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ABSTRACT 

This work investigates two aspects of cavitation noise. The first part models 

some nonlinear interactive effects in bubbly mixtures generated in cavitating flows, 

and the second part focuses on an acoustical study of the collapse process of a single 

bubble in travelling bubble cavitation. 

The nonlinear interactive effects in a bubbly cloud have been studied by 

investigating the frequency response of a bubble layer bounded by a wall oscillating 

normal to itself. First, a Fourier analysis of the Rayleigh-Plesset equation is used 

to obtain an approximate solution for the nonlinear response of a single bubble in 

an infinite fluid. This is used in an approximate solution of the oscillating wall 

problem for bubble layers of finite and infinite thickness in which all the bubbles 

have the same equilibrium size and a semi-infinite layer containing bubbles with 

a distribution of size. Particular attention is paid to the generation of harmonics 

that is due to nonlinear effects. 

The finite thickness of the layer results in characteristic natural frequencies 

of the bubble mixture, all of which are less than bubble natural frequency. These 

characteristic natural frequencies are functions of the void fraction and the ratio 

of layer thickness to the bubble radius. In general, the lowest characteristic natu- 

ral frequency is found to dominate the response. The amplitude of the response 

increases as the excitation frequency, wf,  is reduced from wb to around 0.5wb and 

decreases with further decrease in excitation frequency. The characteristic fre- 

quencies disappear in the limit of a semi-infinite layer. The bubble size oscillation 

in a semi-infinite layer is maximum at the excitation frequency of wb. The pressure 

oscillation is minimum at the excitation frequency of wb with equally significant 

first and second harmonic components. 

For sub-resonant and trans-resonant excitation (wf < wb),, the response 

consists of standing wave patterns with an amplitude that decays slowly with 



distance from the oscillating wall. This decay is different from that found in 

spherical bubble clouds (d'Agostino and Brennen 1988a) because of tlie geometric 

effects of propagating disturbance. However, for super-resonant excitation the 

amplitude of oscillation rapidly decays with distance from the source of excitation. 

A phenomenon termed harmonic cascading is seen to take place when the 

bubble layer consists of bubbles with a distribution of bubble sizes. In this 

phenomenon a large response is observed at twice the excitation frequency when 

the layer contains bubbles with a natural frequency equal to twice the excitation 

frequency. The effect is manifest as an increase in the ratio of the second harmonic 

to the first harmonic as the number of bubbles with small radii gets larger relative 

to the number of bubbles with large radii. Also, a similar change in the bubble 

size distribution, while holding the equilibrium void fraction constant, results in a 

weaker response. This reduction in amplitude of pressure oscillation may be due 

to the increased number of bubbles. Larger void fraction and smaller amplitudes 

of wall oscillation are observed to produce a weaker response. Reduced effects of 

viscocity and surface tension that are due to changes in ambient conditions result 

in a larger response. 

In the second part the collapse processes of single bubbles in the travelling 

bubble cavitation around two axisymmetric headforms have been studied acousti- 

cally to understand the collapse process of a cavitation bubble and to characterize 

the sound emission in travelling bubble cavitation. The bubbles were observed to 

collapse and then sometimes to rebound and collapse again, resulting in one or two 

pulses in the acoustic signal from a cavitation event. It was observed that each 

of the pulses could contain more than one peak. This phenomenon is called mul- 

tipeaking and is clearly distinct from rebounding. The occurrence of rebounding 

and multipeaking and their effects on some characteristic measures of the acoustic 

signal such as power spectra are examined in this chapter. Two particular head- 

forms (I.T.T.C. headform and Schiebe headform) with distinct flow characteristics 



were investigated. 

