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Abstract

A high-speed InSb infrared detector array and the method of Coherent Gradient
Sensing (CGS) are used in several experimental configurations to explore the mecha-
nisms and effects of heat generation in dynamic fracture and deformation.

First, the dependence of the measured dynamic crack tip temperature upon crack
tip speed is investigated for cracks propagating dynamically in AISI 4340 carbon steel.
Then, the dynamic crack tip temperature in a titanium alloy (Ti-10V-2Fe-3Al) is mea-
sured in order to examine the role of material parameters in determining the crack tip
temperature at different crack growth speeds. It is seen that the crack tip temperature
increases when crack tip velocities are increased from 600 m/s to 900 m/s in 4340
steel. The extent of the active plastic zone at the surface of the specimen, however, de-
creases with increasing crack velocity. When the results for temperature measurements
in steel are compared with those for titanium, it is seen that the material parameters
that are most important are the dynamic yield strength, which determines the amount
of plasticity, and the heat capacity of the material. Conductivity has little effect.

Next, the nature of hyperbolic heat conduction at the tip of a dynamic crack is in-
vestigated. A mathematical model is developed to predict the temperature field around a
dynamically propagating crack tip for a material that follows a hyperbolic heat conduc-
tion law. A Green’s function for the governing partial differential equation is derived.
The model is solved for a variety of experimental conditions by numerical integration
of the Green’s function. Various possible effects of hyperbolic heat conduction around
a crack tip are explored. The model is then used to simulate the experimental condi-
tions typically observed in dynamic fracture. Because conduction is minimal around
the dynamically propagating crack tip, no effects of hyperbolic heat conduction are
observed. It is also observed that the temperature field around the dynamic crack tip is

adiabatic.
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Since adiabatic conditions are observed around a propagating crack tip, an impor-
tant parameter which governs the distribution and intensity of crack tip heating is the
fraction of plastic work rate converted to heat, 5. For this investigation 3 is not treated
as a mere parameter, the possibility of the existence of a constitutive relationship be-
tween this parameter and strain at high strain-rates is investigated using the Kolsky bar
as a loading apparatus. It is found that the conversion of plastic work to heat at high
strain-rates is similar to that at low strain rates for aluminum and for steel and that 3
remains a constant independent of strain at high strains for both these materials. For
rate sensitive titanium, /3 is observed to be a function of strain possibly due to twinning
deformation.

It is known that heat generation can lead to the formation of shear bands especially
in dynamic fracture experiments. The formation of a shear band at the tip of a notch
or crack in C-300 steel is examined using the method of CGS. First, the CGS method
is used to verify a model of the notch tip stress intensity factor, Ky, as a function of
time. Good agreement is found between the experimental measurement of K1 and the
predicted value for PMMA impacted at 5 m/s. Then the method is used to investigate
the formation of shear bands at the tip of a notch under the same conditions. A Dugdale
crack model is used to interpret the results, and it is seen that the shear stress decreases
from 1.6 GPa to 1.3 GPa as the shear band propagates. This result is in good agreement

with measurements made using the Kolsky bar.
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CHAPTER 1

Preliminaries

1.1 Motivation

In dynamic fracture mechanics it is often postulated that for most structural ma-
terials a unique relationship exists between the critical crack tip driving force required
for crack growth, ¢, and the crack growth velocity, ¢. (Here, « is the crack length
and the dot implies differentiation with respect to time.) This relationship is consid-
ered to be a “material property” such that by using it in an engineering problem with
a specific driving force, one may solve the equation of motion for the crack tip and
produce a quantitative prediction of the crack length as a function of time. (Freund,
1990) Relationships between ' and ¢ have been examined experimentally as well as
theoretically, and a typical example of an experimentally determined relationship can be
seen in Figure 1.1. The general shape of the curve shows a flat region at low velocities
where the crack tip driving force is relatively independent of velocity. Accelerating
the crack when it is propagating in this regime requires only a small change in driving
force, I'¢. In contrast, at higher velocities, the curve exhibits a steeply rising section
where the driving force is highly sensitive to changes in velocity, and a significant
increase in crack velocity requires a hefty increase in the driving force.

This general behavior can be qualitatively modeled by implementing either elastic
or plastic deformation constitutive laws for the material at the crack tip. The steep rise
in the curve is then attributed to the inertia of the material at the crack tip. (Freund
and Douglas, 1982; Freund, 1990 and Deng and Rosakis, 1990) However, the pre-

dicted maximum attainable crack speed for these models is too high unless some broad
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FIGURE 1.1 The dynamic fracture toughness of 4340 steel as reported by Zehnder and
Rosakis (1990)

assumptions are made about the mechanisms of the material failure at the dynamic
crack tip in the form of a “growth criterion.” (Freund and Douglas, 1982) Usually
large amounts of plasticity at the crack tip are allowed in order for the inertial model
to match experimental data. As a result, there is some question as to whether thermal
softening might be an important part of the observed behavior through its effect upon
the “growth criterion.” It is known that plastic deformation occurs at the crack tip in
ductile metals during dynamic fracture and that the same deformation leads to the gen-
eration of heat. Consequently, a significant temperature rise can occur at a dynamically
propagating crack tip for high velocities causing the crack tip material to soften and
become “locally” more ductile than it is at lower velocities. The greater ductility would
result in more plasticity and an increase in inertial resistance to crack propagation at

the crack tip.
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Table 1.1
Some Analytical and Numerical Predictions of the Temperature Rise

at the Tip of a Dynamically Propagating Crack

Reference Material Crack Maximum

Speed (m/s)  Temperature (°C)

Rice and Levy, 1969 Steel 900 1400
Titanium 900 >10,000
Kuang and Atluri, 1985 Steel 762 700
Sung and Achenbach, 1987 Steel 300 700
Douglas and Mair, 1987 Steel 1500 1
Titanium 1500 50
Malali, 1988 Steel 1500 528
Titanium 1500 11,500
Krishna Kumar et al., 1991 Steel 320-1600 150-400

In order to asses the role of thermal softening in dynamic crack propagation, it
is obviously necessary to examine the magnitude and nature of the temperature field
around the a dynamically propagating crack tip. In fact, several authors have attempted
to predict the temperature rise at the tip of a dynamically propagating crack, and a
brief summary of some of their results may be found in Table 1.1. It is seen that
the overall prediction of temperature rise can vary dramatically depending upon the
material properties and the assumptions of the model. Experimental measurement of
the actual temperature rise provides better illumination. Zehnder and Rosakis (1991)
report the experimentally measured temperature field for 4340 steel propagating at 900
m/s. The maximum temperature reported by these authors is 500°C. However, their
work did not investigate the role of material parameters and the effect of crack tip

velocity upon the temperature field.
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In addition to crack tip temperature field measurements, true understanding of the
crack tip material deformation and resultant temperature rise requires some knowledge
of the mechanics of the conversion of plastic work to heat at the tip. In the predictions
reported in Table 1.1, it is often assumed that a fixed percentage of plastic work is
converted to heat during all stages of deformation. However, it has also been reported
elsewhere that the amount of plastic work converted to heat actually depends upon
strain and, possibly, strain rate. Although much work has been performed on the
understanding of the conversion of plastic work to heat at low strain rates (Bever et
al., 1973) not much has been reported about the same phenomenon at high strain rates.
At a crack tip strain rates can be as high as 10°, (Zehnder and Rosakis, 1991) and
it is clear that some investigations of the conversion of plastic work to heat at high
strain rates would be highly applicable to the analysis of the dynamic crack tip heating
problem.

In contrast, another vein of interest in crack tip temperature fields is predicated by
knowledge that large, adiabatic temperature rises during dynamic-plastic deformation
can lead to unstable deformation processes that, otherwise, would not be expected.
Duffy (1984), for example, has observed the early onset of shear localization in dynamic
torsion experiments. This effect is widely attributed to the effects of temperature rise,
i.e., thermal softening, during dynamic plastic deformation. (Mechanics of Materials,
1993) It is suspected that similar effects may be occurring in dynamic fracture. In
one case in particular (Kalthoff, 1987), it seems that dynamic failure mode selection
may depend entirely upon the rate of loading and the competition between thermal
softening effects and strain or strain rate hardening effects (Lee, 1990). Experimental
investigation into this phenomenon would benefit from temperature measurement and
full field deformation measurements at the crack tip.

It is intended that this work be an accurate representation of experimental inves-
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tigations into the iésues discussed up to this point. Although some lengthy theoretical
developments are available in these area, it is important to complement such work with
experimental investigation in hopes of properly indicating the critical parameters or
dominant mechanisms in action. Thus, ideally, the current understanding of such a

phenomenon can be either verified, enhanced or disqualified.

1.2 Experimental Methods

A brief summary and brief historical development of the experimental methods
employed are included here in order to familiarize the reader with the nature of the
work contained within this thesis.

Zehnder and Rosakis (1991) used an InSb infrared detector array, shown in Figure
1.2, to measure crack tip temperature fields in 4340 steel, and the same method is used
here. This method has been used and developed by several authors in the past. Most
notably, Duffy (1984) used a very similar arrangement during investigations of shear
localization in torsional Kolsky bar experiments. The primary feature of the present
system is that it utilizes reflecting lenses to focus the infrared image of the object on
the detectors. First indication of such a focussed system may be found in Moss and
Pond (1975). Before that several authors used unfocussed IR detectors, most notably in
the study of visco-elastic fracture, to produce measurements of maximum temperature
during dynamic, low-speed fracture (Fuller et al., 1975). Details of the workings of the
temperature measurement system may be found in Chapter 2. It suffices to say that a
calibration procedure is used to correlate the output voltage of the detectors to a given
temperature. The calibration makes knowledge of the intimate details of the infrared
radiation emission and transmission procedures unnecessary. Stated simply, a care-
fully measured, material specific voltage is assigned to a carefully, yet independently,
measured temperature for a full range of possible experimental temperatures for every

material studied. Conversion of the voltage to temperature is then performed using the
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calibration curve as a reference.

In Chapter 4 a Kolsky bar is used to measure high strain-rate behavior of materials.
This apparatus is well known and quite well documented. Originally introduced by
Kolsky (1949), it has now reached wide use and a review of its operation may be
found in the Metals Handbook (Follansbee, 1985).

In Part II of this thesis temperature measurements are combined with deformation
measurement during high-speed dynamic failure in order to produce a better under-
standing of the formation of shear localizations at a dynamic crack or notch tip. There
are several methods by which to measure dynamic crack tip deformations—the most
common of these are discussed in Chapter 5—however, the coherent gradient sensor
(CGS) is used here. This method employs a simple interferometer to measure the gra-
dient of hydrostatic stress around the crack or notch tip. Correlations are then made
between the fringe pattern and the expected deformation field. The system was only
recently introduced by Tippur et al. (1989), but it has a number of advantages over the
usual methods as discussed in detail in Chapter 5. (See Rosakis, 1993.) A complete

explanation of the working principle of CGS can be found in the same chapter.

1.3 Organization

It is the purpose of this treatise to investigate the cause, the nature and the effects
of the temperature rise at the tip of a dynamic crack. In the interest of clarity, a
dynamic crack is defined here following Freund’s (1990) definition of the field of

dynamic fracture mechanics:
“Dynamic fracture mechanics is the subficld of fracture mechanics concerned

with fracture phenomena for which the role of material inertia becomes signif-
icant.”

Likewise, a dynamic crack shall be any crack “for which the role of material inertia

becomes significant.” This implies that the term “dynamic crack” may describe either a
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stationary crack loaded by stress waves or a crack propagating at a significant fraction
of the material Rayleigh wave speed, cp i.e. 0.3¢, < @ < 0.6¢,. Examples of both of
these types of dynamic cracks are examined here, and the term “dynamic crack” will

be used in reference to both.

The presentation of the work is organized in the following way.

1.3.1 Partl

In the first chapter of this work investigations into the effects of crack tip velocity
and material parameters upon the maximum temperature and the temperature field
around the tip of a dynamic crack are reported. A difference is found between the
temperature fields around the crack tips propagating at 900 m/s and 600 m/s in 4340
steel. And, some investigation into the temperature fields around a crack propagating
in a titanium alloy are reported. Discussion of the salient features of this work are
contained within the Chapter.

During the completion and analysis of the results reported in Chapter 1, it was
suggested in the literature that the temperature field around a dynamically propagating
crack tip might demonstrate some effects of a secondary heat conduction law (Tzou
1990). In Chapter 2 an investigation into the possible effects of “hyperbolic heat
conduction” around a dynamically propagating crack tip is reported. It was necessary
to derive the travelling point source solution of the hyperbolic heat conduction equation
before any report of possible effects of this type of heat conduction could be analyzed.
It was thought that an observed difference between the temperature fields around the
crack tips propagating at 900 m/s and 600 m/s in 4340 steel (as reported in Chapter 1)
might be due to hyperbolic heat conduction. However, as demonstrated in Chapter 2,
it easy to show that this is not true.

Throughout Chapters 1 and 2 it is assumed that 90% of plastic work is converted

to heat during all phases of deformation. However, it is known that this simplifying
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assumption is not, in general, valid at low strain-rates (Bever et al., 1973) and at high
strain-rates virtually no conclusive investigations have been performed. Therefore, in
Chapter 3 an investigation into the conversion of plastic work to heat at high strain-
rates is reported. The work explores a new method by which to measure the rate of
conversion of plastic work to heat. This method uses both the IR detector array shown
in Figure 1.2 and the Kolsky bar. Since the deformation occurs over very short times in
the Kolsky bar, no time is allowed for conductive cooling—this point is verified both
through models and experimental results—and the analysis of the results is greatly
simplified making it rather trivial to extract information about the rate of conversion of

plastic work to heat at high strain-rates.

132 Partll

In Part I the investigation is aimed at reporting the nature and the cause of the
temperature rise at a dynamic crack tip. In Part IT the focus of the work changes to
explore the effects of such a temperature rise. Namely, it is of interest to examine the
effect of thermal softening at the tip of a dynamically loaded crack upon failure mode
selection. Recently, Kalthoff (1987) has reported that when a pre-notched steel plate
is loaded asymmetrically and dynamically in mode-II type deformation, the resulting
failure growth path varies with impact velocity. In some cases the failure behaves
following a maximum hoop stress type criterion and in other cases the failure is better
described by a maximum shear stress failure criterion. This phenomenon is examined
here in two stages; first CGS is used in transmission on PMMA specimens to examine
the nature of the elastic deformation field at the crack tip, then CGS is used in reflection
of steel plates to examine the deformation field around a shear band emanating from a
dynamically loaded pre-notch or pre-crack.

Because CGS is a new method there is some concern about the validity of using

it in a dynamic mixed-mode deformation situation. Consequently, it is necessary to
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provide certain proof that the method can be used under such conditions. In Chapter 5
an investigation into the feasibility and validity of using the coherent gradient sensor
on the pre-notched geometry of Kalthoff was preformed. High-speed photography was
used to record the interferograms at short time intervals, and, thus, examine the time
dependence of the crack tip deformation field. The measurements made with CGS were
compared to an elastic solution for the crack tip deformation field for a model material,
PMMA (Lee, 1990).

In Chapter 6 the method of CGS was used to produce deformation information
for the phenomenon reported by Kalthoff (1987). An air gun is used to asymmetrically
impact a thin steel pre-notched plate on its edge. Again, high-speed photography and
CGS are used to record the time evolution of the crack tip deformation field on one
side of the plate. The deformation field fringe patterns are interpreted using a Dugdale
mode-II model resulting in measurements of the time histories of shear band length and
the average shear stress on the shear band. The measured shear stress is compared to

the measured shear stress for shear bands formed in the Kolsky bar.
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Part I:

Mechanisms of Plastic Heating at
the Tip of a Dynamic Crack and
the Resultant Temperature Rise
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CHAPTER 2

On the Dependence of the Dynamic Crack Tip Tempera-
ture Fields in Metals Upon Crack Tip Velocity and Material
Parameters

Overview

Although various approximations have been used to analytically predict the tem-
perature rise at a dynamic crack tip and its relation to the crack tip velocity or the
material properties, few experimental investigations of these effects exist. Here, the
method of using a high-speed infrared detector array to measure the temperature dis-
tribution at the tip of a dynamically propagating crack tip is outlined, and the results
from a number of experiments on different metal alloys are reviewed. First the effect
of crack tip velocity is reviewed, and it is seen that the maximum temperature increases
with increasing velocity and that a significant change in the geometry of the temperature
distribution occurs at higher velocities in steel due to the opening of the crack faces
behind the crack tip. Next, the effect of thermal properties is examined, and it is seen
that, due to adiabatic conditions at the crack tip, changes in thermal conductivity do
not significantly affect the temperature field. Changes in density and heat capacity are
more likely to produce significant differences in temperature than changes in thermal
conductivity. Finally, the effect of heat upon the crack tip deformation is reviewed, and
it is seen that the generation of heat at the crack tip in steel leads to the formation of a
shear band at 45° to the surface of the specimen. In titanium, no conclusive evidence

of shear band formation is seen.



2.1 Introduction
It is known that in ductile metals plasticity ahead of a dynamically propagating or
dynamically loaded crack can lead to the generation of heat resulting in a significant
temperature rise at the crack tip. Such increases in thermal energy can lead to changes
in fracture toughness, changes in fracture mode and instabilities in the resulting defor-
mation. For example, it has been observed that heat generated in dynamic deformations
can result in the decomposition of thermally unstable materials(Fox and Sonria-Ruiz,
1970) and localized melting in titanium alloys(Bryant et al., (1986). If the conditions
of the deformation are approximated by neglecting heat conduction (by assuming that
adiabatic heating conditions prevail) and by neglecting the thermo-elastic effect, the
temperature rise due to dynamic plasticity is given quite simply by
I A .
AT(t) = — o (T)él (7)dr 2.1)

X ¥
/)('I’ o=

where AT'(t) is the temperature rise, 3 is the fraction of work converted to heat—
roughly .85-1.00 (Taylor and Quinney, 1934; Bever et al.,, 1973)—p is the density
(assumed independent of temperature), ¢, is the specific heat (also assumed independent

of temperature), and o;; and €” are the Cartesian stress and plastic strain-rate tensor

;
components. The temperature field in this case corresponds exactly with the plastic
deformation field; when the plastic work density is higher the temperature is higher,
and there is no temperature rise at a point if no plasticity occurs there.

While the assumption of adiabatic heating and the negligence of the thermo-elastic
effect may significantly simplify the problem of calculating the temperature rise in dy-
namic deformation experiments, the conduction of heat is not completely absent in any
realistic situation and elasticity is always present. If the effects of heat conduction and
thermo-elasticity are included in the analysis, the standard heat (or diffusion) equation
is invariably invoked,

oT e w

N E ,
W - — = —— ——T,é5 2.2
“ ot pey + pey (1 —2v) Rk (2:22)
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where o = k/pc,, k is the thermal conductivity,
W = io,;él (2.2b)

T, is the initial, ambient temperature, « is the thermal expansion coefficient, E is
Young’s modulus, v is Poisson’s ratio, and €, is the rate of elastic dilatation. On the
right-hand side of this equation are two terms characterizing two sources of heat in a
deformation; the first term characterizes heat generated by plastic deformation (Taylor
and Quinney, 1934: Bever et al., 1973) while the second term characterizes thermo-
elastic cooling due to elastic dilatation (Sneddon and Berry, 1958). The solution of this
coupled heat equation is greatly dependent upon the geometry of the problem at hand.
For a crack of length a, propagating at a constant velocity, &, it is beneficial to use a
coordinate system that is translating with the crack tip. This results in a reformulation
of Eq (2.2a);

or W

aViAT + =

= 2.
.y PCp 23)

where thermo-elastic effects have been neglected, 2 is the coordinate parallel to the
crack faces and x, is perpendicular to the crack faces with the origin at the crack tip.
The solution of Eq (2.3) for a point source of heat in two dimensions is given by

Carslaw and Jaeger (1959) as
Ty, a0) = T—Q—(‘xp [——(l—i—l-} Iy (EL) 2.4)
: 4% &%

21 + 23 and I\ is the modified Bessel’s function of the zeroth order. To

where r = -
predict the temperature field around a propagating crack tip the point source solution is
used as a Green’s function to be integrated over the area of the plastic work zone, A,,.
Assuming the plastic work zone is self-similar throughout the thickness of the specimen
and letting Q = TP d¢, d&,, the temperature field due to a experimental plastic zone is
given by

T(xy,29) = / Tp(a1 — €.y — E)WP(E1, E)dE dés. (2.5)

J A
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Because of the logarithmic singularity of the modified Bessel’s function at r = (, the
solution given by Eq (2.5) is finite and well behaved. Note that the assumption of
a through-thickness, self-similar plastic work zone is rarely true where experimental

temperature measurements are made—at the surface—due to the stress free surface

boundary condition. Also note that knowledge of the active plastic zone size and shape,
I/V?’(ml,:cg). is required in Eq (2.5). Exactly determining this function in closed form
for most real materials is virtually impossible. Approximations are used, or numerical
calculation are substituted.

In order to apply Eq (2.1) or Eq (2.5) to known problems—that is, in order to
exactly determine the extent of heating and the shape of a temperature field for known
dynamic loading—a constitutive equation is required to specify a relation between
stress, o;j, temperature, T, strain, ¢;;, and strain-rate €;;. This constitutive law would
be used in Eq (2.2b) in conjunction with Eqs (2.1) or (2.5) to find the temperature field
solution. Specifically lacking in the studies of dynamic deformation and heat generation
are investigations of the constitutive behavior of materials. The dependence of stress
upon temperature is not easily quantified; it is known that the rate of heating can have
significant effects making it experimentally difficult to test at high temperatures. Also,
the dependence of stress upon strain and temperature is associated with the history of
temperature and strain as well as their current value. (It is well known that thermo-
mechanical treatment can drastically alter the response of the material.) Furthermore,
in dynamic testing arrangements such as the split Hopkinson bar (Follansbee, 1985)
or plate impact tests (Clifton and Klopp, 1985), where dynamic constitutive laws are
usually investigated experimentally, the temperature is not known and, in fact, effects
attributed to a change in strain-rate could very well be due to heating. This leaves
an investigator with little hope of precisely modelling the temperature field in most

experimental situations. Theorists are forced to asswme a constitutive relation, usually
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a general one to incorporate most possibilities, and produce results for purely theoretical
materials. Fortunately, for metals some common characteristics may be included in the
constitutive law to qualitatively reproduce experimental behavior. First, most metals
work-harden; with increasing plastic strain the resistance of the material to further
plastic strain increases. Second, many metals strain-rate harden; increasing the plastic
strain-rate results in increased resistance to further plastic straining. And, lastly, most
metals thermally soften; increasing the temperature results in a decrease in the resistance
to further plastic straining.

