposition as X(n), just with the reciprocal eigenvalues and define X(n+1) by

X(n+1) := E - Vω(n) - X(n)~1
accordingly. Then the X(n) solve

X(n) = (E - Vu,(n-1)) - X(n-l)^1, n = -1+1,...,1 (1.8)
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with X(-l) 1 := 0.
Theorem (Dean- Martin [1]) :
Let X(n') solve (1.8) for the given choice of X(-l). Then·.ι+ι
# { of eigenvalues of Hω,l ≤ E} = # { of positive eigenvalues of X(i) }∙t ςξz - ∕ +1
proof: For notational convenience, we will drop the indices ω and 1. H is then the following matrix:

H V(-l) id id ' ∙ id , all empty entries are 0, (1.9)
id V(l)

where the diagonal blocks are md x md, given by (1.4).Then E - H can be written as a product of two block triangular matrices:
id X(-l+l) idY(-l+l) id id

Y(l) id X(l+1) (1.10)

where all empty entries are 0 and Y(i+1) = X(i)~1 and the X(i) are defined in (1.8).It follows from (1.10), thatdet (E-H) = ∏ det X(i). 
i--l
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From (1.8), we can see that for E negative and ∣E∣ large, all eigenvalues of the X(i) are negative. If E is increased through an eigenvalue of H such that det (E-H) changes sign, then at least one of the eigenvalues of the X(i) will change sign. Suppose X(i) has an eigenvalue x with ∣x∣ small. Then X(i+1) has an eigenvalue close to -x-1. If x changes sign through 0, -x-1 changes sign through ∞, so the total number of positive eigenvalues is unchanged if -1 < i < 1. For the same reason, if a large eigenvalue of X(i+1) changes sign through oo, a small eigenvalue of X(i) with opposite sign will change sign through 0. Therefore, the total number of positive eigenvalues can onlychange if: (i) An eigenvalue of X(l) changes sign through 0(ii) An eigenvalue of X(-l) changes sign through ∞Since det X(-l) = det (E-V(-1)) has no poles, only (i) is possible. Therefore, the total number of positive eigenvalues of the X(i),s will only change if E increases through an eigenvalue of H and the difference in the number will equal the multiplicity of the eigenvalue of H. Since for E large, all the eigenvalues of the X(i),s will be positive, thestatement follows. 0

Since the limit in the definition of the ids was obtained for a.e. ω and was independent of the boundary condition chosen for Hu,,i , it follows from the theorem above that for all choices of symmetric X.,
I mk(E) =jlimoo I Λ∣ ∣'1 ∑2 ExP ( *(o,∞] ( λ>(x(n>ω>x√))) ] (l∙n)

n=-∕ i=l
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where X (n,ω, X.,) is the solution of (1.8) with initial condition X.,, λi is the i-th eigenvalue of X (n,ω) and Exp is integration with respect to the potential distribution.

Because the right hand side of (1.11) is bounded, this relation also holds if X_, is random, independent of the potentials and the expectation with respect to this random variable is taken. With X_, random, (1-11) defines a recurrence equation for a Markov chain of symmetric random matrices. It will be advantageous for the further anlysis to view (1.11) as the action of elements of an abstract group on elements of a homogeneous space, as outlined in the next section.
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§2 THE GROUP ACTION APPROACH We are going to outline an abstract view of (1.8), based on work done by Furstenberg, ([1],[2]). For all the following considerations, let G be a locally compact, semisimple Lie group and M a Borel space.

Definition:
M is called a G-space, if there is a continuous action, (g,x) → gx of G x M → M, 
satisfying (Pi 5⅛) x = Λ ( 9ι x) (2∙1)

ff in addition the equation, gx = y, has a solution in G for every x,y in M, the action

is said to be transitive and M is called a homogeneous space of G.

In the following we are going to recall some definitions and facts from Furstenberg[1],[2]∙
For measures dμ on G and dι∕ on M, the convolution dμ * du is defined by∫f(x) dμ * dz∕(x) = ∫ f(gx) dμ(g) dι∕(x) (2.2)where f is continuous and vanishes at infinity.
The convolution of two measures on G is defined by (2.2), if G itself is considered a G-space. If dμ1, dμ2 are measures on G, dι∕ is a measure on M, (2.1) implies that( dμ1 * dμ2 ) * dι√ = dμ1 * ( dμ2 * d(∕ ) (2.3)
If dμ, dι∕ are probability measures on G, M respectively, then dμ * du is the
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distribution of gx, if g and x have distribution dμ and dp respectively and areindependent.
Definition:(i) If M is compact and for any probability measure dη on M there exists a sequence, (<7„), in G with δgn*dη converging to a point measure, where δg is the point measure 
on G concentrated on g, M is called a boundary of G.

(if) If Ml, M2 are homogeneous spaces of G, a map φ : M1 → M2 is called 
equivariant if gφ (τ1) = φ (fi,rι) ∕0r 9~ G, X∖S M1.

One of the results in Furstenberg [2] is:
Proposition:
All boundaries of G are equivariant images of one of them, the maximal boundary.

For any x0ε M, let L = { g: gx0 = x0 }, the stability group of x0. If G acts transitively on M, G/L is homeomorphic to M.
Let dμ be a probability measure on G.
Definition: A probability measure on M is called an invariant measure for dμ, if 

dμ * du = du.

The following result of Furstenberg is fundamental to our further analysis.
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Theorem: (Furstenberg [1])(i) If M is compact, there exists an invariant measure for dμ on M, 

independent of dμ.(Ü) If M is a boundary of G and dμ an absolutely continuous (w.r. to Haar 
measure) probability measure, then there is one and only one invariant 
measure for dμ on M.

The special case we are interested in, is when G equals the symplectic group, G = Sp (md), i.e., the set of 2md x 2md matrices g, satisfyinggτ J g - J, (2.4)where , the 1 stands for the md x md identity matrix
<j - .M will be the set of Lagrangian subspaces of IR2m , that is the set of m -dimensional 

dsubspaces of R2m satisfying< u, Jv > = 0 Vu,vε x, xε M (2.5)where < , > is the usual inner product.
For given xε M, let ( ul∙) be a basis for x and let x denote the 2md x md matrix, whose columns are the vectors ( ui), i = 1,. . .,md.
The maximal boundary of G is well known ( see Lacroix [2] for this special ,case andFurstenberg [2] for the general case) to be the following flag manifold:dLet xi be an i-dimensional isotropic subspace of R2m , i.e., an i-dimensional subspace
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satisfying (2.5). The maximal boundary of G is the set

{ ( x1,. . . ,x d, xiC xi+1, i<md, xi isotropic }.
m

From this it is also easy to see that M is an equivariant image of this set.
Lemma 2.1:
M is a homogeneous space under the action

( g,χ) → g χ

proof: Recall that the (ui) span x. For any ui, uj∙< gui, Jguj∙> = < ui, gτJguj∙> = < u,∙, Ju ■> = 0 ,so the columns of g x span again a Lagrangian subspace. The associativity of theaction is also easily verified. To see the transitivity, let x1, x2ε M with bases (ui) and(w∙) respectively. The systems u d := Ju1∙, m +»
d

w d — Jwi, i = 1, . . . ,md , extend the previous bases to ones for (R2m with 
m +i< w d, Jw d > = < wi,Jwj∙ > — 0 V ij ≤ md and therefor also

i+m j+m< u <j, Ju d > = 0 V ij ≤ mj. Then there exists a 2md x 2md matrix g such
t÷m j + mthat gui∙ — wi ∀i≤ 2md and < ui, gτJguj> = 0 ∀ij≤ md.

Thus, for fixed but arbitrary i≤2md,
< wj, ( Jg - g~1 J)ui > = 0 ∀ j≤2md.
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Therefore (Jg - g 1 J)ui = 0 Vi ≤2md , so gτJg = J and g is symplectic, mapping x1 tox2. □
Lemma 2.2:

M ~ G/H ~ 3G∕<36 , where

A B0 (A^1)τH , A, B are m x m matrices with ABr = BA^τ

36 A B

-B A
∩ G = SO ∩ G ~ U (n),

i∕(n) the complex unitary group.

A 00 A
, A orthogonal

proof: Since G acts transitively on M, M~ G∕L, where L is the stabilizer for eε M with "e = ( id, 0 )τ.If for gε G,
A B S _ CD

gë = "ë yields C = 0, D = (A^1)τ and (2.3) yields ABτ = BAτ. Any g satisfying
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these properties is in L and thus M ~ G∕H.To see the second relation, we note that for G one has the Iwasawa decompositionG = 3G Λ If, where

3G is defined in the statement of the Lemma,

Λ­

B 0 0 B'1 B = diag ( b1, . . ,b„) , all bi > 0
Α B0 (A^1)τ ABτ = BAτ, A upper triangular withdiagonal all one’s

A

Clearly A, K are in L.
An element A B-B A in 3G leaves e invariant iff B = 0 and A is orthogonal.
Therefore, the subgroup of 3G leaving e invariant is l3B andH = <3MJffrom where G/H ~ 3G∕i3B and the second relation follows. □
Remark: 3C is a maximal compact subgroup of G.
In order to employ Furstenberg’s result, we need to show that M is a boundary. To
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simplify the argument, we are going to use another result of Furstenberg:
Proposition: (Furstenberg [2])
If M is a compact homogeneous space of G, M is a boundary if, for some smooth 
probability measure dvQ on M, there is a sequence of probability measures on G with 
dμn * dv0 convergent to a point measure.

