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ABSTRACT

We investigate smoothness properties of the integrated density of states ( ids )
for random Schroédinger operators on a multidimensional strip lattice, where only the
potentials on the “top surface” of this lattice have a distribution with some regularity.

We view the eigenvalue equation on the strip as the action of an abstract group
on some homogeneous space, from where we derive a representation of the ids in
terms of a distinguished measure on that homogeneous space.

This representation allows us to conclude that using minimal smoothness of the
potential distribution on the “top surface”, combined with a negative moment
condition for the distribution of all other potentials, is enough to obtain smoothness of
the ids. This includes the originél Anderson model.

We also discuss cases, where the distribution of the potentials below the “top

surface” is Bernoulli, satisfying this negative moment condition.
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§1 INTRODUCTION

Let H be the discrete random Schrédinger operator defined on 1>(Z%) by

Hou (n) = > u(m) 4 Vu(n) u(n) n,me Z¢ (1.1)

[In-m{|=1

where { Vu(n), ne Z% } is a family of independent random variables and we will
assume that the potential is bounded, that is, the distribution of the V.(n) has
compact support. It is well known, that H. is a selfadjoint operator and if V. is an
i.i.d. family with distribution dg, that the spectrum is almost surely the set

o(Hw) = [-2d,2d] + supp dp.
In addition, if d=1, the spectrum is pure point with exponentially decaying
eigenfunctions.
We will be interested in random Schrédinger operators on a ‘strip’, that is on 1?(Sm),
where Sm = Z x {1,...,m}¢, a horizontal, (d+1)-dimensional strip of width m. The
reason for studying the strip is that one can observe phenomena not occurring in one
dimension, giving some hints to what might happen in higher dimensions. At the same
time, while techniques to study the higher dimensional case have not yet proven to be
powerful enough to obtain conjectured results, the strip can be studied by one
dimensional techniques.
We are mainly interested in regularity results of the integrated density of

states on the strip, defined below, where we will focus on C® results.



For the finite box A, = ( ne 29, |n;| <1}, let H, ; denote the restriction of H to A,
with Dirichlet boundary conditions. This makes H, ; a [A;] x [A;] matrz.

The integrated density of states , (ids), is defined by

k(E) = lim |A;"" # { of eigenvalues of H, ; < E }. (1.2)

As a consequence of the ergodic theorem, (see e.g. Carmona [1] ), one obtains

Theorem:
For all E, the limit in (1.2) ezists for a.e. w and is independent of the boundary

condition chosen for H,, ;.

If Z¢ is replaced by S, the definition of k (E) remains the same, if the boxes A, cover

the whole width and are horizontaly restrained to -1,. . . ,l.

The ids and in particular regularity properties thereof have been studied extensively in
recent years. One of the first results was Pastur’s proof of the continuity of k in one
dimension ([1]). For arbitrary dimension, Simon-Craig, 1], showed that k is log-
Holder continuous. Other results in higher dimensions had to assume large disorder or
high energies, as the result of Constantinescu, Frohlich and Spencer ,[1], who showed,
in the i.i.d. case, that if the potential distribution has an analytic extension around
the real axis, then s0 does k. More recent results include the proof of Bovier et al.,[1],

showing smoothness of k for a class of potential distributions that includes the



uniform distribution, again at high disorder.

The first C* result for k( E) with minimal regularity assumptions for the distribution
of the potential was obtained by Simon-Taylor, ([1]), in the one dimensional case with
i.i.d potential distribution. The result was later extended by Klein-Speis,([1]), to i.i.d
potential distributions having a Fourier transform with all derivatives bounded and
decaying to 0 at oo.

Recently, Klein - Speis, (K.-S. [1]), proved k(E) to be C°*® on S, ford =1 and i.i.d

potential distributions du having first two moments and satisfying
o
(14 t)?* dip e LY, a>}

While they used a ‘supersymmetric replica trick’ to prove their results, we are going
to follow Simon-Taylor and use the group action approach to obtain regularity
results for the ids. In higher dimensions, it is expected that the ids is smooth for all
i.i.d. potentials, in particular for potentials with a pure point potential, including the
ones for which the one dimensional ids is singular continuous ( Carmona et al., [1] ).

The main object of this thesis is, to not only generalize one dimensional regularity
results for the ids to the multidimensional strip, but also to obtain results that can be
considered as natural “interpolated results” between known facts in one dimension
and conjectured results in higher dimensions. As such a result, we derive smoothness
of the ids by only using minimal regularity of the potentials on the “top surface”,
while the potential below the “top surface” won’t have to satisfy any regularity
conditions. The extension of the one dimensional result in Simon-Taylor, [1], to the

multidimensional strip is a consequence of this. In particular, we investigate what



happens, if the variables below the “top surface” have pure point distribution.

d
For our purpose, it will be convenient to redefine H, as an operator on R™ - vectors,

acting in the following way:
Hou (n) = u(n+1) + u(n-1) + Vu(n) u(n), ne Z (1.3)

d
where u(i)e R™ and

—Wnl id |
id W,, id 0
Vu(n) = (1.4)
0 id
id Wam
where the blocks are symmetric m?~!x m?~! matrices and W,; have again the same

2

structure as in (1.4), just with m?2 x m?%? blocks. The m x m diagonal blocks of

(1.4) are of the form

Vi(n) = ,ne Z,k,e {1,..,m}% i=1,..,m (1.5)

Xni, 1s the potential at site (nk;).

The V,, are just d- dimensional Schrédinger operators, restricted to Am.



For d = 1, i.e., for the 2-dimensional strip, (1.4) takes the form of (1.5).

Associated to (1.3) are, for each energy E, the so called transfer matrices (see more in
§ 2), that are of the form
E-Vu(n) -id

gn(w,E) :=
id 0

where the blocks are m? x m?.

These matrices are elements of the symplectic group Sp(m?), (again, more in § 2).
The condition we require for the potential distribution below the “top surface”, will be
stated in terms of products of transfer matrices. More precisely, consider, for fixed E,

d
the map %: R®™™ — Sp(m¢?) given by

¢(X11,--.,X d)::gn"'gl

nm
where n will be specified later.
We will show in § 3, that 1 is for a.e. fixed realization of the potentials below the “top
surface” a diffeomorphism a.e. in the “top surface” - variables. If ¥. denotes the
restriction of ¥ for such a typical realization of the below-“top surface” variables, then
d-1
Ye : R®™  — Sp(m?) is a diffeomorphism a.e. and the Jacobian determinant will
locally be of the form
"(m‘l)md—l L

det Dy = a(c) B(c,x) ,ce R ,xe R , (1.6)

with @ and 8 polynomial.

For our results, we require the following condition on the distribution of the potentials

below the “top surface”:



(C1) If dn denotes the distribution of the x;;, fori =1, ... ,n and
ke {1,..,m}? with k(d) < m and n = 2m2md+ m? (= dim Sp(m?) ),
then there exists t > 0 such that for all E
J a ' (x-E) dn(x) <

where a is a polynomial in x, given by (1.6)

Theorem 1:

Let z;; for ic Z and je {1, . . ,m}* with j(d) = m, (the top surface variables), be i.i.d.
random variables with distribution F(z)dzr with supp F compact and Fe LY for some
a > 0, LY the usual Sobolev space.

Let z;; for ic Z and je {1, . . ,m}* with j(d) < m, (the variables below the top
surface), be i.i.d. random variables, mutually independent of the top surface variables,
with distribution satisfying (Cl) and having compact support.

Then K E) is a C* function.

Remarks: (i) If the x;;, ie Z, je {1, . . ,m}4, j(d) < m are ii.d. with absolutely
continuous distribution, (Cl‘) is satisfied.

(ii) If the family of all potentials is an i.i.d. family with distribution F(x)dx,
Fe L%, some a > 0, then (C1) is satisfied. In particular, if all potentials have uniform

distribution over some interval, k is C*.

To emphasize that only smoothness on the “top surface” is needed to smoothen the
ids, we are particularly interested in the case when the potentials below the “top

surface” can only take two values a or b with complementary probabilities, i.e., when
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those variables have a Bernoulli (a,b) distribution with Prob (X = a) = p and

Prob (X =b) = 1-p, 0 < p < 1. We have

Theorem 2:

(2) Let the distributions of the “top surface” potentials be as in Theorem 1 and
all potentials independent. If supp F C K for some fired compact K, there exists
by > 0 such that if the variables below the “top surface” have Bernoulli (a,b)
distribution with |b-a| < by, then k(E) is a C™ function.'

(22) Let the distributions of the “top surface” potentials be as in Theorem 1 and
all potentials independent. If the variables below the “top surface” have Bernoulli -

(a,b) distribution, then, for any € > 0 and a.e. vector ¢ = (¢;;)€ B¢, where B, is the

n(md—md_l)
, let Z;, = z;p + ci, t = 1 mod n,

ball of radius ¢ around 0 in R
ke {1, .. m}?, k(d) < m. That is, the revised potential is the former one with an
arbitrarily small periodic perturbation added to it. Then, for the perturbed model,
K(E) is a C function.

(z2) For d = 1, i.e. the 2-dimensional strip, and m = 2, let the distribution of the

“top surface” potentials be as in Theorem 1 and all potentials independent. If the

variables below the “top surface” have Bernoulli (a,b) distribution, k(E) is a C* function.

Remarks: (i) The spectrum of the perturbed operator in part (ii) is pure point.
(ii) Other results that follow easily the same way as (i) and (ii) are for all but finitely
many Bernoulli (a,b), that is for all but finitely many values of |b-a|, and all but

finitely many energies E.



Along the way, we also get a localisation result “for free” in the case where the
potentials are constant along each horizontal line, if the top surface is perturbed by
any i.i.d. random sequence with absolutely continuous distribution on R, that is, if
such a pertubation is added, the spectrum of H,.,., becomes pure point with
exponentially decaying eigenfunctions. We will comment on this at the end of section

4.