A number of theoretical investigations have taken the approach outlined above by
directly assuming a constitutive law or by assuming a shape and size for the dynamic
plastic zone at a crack tip. In most calculations the emphasis is placed upon calculating
the maximum temperature so that it can be ascertained as to whether heating effects
are important. Decoupled mechanical and thermal fields are usually evaluated. A
summary can be found in Table 1.1. It should be noted that there is a sensitivity
of the maximum temperature to the shape of the active plastic zone in the above
calculations. By changing the plastic work rate distribution large differences in the
maximum temperature may be induced. However, it suffices to say that temperature
rises at the crack tip are expected to be significant.

Weichert and Schonert (1974, 1978a, and 1978b) have produced the temperature
fields, and not just the maximum temperature, for square plastic work zones, as well
as circles, of constant intensity. They predict temperatures rises of 3000°C for brittle
materials such as quartz and glass by using a direct numerical integration technique
to evaluate Eq (2.5). For the case of a propagating crack in metals the theoretical
temperature field calculated by the same method for an experimental approximation of
the plastic work zone (Mason and Rosakis, 1992) is shown in Fig 2.1. Notice that

the contours of constant temperature extend straight back from the theoretical plastic
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FIGURE 2.1 Theoretical calculation of the temperature field around a propagating crack
tip in stee! (Mason and Rosakis, 1992). A convolution of the the form in
Eq (2.5) is used in conjunction with an approximation to the experimen-
tally measured plastic work zone shown in Figs 6 and 7.

zone eventually curving toward the negative 2, axis some distance behind the crack
tip. This solution differs from the adiabatic solution in that the temperature is forced to
zero at r = oc due to the boundary conditions of the point source solution in Eq (2.4).

There has been some suggestion that hyperbolic heat conduction may play a factor
when crack speeds become significant with respect to the shear wave speed in the ma-
terial (Tzou, 1990a and 1990b). However, closer examination shows that the simplified
theory of hyperbolic heat conduction produces the same prediction as seen in Fig 2.1
for typical experimental conditions and crack speeds below the wave speed of heat
propagation. When the crack speed is above the wave speed of heat propagation hy-
perbolic heat conduction theory predicts a temperature field that is drastically different

than the experimentally observed fields (Mason and Rosakis, 1992).
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While most of the investigations mentioned above include work hardening in the
constitutive equation, few include strain-rate hardening or visco-plasticity, and none
include thermal softening. It is thermal softening that commonly produces instabilities
and anomalous behavior in dynamic plasticity experiments. As in a standard uniaxial
tension test where geometric softening (due to the reduction in area of the test sample)
competes with the inherent work hardening of the material until an instability, a neck,
results, in dynamic tests thermal softening competes with work hardening and strain-
rate hardening. In a dynamic plasticity test the generation of heat, which increases
the temperature, 7', can increase the amount of softening until an instability occurs
resulting in the localization of the deformation to a single plane and the formation
of a shear band. Adiabatic shear band formation has been observed for decades; for
a review of the subject see Hutchinson (1984). In a torsional split Hopkinson bar
experiment, Duffy and coworkers (Marchand and Duffy, 1988; Hartley et al., 1987,
and Duffy 1984) and Giovanola (1988a and 1988b) were able to form shear bands
in pure shear on several steels. They observed two stages of shear and temperature
localization. First, localization by means of a thermal instability model is observed.
This localization is due to the competition between thermal softening and strain or
strain-rate hardening. Next, localization occurs on a smaller scale related to microvoid
formation and coalescence. Using infrared detectors, temperatures as high as 450°C
have been measured in the shear bands (Marchand and Duffy, 1988; Hartley et al,,

1987; and Duffy 1984).

2.2 Experimental Methods

The measurement of the temperature field at a dynamic crack tip (a crack tip that
is either propagating or dynamically loaded) requires some specific properties from the
measurement apparatus. First, it is necessary that the measurement technique does not

significantly alter the deformation field or the temperature field. Thus, it must be a non-
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destructive technique; drilling a hole for a thermocouple, for example, is not feasible.
Second, it is necessary that the system be capable of fast response times. For a crack
propagating at 900 m/s the temperature could rise from zero to its maximum in 2 ps.
A rise time of at least 1 ;s in the measuring system is required. Candidate methods
include; thermocouples on the surface, thermally sensitive films and infrared detector.

Thermocouples have been used by Fuller et al. (1975), Shockey et al. (1983),
Klemm (1989) and D&l (1973) to make some measurements involving the tempera-
ture fields around dynamically propagating cracks. In studying PMMA, Doll attached
thermocouples within one millimeter of the crack path, and, as the crack passed, a
temperature was recorded. Shockey et al. also used thermocouples welded to the side
of the prospective crack path. Fuller et al. combined thermocouples with temperature
sensitive liquid crystal films and infrared temperature measurements, using InSb detec-
tors, of the crack faces. Eq (2.1) was used along with extensive assumptions about the
plastic zone to find the maximum temperature, T,,..=230°C. Klemm used the thermo-
couples in the crack path to actually measure the temperature field in the 50 mm plastic
zone for a ductile steel. A maximum temperature of 100°C is reported.

Coffey and Jacobs (1981) and Swallowe et al. (1986) used thermally sensitive films
to measure the temperature of various polymers under impact loading and subsequent
failure. Temperatures up to 700°C are reported.

Moss and Pond (1975) used infrared detectors to investigate the formation of inho-
mogeneities in the deformation of copper. Although other authors had used unfocused
IR detectors to measure average temperature (Fuller et al., 1975), Moss and Pond were
interested in the formation of Luders bands in copper and, thus, they were interested in
measuring the local thermal changes in the material. They used a single GeCu infrared
detector in conjunction with a Cassegrain mirror system to measure temperature at two

close points on the sample relative to each other. They report a temperature rise of
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18°C in the Luders band compared to the bulk. Duffy and coworkers (Marchand and
Duffy, 1988; Hartley et al., 1987; and Dufty 1984) used a linear array of InSb detec-
tors focused with a single convex mirror, later replaced by a Cassegrain microscope
objective, to measure the temperature in dynamically shearing cylinders loaded in tor-
sion. Maximum temperatures of 450°C are reported. The use of mirror elements in the
optical systems by these authors is motivated by the desire to limit aberration. Because
the detectors integrate energy over a wide range of wavelengths, it is necessary that the
optical system focuses over that same range of wavelengths. Any refracting element
would certainly produce unacceptable levels of chromatic aberration that would render
the system inaccurate. The switch by Duffy and coworkers (Marchand and Duffy, 1988;
Hartley et al., 1987; and Duffy 1984) and Fuller et al. (1975) to InSb detectors from
the GeCu detector of Moss and Pond (1975) reflects the desire to produce the greatest
sensitivity in the range of wavelengths expected in addition to maintaining the smallest
rise time possible. InSb offers the best balance of these two objectives.

The difficulty with thermocouples is that they produce very small signals even
when placed within Imm of the crack path. Locating them directly in the crack path
would still not suffice unless very large plastic zones were expected as in the case of
Klemm (1989). Also, because of the finite size of the actual thermocouple junction,
slow rise times, > 1us, are characteristic. Thermally sensitive films suffer from cal-
ibration difficulties. The duration and temperature of exposure both contribute to the
darkening of the film. It is necessary to assign a temperature value to various grey
levels in a calibration before any quantitative results may be recorded, and there is
always some ambiguity due to the effects of the length of exposure. Furthermore, both
thermocouples and thermally sensitive films do not offer high spatial resolution. It is
expected from Fig 2.1 that the temperature will be localized to a small area, thus ther-

mocouple measurements are taken some distance away from the maximum temperature
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and extrapolation is used. Thermally sensitive films blacken in the area of maximum
temperature making the indiscernible grey-level patterns. Finally, thermocouples and
thermally sensitive films offer only surface temperature measurements. No indication
of the temperature within the solid is recorded. Infrared detectors offer an easy, but
expensive, solution to the problems of measuring the temperature field at a crack tip
with thermocouples or thermally sensitive films. Infrared detectors have fast response
times, are non-destructive and are relatively easy to calibrate and utilize. One draw-
back to using infrared detectors, however, is that they too offer only surface temperature
measurement.

The results reported here use the system employed by Zehnder and Rosakis (1991
and 1992) and Zehnder and Kallivayalil (1991). An Offner imaging system is used,
instead of a Cassegrain system, in conjunction with a linear array of InSb detectors.
Originally developed for use in micro-lithography,(Offner, 1975) the Offner optical
system offers the ability to correct the image for third- and fifth-order abberations.
Although such accuracy may not be required due to the finite detector size, the sys-
tem is quite simple to set up, and it offers some desirable features. First, the system
can be easily and inexpensively assembled from commercially available optical com-
ponents. Suzuki (1983a and 1983b) has evaluated the proper separation distance of
the two reflecting components that minimizes the abberations. Second, by choosing
large components the system can be set up with a large aperture making the detection
of small changes in temperature quite easy. Also, for the temperature measurement
around dynamically propagating crack tips it is desirable to have the measuring equip-
ment a safe distance from the fracture event. The Offner system can accommodate
this requirement without difficulty. One drawback to the Offner system is that it has
fixed magnification, 1:1, that cannot be changed without destroying the performance

of the optical system. Also, the image is not formed on the system axis, and the use
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of planar mirrors is required to make the image easily accessible. In contrast to the
Offner system, the Cassegrain system can be used to produce variable magnification,
and the detector array may be placed in line with the system so that no additional planar
mirrors are required to view the image. However, drawbacks to the Cassegrain system
include; obstructed aperture, small field of view and less aberration correction than the
Offner system. Furthermore, the system is expensive if it is purchased commercially.
There are several additional promising optical systems in the literature that provide a
balance of the desirable features of both the Offner and the Cassegrain system(Rah and
Lee, 1989, and Egdall, 1985). These systems use reflecting elements exclusively to
eliminate chromatic aberration and have been corrected to produce almost diffraction
limited performance. Unfortunately, they are not commercially available and require
considerable sophistication to manufacture and assemble.

As noted before, the detectors integrate over a range of wavelengths. For InSb
that range is 1 pm to 5.5 jon. The voltage produced by the detectors is related to the
energy emitted by the specimen through an integral depending upon the emissivity of
the material, (A, T'), the spectral response of the InSb detector, R(\), and the black

body radiation function, P(\), where A is the wavelength of the radiation.

5.5 p0m
(T, T,) :.4,4,)1-;/ RIN[PA.TY(N.T) = PN, To)e(A, Tp)]dA  (2.6)

J o

where A is the amplification, 4 is the detector area and 43 is the fraction of energy
transmitted to the detectors by the optical system (related to the aperture). This rela-
tion when evaluated for InSb detectors produces a nearly linear relation on a log-log
plot(Zehnder and Rosakis, 1991 and 1992). By simply heating a specimen, measuring
its surface temperature with a thermocouple, and plotting the results on a log-log plot,
one may establish a calibration curve for the detectors that eliminates the need to eval-
uate the emissivity of the sample, the spectral response of the detector and the black

body radiation function. Using this calibration, the voltage record of a detector during
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a test may be trivially converted into a temperature measurement.

In order to protect the infrared detector imaging system from the dangers of impact
loading, dynamic cracks are produced by statically wedge loading a compact tension
specimen with a blunt notch. The speed of the crack can be roughly controlled by
changing the radius at the notch tip; a blunt notch produces a faster crack than a sharp
notch. Dynamic cracks are produced by the storage of elastic energy at the notch tip
prior to failure; as the load is increased more elastic energy is stored in the specimen.
When a small crack initiates at the notch tip, the excess elastic energy drives the crack
dynamically through the specimen. The notch radius 1s machined by conventional EDM
techniques giving a reproducible notch root radius. A minimum radius of .25 mm is
attainable resulting in a minimum crack speed of 600 m/s. Crack speed is measured by
a series of conducting break-lines on the back surface of the sample (see Zehnder and
Rosakis, 1991 and 1992, and Zehnder and Kallivayalil, 1991). Alternatively, dynamic
cracks may also be produced in three-point bend impact (Kalthoff, 1985), or mode-II

impact loading (Kalthoff, 1987, Lee and Freund, 1990 and Mason et al., 1992).

2.3 Results and Discussion

The results of four testing conditions are reviewed here. In Fig 2.2a the results
of Zehnder and Rosakis (1991) are recalled, and in Fig 2.2b the results of a recent
investigation by the authors are shown. The material in both experiments is the same,
oil-quenched 4340 steel with hardness R, =44 (see Tables 2.1-2.3), but the crack speed
1s 900 m/s in the Zehnder and Rosakis (1991) experiment while the crack speed is 600
m/s here. These results are representative of a number of experiments. In the latter
case four separate experiments were performed, some with different apertures, to show
the repeatability of the results. Temperature rises below 50°C fall below the noise
level of the system. It can be seen that the two fields are significantly different. Most

noticeable is the triangular arrangement of the temperature contours behind the crack



Table I: Tensile Properties

Material and Condition o, MPa o, MPa €w P K. MPa/m
4340, quenched®’ 1700 44
Ti, 0%—a 7 1370 1390 0.35 56
Table IT: Elastic Properties
Material and Condition E GPa v p kg/m?
4340, quenched! 210 .30 7830
Ti, 0%—a*-3? 110 32 4650
Table III: Thermal Properties
Material and Condition ¢ k o K
Jkg°C W/m°C pm?/s pm/m°C
4340, quenched’ 448 34.6 9.86 11.2
Ti, 0%—a332 490 10.9 4.78 9.7

(Values are taken from the indicated reference number.)
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Temperature distribution measured experimentally using infrared detectors
around a crack tip propagating in 4340 oil quenched steel at a velocity
of 900 m/s (Zehnder and Rosakis, 1991) and 600 m/s. Maximum tem-
peratures of approximately 450°C at 900 m/s and 300°C at 600 m/s are
observed. The crack line location in the vertical direction is estimated
from the symmetry of the results. The temperature rise at z; ~1.2 mm
in the slower velocity experiment is due to the formation of another shear
lip. Note that this formation occurs behind the crack tip at distances at
least as large as 20 mm.
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when ¢ =900 m/s. Contours emanating from the crack tip expand outward initially
before curving back to meet the negative x; axis. Similar contours are not seen for
a =600 m/s or in Fig 2.1. At 600 m/s an interesting feature of the temperature field is
seen along the horizontal line, o =1.2. Here the temperature rise due to the formation
of another “shear lip” is observed. This formation occurs behind the crack tip and is
much less intense in terms of plastic work rate density. Examination of the specimen
after failure reveals that the “other shear lip” follows a path parallel to the crack path.
The maximum temperature for 900 m/s is 450°C while the maximum temperature for
600 m/s is 300°C. The crack tip positions are estimated from the crack tip displacement
record. This method is not very accurate and the crack tip location uncertainty may be
as much as .5 mm.

In Fig 2.3 the results of some experiments on two separate titanium alloys are
shown. In the first case a Ti-10V-2Fe-3Al alloy was tested in the 0%-« state (Giovanola,
1989, see Tables 2.1-2.3). The crack speed is 380 m/s and the maximum temperature is
greater than 400°C (the detectors saturated). In the second case the results of Zehnder
and Kallivayalil (1991) for Beta-C titanium are shown. The crack speed is 400 m/s, and
the maximum temperature is 260°C. The results for Ti-10V-2Fe-3Al bear resemblance
to the results for 4340 at 600 m/s as well as the theoretical result shown in Fig 2.1.
Contours extend directly back from the plastic zone roughly parallel to the crack faces
eventually curving in to meet at the negative x; axis. In contrast, the contours in
the experiment on Beta-C titanium emanate outwardly as for 4340 steel at 900 m/s.
Further, the existence of a shear localization above the crack tip due to the stress state
at the surface of the specimen (Zehnder and Rosakis, 1991) is seen. This “other shear
lip” is seen to curve out of the field of view behind the crack tip unlike the “other
shear lip” observed in the experiments on 4340 steel at 600 m/s. The shear lips formed

in the testing of Beta-C titanium are much smaller than those formed in the testing
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FIGURE 2.3 The temperature field around a crack tip propagating at 380 m/s in Ti-
10V-2Fe-3Al alloy and 400 m/s in Beta-C Ti (Zehnder and Kallivayalil,
1991). Some of the detectors were saturated in the Ti 10V-2Fe-3Al test,
but a maximum temperature of approximately 500°C may be extrapolated
from the results. In the Beta-C Ti material a maximum temperature of
260°C is reported.
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of Ti-10V-2Fe-3Al In the Beta-C it can be seen in the figure that the shear lips are
approximately .5 mm wide while in Ti-10V-2Fe-3Al examination after testing reveals
that the shear lips can be as much as 4 mm wide.

Fractographic analysis of the shear lips offers some interesting comparisons. In
Fig 2.4 the fracture surface of the steel specimen at @ =600 m/s may be seen both in the
flat fracture regime and in the shear lip. It can be seen that there is a drastic difference
in the two surfaces. In the flat fracture regime, the surface is rough and the crack path
is tortuous. Regions of microvoid coalescence may be observed. On the shear lip,
smooth surfaces dominate. This fracture is similar to the fracture surface reported by
Giovanola (1988a and 1988b) for a shear band in the same material with a different heat
treatment. Giovanola reports the existence of “cobbled regions” as well as microvoid
coalescence regions that are not seen here, but it is clear that the two fracture modes
are the same. In the titanium, Fig 2.5, the flat fracture regime exhibits a tortuous crack
path with regions of microvoid coalescence visible along the walls of the peaks and
valleys, but in the shear lip fracture is dominated by microvoid coalescence. The voids
on the shear lip are much larger than those in the bulk fracture region. None-the-less,
it is clear that microvoid coalescence in shear is important in both regions. Thus, the

two regions are similar.

2.3.1 Temperature Fields in Steel

The most striking difference between Figs 2.2a and 2.2b is the existence of tri-
angular contours emanating from the crack tip in the temperature field at the higher
velocity. Because the velocity of the crack is extremely high when compared to the
material properties (the size of the plastic zone and k/pc,) in both figures it is expected
that borh fields should reflect the qualitative behavior exhibited in Fig 2.1 (Mason and
Rosakis, 1992). The contour lines should extend directly back from the plastic zone

parallel to the crack faces until they eventually curve toward the negative x; axis some
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distance behind the crack tip. This behavior is seen in Fig 2.2b, but it is not seen in
Fig 2.2a.

Owing to the heavy dependence of theoretical maximum temperatures upon the
assumptions about the plastic zone, it was initially thought that the difference in contours
between Figs 2.2a and 2.2b might be due to a difference in plastic zone. Unfortunately,
estimates of the plastic zone show no difference between the plastic deformation at high
and low velocities that could explain the change in the contours. Further, attempts to
explain the difference in temperature field at high and low velocities using hyperbolic
heat conduction have shown that this theory is not effective in modelling the observed
behavior (Mason and Rosakis, 1992). It seems that the change in temperature field at
the higher velocities is due to movement of the crack faces. It has been shown by
Freund (1977) that, qualitatively, the crack opening velocity should be proportional to
the crack velocity and the initial crack tip stress intensity factor. Clearly the crack tip
velocity is higher in one case, but, also, the initial stress intensity factor may be as
much as three times higher when ¢ = 900 m/s than when ¢ = 600 m/s (Rosakis and
Zehnder, 1985). Combined, these two effects predict that the crack opening velocity in
the 900 m/s test may be 5 times higher than that in the 600 m/s test. From the angle
of the contours it is estimated that the average velocity of the crack faces in the z,
direction is 7.5 m/s when the crack tip velocity is 900 m/s and less than 2 m/s when
the crack tip velocity is 600 m/s resulting in a ratio of crack face velocities greater than
4. Inaccuracies are expected when comparing this simple theory with the experimental
results. The specimen is much more complex in the experiment than in the theory and
measurements of the initiation stress intensity factor were not made. Consequently, it
is concluded here that crack opening is responsible for the change in temperature field
at the higher velocity, however, no quantitative analysis of this effect is implied.

The plastic work rate ahead of the crack tip may be estimated by using Eq (2.3)
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and neglecting conduction (Zehnder and Rosakis, 1991 and 1992, and Zehnder and
Kallivayalil, 1991). Letting o = 0 in this equation yields

. oT .
—pcpaa—ml = 5aijefj. 2.7

Solving this relation for the experimental results in Fig 2.2 gives the results shown in
Fig 2.6. For steel S is taken to be .9; this choice is justified by some preliminary results
of a split Hopkinson pressure bar investigation of this material parameter (Mason et
al., 1992). It is seen that the plastic zone is approximately twice as large in the lower
velocity experiment as it is in the higher velocity experiment. The fact that they
are almost exactly twice as large in the z, direction is due to discretization of the
temperature field by the finite detectors. It can only be said that at the lower velocity
there is a larger plastic zone then at the higher velocity. The maximum plastic work
density rate in the high-speed test is 600x 10'? J/m3s while in the low-speed test the
maximum is 200x 102 J/m3s, a third as much. The change in maximum plastic work
rate density and the change in the a2 dimension of the plastic work zone in conjunction
with the fractography seen in Fig 2.4 indicate that the shear lip is actually a shear band.
A localization of the deformation is observed as crack velocity increases indicating the
formation of an adiabatic shear band.