Remarks: (i) A measure du on M is smooth, if it is locally equivalent to Lebesgue measure, that is, for any coordinate neighborhood U in M with coordinate map a, there is a function y>(x) > 0 for xε α(U) such that for f with supp f C Uf(m) dp(m) = I f(x) ⅝j(x) dx.
(ii) The set of Lagrangian subspaces that cannot be spanned by the columns of [A,B]τ, where det A ≠ 0, is a zero set for any smooth measure on M, since det A = 0 cannot be one of the restrictions on A,B imposed by (2.5).

Corollary 2.1:
M is a boundary of G.

proof: That M is a compact homogeneous G-space follows from Lemma 2.1 and theremark thereafter.Let gn be the diagonal matrix with gn(i,i) = n for i ≤ md and gn(i,i) = ⅛ for i = md + l, . . ,2md. Obviously all g„ are in G. If mε M is spanned by the columns of [A,B]τ, then gnm → e (e as in Lemma 2.2) for those m with det A ≠ 0. But then gnm → e for almost all m with respect to any smooth measure on M. Therefore,
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taking dμn — dδsn, dμn * dι∕ → d6e for any smooth dι∕ and thus, by the precedingproposition, M is a boundary of G. 0

Furstenberg’s theorem allows us to conclude
Corollary 2.1:
If dμ is an absolutely continuous probability measure on G, there exists a unique 
probability measure du on M such that

dμ * du = du.

We want to reconsider (1.11) in this framework. Let us remind that the transfermatrices associated to Hω are of the form
g„ (ω,E) := E - Vω (n) 1 -1 (2∙6)

where the one’s denote the md x md identity matrix and Vω(n) is given by (1.4).
The evolution of a solution to (1.7) is given by

U(n+1)U(n) = gn ( ω, E) U(n)U(n-1) n — -1+1, . . . ,1
and thus (1.8) is equivalent to



-21-
X(n)1 în-l (w>e) X(n-1) -1 η — -1+1, . . .,1 (2.7)

For any symmetric md x md matrix A, the columns of ( A, l)τ span a Lagrangian subspace. If A is invertible, the same subspace is spanned by the columns of (1, A^1)τ. If X(n) denotes the Lagrangian subspace associated to X(n), (2.4) becomes
X (n) = gn-x E) X (n-l), n = -1+1, . . . ,1 (2.8)

If dχ∕0 denotes the distribution of X (-1 ), (2.7) defines a Markov chain in M with initial distribution dp0, if one views the elements gn (ω, E) as random variables with the induced distribution of the potential- matrix (1.4) , denoted by dμ^, . The distribution of X ( -l+n ), n < 21+1, is then given by
dix_;+n = ((*)n dμε^ * dι∕0 (2.9)

If dι∕0 is an invariant distribution for dμ^ , call it dn^ , then
dι∕n = dι∕g V n = -1, . . . ,1

In this case, it follows from (1.11) that
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Corollary 2.2:

k (E) = ∫ κ( x) dι∕g(x) (2.10)
where

dm
κ ( ∙r) — Σ X(om] ( ∖(r) ) λi (ι) is the i-th eigenvalue of x. 

i ~ 1
The smoothness of k (E) will now follow from appropriate smoothness with respect to E of the invariant measure dι∕g . Since κ ( x)ε Loo( M) , we have
Corollary 2.3: * (*)
If dvg is Cco in E as an element of the dual space of Lo°( M), k (E) is also Cca.

Remark: It follows from Furstenberg’s theorem that if there exists some n such that(*)ndμg is absolutely continuous, then d/Zg has a unique invariant measure. We will show the existence of such n in the next section.
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§3 SMOOTHNESS ON THE GROUP
The desired smoothness in E of the invariant measure will follow from the smoothness in E of a number of convolutions of dμ^, by perturbation theory. Recall that dμ^, denotes the measure on G, that is concentrated on matrices of the form (2.6). dμg itself does not have any smoothness but we can generate smoothness by convolution, using fractional smoothness of only the “top surface potential”, that is, we only use some fractional smoothness of the distributions of the potentials at sites (i,k), iε 2 and kε {1, . . ,m}d with k(d) = m. More precisely, we are going to show that for some n with nmd^^1 ≥ dim G = 2m2d-∣-md =: 1, (equality for d = 1), and E fixed, (*)n dμε (g) = G∏ (g,E) dg, (3.1)where locally on Rι, Gnε La, for some p>l,α>0, which is equivalent to saying that Gn is in the same Sobolev space on the group as indicated in the next section. In this section all considerations are locally, so all Sobolev spaces will be on Ri.(*)ndμβ (g) is the distribution of the product gn(ω,E) . . . g1(ω,E), where the gj∙ are i.i.d. with distribution dμ^,.(3.1) will only be possible if (*)ndμ^ has 1-dimensional support. Gn dg is, as we will see, the push forward map of the joint distribution of 1 potential variables. Since we only want to use the differentiability of the potential distributions on the top surface of Sm, it is clear that those 1 variables have to be on the top surface to ensure that G∏ε La, so we see that n has to be such that nmd^^1(3.1) . is at least dim G to achieve
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For the following, we are going to fix the potentials not lying on the “top surface”, by setting xik = ck = const., for iε 2 and k ε {1, . . ,m}d with k(d) < m.We will denote the measure on the transfer matrices resulting from this restriction by dμg c∙ Then we have
Lemma 3.1:
< supp dμβ c > = G, where < ∙ > denotes the generated

subgroup.

Remark: This, of course, also proves that < supp dμ^ > = G, since< supp dμg c > C < supp dμg >, independent of the distribution of the x,∙⅛,s for all i, k ε {1, . . ,m}ii, k(d) < m.
proof: We will show that the Lie algebra of < supp dμ^c > coincides with ®, the Lie algebra of G, which is the set

Xι X2 x3-xΓ
It is easy to see that the system { (X,∙j∙), (Yij), (⅞ij) } is a basis for ©, if these elements are defined as follows:Let Efj∙ be the md x md matrix with a one in the (ij) entry and zeros everywhere else. Define

X2, X3 symmetric

0 E,∙j∙ + Ej∙t0 0



-25-

Y,J =
Vij ο Ο -Ei,∙ (3∙2)

We will need the following commutator relations:
[ Xl',∙, Y,∙j∙ ] = (l+i,-(j) ) Zθ∙, [ Zo., Xjfc ] = (l+6j(k) ) Xifc [ Zo, Υjk ] = (-l-δj(k) ) Yii (3.3)

Let g1, g2 be matrices of the form (2.6) with (1,1) entries g1(l,l) = Xχ and g2(l,l) = x2 with x1≠ x2, all other entries the same. Then gj^1g2 and gιg21 are ’n S := < supp d/Zg c > and
gι 1g2 = id + (x1- x2) X11 = exp ( (xrx2) Xu) gig21 = id + (x1-x2) Yu = exp ( (x1-x2) Y11)

where x1-x2 can take values over some interval around 0, as the distribution of these potentials was assumed to be absolutely continuous. Therefore we conclude that X11, Y11 are contained in the Lie algebra of <supp dμg c>,which we denote by SI, and from (3.3), Z11ε SI.By doing the same with the other “top surface” varibles, i.e., choose g1, g2 in G with g1(i,i) ≠ g2(i,i) for i = 2, . . ,md-1, we see that Xii, Yii and Zii ε 31 for all i = 1, . . ,md~1.
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We are going to prove inductively that the whole system (3.2) is contained in SI, using the following sublemma:
Sublemma:
Let gl, g2ε G as before, that is with <71(l,l)≠<72(l,l). Then, for k < m,(i) glXklgf1 - g2Xklg2l is a linear combination of Zlk, Xjfc-11,