For our goal, to show smoothness of the ids, (1.2) is not a very useful expression to
analyze. We will therefore derive a different representation for the ids, which will
relate the smoothness of the ids to smoothness of quantities, that are easier to
analyze. Therefore, we will relate the number of eigenvalues as described in (1.2), with
the number of solutions of a first order recurrence equation for symmetric matrices
(see 1.7 below). Randomizing the initial condition of this recurrence equation and
viewing it as the action of an abstract group G on the symmetric matrices, we obtain
a relation between the ids and a measure dl/E on the set of symmetric matrices,
which will satisfy dpE * dvp = duE for a given measure dup on the group G. First
we will “generate” smoothness by taking convolution powers of dup, using that this
measure has a certain smoothness locally in one variable. By taking higher
convolution powers, we obtain any desired smoothness of those powers. We will then
obtain suitable E-smoothness of dx/E by perturbation theory, from where we
finally conclude the smoothness of the ids.

The setup of this will be done next and in section 2 we outline the group action
approach. The smoothness of the convolution powers of d;zE will be the purpose of

section 3. In section 4, we relate this smoothness to smoothness of the invariant



measure and make the final conclusions for Theorem 1. The proof of Theorem 2 will

be given in section 5.

The following negative eigenvalue theorem allows us to find a representation for k(E)

in terms of quantities which’s studies will be the object of the following sections.

Let U(n) be the square matrix of order md, the j-th column of which is the
solution of
Hou (n) = Evu(n) n=-l,...., 1
with initial conditions u(-1-1) = (0,. . .,0) and u(-l) = (0,. .,1,. .,0), where the one is
in the j-th coordinate.
Then the U(n) satisfy

U(n+1) + U(n-1) + ( Vu(n) - E) Un) =0, n = -L,...,1 (1.7)
If U(n) is invertible, define X(n+1) := U(n+1) U(n)" for n = -, . . . X(n) is
symmetric and depends on w and E. If U(n) is not invertible, X(n) is not invertible. In

this case let X(n)™! denote the matrix with the same spectral decomposition as X(n),

just with the reciprocal eigenvalues and define X(n+1) by

X(n4+1) := E - Vy(n) - X(n)'1

accordingly. Then the X(n) solve

X(n) = (E - Vu(n-1)) - X(n-1)1, n=-1+1,..1 (1.8)



with X(-)7! := 0.

Theorem (Dean- Martin [1]) :

Let X(n) solve (1.8) for the given choice of X(-l). Then:
1+1

# { of eigenvalues of H, <E}= Z # { of positive eigenvalues of X(i) }-

-10-

1 =-1+1

roof: For notational convenience, we will drop the indices w and 1. H is then the

following matrix:

Tven id
id

id

id

V(i)

where the diagonal blocks are m? x m?, given by (1.4).

Then E - H can be written as a product of two block triangular matrices:

id
Y(-1+1) id

Y(i) id

i

X(-1+1) id

id

| X(1+1)

, all empty entries are 0,

(1.9)

(1.10)

where all empty entries are 0 and Y(i+1) = X(i)~! and the X(i) are defined in (1.8).

It follows from (1.10), that

[
det (E-H) = II det X(i).
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From (1.8), we can see that for E negative and |E| large, all eigenvalues of the X(i)
are negative. If E is increased through an eigenvalue of H such that det (E-H) changes
sign, then at least one of the eigenvalues of the X(i) will change sign. Suppose X(i)
has an eigenvalue x with |x| small. Then X(i4+1) has an eigenvalue close to -x™'. If x
changes sign through 0, -x~' changes sign through oo, so the total number of positive
eigenvalues is unchanged if -1 < i < I. For the same reason, if a large eigenvalue oi
X(i+1) changes sign through oo, a small eigenvalue of X(i) with opposite sign will
change sign through 0. Therefore, the‘total number of positive eigenvalues can only
change if:

(1) An eigenvalue of X(I) changes sign through 0

(ii) An eigenvalue of X(-1) changes sign through oo
Since det X(-1) = det (E-V(-1)) has no poles, only (i) is possible. Therefore, the total
number of positive eigenvalues of the X(i)’s will only change if E increases through an
eigenvalue of H and the difference in the number will equal the multiplicity of the
eigenvalue of H. Since for E large, all the eigenvalues of the X(i)’s will be positive, the

statement follows. a

Since the limit in the definition of the ids was obtained for a.e. w and was independent
of the boundary condition chosen for H,, ; , it follows from the theorem above that for

all choices of symmetric X_,

1 md
k(E) =lim _ [ A " Y > Exp [ X(peo) (M(X(nw, X)) ] (1.11)

n=-l i=1

o,
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where X (n,w, X_;) is the solution of (1.8) with initial condition X_;, \;

13

is the i-th

eigenvalue of X (n,w) and Exp is integration with respect to the potential distribution.

Because the right hand side of (1.11) is bounded, this relation also holds if X_; is
random, independent of the potentials and the expectation with respect to this
random variable is taken. With X_; random, (1.11) defines a recurrence equation for a
Markov chain of symmetric random matrices. It will be advantageous for the further
anlysis to view (1.11) as the action of elements of an abstract group on elements of a

homogeneous space, as outlined in the next section.
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§2 THE GROUP ACTION APPROACH

We are going to outline an abstract view of (1.8), based on work done by
Furstenberg, ([1],[2]). For all the following considerations, let G be a locally compact,

semisimple Lie group and M a Borel space.

Definition:
M is called a G-space, if there is a continuous action, (g,z) — gz of Gx M — M,
satisfying

(91 92) =g, (92 2) (2.1)
If in addition the equation, gz = y, has a solution in G for every z,y in M, the action

is said to be transitive and M is called a homogeneous space of G.

In the following we are going to recall some definitions and facts from Furstenberg

(1),[2].

For measures dp on G and dv on M, the convolution du * dv is defined by
Ji(x) dp = dv(x) = [ f(gx) du(g) dv(x) (2.2)

where f is continuous and vanishes at infinity.

The convolution of two measures on G is defined by (2.2), if G itself is considered a
G-space. If dy,, du, are measures on G, dv is a measure on M, (2.1) implies that

(dp; *dpy ) *dv =dp; * (dpy *dv) (2.3)

If dg, dv are probability measures on G, M respectively, then dg * dv is the
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distribution of gx, if g and x have distribution du and dv respectively and are

independent.

Definition:

(i) If M is compact and for any probability measure dn on M there erists a sequence,
(9n), in G with 64, *dn converging to a point measure, where §4 is the point measure
on G concentrated on g, M is called a boundary of G.

(1) If M,, M, are homogeneous spacés of G, a map ¢ : M; — M, is called

equivariant if gp (z,) = ¢ (gx,) for all g¢ G, ¢ M,.
One of the results in Furstenberg [2] is:

Proposition:

All boundaries of G are equivariant images of one of them, the mazimal boundary.

For any xo¢ M, let L = { g: gxo = Xy }, the stability group of x,. If G acts

transitively on M, G/L is homeomorphic to M.
Let du be a probability measure on G.

Definition: A probability measure on M is called an invariant measure for du, if

dy * dv = dv.

The following result of Furstenberg is fundamental to our further analysis.
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Theorem: (Furstenberg [1])

() If M is compact, there exists an invariant measure for du on M,
independent of du.

(47) If M is a boundary of G and du an absolutely continuous (w.r. to Haar
measure) probability measure, then there is one and only one invariant

measure for du on M.

The special case we are interested in,) is when G equals the symplectic group,
G = Sp (m?), i.e., the sgt of 2m? x 2m? matrices g, satisfying

gl lg=1, (2.4)
where

4 x m? identity matrix

J = o P the 1 stands for the m
d
M will be the set of Lagrangian subspaces of R*™ , that is the set of m?-dimensional
d
subspaces of R?™ satisfying
<u,Jv>=0 Vuve x,xe M (2.5)

where < , > is the usual inner product.

d

For given x¢ M, let ( u;) be a basis for x and let X denote the 2m? x m? matrix,

whose columns are the vectors ( u;),i = 1,...,m¢.

The maximal boundary of G is well known ( see Lacroix [2] for this special ,case and
Furstenberg [2] for the general case) to be the following flag manifold:

d
Let x; be an i-dimensional isotropic subspace of R?™ , i.e., an i-dimensional subspace
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satisfying (2.5). The maximal boundary of G is the set
{( xg5e - - X g5 X;C X;,,, i<m?, x; isotropic }.
From this it is also easy to see that M is an equivariant image of this set.

Lemma 2.1:

M is a homogeneous space under the action

(gz) = g7

proof: Recall that the (u;) span x. For any u;, u;
< gu;, Jgu;> = < uy, g1 dgu> = < up Ju> =0,
so the columns of g X span again a Lagrangian subspace. The associativity of the

action is also easily verified. To see the transitivity, let x;, x,€ M with bases (u;) and

(w;) respectively. The systems uog = Ju,,
d
w o, =Jdw;, i=1,... ,m? , extend the previous bases to ones for R2™ with
m +t
< w 4L dw > =< ww, > =0V ij < m? and therefor also
i+m j+m
<u g4Ju 4>=0Vij< m?. Then there exists a 2m? x 2m? matrix g such
i+m j+m
that

gu; = w; Vi< 2m? and < u;, gTJguj> =0 Vij< m¢.
Thus, for fixed but arbitrary i<2m?,

—lT _ . d
<wj,(Jlg-g Nu; >=0 Vj<2m’.
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T
Therefore (Jg - g™! J)u; = 0 Vi <2m?, so gTJg = J and g is symplectic, mapping x,

to X,. 0

Lemma 2.2:

M~ G/H~%/B , where

A B )
H= { , A, B are m x m matrices with ABT = BAT }
0 (AT

A B
% = NG=5S0nG=~U(n),
B A

U(n) the complex unitary group.