Estimation of the energy fraction consumed by the formation of the shear lips
(Zehnder and Rosakis, 1991) shows that roughly the same fraction of energy is expended
in the shear lips in both the high- and low-speed experiments. Values for the energy
expended in the lips during low-speed fracture were, in general, slightly higher than
the high-speed experimental results, but, within the large uncertainty of the calculation,
the two are equal. Regardless, a surprisingly large percentage, 50%, of the energy of
dynamic fracture is expended in the shear lips during fast fracture. This is surprising
because the area of the shear lips accounts for only about 10% of the fracture surface

area in both experiments.
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FIGURE 2.6 The plastic work zone as estimated from Eq (7) is shown for a crack
propagating in oil-quenched 4340 steel at two velocities; 900 m/s and
600 m/s. It is seen that the plastic zone is elongated in the z; direction
and that although the shape is the same at both velocities the zone at
higher velocities is smaller reflecting a localization of plastic deformation
as velocity increases.
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FIGURE 2.7 The plastic zone for Ti-10V-2Fe-3Al is estimated as in Eq (2.7). The
zone shows similarity in shape to the results for 4340 steel in Fig 2.6.
The magnitude of the plastic work is the same as for oil quenched 4340
steel with a crack propagating at 600 m/s, but the temperature is higher
because the factor pc,a is smaller in the Ti-10V-2Fe-3Al.

2.3.2 Temperature Fields in Titanium

In titanium the plastic zone is quite similar in size and shape to the plastic zones
in steel; see Fig 2.7. The maximum plastic work rate density at 380 m/s is estimated—
since the detectors saturated—to be approximately equal to the maximum plastic work
rate density in 4340 steel at 600 m/s while the maximum temperature is greater than
400°C in Ti compared to 300°C in steel. Since adiabatic conditions apply at the crack
tip (this is readily shown by comparing the magnitude of two terms on the left-hand
side of Eq (2.3)), it is expected that Eq (2.7), which has no dependence upon thermal
conductivity, k, should apply. Thus, the temperatures are higher in Ti than in steel
when plastic work rates are roughly equal, however they are not higher because of

the lower thermal conductivity. The temperature is actually higher because the factor
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pcpa is smaller in the titanium; in titanium pc,a = 8.7 x 10% J/m2s°C while in steel
pepa = 21.0 x 10% J/m?s°C, roughly twice that in titanium.

Bryant et al. (1986) indicate evidence of localized melting in the Ti-10V-2Fe-3Al
alloy used here, but fractographic examination in Fig 2.5 gives no indication of melting
in the shear lips or the flat fracture region. This may be due to differences in heat
treatment.

In the experiments by Zehnder and Kallivayalil (1991) on Beta-C titanium the
existence of a shear lip above the actual crack demonstrates that crack face opening has
an effect on the measurement of temperature field. The shear lip is seen to curve out of
the field of view. Since it is certain that near adiabatic conditions apply and that shear
lip formation occurs parallel to the crack path, it is concluded that this movement is due
to a translation of the crack faces rather than a change in the deformation. Thus, crack
face opening effects are seen in Beta-C titanium at 400 m/s supporting the conclusion

that crack face opening is seen in the steel tests at 900 m/s.

2.4 Conclusions

1. It is clear that the shear lip formed in oil-quenched 4340 steel is actually a
shear band, a localization of the shear deformation to a narrow plane as a result
of thermal softening in the material. At lower velocities the localization is less
pronounced and the maximum temperature measured is lower. Fractography
indicates a shear band fracture mode in the shear lip but not in the flat fracture

regime.

2. The temperature field around a dynamically propagating crack tip in oil-
quenched 4340 steel changes significantly when the crack velocity is increased
from 600 m/s to 900 m/s. This effect is attributed to the faster crack opening

rate at higher velocities. Conclusive evidence of crack face opening is seen
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in the temperature fields of Zehnder and Kallivayalil for Beta-C titanium
(Zehnder and Kallivayalil, 1991), and it is predicted by a simply theory that

crack face opening will be much more significant at 900 m/s than at 600 m/s

in 4340 steel.

. In titanium the generation of heat at the tip of a dynamically propagating
crack has been investigated. The maximum temperature in Ti-10V-2Fe-3Al
for equivalent maximum plastic work rate densities is higher than in 4340
steel. Because of the adiabatic conditions at the crack tip this effect is not
attributed to the lower thermal conductivity, rather it is attributed to lower
crack speeds, the lower density and the lower heat capacity of titanium through

the factor pcpa.

. In Ti-10V-2Fe-3Al in the shear lips, failure is dominated by nucleation and
growth of large micro-voids while in the bulk, flat-fracture region, failure oc-
curs by the nucleation and growth of smaller micro-voids and a more tortuous
crack path. Large micro-voids generate more plasticity than small voids, so it
is expected that temperatures will be higher when microvoid growth is more

extensive, in the shear lip.



-39-

References

1.

10.

11.

12.

13.

14.

15.

Aerospace Structural Metals Handbookm (1989), Metals and Ceramics Information
Center, Battelle Columbus Laboratories, Columbus, Ohio, Vol. 1, code 1206

M.B. Bever, D.L. Holt and A.L. Titchener (1973), The stored energy of cold work,
Prog. Mat. Sci., 17, 1

J.D. Bryant, D.D. Makel and H.G.F. Wilsdorf (1986), Observations on the effect
of temperature rise at fracture in two titanium alloys, Matr. Sci. Engr., 77, 85,

H.S. Carslaw and J.C. Jaeger (1959), Conduction of Heat in Solids, Oxford Press,
London

R.J. Clifton and R.W. Klopp (1985), Pressure-shear plate impact testing, Metals
Handbook; 9th Edition, American Society for Metals, Metals Park, OH, Vol. 8,
230

C.S. Coffey and S.J. Jacobs (1981), Detection of local heating in impact or shock
experiments with thermally sensitive films, J. Appl. Phys., 52, 6991

W. Doll (1973), An experimental study of the heat generated in the plastic region
of a running crack in different polymeric materials, Engr. Frac. Mech., 5, 259

A.S. Douglas and H.U. Mair (1987), The temperature-field surrounding a dynami-
cally propagating mode-III crack, Scripta Met., Vol. 21, p. 479, 1987

J. Duffy (1984), Temperature measurements during the formation of shear bands
in a structural steel, G.J. Dvorak and R.T. Shield, eds., Mechanics of Material
Behavior, Elsevier Science Pub. B.V., Amsterdam, 75

L.M. Egdall (1985), Manufacture of a three mirror wide-field optical system, Optical
Engr., 24, 285

P.S. Follansbee (1985), The split Hopkinson bar, Metals Handbook; 9th Edition,
American Society for Metals, Metals Park, OH, 8, 198

P.G. Fox and J. Sonria-Ruiz (1970), Fracture-induced thermal decomposition in
brittle crystalline solids, Proc. R. Soc. London A, 317, 79

L.B. Freund (1977), A simple model of the double cantilever beam crack propa-
gation specimen, J. Mech. Phys. Sol., 25, 69

K.N.G. Fuller, P.G. Fox and J.E. Field (1975), Temperature rise at the tip of fast
moving cracks in glassy polymers, Proc. Roy. Soc. London A, 341, 537

J.H. Giovanola (1988a), Adiabatic shear banding under pure shear loading, Part I.,
Mechanics of Materials, 7, 59



16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

-40-

J.H. Giovanola (1988b), Adiabatic shear banding under pure shear loading, Part
IL., Mechanics of Materials, 7, 73

J.H. Giovanola, R.W. Klopp and J.W. Simons (1989), Effect of shear lips on
dynamic crack propagation, Proc. OJI International Seminar on Dynamic Fracture,
Toyohashi, Japan, August, 1989

K.A. Hartley, J. Duffy and R.H. Hawley (1987), Measurement of the temperature
profile during shear band formation in steels deforming at high strain-rates, J.
Mech. Phys. Sol., 35, 283

J.W. Hutchinson (1984), Introduction to the viewpoint on shear bands, Scripta Met.,
18, 421

J.F. Kalthoff (1985), On the measurement of dynamic fracture toughnesses—a
review of recent work, Int. J. Frac., 27, 277

J.F. Kalthoff (1987), Shadow optical analysis of dynamic shear fracture, Photome-
chanics and Speckle Metrology, SPIE Vol. 814, 531

W. Klemm (1989), Presented at the Joint American Society of Mechanical Engi-
neers, Japan Society of Mechanical Engineers International Pressure Vessel and
Piping Conference

R. Krishna Kumar, R. Narasimhan and O. Prabhakar (1991), Temperature rise in a
viscoplastic material during dynamic crack growth, Int. J. Fracture, 48, 23

Z.-B. Kuang and S. Alturi(1985), Temperature field due to a moving heat source:
a moving mesh finite element analysis, J. Appl. Mech, 52, 277

Y.J. Lee and L.B. Freund (1990), Fracture initiation due to asymmetric impact
loading of an edge cracked plate, J. Appl. Mech., 57, 104

Z.L. Li, J.L. Yang and H. Lee (1988), Temperature fields near a running crack tip,
Eng. Frac. Mech., 30, 791

P.N. Malali (1988), Thermal Fields Generated by Dynamic Mode III Fracture in
Ductile Materials, M.S. Thesis, The Johns Hopkins University, Baltimore, 1988

A. Marchand and J. Duffy (1988), An experimental study of the formation process
of adiabatic shear bands in a structural steel, J. Mech. Phys. Sol., 36, 251

J.J. Mason, J. Lambros and A.J. Rosakis (1991), On the use of a coherent gradient
sensor in dynamic mixed-mode fracture mechanics experiments, to appear J. Mech.
Phys. Sol.

J.J. Mason and A.J. Rosakis (1992), The effect of hyperbolic heat conduction
around a dynamically propagating crack tip, SM Report 92-3, Graduate Aeronau-
tical Laboratories, California Inst. of Tech.



31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

41-

J.J. Mason, A.J. Rosakis and G. Ravichandran, The conversion of plastic work to
heat around a dynamically propagating crack in metals, SM Report 92-17, Graduate
Aeronautical Laboratories, California Inst. Tech., Pasadena, CA 91125, 1992

Metals Handbook, 9th Edition (1980), American Society for Metals, Metals Park,
OH, Vol. 3, 397

G.L. Moss and R.B. Pond (1975), Inhomogeneous thermal changes in copper during
plastic elongation, Met. Trans. A, 6A, 1223

A. Offner (1975), New concepts in projection mask aligners, Optical Engr., 14,
130

S.Y. Rah and S.S. Lee (1989), Four-spherical-mirror zoom telescope continuously
satisfying the aplanatic condition, Optical Engr., 28, 1014

J.R. Rice and N. Levy (1969), Local heating by plastic deformation at a crack tip,
in A.S. Argon, ed., Physics of Strength and Plasticity, M.L.T. Press, Cambridge,
MA, 277

A.J. Rosakis and A.T. Zehnder (1985), Dynamic fracture initiation and propagation
in 4340 steel under impact loading, Int. J. Frac., Vol. 27, p. 169, 1985

D.A. Schokey, J.F. Kalthoff, W. Klemm and S. Winkler (1983), Simultaneous
measurements of stress intensity and toughness for fast cracks in steel, Exp. Mech.,
40, 140

ILN. Sneddon and D.S. Berry (1958), The classical theory of elasticity, in S. Flugge,
ed., Handbuch der Physik, Vol VI, Springer-Verlag, Berlin, 123

J.C. Sung and J.D. Achenbach (1987), Temperature at a propagating crack tip in a
viscoplastic material, J. Thermal Stresses, 10, 243

A. Suzuki (1983a), Complete analysis of a two-mirror unit magnification system,
Part 1., Appl. Optics, 22, 3943

A. Suzuki (1983b), Complete analysis of a two mirror unit magnification system,
Part I1., Appl. Optics, 22, 3950

G.M. Swallowe, J.E. Field and L.A. Horn (1986), Measurements of transient high
temperatures during the deformation of polymers, J. Mar. Sci., 26, 4089

G.I. Taylor and M.A. Quinney (1934), The latent energy remaining in a metal after
cold working, Proc. Roy. Soc London A, 143, 307

D.Y. Tzou (1990a), Thermal shock waves induced by a moving crack, J. Heat
Transfer, 112, 21

D.Y. Tzou (1990b), Thermal shock waves induced by a moving crack—a heat flux
formulation, Int. J. Heat Transfer, 33, 877



49

47. R. Weichert and K. Schonert (1974), On the temperature rise at the tip of a fast
running crack, J. Mech. Phys. Sol., 22, 127

48. R. Weichert and K. Schénert (1978a), Temperature distribution produced by a
moving heat source, Q. J. Mech. Appl. Math., 31, 636

49. R. Weichert and K. Schonert (1978b), Heat generated a the tip of a moving crack,
J. Mech. Phys. Sol., 26, 151

50. A.T Zehnder and A.J. Rosakis (1991) On the temperature distribution at the vicinity
of dynamically propagating cracks in 4340 steel, J. Mech. Phys. Sol., 39, 385

51. A.T. Zehnder and A.J. Rosakis (1992), Temperature rise at the tip of dynamically
propagating cracks: measurements using high-speed infrared detectors, to appear
Experimental Mechanics in Fracture, 111

52. A.T. Zehnder and J.A. Kallivayalil (1991), Temperature rise due to dynamic crack
growth in Beta-C titanium, Speckle Techniques, Birefringence Methods, and Appli-
cations to Solid Mechanics, SPIE Vol. 1554A, 48



-43-

CHAPTER 3

The Effects of Hyperbolic Heat Conduction Around a Dy-
namically Propagating Crack Tip

Overview

Using infrared detectors, Zehnder and Rosakis (1991), Zehnder and Kallivayalil
(1991) and Mason and Rosakis (1992), have recorded the temperature field around a
dynamically propagating crack tip travelling at constant velocity in several metals. At
the same time, Tzou (1990a, 1990b) has suggested that the temperature field around
a propagating crack tip might exhibit some of the characteristics of hyperbolic heat
conduction. In this paper a corrected solution of the hyperbolic heat conduction equation
for a traveling point source is derived. Then an experimental estimate of the active
plastic zone (heat generating zone) at a crack tip is used for various experimental
conditions to examine the possible effects of hyperbolic heat conduction around a
propagating crack tip. Finally, using the actual experimental conditions of Zehnder and
Rosakis (1991), Zehnder and Kallivayalil (1991) and Mason and Rosakis (1992) it is
shown that no effects of hyperbolic heat conduction are observed around a propagating
crack tip. It is seen that, due to adiabatic conditions at the crack tip during these
experiments, the solution of the hyperbolic heat equation is indistinguishable from the

solution of the parabolic heat conduction equation for crack propagation in steel.
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List of Symbols

q heat flux vector

k thermal conductivity

T temperature rise

S heat source function

P density

Cp heat capacity

@ k/pcp

v thermal wave speed

a crack tip velocity

z stationary coordinates system
3 coordinates translating with the crack tip
M thermal mach number, a/v

£ af2a/T =30

f aspect ratio of the heat source zone
6 size of heat source zone

Q magnitude of heat source zone

normalized coordinates translating with the crack tip

<

aé/2a

pepT/Q6
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3.1 Introduction
It is understood that the classical, or parabolic, heat conduction equation has an in-
herent pathology. That is, when a point source is introduced into a conducting medium,
the parabolic heat conduction equation predicts that its presence is instantaneously felt
throughout the medium. Often this pathology is referred to as “the infinite speed of
heat propagation,” and it has been addressed by Morse and Feshbach (1953) through
the introduction of a new heat flux law. Usually, heat flux, q, is related to the gradient

of temperature by Fourier’s Law,

q=—kVT.

When this relation is combined with the expression for the continuity of energy,

—V.q+ S = pc,T,

where the dot refers to time differentiation, the parabolic heat conduction equation

results,

1

PCp

oVl — T = ——5. (3.1)

(In this paper temperature, 7', is implicitly taken as the change in temperature above
ambient, T = T,ctual — Tambient-) If, instead of Fourier’s Law, a new heat flux law is

used,

«
Sd+q=—kVT,
v
then through similar manipulations the “hyperbolic” heat conduction equation results,

. 1 .
oV T - SF T =—— (5+58). (3.2)
v pCp v
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F1GURE 3.1 Temperature fields around a crack propagating in oil-quenched 4340 steel
at two different velocities. The maximum temperature at higher velocities
is 450°C (Zehnder and Rosakis, 1991) while the maximum temperature
at 600 m/s is 300°C(Mason and Rosakis, 1991).



-47-

The introduction of the new heat conduction law has been justified by several authors,
(for a review see Tzou (1990a,1990b) ) and some experimental work has shown that this
different heat conduction equation is more appropriate at large distances from a point
source or at very short times after the introduction of a point source (Kaminski, 1990).
An estimate for the speed of heat propagation in materials, v, may be found,(Baumeister
and Hamill, 1969) and for steel this estimate predicts a speed of heat propagation on
the order of 103 m/s.

Zehnder and Rosakis (1991) and Mason and Rosakis (1991) have measured the
temperature at the tip of a dynamically propagating crack for crack tip velocities rang-
ing from 600 to 900 m/s in 4340 steel. The temperature fields show a strong difference
in their geometric nature, see Figure 3.1, and, since these velocities are comparable to
the estimate for the wave speed of heat propagation, it is suggested that this difference
may be due to hyperbolic heat conduction. In order to determine whether hyperbolic
heat conduction is active in these experiments, it is the purpose of this investigation
to produce theoretical temperature fields for the problem of a crack propagating in a
hyperbolically conducting metal. It is fundamentally important to note that the prop-
agation of a crack produces plastic deformation at the crack tip and that the plastic
work generated during this deformation is mostly transformed into heat. Therefore,
the problem of calculating the temperature field around a propagating crack tip is more
correctly stated as the problem of calculating the temperature field around a propagating
heat source zone with careful attention paid to the boundary conditions at the crack
faces.

Several investigations of the temperature field around a propagating crack have
been reported for parabolic heat conduction. (For a complete review of this field of work
see Mason and Rosakis (1991).) The most pertinent here is the work of Weichert and

Schonert (1978). These authors numerically calculated the temperature fields around
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propagating heat source zones by integrating the solution of the parabolic heat con-
duction equation for a travelling point source over a rectangular heat source zone of
constant magnitude. A similar methodology is used here. The dynamic crack is mod-
elled two-dimensionally by a heat source zone, the crack tip plastic zone, propagating
at a constant velocity with a trailing line of insulated crack faces. (The velocity is a
significant fraction of the shear wave speed in the material making it a dynamic crack.)
It is assumed that the crack faces do not open. It should be noted that in all theoretical
investigations of the temperature field around a propagating crack tip the assumptions
made about the plastic work zone and, consequently, the heat source zone have proven
to be extremely important in the calculation of maximum temperature. Due to the
complexity of the three-dimensional deformation where temperature measurements are
performed (at the surface of the specimen), it is difficult to accurately describe the
plastic work zone in closed form and most assumptions result in an oversimplification
of the experimental problem. Consequently, in this work the shape of the plastic work
zone is estimated from the experiments of Zehnder and Rosakis (1991) and Mason
and Rosakis (1991) directly, eliminating over-simplification and, thus, more closely
approximating the experimental data. The effects of shear lip formation, reverse plas-
ticity upon material unloading, etc. are implicitly accounted for in the experimental

approximation of the active plastic zone.

3.2 Theoretical Developﬁent

First it is necessary to find the solution of the hyperbolic heat conduction equation
for a point source travelling at constant velocity. Although earlier attempts to provide
solutions of Eq (3.2) for a traveling point source exist, (Tzou, 1989a and 1989b) the
solution given here includes some corrections that significantly alter the behavior of

the solution.
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We are interested in solving the equation,

N . 1
vr-tiolpo

v? « pepa

[S(zl — at,z9) + -:—23(21 — at, 22)} , (3.3)
for a point source travelling at a constant velocity, d, in the z; direction, i.e.,

S(z1 — at, z9) = 8(z1 — at)é(z2).
Substituting for S(z; — at, z2), Eq (3.3) becomes:

1 ) a 06(zy — at)
(5(2’1 — at)é(zz) + v—z—‘—a—t——-

1 . 1.
V2T - =T — =T = —

v* a pPCpa

8(z2)| . (4)

It may be shown that the solution of this equation depends upon M?, where M = a/v,
and that this dependence may be divided into three regimes, M? < 1, M? = 1 and

M? > 1. The former and latter cases will be addressed here.

32.1 Forthe Case M? < 1

By employing the transformation,

f _ 1 — at
YTV ME
£2 = 22

equation (3.4) may be expressed as

a or
a1 — M2 Ot

2
VT4

3.5)
o1 — _aM?®  3§(&V1-M?)
pepc 6(61 1-M )6(52) d\/l———m 361 6('52) .
We guess a solution to Eq (3.5) of the form
Tp(£1,62) = exp [—rba] f (&1, ¢2) (3.6)

where
a

SV ey ve
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which when inserted in equation (3.5) yields

V%f—fczf:—

exp [k&1]
pcpa

12 —— (3.7)
{6(£1x/1—1\42)6(§z)— aM”  98(&iv1 M)5(€2)}-

av'l— M? 0&
The left-hand side of Eq (3.7) is the modified Helmholtz equation. The Green’s function

solution of this equation is given by Arfken (1985),
€ < Lo i G
G(I‘ ,r ) = —g[\o(lﬁh‘ —Tr |) (38)

where Ko(w) is the zeroth order modified Bessel’s function of the second kind and

r* = = /(& — Q1) + (& = ()%

The first vector, r¢ refers to the point of interest while the second vector, r¢, refers to
the location of the point source. Using the Green’s function for the modified Helmholtz

equation, the solution to equation (3.7) may be found,

1 ,
F(6r.€2) = 5o [ Kalulr — x<l)exp [561] 56 v/T = M2)B(Co)dGr Gy
7T[)CPC€ AC
1 Of]\42 SRR ¢ ) . 0(5((1\/ 1-— M2)
~ Smpera i il Ko(rlr® —r*|)exp [k(4] 0 6(C2)d¢dCs.
3.9
Equation (3.9) may be divided into two integrals
1
f(&1,62) = Srpeya (J1(&1,&2) + J2(61,62)) . (3.10)

The first of these integrals is found using the fundamental property of the Dirac delta

function,
Ko(x[ré))

J1(§1,£2): ma

and the second may be found using the relation

/G(flaf%(1,4'2)8(;(51)6@2)(1(1(1@ = — {

(3.11)

aG(él 9 627 Cl’ CQ) }
aCl C1=0,C2=0’
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ie.,

p ML (el + S K () (3.12)
2(51762) -~ 2(1 _]\/1.2)3/2 \olRIT Irfl 1L RIT . .