Both rebounding and multipeaking increased with reduction in cavitation 

number in case of the I.T.T.C. headform. However, multipeaking decreased and 

rebounding increased with the reduction in cavitation number for the Schiebe 

headform. Smaller flow velocity, smaller cavitation number and multipeaking 

delay the rebound. The peak amplitude of the sound emitted from the first 

collapse was seen to be twice as large as the peak amplitude of sound from the 

second collapse suggesting a repeatable process of bubble fission during the collapse 

process. The multipeaking and rebounding increased the characteristic measures 

of the acoustic signal. These characteristic measures have larger magnitudes for 

smaller flow velocity. Also, the values of these characteristics are larger for the 

I.T.T.C. headform than for the Schiebe headform. 

Theoretical calculations based on the Rayleigh-Plesset equation were seen to 

predict correctly the order of magnitude for most of these characteristic measures. 

However, the distribution of spectral energy is not properly predicted by the 

model based on the Rayleigh-Plesset equation; bubble fission during the collapse 

is thought to account for this discrepancy. Reduction in the cavitation number and 

multipeaking are observed to decrease the fraction of spectral energy contained in 

the high frequency range (30 kHz-80kHz). 
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NOMENCLATURE 

power spectral density at a frequency indicated by i 

time interval between maximum peak of the main 

pulse and maximum peak of the rebound pulse (see Fig. 3.4) 

nondimensional time interval between maximum peak of the main 

pulse and maximum peak of the rebound pulse (see Fig. 3.4) 

imaginary number 

nondimensional acoustic impulse, 47i-Im/pURh 

acoustic impulse (see Fig. 3.4) 

a measure of strength of the pulse 

polytropic constant for gas expansion and contraction 

integer indices 

thickness of the bubble layer 

reference length scale 

number of data points in an acoustic record 

pressure in liquid flow field 

peak amplitude of an acoustic pulse (see Fig. 3.4) 

pressure of permanent gas in the bubble at undisturbed condition 

complex amplitude of pressure oscillation at frequency nS 

reference pressure in the liquid 

total spectral power 

a quantity proportional to total spectral power, PSN/Rt 

vapor pressure inside the bubble 

pressure at infinity 

ratio of maximum amplitude of the main pulse 

to maximum amplitude of the rebound pulse 

radius of the bubble 

sampling rate used for data collection [ MHz ] 

radius of the headform 



radius of the smallest bubbles in the layer 

radius of the largest bubbles in the layer 

radius of the bubble in reference condition 

complex amplitude of radius oscillation at frequency nS 

surface tension of the liquid 

time 

time of begining of an acoustic pulse (see Fig. 3.4) 

time of end of an acoustic pulse (see Fig. 3.4) 

Lagrangian time 

velocity in the liquid flow field 

flow velocity 

Eulerian space coordinate normal to the wall 

Lagrangian space coordinate normal to the wall 

complex amplitude of fluid displacement 

oscillation at frequency n S  

volume fraction of bubbly mixture 

fractional power spectral density 

volume fraction of bubbly mixture at 

undisturbed reference condition 

increment in the frequency 

normalized standard error in power spectral density 

ratio of specific heats 

kinematic viscosity 

natural frequency of the bubble (in radianslsec) 

forcing frequency for pressure or wall oscillation (in radianslsec) 

reference frequency (in radianslsec) 

number of data sets used to calculate average power 

spectral density 

bubble number density per unit liquid volume 



q* (Ro) bubble number density per unit total volume 

7' number of bubbles per unit liquid volume 

!R real part of complex quantity 

P density of the liquid 

density of the vapor in the bubble 

cavitation number 

volume of the bubble 

complex amplitude of the bubble volume oscillation at  frequency nS 

volume of the bubble at undisturbed condition 

peak separation (see Fig. 3.4) 

duration of an acoustic pulse (see Fig. 3.4) 

nondimensional pulse width, rw U/ Rh 
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Figure 3.23: Effect of reduction in the cavitation number on the nondimensional 

power spectral density. Experimental data for sp-type events on the I.T.T.C. 
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Chapter 1 

INTRODUCTION 

A free stream nucleus grows into a large cavity when it migrates into low 

pressure regions in a flow and stays there long enough to permit nonlinear growth. 