A 0
B = , A orthogonal
0 A

proof: Since G acts transitively on M, M~ G/L, where L is the stabilizer
for ec M with € = (id, 0)T.

If for ge G,

g€ =€ yields C = 0, D = (A™")T and (2.3) yields ABT = BAT. Any g satisfying
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these properties is in L. and thus M ~ G/H.
To see the second relation, we note that for G one has the Iwasawa decomposition

G =% AN, where
% is defined in the statement of the Lemma,

B 0
A:{ OB_I,B:diag(bl,..,bn), allbx>0}

A B
N = { , ABT = BAT, A upper triangular with }
0 (A-I)T

L diagonal all one’s

Clearly A, N are in L.

A B
An element A in % leaves € invariant iff B = 0 and A is orthogonal.

Therefore, the subgroup of % leaving € invariant is B and
H=34N
from where G/H ~ %/%8 and the second relation follows. a

Remark: % is a maximal compact subgroup of G.

In order to employ Furstenberg’s result, we need to show that M is a boundary. To
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simplify the argument, we are going to use another result of Furstenberg:

Proposition: (Furstenberg [2])

If M is a compact homogeneous space of G, M is a boundary if, for some smooth
probability measure dvy, on M, there is a sequence of probability measures on G with

dpn * dvgy convergent to a point measure.

Remarks: (i) A measure dv on M is smooth, if it is locally equivalent to Lebesgue
measure, that is, for any coordinate neighborhood U in M with coordinate map a,
there is a function ¢(x) > 0 for xe a(U) such that for f with supp f C U
J f(m) dv(m) = J f(x) o(x) dx.
(ii) The set of Lagrangian subspaces that cannot be spanned by the columns
of [A,B]T, where det A # 0, is a zero set for any smooth measure on M, since

det A = 0 cannot be one of the restrictions on A,B imposed by (2.5).

Corollary 2.1:

M is a boundary of G.

proof: That M is a compact homogeneous G-space follows from Lemma 2.1 and the
remark thereafter.

Let gn be the diagonal matrix with gu(i,i) = n for i < m? and gn(i,i) = & for
i = m?+1, ..,2m% Obviously all gn are in G. If me M is spanned by the columns of
[A,B]T, then gnm — e (e as in Lemma 2.2) for those m with det A # 0. But then

gnm — e for almost all m with respect to any smooth measure on M. Therefore,



-20-

taking dun = déby,, dun * dv — dé. for any smooth dv and thus, by the preceding

proposition, M is a boundary of G. a

Furstenberg’s theorem allows us to conclude

Corollary 2.1:
If dp is an absolutely continuous probability measure on G, there exists a unique
probability measure dv on M such that

dy * dv = dv.
We want to reconsider (1.11) in this framework. Let us remind that the transfer
matrices associated to H. are of the form

E -V, (n) -1

gn (w,E) := ) 0 I (2.6)

where the one’s denote the m® x m? identity matrix and V. (n) is given by (1.4).

The evolution of a solution to (1.7) is given by

U(n+1) U(n)
= En W, E y n= '1+]., RN ,l
U(n) gn ( ) U(n-1)

and thus (1.8) is equivalent to



n=-+1,...l (2.

(™)
-~
~—

= -1 (w,E ’
1 8n-1 ( ) X(n-l)-l

For any symmetric m? x m? matrix A, the columns of ( A, 1)T span a Lagrangian
subspace. If A is invertible, the same subspace is spanned by the columns of (1, A™!)7T.
If X(n) denotes the Lagrangian subspace associated to X(n), (2.4) becomes
X()=g,; (v, E) X (n-1), n=-41,..., (2.8)
If dv, denotes the distribution of X (-1 ), (2.7) defines a Markov chain in M with
initial distribution dv,, if one views the elements gn (w, E) as random variables

with the induced distribution of the potential- matrix (1.4) , denoted by dpE . The

distribution of X ( -14+n ), n < 2141, is then given by

dv_p, = ((+)" dpg) + dv (2.9)
If dv, is an invariant distribution for dup , callit dvg , then

dlln:dl/E Vn=-...,

In this case, it follows from (1.11) that
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Corollary 2.2:

k(E) = [ &( ) dvp(z) (2.10)
where
4
k(z)=Y X(0,00] ( Ai(z) ) and ), (z) is the i-th eigenvalue of z.
i=1

The smoothness of k (E) will now follow from appropriate smoothness with respect to

E of the invariant measure dvy . Since x ( x)e L( M) , we have

Corollary 2.3:

If dvp s C® in E as an element of the dual space of L°( M), k (E) is also C™.

Remark: It follows from Furstenberg’s theorem that if there exists some n such that

(*)"dpE is absolutely continuous, then dpE has a unique invariant measure. We will

show the existence of such n in the next section.
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§3 SMOOTHNESS ON THE GROUP

The desired smoothness in E of the invariant measure will follow from the
smoothness in E of a number of convolutions of dpE by perturbation theory. Recall
that dpE denotes the measure on G, that is concentrated on matrices of the form
(2.6). dup itself does not have any smoothness but we can generate smoothness by
convolution, using fractional smoothness of only the “top surface potential”, that is,
we only use some fractional smoothness of the distributions of the potentials at sites
(i,k), ie Z and ke {1, .. ;m}d with k(d) = m. More precisely, we are going to show
that for some n with nm?~! > dim G = 2m??4+m? =: 1, (equality for d = 1), and E
fixed,

(x)" dpg (8) = Gn (8,E) dg, (3.1)
where locally on Rl, Gne L%, for some p>1,a>0, which is equivalent to saying that
G is in the same Sobolev space on the group as indicated in the next section. In this
section all considerations are locally, so all Sobolev spaces will be on R'.

(x)"dpp (8) is the distribution of the product gn(w,E) . .. g(w,E), where the g; are
i.i.d. with distribution dup.

(3.1) will only be possible if (*)”d,uE has l-dimensional support. G, dg is, as we will
see, the push forward map of the joint distribution of 1 potential variables. Since we
only want to use the differentiability of the potential distributions on the top surface
of Sm, it is clear that those 1 variables have to be on the top surface to ensure that

d-1

Gne Lg, so we see that n has to be such that nm is at least dim G to achieve

(3.1).
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For the following, we are going to fix the potentials not lying on the “top surface”, by
setting x;;, = ¢, = const., for ie Z and k ¢ {1, .. ,m}* with k(d) < m.
We will denote the measure on the transfer matrices resulting from this restriction by

d”E,c' Then we have

Lemma 3.1:
< supp d;LEC > = G, where < e > denotes the generated

subgroup.

Remark: This, of course, also proves that < supp d/lE > = @G, since
< supp duE ¢ > C < supp duE >, independent of the distribution of the x,,’s for all

i, k e {1,..,m}¢ k(d) < m.

proof: We will show that the Lie algebra of < supp d,ch > coincides with @, the Lie

algebra of G, which is the set

Xy Xy
6 = { Xy, X4 symmetric}

X, -XT

It is easy to see that the system { (X;;), (Y;;), (Z;;) } is a basis for ®, if these
elements are defined as follows:
Let E,;; be the m? x m? matrix with a one in the (ij) entry and zeros everywhere else.

Define
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— T
Y;; = Xy
Zij = 0 E (3.2)

We will need the following commutator relations:

[ X Y5 )= (1+5;:(j) ) Zisy, [ 245, X ) = (14+6;(k) ) Xyx

[ Zij’ ij ] = ('1‘5j(k) ) Yk (3-3)
Let g,, g, be matrices of the form (2.6) with (1,1) entries g;(1,1) = x; and

g,(1,1) = x, with x;# x,, all other entries the same. Then g;'g, and g,g5;" are in

S := < supp dpp . > and

gr'g, = id + (x1- x5) X;; = exp ( (x1-x3) X;)

g:87" = id + (x;-x,) Y, = exp ( (x1-x3) Yy,)

where x;-x, can take values over some interval around 0, as the distribution of these

potentials was assumed to be absolutely continuous. Therefore we conclude that X,

Y,; are contained in the Lie algebra of <supp d,uE c>,which we denote by A, and
b

from (3.3), Z;,¢ U.

By doing the same with the other “top surface” varibles, i.e., choose g;, g, in G with
g, (i) # go(i) for i = 2, . . ,m*, we see that X;;, Y;; and Z;; ¢ % for all

i=1,..,m
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We are going to prove inductively that the whole system (3.2) is contained in %, using

the following sublemma:

Sublemma:
Let g, go€ G as before, that is with g,(1,1)#9,(1,1). Then, for k < m,
(3) 91X97" - 92X:,95" is a linear combination of 7, X—119

Xk—m,l’ tt Xk md—l % chl’ Xk+1,1’ Xk+m,1’ e X d-1 1

(i1) 97 Yi19, - 95" Y19, is a linear combination of Zyy, Yi_y 1,

Yicmis o o ch =11 Yoo Yegmas -+ Yk+md'l,1'

We continue with the proof of the Lemma. Let us assume for simplicity that d = 2.
Since X;,¢ U, it follows from the sublemma, that X, + X,,;;,¢6 %. With the same
reasoning, we also conclude that Y, + Y., ¢ % and from (3.3) , Zy3 + Z) 41 »

Zoy + Zpyry € U Then [ Zyy + Zy 1, Xgg | = [ Zyg, Xgp | = X(p¢ U With the same
reasoning Y;,¢ . Since now also X,,,;, and Y, ,,¢ %A, we conclude, using (3.3)
again, that Z, 41, Z,yy11€ Y. It follows that X, 4y and Youpy i€ %o Using the
same argument for all other k < m, we conclude that X,;, Y;;, X;; and Y;; are in %

for all i < 2m and therefor, again by (3.3), X;;, Y,; and Z;; are in U for all i,j < 2m.

ijr
Repeating this argument for all other k, shows that X,;, Y,;, X;; and Y;; are in A

4 and using (3.3) the same way as before shows that the whole system

for all j < m
(3.2) is contained in %.