Substituting Eqs (3.11) and (3.12) into Eq (3.10) gives the result

1

€1
H(&1,6) == drpepa(l — M?)3/2

{(2 — M) Ky(&|r¢]) + M2m1x'l(mlrf|)} :
(3.13)

Remembering our intial guess for temperature in Eq (3.6), we arrive at the solution to

Eq (3.5),
TP(€17€2) =
1 ; -l 2 &1 ..
dmpeya(l — M?)3/2 exp [—réi] {(2 - J\/IQ)I\O("«lrEl) + M |—rf—!-1&1(n|r5|)} ,

(3.14)

where
] = /€F + &

This is the solution for hyperbolic two-dimensional heat flow around a point source
traveling in a straight line at a constant speed, @ < v, in an infinite body with T' = 0 as
r — oo. As M? — 0 this function gives the solution of Carslaw and Jaeger (1959) for
a traveling point source in a parabolically conducting material under identical boundary
conditions. This solution differs from the solution provided by Tzou (1989a and 1989b)
due to the interpretation of the argument of the modified Bessel’s function in Eq (3.8).
In the work by Tzou, it appears that the argument of the modified Bessel’s function had
been interpreted as the difference of the magnitudes of two vectors where it is actually
the magnitude of the difference of two vectors. The additional multiplier of the second
term, &, /|r¢|, provides desirable behavior for the point source solution not found in the

expressions provided by Tzou. Note that using the transformation of coordinates in Eq
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a 9T
av1— M20& 515
1 . aM?  35(&V1 - M2 ¢) '
pepa SEVI=MEG) av1 — M2 96 ’

and that if the slope of the source zone, S(&;v1 — M2 &), is negative in the &

2

direction there is a heating contribution due to the second forcing term; if the slope
of the source zone in the £; direction is positive, there is a cooling contribution. The
slope of a Dirac delta function in the &; direction is negative infinite for positive ¢,
and positive infinite for &; less that zero (Papoulis, 1962). Consequently, it is expected
that there should be a heating contribution ahead of the point source that transforms to
a cooling contribution behind the point source. The £;/|ré| term changes the sign of
the second term in the solution to produce this behavior.
On the crack faces it is expected that the heat flux out of the material is zero, that
is,
w=0{ ro-pramhso (3.16)
Naturally, this is an idealization of the actual boundary condition which would involve
radiation transfer, convective transfer etc. However, it is clear that a fixed temperature
over the entire crack faces is not an appropriate boundary condition and is not included
in this analysis. In parabolic heat conduction, symmetry of the temperature solution

about the z; axis is sufficient to satisfy the boundary condition at the crack faces given

by Eq (3.16),
o7

52; :q2(§1,0)20~

&2=0

However, for hyperbolic heat conduction the symmetry results in a first-order differen-

tial equation, namely,

15)
qj + ¢2(£1,0) = 0.

—aa
v2y/1 — M2 O

§2=0
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It is obvious from Eq (3.16) that ¢ = 0 is the solution to this equation since the
material is in thermal equilibrium at a constant temperature when ¢; = +o00. However,
it is clear that in hyperbolic heat conduction symmetry about the £; axes does not, by

itself, imply that ¢, is identically zero on the ¢; axis.

3.2.2 For the Case M? > 1

By employing the transformation,

Eq (3.4) may be reformulated as
_62T N T n a aT
o 08 ' a/MT_106

_ L | s(e /A S Tis(e) - —2 a“&”M?‘”M&ﬁ

pepe av/M? —1 9&
(3.17)
We guess a solution to Eq (3.17) of the form
Tp(&1,82) = exp [r&1] f (€1, €2) (3.18)
where
. a
 2a/M? -1
and substitute above resulting in
Pf O*f 2
og o T
1 aM?  35(&vVM? —1)
p[—~ 6(&1V/ M? - 1)6 - 6 .
pcpaexp[ K€1) { (& )8(£2) PO 36, (€2)
(3.19)

The left-hand side of this equation is the telegraph equation. The Green’s function for

this equation may be found in Duff and Naylor (1966),

Gré,r) = %Io(ﬁzlrf — eDH(I — S PEG - &) (3.20)
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where I, is the zeroth order modified Bessel function of the first kind, H(z) is the

Heaviside function and

[rf —r¢| = /(61 — ()% — (&2 — (2)2.

Because of the Heaviside terms, the solution in Eq (3.20) is zero outside a triangular
regime behind the point source. There exists another Green’s function that is non-
zero ahead of the point source, but this function is not used due to obvious physical
arguments. Because the point source is travelling faster than the wave speed of heat
propagation in the material, it is physically impossible to have a finite temperature
ahead of the point source. Also, due to the Heaviside terms, the temperature exhibits
a jump or shock along lines inclined at an angle w to the negative &; axis. The shock

angle, w, is given by the familiar formula,
w = *sin”1(1/M). (3.21)

Not surprisingly, these thermal shocks are quite similar to the shocks found in super-
sonic fluid flow. This is to be expected since Eq (3.2) is, in fact, the damped wave
equation.

Convolution of the Green’s function for the telegraph equation with the forcing
term in Eq (3.17) results in two integrals. As before, the first of these integrals is found
using the fundamental property of the Dirac delta function,

Io(x]ré))

Jl(fla&) = m

The second integral is found using the additional relation §(z — ¢)é(z) = 0,

H (e P)H (=6).

M? 1
J2(€1,62) = —m {Io(/{]rfl) + l—f—&-’h(/{]rq)} H(|r5!2)H(—§1).
Combining these two gives the result
f(&,6) =
1 2
dpc o M? — 1)3/2 {(]\’[_ - 2)I0(5|r€’) - J\/fz%ll("drsl)} H(Irslz)H(’“ﬁl)-
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Remembering our intial guess for temperature in Eq (3.18), we arrive at the final result,

1

Tp(&1,62) :4pcpoz(]b{2 Ny exp [&&1] -

(3.22)

{(M? ) Io(xlr€]) M?l—f;é—'wrfn} H(Ir ) H(—6).

This is the solution of Eq (3.5) for a point source travelling at constant velocity with
M? > 1. Tt differs significantly from the solution reported by Tzou (1989a and 1989b)
due to the use of the correct Green’s function solution for the telegraph equation. It
must be re-emphasized that the definition of the argument of the modified Bessel’s
functions, |r¢|, is significantly different in this case than in the previous case, and,
furthermore, that the sign of the argument of the leading exponential term has changed.
Although the two solutions appear similar, they are, in fact, not very similar at all; for
example, this solution does not converge to the solution of Carslaw and Jaeger (1959)
under any circumstances. Note the effect of the cooling term in the forcing function on
the right-hand side of equation (3.17), when M? < 2 the temperature at the location of
the point source is negative due to the fact that J; (w) — 0 as w — 0 while Ip(w) — 1
as w — 0. If the cooling term in the forcing function of Eq (3.17) were neglected this

effect would not be observed. When M? > 2, the solution is always positive.

3.2.3 Integration over the Source Zone

For the sake of simplicity the heat source zone, S(¢;,&2), has been assumed to be
defined only on the rectangle & € [0,6/v/1 — M?] and &, € [—f6, f6] where f is the
aspect ratio of the zone; elsewhere it is identically zero. From the experimental work
of Zehnder and Rosakis (1991) and Mason and Rosakis (1991) it is seen that a close

approximation to the experimental heat source zone is given by

S(61,6) 1[1 (%ﬂ——M?&) [1 (w@)}
— COS ; + cos 75 ,

Q  2f
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where f = 0.05. A comparison of the approximate plastic zone, S(&1,&z), with the
experimentally estimated plastic zone is shown in Figure 3.2 for both testing conditions.
Following the work of Bever et al. (1973) it is assumed that 90% of the plastic work
is converted to heat. The inclusion of 1/2f in the denominator gives this function
characteristics of a Dirac delta function in the £, (or z,, given below) direction as
f — 0. Consequently, this function is also normalized so that its integral in two
dimensions is unity giving usable results if f is allowed to be zero. The multiplier,
@, is found experimentally from the maximum value of the work rate density and the

relation between () and the maximum of the function,

fQmas

Q==

Once this relation for the heat source zone has been assumed, letting

r1 = Cl :\/1—]\/[2'%1-

Ty = C.. :%3

(3.23)

the temperature field due to the heat source zone ahead of a crack tip may be found by

a convolution;

1 f
Teren) =08 [ [ f E%L”Tp(wl Gy en — Q)G

or, more specifically, for M? < 1

Qe
drpeyal — M?2)3/2

/ /f S(G,C2) [— 1(?]\;2@)]’

— ¢
{(2~M?)I o(AEE ) 4 ar = S (A e,
(3.24a)

T(:ElaxZ) =

where

2a . (3.24b)
I — ¢ =y/(21 — (1)2 + (1 — M?)(z2 — (2)?
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Normalizing temperature with respect to Q6/pcpa for numerical integration yields

P
Q5 ) = A=

/l/fSClaCQ ox [—1/)(331*@)].
oy Q@ P |Tiowme

9(1:1,:172) =

[o-ammo s s ar =g A=
(3.252)
Similarly for A/? > 1
¢,
o) = 3G T
/1 /f S(61,62) o [ —p(a1 — cl)] ,
o Joy Q@ M2 -1 (3.25b)

{(M2 —2)I, (——————w][\’;[x :f') — M? ﬁ; :2‘)11 (ﬂ; :Ifl)}
H(|r* — r*P)H(—a1 + (1).d2d(q
Numerical integration of the solution for M? < 1 proceeds without avail. The
singularity in the modified Bessel’s function of the zeroth order at the origin is logarith-
mic, therefore the integral is finite. The singularity in the modified Bessel’s function
of the first order at the same point is of order 1/|r* — r¢| which is integrable in two
dimensions. (This is easily shown by a conversion to polar coordinates.) Multiplication
of K;(z|r* — r¢|) by the factor (z; — (;)/|r* — r¢| does not change the order of the
singularity of this term since at (z3 — (1) = (22 — (2) = 0 this term is finite. For
M? > 1, the integration is quite simple. Since both modified Bessel functions of the
first kind are finite at the origin, the only singularity occurs in the second term and this
remains integrable. (This is easily shown using polar coordinates.)
The convolution, Eq (3.24a), is evaluated numerically for ¢ € [.01,1,100] and
M? € [0,.5,.9,100,10*). The modified Bessel’s functions are evaluated either by
using IMSL subroutines for small arguments or by using the asymptotic expressions

given below for larger arguments. To find the value of the integral a two-dimensional
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Gauss-Legendre scheme is employed. The number of integration points increased with

the value of .

324 Asymprotic Analysis of the Integration

By employing the transform

21 — at
ry = 3
Z2
T2 :?
in Egs (3.1) and (3.2) the following expressions are found;
BRI I __ L (3.26a)

29 dzy apcy
and

1
— V2T — = S — S
29 % 29 Oz? + Oz apcp 21)

respectively. Note that as the parameter 1 gets large the left-hand sides of both equa-

(3.26b)

M2 O*T | OT ___( 5 M? )

tions become more adiabatic and that the solution to the adiabatic equation is given

simply as;
Ha,(xla ‘732) =
513; (1 + co.s(wi'fz)) for z; <0 and z2 € [-f, f),

517 (1 + cos(w%})) (1 — 2y + =sin(2rzy)) for z; € (0,1}, 25 € [-f, f],

otherwise,

o

(3.27)
where the temperature has been normalized by Qé/pc,a. From the definition of 1, it
is seen that one of three things may be occurring when 3 — oot a@ — 0, a — oo or
§ — co. In Egs (3.26a) and (3.26b) as ) — oo the left-hand side becomes the adiabatic
equation, but, depeﬁding upon how ¢ is increasing, through «, & or 6, the right-hand
side may be affected as well. Normalizing the temperature with respect to Q6/pcpd in
Eq. (3.25a) removes this ambiguity in the limit, and, thus, the point source term in the

integrand of Eq (3.25a) rather than Eq (3.24a) is examined asymptotically for M? < 1.
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For large arguments the modified Bessel’s functions can be approximated by

- 7r 9
Falw) grerp vl {1~ g+ g3+ (328)

. ™ 3 15
Ki(w) ~ Z—we)\p[—w]{l-{——g-a— 1287 +}
Using only the first terms, the point source in the integrand for M? < 1, Eq (3.25a),

can be rewritten as

P T =z ) 2 12 %1
bolonee) ~ o 2¢|rx|e”’[ 1— M2 HQ"M M |rx|}
(3.29)

where

¥ = (/a2 + (1 - M?)a.

Given that for small x5 /24

: LI b e | Bl (22
exp [—1 0 Ir |] A exp [—1 0 [@1|] exp l:— 5 = ) (3.30)

Eq (3.29) may be expanded to take the following form,

Bz, 20) ~ 5t g
T M ~
PEL T Y o1 — MY\ 29]ey|

exp {_T_jﬁ_jvﬁ.(xl - !wlb] exp [—@31—' <Zf)2J

{2 — M? + sgn(zy ) M?

_ [2sgn(:v1)M?(1 — M?) + (2 = M? + sgn(e)M*)(1 — MZ)J (2)2 -

4 Ty
When z; > 0 the exponential term exp [—(z1 + |z])/(1 — M?)] dominates the
solution and T3, (zy,22) ~ 0; on the other hand, when z; < 0, (z; + |z1|) = 0, the
same exponential term disappears and sgn(z;) is always negative. Thus,

1 . _ [ .2 _ (1—2M2) zo 2 .
Op(z1,72) ~ Ve | ‘_Zlet‘”‘?Hl P (8) 4o form<o;

0 , for x; > 0.
(3.31)
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It is clear that, as 1)/2|z;| becomes large, the second term in the expansion becomes
negligible and the solution becomes independent of A? Consequently, the solution
for the hyperbolic heat conduction equation and the solution for the parabolic heat
conduction equation converge to the same result. It is also clear that as ¢ /2|z;| — oo,
0,(z1,x2) becomes, as expected from the adiabatic solution, a Dirac delta function
(Arfken, 1985) in z,. However, contrary to the solution for the adiabatic equation and
in keeping with the boundary condition T' — oo as r* — oo, the function in Eq (3.31)
loses its Dirac delta function character as |z;| grows.

Not surprisingly, similar results are found for the case M2 > 1. Asymptotic

analysis using the approximations

1

Io(w) ~y/ 5 explw]
1

I(w) ~ 5 explw]

and following the same steps outlined above leads to the same leading term character-

ization of the solution as for the case M? < 1. Since the governing equation becomes
adiabatic as the approximation becomes more accurate it is to be expected that both

solutions converge to the same result as they do.

3.3 Results and Discussion

The solution for the simplest case, the adiabatic case in Eq (3.27), is shown in
Figure 3.3. Behind the heat source zone the adiabatic solution is characterized by
contours of constant temperature extending from the heat source zone to z; = —oo
parallel to the crack faces. In front of the crack tip, in the heat source zone, the gradient
of temperature along lines extending radially from the crack tip appears to be constant.
Although it isn’t true mathematically that the radial gradient in the heat source zone is

constant, it is noted that the expression for the zone used here is an approximation to



0.05

0.00

X/ 6

-0.05

-0.10

-15

-62-

Adiabatic Solution
T T ¥ T ' T T T L I T T T T I T ¥ T T

12

18

Crack Line

26

-

18 18

Ay

12

12

s

L ' L . ! L L L L ! 2 L L . ] L 2 L )

-5
x,/8

FIGURE 3.3 The temperature field due to the approximate plastic work zone shown

in Figure 3.2 for adiabatic conditions. The box indicates the region of
non-zero plastic work. (See section 2.3.) Good qualitative and quan-
titative agreement with the experimental results for a 600m /s are
seen. The predicted temperature rise for a 900m/s is also good,
however, the shape of the field does not agree with that measured when
a = 900m/s.(See Figure 3.1.)

the experimental data and that “averaging”in the experiments due to the finite infrared

detector size reduces the accuracy of the measurements near the crack tip (Zehnder

and Kallivayalil, 1991). Generally, it is expected that if adiabatic conditions prevail at

the crack tip, a nearly constant radial gradient may be recorded experimentally. Good

quantitative agreement is found between the predicted temperature rise and the measured

Temperature rise. A maximum temperature rise of 298°C is seen in the experiment when

a =600 m/s, and the predicted result, 304°C occurring along the crack line, is very

close to that measurement. The minimum temperature is 0°C occurring everywhere

outside—except directly behind—the heat source zone.
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FIGURE 3.4 The normalized temperature field for a propagating source zone with 1) =
.01 and M? € [0,.5,.9]. (See Eqs (3.24a) and (3.24b).) Note that the
existence of a temperature drop is exhibited for M? € [.5,.9] and that the
temperature field becomes more localized around the source zone with
increasing M?2. (a) M? = 0.0 (b) M2 =0.5
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The results of the numerical integration for the M? < 1 cases are plotted in
Figures 3.4 through 3.6. For small % it can be seen in Figure 3.4 that there is a marked
dependence of the temperature field upon M?2. Most notably, for M? € [.5,.9] a region
of temperature drop is seen behind the source zone. This is an interesting mathematical
effect, but the result is unrealistic since the combination of parameters in these plots,
¢ = .01 and M? € [.5,.9], is unlikely to be seen experimentally. As M? — 1 the
temperature field becomes more localized near the origin and the temperature at any
given point behind the heat source zone decreases with increasing A2. For M2 = 0 the
maximum normalized temperature, ,,,., occurs roughly at the maximum of the heat
source zone and is equal to .1% of the adiabatic maximum. The minimum, naturally,
is zero as 1 — oco. For M? = .5 the maximum is moved forward to roughly the
location of the minimum slope of the source zone where 6,,,, is equal to 1% of the

adiabatic maximum. The minimum occurs roughly at the location of the maximum
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slope of the source zone where the normalized temperature is equal to -1% of the
maximum adiabatic temperature. For the case M? = .9 the location of the maximum
and minimum are not changed with respect to the case M? = .5 but the magnitude
does, 0,4, is equal to 10% of the adiabatic maximum while 6,,;, is equal to -10%
of the adiabatic maximum. The behavior seen for the two cases when M? # 0 is
exactly as expected from Eqs (3.15) and (3.14). When M2 # 0 there is a contribution
due to the slope of the heat source zone as seen in Eq (3.15). This contribution has
a cooling effect when the slope is a maximum and a heat effect when the slope is a
minimum; as M? — 1 the significance of the heating and cooling due to the modified
Bessel’s function of the first order becomes greater and more dominant. Thus, as
M? — 1, the maximum temperature moves to the location of minimum slope and the
minimum temperature moves to the location of the maximum slope. Both maximum
and minimum increase in magnitude as M? — 1.

For larger 1, Figure 3.5, the dependence of the temperature field upon M? begins
to disappear. No negative temperature changes are seen, however, when M? = .9
the temperature does exhibit a positive minimum near the tail end of the heat source
zone. Thus, some cooling effects due to the second source term in Eq (3.15) remain.
Although, far from the heat source zone, z;/6 > 1, all three fields are equal. As
M? — 1 a localization of the temperature near the source zone is still seen. The
maximum temperature is located near the maximum of the source function in each
sub-case although it moves forward slightly as the thermal mach number increases.
The maximum normalized temperature increases with thermal mach number; 8,,,, =
75,1,1.5 for M? = 0,.5,.9 respectively. These values are 3.25%, 5% and 7.5% of
the maximum temperature under adiabatic conditions.

For even larger ), Figure 3.6, the dependence upon M? disappears completely as

expected from the asymptotic analysis, Eq (3.31), and the hyperbolic heat conduction
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FIGURE 3.5 The normalized temperature field for a propagating source zone with ¢ =
1 and M? € [0,.5,.9]. There exist no temperature drops as for ¢ = .01 in
Figure 3.4., however, the temperature field becomes increasingly localized
around the heat source as the thermal Mach number, M, increases leading
to higher temperature rises at the maximum. (a) M? = 0.0 (b) M? =0.5
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solution is indistinguishable from the solution for parabolic heat conduction at all values
of M? < 1. No localization of the temperature near the heat source zone is discernable.
The maximum temperature occurs slightly behind the maximum of the heat source zone
with value of 7.5—32.5% of the maximum temperature under adiabatic conditions.
Small 3 accounts for; a small source zone, 6, low velocity, a, or a large thermal
diffusivity, a. (See Eq (3.24b).) For metals these conditions do not reflect the usual
experimental conditions. For 4340 steel, = 1075, and 46 ~ 2 for both experiments
shown in Figure 3.1 giving ¢/ ~ 10° in both cases. For comparison the results of the
integration for ¢» = 10° have been plotted in Figure 3.7. It is seen that the theoretical
temperature field matches the experimental results, Figure 3.1, well for ¢ = 600 m/s
and that both the theoretical temperature field and the experimental temperature field
resemble the adiabatic solution, Figure 3.3. Contours extend from the heat source zone

nearly parallel to the crack faces toward z; = —oo before curving in to meet the
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FIGURE 3.6 The normalized temperature field for a propagating source zone with ¢ =
100 and M? € [0,.9]. The two fields are virtually indistinguishable. No
dependence upon M? is seen.
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The theoretical temperature fields for approximate experimental conditions
when a= 900 m/s and 600 m/s. Good agreement is seen in the predicted
maximum temperature at the crack tip, however some discrepancies occur
between the general shape of the field in this figure and the temperature
fields shown in Figure 3.1. (3 = 10°, § = 7.5 mm for ¢ = 600 m/s and
6 = 5 mm for a = 900 m/s.)
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negative z; axis. The results for ¢ = 10° differ from the adiabatic solution in that the
temperature decreases as |z, | increases behind the heat source zone. It is reiterated that
this decrease is expected due to the zero temperature boundary condition at |z, | = co.
This boundary condition more closely approximates the experimental condition than an
adiabatic boundary condition because there is, after all, a small but significant amount
of heat conduction leading to a cooling of the specimen as |z;| — oo. It is noted that
the temperature decreases more rapidly behind the crack tip in the experiments than in
the theory. This is attributed to heat loss by radiation and convection at the surface.
Kuang and Atluri (1985) have included these effects in there numerical parabolic heat
conduction analysis, and they report a more rapid decrease in the temperature behind
the crack than when radiation and convection are not neglected. For & = 900 m/s
in Figure 3.1 a discrepancy with the theoretical results for M? < 1 in Figure 3.7 is
seen. The contours seen experimentally emanate from the source zone outwardly before
curving in to meet the negative z; axis. (The predicted maximum temperature at the
crack tip is in good agreement with the experimental measurement, however, owing to
the adiabatic conditions at the crack tip.)