This cavity collapses violently upon migration into flow regions with larger pres- 

sure resulting in sound emission and damage to the solid surfaces nearby. This 

phenomenon is termed bubble cavitation and is a major source of noise and dam- 

age in ship propellers, hydrofoils and turbomachines and affects their performance 

by altering the flow. The bubble cavitation is also important in design and op- 

eration of sonars, cavitation detecting devices and in acoustic techniques of flow 

measurement. 

Much of the theoretical studies of bubble cavitation are based on Plesset's 

modification (Plesset (1949)) of the Rayleigh equation for a collapsing cavity 

(Rayleigh (1917)). Since then, the theory has been modified to include factors such 

as compressibility effects (Gilmore (1952)) and presence of a solid wall (Plesset and 

Chapman(l971)). Fitzpatrick and Strasberg (1956) proposed using the Rayleigh- 

Plesset equation along with the pressure history in the flow to calculate spectra 

of the emitted noise. Mellen (1954) reported presence of f -2 dependence in high 

frequency spectrum of the cavitation noise, and Brooke Benjamin (1958) related it 

to the presence of shock waves caused by liquid compressibility during the collapse 

process. 

Knapp and Hollander (1948) laid out much of the experimental foundation 

for study of the bubble cavitation. Since then, hydrodynamically produced bubble 

cavitation has been studied by many researchers including Parkin (1952), Blake 

et al. (1977) and Hamilton (1981). The collapse of spark and laser produced 

cavities has also been acoustically and photographically studied to understand the 

physical mechanisms in the collapse of cavities next to a solid wall (Lauterborn 

and Bolle (1975), Kimoto (1987) and Vogel et al. (1989)). van der Meulen and 



van Renesse (1989) studied the collapse of laser generated cavities in flows near 

hemispherical headforms. These studies liave reported the generation of a jet and 

a counter jet during the collapse of a bubble and have increased our understanding 

of the bubble collapse process. Blake et al. (1986) have theoretically modeled the 

collapse of these cavities. 

Much of the theoretical investigation does not take into account the effect 

of various fluid dynamical factors such as vortices, flow separation and turbu- 

lence. Baiter (1986) has suggested a model that includes real flow effects for noise 

emission from the single bubble collapse by way of experimental measurement, 

for characterizing the process of bubble cavitation and associated noise emission. 

Experimental measurements by Ceccio and Brennen (1991) suggest some measure- 

ments towards characterization of the bubble cavitation noise. 

For flows with large concentration of bubbles, the experimental results of 

Arakeri and Shanmuganathan (1985) and Marboe et al. (1986) suggest that the 

cavitation noise cannot be explained on the basis of single bubble theories alone. 

Probably the interactive effects among bubbles influence the global patterns in the 

flow. Tangren, Dodge and Seifert (1949) and van Wijngaarden made first attempts 

to model these interactions in bubbly mixtures. This effort has been carried out in 

two different ways. van Wijngaarden(l964), Morch (1982), d'Agostino et al. (1988a 

and 1988b) have modeled the bubbly mixtures as continuum, and Chahine(l982) 

has modeled the bubbly mixtures by summing up the effects of individual bubbles 

in presence of other bubbles. Recently, d'Agostino and Brennen (1988a) and Omta 

(1987) have reported linearized dynamics of spherical bubble clouds. Most of 

these efforts are based on linearized continuum equations along with the linearized 

Rayleigh-Plesset equation to include the bubble dynamics. These models are also 

restricted to bubbly mixtures of single size bubbles. 

The present work investigates two different problems in cavitation noise. 