- ∙ 1 X d-1 > ¾> -^i + 1,1» + ∙ ∙ ’ d-1 '
k-m ,1 k + m ,1

(iz) gf1Ykr9ι - 92iYkι92 is a Hnear combination of Zkk, Yk-ι,n

Yk-m,l> ∙ ∙ ’ Y d — 1 ’ Ykl » Yk + m,l^ ‘ ‘ ’ Y, d — 1 ∙
k-m ,1 k + m ,1

We continue with the proof of the Lemma. Let us assume for simplicity that d = 2. Since X11ε SI, it follows from the sublemma, that X12 + Xm+ιpε 51. With the same reasoning, we also conclude that Y12 + Ym+ι,ιε and fr°m (3.3) , Z12 + Zlm+1 ,Z2ι + Zm+lιl ε SI. Then [ Z12 + Z1,m+1, X22 ] = [ Z12, X22 ] = X12ε SI. With the same reasoning Y12ε SI. Since now also Xm+11 and Ym+ιιχε SI, we conclude, using (3.3) again, that Z1,m+1, Zm+11ε SI. It follows that Xm+ιι,n+1 and Ym+ιιm+ιε SI. Using the same argument for all other k ≤ m, we conclude that Xli, Yli, X,∙1∙ and Yii are in 51 for all i ≤ 2m and therefor, again by (3.3), X,∙j∙, Yjj∙ and Zij∙ are in SI for all i, j < 2m. Repeating this argument for all other k, shows that Xlj∙, Ylj∙, Xjj and Yj∙j∙ are in SI for all j ≤ md and using (3.3) the same way as before shows that the whole system(3.2) is contained in SI.For general d, the exact same argument can be used if m is replaced by md-1 in the previous steps ( X,∙i, Y,∙,∙ε SI for i = 1, . . , md-1). □
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proof of the sublemma:(i) gιx⅛ιδι1 - g2X⅛1g21 =

(Vω(2)-Vω(l)) E'fcl Vu,(l)E^fclVω(l)-Vu,(2)E^fclV√2)0 E^tl(Vω(l)-Vω(2) (3∙4)

where Efcl = Etl + Elfc.Vu>(2) - Vu,(l) = (x2-×ι) E11, so( Vω(2) - Vω(l) ) E~fcl = (x2-x1) E11 E'fcl = (x2-xι) Eljfe for k > 1.Also for k > 1:Vω(l) E^fcl Vω(l) = A + Aτ, where
0 0 0
x1 1 1

A x1 1 1xιcfc c* c⅛x1 1 1
x1 1 1
0 0 0

where the ck - terms appear in the k-th row, the columns 2, m+l, . . , md 1 + l areequal, the rows k-l, k-m, . . , k-md 1, k+l, k+m, . . , k+m,i 1 are equal.
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A similiar formula holds with Vω(2) in place of Vω(l).From there it follows that (3.4) becomes:

d-l
(x2'xl) 21⅛ + (xrx2) Σ2 ( x, i 1+ x. i 1 ) + (xrx2)c⅛ Xfcl

÷-' k-m .1 k + m ,1Î =u
(ii) follows by the same arguments, just using transposes, sincegΓlγ⅛ιgι = [ gιx⅛ιgΓ1 ]τ∙ π

dFix E. Define a map ∙φ∙. Rnm → G, for given n, by
≠ (xll, ∙ ∙ ∙ ,X d ) = ≠n (χm, ∙ ∙ ,x d) ∙ ∙ ∙ ≠1 (xll> ∙ ∙ >x d) 

nm nm lmwhere
≠i (xii> ∙ ∙ >x. d) = g^ (i,E) =: gitmwith potentials (xil, ∙ ∙ ,x d).j'mClearly, ψi (xil + t, . . ,x d) = exp (tX11) ψi (xi∙1, . . ,x d), so that 

tm tm

Xu ≠i
and a similiar formula for all other xii Let again xik = ck for all i and kε {1, ≠c (x1, . . ,X d-l) = ≠ (x 1, <i-ι> ∙

nm (n — l)mh : = md-1(m-l).
. ,m}d, k(d) < m . Define ψc∙ Rnm → G
,X d-l’Cl’ ’ - ’Cft> - ‘ - ’Xl’ - ’ ’X d-l’ Cl> " ’ ,cλ) 

nm m
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Lemma 3.2:(i) For all cε

d-l. ., m (m — 1) 3 n such that ψc has maximal rank almost
d-l

everywhere on Rnm
(ii) If d = 1, n of part (i) can be taken to be dim G.

proof: (i) ( see also Lacroix [1] ) q~~ ψc = g∏ . ■ χjjSi ■ ∙Sι ε θψ, the tangent space at ≠ = ≠c(x1, ∙ ,xd), where j = 1, . . ,md-1, i = 1, . . , n.Multiplying by gf1 . . g∏1 maps this vector into
Si 1∙ ∙ Si lχjjSi ∙ ∙Sι = Adgl. .g. Xjj ε Ge ~ ©.

So we have to show that there exists some n such that the system
{ < AdgιXn∙, . . . , Adgl. .gnXjj > ; j = 1, . ∙ , md~1 } = SI for a.e. xε Rnm .
Assume, that for g1, . . ,gk, { < Adg Xj∙j∙, . . , Adgj ∙> } =: H is maximal inthe sense that { < H, Adgp .gt 1X√p ∙ ∙ >a⅛. .gnxjj > } = H ≠ ©, for all choices θf S⅛+ι> ∙ ∙ Sn and any n.Let H1 = { < Adgfc+ιXn, . . ,Adgt+1. .gnXj∙j∙ > }. Then < H, Adgp .gfcH1 > = II, so Adgl- .gjfeH1 C H, for all H1 of the predefined type. In particular with H in place of H1. But then also AdgH C H, for all transfer matrices g with potentials as prescribed. The set of those g generate the group G and therefor we conclude AdgH = H for all gε G. This means that H is an ideal in © and because H is nonempty H — © follows from the simplicity of ©, which proves (i), as the entries of gn . . g1 are polynomial.
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(ii) To show that n can be taken to be dim G if d = 1, we note that if for 1 = dim G

dim < <91≠c, . . , ∂ιψc > ≠ dim G, V xε Rn
then, by the first part, there exists k such that for k ≥ 1 and almost all choices ofxε Rn dim G > dim < <91≠c, ■ ∙ ,<9i≠c> = dim < 01≠c, . . ,δfc+1 ≠c > - 1 (3.5)
where the ∂i stand for x, derivatives and ≠c is the n-fold product of transfer matrices, such that (i) holds.Thus, for all choices of xε Rn, after multiplying by g⅛+2 . . g∏1,gfc+1 x∏gfc ■ ∙ gl ε < gfc + ix∏gfc∙ -gl’ ∙ ∙ ’gfc+1’ ∙xilgl > =: ho<=> gfc+ιx∏g⅛ ∙ ∙gιgo ε Hogo V g0*≠> xιιg⅛+ι ∙ ∙ gl ε < gfc + 1 ∙ X∏g⅛-1 ∙ ∙ gl’ ' ∙ ’ gfc + 1 ∙ ∙ xilgl > }for all choices of xε Rn.But this contradicts (3.5) and therefore, there exists xε Rn such that dim < θ1≠c, . . . ,<9,≠c > = dim G,so n can be taken to equal 1. 0

d_ d-1The last result tells us, that there is, for fixed cε Rm m , a distinguished index set i1k1, . . , iik, for ijε {1, . . ,1}, 1 = dim G, kj∙ε {1, . . ,m}d, kj∙(d) = m, such that ψ is a diffeomorphism in those variables:
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Corollary 3.1:
For a. e. yikε Rnm ~', i = 1, . . ,n k ε {1, . . ,m}d, (i,fc)⅛ { (i1,fc1), ∙ ■ ,(hA) }, the 
map ,φy∙. Ri → G, defined by≠y (*<1, . . ,xi{) := gn ∙ . . g1

where all variables in the gi different from xi^, . . , χi are denoted by yik, is a 
diffeomorphism in some neighbourhood of a.e. point in R,.
proof: It follows from the preceding lemma, that for some fixed x = (xi , . . , x,∙j)ε Riand yik = ck, kε {1, . . ,m}d, k(d) < m and yik = cik for some cik, fo the “topsurface” variables different from xi , . . , xi(, ψy has maximal rank. Since the 

dcoordinates of ≠y are polynomial in all variables, it follows that for a.e. yε Rnm , ≠y has maximal rank at that fixed x. Therefore, for those y, ψy has maximal rank a.e. in Ri. But then, for those y again, a.e. xε R, has a neighbourhood such that ψy is of maximal rank in this neighbourhood. □
d ,Define now B C R"m ‘ to be the set

dB := { yifcε Rnm , ψy has maximal rank a.e. in R }.
nmd-lCorollary 3.1 states that B has full measure, that is, for any bounded A C Rnm , A ∩ B has the same Lebesgue measure as A. With the notation as in (1.6), the complement of B, Bc is the set {α(y) = 0} and in particular, (Cl) implies that Bc and all translates along the diagonal have zero dτ∕ - measure.
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In the following, we will keep E fixed and therefor drop the index in dμ^ for notational convenience. If dry denotes the joint distribution of the y,⅛ for all (i,k) £ { (inkι), ∙ ∙ ∙ , (i,,k∕) }, then

(*)" dμ = (*)n <iη (y) (3∙6)where (*)ndμy — dμynk* . . . *dμj,lt
and dμyije is the distribution of the transfer matrix with potentials, not having any of the distinguished indices, fixed. Let, for notational convenience, xj∙ := x> ∙⅛ ∙> j = 1> ∙ ■ . , 1. Corollary 3.1 then says, that for yε B,