For M? > 1 an exemplary plot is shown in Figure 3.8. The resemblance of this
figure to the results recorded in Fig 3.1 for ¢ = 900 m/s is striking, however, the
experimental temperature field for @ = 900 m/s shows what might be interpreted to
be thermal shocks at a shock angle corresponding to a large mach number, M ~ 100.
If this value for M is accurate then when a = 600 m/s the temperature field should
also show similar thermal shocks; it doesn’t. Also, because ¥ = 10° experimentally
not 10° as in Fig 3.8, the theoretical temperature field for thermally super-sonic crack
propagation at a = 900 m/s actually resembles the temperature field in Fig 3.7. This is
expected from the asymptotic analysis and has been checked numerically by the authors.

Therefore, it is clear that no evidence of thermally super-sonic crack propagation is
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FIGURE 3.8 The theoretical temperature field when AM? = 10 and ) = 100 resembles
that in Fig 1 when a = 900 m/s. This resemblance is coincidental,
however, because the large value of M? indicates thermally supersonic
behavior should also be expected when & = 600 m/s and no such behavior
is observed.

observed in these experiments.

The difference between the experimentally observed temperature field at ¢ =900
m/s and the predicted field at the same crack speed is due to crack face opening (Mason
and Rosakis, 1991). The opening velocity required to produce the observed effect is
7.5 m/s, a reasonable crack opening velocity. It is expected that the crack face opening
speed depends upon the initial static stress intensity factor and the crack velocity. From
simple theory one might expect that the crack face opening velocity increases by as
much as 5 times when the crack speed increases from 600 m/s to 900 m/s (Freund,
1977). This suffices to explain the difference in the temperature fields in Figures 3.1

and 3.7.
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3.4 Conclusions

From the asymptotic analysis of the traveling point source solution of the hyper-
bolic heat conduction equation, it is clear that, for crack propagation in metals when
the crack speed is either lower or higher than the material heat propagation speed, the
difference between hyperbolic heat conduction and parabolic heat conduction is negli-
gible (see Figures 3.6 and Figure 3.7). As the factor ¢ = aé/2a gets large, (b ~ 10°
for a crack propagating in 4340) solutions for a traveling point source in a hyperbolic or
parabolic material converge to the same result. This end result is insensitive to changes
in the thermal mach number, M, and is very similar to the solution for a traveling
source zone in an adiabatic material.

The temperature field in Figure 3.1 exhibits quasi-adiabatic heat conduction be-
havior when & = 600 m/s. Contours of constant temperature extend from the crack tip
to |¢1| = —oo nearly parallel to the crack faces before curving in to meet the negative
z; axis. A region of nearly constant radial temperature gradient is observed ahead of
the crack tip. The temperature field greatly resembles the solution for adiabatic condi-
tions due to the high crack velocity, a, small heat production zone, §, and low thermal
diffusivity, «, of 4340 steel.

When & = 900 m/s the temperature field does not show behavior that is predicted
by parabolic or hyperbolic heat conduction. It is understood that this difference is due
to opening of the crack faces behind the crack tip (Mason and Rosakis, 1991). Thus, no
evidence of hyperbolic heat conduction is observed, and it is concluded that the traveling
point source shows little promise as an experimental method for the investigation of
the hyperbolic heat conduction effect. A feasible source zone size combined with the
normal range of material parameters for engineering materials consistently leads to near
adiabatic conditions around the source zone unless a very low thermal wave speed is

expected (~ 1 m/s). Furthermore, it is noted that hyperbolic heat conduction is expected
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only at very low temperatures and only for very special materials (S. Nemat-Nasser,

1992) making this phenomenon even less likely to occur under these experimental

conditions.
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CHAPTER 4

On the Strain and Strain-Rate Dependence of the Frac-
tion of Plastic Work Converted to Heat: An Experimental
Study Using High-Speed Infrared Detectors and the Kol-
sky Bar

Overview

The conversion of plastic work to heat at high strain-rates gives rise to a significant
temperature increase which contributes to thermal softening in the constitutive response
of many materials. This investigation systematically examines the rate of conversion
of plastic work to heat in metals using a Kolsky (split Hopkinson) pressure bar and a
high-speed infrared detector array. Several experiments are performed, and the work
rate to heat rate conversion fraction, the relative rate at which plastic work is converted
to heat, is reported for 4340 steel, 2024 aluminum and Ti-6Al-4V titanium alloys
undergoing high strain and high strain-rate deformation. The functional dependence of
this quantity upon strain and strain-rate is also reported for these metals. This quantity
represents the strength of the coupling term between temperature and mechanical fields
in thermomechanical problems involving plastic flow. The experimental measurement
of this constitutive function is important since it is an integral part of the formulation
of coupled thermomechanical field equations, and it plays an important role in failure
mode selection—such as the formation of adiabatic shear bands—in metals deforming

at high strain-rates.
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4.1 Introduction

In coupled thermomechanical problems an additional field equation is added to the
usual field equations. This additional equation, the heat conduction equation, provides a
link between mechanical deformation fields and an additional unknown, the temperature
field, T'(x,t), and is given by

Bo - €P K E

aViT - T = — +——
PCp pep (1 —2v)

Totr(é) @.1)

where the dot refers to differentiation with respect to time, « is the thermal diffusivity,
p is density, ¢, is the heat capacity, 3 is defined below, o is the stress, €” is the plastic
strain-rate, ~ is the coefficient of thermal expansion, E is Young’s modulus, v is
Poisson’s ratio, €° is the elastic strain-rate and T is the initial or ambient temperature.
The first term on the right represents heating due to irreversible plastic deformation
(Taylor and Quinney, 1934; Bever et al., 1973) and second term represents heating
due to the reversible thermoelastic effect (Sneddon and Berry, 1958). If elasticity is
neglected and adiabatic conditions prevail, then the heat conduction equation takes a

more simple form, i.e.;

pe,T = Bor - éP = BIWP 4.2)
where
pcpT
=L 4.3
=L (43)

Obviously, even for these simple conditions it is necessary to know the material pa-
rameters such as /3, the work rate to heat rate conversion fraction, and cp, the heat
capacity which may depend upon temperature, before useful solutions to thermome-
chanics problems can be obtained.

Although ¢, may be found in tables (sometimes as a function of temperature), 3
is not commonly available. Often j is simply assumed to be a constant in the range

0.85-1.00; a practice that dates back to the work of Taylor and Quinney (1934). They
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determined S using calorimetric methods to measure the heat produced during quasi-
static deformation. The remaining work is usually attributed to the stored strain energy,
e.g., dislocations, defects and their interactions. ~However, it is known that § may
depend upon strain. Many investigations (Bever et al., 1973) in the past that have been

concerned with a quantity related to £, the fraction of stored energy defined as

f=1- %pz. 4.4
They have reported that this material property depends upon strain. Since  may be
expressed in terms of f, it is clear that § will depend upon strain as well. At least
two models have been proposed for predicting the dependence of § or f upon strain
representing two mechanisms for the storage of energy in a material. In the first model,
dislocation density is assumed to increase with strain at a rate that is proportional to the
slope of the stress-strain curve. The energy per unit of dislocation density is estimated,
and the relative rate at which work is converted to heat may then be related to the work
hardening exponent (Bever et al. 1973; Zehnder, 1991). In the second model, the stored
macroscopic strain energy is calculated for a polycrystalline solid made up of elastic
perfectly plastic crystals, and the stored energy is related to the reciprocal of plastic

work, f ePdo (Aravas et al., 1990). The two models produce different predictions for

the dependence of 3 upon strain. For a power law hardening material,

Co <i) for o < o,

€o

7= n : (4.5)
Oo <‘:—> for ¢ > o,
the two separate models predict
€ 1—-n _ n
(—Ej'_z—)l_—-i—i for dislocation theory
Blel) = “ 6)

o)
(&) =n(£)""

for strain energy theory.
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FIGURE 4.1 Theoretical prediction of the dependence of 3, the work rate to heat rate
conversion fraction, upon strain and hardening exponent, n, in metals.
For the model of Zehnder A = 1.

where oy and ¢, are the yield stress and strain for the material, respectively, and n is
the hardening exponent. The results may be seen in Fig 4.1 for different values of the
hardening exponent, n. In the dislocation based model, 3 increases with strain while
in the strain energy based model the opposite is true. (The models have been adapted
to produce a prediction for g rather than f when necessary.) As evident from Eq (4.6),
the dislocation theory contains an unknown parameter, A, that essentially assumes the
role of a fitting parameter. The residual stress theory is exact for a material made up
of elastic-perfectly-plastic crystals, but it only serves as a lower bound on § for work
hardening crystals. Comparison of these models with experiments on copper at low
strain-rates (Williams, 1965) showed the model of Zehnder (1991) to be more accurate
for that material.

Little is known about the dependence of £ upon strain-rate. Some early work
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has shown that the stored energy in drawn wires has a maximum when plotted with
respect to drawing rate (Bever et al., 1973). This maximum is attributed to the thermal
annihilation of dislocations at higher drawing rates resulting in a decrease in stored
energy. Also, if one uses the above theories for strain dependence of § should be
used for all strain-rates, then the materials exhibiting strain-rate dependence in their
mechanical behavior should also exhibit strain-rate dependence in 8. For example,
copper is weakly strain-rate dependent for strain-rates in the range 10~%-10%, and,
consequently, it has shown a very small strain-rate dependence in the work rate to heat
rate conversion fraction, 5 (Williams, 1965). Even though the work rate to heat rate
conversion fraction, 3, shows some indication of being a material dependent function
of both strain and strain-rate, i.e., = (€|, |€|), virtually no work has systematically
tried to investigate the dependence of S upon strain-rate for many structural materials.
The experimental procedure introduced here for the first time provides a simple means
by which to carry out such investigations.

It is important to investigate the behavior of 3 under a variety of deformation
histories because of its role in thermomechanics. In dynamic plasticity experiments
the conversion of plastic work to heat can lead to thermal softening and instabilities
in the deformation (for example see Clifton et al., 1984 and Batra and Wright, 1988).
Any numerical modelling of dynamic plastic deformation that includes the effects of
heat generation would require complete knowledge of the behavior of the material
constitutive functions, including 3, during all phases of deformation before accurate
modeling of any unstable behavior such as adiabatic shear band formation (Duffy,
1984; Giovanola, 1988) may be achieved. Motivated by the above concerns our goal
here is to report on the initial steps of a study whose aim is to investigate the functional

dependence of 5 on |e| and |€| for a variety of loading regimes.
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4.2 Experimental Apparatus

The Kolsky pressure bar is used to deform the materials at high strain-rates
(~1000-3000 s—1) in this investigation. The incident, ¢;(t), reflected, €,(¢), and trans-
mitted, ep(t), strain signals are recorded by strain gauges attached to the input and
output bars. The stress, strain-rate, strain and average velocity of the deforming spec-
imen can be determined from the recorded incident, reflected and transmitted pulses

assuming that the specimen deforms homogeneously; (Kolsky, 1949)

4,
O'(t) = Ebar'}i‘fT(t)

2c
é(t) = ——eg(t)
;- @)
e(t):/ é(r)dr
2,
o(t) = 7 er(t)

where Ey,, is Young’s modulus of the bar, 4, and A are the cross-sectional area of the
bar and the specimen, respectively, cy is the one-dimensional wave speed in the bar, L
is the specimen length and @ is the average specimen velocity. Note that the average
velocity is non-zero, meaning that the specimen translates past a stationary observer.
For further details of the pressure bar technique the reader is referred to Lindholm
(1965) and Follansbee (1985).

In order to record the temperature rise in the Kolsky pressure bar experiments a
stationary, focused, high-speed, infrared detector array is used. For details regarding
the detector array time response and characteristics see Zehnder and Rosakis (1991
and 1993). The array is shown in Figure 4.2. The detectors are calibrated by heating
- sample—with controlled surface finish—of the specimen material to a known tem-
perature while simultaneously recording the detector output voltage. The calibration
procedure precludes the need for any knowledge of the specimen emissivity and, thus,

greatly simplifies the temperature measurement procedure. A sample calibration curve
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FIGURE 4.2 A schematic representation of the high-speed I-R detector array focussed

on a specimen in a Kolsky pressure bar. The detector array size and
orientation as focussed on the specimen is also shown.
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corresponding to a 4340 specimen may be seen in Figure 4.3. Although they are not
shown, calibration curves are evaluated for every material investigated here. In each
case the resulting curve is qualitatively very similar to Figure 4.3. The dependence of
the calibration curve upon surface finish is investigated since the specimen surface finish
may change during deformation in the Kolsky bar. Two roughnesses were chosen; one
representing the specimen before deformation, 600 grit finish, and one representing the
specimen after deformation, 120 grit finish. Minimal dependence upon surface finish
is seen. For the two very different surface finishes the calibration is very nearly the
same and within the scatter of either calibration curve. This is largely due to the longer
wavelength of infrared radiation and the detector characteristics. (The detectors inte-
grate energy over a band of infrared wavelengths.) Some materials exhibit a stronger
dependence upon surface finish than others; colored metals such as brass and copper
are somewhat more sensitive to finish. Regardless, it suffices to say that for the metals
studied here, the effects of change in surface finish during deformation are negligible.
Further details of the high-speed infrared measurement technique can be found in Duffy
(1984) and in Zehnder and Rosakis (1991 and 1993).

Assuming that homogeneous deformation of the specimen occurs, one may easily

calculate the plastic work rate density from the Kolsky bar using relations (4.7) and

WP =0 €". (4.8)

By measuring the temperature and differentiating it with respect to time, T'(t) is es-
timated, and by assuming that adiabatic conditions apply during the experiment, £ is
calculated from Eq (4.3). The density and heat capacity (with its dependence upon tem-
perature) may be found in the literature (e.g., Aerospace Structural Materials Handbook,
1985) for the materials investigated; 4340 steel, Ti-6Al-4V and 2024 Al. Fortunately,
it is seen that the heat capacity for each of these materials does not change significantly

over the range of material temperatures anticipated during the experiments (20-130°C).
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FIGURE 4.3 Calibration of the I-R detectors. The dependence of the calibration curve
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FIGURE 4.4 A schematic representation of the Kolsky Bar for purposes of model the
conduction of heat during a typical high strain-rate test.
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4.3 Theoretical Model of Heat Conduction in the Kolsky Bar
In order to be sure that adiabatic conditions prevail throughout the dynamic testing
of materials, a model of heat conduction in the Kolsky bar is proposed. The geometry
for the heat conduction problem in a Split Hopkinson Pressure Bar is shown in Fig
4.4. The configuration is symmetric about = 0, the axial centerline of the specimen.
Material 1 represents the specimen (of total length 2L); material 2 represents the semi-
infinite input or output bar. It is assumed that at z = L the specimen and the bars mate
perfectly allowing conduction across the interface without heat loss. The boundary

conditions of the problem as stated are as follows:

% =0, forz=0
Ozx
klAlgzl- = kgAgQE, forax =1L
8;1: 0;13

T, =T, forxz =1L
To =0, for z — .
The most dubious of these conditions is the second one. This simply states that the
energy flow into the interface equals the energy flow out of the interface, however
the energy flow is related to the cross-sectional area of the materials. Implicit in this
assumption is the assumption that energy flows into or out of the larger cross section
uniformly throughout that cross section. Clearly this is impossible since the contact
occurs only over an area equal to the smaller cross section. It is not sufficient to let
the two areas be equal because heat flow into or out of the larger cross section will
not be one-dimensional, and, in general, three-dimensional effects will lead to more
heat flow than predicted by the one-dimensional approximation. Therefore, in order to
produce a conservative estimate of the requirements for adiabatic conditions, the above
assumption is made. Note also, that the length, L, will change in the Kolsky bar during
a test and that no provision for that effect is made here; L is assumed to be fixed.

Lastly, note that the area of the specimen, A, will change during the deformation and
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that no provision is made for that effect either. Later, the qualitative effects of all these
oversimplifying assumptions will be assessed.

Since there exists a characteristic length scale, L, for this problem it is possible

to non-dimensionalize the governing equation, Eq (4.1), by assuming a characteristic

temperature, Ty,

0%6 08
—— — 4.
0X2 Or ¢ 4.9)
where T
g =—
Ty
_at ¢t
T _L2 o To
LZ
T =——
o
T
X =—
L
_gL?
G _kTO

For the problem at hand Ozisik (1980) has provided a usable solution. Assuming

a homogeneous governing equation, G = 0, and the initial conditions
0*(X,00)=H(X)-H(X -1) (4.10)

where H(X) is the Heaviside function, Ozisik (1980) finds a solution given by
07 =1—

1 -7 & n 2n+1-X 2n+1+ X .
_2_._7;)7 {erfc [T} —I—erfc [—2——\/—'7__—'——]}, f07‘O<)1 <1

14~
0y =——
272
st o s § s
Z'y" erfc [“n + X 1)] — erfe [Zn +2 4 uX 1)} , for X >1
> 2T N
(4.11a)
where
o :klAl — szz,Lt
kl A.l + kgAg/L (4 11b)
& . .

=4
G2
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FIGURE 4.5 The effect of the parameter p is demonstrated for v = .9 and 7 = .5.
It is seen that increasing y; decreases the temperature in material 2 while
not effecting the temperature in material 1. Physically, an increase in pu

means that the penetration depth in material 2 is much smaller than that
in material 1.

Note in this solution that 4 only effects the temperature in material 2 i.e., 7 does not
depend upon p. Since we are most interested in the temperature in material 1, the
effects of o are not investigated in depth here. Figure 4.5 shows that the temperature in
material 2 decreases with increasing u. This is to be expected since a large p indicates
a smaller penetration depth in material 2 than in material 1. Also note that there are a

few values of vy which have physical significance:

-~ when v = 0 This occurs when materials 1 & 2 and their cross sections,
A; and A,, are equal, i.e, v = 0 and ¢ = 0. Then
the problem reduces to a uniform semi-infinite bar. If the
materials are not the same, the temperature in material 1

is that for a uniform bar; only the temperature in material
2 changes.
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when v = 1  Conduction in material 1 is dominant, and material 2 acts
as an insulator. At the interface %{l =0a X =1.

when v = —1 Conduction in material 2 dominates, and material 2 acts as
a heat sink. A fixed temperature condition exists at the
interface, 8, = 0 at X = 1.

This solution may be used as a “quasi-Green’s function.” Following the example
of Duff and Naylor (1966). Ozisik’s (1980) solution may be multiplied by the Heaviside
function. Then the problem is re-cast for a non-homogeneous governing equation, and

no initial conditions are needed. Letting
67(X,7)=67(X,r)H(T)
(4.12)
03(X,7) =03(X,7)H(7)
and inserting this solution into Eq (4.9) yields
028{2 061 ,

ot — i = —8(r) [H(X) - H(X - 1),

where the solution, 69, is now defined for 7 € (—o0, 00) rather than for 7 € [0, 00) as

is 6*. If it is assumed that the plastic work in the specimen is uniform, i.e., it always
has the dependence upon X given in Eq (4.10) and that elastic effects are negligible,
then we can integrate the solution in Eq (4.12) to get the temperature distribution for a

time varying heat source density. Mathematically, it is assumed that
G(X,7) = §(1)07 o(X,0) (4.13)

then -
OX,r) = [ aoBix, - s)ds

— o0

0,(X,7) :/ G(s)05(X, 7 — s)ds

hude o]

which can be verified by direct substitution into Eq (4.9). Substituting Eq (4.12) in the

above equation yields
6, :/ §(s)07 (X, 7 — s)ds
e (4.14)
0, :/ §(s)85(X, 7 — s)ds.

— 0
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For uniaxial compression it may be assumed that

L2
g(r) = ﬂaekTO H(r) (4.15)

and that Soé is constant. The latter assumption is exact for a perfectly plastic material
with constant converted work fraction, 3, deforming under uniform constant strain-rate.
Although the actual deformation is much more complicated than that, it is observed
experimentally that the assumption of constant Bo¢ is, in fact, quite reasonable. Un-

loading is not considered, i.e.,
L?
g(r) = ﬂae———— (H(r)—H(t — )]

since in this investigation it is only important to establish the existence of adiabatic
conditions during the test. After unloading occurs, it is of no consequence whether
adiabatic conditions remain.

The ratio of the predicted temperature in Eq (4.14) to the magnitude of the adiabatic

temperature may be found using Eq (4.15), i.e.,

0 1 /(7
! :——/ 07 (X, 7 — s)ds,
0

g
'0“2‘1' ; r (4.16)
m :;A 0;(X,T —_ S)dS.

Note that solution in Eq (4.16) is independent of the strain-rate, é. This is because
Boé has been assumed to be constant, and normalizing by the adiabatic temperature
removes it from the solution expression. As a result, only the time length of the test, 7,
and the conditions at the interface, v, determine whether adiabatic conditions prevail.

The results of the numerical integration of the solution given in equation (4.16)
are shown in figures 4.6(a)-(e). It can be seen in the figures that the time below which
adiabatic conditions prevail, 7o, is independent of the boundary conditions, ~. This fact
indicates that adiabatic conditions hold for a specified time regardless of the input and
output bars. Only the specimen material paramenters are important. The characteristic

times below which adiabatic conditions prevail are listed in Table 4.1.
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Table 4.1

Material Parameters and Characteristic Times for Several Materials

Material o« (107% m?/s) k(W/m°C) 7o () taq (us) 1

Steel 9.86 34.6 575 5750 -88 1
Ti-6-4 4.78 10.9 1.19 11,900 -95 7
Pure Cu 112.6 386 .050 500 -18 34
Brass 34.12 111 .166 1660 -80 19
Al-2024  66.76 164 085 850 =79 27
Glass 0.343 0.78 16.5 165,000 -98 .27

where « has been calculated assuming a 3/16” diameter specimen and a 3/4” bar.