For general d, the exact same argument can be used if m is replaced by m?~! in the

previous steps ( X;;, Y;;¢ Wfori=1,..,mé?). 0
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proof of the sublemma:

(i) glxugfl - 82Xk18§1 =
(Vu(2)-Vu(1)) Eiy Vu(1)E; Vu(1)-Vu(2)E,, Vu(2)
: (3.4)
0 Epn(Ve(1)-Vu(2)
where E;; = E;; + E,;.
Vu(2) - Vu(l) = (xg-x;) Eyy, s0
(Vu(2) - Vw(lt) ) Epy = (X2-xq) Eqp Epy = (Xxy) By for k > 1.
Also for k > 1:
Vu(1) E; Vu(1) = A + AT, where
00 0 ]
x; 1 1
x; 1 1
A = chk Ck Ck
x; 1 1
x; 1 1
0 0 0
where the ¢, - terms appear in the k-th row, the columns 2, m+1, . ., m? 141 are

equal, the rows k-1, k-m, . ., k-m?!, k41, k4m, . ., k+m?! are equal.
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A similiar formula holds with V., (2) in place of V. (1).

From there it follows that (3.4) becomes:

d-1
(x2-%y) Zyp + (x1-%3) Z ( Xk__ i X i )+ (xi-xg)eg Xy
1=0 m m,

,1 k+

(ii) follows by the same arguments, just using transposes, since

gr'Yg = [ & Xuer' 1T 0

d
Fix E. Define a map ¢: R*™ — G, for given n, by
11[)()(11""’)( d):¢"(xn1""x d)"'wl(xll""x )
nm nm 1m
where
¥ (X - - X, g) = 8w (LE) =: g;
mm
with potentials (x;;, . . , X 4).

m

Clearly, ¢; (x;; +t, .. ,x_4) = exp (tXy;) ¥; (X;1, - - X 4), so that
tm tm
il —
B, b = X ¥

and a similiar formula for all other x;,.

d-1
Let again x;, = c, for all i and ke {1, ..,m}¢, k(d) < m . Define ¢: R*™ — G
be (Xp5 -« ’xnmd“l) =9 (x

h : = m?!(m-1).

dels + = X g=1sC1s + + 5Cha e v v XIs o sX g 15 Cps -« 5Ch) 5
(n-1)m nm m



Lemma 3.2:

d=10

(i) For all ce R™ , 3 n such that . has mazimal rank almost

d-1
everywhere on R®™™

(i) If d = 1, n of part (i) can be taken to be dim G.

proof: (i) ( see also Lacroix [1] ) 3% Ye =gn .. X;;8 - -8 € Gy, the tangent space
ij

at ¥ = Y.(xy, . ,Xy4), wherej =1, .. ,md'l, i=1,..,n.

Multiplying by gi! . . ga! maps this vector into
gl . g,.'lxjjgi .81 = Adg, g Xj; € Ge = 6.

So we have to show that there exists some n such that the system

d—1
{ < Adg X;j, -, Adg,. g, X;; >3 j=1,..,m%" } = forae xe R"™

Assume, that for g, . . ,g;, { < Adg X;;, .., Adg, g X;;> } =: His maximal in

Xjj» - - Adg, g, X;; >} =H # 6, for all choices

the sense that { < H, Adg . ¢, X;)
of gx .15 - - 8, and any n.

Let H = { < Adngij, cAdg, g Xy > }. Then < H, Adg,, ¢ H, > =1,

so Adg g H CH, for all H, of the predefined type. In particular with H in place of
H,. But then also AdgH C H, for all transfer matrices g with potentials as prescribed.
The set of those g generate the group G and therefor we conclude AdgH = H for all

ge G. This means that H is an ideal in ® and because H is nonempty H = © follows

from the simplicity of ®, which proves (i), as the entries of gn . . g, are polynomial.
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(ii) To show that n can be taken to be dim G if d = 1, we note that if for | = dim G
dim < 8,¢c,.., 0% > # dim G, V xe R”

then, by the first part, there exists k such that for k > | and almost all choices of
xe R"

dim G > dim < 6111)6, DY ,6k¢c> = dim < alwc, LY ,6k+1’¢c > = 1 (3.5)

where the 9, stand for x; derivatives and ¥, is the n-fold product of transfer matrices,
such that (i) holds.
Thus,‘: for all choices of xe¢ R", after multiplying by g;iz .. gZI,

Bie1 X118k - - 81 € < Bry1 X118k 81y - - 5Bre1- X118 > =t Hy
Aad Bk+1 X118k - -8180 € HoBo V g
= X118ke1 - 81 € < Bpat - X11Bkot - - B1o - 5> Bkal - - X1 >}

for all choices of xe R"™.
But this contradicts (3.5) and therefore, there exists xe R™ such that

dim < 0¢¢, ...,0;%c > =dim G,

so n can be taken to equal 1. a

d__d-1
The last result tells us, that there is, for fixed ce R™ =™ | a distinguished index set
ik, .., ik, forije {1, .. 1}, 1= dim G, kje {1, ..,m}* k;(d) = m, such that § is

a diffeomorphism in those variables:
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Corollary 3.1:
For a. e. y; € [R""‘d", i=1,..,n ke {l,.. ,m} Gk)g { (i,k), - - ,(i,k) ), the
map Py: R' — G, defined by

Yy (17,-1, .. ,.’L’il) = gn...Q

z; are denoted by y;., is a

where all variables in the g; different from Tis - -y Ty,

diffeomorphism in some neighbourhood of a.e. point in R'.

proof: It follows from the preceding lemma, that for some fixed x = (x,-l, N x,-l)s R
and y;, = c;, ke {1, .. ,m}?, k(d) < m and y;, = ¢c;, for some c;,, fo the “top
surface” variables different from Xis o o0 Xip %y has maximal rank. Since the

coordinates of 1, are polynomial in all variables, it follows that for a.e. ye R™™ =,
¥y has maximal rank at that fixed x. Therefore, for those y, ¥y has maximal rank a.e.
in R'. But then, for those y again, a.e. x¢ R' has a neighbourhood such that ¢, is of

maximal rank in this neighbourhood. o
4,
Define now B C R”™ ~' to be the set
4y . ol
B:={y;e R"™ 7', ¢, has maximal rank a.e. in R" }.
d

Corollary 3.1 states that B has full measure, that is, for any bounded A C R"™ -l
A N B has the same Lebesgue measure as A. With the notation as in (1.6), the

complement of B, B is the set {a(y) = 0} and in particular, (C1) implies that B® and

all translates along the diagonal have zero dn - measure.



In the following, we will keep E fixed and therefor drop the index in dpp for

notational convenience. If dn denotes the joint distribution of the y; for all

(k) & { (inky)s - - - (ipsk;) }, then
(¥)" dp = j (x)" dpy dy (¥) (3.6)
where

()" dpy = dpy, * - - - *dpyg,

and dpuy,, is the distribution of the transfer matrix with potentials, not having any of

the distinguished indices, fixed. Let, for notational convenience, x; := x; S]=1,..
i*i

., L. Corollary 3.1 then says, that for ye B,
($)"dpy = G (8y)dg
where dg is the Haar measure on G. Locally
dg = S(x) dx,
where S is C*® and S # 0 and thus, again locally,
G(gyy) dg = S(x) Jy" (%) F (95" (x)) dx, (3.7)

where J, is the Jacobian determinant of the diffeomorphism ¢, and F is the joint

distribution of the x;.
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We would like to see that for each y& Bs G(g,y) is in some Sobolev space L%, and

that

[116 oy 11y, an) <o

It will be sufficient, since S is C*°, to prove that Jy' Fo %;'is in some Sobolev space
on R', with

J [| 37! Fo yy? ”Lfi dn(y) < oo.

Taking full derivatives with respect to any of the x; of J3! Fo vy', will result in an
additional Jy! factor, which we might not be able to control. Taking fractional
derivatives should correspond to an additional fractional factor of Jy', which is for
small fractions integrable, since J, is polynomial. This is the reason why we only take
fractional derivatives of (*)"du, which we will later on add up by convolving in n-fold

chunks.
Lemma 3.3:

For A C R' and compact, X 4 the indicator function of A, there exists some t > 0,

such that

[1xq 5@ 1 dn) <
for some constant M. The 1-norm is on R'.

Note: The t in the Lemma above is the same for all E.
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proof: Jy is polynomial in x and y, if ye B. Then, for fixed ye B, t sufficiently small

[ xa 350 ax1 < 6,

where dx = dx; .. dx» and ¢ is the reciprocal of a polynomial in y.
To see this, we note that, in general, also for y¢ B, J, = a(y) B(x,y), both & and 3
polynomial and there exists no y, such that 3(x,y,) = 0 in x. It is then not hard to

see that
| JXA B—t dXI S c,

where ¢ only depends on the support of dnp and on A.

It follows then readily that ¢ (y) = & @ *(y). The last step to reach the statement is

then provided by our condition on d7. O

Remark: For ye B, | 8; ¥z | < c (14 |[¢z|?) Izt d =12 (3.8)
This follows from the fact that the inverse of the Jacobian matrix is a polynomial of

the Jacobian matrix, divided by the Jacobian determinant.

We are now going to use interpolation to see that G(g,y) is in some fractional Sobolev

space, if F is.
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Definition:
X, := L' (dz)
Xy :={ Fe L' (dz), [ || Vo [J5'(z) Foug'(2)] Il dn(y) < o },

where p is given in the contexrt and the spaces are endowed with the obvious norms.