The theoretical part of this investigation is aimed at modeling nonlinear effects in 
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bubbly clouds and physical features such as the finite dimension of the cloud and 

the bubble size distribution in the cloud have been included. The experimental 

component of the investigation involves an acoustical study of bubble collapse 

process by characterizing main features of the acoustic signal generated by a 

collapsing bubble and relating these features and the flow variables to other 

measures of the acoustic signal such as spectra and peak amplitudes. It is hoped 

that such an investigation suggests some ways of characterizing the single bubble 

sound emission through experimental measurement. 

The results from single bubble measurements may be combined with inter- 

active effects in bubbly mixtures to enable a qualitative understanding of sound 

emission in bubble clouds. 



Chapter 2 

NONLINEAR EFFECTS IN BUBBLE CLOUDS 

2.1 Introduction 

The purpose of this research is to gain some understanding of the global 

effects of bubble dynamics in the fluid mechanics of bubbly flows. At the most 

basic level, this interaction occurs because the pressure changes generate rapid 

volume changes which cause accelerating velocity fields that affect the pressure 

distribution in the flow. 

Traditionally, such flows have been studied using the single bubble dynamics 

and assuming no interaction among the bubbles in the flow field. Such an approach 

ignores interactive effects that the bubble dynamics has on the global pressure 

distribution in the flow field and is accurate only in case of extremely dilute bubble 

concentrations. Experimental results of Arakeri and Shanmuganathan (1985) have 

indicated that experimental measurements of cavitation noise cannot be the result 

of many single bubble signals. Marboe et al. (1986) have measured noise spectrum 

at lower frequencies in travelling bubble cavitation than can be explained on the 

basis of single bubble theories. Both papers indicate interactive effects for bubble 

flows with a large concentration of bubbles. Later researchers have used continuum 

mechanics models with bubble dynamics models to analyze global interactive 

effects. Indeed, d'Agostino and Brennen (1988a) and Omta (1987) found that 

the characteristic natural frequencies of a spherical cloud of bubbles can be much 

lower than the natural frequency of a single bubble. However, these recent analyses 

use linearized models of the bubble dynamics and the flow. It is well known that 

the dynamics of a bubble can be quite nonlinear (Prosperetti (1974)), which in 

combination with nonlinear convective effects may produce significant nonlinear 

effects in bubbly flows. The objective of the present research is to understand 

these nonlinear effects by studying some analytically amenable model problems. 



The nonlinear dynamics in the growth and collapse of a single bubble has 

been studied for a long time (e.g., Plesset and Prosperetti (1977)). Early studies 

of bubbly flows, based on using space averaged equations, did not include bubble 

dynamic effects. These treated the bubbly mixture as an equivalent, compressible, 

homogeneous medium (Tangren, Dodge and Seifert (1949)). Among the first 

to focus on the dynamics of bubble clusters was van Wijngaarden (1964), who 

analyzed the collapse of a large number of bubbles next to a flat wall and found 

considerable increase in the pressure at the wall as a result of the interactive 

effects. Biesheuvel and van Wijngaarden (1984) have developed more general, 

equivalent flow models of dispersed two phase mixtures, including the phenomena 

of bubble dynamics, relative motion and liquid compressibility, by ensemble and 

volume averaging of conservation equations for each separate phase. Most of the 

later research efforts are based on these equations. 

Morch (1980 and 1982) considered the collapse of a spherical bubble cloud 

characterized by a cloud radius and uniform volume fraction. He assumed that 

the pressure increase would lead to shock formation at the cloud boundary and 

that the shock would propagate inward and completely annihilate bubbles in its 

path. This model did not include individual bubble dynamics and predicted 

infinite pressure and infinite collapse velocities as the radius approached zero. In 

a subsequent paper Hansson et al. (1982) constructed a model using a continuum 

mechanics approach and used the Rayleigh-Plesset equation to model the bubble 

dynamics. In particular, the response of a bubble cloud to a vibrating horn and 

the cavitating flow in an accelerating water column were considered. Chahine 

(1982) developed a method using matched asymptotic expansions. This model 

assumes inst ant aneous transmission of ambient conditions to the bubbles and thus 

neglects the compressibility of the bubble cloud. This is a major weakness in the 

model because compressibility of the cloud will not be negligible for moderate to 

large void fractions. It was found that because of interactive effects in the cloud, 



the larger the number of bubbles in the cloud, the more delayed and violent is 

the implosion and thus larger are the pressures generated. This method is also 

limited to low void fraction flows and to a small number of bubbles in a specified 

configuration. Chahine(l983) also developed a model using a continuum mechanics 

approach and first order gradient theory. 