Note that v ~ —1 for most materials except for copper, thus a fixed temperature
boundary condition will suffice in future analyses. For most high strain-rate tests,
é ~ 103, the time length of the test is on the order of 10 ps. Thus, adiabatic conditions
prevail in those tests. For lower strain-rate tests the time length of the test must be
determined before it is possible to asses the validity of adiabatic assumptions.

Since the dimensions are normalized with respect to the specimen size, L, it is
expected that changes in this parameter will have only a minor effect on the solution,
possibly causing the temperatures in the specimen to be lower than expected when
X = 1and for 7 large. As the cross-sectional area of the specimen increases, so does ~.
However, in determining the conditions under which the adiabatic assumption is valid
it has been shown the v has little effect. Thus, the effect of a changing specimen cross
section is minimal. Remember, the boundary conditions assumed are very conservative,
so the prediction of this model concerning the validity of adiabatic assumptions is a
conservative prediction. The effects of a non-constant L and a non-constant A4; are

considered less than significant because of the conservative approach.
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FIGURE 4.6 (a)The temperature field in material 1 is plotted for various times when
v — —1. In this case it is expected that a constant temperature, § = 0,
is held at the interface. It can be seen that this boundary condition holds.
For 7 < 1072 adiabatic conditions prevail over most of the specimen,
X < .7. (b)The temperature field in material 1 for v = —.5. For short
times the boundary condition at X = L is given by (v + 1)/2 and using
asymptotic analysis. For long times the temperature in the specimen is
independent of postion and the temperature decays as 1/./7 (as expected
from asymptotic analysis). For v < 1072 adiabatic conditions prevail
over most of material 1.



J— (c) =00
0.8
0.6 — o=
. L
= L
~
£ B i
0.4 — t/7=10" -
L t/7,=10" .
Fro—r= e 7 A .
= - t/T=10" s
0.2 —m t/Te=10" i
0.0 L L . i s s s i " L L l L s L i L '
0.0 0.2 0.4 0.6 0.8 1.0
x/L
0.6 =1
s LT ]
™~
E—. | =
04+ — t/r=10" —
Fo e t/T,=10" .
- —— = t/7,=10° 1
e T A SO T T T T T T e e —3
0.2+ —- t/7=10° —
ool . o o0 vy
0.0 0.2 0.4 0.6 0.8 1.0
x/L

FIGURE 4.6 (c)The temperature field in material 1 for v = 0. (d)The temperature field
in material 1 for v = .5. For 7 < 102 adiabatic conditions prevail over
most of material 1 for both boundary conditions.



(e) 7=0.99
Lo T T T e T A T I T T T T T T T I T T T
o8- -
0.6 -
. F ]
= L -
™~

B~ | N
0.4 — t/7,=10" -
o e t/T=10" .
- - - - t/7=10° .
- - == t/T,=10' .
0.2 —-- t/T=10° _

0.0 P S O S S SO ESCU S S S E R

0.0 0.2 0.4 0.6 0.8 1.0
x/L

FIGURE 4.6 (e)The temperature field in material 1 for v = .99. As expected when
v — 1, adiabatic conditions prevail for long times. For 7 < 10° adiabatic
conditions prevail rather than for 7 < 10~ as in all the previous cases.

4.4 Results and Discussion

Typical results of the experiments are shown for 2024 aluminum in Figure 4.7.
The figure shows the time history of strain of the input and output bars as well as the
time history of the voltage output of two detectors focussed on the specimen surface at
two points 1.4 mm apart. It should be noted that the temperature reaches its maximum
value within 150 us of the beginning of loading at approximately 200 us and remains
constant once unloading occurs, thus the process is adiabatic. Adiabatic conditions
were observed for all materials studied here. Also, the two detector output voltages
nearly coincide during loading of the specimen. Since the process is adiabatic, Eq (4.2)
holds, and, since the temperature is nearly independent of position, Eq (4.2) indicates
that the plastic work rate is also nearly independent of position. Thus, the deformation

is homogeneous. It is also worth observing that there is a second temperature rise in the
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FIGURE 4.7 The results of a typical Kolsky bar experiment on 2024 aluminum. The
transmitted and reflected signals are delayed with respect to the temper-
ature signal because the strain gauge measurements are made at a finite
distance from the specimen.

specimen due to the reflection of waves from the free end of the input bar which result
in a second loading of the specimen. In softer materials such as 2024 aluminum this
secondary temperature rise is significant. Lastly, it is observed that the output of one
of the detectors drops shortly after the second loading of the specimen by the reflected
wave begins. This is because the specimen and input bar are moving. The input bar
has moved in front of one detector causing a lower temperature to be measured there.

The stress-strain curve for 2024 Aluminum calculated from the Kolsky bar equa-
tions is shown in Figure 4.8. Note that three-dimensional effects and lack of equilibrium
in the specimen at short times in the Kolsky bar result in inaccuracies at low strains
(Follansbee and Frantz, 1983) and that the elastic behavior of the specimen is not

captured. These effects add to the uncertainty in the calculation of 3 at low strains
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FIGURE 4.8 The stress-strain relationship for 2024 aluminum at high strain-rate (3000
s™1). The hardening exponent from a fit of the power law constitutive
equation, Eq. (4.5), is calculated to be .31.

(e £ 3%). The hardening exponent for 2024 Al is 0.31 when the constitutive model in
Eq (4.5) is fitted to the experimental results. The plastic work rate may be calculated
using equations (4.7) and (4.8) and is shown in Figure 4.9. An approximation of the
plastic work by a linear fit of the experimental data with respect to time is also shown
in the figure. This approximation is considered a valid estimate of the true plastic work
rate since the oscillations in the experimentally observed plastic work rate are due to
three-dimensional wave propagation in the input and output bars of the apparatus. In
the calculations of 3 presented here the fitted approximation is used.

The temperature measurement also suffers from inaccuracies at low temperatures
because of inherent noise in the signal and the slope of the calibration curve. At low
voltages the calibration curve slope becomes very large, therefore a small amount in

noise can result in large fluctuation in temperature. This makes the calculation of
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F1GURE 4.9 The plastic work rate density as calculated using Eqgs. (4.7) and (4.8). The
oscillations are due to three-dimensional wave propagation in the bar. A
linear fit to the data shown as a dotted line is used in calculations of S.

uncertain for low strains (¢ < 3%) where temperature rise is still small (below 10°C).

The most significant difficulty in calculating 5 however is due to the problems
associated with differentiation of the measured temperature. Differentiation of a noisy
signal has inherent instabilities, and usual numerical differentiation schemes such as
the central difference method (Beyer, 1987) do not work because they are formulated
for numerically exact functions. The noise in the function to be differentiated by such
methods must be much smaller than the sampling time. That is not the case here, and
an alternate method is necessary to accurately differentiate the temperature rise. It is
not sufficient to simply fit a known function to the temperature measurement in this
case because the exact form of the expected result is not known and two equally good
fits can result in dramatically different derivatives. Consequently, the method of Vasin

(1973) and Groetsch (1992) is used to differentiate the temperature measurement. In
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FIGURE 4.10 The temperature data for 2024 aluminum. The solid line represents the
smoothed function which is differentiated using the method of Vasin,
(1973), and Groetsch, (1992).

this method a weighted average smoothing function is used to differentiate a noisy

signal, ¢(t), ie.,

LBeap [t2/(12 —13)], for |t| <t
— t 0 9 0
wi, (%) {0’0 for [t] > t, (4.17)
where
t+to
o(t) = t— s)g(s)ds
gs(t) /t_to weo(t — 8)g(s) 4.18)

=Wty ¥ G,
where t( is the half width of the time over which a weighted average of the noisy
signal is taken and g¢,(t) is the smoothed function. An example of the smoothed
temperature signal with ¢, = 20us may be seen in Figure 4.10 plotted with both noisy
signals. Further precautions were taken by averaging the two temperature signals before

smoothing to reduce some of the noise at low temperature. Differentiation of the noisy
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signal, g(¢), is carried out by using the relationship
9s(t) =wi, x g (= we *g'). (4.19)

Consequently, the derivative is actually found by differentiating the smoothing function,
wi,(t), and integrating the convolution in Eq (4.19) for all points of the temperature
signal. Multiplying the derivative of temperature by pc, and using equation (4.3) results

in the evaluation of §.
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FIGURE 4.11 The work rate to heat rate conversion fraction for 2024 aluminum. Good
qualitative agreement is seen between the experimental results shown
here an the theoretical prediction of Zehnder in Figure 4.1.

The dependence of the work rate to heat rate conversion fraction, /3, upon strain
for a nominal strain-rate of 3000 s~! and corresponding to the raw data shown in
Figures 4.7-4.10 is plotted in Figure 4.11. It can be seen that 3 for 2024 aluminum is
strongly strain dependent; initially the relative rate at which work is converted to heat

is approximately 0.5 rising with strain to the traditionally accepted 0.85-1.00 range for
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metals (Taylor and Quinney, 1934; Bever et al., 1973). The trend qualitatively follows
the model of Zehnder (1991) and not that of Aravas et al. (1990). Since the model of
Zehnder is known to be more accurate than the model of Aravas et al. for strain-rate
insensitive copper at low strain-rates and nominally high strain-rates (10s~!) and since
quasi-static testing of the 2024 aluminum by the authors shows that the stress-strain
curve has only a weak strain-rate dependence over the same strain-rate range, it is
concluded that 3 for 2024 aluminum at high strain-rates behaves much the same as it
would be expected to behave at low strain-rates. This is also supported by the finding
that the large strain value calculated for 3 at high strain-rates, 0.85, corresponds well
with general observations of 3 made for all metals at low strain-rates. Thus, strain-rate

dependence in S is not found in 2024 aluminum for strain-rates up to é ~ 3000s 1.

Steel at High Strain-Rates (2500 s7)
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FIGURE 4.12 The work rate to heat rate conversion fraction for steel. The calculation
of  has been carried out for each detector individually. The anoma-
lous result in one detector at lower strains is due to inhomogeneous
deformation of the steel.



-99-

In Figure 4.12 the same calculation has been carried out for 4340 steel. Here the
signals from each detector was treated individually to show some unexpected behavior.
It can be seen that for one detector in early parts of the experiment the value of
varies noticeably. However, on the other detector the value of 3 is a smoothly increas-
ing function of strain and in qualitative agreement with the results for 2024 aluminum.
The final value of 3 for both detectors , 0.85, is in agreement with earlier preliminary
experiments on 4340 steel (Rosakis et al., 1992). The disagreement between two de-
tectors in the calculation of 3 is due to inhomogeneous deformations. In Figure 4.13 it
can be seen that temperature spikes can occur on one detector during the initial defor-
mation of 4340 steel. These spikes are never observed in 2024 aluminum or Ti-6Al-4V
titanium, but they occur regularly, although not consistently, in experiments with 4340
steel. Because adiabatic conditions prevail, a spike in the temperature measurement
indicates that an inhomogeneity, perhaps similar to the formation of Luder’s bands, has
formed in the early stages of the deformation of 4340 steel. The spike disappears be-
cause the specimen is moving and the inhomogeneity translates away from the focussed
detector. Notice that the other detector also shows some transient temperature rise due
to the inhomogeneity. The formation of such inhomogeneities violates the assumptions
of the Kolsky bar equations, Eq (4.7). Consequently, the plastic work reported for
that portion of the experiment is only an average value and does not reflect the local
value of the plastic work rate density near the inhomogeneity. At later times it is likely
that the specimen is deforming more homogeneously, and, consequently, the results are
more repeatable. Following the arguments used for 2024 aluminum it is concluded that
strong strain dependence but no strain-rate dependence of 3 is observed in 4340 steel
up to strain-rates of 3000s~!.

The experiments on Ti-6Al-4V titanium indicate that it also suffered from inho-

mogeneous deformations. This material, however, deformed in a different fashion than
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FIGURE 4.13 The raw data for an experiment using 4340 steel. These results show a
spike in one of the two temperature detectors due to a localized deforma-
tion. Such spikes are not always repeatedly observed in steel although
they are never observed in Ti-6Al-4V titanium or 2024 aluminum.

the steel. The Ti-6Al-4V titanium did not show large initial spikes in the temperature
measurement. Rather, it deformed inhomogeneously over a larger scale, resulting in
two slightly different temperature measurements for each detector over the duration
of the loading. In Figure 4.14 it can be seen that the detector measurements differ
not more than 10% over the full length of the experiment. However, the shape and
curvature of these curves remains equivalent. It was observed that the final tempera-
ture measured varies slightly with the initial placement of the detectors along the axial
coordinate of the specimen, but the shape and curvature do not vary with measurement
location. Therefore, the deformation varies over more than the separation of the two
detectors, 1.4 mm. Since the Kolsky bar reports an average measure of the plastic

work rate for inhomogeneously deforming materials, an average of the two tempera-



-101-

Titanium at high strain-rate (~1500 s™)
T I T T T T I T T T T I T L T T l T

150 T " —
'-JM
L o ¢ Raw Data for Two Detectors / -
—— Smoothed Average Temperature R

~ 100 -
e
Q
Sy

=3 I -
-
«

[ - -
(%
Q

= - -
V]

& s0- _

.{:'-‘&:'\ i

0 \ . L 1 L L L L | s | 1 ! | i L L . | . L ' L
150 200 250 300 350 400
Time (us)
FIGURE 4.14 The temperatures measured by each of two detectors during an experi-

ment of Ti-6Al-4V titanium are slightly different. This is due to inho-
mogeneous deformation over a scale that is larger than the separation of
the detectors. The shape of the curve, i.e., a decreasing slope, however,
is invariant with respect to measurement location.

ture measurements is used to calculate the work rate to heat rate conversion fraction,

B. The result is seen in Figure 4.15. Note that the form of g for Ti-6Al-4V titanium

is different than that of 2024 aluminum and that it is in better agreement with the

model Zehnder (1990) at low strains (up to 5%). At higher strains the same curve is in

better qualitative agreement with the model of Aravas et al. (1990). Since quasi-static

measurement of the stress-strain behavior of Ti-6Al-4V titanium by the authors shows

this alloy to be strain-rate sensitive, this difference between the behavior of Ti-6Al-4V

and the behavior of 4340 steel or 2024 aluminum—in the same strain-rate range—may

be connected to the strain-rate sensitivity of the Ti-6Al-4V titanium. Further work at

lower strain-rates and using the full detector array should shed more light on this issue.
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. FIGURE 4.15 The work rate to heat rate conversion fraction is calculated for Ti-6Al-
4V titanium using the average of the temperature of the two detectors. It
is seen that the form of the result qualitatively follows the prediction of
Zehnder (1991) at low strains and the prediction of Aravas et al. (1990)
at high strains. (See Figure 4.1.)

4.5 Conclusions
This work describes the first attempt to quantify the functional dependence of the
plastic work rate to heat rate conversion fraction, J, on strain and strain-rate in a range

of metals. The main conclusions can be summarized as follows:

1. Adiabatic conditions exist in the Kolsky bar for experiments on 4340 steel,
2024 aluminum and Ti-6Al-4V titanium when experimental times were shorter
than 800 us. This fact greatly simplifies the thermomechanical analysis of

specimen deformation in the Kolsky bar.

2. It is possible to measure the dependence of 5 upon strain and strain-rate using

the Kolsky bar and high-speed temperature detectors provided the specimen
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deforms uniformly or nearly uniformly.

3. For nominally strain-rate independent solids, the dependence of 3 upon strain
at high strain-rate (1000-3000 s—!) roughly follows the dependence expected
at low strain-rates. The model of Zehnder (1991) produces an acceptable
qualitative prediction of this dependence. Consequently, significant strain-
rate dependence of 3 for 2024 Al and 4340 steel is not detected over a large
range of strain-rates (1073 to 10® s~1). However, this is to be expected
since neither materials showed strain-rate dependence in their mechanical

properties.

4. Strain-rate sensitive Ti-6Al-4V titanium exhibited interesting behavior at high
strain-rates. The measured dependence of 3 upon strain for this material did
not follow the qualitative trends observed in strain-rate insensitive 2024 alu-
minum and 4340 steel. The model of Zehnder (1991) qualitatively described
3 at low strains while the model of Aravas et al. (1990) gave a better qual-
itative description at high strains. This difference may be connected to the

strain-rate sensitivity of the material. Further investigation is required.

5. The reflection of input stress waves from the free end of the input bar of the
Kolsky bar lead to significant temperature rises in the specimen subsequent to
the conclusion of the initial, recorded loading. This fact must be considered if
post-mortem examination of the specimens is to be performed since material
microstructure may be influenced by the high temperatures generated during
repeated loading. Repeated loading can be eliminated using the a stress

reversal Kolsky bar set up (Nemat-Nasser et al., 1991).

These results have significant implications in the study of the conditions preceeding

and governing adiabatic shear band formation and shear band growth as well as on the
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establishment of a criterion governing dynamic failure mode selection in rate sensitive
materials. This is because the work rate to heat rate conversion fraction, 3, serves as
a measure of the strength of the coupling term, in Eq (4.1), between the temperature
and mechanical fields. The temperature rise governed by Eq (4.1) can be significant
leading to thermal softening and to subsequent shear localization in many materials.
When modelling thermomechanical behavior of materials g is usually assumed to be a
constant. For example, in thermomechanical models of shear band formation (Clifton et
al., 1984; T. Belytschko et al., 1991; Wright and Ockendon, 1992), in thermomechanical
finite element simulations of dynamic failure mode transitions (Lee, 1990) and in general
thermomechanical computational codes (Simo and Miehe, 1992), 3 is assumed to be
a constant in the traditionally accepted range of 0.85-1.00. However, as shown here,
this assumption may not be correct for all metals, and serious consideration of the
variation of 3 with strain and strain-rate may be necessary to properly account for the
strength of the thermomechanical coupling and to accurately model material behavior.
For example, 3 in Ti-6Al-4V deformed at high strain-rates is significantly dependent
upon strain, and, for strains higher than 5%, 3 decreases from 1 to 0.5 (at 20%, see
Figure 4.15). This decreasing trend may continue for strains beyond 20%. Also, this
strong variation of / with strain may suggest that 3 is dependent upon strain-rate as
well.  Such strain and strain-rate sensitivity in the mechanism of converting plastic
work to heat for this material may play an important role in the determination of the
width of shear localization zones, in the determination of the maximum temperature
in such zones and, ultimately, in the determination of a critical shear localization or

failure mode selection criterion.
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Part 1I:

An Effect of Heating at a Dynamic Crack
Tip; The Formation of a Shear Instability
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CHAPTER 5

On the Use of a Coherent Gradient Sensor in Dynamic
Mixed-Mode Fracture Mechanics Experiments

Overview

The use of a coherent gradient sensing (CGS) apparatus is explored in dynamic
fracture mechanics investigations. The ability of the method to accurately quantify
mixed-mode crack tip deformation fields is tested under dynamic loading conditions.
The specimen geometry and loading follow that of Lee and Freund (1990a) and (1990b)
who give the theoretical and numerical mixed mode K values as a function of time for
the testing conditions. The CGS system’s measurements of K1 and Ky are compared
with the predicted results, and good agreement is found. The method is used to measure
K beyond the time domain of the known solution; it is seen that a shift from primarily

Mode II deformation to primarily Mode I deformation occurs.
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mode I, II stress intensity factors
normalization for stress intensity factor
Poisson’s ratio and Young’s modulus
Cartesian coordinates;

x; along crack line,

zo perpendicular to crack line

Cartesian stress, strain and displacement components

impact velocity
velocity magnitude

wavelength of light

Rayleigh, shear and dilatational wave speeds

optical path difference

shearing distance of light beams
grating separation

grating pitch

integer fringe order

refractive index of undeformed material
stress optical constant

specimen thickness

crack length
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5.1 Introduction

In an effort to understand dynamic mixed mode crack initiation as well as rapid
crack growth, various optical techniques have been used extensively for direct deter-
mination of dynamic crack tip fields. The method of photo-elasticity, for instance, has
been used to obtain both the dynamic fracture initiation and propagation toughnesses
of transparent, optically anisotropic materials such as Homalite 100.[Dally (1979)] The
method of caustics, on the other hand, has been used to study dynamic fracture be-
havior of transparent solids such as PMMA and Homalite 100 [Theocaris and Gdoutos
21972) and Ravi-Chandar and Knauss (1984)] as well as opaque materials such as steel
[Rosakis and Zehnder (1985)]. For a review of the method of caustics or the method
of photo-elasticity see Kalthoff (1987b) or Burger (1987), respectively.

The method of caustics has been used in a variety of fracture mechanics experi-
ments [Rosakis and Zehnder (1985), Theocaris and Gdoutos (1972), Ravi-Chandar and
Knauss (1984) and Beinert and Kalthoff (1981)]. This technique, however, inherently
assumes that the stress field near the crack tip is well described by the dominant (r~3)
singular term of the asymptotic expansion (K-dominance). If the K-dominance ap-
proximation is not valid in regions where measurements are performed, the method of
caustics can produce erroneous results in its measurement of K or K. Furthermore,
if there is limited knowledge of the crack tip deformation field (consider the formation
of an adiabatic shear band at a crack tip), the method of caustics can give little in-
formation about the deformation. Consequently, a full-field method is experimentally
more advantageous because it can offer a more complete description of the deformation
and response of the specimen over a larger region and not along a single curve as in
‘caustics. The method of photo-elasticity is a full-field technique, but this method is
limited to optically birefringent materials.