Denote, for « > 0, by L5 the usual Sobolev space on R¥, with k specified in the
context, i.e., Fe L5 iff (1+|t|2)§ Fe LY, q the dual index to p.

Define for ye B the maps

Ty :F — J;! Fo ;D;,I,

where F is some function on R'. Then,

Lemma 3.4:
(i) For allye B, Ty: X, — L' (dz) and J || Ty Fl; dn(y) < o0
for Fe X,.
(ii) For allye B, Ty: X, — LY (dz) andJ | Ty FHLf dn(y) < o

for Fe X,

proof: Both statements follow immediately from the definition of X, and Xj.
Indeed, if X,, := Ty ( L') and Xyy = Ty! ( L), then each f in X;, i = 0,1,
corresponds to some { in X, y» such that

i, = [ E I, an). 0

If F is in some fractional Sobolev space on R' and has compact support, we can use
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Lemma 3.3 to see that F will be in some of the interpolation spaces ( X;, X,);, which
we are going to identify next. We will then be able to use Calderon’s interpolation
theorem to show that our density G(y,g) is in some fractional Sobolev space. Before
we identify the interpolation spaces, we state one result of Calderon, which will be
useful to us.

Let us remark first that an interpolation pair ( By, B;) is a pair of Banach spaces By,

B,, continuously embedded in a topological vector space V.

Propqsition 3.1: ( Calderon [1] )

If ( BO, B)) and ( C,, C)) are two interpolation pairs and L is a bounded, linear map
from By N By to Cy N C, for i = 0, 1 , then L is a bounded, linear map from
( By, By), =: B, to C, := (Cy, Cy), .

In particular, if L is invertible and L B; = C; for i =0, 1, then L B, = C,.

Lemma 3.5:
( Xo, X; )y = { Fe L} dz), TyFe L.* for ye¢ B and

JWTy FII p, dn(y) < o0}

L}
1 _ 1
where 7 = (1-t) + ¢ B

proof: The integrability with respect to d7 remains for all interpolation spaces, so it
suffices to show that for each ye B, { Ty Fe¢ Lf' } are the interpolation spaces for
{Ty, Fe L' }and { Ty Fe L] }

For ye B, Ty is an invertible map, with bounded inverse on the following spaces:

Ty LY =: Xy, and Ty LY =: X, ,- Therefore, by Proposition 3.1, the interpolation
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spaces for the just defined spaces are

Xyy = Ty' LY, since L = (LY, LP), ( see, e.g., Taylor [1]). a

Note: L C L5 holds for r > 1 and f<« as long as 1—% < (a-p) %
For the following, we are going to fix A, r such that this relation holds for the «

chosen in Theorem 1.

Lemma 3.6:
There exists t > 0, such that for Fe L C L'Z, with supp F C K, K compact

Fe X,.

L
proof: For t < B, & ((A) := ( 14+|A|*)2 F ( A) with ge L™, supp g compact and

g llr =11 F Il -

For fixed ye B,
| 0; J5 F(wy' ) | <1(8,37") Fo uy' | + ] 35" 8,935 (V F)o ¢3! |
< 1(8:3y) I5% Fo gyt | + 1 35" (1+1v3s' 4) 35" (VF)o o' |

< | (149519 352 Fo vyt + | (14+]v5]%) 332 (VF)o ¥;' |

The product of the gradient of F and the derivative of 1/);1 in the first inequality is
the inner product, the second inequality follows by (3.8).

Integrating with respect to dx and doing a change of variables, we obtain for fixed
ye B:

_2+l -2 l
IV Ty Fllp LA+ 3y P F llp + 11 (1+IxI%) 3y 7 VF I, (3.9)
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If we let the operator S(z) be defined by
(5(z) F ) (u) = (1+uf* )? F(u),

we can use interpolation between the spaces { F, S(1) Fe a™' L” } =: Y,, where
1
—241
a= (1+[x|%) Iy, *? and {F,S(0) Fe L' } = L' =: Y, again to conclude that

Y, ={F,S(t) Fe a~* L7* }

and therefore, Fe X, is implied by
I dy {2+ t
NI+ Iy (x) ] g llp, dn (y) < 00 (3.10)
Set L =1 + 1 for some s, and adjust p accordingly. Then
P: 5 r
d _2+%‘ ts
(3:10) < [ 11T+ 37760 1 Xoupp oG I Il 1l- dn()

<cllgllr <cl|lF ”LB’ where the second to last inequality holds for small t by

Lemma 3.3 ]

We have now reached our goal, which follows in two ways after:

Lemma 3.7:

The norms on X, and X, are consistent on X,.
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proof: We have to show, that if fne X, with || fn on — 0 and f, is Cauchy in the X,
norm, then || fa ||X1 — 0 and vice versa.

<] f R if || fn — 0, th 1 fn — 0. If
Clearly, for fe X,, || f ”Xo < || ||X1 so if || ||Xl en also || ||XO
fn is Cauchy in the X, norm and || fa ”Xo — 0, then there exists f such that

||fn-f||xl—»0.Butthen||fn-f|lxo—>0,sof:0. 0
Corollary 3.2:
For all ye B,

Ty: ( Xo» Xy )¢ — Lft

and [T Pit e dn) < oo,
t

where (X,, X;), are the interpolation spaces of X, and X, 5 = (1-t) + t } and

Fe X;.

proof: This is an immediate consequence of Lemma 3.5 or the Calderon- interpolation

theorem ( see, e.g., Reed- Simon [2] , p.37 ). a
Remark: It follows from the proof of Lemma 3.6, that for supp F ¢ K

IIFllx, <cllF ”L;, (3.11)

Lemma 3.6, combined with Corollary 3.2, tells us that for ye B, F the distribution of

the “top surface” potentials x, . . ,xn
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Ty F = J;l Fo 1/21715 L% for some a > 0, p > 1.

Therefore (*)"dpye L locally for the same a, p.

. — ~ -a
Also, since || Ty F ”Lﬁ =||F HXa,y <caly) ™™ || F ”L;,’ we see that

J e am iy anm < e iiF iy,

for some ¢, by the condition on dn.

Since also, | [ ()" duy dn(y) llp < [ 11 )" du lp dn(s)

(using Jensen’s inequality), where derivatives are with respect to x only,we conclude

Corollary 3.3:

If Fe L, with supp F C K, K compact, then
(¥)"due L% locally and
1™ dullp < el Pl

for some o >0 and p > 1 and constant c.

Note: The o« and p of the last Corollary are different from before. Here </ and

%, = (1-e) + (1-a) % . Also, o and p are the same for all E, c depends on E.
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§4 SMOOTHNESS OF THE INVARIANT MEASURE

The goal of this section is to show that for given k, there exists an I, depending on k,
k
such that 5%—; (x)! dpp is a finite signed measure of bounded total variation. From

this we will be able to conclude that dvp is smooth in L%°(M)" , which proves

Theorem 1 through Corollary 2.2. For simplicity, let n = dim G.

First we;will need several results about Sobolev spaces on G. To define those, we are
going to follow Simon - Taylor [1] and define the Laplace operator in the following
way:

Let 1, and r, denote left translation by g™! and right translation by g respectively, i.e.,
lg(h) = gth, rg(h) = hg and acting on functions: l; F (h) = F(lgh), r, F (h) =
F(rgh). A vector field is called left, right invariant, if it commutes with lg, 1y
respectively. Let X, . . . ,X, be a basis of Ge, the tangent space at the origin. Let
( S{,- ); be the unique set of left invariant vector fields with ii (e) = X;.

Then define

A=) X2 (4.1)

The same procedure can be used with right translation to obtain right invariant

vector fields and to define A..

If dy is any Riemannian metric on G, there exists a unique left invariant metric d, on
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G that coincides with d, at the identity, obtained by setting
d, (X,X) =d, (X,X) V vector fields X,
where X is the unique left invariant vector field with X (e) = X (e). Then
d; ( X(e):X(e) ) = do ( X(e).X(e) ) = d; ( X(e)X(e) )
and dy (dlpX, dl,X ) =do (X, X ) =d; (X,X),

so d; is the desired left invariant metric.

If dy is the metric under which (X;), is an orthonormal basis of Ge, A; is the Laplace
operator associated to d;. Similarly, we can find a unique right invariant metric d-,

such that A, is the Laplace operator associated to d-.

It was proven in Strichartz [1], that the Laplace operator is essentially selfadjoint on
C3’(G) if the underlying metric is complete. That we also have this property follows

from

Lemma 4.1:

The metrics d;, dr are complete.

proof: For g,he G, dist; (g,h)= inf { L(y) = length of yin d;, y: g— h }
=inf { L(g”™"7), g 'yv:e - g 'h }
= dist, (e,g”'h)
and the goedesics run for the same time, from where it follows that d; is geodesically

complete. The argument for d, is identical. a
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Lemma 4.2:

If®(9) = g7', then Ay @ = ® Ay, where # = Lorr.

proof: If vy is the geodesic between e and g with y(0) = e and (1) = g, then

~

v = g'l-y(l—t) is the geodesic between e and g~*, from where it follows that & is an

isometrie. Therefor ® commutes with A# , ( see e.g. Helgason [1], p.246). O

After this preparation, we define Sobolev spaces on G the same way as on R”, namely

a
as the image of L”- spaces under the action of the Bessel potential ( 1- A ) 2.

Definition:

(1) For 1<p<oo, a>0, LY is the set of all Fe L? such that

F=(14))

IR

G for some Ge L?, with norm

I F IILg =16l

(i) For o < 0, set LY = ( L2)*, where 3 + 1 =1

(i11) H, := L?

Remarks: (i) Integrations are with respect to Haar measure on G.

(ii) The L&- norm will differ if we take A, instead of A,
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however, no problems occur, if we stay in compact regions, see below.