Omta (1987) has carried out analytical solutions for small amplitude os- 

cillations and numerical solutions for large amplitudes. Omta linearized the 

Biesheuvel-van Wijngaarden equations for homogeneous flows (Biesheuvel and 

van Wijngaarden (1984)) and obtained the solution under a number of simplifying 

assumptions. Frequency spectra for the bubble cloud were obtained. The bubble 

cloud was found to possess characteristic natural frequencies with the lowest one 

dominating the cloud behavior. The natural frequencies of the cloud were found 

to depend upon void fraction and not upon the bubble size, a feature that seems 

particularly true at  the lowest cloud natural frequency. d'Agostino and Brennen 

(1988a) also solved for the linearized dynamics of spherical bubble clouds using a 

continuum mechanics model with bubble dynamics under more general conditions. 

This model includes various dissipative mechanisms including the relative motion 

between phases. The main conclusions from this analysis were found to be virtu- 

ally the same as as the ones obtained by Omta (1987). d'Agostino et al. (1988b) 

also solved for the linearized dynamics of the flow of bubbly mixture over slender 

surfaces. Recently Birnir and Smereka (1990) have carried out numerical solutions 

for bubble clouds and investigated the solutions using techniques used to study 

the dynamical systems. They found that the bubble radius, flow velocity and pres- 

sure were bounded and the cloud was seen to posses natural frequencies. Periodic 

solution was seen to  be stable for weak excitation. Other than these very little 

has been done on the nonlinear solutions of the dynamics of bubble clouds. The 

objective of the present work is to develop a methodology for handling nonlinear 

terms and to obtain nonlinear solutions by studying the dynamics of a bubbly 



liquid next to a flat wall that oscillates normal to its own plane. The cases of 

a layer of identical bubbles of finite and infinite thickness have been examined. 

Also, a semi-infinite layer with a given bubble size distribution has been examined 

and reveals an entirely new phenomenon of harmonic cascading in such clouds. 

The purpose is to obtain a qualitative understanding of the various mechanisms of 

frequency dispersion in the bubbly two-phase mixtures associated with cavitation. 

2.2 Some Typical Applications and Values 

Bubbly mixtures occur in a variety of industrial applications. Cavitation 

clouds generated by cavitation on propellers are an important source of noise and 

damage to the propellers. Single bubbles in the travelling bubble cavitation have 

been observed to break up into many smaller bubbles (Blake et al. (1977) and 

Ceccio and Brennen (1991)); and the sound generated during the collapse process 

may be described by the theory for bubble clouds. The typical values for evaluating 

the results of the present analysis have been selected with these physical situations 

in mind. 

A number of researchers have measured the size of free stream nuclei (Gates 

and Acosta (1978) and O'Hern et a1.(1987)) and cavitation bubbles (Maeda et al. 

(1991)). The bubbles have been found to vary in size between 10 p m  and 150 pm.  

The bubble size distribution is described by 

where (R,) dR, is the number of bubbles per unit liquid volume with equilibrium 

radii between R, and R, + dR,. The distribution of the form given by Equation 

(1) has been used to describe the size distribution of free stream nuclei in sea water 

and various water tunnel facilities with N E 0.00001 and m E 3 -t 4(Brennen 

and Ceccio(1989)). The bubble size distribution in cavitation clouds (Maeda et al. 