The full-field method known as the coherent gradient sensor, CGS [Tippur et al.
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(1989a) and (1989b)] is investigated here for the measurement of mixed-mode, dynamic
crack tip deformation fields under plane stress conditions in optically transparent, non-
birefringent materials. The Coherent Gradient Sensor is a lateral shear interferometer
utilizing two identical line gratings. The set-up was first proposed for measuring lens
abberations, [Hariharan et al. (1974) and Hariharan and Hegedus (1975)] but, until
recently, other possible applications of the CGS interferometer have been overlooked.
When used in fracture mechanics the method gives real time measurements of the
in-plane stress gradients for transparent materials or the in-plane gradients of the out-
of-plane displacements for opaque materials. With data taken at a wide range of points
near the crack tip, it is possible for the CGS method both to show whether or not a
K-dominant field exists near the crack tip and to find accurate values of K; and Kjj.

Tippur et al. (1989a) and (1989b) have demonstrated the accuracy of the CGS
statically for mode I loading, however, its accuracy in dynamic investigations, including
dynamic mixed-mode loading, has not been reported.

Recently, Kalthoff and Winkler (1987) and Kalthoff (1987a) have observed inter-
esting behavior in the dynamic propagation of mixed-mode (mostly mode II) cracks in
steel. Double-notched specimens were impacted by a projectile travelling with speeds
up to 70 m/s, see Figure 5.1a. It was found that below a certain impact speed (de-
pending upon the root radius of the notch) dynamic cracks propagated at a deflected
angle of approximately 70° form the notch line. This behavior is to be expected if the
material fails in a brittle fashion under a maximum hoop stress criterion [Erdogan and
Sih (1963)]. Above a critical impact speed, however, failure occurs along a direction at
a much smaller angle. Further investigation suggests that at high impact speeds (high
strain-rate) failure occurs in an adiabatic shear banding mode.

An analysis of the experiment of Kalthoff and Winkler (1987) and Kalthoff (1987a)

by Lee and Freund (1990a) shows that both modes of deformation, mode I and mode
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(a)

(b)

(©)

FIGURE 5.1 Loading configuration and geometry for (a) experiments of Kalthoff
(1987) and Kalthoff and Winkler (1987), (b) theoretical solutions of Lee
and Freund (1990a) and (c) finite element solution of Lee and Freund
(1990b).
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I, can be expected for such a loading geometry. In fact, apart from the dominant Kjj,
a small negative K is also predicted. Lee and Freund indicate limited agreement of the
mode II stress intensity factor predicted by their analysis with the caustics measurements
of Kalthoff and Kalthoff and Winkler. In these measurements, the caustics patterns were
interpreted as corresponding to a pure mode II deformation field. Hence, no values of
K are reported. The limited agreement of the theoretical results with the experimental
measurements may be attributed to a failure of the assumption of K-dominance, which
was not thoroughly substantiated in the experiments.

It is important that the Lee-Freund analysis of the experiment be verified so that
understanding of the failure mode transition from brittle cracking to adiabatic shear
banding can be achieved. Knowledge of the existence and magnitude of a K field at
the crack tip could lead to a clearer understanding of the mechanisms behind this failure

mode transition.
5.2 Theoretical Development

5.2.1 Analytical Model

The problem investigated by Lee and Freund (1990a) is shown in Figure 5.1b. One
side of an elastic, half-space containing an edge crack is loaded dynamically by some
prescribed velocity, v(t). All other faces are traction free so the boundary conditions
to be satisfied are

Ull(“l,l’z,t) =0 0'12(—1,.’1:2,t) = 0)

lf Lo < 0,

t if 9 > 0,
o1a(—1,25,¢) =0 uy (=1, 9, t) = A v(r) dr

022($1,0i,t) =0
if —I<ay <0,
o12(21,05,¢) = 0
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and at ¢ = 0 all quantities are zero. z; and x, are coordinates along the crack line
and perpendicular to it, respectively. An elastic plane strain solution to this problem
is reported by Lee and Freund (1990a) for a step input velocity, v(7) = v,H(7), but
conditions in our experiment are closer to a plane stress situation. As a result, the

analysis was adjusted to reflect a plane stress field. This was achieved by substituting

. Note that I and Ky in this

for v with the quantity %5 i
problem depend on material constants, namely v, because a velocity boundary condition
is prescribed on part of the boundary.

For PMMA v =~ .35 and T—Iﬁ = .26, therefore the analysis was evaluated numeri-

cally for v = .26 The normalization factor, K, for the stress intensity factors is given

by
\/: ;—E,,—F“-; for plane stress
K i (5.1)
\/— ;C—,,rE-(’—l"-—— for plane strain

where the plane stress normalization factor is found using the above substitution for v
in the plane strain normalization factor given by Lee and Freund (1990a). The time

pl—o

P where ¢ F'77 is the plane stress

axis is normalized by the characteristic time, [/c}
dilatational wave speed. The results of the new calculations for both mode I and mode
II stress intensity factors are shown in Figures 5.2a and 5.2b, respectively. As expected,
these results are very close to the results of Lee and Freund (1990a) for v = .25.
Most of the qualitative features of the curves in these figures can be explained.
Upon impact a plane compressive wave is generated. It is followed by cylindrical
unloading waves generated at the corners of the impact area. The compressive wave
gives rise to Kjj. The existence of the unloading wave makes the increase in Ky
progressively more gradual and forces the crack faces to close, thus causing a smaller,
but significant, negative ;. As can be seen in Figures 5.2a and 5.2b there exist
three regions in the solution. These correspond to the arrivals at the crack tip of the

first dilatational, shear and Rayleigh waves, respectively. The solution is valid up
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FIGURE 5.2 (a) Theoretical predictions for Ki(t) from the analysis of Lee and Freund
(1990a) for PMMA, v = .35, under plane strain and plane stress condi-
tions. (b) Theoretical predictions for I;;(t) from the analysis of Lee and
Freund (1990a) for PMMA, v = .35, under plane strain and plane stress
conditions.
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to cqt/l = 3, which corresponds to the arrival of a second dilatational wave that is

reflected from the impact surface.

5.2.2 The Method of CGS

i

Incident i
Plane Wave |
]
1
i
1

Grating G, Grating G, Filter Plane

Filtering Lens

FIGURE 5.3 Schematic describing the working principle of CGS.

In contrast to Tippur et al. (1989a) and (1989b), the theoretical development of
CGS shown here follows the more traditional approach of Murty (1978) for lateral
shearing interferometers. The two approaches are equivalent; the same assumptions are
made and the same governing equations result. It is hoped that the more traditional
<development will result in an easier understanding of the method. A schematic of the
set-up is shown in Figure 5.4. A coherent, collimated laser beam, 50 mm in diameter,
passes through a notched transparent specimen. After exiting from the deformed spec-

imen, the beam falls upon the first of two identical diffraction gratings (40 lines/mm).
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X2
A Specimen
X X3} .
P Grating Gi
x3’ Grating Gz
‘t' xi
Xy’

Filtering Lens Li

Filter Plane

Imaging Lens L2

Image Plane

FIGURE 5.4 Schematic of the experimental set up for transmission CGS.
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The primary grating splits the beam into a direct beam and numerous diffraction orders.
For the sake of brevity, only the first diffraction orders (+1) and the direct beam are
considered. The second diffraction grating diffracts both the direct beam and the first
diffraction orders into three beams each, giving a total of nine beams behind the second
grating. Of these nine beams the (0,+1) and the (+1,0) orders are parallel—as can be
seen in Figure 5.3.

An on-line spatial filter is used to isolate one of the two pairs of parallel beams.
A lens is placed a distance equal to its focal length behind the secondary grating as in
Figure 5.4. The Fourier Transform of the intensity distribution at the second grating
is observed in the back-focal plane of the lens where an aperture is placed on either
the +1 or -1 diffraction order spot. The aperture filters all but the two desired parallel
beams from the wavefront. Another lens is placed at a distance equal to its focal length
behind the aperture to invert the Fourier transformation.

It is assumed that the wave front before the first grating is approximately planar
with some phase difference, §S(x;, 22). Deviations of the propagation direction from
the optical axis are neglected. Thus, the two gratings shift one beam with respect to
the other by a distance

€ = Atanf ~ A8 5.2)

where A is the separation between the gratings, see Figure 5.4, and 6 is the angle of

diffraction (assumed small), given here by

1

~
~

(5.3)

0 = sin”

= >
>

A is the wavelength of the illumination, and p is the pitch of gratings.
The two parallel, sheared wavefronts constructively interfere at a point if their

difference in phase is an integer multiple of the wavelength, i.e., if

05(zq1 +€,29) — 6S(z1,22) = mA, (5.4a)
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where m is called “the fringe order.” Dividing this equation by e gives

6S(z1 +€6,22) — 6S(zy,23)  mA

, (5.4b)
€ €
which, for sufficiently small ¢, may be approximated by
0(65(zy,z
(6S5(z1,22)) _ mp (5.5)

0z o A
In equation (5.5), the approximations in equations (5.2) and (5.3) have been used, and
the result has been generalized to include shearing in either the x; or z, direction,
a = 1,2.

Equations (5.4a) and (5.4b) are the standard equations for lateral shearing inter-
ferometry found in Murty (1978). Note that as e goes to zero the approximation in
equation (5.5) grows more exact, but at the same time the number of fringes and,
therefore, the sensitivity of the system, is decreased. It is important that the grating
separation, A, and, consequently, the value of ¢, appropriately balances the competition
between maximizing sensitivity and approximating the derivative.

For a transparent material, the phase difference, 6§5(z;,z2), in equations (5.4a)
and (5.4b), is given by the difference in optical path length. Two important factors are
included in calculating this parameter; the change in refractive index of the material due
to variations in hydrostatic stress, and changes in specimen thickness due to Poisson’s

contraction. The optical path difference is, thus, given by

S 3 25
8S(z1,22) = 2h(n, — 1) e33d| — | + 2h bno,d{ — ), (5.6)

0 h 0 h
where n, is the index of refraction of the undeformed material and 4 is the thickness.
The first term in equation (5.6) represents the optical path difference due to changes in
the plate thickness caused by the strain component, e33. The second term represents
the optical path difference accumulated due to stress induced change in refractive index

given by the Maxwell relation,

ono(x1,22) = Dyi(011 + 022 + 033) , 5.7
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where D, is the stress-optic constant and ¢;; are the Cartesian stress components.

Assuming the material is isotropic and linearly elastic and using the plane stress as-

sumption substitution of (5.7) into (5.6) yields [Tippur et al. (1989a) and (1989b)]
55(:131,(172) ~ Eh(&n -+ &22) , (58)

where ¢ = D; — $(n, — 1) and 611 and G52 are plane stress thickness averages of
stress components in the material while 33 = 0. Finally, substituting (5.8) into (5.5)
gives the result,

EILM ~ P (5.9)

Ot VN

All interference images produced by the CGS apparatus are interpreted using equa-
tion (5.9). A similar analysis may be carried out for opaque materials in reflection giving
results with the same form.[Tippur et al. (1989a) and (1989b)]

For the case of a mixed-mode, K-dominant deformation field at a crack tip,

SV

(611 + 622) = (KICOS%é — KHsin—ié), (5.10)

)
d

where r = /22 + 22 and ¢ = tan"' (22 /21). z; and z, are the coordinates along the
crack length and perpendicular to the crack length, respectively, with the origin at the

crack tip. Equation (5.9) indicates that constructive fringes are formed if

sins(¢—v)  mp

A N = Aeh for z, gradients, (5.11a)
or
s3(d -
220 ¥) P oradients, (5.11b)

A 2mrr3 - Ach

where K;/Krr = tan(3v/2), and A = Kyy/cos(3v/2).
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FIGURE 5.5 (a) Numerical predictions of CGS fringes (constant g &181;;&”) values)

constructed on the basis of a pure Kifield.
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FIGURE 5.5 (b) Numerical predictions of CGS fringes (constant ‘9(&1(3+"’22—1 values)

constructed on the basis of a pure Ky;field.
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FIGURE 5.5 (¢) Numerical predictions of CGS fringes (constant —iﬂi"z—z values)
constructed on the basis of a mixed mode K field, K; = KU

An example of the fringe pattern expected from equation (5.11a) is shown in Figure
5.5a for Ky; = 0 and Figure 5.5b for Ay = 0. A change in the ratio Kj/ Ky results

in a rotation and/or magnification of the fringe pattern, as seen in Figure 5.5c.

5.3 Experimental Procedure

5.3.1 Apparatus

The specimen geometry is shown in Figure 5.6. Specimens are made of PMMA
because it approximates the linear elastic assumption of the theoretical solution. Square
-tip notches = 1.5mm thick are cut on a band saw as per the figure. The inclusion of a
notch of finite opening rather than a crack allows the generation of a negative mode-I
stress field at the notch tip (as long as the notch faces do not come into contact). Thus,

the mode-I response of the system can be investigated.
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151
1
- Xy
dy
w
1

d
Dimesions of specimen: Mechanical Properites of specimen:
=25 mm E=1240 MPa
w=127 mm v=0.35 10
d=254 mm c=1.08 10 Pa
d1=136 mm ¢ 21765 m/s

thickness=7.5 mm

FIGURE 5.6 Specimen geometry, loading configuration and material constants.
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Impact of the specimens is achieved using a Dynatup drop weight tower. The
contact area of the drop weight tup is made of steel, and the corners are rounded to
reduce stress concentration. The weight is dropped from approximately 1.4 m giving
it a velocity of 5.25 m/s at impact. Including the impedance mismatch of the two
materials, this results in a contact interface velocity between the specimen and the drop
weight of ~5 m/s.

Set up of the CGS apparatus follows Figure 5.4. A streak camera is used as
the imaging system. The CGS interferograms are generated using an Argon-Ion laser
pulsed for 50 ns at 7 us intervals as the light source. The total length of the test is ~
300 us resulting in approximately 40 CGS interferograms per test.

The fringe patterns are digitized by hand. A ray of constant ¢ from the crack tip
is followed; points at the center of fringes are digitized along the way. Most of the
uncertainty in digitization arises from locating the crack tip and choosing the center of

the fringe. Uncertainties in the measurement of ¢ are minimal.

5.3.2 Data Reduction

Rearranging equation (5.11a) gives

m;p [
2nry = Y; 12
Ach i ‘ (5.12)

where Y; = Asin%(qﬁi — ) and the subscript i refers to individually digitized points.
The left-hand side of this equation is obviously constant for fixed ¢, K; and Ky, If
K-dominance is exhibited, plotting the left side of equation (5.12) with respect to r
should result in a horizontal line. K-dominance was studied by producing such plots
and investigating their slope.

Deviation of experimental results from the fringe patterns predicted by a K-
dominant field are expected for various reasons. These include the notch tip geom-

etry, the zone around the notch tip where plane stress assumptions break down (the
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3-D zone)[Rosakis and Ravi-Chandar (1986) and Krishnaswamy et al. (1988)] and
the finite specimen size. Once a region of K-dominance is located, however, a fit of
the expected fringe pattern to the digitized data points can be attempted. This fit is
produced by minimizing the error function

N 2
X (K1, Krr) = Z(?‘,% -f%(ﬁﬁi,mi,f\"I,KU)) : (5.13)

=1

where

3 A_] 3 1 3 7
72 (gﬁi,?ni,ff],.[{]]) = ;;pcﬁ l:I&’[ISin (%ﬁ) — Kjcos (%):I , (5.13a)

and N is the total number of points. The minimization of equation (5.13) results in a
linear set of equations for K1 and Ky;. It is noted that the function, y, inherently weights
the outer lobes of the interferograms more strongly than the inner lobes. Another
function was tested, namely,

N
X/(A’I»I"II) = Z(mi — ﬁl(gﬁi,?’i,f&’],f&’[[) )2 .

=1

where

Ny ooy Ach fo (3¢ 3di
m(¢i,ri, K1, Ki1) = P—~—m [I\Hsm <—§—> — Kjcos (—2—)] ;

This function weights the inner lobes more heavily, but results similar to those reported

here are found.

5.4 Results and Discussion

A series of shearing interferograms is shown in Figure 5.7. Comparison to Figure
5.5b shows that the fringes represent a primarily mode II type of deformation at a
short time after impact (cqt/! < 3). In analogy to observed near-tip three-dimensional

effects in mode-I deformation [Rosakis and Ravi-Chandar (1986) and Krishnaswamy
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et al. (1988)] it is expected that within a radius equal to half the specimen thickness,
mixed-mode deformation will have a strongly three-dimensional character. As a result,
the fringes contained within a radius equal to half the specimen thickness, were always
excluded in the analysis. Digitization was always performed outside the 3-D zone for
the useable interferograms, and, consequently, the results up to 18us (cqt/l = 1.2)

were rendered uninterpretable.
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FIGURE 5.8 Radial variation of Y; for various ¢ at a time, t=49 us (cqt/l = 3.3),
after impact.

Before attempting a fit based on equation (5.13), K-dominance was investigated.
The left-hand side of equation (5.12) was plotted for various values of r; and constant
¢. Examples of such plots are shown in Figure 5.8. It can be seen in this figure that in a
substantial region surrounding the 3-D zone horizontal lines result. Thus, K-dominance
is a reasonable assumption for data points taken beyond half the thickness from the

notch-tip.
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FIGURE 5.9 Synthetic fringe pattérn reconstructed from one term analysis compared
with experimental transmission mixed mode CGS interferogram.
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Fitting of the theoretical fringes to the digitized points was carried out for a K-
dominant field, and an example of such fits is shown in Figure 5.9. In this figure
the theoretical fringe pattern from the fit has been superimposed on the interferogram
from the experiment. It can be seen that the experimental interferogram matches the
theoretical fringe pattern quite well. The resulting K values from all the fits are shown
in Figure 5.10 plotted with the analysis of Lee and Freund (1990a) and the numerical
calculations by Lee and Freund (1990b). Normalization of the experimental data was
achieved using the plane stress values for Ii”/, see equation (5.1). As can be seen, good
agreement between the experiment and the analysis is found. In Figure 5.10a the mode
I experimental results follow the numerical simulation closely, but most deviate from
the theoretical analysis. This is expected since the theoretical loading has an infinite
area of contact while the finite element analysis models our specimen more closely.
(In this experiment, the area of contact is small, 1.5 times the crack length; the finite
element analysis is carried out for loading area equal to the crack length. This effect
also explains the large difference between numerical and analytical predictions.) The
good agreement of mode I results indicates that the method is sensitive enough to
measure both K; and I{;; even when the ratio, Ki/Ky; is small. In Figure 5.10b, the
mode II results agree well with both the theoretical and numerical analysis.

It is noted that experimentally determining the time of impact, i.e., ¢4t/l = 0 is
difficult. Simply watching the tup impact the specimen is not sufficient because in
the time between two exposures the tup moves a distance ~ 1um. The magnification
is &~ 1; thus, detecting such small motions is impossible. However, at 5 m/s impact
velocity, it is possible for the CGS to detect the initial compression wave traveling
from the contact area to the crack tip, (see the interferograms in Figure 5.11) and, thus,
determine the time of impact. Measurement of the velocity of this wave (cg = 1750

m/s) agrees well with the expected plane stress velocity in PMMA for a dilatational
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FIGURE 5.10 (a)Normalized stress intensity factor as a function of normalized time for
“short” times, (cqt/! < 3),. Comparison of theoretical analysis of Lee
and Freund (1990a), numerical analysis of Lee and Freund (1990b) and
experimental results for mode I. (a)Normalized stress intensity factor as a
function of normalized time for “short” times, (cq4t/! < 3),. Comparison
of theoretical analysis of Lee and Freund (1990a), numerical analysis of
Lee and Freund (1990b) and experimental results for mode II.



| FIGURE 5.11 ]

A sequence of high speed images showing compressive waves generated during impact
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wave. By extrapolating the wave propagation back to the contact area, the time of
impact was found satisfactorily.

In the CGS interferograms at later times, Figure 5.12, it can be qualitatively seen
that a shift from primarily mode II in Figure 5.7 to primarily mode I deformation
occurs. The fit of K-dominant fringes in this time domain gives the results shown in
Figure 5.13. The time of the initiation of a mode change, the time when Kjj reaches
a maximum, coincides with the arrival time of the reflected dilatational wave from the
opposite side of the specimen, c4t/1 =~ 9.

In conclusion, the ability of CGS to measure mixed-mode stress intensity factors
under dynamic conditions has been examined. The good agreement between experi-
mental results and theory demonstrates that even when mode-mixity is not substantial,
the method produces acceptable values for both stress intensity factors. A shift of
dominant deformation mode from mode II to mode I is observed over 300us for this
loading and specimen geometry. This fact is important in experiments using this con-
figuration. Depending upon the time of initiation and, as a result, the mode-mixity,

crack propagation can occur in many different directions.
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CHAPTER 6

Full Field Measurements of the Dynamic Deformation
Field Around a Growing Adiabatic Shear Band at the Tip
of a Dynamically Loaded Crack or Notch

Overview

The method of Coherent Gradient Sensing (CGS) is used to record the deformation
field around an adiabatic shear band emanating from a pre-crack or pre-notch tip in
C-300 steel loaded dynamically in mode-II. At early times after impact, the resulting
fringe pattern is seen to exhibit the characteristics of a mode-II Dugdale crack under
small scale yielding conditions, and, as a result, the experimental fringe patterns are
fitted to the theoretical Dugdale crack deformation field by using a least squares fitting
scheme. In the fitting procedure it is assumed that the time history of K§(t), the
dynamic mode-II stress intensity factor, follows the analysis of Lee and Freund (1990).
This results in values for the shear band length and the average shear stress acting
on the shear band as functions of time. The shear band is observed to initiate when
K& (t)= 140 M Pa/m and subsequently propagate with an average speed of 320 m/s.
The shear stress on the shear band decreases from 1.6 GPA at initiation to 1.3 GPa

during this propagation. Shear band arrest is not recorded for the given experiment.
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6.1 Introduction

The formation of adiabatic shear bands has recently received renewed attention
following the experimental measurements of the temperature rise in adiabatic shear
bands by Duffy (1984). In the past ten years these measurements have helped motivate
a considerable amount of modelling of adiabatic shear band growth which has recently
appeared in the open literature. Without presenting an extensive review, it is helpful
to recall some of the salient and common features of the many models that have been
made available.