Lemma 4.3:
(i) If F has support in a fized compact, Fe L% iff Fe L& ( R™) in a local coordinate
system about each point.

(id) If du(g) = F(g) dg, due LE iff Fe L}

proof: (i) This follows immediately from the fact that on R™, L% is the image of L

under the action of the Bessel potential (l-A)fa,nd

A= Z X2 = Z(Zk: a;k %)2 locally,where the a,; are C*,

i )

by exploiting a partition of unity. Therefore, since the a,, are bounded on the

o
compact support of F, || (1- A; )> F ||, and || F || are equivalent norms for

L&(R™)
all F with support in a fixed compact.
(ii) is obvious. a
Lemma 4.4:
On fized compacts, the norms
I (1-A0)% Fllp, 1C1-4, )2 Fly,
a-p3 B a=p

Il(1a.) 2 Fl N(1- A )2 (-4 2 Fl

P
Lﬁ
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are equivalent for a>$>0.

proof: Again,

Ar = Z(Ek: b, 3xk) , locally, where all b,, are C*.

Thus, it follows from the proof of Lemma 4.3, that for F with support in a fixed
compact

H(1-Ar ) Fllp <co |l F I <o |l (1-A)2F

LE(R™)
and a similiar statement with A; and A, interchanged. The statement for the other
two norms follows the same way, using the additivity of the Bessel potential in the

powers on R™. O

We will have to use the equivalence of the norms in Lemma 4.4 to show that
convolution is smoothening. It is for that reason, that we restrict everything to

compact domains.

Next we will see how much smoothness is lost by taking E- derivatives of the measure

dHE:

Lemma 4.5:

a* n
B—EkdﬂEsH& Vs<--2-—lc.
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proof: Since dpE and all E- derivatives of dpp have compact support, it is enough to

operate locally. Then, for Ge C§° ( U), U some coordinate neighborhood

k .
2 [Gdug I <o X 1D Gl < e Il (14 167)7 G0 Il (4.2)
o[ <

by Hausdorff- Young. Then,

k+s s

(42) < (141D 2 (L 1L+ 18272 G (8) Il

SCQHG”H_S if k+s < -3, or s<-3-k ]

For the convolution to have a smoothing character, it will be necessary to pull the
Laplace operator into the convolution. To illustrate how this can be done and where
Lemma 4.4 comes into play, let us recall that for F,Ge L!, the convolution is defined
by

F*G(g)sz(gh‘l)G(h)dh
:JF(h)G(h“lg)dh (4.3)

since the Haar measure dh is invariant under h — h~!. These equations can also be

written as

F G ()= (r,1 F(8)) G (h)dn
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:JF(m(hG(g)ﬁ (4.4)

Therefore, since A;, A, are left-, right- invariant respectively, for F,Ge C§°

a

(1-A,f<F*G):((1-AJ%F)*G
(lﬁMﬁ(F*G):F*“l-AﬁG) (4.5)

As we are going to take E- derivatives of convolutions of the measure dpE, it will be
necessary, having Lemma 4.5 in mind, to have convolutions of distributions in |J H,,
S

where the union goes over all se R, defined.

Noting that

[P (o) FoeFy (@) dg = [[ File) Fal gh™) Fo( b dg an

= JJ F,*F, (g) Fs(g) dg and also, using the second relation of (4.3)

= [[Fi Py (9) P (9) s where F (g) = F (&™) (4.6

we can define the convolution of a compactly supported distribution T with a C§°
function F by

(FxT)(G)=T(F*xG)
and (T+*F)(G)=T(Gx*F),

which allows us to define the convolution of any compactly supported distributions
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S,T by
S*T(F)=T(S+*F), Fe CP,

where S ( F) =S ( F).

Remarks:(i) If T is a compactly supported distribution, Fe C§°, then
T * F and F * T are in Cg.
(ii) If du, = F, dg and dp, = F, dg, then dy, * du, = ( F xF,) dg.

(iii)' HE(l,p=|F||,p follows from Lemma 4.2.
Lj Ls

Lemma 4.6:
If du = F dg, supp F compact, Fe LY, 0 < s < 1, then

1 dux Gll e < clldullp I1Gllye  if supp G compact,

Hs+t =

i.e. convolution with du defines a bounded map from H: to Hit', ¥ t, where

H: :={ Ge H?, supp G compact}.

roof: dpy*x G =F x Gdgand || du ||Lp =||F ||Lp , SO this is just Theorem A.2.2

of Simon-Taylor [1]. 0
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Lemma 4.7:

For arbitrary s,t and compactly supported Fe H® , Ge H':

Il Fx G| < cll Fllgs 11 Gl

H$+t =

i.e. convolution by compactly supported H® distributions defines a bounded map

Hi: H: — HIY' OV osit
proof: This is Theorem A.2.3 of Simon-Taylor [1]. a
These two results will enable us to see, that taking E- derivatives up to a given order
k of (*)’dpE, with | large and depending on k, will give us a well behaved

distribution, namely a signed measure with a compactly supported C! density.

Lemma 4.8:

For given k,s > 0, there exists an | such that
O e He o Vi<k
aE < HE £ =5

proof: We know from section 3 that (*)"d/,tEs L% for some a > 0 and p > 1.

For any | > 2:

-1 . .
L) dug =3 (' dug * Fdug (07 dug (4.8)
7j=0
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By Lemma 4.5, %duE decreases the Holder index by at most 34+1. If j < n, the first

factor in (4.7) may not give any smoothness, but the Hélder index will be decreased

by at most (n-1) 3 by those j factors, thus the first (j+1) factors in the sum of (4.8)
2

decrease the Holder index by at most (n-1)543+1 = %- + 1. Therefore, by adding up

the worst case scenario for the Holder indices,
0 (4 d i n n’
BE(*) ppe He if 1> 5(s+5+1)+n+1.

For higher order derivatives, repeat this argument for the inividual terms in the

sumands of (4.8) to conclude the statement. g

Corollary 4.1:

For given k and s, there exists I, large enough, such that
O dup(g) = Gi(gE) dg i=1 k
Y: pp(9) = Gi(gE)dg i=1,...,
with GiE C'a
proof: By the previous Lemma there exists an 1 such that
9 ()dupe H Vi<k
ot (Y drpe g, o Vigh

Thus %(*)Id“E( g) = G, ( gE) dg , i<k, with G;e H'5’+s by Lemma 4.3 (ii) . By



-51-
Sobolev’s Lemma, the G; are C*- functions in the usual sense. 0
Corollary 4.2:
dp p has a unique invariant measure dvp on M.
proof: Take | such that (*)IduE(g) = Gg(g)dg, with G a C! function. It follows from
Furstenberg’s theorem, that (*)IduE has a unique invariant measure. Thus dpp has a
unique invariant measure. a
This last result will enable us to view the l- fold convolution of dup as a
differentiable, (in E), operator on the dual space of C( M), the set of continuous

functions on M, which is a Banach space under the || ® || - norm, as M is compact.

The order of differentiability will depend on 1.

The set C( M)* is just the set of finite signed measures on M ( Riesz- Markov
theorem). Let now Tp: C( M)* — C( M)" be defined by

Tpdv :=dug * dv.

T, defines clearly a bounded operator on C( M)*.
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Lemma 4.9:

T}, is a compact operator on C( M)*, V E.

proof: We know that (x)"dup( g) = G( g,E) dg =: dpg. xe M can be identified with
a coset kanH =k H, with ke %, ac A, ne N ( see Lemma 2.2). For g¢ G, gx is the
the coset g k H = k( g,x) d( g,x) H = k( g,x) H with uniquely determined ke % and
ie AN. The Haar measure dg on G can be written as dg = dk d;u where dk is the
Haar measure on % and d;u is the left- invariant measure on AN (see Helgason [1],

p.94). Therefor we have for fe C( M)
(T3 )= [fe) dup(e) = [ (80 G(E) dg
:” f(k H) G (k k) d,adk
:J (Jc;( kik™) d,ﬁ) f(kH) dk

SO ( "E )* has, w.l.o.g., a bounded integral kernel with a compact space as its
domain and is therefor compact ( Reed- Simon [1], Thm. VI.23 ). Thus Ty, is

compact. d

Because the integrand in (2.9) is not in C( M) but in L*°( M), we will restrict T to
the dual of L®°( M). L®( M)* is the set of all signed measures with bounded total
variation. In particular L°( M)" is contained in C( M)". Since T is convolution by a

probability measure, Tp maps L*®( M)* into itself.
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Corollary 4.3:

T’E restricted to L™( M)* has 1 as an tsolated eigenvalue.

proof: It follows from Corollary 2.1 and the remark at the end of section 2, that Te
has eigenvalue 1 if restricted to L*°( M)*, since dvp is a probability measure and
therefor in L°( M)*. If 1 would not be an isolated eigenvalue, it wouldn’t be isolated

for TR, on C(M)*, as L™( M)* is contained in C( M)*, contradicting Lemma 4.9. a

If we want to conclude smoothness in E for dvp, which will be done by showing
smoothness of the eigenprojections, we will have to show that the eigenvalue 1 has
geometric and algebraic multiplicity one on L*®( M)*. So far we only know there is a

unique normalized positive functional that is an eigenvector for 1.

Lemma 4.10 :
1) The geometric multiplicity of 1 is one, i. e., dv is the unique normalized
Yy E

eigenvector for 1 in L*°( M)".

(i) The algebraic multiplicity of 1 as an eigenvalue of T’“E is one.

proof: (i) dve L*°( M)" has a unique Jordan decomposition dv = dv, — dv-, where
dv, ,dv- are both finite positive measures. If TE dv = dv, then
Tpdv=Tgpdvy — Tpdv-=(Tgdv), — (Tgdv)-.