(*)ndμy = G (g,y)dg
where dg is the Haar measure on G. Locally

dg = S(x) dx,
where S is Co° and S ≠ 0 and thus, again locally,

G(g,y) dg = S(x) Jÿ1 ( x) F ( ≠y1 (x) ) dx , (3.7)
where Jy is the Jacobian determinant of the diffeomorphism ψy and F is the jointdistribution of the x. .
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We would like to see that for each yε θ(δ,y) sθme Sobolev space Lα, andthat ' II G(g,y) ∣Lp d∕7(y) < ∞∙

J

It will be sufficient, since S is Co°, to prove that Jp1 Fo V√is in some Sobolev space on R,, with II Jv1 Fo II p dη(y) < ∞∙
J L'a

Taking full derivatives with respect to any of the xs∙ of J,j1 Fo ψyl, will result in an additional Jp1 factor, which we might not be able to control. Taking fractional derivatives should correspond to an additional fractional factor of Jÿ1, which is for small fractions integrable, since Jy is polynomial. This is the reason why we only take fractional derivatives of (*)ndμ, which we will later on add up by convolving in n-foldchunks.
Lemma 3.3:
For A C R, arid compact, χ& ^ie indicator function of A, there exists some t > 0, 
such that

×A Jyt(x) llι dη{y) < M

for some constant M. The 1-norm is on R,.
Note: The t in the Lemma above is the same for all E.
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proof: Jy is polynomial in x and y, if yε B. Then, for fixed yε B, t sufficiently small

I I *a dx I ≤ ≠ (y),
where dx = dx1 . . dxn and φ is the reciprocal of a polynomial in y.To see this, we note that, in general, also for y£ B, Jy = ö(y) β(×,y), both à and β polynomial and there exists no y0 such that β(x,y0) = 0 in x. It is then not hard tosee that

I I XA ~ß t dxl ≤ c,

where c only depends on the support of dη and on A.It follows then readily that φ (y) = c α~i(y). The last step to reach the statement is then provided by our condition on dη. □

Remark: For yε B, ∣ ∂i ≠y1 ∣ ≤ c ( 1+ ∣≠y1∣d ) Jÿ1, d = 12. (3.8)This follows from the fact that the inverse of the Jacobian matrix is a polynomial of the Jacobian matrix, divided by the Jacobian determinant.
We are now going to use interpolation to see that G(g,y) is in some fractional Sobolev space, if F is.
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Definition:
Xo := L1 (dx)

X1 := { Fε L1 (<fa), ∫ ∣∣ V, [^1(x) Fo≠^1(ι)] ∣∣p dη(y) < ∞ },

where p is given in the context and the spaces are endowed with the obvious norms.

Denote, for a > 0, by L« the usual Sobolev space on Ri, with k specified in the αcontext, i.e., Fε L» iff (l+∣t∣2)2 Fε L,, q the dual index to p.Define for yε B the maps
Ty : F → J^1 Fo ≠p1, where F is some function on R,. Then,

Lemma 3.4:(i) For all yε B, Ty : Xo → L1 (dx ) and J ∣∣ Ty F ∣∣1 dη(y) < ∞ 
for Fε Xq.(π) For all yε B, Ty : X1 → .hf (<⅛ ) and J ∣∣ Ty F ∣∣^p dη(y) < ∞

for Fε X1

proof: Both statements follow immediately from the definition of Xo and X1.Indeed, if Xo y := Tÿ1 ( L1) and X1 y := Tÿ1 ( Lf), then each f in Xi, i = 0,1, corresponds to some f in Xi y, such that
IIf llχ. = JII f llχ. df∕(y)∙ α

ι ^i t,y

If F is in some fractional Sobolev space on R, and has compact support, we can use
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Lemma 3.3 to see that F will be in some of the interpolation spaces ( Xo, X1)t, which we are going to identify next. We will then be able to use Calderon’s interpolation theorem to show that our density G(y,g) is in some fractional Sobolev space. Before we identify the interpolation spaces, we state one result of Calderon, which will beuseful to us.Let us remark first that an interpolation pair ( Bo, B1) is a pair of Banach spaces Bo, B1, continuously embedded in a topological vector space V.
Proposition 3.1: ( Calderon [1] )
If ( Bo, B1) and ( Co, C1) are two interpolation pairs and L is a bounded, linear map 
from Bo ∩ Bl to Co ∩ C1 for i = 0, 1 , then L is a bounded, linear map from, 
( Bo, B1)t =: Bt to Ct := (C0, C1)t .
In particular, if L is invertible and L Bi = Ci for i = 0, 1, then L Bt = Ct.

Lemma 3.5:
( Xo, X1 )i = { Fε L1( dx), TyFε Lptt for yε B and

∫ II Ty F H pt dη (y) < ∞ }

where = (l-t) + t -p∙
proof: The integrability with respect to dη remains for all interpolation spaces, so it suffices to show that for each yε B, { Ty Fε LPt } are the interpolation spaces for { Ts, Fε L1 } and { Ty Fε Lf }For yε B, Ty is an invertible map, with bounded inverse on the following spaces: Ty1 L1 =: Xo and Ty1 Lf =: Xly. Therefore, by Proposition 3.1, the interpolation
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spaces for the just defined spaces arext,jz = Tÿ1 lΓ , since = ( L1, L[), ( see, e.g., Taylor [1]). □
Note: Lo C holds for r > 1 and β<a as long as 1-∣ < (α - /?) ‡.For the following, we are going to fix /?, r such that this relation holds for the achosen in Theorem 1.
Lemma 3.6:
There exists t > 0, such that for Fε La C Lβ, with supp F C K, K compact 

Fε Xt.

tproof: For t < β, g ( λ) := ( l + ∣λ∣2)2 F ( λ) with gε Lr , supp g compact and

For fixed yε B,I ∂i V F( V√ ) I ≤ I (∂,∙Jp1) Fo ≠-1 I + I J-1 3,.≠-1 (V F)o |≤ I (0,Jy) Jÿ2 Fo ≠-1 J + J J-1 (l+∣≠-1∣ d) J-1 (VF)o V√ I ≤ I (l+(≠-1 ∣d) J"2 Fo ≠y1∣ + I (l+[≠F1∣d) Jÿ2 (VF)o I
The product of the gradient of F and the derivative of ≠p1 in the first inequality is the inner product, the second inequality follows by (3.8).Integrating with respect to dx and doing a change of variables, we obtain for fixed yε B:II V Ty F ∣∣p ≤ H (l+∣x∣d) Jy~2+* F ∣∣p + H (l+∣x∣d) Jy~2+* VF ∣∣p (3.9)
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If we let the operator S(z) be defined by
( S(z) F )^ (u) = (l+∣u∣2 )i F(u),

we can use interpolation between the spaces { F, S(l) Fε a 1 Lp } =: Y1, where _2+ia = (l-(-∣x∣d) Jy p and { F, S(0) Fε L1 } = L1 = : Yo again to conclude thatYt = { F, S(t) Fε a"t Lp* }and therefore, Fε Xι is implied by
-2+l∕[ (1+∣X∣*) Jy p(x)] pi drç (y) < ∞ (3.10)

Set ⅛ = § + 1r for some s, and adjust p accordingly. Then
(3.10) ≤ I H [ (l+∣χ∣d) jΓ2+p (x) 1 ts

isupp y(x) 111 II g Hr dτ)(y)
≤ c Π g ∣∣r ≤ c ∣∣ F 11 τ r, where the second to last inequality holds for small t byLemma 3.3 □
We have now reached our goal, which follows in two ways after:
Lemma 3.7:
The norms on Xo and X1 are consistent on X1.
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proof: We have to show, that if fnε Xo with ∣∣ fn ∣∣γ → 0 and fn is Cauchy in the X1

λ-onorm, then ∣∣ f∏ ∣∣χ → 0 and vice versa.Clearly, for fε X1, II f ∣∣γ ≤ ∣∣ f ∣∣γ , so if ∣∣ fn ∣∣γ → 0, then also ∣∣ f„ ∣∣γ → 0. IfΛ∙o Λ,1 Λ1 Λqfn is Cauchy in the X1 norm and ∣∣ fn ∣∣γ -→ 0, then there exists f such that
λ-oII fn - f ∣∣χ → 0. But then ∣∣ f„ - f ∣∣χθ → 0, so f = 0. □

Corollary 3.2:
For all yε B,

Ty∙. ( Xo, X1 )i → Lptt

and II Ty F τpt drι(y') < ∞,

where (X0, Λ1)t are the interpolation spaces of Xo and X1, d. = (l-i) + t ∣ and 
Fε Xt.

proof: This is an immediate consequence of Lemma 3.5 or the Calderon- interpolation theorem ( see, e.g., Reed- Simon [2] , p.37 ). □
Remark: It follows from the proof of Lemma 3.6, that for supp F C KIl F ∣∣χ ≤ c II F 11y r (3.11)

^t l~>0

Lemma 3.6, combined with Corollary 3.2, tells us that for yε B, F the distribution of the “top surface” potentials x1, . . ,xn
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Tÿ F = Jp1 Fo ψyiε LS for some a > 0, p > 1.