(1991)) can also be adequately described by Equation (1) with suitable values of 



N* and m. The void fraction values due to free stream nuclei are extremely small. 

Though the void fraction for a cavitation cloud is larger than the one that is due to 

free stream nuclei, it is still small at approximately 0.03% (Maeda et  al. (1991)). 

No measurement of the void fraction of the cloud resulting from the breakup of 

a collapsing bubble is known. The void fraction values used for evaluating the 

nonlinear effects have been chosen according to experimental results of Arakeri 

and Shanmuganathan (1985) for weak interaction effects in the bubbly mixtures. 

Table 2.1 lists the values used. The fluid has been chosen to be water at room 

temperature (20 O C). A bubble subject to periodic excitation oscillates with the 

value of the polytropic constant, k ,  between I and y (Plesset and Hsieh (1960)). 

For illustrative purposes the value of the polytropic constant, k, has been chosen 

to be 1. The bubble radius has been selected to be a typical size for nuclei and 

cavitation bubbles. For evaluating the nonlinear interactive effects in clouds with a 

size distribution of bubbles, the bubble size distribution is assumed to be given by 

Equation (1) with bubble radii between 10 pm and 100 pm. The values in the data 

set I are typical of the conditions in a water tunnel where the static pressure has 

been lowered to induce cavitation. Similarly, the values in the data set I1 represent 

conditions in cavitating flows near the ocean surface at atmospheric conditions. 

Henceforth the values in data set I will be referred to as W a t e r  Tunnel  values and 

the values in data set I1 will be referred to as Ocean values. 

2.3 Nonlinear Solution for a Single Bubble 

There exists a substantial body of literature on the nonlinear dynamics of a 

single bubble in an infinite fluid; this has been reviewed by Plesset and Prosperetti 

(1977). In the present context it is appropriate to note that Eller and Flynn 

(1969) solved the problem of subharmonics of order one-half, using a perturbation 

procedure and that Prosperetti (1974) generated nonlinear analytical solutions for 

subharmonics and harmonics of various orders, using a perturbation method. 

In the present work it is necessary to construct the very simplest nonlinear 



solution of the Rayleigh-Plesset equation for a single bubble. Later this will be 

used as a building block for the problem of many bubbles interacting in a flow. 

The bubble is assumed to be spherical and to contain water vapor and residual 

permanent gas. The bubble interior is assumed to be uniform with constant 

vapor pressure, P,. The permanent gas in the bubble is assumed to behave 

polytropically with an index, k, between 1 and y (Plesset and Hsieh (1960)). 

The liquid compressibility is included only in the radiation damping, and this 

is done by including it in the effective viscosity used for the bubble dynamics 

(Devin (1959) and Prosperetti (1977)). The bubble growth that is due to  rectified 

diffusion has been ignored since that takes place at  a much slower time scale than 

the natural cycle of the bubble (Hsieh and Plesset (1961)). With these assumptions 

the Rayleigh-Plesset equation describing the bubble dynamics becomes 

In the present solution a Fourier series expansion is used and terms up to second 

order are retained in order to examine these corrections to the linear solution. The 

bubble radius R(t) and the pressure at infinity P,(t) are expanded in the form 

and 

where Pn and Rn are complex quantities and the frequencies n S ,  n = 1, N represent 

a discretization of the frequency domain. These expansions are substituted into 

Equation (2), and all terms of third or higher order in Rn/R, are neglected in 

order to extract the simplest nonlinear effects. Finally, coefficients of ein't on both 

sides of the simplified equation are equated to yield the following relation for Pn 

and R,: 

where the overbar denotes a complex conjugate, and the bubble natural frequency, 



wb is given by 

and A (n), pl (n, j) and P2 (n, j) are defined as 

and 
S 1 S 2  2v nS 

P 2  (n ,  j )  = 3k + (3k  - 1 )  + -- (n2 - nj  - j ' )  +i-- 
2 p ~ b 2 ~ 0 3  2 w b 2  w ~ R ~ ~  W b  (9) 