Because of the uniqueness of the decomposition and the fact that TE applied to a
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positive measure will give a positive measure, we have

Tg dv, =dv, = c, dl/E and Tg dv- = dv- = c- dl/E
for positive constants c,, c-.
Therefor dv = (¢, — c-) dvg, so dv equals dvf after normalizing.
(i) L%®( M)" = F 4 N, the topological direct sum of a closed F and a finite
dimensional N, such that T, leaves F and N invariant (Dieudonné (1], Thm. 11.4.1 ).
If the algebraic multiplicity of 1 is k, k is the smallest integer such that ( T’é -1 )'c
restricted to N‘ is0and (T -1 )¥=!' N = E (1), where E (1) is the eigenspace of 1.
This means in this case, if k > 1, that there is a dne L°( M)* ( actually in
( T"E -1)2 N > E (1) ) with Tg dn - dp = ¢ dvp , for some constant c7#0. But

JTRpdn-dp=0+# [c dvg , so the statement follows. O

For given k, it follows from Corollary 4.1 that for | large enough
% *)'dyE( g) = G; ( gE) dg with G;e Cg in g for i < k. Convolution with these
signed measures map L°°( M)" into itself. Therefor T’E is C*¥ in E as an operator on

L( M)* with 2= T the convolution by G, ( g,E) dg for i < k.
oE' E ‘

Lemma 4.11:

dvp is C7 in E as an element of L®( M)".

proof: For given k, TIE is C* in E for | large enough and therefor

Pp = - 55 JR(E,E)df
r

l

is C* in E, where I is a circle around 1, only containing this one spectral point of TE



and R (& E) = (Tg- &), which is bounded for (¢ I' and C* in E. Py is the
projection onto the subspace N of the last Lemma, so onto the eigenspace of 1, which
is spanned by dvp. Therefor dvp is C* in E as an element of L®( M)*. Since k was

arbitrary and the final conclusion is independent of 1, the statement follows. O
This finally allows us to employ Corollary 2.2 to conclude the proof of Theorem 1.

As we mentionéd in the introduction, we also get a localisation result. This is a
consequence of Lemma 3.1, for the case where x;. = ¢, , ie Z and ke {1, ..,m}*
with k(d) < m and x;;, i and k as before, just k(d) = m, are i.i.d. random variables
with absolutely continuous distribution. This follows from the positivity of the
smallest Lyapunov exponent associated to the transfer matrices, which is true if a
certain number of convolutions of the measure on the transfer matrices is absolutely
continuous with respect to Haar measure on G.
More precisely, since
[1og 116 1l duet) < oo,

it follows from Oseledec’s theorem, ( see e.g. Walters [1] ), that there are, for almost
all w, real numbers v;, ... ,72md, numbered in increasing order, with y; = - 72md—i+1
and a sequence of subspaces W;,i=1,... ,2m? of Rz’"d with W, C W__,, Wzmd =
Rzmd, such that for ue W, ; \ W;

lim flog|lgn..goull = 7
and W, , = W, iff v; = 7,,,.

The v; depend on E.
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The following result, extracted out of different works on the asymptotic behaviour of
products of random matrices, will enable us, supplemented by Lemma 3.1, to obtain

localisation for our special case.

Proposition 4.1: ( see Furstenberg [1], Bougerol - Lacriox [1], Delyon et al. [1],
Guivarc’h - Raugi [1], Sazanov - Tutubalin [1] )

(2) If there exists an integer n, such that (*)"duc has a C°- density with respect to
Haar measure on G, then all Lyapunov exponents are different.

(22) If Y a # 0, for all E, H., has almost surely pure point spectrum with

exponentially decaying eigenfunctions. The rate of this decay is given by |y 4]
m

The consequence of Lemma 3.1 is that the condition of part (i) is satisfied for some n,
since the distribution of gn . . g; is just the push forward of the distribution
F(xmd—l) .o F(xy) dx; .. dxmd_l under ., for any ce R"’d'"’d_l. Therefore, we
conclude that Y 4 # 0, for all E, in this case and the conclusion of part (ii) hold in

our case.
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§5 A PROOF OF THEOREM 2

§5.1 Part (iii):

The main part of the proof of (iii) of Theorem 2 is the “construction” of Lemma 3.2 .
Denote for simplicity the top potential in g, by xn, the bottom potential by b,. Since
the measure on the b,’s is now pure point, but the result of Corollary 3.1 is only true
a.e. in the b;’s, we need to prove that for all realizations of b-variables, the map %,(x)
defined in Corollary 3.1 has maximal rank a.e. in x. For this we will need more than
10 = dim Sp(2) convolutions; to be precise, our proof uses 58. After this, the result

follows essentially from the corresponding results of Section 3. Again, for any n and

fixed E,
(x)*dp = J dn(b) (x)"dp, , with the notation as in Section 3
= Z cy () dp,y
€]
where the sum goes over all 2" possible Bernoulli states (b,, . . ,bn) and ¢, are the

corresponding probabilistic weights.
Therefor, if we can show that the result of Corollary 3.1 holds for some n for all b and

a.e. X, we can employ all the results thereafter to obtain Theorem 2.

Lemma 5.1:

There erists an integer n such that for each realization of (b, . . . ,bn), the map ¥,
has mazimal rank at a.e. point.

Note: This also implies the same statement for (E-b;, . ., E-by) for all values of the
(b;) and all E. For that reason, we don’t have to consider the E-dependence anymore,

all conclusions are valid for all E.
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We will postpone the proof of this result for a while.

It follows from this Lemma that for each realization of (b,, . . ,bs), there exists a set
of indices iy, . . ,i; such that

(6,~k¢b)k k=1,...,10
is an independent set for a.e. xe R™. We will now fix the x;’s with ig {iil’ .. ’iiw}
and go through the same considerations as in Section 3. Denote the map resulting

from keeping b and all the x,, ié {i . ’ifxo} fixed by &b: R® — G. Then

il’ *

Corollary 5.1:

Rn—lo

For all be R™ and a.e. z¢e where z = (z); with indices i restricted as above, the

map 1va is a diffeomorphism for a.e. (l‘il, .. ’xflo)‘
Note: We fix be R" first. The distinguished index set then depends on b.
proof: The argument is identical to the one in the proof of Corollary 3.1. a

We can write:

()" duy = [ dF () () (5.1
where dfi, is the measure on the transfer matrices with x; fixed, i as above, and dF is
the joint distribution of those variables x;, with dF = F*~1%dx.

This is of the same form as the measure described in (3.6) with dF in place of d7.
Locally

(*)"di, = S(%) J7' (%) Foy; (%)
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where J, = det D¢, and X = (x,-l, C e Xipg)-
Since dF satisfies (C1), the exact same arguments as in Section 3 apply now to (5.1)
for each b and a.e. x (the x now takes the role of the y in Section 3 for the proofs)

and we can conclude

Corollary 5.2:
(i) (*)*duye Lh for some a>0, p>1 and for all b

(#t) For all E, (*)"due Ly for some a>0, p>1
Since also all the results of Section 4 apply, we conclude Theorem 2, part (iii).

Let us now turn to the proof of Lemma 5.1. The strategy will be to show
constructively that Y,;+Y,,+Y,, and Y,;-Y,,4+Y,, with the notation as in Section 2,
are contained in

A=< Yy, .., Ad . gn Y11 > for some n,

91 -

from where we conclude that all Y;;e %. Then we do the same with the X;; and
finally, we show that all Z;; are in %, which means A = ®, the desired result. We

need to do some preliminary work:

Let us first note some useful facts for computations:

A B DT.BT
Ifge G, g = c D , then g7! = T AT
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-BTE;A -BTE|B

(5.3)
ATE,A ATE;B

g_lYng =

In proofing Lemma 5.1 the way we outlined it, we have to show that equations of the
form Ady Y,; = X with H a product of transfer matrices are solvable in H for certain

X e . The next four results prepare for this.

Lemma 5.2:
If g = g4 . . g1, then the first row of g consists of 4 independent polynomials in the

z,’s forallb,i=1,.. 4.

proof: Let p;, . . ,p4 denote the entries of the first row of g. If for «; not all 0,

Y a; p; = 0in x then a; = 0, since it is the only factor of x; . .x4.

Also:

X XpX3(ag-az)+x;(@gbsby-ag-a,bg)+x,xy(asby-ay)-asby+azbybsby-asbytay
~ay-aybyby =0,

from where a; = 0 for all i follows by comparing coefficients, independent of the b,. O

Lemma 5.3:
For constant a;, 1 = 1, . . ,4 with a;# 0, let, for g = g, . .gy,
q = 2 a; g(k,i) , i.e., a weighted row sum.

Then the g, are independent polynomials in the z;, for all b;.
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proof: The argument is the same as above, just comparing coefficients.

Note: It also follows easily that any nontrivial linear combination of the q;’s defined

above is nonconstant in the x; for all b;.

Corollary 5.3:
Let H be a product of transfer matrices with the sum of the 3rd and 4th column equal
to (a;, ..,xq)T and a; # 0. Then, the entries of the sum of the 3rd and 4:h Tow of

gH, with g as before, are independent polynomials in the z; for all b,.

proof: Noting that the i-th entry in the sum of the 3r4 and 4:» row of gH is given by

ay g(i,1) + . . + a4 g(i,4), this follows from Lemma 5.3. a

Corollary 5.4:
Let g, H be as above. Any given nontrivial linear combination of the entries of the

sum of the 3rd and 4th row of gH is nonconstant in the z; independent of the b;.

proof: This follows from the Note after Lemma 5.3 and the specific form of the entries

given in the previous proof. O

We are now in the position to build up ® by going to higher and higher products of

transfer matrices.
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Lemma 5.4:
Given H, a product of transfer matrices, with H(3+4,1) # 0, where H(3+4,1) denotes
the first entry of the sum of rows 3 and 4 of H.