ThereforeAlso, since (*)ndμyε La locally for the same a, p.Il Tÿ F ∣∣lp = Il F ∣∣χ^ ≤ c0 δ(y)-α || F
ί II (*)n dμy llτ p dΙ (y) ≤ c11| f ∣∣t rj ta i-,β

we see that

for some c1 by the condition on d77.
Since also, ∣∣ (*)n dμy dp(y) ∣∣p ≤ ∣∣ (*)" dμy ∣∣ p dp(y)

J L'a J L'a(using Jensen’s inequality), where derivatives are with respect to x only,we conclude
Corollary 3.3:
If Fε Lβ, with supp F C K, K compact, then

(*)ndμε La locally and

II (*) dμ H .p ≤ c II F II rr 
La ljl3

for some a >0 and p > 1 and constant c.

Note: The a and p of the last Corollary are different from before. Here α≤,5 and p = (l-α) -)- (l-α) p ∙ Also, a and p are the same for all E, c depends on E.
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§4 SMOOTHNESS OF THE INVARIANT MEASURE
The goal of this section is to show that for given k, there exists an 1, depending on k, such that (*) d./Zj£ is a finite signed measure of bounded total variation. Fromthis we will be able to conclude that d∕∕g is smooth in L°0(M)* , which proves Theorem 1 through Corollary 2.2. For simplicity, let n = dim G.
First we will need several results about Sobolev spaces on G. To define those, we are going to follow Simon - Taylor [1] and define the Laplace operator in the followingway:Let ls and τg denote left translation by g'1 and right translation by g respectively, i.e., l3(h) = g^1h , ra(h) = hg and acting on functions: 13 F (h) = F(lih), τg F (h) = F(r5h). A vector field is called left, right invariant, if it commutes with li, ι∙g respectively. Let X1, . . . ,Xn be a basis of Ge, the tangent space at the origin. Let ( Xi )i be the unique set of left invariant vector fields with X,· (e) = Xi.Then define Δ, := ∑ X12 (4.1)! = 1
The same procedure can be used with right translation to obtain right invariantvector fields and to define Ar­
if d0 is any Riemannian metric on G, there exists a unique left invariant metric d, on
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G that coincides with d0 at the identity, obtained by setting di ( X,X) = d0 ( X,X) V vector fields X,where X is the unique left invariant vector field with X (e) — X (e). Then d, ( X(e),X(e) ) = d0 ( X(e),X(e) ) = d, ( X(e),X(e) )and d, ( dlsX, dlsX ) = d0 ( X,X ) = d, ( X,X ),so di is the desired left invariant metric.
If d0 is the metric under which (X,)i is an orthonormal basis of Ge, ∆∣ is the Laplace operator associated to di. Similarly, we can find a unique right invariant metric dr, such that ∆r is the Laplace operator associated to dr.
It was proven in Strichartz [1], that the Laplace operator is essentially selfadjoint on C“(G) if the underlying metric is complete. That we also have this property followsfrom
Lemma 4.1:
The metrics dl, dr are complete.

proof: For g,hε G, disti (g,h)= inf { L(γ) = length of γ in d,, γ: g→ h }= inf { L(g'1γ), g_1y: e -→ g~1h }= dist, (e,g-1h)and the goedesics run for the same time, from where it follows that d, is geodesically
□complete. The argument for dr is identical.
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Lemma 4.2:
If Φ(p) = g 1, then Δ# Φ = Φ Δ^, where # = I or r.

proof: If γ is the geodesic between e and g with γ(0) = e and 7(l) — g then 7 := g-17(l-t) is the geodesic between e and g-1, from where it follows that Φ is an isometrie. Therefor Φ commutes with Δ# , ( see e.g. Helgason [1], p.246). □
After this preparation, we define Sobolev spaces on G the same way as on Rn, namely _aas the image of Lp- spaces under the action of the Bessel potential ( 1- Δ )
Definition:(i) For l<p<∞, α>0, Lp is the set of all Fε Lp such that

F = ( 1- Δ, ) 2 G for some Ge Lp, with norm

Il F !∣ p = « G lip-La
(ii) For a < 0, set Lga := ( i-«)*, where ∣ + ∣ = 1
(iii) H, := L2s

Remarks: (i) Integrations are with respect to Haar measure on G.(ii) The LS- norm will differ if we take ∆r instead of Δ,,
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however, no problems occur, if we stay in compact regions, see below.

Lemma 4.3:(t) If F has support in a fixed compact, Fε Lp iff Fε La ( Rn) in a local coordinate 
system about each point.(Z2') Ifdμ(g) = F(g) dg, dμε Lp iff Fε Lpa

proof: (i) This follows immediately from the fact that on R", Lp is the image of Lp 
aunder the action of the Bessel potential (l-∆)2and

Δ, = X- = ]>2(52 ∂^-)2 locally,where the atfc are Co°,
i k

lLS(Rn)
by exploiting a partition of unity. Therefore, since the aijfe are bounded on theo∙compact support of F, ∣∣ ( 1- Δ, )2 F ∣∣p and ∣∣ F ∣∣τ p^lonλ are equivalent norms for all F with support in a fixed compact.
(ii) is obvious.
Lemma 4.4:
On fixed compacts, the norms

II (1- ∆r)2 F ∣∣p, l( 1-Δ, )2 F∣∣p,
a-β( l-∆r ) 2 F∣∣ p,

Lß

β a — ß∣(1 - ∆r )2 (1 - Δ,) 2 F
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are equivalent for a>β>O.

proof: Again,∆r = 5Z(5Σ bi⅛ aT^)2 ’ lθcally, where all bijfc are Co°. i k fc

Thus, it follows from the proof of Lemma 4.3, that for F with support in a fixedcompact II ( 1 - ∆r )f F ∣∣p ≤ c0 II F ||LS(Rn) ≤ C1 II ( 1 - ∆,)f F ∣∣p
and a similiar statement with Δ, and ∆r interchanged. The statement for the other two norms follows the same way, using the additivity of the Bessel potential in the powers on Rn. □
We will have to use the equivalence of the norms in Lemma 4.4 to show thatconvolution is smoothening. It is for that reason, that we restrict everything to compact domains.
Next we will see how much smoothness is lost by taking E- derivatives of the measure d//E:
Lemma 4.5:

⅛ dμpε H, ∀ s < -2 - k.
∂Ek b 2
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proof: Since dμ^, and all E- derivatives of dμg> have compact support, it is enough to operate locally. Then, for Gε C§° ( U), U some coordinate neighborhood

∂k
∂Εk

Gd⅛ I ≤c0 £ H Dα G ∣∣co ≤ c1 H ( 1 + ∣t∣2)2 G(t)∣α∣<⅛ (4∙2)
by Hausdorff- Young. Then,

k + s(4.2) ≤ c1 II ( 1 + ∣t∣ ) ∣∣2 H ( 1 -(- ∣t∣ ) G (t) ∣∣2
< c9 H G Ή-, if k+s < - 3, or s< - S - k 0

For the convolution to have a smoothing character, it will be necessary to pull the Laplace operator into the convolution. To illustrate how this can be done and where Lemma 4.4 comes into play, let us recall that for F,Gε L1, the convolution is defined by F * G ( g ) = ∫ F( gh~1) G ( h) dh
= I F ( h) G ( h-1g) dh (4.3)

since the Haar measure dh is invariant under h -→ h-1. These equations can also bewritten as (rh-ι F( g) ) G ( h) dhF * G ( g) =
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= ∫ F ( h) ( lft G ( g) ) dh (4.4)

Therefore, since Δ,, ∆r are left-, right- invariant respectively, for F,Gε Cgo
α a( 1 - ∆r )2 ( F * G ) = ( ( 1 - ∆r )2 F ) * G
α a( 1 - Δ, )2 ( F * G ) = F * ( ( 1 - ∆i)2 G ) (4.5)

As we are going tö take E- derivatives of convolutions of the measure d∕Zg, it will benecessary, having Lemma 4.5 in mind, to have convolutions of distributions in (J Hi, 
swhere the union goes over all sε R, defined.Noting that

I F1 ( g) F2 * F3 ( g) dg = ∫∫ F1( g) F2( gh-1) F3( h) dg dh
= ∣F2*F1(g) F3( g) dg and also, using the second relation of (4.3)
= j Fι*F3(g)F2(g)dg, where F ( g) := F ( g-1) (4.6)
we can define the convolution of a compactly supported distribution T with a C“function F by (F*T)(G)=T(F*G)and (T*F)(G) = T(G*F),which allows us to define the convolution of any compactly supported distributions
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S,T by S*T(F) = T(S*F), Fε C“, where S ( F) = S ( F).
Remarks :(i) If T is a compactly supported distribution, Fε C”, then T * F and F * T are in Cfjo.(ii) If dμ1 = F1 dg and dμ2 = F2 dg, then dμ1 * dμ2 = ( F1*F2) dg.(iii) H F II p = Il F || p follows from Lemma 4.2.