Commonly, the formation or growth of an adiabatic shear band is modelled as
the competition between thermal softening and strain and/or strain-rate hardening of
a material under shear loading. Usually an approximate model of thermal softening
is added to the constitutive equation for a material, the temperature is treated as an
additional unknown and the heat conduction equation is added to the field equations.
Invariably, the heat conduction equation contains a term that links plastic deformation
of the material to the production of heat (see Chapter 4), and a temperature rise in
the material is predicted for the deformation. The net effect of the assumptions of
the model is the introduction of a mathematical mechanism by which instabilities in
the deformation can be formed. When thermal softening is greater than strain and/or
strain-rate hardening, the material deforms, heats and becomes softer. Then, further
deformation occurs due to the lower strength generating more heat which in turn softens
the material more producing a “self-feeding” mechanism by which an instability is
formed. The purpose of this work is to examine the deformation field around an
adiabatic shear band as it forms and, hopefully, extract more information about the
shear band formation process itself.

Kalthoff (1987) and Kalthoff and Winkler (1987) have observed the formation of

adiabatic shear bands at the tip of dynamically loaded, stationary, pre-manufactured
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Notch or Crack Notch or Crack
Shear Band Shear Band

(a) (b)

FIGURE 6.1 (a) The loading geometry observed by Kalthoff (1987) and Kalthoff and
Winkler (1987) to generate shear bands in C-300 steel at a pre-notch or
pre-crack tip. (b) The modified pre-notched geometry used in the present
investigation.

notches in plates made of C-300 steel. The pre-manufactured notches are loaded dy-
namically in nearly pure mode-II loading conditions by an asymmetric impact in the
area between the two pre-notches on the edge of the plate. See Figure 6.1(a). When

sufficient impact velocity is used, an adiabatic shear band is formed directly ahead of
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the pre-notch as shown schematically in the figure. In the work described here, a similar
configuration is used. This configuration involves the dynamic asymmetric loading of
only one pre-notch and is schematically shown in Figure 6.1(b). The use of only one
pre-notch provides a simple loading geometry by which one may observe the formation
of adiabatic shear bands.

The method of Coherent Gradient Sensing (CGS) [Tippur et al. (1989a) and
(1989b) and Rosakis (1993)] is used here in reflection on pre-notched steel plates
loaded dynamically in mode-II as described above. It is important to note that CGS
has never before been used in a reflection arrangement to study deformations such as
these. However, it has been used successfully in transmission for the study of dynamic
crack growth [Tippur et al. (1989a) and (1989b)] and for the study of the given loading
geometry [Chapter 5].

It is proposed here that the shear band formation at a dynamically loaded mode-
IT pre-notch may be modelled by the Dugdale strip yield model. In such a model
the shear band is assumed to be a one-dimensional line of yielded material extending
directly ahead of the stationary pre-notch or pre-crack with a uniform shear stress acting
upon it. Implicit in this approach to modelling are a number of assumptions about the
mechanisms of the nucleation and growth of adiabatic shear bands. For example, the
following assumptions are made; the width of the shear band is assumed negligible, the
shear band is assumed to grow straight ahead of the pre-notch or pre-crack, the shear
stress is not allowed to vary over the length of the shear band, the effects of inertia are
neglected, and the length of the shear band is determined by the far field K?I(t») that is
acting on the pre-notch (small scale yielding is implied and the magnitude of the shear
“stress on the yielded zone is chosen to nullify the highest order stress singularity at the
shear band tip).

The last of these assumptions is perhaps the most restrictive, however it is useful
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because it gives a relation between the stress intensity factor, the shear stress on the
yield zone and the length of the yield zone. In addition it is also motivated by numerical
investigations of dynamic shear band growth [Lee (1990)] where no singularity is found
to exist at the growing shear band tip. For a pure K§(t) field with a Dugdale zone
having a uniform shear stress, 7o(t), acting on it, the length of the yield zone, R(t), is

given by Rice (1968)

T Ii’II(t)

Although the assumptions and approximations of the model are somewhat limiting,

the model is used here as a first attempt at analyzing the results, and it should be

emphasized that the quantitative conclusions are reported as first estimates .
6.2 Experimental Procedure

6.2.1 The Method of CGS

The coherent gradient sensor may be used both in a transmission configuration for
transparent materials or in a reflection configuration for opaque materials. The basic
governing equation for the formation of fringes is the same either each case. In Chapter

5 the following governing equation for fringe formation, Eq (5.5), was derived;

8(55(1’1, ’62)) _ mp

0z o VN
For an opaque material reflecting the incident laser light, the phase difference,
65(z1,22), in equation (5.5), is given by the difference in optical path length. This
change is wholly attributed to changes in specimen thickness due to Poisson’s con-

traction, and, thus, the optical path difference is given by [Tippur et al. (1989a) and
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(1989b) and Rosakis (1993)]

1

(55(:121,5132) = 2]2/2 633d(%>
0 (6.2)

o f oo - 1(3)

where h is the thickness and the factor of 2 accounts for the light travelling the surface
displacement twice, once on the way in and once on the way out. The integral represents
the optical path difference due to changes in the plate thickness caused by the strain
component, €33.

Assuming the material is isotropic and linearly elastic and using the plane stress

assumption, Eq (6.2) may be integrated giving the following result;

vh

uz = —ﬁ(ﬁu + G22) (6.3)

where the term in brackets in Eq (6.2) has been neglected for plane stress conditions
and &y, and 45 are plane stress thickness averages of stress components in the material

while 633 = 0. Hence, inserting Eq (6.3) into Eq (6.2) gives

h
65(.’1)1,172) ~ 21L3 = —%—(&11 +6’22) . (64)

Finally, substituting (6.4) into (5.5) gives the result,

90u3 _ vhO(611 + 6) _ mp

"9z, E 0z o A

All interference images produced by the CGS apparatus in this work are interpreted

(6.5)

using equation (6.5). Notice that a rigid body rotation does not effect the results since
the derivative of u; of such a motion results in a constant that has no effect upon
fringe pattern formation. The method of using an incident beam at a small angle to
the undeformed-surface normal is made possible by this result. Angling the incident
illumination is identical to a rigid body rotation. This fact precludes the need for
a beam splitter in the set-up of CGS for use in reflection on opaque materials. In
the experiments reported here the specimens were illuminated at a small angle to the

undeformed-surface normal.
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FIGURE 6.2 (a) Numerical predictions of CGS fringes (constant ﬂ%;—}l—&—?—zl values)
constructed on the basis of a pure K¢, field with a Dugdale shear zone of
length R ahead of the pre-crack tip. (b) Predictions of CGS fringes for

constant a—("—lg%”) values and the same assumptions as (a).
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For the case of a semi-infinite Mode-II Dugdale crack with a yield zone of length
R(t) the solution for the elastic stresses around the yield zone may be found [Rice

(1968)],

F11(t) + 622(¢) = ilI%Qzlm ltan_1 ( ;_—R%)(—tj>] (6.6)

where 7o(t) is the shear stress on the yield zone and z = x1 4 ¢z, is a complex number.

Taking the derivative of this function gives

Ofen(t) +om®)} _ _2n(t), [1 [ RE) |
Oxy m z\ z=R(t) |’

- : (6.7)
O{ou(t) + 62} _  2n(t)p |1 [_R(Q)
Oxo s 2\ z - R(t)_ .

Inserting this result in the governing equation for the CGS apparatus, Eq (6.5), results

in an equation for the formation of fringes around a semi-infinite Mode-II Dugdale
crack. This equation has been solved here numerically for partial differentiation in
both directions, x; or x5, and the results may be seen in Figure 6.2. For very large
distances (when compared to the Dugdale zone size) away from the pre-crack tip the
fringe pattern resembles the pattern for a pure mode-Il K dominant field. (See the
fringe patterns in Chapter 5 and Mason et al., 1992.) Also, when partial differentiation
with respect to z; is performed the fringe pattern gives a clear indication of the location
of both the original pre-crack tip and the tip of the Dugdale zone. For this reason all
experiments reported here are performed with differentiation parallel to the pre-crack
tip, i.e., differentiation with respect to z;. And quick estimates of the Dugdale zone size
are made by measuring the distance between the point where the rear lobe converges

to the z; axis and the point where the front lobes converge to the z axis.

6.2.2 Apparatus
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FIGURE 6.3 Specimen geometry, loading configuration and material constants.
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The exact specimen geometry is shown in Figure 6.3. Specimens are made of
C-300 maraging steel in the peak aged condition. Impact of the specimens is achieved
using an air gun and a 75 mm long, 50 mm diameter projectile made of C-350 maraging
steel in the peak aged condition. Two types of test were performed; first, round tip pre-
notches ~ .5mm thick machined by wire EDM as per the figure were impact loaded,
and, second, pre-cracks approximately 10 mm in length grown at the tip of a 50 mm
long, .5 mm thick pre-notch by loading the specimen in dynamic shear were impact
loaded.

Set up of the CGS apparatus follows Figure 5.4. A high-speed framing camera
manufactured by Cordin Co., Salt Lake City, UT, is used as the imaging system. The
CGS interferograms are generated using an Argon-Ion laser synchronized with the high-
speed camera and pulsed for 50 ns at 1.4 us intervals as the light source. The total
length of the record of the event is ~ 110 ps resulting in approximately 80 CGS
interferograms per test.

The fringe patterns are digitized by hand. A ray of constant angle ¢ from the
z; axis is followed; points at the center of fringes are digitized along the way. The
effective crack tip was chosen by estimating the point where the rear lobe converged
to the z; axis. See Figure 6.2(a). Most of the uncertainty in digitization arises from

locating the effective crack tip and choosing the center of the fringe.

6.2.3 Data Reduction

Deviation of experimental results from the fringe patterns predicted by a mode-II
Dugdale crack field are expected for many reasons. These include the existence of a
“zone around the pre-notch tip where plane stress assumptions break down (the 3-D zone)
[Rosakis and Ravi-Chandar (1986) and Krishnaswamy et al. (1988)], the interference
of propagating waves from the loading with the crack tip field and violation of the

assumptions used in the derivation of the Mode-II Dugdale model. Consequently, the
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results are analyzed by fitting the Dugdale crack solution to the digitized fringes of
the experiment by a least squares fitting scheme. Digitization is carried out only on
the points above the pre-crack line (impact occurs on the side of the specimen below
the pre-crack line) in order to avoid confusion caused by the interaction between the
Dugdale zone pattern and the pattern generated by the propagating waves. The fit is

produced by minimizing the error function

N
X(10,R) = > (mi— f(ri,6:))° (6.8)
i=1
where
. _ Al/h 8(&11 +€r22)
f(7 > 91) - - » E O:ca (683)
and
T :\/x% -+ ’Lg
2o\ - (6.8b)
9,’ :ta,n_l <—2)
I

The expression for the partial derivative in Eq (6.8) is given by Eq (6.7), and N is the
total number of points. The minimization of equation (6.8) was performed numerically.
First, the dynamic stress intensity factor was taken from the solution of Lee and Freund
(1990). When the solution of Lee and Freund (1990) is no longer applicable, at longer
times, a fit of the results in Chapter 5 for long times is used. This is justified by
the agreement between the model and the experimentally measured K¢ (t) for PMMA
loaded under the same conditions as demonstrated in Chapter 5. Then the function
x was minimized numerically with respect to the shear stress 7(¢) while holding the

stress intensity factor constant.

6.3 Results and Discussion
As a first investigation of the shear band formation, lines were etched on the steel,

and it was impacted at 40 m/s. The resulting deformation can be seen in Figure 6.4.
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The shear band zone width is small, 200 um, and the average shear strain in the band is
roughly 100%. This result is repeatable, so the numbers quoted here represent the shear
bands formed in each of the series of photographs to follow. Note that the deformation
is mostly elastic outside the shear band and that the etched lines above and below the
shear band are still aligned as they were before the deformation. This fact indicates that
during the shear band formation the lower, impacted plane of material is compressed
elastically moving the lower half of the etched lines to the right while the upper plane of
material remains approximately stationary with the shear band absorbing the resultant
mismatch deformation. After a crack forms along the shear band elastic unloading
occurs allowing the lines to realign. This observation justifies the use of an elastic
constitutive equation in the Dugdale crack model to predict the material deformation
around the forming adiabatic shear band in future experiments.

The recorded fringe patterns for a dynamically loaded pre-notch may be seen in
Figure 6.5 where zero time, ¢ = 0, is taken as the time of impact on the plate edge.
Waves generated at impact take approximately 10 us to reach the pre-notch tip and
begin loading. The fringe pattern has a dark line down the middle which is a remnant
of the camera. This line of light is removed from the image by the camera and recorded
elsewhere in order to provide a means of double-checking the pulsing rate and correctly
recording the time of exposure. In general the result has several shortcomings. First,
it is noted that the deformation field does not resemble the Dugdale zone or the Kj;
dominant zone in any way at the times of interest. Although the deformation is elastic
around the adiabatic shear zone, there is considerable interaction between the incoming
waves from impact and the pre-notch tip. Second, there is a dark region below the
original pre-notch where no image is formed. This is due to the limitations of the
experimental apparatus. Light that is reflected from highly angled surface elements is

lost because of the finite aperture size of the system. The reflected light simply never
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FIGURE 6.4 Example of a shear band formed by asymmetric loading of a pre-notch.
The lines were etched before loading. Shear localization is observed.
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intersects the focussing lens or diffraction gratings and therefore is not focussed on
the film. This vignetting results in an aperture spot, a dark region on the film where
no light has been focussed. The aperture spot indicates that regions of extreme out of
plane deformation are located below the initial pre-notch and at the pre-notch tip. Last,
note that the loading waves in this experiment are slightly askew with respect to the
pre-notch faces. This effect is probably due to a mis-alignment at impact. Although,
this mis-alignment appears to have little effect on the loading of the pre-notch tip; the
fringes shown here are very much the same as tests that were better align at impact.
In spite of the obvious shortcoming of the test, the results have some merit because
the initiation and propagation of a shear band may be seen in the figures and a change
of failure propagation mode occurs at later times. A photograph of the specimen after
the experiment is shown in Figure 6.6. The initial growth directly ahead of the pre-
notch tip is a shear band dominated failure growth. No shear lips are observed and the
fracture surface resembles that reported by Kalthoff (1987) and Kalthoff and Winkler
(1987) for shear failure. This growth is observed in Figure 6.5 and, in agreement with
the report of Kalthoff (1987) and Kalthoff and Winkler (1987) the growth proceeds at a
small negative angle to the @; axis. By examining the pictures recorded at later times
than those shown in Figure 6.5, it can be seen that crack/shear-band growth arrested
at approximately 40 ps after impact of the specimen. This time corresponds roughly
to the time required for an unloading wave from the rear of the projectile to reach the
pre-notch or shear band tip. After the shear growth arrested, a different mode of crack
growth at an angle to the shear growth can be seen in Figure 6.6. This growth is mode-I
dominated. Shear lips are present, and the fracture surfaces resemble that reported by
Kalthoff (1987) and Kalthoff and Winkler (1987) for mode-I failure. Initiation and
growth of this latter crack occurs long after the recorded loading, and, unfortunately,

the exact details of its formation are not known.
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'FIGURE 6.6 Photograph of the crack path taken after dynamic loading. The crack
propagates forward parallel to the pre-notch in a shear dominated mech-
anism then arrests. At later times the crack propagates at an angle to the |
pre-notch in a locally symmetric (mode-I) mode of failure.
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In Figure 6.7 a record of fringes may be seen for a dynamically loaded stationary
pre-crack. The deformation has a resemblance to the theoretical fringe pattern shown
in Figure 6.2(a). The “effective” crack tip and zone tip can be located by the fringe
pattern in the upper half plane quite easily. However, the waves in the lower half plane
considerably complicate the fringe pattern there at various times during the recorded
deformation. Consequently, in order to simplify the digitization procedure, only the
fringes on the upper half plane were digitized. It is felt that the upper fringes more
closely resemble the small scale yielding, Dugdale pattern throughout the recorded
deformation because extensive interaction of the upper fringes with the incoming stress
wave is not observed. Note, however, that the fringe pattern on the upper half-plane
becomes less and less similar to the Dugdale pattern as time goes on. At 47 us
deviations between the measured fringe pattern and the theoretical pattern become
too large to warrant further fitting of the theoretical Dugdale deformation field to the
experimentally measured deformation field. Furthermore, the aperture spot forming
around the shear zone continues to grow making it more and more difficult to see the
fringe pattern.

In Figure 6.7 there is an aperture spot around the Dugdale zone and crack tip at
longer times. Inside this spot a very faint picture of the initial pre-crack tip may be
seen. This image comes as a result of leakage laser light exposing the film before the
impact and subsequent high powered laser pulsing. The exposure is easily alleviated,
but in this case it proves helpful not to prevent it. It can be seen in the figure that the
region of the pre-crack near the tip is curved downward. One can select a point where
the downward curvature begins, somewhere near the intersection of the pre-crack and
the dark stripe. See Figure 6.8. Looking at the initial photo in Figure 6.7, it can be seen
that the initial fringe pattern is actually formed around the point where the pre-crack

begins to curve rather than at the pre-crack tip. That is, the fringe pattern indicates
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that there is an initial “effective” crack tip where the initial pre-crack begins to curve
downward rather than at the location of the actual intial pre-crack tip. The pre-crack
faces are coming into contact, and the curved pre-crack faces are being forced together
by compressive loads acting in the z; direction. Consequently, the effective crack tip
at early times is where the two faces initially come into contact and not at the actual
initial pre-crack tip.

Because of the existence of the contact zone in this experiment, the shear band
length, R,;(t) is defined here as the length of the fit Dugdale zone size, R(t), less
the contact zone length, R..(t), which can be measured directly from the photographs.

Hence,

Ry(t) = R(t) — R (1)

where the contact zone length is found by measuring the distance between the zero point
indicated by the fringe pattern and the initial pre-crack tip and R(¢) is produced by the
fit indicated in Eq (6.8). The pre-crack faces are in contact at t=26 us (cqt/l = 2.3),
and the Dugdale fringe pattern indicates that the shear zone extends to the initial pre-
crack tip at that time. Consequently, at time t=26 s, R(t) = 0, and from then on a
shear band is observed.

Fits were performed for photos taken at the times 17-47 us after impact. Pho-
tographs taken at earlier times either showed no loading or did not show enough loading
to warrant a useful fit. An example of one of the fits (performed at 31.5 ps) can be
found in Figure 6.9. Acceptable agreement between the theoretical Dugdale field and
the experimentally measured field is seen.

The results of the fit for the shear stress on the shear band, m(¢), and for the
shear band length, R,;(t) are plotted in Figure 6.10. The shear band length increases
with time, and a linear fit of the growth provides an estimate of the shear band growth

velocity of 320 m/s. The initiation occurs at approximately 26 us, cyt/l = 2.3, well



“Effective” Crack Tip Location
due to crack face contact

FIGURE 6.8

The actual nmal crack tip, as indicated, and the “effective” initial crack tip can be seen in this photograph
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FIGURE 6.9 A check of the fitting procedure for t=31.5 psData points should fall
alternately on light and dark fringes in the figure. It can be seen that the
fit is reasonably good for the forward fringe with less agreement found
for the rear fringe.

within the domain of the Lee and Freund (1990) solution. At this time the stress
intensity is roughly 140 M Pa/m. The shear stress increases initially with time from
0.6 GPa to 1.6 GPa before the shear band initiation. It is assumed that this effect
is due to increasing load on the pre-crack faces that are already in contact. After
the shear band is initiated, the shear stress decreases from 1.6 GPa to 1.3 GPa. This
type of behavior is expected since thermal softening is the acting mechanism by which
the shear band forms. As the shear band grows it is expected that the shear stress
decreases due to thermal softening. The value of the shear band length obtained from
the fit described by equation (6.8) is compared to the estimated shear band length. This
length is estimated from the photographs by comparing the recorded CGS fringe pattern
to the predicted fringe pattern in Figure 6.2 as described in Section 6.2.1. Acceptable

agreement is seen.
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FIGURE 6.10 A plot of 7y(¢) and R(t) as found from the fitting procedure in equation
(6.8). The shear band length is compared to the length as estimated
by comparing the fringe patterns in Figure 6.7 to the theoretical fringe
pattern in Figure 6.2.

For comparison, the constitutive behavior of this material was measured and is
shown in Figure 6.11 for various strain rates. The curves were measured in uniaxial
compression, but, for ease of comparison, the equivalent shear stress is plotted using
the Von Mises criterion. In high strain rate tests, the formation of shear bands in the
specimen is observed. The material hardens with strain initially, but at higher strains
thermal softening becomes dominant and the measured stress decreases with strain.
This is typical observed behavior for the formation of instabilities in a uniaxial test.
-Examination of the specimens after testing shows unmistakable evidence of shear band
failure. The maximum stress measured in the steel is 1.6 GPa for a test performed
at 1000 s~!, and good agreement is found between the measured shear stress for the

shear band emanating from a pre-crack tip and the measured shear stress for a shear
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FIGURE 6.11 The constitutive behavior of C-300 at various strain rates as measured
in compression. High strain rate data was measured using a Kolsky bar
apparatus as shown in Chapter 4.

band formed in uniaxial dynamic compression.

6.4 Conclusions

The formation of a shear band at the tip of a pre-crack loaded dynamically in
mode-II has been recorded using high-speed photography and the method of CGS to
examine the stress field around the pre-crack tip. It is seen that the recorded fringe
patterns around the pre-crack correspond well with the theoretical pattern for a mode-II
Dugdale crack. Consequently, a fit of the digitized experimental fringe field is made
to the Dugdale crack solution with the shear stress on the shear band as a variable
parameter. The stress intensity factor is assumed to follow the model of Lee and
Freund (1990). The results of the fits are used to extract the time evolution of the shear

stress on the shear band and the length of the shear band with the following results:
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It is seen that the shear band initiates within the regime of the Lee and Freund
(1990) solution for this problem. However, it does not initiate at the first loading of the
pre-notch tip. There is a time delay of approximately 11 us before shear band growth
is observed. The shear band initiates when K{;{= 140M Pa+/m.

The shear band propagates into the material with a speed of roughly 320 m/s while
at the same time the shear stress on the shear band decreases from 1.6 GPa at initiation

to 1.3 Gpa. The arrest of the shear band is not recorded.
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