Then there exist g;, t = 1, .. ,8 such that for g = g5 .. ¢4
Yo := Y+ Vet Yy = Ady Yy, = H'g7'Y, gH
The b—valu;es in both H and g are arbitrary.
proof: Let H = [é g} and assume for Y, that
Adp 1 Yo = Yy, (5.4)

from where we will solve backwards for H. Then we will show that we can solve for

gH = H from where the statement follows. (5.4) leads to the conditions

B(1,1)+B(1,2) = 0, B(2,1)+B(2,2) =0

D(1,1)+D(1,2) = 1, D(2,1)+D(2,2) =0

which means that the sum of the 3rd and 4th row of H = (0,0,1,0)T.

Solving then for H = gH leads to

(86 - - &1H)(3+4,0) = (gsg7)™" (0,0,1,0)T = 3rd row of (gsg7) ™"

= (-X7,-1,-X7Xg,-X7-bg) (5.5)
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Set Hy := g4 - - g H. Then

(g68sHo)(3+4,0) =

xsxﬁh‘{+(x5+b6)hg—x5hg—h2

Xeh?+b5h?+bsbshg‘hg‘bshg

(5.6)
xg h{+h3-h3
h{+bgh3-h§
where the h{ are the entries of Hy(3+4,e). Setting (5.4) equal to (5.5) yields
. — -1-bsh%-bsbsh+h3+bshd = bg-bgh3+h)+bgh)
° hy 75 7 1-bghY-bgbshj+h3+bshg+h3-h3
x7 = -(h{+bghg-h§) - b, xg = -5 ( Xgh{+h3-h3) (5.7)

From Corollary 5.3, we can conclude that all the denominators in (5.6) are nonzero at

appropriate Xy, . . ,x4 for given b-values. O

Remark: If g = g4 . . g;, the first row of g is a set of independent polynomials in the
x; by Lemma 5.2. If H is any product of transfer matrices, (gH) (3%4,1) is a
nontrivial linear combination of the first row entries of g, and so nonzero for an

appropriate choice of x;,1 =1, .. 4.
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Whenever a condition like H(3+4,1)# 0 is required, we will multiply H by an
appropriate g to satisfy this condition. The same is valid for the sum or difference of

rows 1 and 2.

Lemma 5.5:
Given H, a product of transfer matrices with H(3-4,1) # 0, there exist, for any given
set of b-values, g, . . . ,gg such that
Y- Yiet Yoy = Angl .. Jg Yy
proof: With a similiar notation as in the previous proof, we have to solve for gH = H

with H(3-4,e) = (0,0,1,0)T. The proof is then virtually identical. O

Lemma 5.6:
Given H, a product of transfer matrices with H(1+2,1) # 0, there exists, for any
given set of b-values, g, . . ,gg such that

X Xpp + Xpp = Adg, 0 Yy

gs

proof: Let X, := X;; + X, + X,, and assume that

Adﬁ__1 Xo=Yy.

This leads to I:I(1+2,o) = (0,0,1,0)T and one can use the same arguments as in the

proof of Lemma 5.4 to obtain the result. The case with the ‘-’ sign is identical. O
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To get the Z,. , we need the following

ij o
Lemma 5.7:

There exist g;, . . ,94 such that the top left blocks of Ady, Yy, .., Ad Yy,

91 - -94

viewed as elements of R*, are independent for any given b, .. by

proof: Let x; = x4, = 0. Then the top left blocks of the prescribed matrices are of the
following form ( Lising (5.3) ):

x; 1 XoX1+X x2+b X
Adg, Yy 0| L Adge, Yy | R
0 0 XoX+1  xy+by

-X1X2b, -XXoby(byby-1)

Adgygy95 Y11 ¢
17273 (-x1-by)(b,) (-x3-by)(byby-1)

by(bsx;+bsby+1) b,(b;bybs-by)

Ad Y, :
1929394 TH (blbz‘l)(baxl+b2b3+1) (blbz'l)(blbzba'b1)

Viewing these matrices as R* - vectors and taking the determinant over those vectors,
we see that this determinant depends on x; and x, and thus, for any given by, . . ,by,

these vectors are independent for a.e. x;, . . ,X4. 0
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Corollary 5.5:

Zy=ay Adgy Yy + ...+ ag Ady ., Vi + Zaij Yi; + ) B Xy

for any given by, . . ,by and suitable choice of z,, . . ,x,, where the a, 3’s depend on k
and l.
proof: This follows immediately from Lemma 5.7. O

After this preparation, we can now start with the actual proof.
Assume that we are given the values for b;, . . ,b;g. We are now going to show that

for this choice of b-values and n = 58 that A = &.

Assume < Yy, Ady, Yy, .. ,Ad g9 Yin > # 0 forall x, .. xq.

91 -

Then :

Step 1:

XILE < Yu, Adgl Yll’ .. ,Ad Yll > ::Q[Ic’ A Lyy « « sT}, SOME k < 10.

91 - - 9k
proof: Let H =gz .. g,. Then AdH_1 X1 = Y, leads to the condition:

First column of H = (0,0,1,0)T, which can be handled as in Lemma 5.4. 0O

Step 2:

For k=34, Y.

ij o Xll & Q[k l,] = 1,2.

proof: From Step 1 we have that X,;¢ U, for any k > 9. For an appropriate choice of
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X1, - - »X14, We know by the remark after Lemma 5.4 that for H = g, . . g,4 the
conditions of Lemma 5.4 are satisfied. Therefor we conclude the existence of x’s such
that Yye U,,. With the same argument, i.e., satisfying the condition of Lemma 5.5
first, we get that Y, - Y5 + Y,,¢ Uy,, from where we conclude that Y,, and

Yjoe Uay 0

Step 3:

X Y’ijé: m58 3 l,] = 1,2.

ISR

proof: Set H = g, . . g34 and follow the same arguments as before, using Lemma 5.6.0

And finally:

Step 4:

Uss = 6

proof: It remains to show that Z;,¢ Us5. But this follows from the previous steps and

Corollary 5.5. O

Since the choice of by, . . ,bsg was arbitrary, Lemma 5.1 now follows.
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§5.2 Parts (i), (ii):

Let us again denote the potentials with Bernoulli distribution by b;.. We will show
that the distribution of the (b;,) as stated in the Theorem satisfy a condition similiar
to (C1), which suffices to use the proofs in § 3, if we takei = 1, .., n+1, that is if we

take n+1 instead of n products of transfer matrices. Again, we have

()™ dp =) o (0)"Hdp,
[©)
with the same notation as in § 5.1.
We will show that for each fixed E, Lemma 3.3 is satisfied for a specified map and its
Jacobian, from where we conclude the proof by following the same arguments for the
proof of Theorem 1, applied to all the individual (*)"“dpb. We saw in §3 that there is
a distinguished index set I := { (i},k;), . ., (ig,ks) } such that for fixed y,;, with

(i,k)¢ I and fixed b;,, (i =1,..,n ), the map

wyvb = gﬁ A gl

is a diffeomorphism in the index set I - variables x;, . . ,x; and

det D¢, , = a(b-E) B(b-E,y-E,x-E)

where a, ( are polynomial and there is no b’ = (b%;) such that 8 (b°-E,y-E,x-E) = 0

in the x, y variables.
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Let us define the map

V= gn41 Bn - - 81

¢ has maximal rank, if one of the two maps ¢, := gn . . g, , ¥, '= g,,, - - 82 has
maximal rank. Associated to ¥, and 1, are two sets of distinguished indices I, and I,
such that for fixed y;;, (i,k)¢ I, and fixed by, ¥, , is a diffeomorphism a.e. in the
(x; ), ie I, s =1, 2. Also,

det Dy, = as (b-E) B, (b-E,y-E x-E),

where a;(b;;) = ay(b;,;,) fori=1,..,n. Therefor, for fixed E and b, 3 will have

R(n+1)(md_md—1)

maximal rank at a.e. (y,x)e unless

a((b-E) = a,(b-E) =0 (5.8)
and thus, if for all be supp dn and E fixed, where dn is the joint distribution of the
b;, withi=1,..,n+1, as (b-E) # 0 for s = 1 or 2, we can use the corresponding
s in place of ¥ in § 3 to prove that (*)"“duEs L} for some a,p. The statement then
follows as before. The same argument can be used for all E.

To see that the distributions specified in the statement of the Theorem don’t have

any b satisfying (5.8) in its support, let us define

Ns(E):={b|eas(b-E)y=0}, s=1,2

and N := tEJ, { N,(E) N N,(E) }.

Then N has dimension at most (n+1) (m? - m?7!) - 1. Since we also know from

+1)(md—m

d-1
Lemma 3.1, that the diagonal of R ) does not meet N, we have dist (0,N)

= ¢ > 0. If b;, has Bernoulli (0,b) distribution with |b| < ¢, then supp dy N N = 0, so
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(5.8) cannot be satisfied for any be supp dn. This means that for all E, the map v
has maximal rank for all b-variables and a.e. in the “top surface”-variables. For fixed

b and any E, det Dy is not identical 0 in the (x,y) for s = 1 or 2 and Lemma 3.3

3,9,
is satisfied with det Dy, ,, in place of Jy. So we can use ¢,  , instead of ¥y in § 3 and
follow the same arguments to conclude that k(E) is a C* function for this model.
Since smoothness of k(E) is invariant under translations of the potential, ( k just gets
translated as well ), (i) follows for by = e.

To prove part (ii), we note that if a particular realization (b;,) of the Bernoulli

variables is contained in N, it follows from the fact that N is a lower dimensional

manifold, that for any given ¢ > 0 and a.e. vector ¢ = (c;; )¢ B¢, where B¢ is the ball

R(n+1)(md—md—1)

of radius € around 0 in , (bjr + ¢;z)€ N. Then the same argument as

above applies, as (5.8) cannot be satisfied for the perturbed potential, which proves

part (ii).
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