Lemma 4.6:
If dμ = F dg, supp F compact, Fε L,, 0 < s < 1, then

dμ * G H s+t ≤ c H dμ || p ∣∣ G ∣∣ t if supp G compact, 
n Ls η

i.e. convolution with dμ defines a bounded map from Htc to Hsc+t, V t, where 
Htc := { Gε H t, supp G compact}.

proof: dμ * G = F * G dg and ∣∣ dμ ∣∣ p = ∣∣ F ∣∣ p , so this is just Theorem A.2.2 L5 Ljof Simon-Taylor [1]. □
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Lemma 4.7:
For arbitrary s,t and compactly supported Fε H, , Gε Ht'.

II i,* G∣∣7r+t ≤ c∣∣ F∖∖∏, II G∖∖∏t

i.e. convolution by compactly supported Hi distributions defines a bounded map 
Hl: Htc → Hic+t V s,t

proof: This is Theorem A.2.3 of Simon-Taylor [1]. □
These two results will enable us to see, that taking E- derivatives up to a given order k of (*)idμg, with 1 large and depending on k, will give us a well behaved distribution, namely a signed measure with a compactly supported C1 density.
Lemma 4.8:
For given k,s > 0, there exists an I such that

-Q—. (*}ldμπ ε H3 Vi < k . 
∂Ff l

proof: We know from section 3 thatFor any 1 > 2: (*)ndμj,ε L⅞ for some α > 0 and p > 1.
∕-ι √-J-l⅛(*)'d^E - Σ (*∕d∕zE * )⅛d^E (*) J d^E
7 = 0

(4∙8)
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ηBy Lemma 4.5, decreases the Hôlder index by at most ∣ + 1. If j < n, the firstfactor in (4.7) may not give any smoothness, but the Hôlder index will be decreasedby at most (n-l) 2 by those j factors, thus the first (j + l) factors in the sum of (4.8) 2decrease the Hôlder index by at most (n-l)2+≈+l = + 1. Therefore, by adding upthe worst case scenario for the Hôlder indices,

^g(*)Z d∕⅛ε Hs if 1 > δ(s+⅞^ +1 )+n+1.
For higher order derivatives, repeat this argument for the inividual terms in the sumands of (4.8) to conclude the statement. □
Corollary 4.1:
For given k and s, there exists I, large enough, such that

(*)'⅛ze,( g) = Gi( g,E) dg i = 1, . . . ,k

with Giε C,o

proof: By the previous Lemma there exists an 1 such that
⅛ (∙)'d⅛≈ hs÷, , V i ≤ k.

Thus -^(*),dpτr( g) = Gi ( g,E) dg , i≤k, with Giε H„ by Lemma 4.3 (ii) . By <9E, r^j 2+,
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Sobolev’s Lemma, the Gi are Cs- functions in the usual sense. □

Corollary 4.2:
has a unique invariant measure dvon M.

proof: Take 1 such that (*),d∕√g(g) = G^(g)dg, with G a C1 function. It follows from Furstenberg’s theorem, that (*)idpg has a unique invariant measure. Thus dμg has a unique invariant measure. □
This last result will enable us to view the 1- fold convolution of dμ~g as a differentiable, (in E), operator on the dual space of C( M), the set of continuous functions on M, which is a Banach space under the ∣∣ ∙ ∣∣∞ - norm, as M is compact. The order of differentiability will depend on 1.

The set C( M)* is just the set of finite signed measures on M ( Riesz- Markov theorem). Let now Tg: C( M)* → C( M)* be defined by
Tgdi∕ := dpg * dι∕.

Tg defines clearly a bounded operator on C( M)*.
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Lemma 4.9:
Trj^ is a compact operator on C( M)*, V E.

proof: We know that (*)nd∕∕^( g) = G( g,E) dg =: dμj^. xε M can be identified with a coset k a n H = k H, with kε 3G, aεΛ, nεJf ( see Lemma 2.2). For gε G, gx is the the coset g k H = k( g,x) û( g,x) H = k( g,x) H with uniquely determined kε 3G and Qε -AN. The Haar measure dg on G can be written as dg = dk diu where dk is the Haar measure on 3G and diu is the left- invariant measure on .AN (see Helgason [1], p.94). Therefor we have for fε C( M)
( Te )*f W = f( Sx) d∕iE^ S) = f( gx) G( g,E) dg

= I f( k H) G ( k ü k-1) di0 dk
G( kQk~1) d,0^ f(kH) dk

so ( ^E )* ^las, w∙bθ∙g∙, a bounded integral kernel with a compact space as its domain and is therefor compact ( Reed- Simon [1], Thm. VI.23 ). Thus Tg is compact. 0
Because the integrand in (2.9) is not in C( M) but in Lo°( M), we will restrict Tg to the dual of Loo( M). Læ( M)* is the set of all signed measures with bounded total variation. In particular Loo( M)* is contained in C( M)*. Since Tg is convolution by a probability measure, Tg maps Loo( M)* into itself.
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Corollary 4.3:T"g> restricted to Loo( M)* has 1 as an isolated eigenvalue.

proof: It follows from Corollary 2.1 and the remark at the end of section 2, that Tg has eigenvalue 1 if restricted to L°o( M)*, since dι∕g is a probability measure and therefor in Lco( M)*. If 1 would not be an isolated eigenvalue, it wouldn’t be isolated for Tg on C(M)*, as Lo°( M)* is contained in C( M)*, contradicting Lemma 4.9. □
If we want to conclude smoothness in E for dz∕g, which will be done by showing smoothness of the eigenprojections, we will have to show that the eigenvalue 1 has geometric and algebraic multiplicity one on Lo°( M)*. So far we only know there is a unique normalized positive functional that is an eigenvector for 1.
Lemma 4.10 :(ι) The geometric multiplicity of 1 is one, i. e., dug is the unique normalized 
eigenvector for 1 in Lao( Λf)*.
(«) The algebraic multiplicity of 1 as an eigenvalue of Tn̂ is one.

proof: (i) due Loo( M)* has a unique Jordan decomposition du = du+ — du-, where 
du+ ,du- are both finite positive measures. If TE du = dz,, then Te du = Tg du+ — Tg du- = ( Tg du )+ — ( Tg du )- .Because of the uniqueness of the decomposition and the fact that Tg applied to a



-54-
positive measure will give a positive measure, we have

Tg dp+ = dp+ = c+ di/j£ and dp- = dp- = c- dp^for positive constants c+, c-.Therefor dp = ( c+ — c-) dp^, so dp equals dpg after normalizing.(ii) Loo( M)* = F + N, the topological direct sum of a closed F and a finite dimensional N, such that T∣, leaves F and N invariant (Dieudonné [1], Thm. 11.4.1 ). If the algebraic multiplicity of 1 is k, k is the smallest integer such that ( Tj, - 1 )fc restricted to N is 0 and ( Tj^ - 1 )t^^1 N = E (1), where E (1) is the eigenspace of 1. This means in this case, if k > 1, that there is a dηε Lo°( M)* ( actually in ( Tg - 1 )fc-2 N 3 E (1) ) with Tg dη - d77 = c dpg , for some constant c≠0. But ∫ Tg dη - dη = 0 ≠ ∫ c dp^> , so the statement follows. □
For given k, it follows from Corollary 4.1 that for 1 large enoughg∣√(*)id∕⅛( S) = θi ( g,E) dg with Giε Co in g for i ≤ k. Convolution with thesesigned measures map L00( M)* into itself. Therefor Tg is Ck in E as an operator onLoo( M)* with Tιg the convolution by G,∙ ( g,E) dg for i ≤ k.$E
Lemma 4.11:dp£r is Cx in E as an element of Lco( M)*.

proof: For given k, Tg is Ck in E for 1 large enough and therefor
P ·— —rE-- 2τri R ( ξ, E ) dξ

is Ck in E, where F is a circle around 1, only containing this one spectral point of T E
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and R ( ξ, E ) = ( Tg - ξ )-1, which is bounded for ξε Γ and Ci in E. Pg is the projection onto the subspace N of the last Lemma, so onto the eigenspace of 1, which is spanned by dr,g. Therefor dpg is Ck in E as an element of Loo( M)*. Since k was arbitrary and the final conclusion is independent of 1, the statement follows. □
This finally allows us to employ Corollary 2.2 to conclude the proof of Theorem 1.
As we mentioned in the introduction, we also get a localisation result. This is a consequence of Lemma 3.1, for the case where xijfe = ck , iε IL and kε {1, . . ,m}d with k(d) < m and x1∙jb, i and k as before, just k(d) = m, are i.i.d. random variables with absolutely continuous distribution. This follows from the positivity of the smallest Lyapunov exponent associated to the transfer matrices, which is true if acertain number of convolutions of the measure on the transfer matrices is absolutelycontinuous with respect to Haar measure on G.More precisely, since 1°g II g II <Wg) < ∞>it follows from Oseledec’s theorem, ( see e.g. Walters [1] ), that there are, for almostall ω, real numbers γ1, . . . ,γ d, numbered in increasing order, with γf∙ = - γ d

2m 2m — t + land a sequence of subspaces Wi, i = 1, . . . ,2md of R2m with W,∙ C Wt∙+1, W d =
2mR2m , such that for uε Wi+1 ∖ W,∙lim ⅛ log H g„ . . g0 u H = γ ∙ n —> ∞and Wi+1 = Wi iff yi = γ,∙+1.The γ,∙ depend on E.
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The following result, extracted out of different works on the asymptotic behaviour ofproducts of random matrices, will enable us, supplemented by Lemma 3.1, to obtainlocalisation for our special case.

Proposition 4.1: ( see Furstenberg [1], Bougerol - Lacriox [1], Delyon et al. [1], Guivarc’h - Raugi [1], Sazanov - Tutubalin [1] )(z) If there exists an integer n, such that (*)ndμc has a Co- density with respect to 
Haar measure on G, then all Lyapunov exponents are different.

(ii) If γ d ≠ 0, for all E, Hu has almost surely pure point spectrum with
m

exponentially decaying eigenfunctions. The rate of this decay is given by ∣γ d∣.
m

The consequence of Lemma 3.1 is that the condition of part (i) is satisfied for some n,since the distribution of gn . . g1 is just the push forward of the distribution 
d_ d-1F(x d-1) . . F(x1) dx1 . . dx d-1 under ≠c, for any cε R,n m . Therefore, we m mconclude that γ d ≠ 0 , for all E, in this case and the conclusion of part (ii) hold in 

mour case.



-57-§5 A PROOF OF THEOREM 2§5.1 Part (iii):The main part of the proof of (iii) of Theorem 2 is the “construction” of Lemma 3.2 . Denote for simplicity the top potential in gn by xn, the bottom potential by bn. Since the measure on the b,∙,s is now pure point, but the result of Corollary 3.1 is only true a.e. in the b,∙,s, we need to prove that for all realizations of b-variables, the map ≠i,(x) defined in Corollary 3.1 has maximal rank a.e. in x. For this we will need more than 10 = dim Sp(2) convolutions; to be precise, our proof uses 58. After this, the result follows essentially from the corresponding results of Section 3. Again, for any n andfixed E, (*)ndp drç(b) (*)ndμ6 , with the notation as in Section 3
= ∑ ci (*Γ<lμbw

where the sum goes over all 2n possible Bernoulli states (b1, . . ,bn) and cb are the corresponding probabilistic weights.Therefor, if we can show that the result of Corollary 3.1 holds for some n for all b anda.e. X, we can employ all the results thereafter to obtain Theorem 2.
Lemma 5.1:
There exists an integer n such that for each realization of (bi, . . . ,bn), the map ψb 
has maximal rank at a.e. point.Note: This also implies the same statement for (E-b1, . . , E-bn) for all values of the (bi) and all E. For that reason, we don’t have to consider the E-dependence anymore,all conclusions are valid for all E.
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We will postpone the proof of this result for a while.
It follows from this Lemma that for each realization of (b1, . . ,bn), there exists a set of indices i1, . . ,ii0 such that

( ∂ik ψb)k k = 1, . . . ,10is an independent set for a.e. xε Rn. We will now fix the xi,s with i£ {ii . . ,ii } and go through the same considerations as in Section 3. Denote the map resulting from keeping b and all the xf, i£ {i,ι, . . ,ii } fixed by ≠i,= R1° → G. Then
Corollary 5.1:
For all bε R" and a.e. xε Rn~1° where x = (x)i with indices i restricted as above, the 

map ψb is a diffeomorphism for a.e. (x,1, . . >2r>10)∙
Note: We fix bε Rn first. The distinguished index set then depends on b.
proof: The argument is identical to the one in the proof of Corollary 3.1. □
We can write: (*)"dμi, = I dF(x) (*)nd∕2ι, (5.1)
where dμi is the measure on the transfer matrices with xi fixed, i as above, and dF is the joint distribution of those variables xi, with dF = Fn^10dx.This is of the same form as the measure described in (3.6) with dF in place of dη. Locally (*)nd∕ij = S(x) 5δ1(x) Fo≠i1(x)
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where Ji = det Dψb and x — (x,∙ , . . ,χi10)∙Since dF satisfies (Cl), the exact same arguments as in Section 3 apply now to (5.1) for each b and a.e. x (the x now takes the role of the y in Section 3 for the proofs)and we can conclude
Corollary 5.2:(z) (*)ndμi,ε La for some α>0, p>l and for all b(π) For all E, (*)ndμε La for some α>0, p>l
Since also all the results of Section 4 apply, we conclude Theorem 2, part (iii).
Let us now turn to the proof of Lemma 5.1. The strategy will be to showconstructively that Y11+Y124-Y22 anc^ Y11^Y12+Y22 with the notation as in Section 2,are contained in3l~ < Y11, ∙ ∙ » Ydil 1 . gn Y11 > for some n,
from where we conclude that all Yi,∙ε 21. Then we do the same with the X,∙ and finally, we show that all Z, are in 21, which means 21 = ©, the desired result. We need to do some preliminary work:
Let us first note some useful facts for computations:
If gε G, g = A B , then g 1 = ^Dτ-Bτ^C D -CτAτ (5.2)
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-BτE11A -BτE11B AτE11A AτE11B (5.3)

In proofing Lemma 5.1 the way we outlined it, we have to show that equations of the form Adj∣ Y11 = X with H a product of transfer matrices are solvable in H for certain Xε ©. The next four results prepare for this.
Lemma 5.2:
If g = g4 . . g1, then the first row of g consists of 4 independent polynomials in the 
xi's for all bi, i — 1, . . ,4.
proof: Let p1, . . ,p4 denote the entries of the first row of g. If for ai not all 0, 
∑ai p,∙ ≡ 0 in X then a1 = 0, since it is the only factor of x1 . .x4.Also:X1X2X3(a2-a3)+xl(a2b3b4-a2'a4b3) + Xlx2(û!2b4-Q!4)-Q2t,4 + a2':,2'33^)4_a2t)2 + û;4 -α4-α4b2b3 = 0,from where ai = 0 for all i follows by comparing coefficients, independent of the b,∙. □
Lemma 5.3:
For constant ai, i — 1, . . ,4 with α1≠ 0, let, for g = g4 . .gl, 

qk := Σ ai ? i∙e., a weighted row sum.

Then the qk are independent polynomials in the xi, for all bi.
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proof: The argument is the same as above, just comparing coefficients.
Note: It also follows easily that any nontrivial linear combination of the q1∙,s defined above is nonconstant in the xt∙ for all bi.
Corollary 5.3:
Let H be a product of transfer matrices with the sum of the 3rd and 4th column equal 
to (α1, . . ,a4)τ and a1 ≠ 0. Then, the entries of the sum of the 3rd and 4th row of 
gH, with g as before, are independent polynomials in the xi for all bi.

proof: Noting that the i-th entry in the sum of the 3rd and 4th row of gH is given by 
a1 g(i,l) + . . + a4 g(i,4), this follows from Lemma 5.3. □
Corollary 5.4:
Let g, H be as above. Any given nontrivial linear combination of the entries of the 
sum of the 3rd and 4th row of gH is nonconstant in the xi independent of the bi.

proof: This follows from the Note after Lemma 5.3 and the specific form of the entriesgiven in the previous proof. □
We are now in the position to build up © by going to higher and higher products oftransfer matrices.
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Lemma 5.4:
Given H, a product of transfer matrices, with #(3+4,1) ≠ 0, where #(3+4,1) denotes 
the first entry of the sum of rows 3 and 4 of H.

Then there exist gi, i = 1, . . ,8 such that for g = g8 . . g-i

Yo := yιl+y12+y22 = AdffYn = H~1g-1YngH

The b-values in both H and g are arbitrary.

A B C Dproof: Let H = and assume for Yo that
Adg_x Yo — Y11, (5∙4)

from where we will solve backwards for H. Then we will show that we can solve forgH = H from where the statement follows. (5.4) leads to the conditions
B(l,l)+B(l,2) = 0, B(2,l)+B(2,2) = 0 D(l,l)+D(l,2) = 1, D(2,l)+D(2,2) = 0

which means that the sum of the 3rd and 4th row of H = (0,0,l,0)τ. Solving then for H = gH leads to
(g6 ∙ ∙ SiH)(3+4,∙) = (g8g7) 1 (0,0,l,0)τ = 3rd row of (g8g7) 1 = (-x7,-l,-x7x8,-x7-b8) (5∙5)
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Set Ho := g4 . . gιH. Then
(g6g5H0)(3+4,.) =

χ5χ6h1+(χ5+b6)h2-χ5h3-hθχ6hi+b5hi+b5b6h^-b5h5χ6 h?+h^-h  ̂hθ+b6h2-h4
where the h ∙ are the entries of H0(3+4,∙). Setting (5.4) equal to (5.5) yields

-l-b5hC-b5b6h2+h^+b5h^h? bg-bgh^ + hi+bghj-l-b5h?-b5b6h^+h£+b5h°+h£-h(

(5∙6)

-(h? + b6h’-h° )-b8) — ^⅜ ( x6b° + h2-h3) (5.7)
From Corollary 5.3, we can conclude that all the denominators in (5.6) are nonzero at appropriate χ1, . . ,χ4 for given b-values. □
Remark: If g = g4 . . g1, the first row of g is a set of independent polynomials in the χ1∙ by Lemma 5.2. If H is any product of transfer matrices, (gH) (3±4,1) is a nontrivial linear combination of the first row entries of g, and so nonzero for an appropriate choice of χl∙, i = 1, . . ,4.
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Whenever a condition like H(3±4,l)≠ 0 is required, we will multiply H by an appropriate g to satisfy this condition. The same is valid for the sum or difference ofrows 1 and 2.
Lemma 5.5:
Given H, a product of transfer matrices with ∕f(3-4,l) ≠ 0, there exist, for any given 
set of b-values, gi, . . . ,g8 such thatyιryi2+y22 = λdHg1 . . g8 yn
proof: With a similiar notation as in the previous proof, we have to solve for gH = H with H(3-4,∙) = (0,0,l,0)τ. The proof is then virtually identical. □
Lemma 5.6:
Given H, a product of transfer matrices with ∕f(l±2,l) ≠ 0, there exists, for any 
given set of b-values, g1, . . ,g8 such that⅞ ÷ ^i2 ÷ ^22 — 1^dHg-i . . g8 ^"n

proof: Let Xo := X11 + X12 + X22 and assume that
Adg-i Xo = Y∏∙

This leads to H(l+2,∙) = (0,0,l,0)τ and one can use the same arguments as in the proof of Lemma 5.4 to obtain the result. The case with the 4-, sign is identical. □
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To get the Zi ■ , we need the following
Lemma 5.7:
There exist g1, . . ,g4 such that the top left blocks of Ad3l Y11, . . , Adg -g Y11 
viewed as elements of R4, are independent for any given bl, . . ,b4.

proof: Let x3 = x4 = 0. Then the top left blocks of the prescribed matrices are of the following form ( using (5.3) ):
Ad5l Y11 : Ad5li2 Y110 0 x2x1+x2 x2+b1x2 x2x1 + l x2+b1
Ad0ι02j3 Y11 :

Adsχ52s354 Y11

-x1x2b2 -x1x2b2(b1b2-l)(-xrb2)(b2) (-x1-b2)(b1b2-l)
b2(b3Xι+b3b2 + l) b2(b1b2b3-b1)(b1b2-l)(b3X1 + b2b3 + l) (b1b2-l)(b1b2b3-b1)

Viewing these matrices as R4 - vectors and taking the determinant over those vectors, we see that this determinant depends on x1 and x2 and thus, for any given b1, . . ,b4, these vectors are independent for a.e. x1, . . ,x4. □
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Corollary 5.5:
zki = αι Ad9i V∏ + . . . + α4 Adgι . . g4 Y11 + 5∑αij∙ Yij + ∑ βij Xij

for any given b1, . . ,b4 and suitable choice of x1, . . ,x4, where the a, β,s depend on k

and I.

proof: This follows immediately from Lemma 5.7. □
After this preparation, we can now start with the actual proof.Assume that we are given the values for b1, . . ,b58. We are now going to show that for this choice of b-values and n = 58 that SI = θ.
Assume < Y11, Adi,1 Y11, . . ,Adiχ . .39 Y11 > ≠ © for all x1, . . ,x9.Then :
Step 1:
Xnε < Yn, Adgι Yn, . . ,Adgι . . gk Y11 > = :Slfc, ∀ x1, . . ,xlc, some k < 10.
proof: Let H = g8 . . g1. Then Ad 1 X11 = Y11 leads to the condition:HFirst column of H = (0,0,l,0)τ, which can be handled as in Lemma 5.4. □
Step 2:
For k = 34, Yij , A11 ε 2lfc i,j = 1,2.
proof: From Step 1 we have that X11ε 5ljfe for any k > 9. For an appropriate choice of
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x11, . . ,x14, we know by the remark after Lemma 5.4 that for H = g1 . . g14 theconditions of Lemma 5.4 are satisfied. Therefor we conclude the existence of x’s suchthat Y0ε Sl22. With the same argument, i.e., satisfying the condition of Lemma 5.5 first, we get that Y11 - Y12 + Y22ε ^34, from where we conclude that Y12 andY22ε ^34 □
Step 3:

Xij, Yijε ‰s , ⅛ = 1,2.
proof: Set H = g1 . . g34 and follow the same arguments as before, using Lemma 5.6. □
And finally:
Step 4: SI58 = ©
proof: It remains to show that Zij∙ε Sl58. But this follows from the previous steps and Corollary 5.5. □
Since the choice of b1, . . ,b58 was arbitrary, Lemma 5.1 now follows.
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§5-2 Parts (i), (ii):Let us again denote the potentials with Bernoulli distribution by bii. We will show that the distribution of the (bi⅛) as stated in the Theorem satisfy a condition similiar to (Cl), which suffices to use the proofs in § 3, if we take i = 1, . . , n+l, that is if we take n+1 instead of n products of transfer matrices. Again, we have

(*)n+1d∕z = ∑ ci (*)"+‰(⅛)
with the same notation as in § 5.1.We will show that for each fixed E, Lemma 3.3 is satisfied for a specified map and its Jacobian, from where we conclude the proof by following the same arguments for the proof of Theorem 1, applied to all the individual (*)n+1dμ4. We saw in §3 that there is a distinguished index set I := { (i1,k1), . . , (id,kd) } such that for fixed yik with (i,k)^ I and fixed bijt, ( i = 1, . . ,n ), the map

≠i,,⅛ := g» ∙ ∙ gl
is a diffeomorphism in the index set I - variables x1, . . ,xd and

det D≠yι⅛ = α(b-E) 0(b-E,y-E,x-E)
where a, β are polynomial and there is no bθ = (b°fc) such that β (b0-E,y-E,x-E) ≡ 0 in the x, y variables.
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Let us define the map≠ := gn + l gn ∙ ∙ gl
ψ has maximal rank, if one of the two maps ≠1 := g„ . . g1 , ∙φ2 ∙.= gn+1 . . g2 has maximal rank. Associated to ≠1 and ≠2 are two sets of distinguished indices I1 and I2 such that for fixed yi*, (i,k)^ L and fixed bifc, ≠j y ⅛ is a diffeomorphism a.e. in the ( xi ), iε Is, s = 1, 2. Also,det D≠j y j = as (b-E) β, (b-E,y-E,x-E),where α1(bii) = α2(bi+1 *) for i = 1, . . ,n. Therefor, for fixed E and b, ≠ will have(n+l)(md-m'i''1)maximal rank at a.e. (y,x)ε lv unlessα1(b-E) = α2(b-E) = 0 (5.8)and thus, if for all bε supp dη and E fixed, where dη is the joint distribution of the bijfc with i = 1, . . , n+l, a, (b-E) ≠ 0 for s = 1 or 2, we can use the corresponding ≠s in place of ≠ in § 3 to prove that (*)n+1dμgε L» for some α,p. The statement then follows as before. The same argument can be used for all E.To see that the distributions specified in the statement of the Theorem don’t have any b satisfying (5.8) in its support, let us define

N, (E) ≈ { b I as (b-E) = 0 } , s = 1, 2and N := ∪ { N1(E) ∩ N2(E) }.E
Then N has dimension at most (n+l) (md - md~1) - 1. Since we also know from Lemma 3.1, that the diagonal of R "+ ' ™ J does not meet N, we have dist (0,N)
= e > 0. If bi⅛ has Bernoulli (0,b) distribution with ∣b∣ < e, then supp dη ∩ N = 0, so
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(5.8) cannot be satisfied for any bε supp dτ7. This means that for all E, the map ψ has maximal rank for all b-variables and a.e. in the “top surface,,-variables. For fixed b and any E, det D√>s b is not identical 0 in the (x,y) for s = 1 or 2 and Lemma 3.3 is satisfied with det D≠, y i in place of Jy. So we can use ≠i y i instead of ψy in § 3 and follow the same arguments to conclude that k(E) is a Co° function for this model. Since smoothness of k(E) is invariant under translations of the potential, ( k just gets translated as well ), (i) follows for b0 = e.To prove part (ii), we note that if a particular realization (bi⅛) of the Bernoulli variables is contained in N, it follows from the fact that N is a lower dimensional manifold, that for any given e > 0 and a.e. vector c = (cifc)ε Be, where Be is the ball of radius e around 0 in Rl , (bt∙jfe -(- c1∙jt)^ N. Then the same argument asabove applies, as (5.8) cannot be satisfied for the perturbed potential, which proves part (ii).
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