Using a Newton-Raphson Scheme, Equation (5) is solved iteratively for Rn/Ro, 

given Pn, the fluid properties and individual bubble characteristics. It was seen 

numerically that if there is a single excitation frequency, wf , then the only nonzero 

components of the bubble oscillation, R,, will occur at the harmonics of excitation 

frequency. It is also seen that the response Rn/Ro decays with increase in the 

order of the harmonic and is negligible (amplitude << at harmonics of 

order higher than 50. Thus calculating the response up to 50 harmonics was 

considered sufficient. It is also clear from Equations (8) and (9) that Pl (n, j) and 

P2 (n, j) are functions of n6/wb and j ln .  Furthermore, note from Equation (5) 

that for a single excitation frequency, the only coefficients Pl (n, j )  and pz (n, j) 

that enter the calculations are those for which j and n take values corresponding 

to harmonics of the excitation frequency. Consequently the only values of nS/wb 

and j / n  that enter the calculations are those that are ratios between an excitation 

frequency harmonic and the natural frequency of the bubble or two excitation 

frequency harmonics. Hence, despite the explicit appearance of 6, the results of 

the calculation are independent of this parameter used in descritizing the frequency 

domain. Finally, note also that the pressure perturbations, P,, occur in (5) only 

in linear form and thus can be large without introducing error into the solution. 

However, the analysis is valid only for I R,/R,I << 1. This defines the extent of 



the weak nonlinear effects that are examined here and indirectly, implies an upper 

limit on the magnitude of pn/wb2 RO2. 

For illustrative purposes, we select the values of the parameters v / w ~ R , ~  and 

s / ~ ~ ~ ~ R ~ ~  for the water tunnel conditions listed in Table 2.1. The bubble radius 

value is typical for cavitation bubbles. For illustrative purposes, the polytropic 

constant, k ,  has been chosen to be 1. We chose to consider a single bubble 

subjected to an oscillating pressure at infinity containing a single frequency, wf , 
with an amplitude IP , I /w~~R,~ .  First of all, results obtained from Equation ( 5 )  are 

compared to a numerical integration of the Rayleigh-Plesset equation, which uses 

a fourth order Runge-Kutta scheme. In Figs. 2.1 and 2.2 the radius-time behavior 

obtained from our analysis and the numerical integration of the Rayleigh-Plesset 

equation are compared. The ratio wb/wf is 3 and values of pn/wb2RO2 for Figs. 2.1 

and 2.2 are 0.04 and 0.08, respectively. It can be seen that the present approximate 

analysis works very well for weak nonlinear effects or small values of p,/wb2R2. 

The agreement between the numerical integration and the present approximate 

solution is less satisfactory for larger values of pn/wb2RO2, as shown in Fig. 2.2. 

It was seen numerically that Equation ( 5 )  has a nontrivial solution only 

at the harmonics of excitation frequency. It can be seen that such a solution 

is one of the solutions of Equation (5). However, at  present it is impossible to 

prove the uniqueness of the solution for nonlinear equations such as Equation (5). 

The comparison of the approximate solution to the numerical solution as done in 

Figs. 2.1 and 2.2 is one way to confirm the correctness of the present solution. 

A comparison of the spectra of [I - R ( t )  /Ro] is made in Fig. 2.3 for the 

case in which the P ~ / ~ ~ ~ R ~ ~  and wb/wf values are 0.08 and 6, respectively. It 

can be seen that the present approximate solution agrees well with the numerical 

integration for frequencies at which the magnitude is significant. Note that the 

radius oscillations occur at harmonics of the frequency of the pressure oscillation, 

wf. The excitation frequency, wf, is varied from wb/lOO to 2wb for the purpose 



of calculating the frequency response of the layer. Fig. 2.4 shows the frequency 

response of a single bubble subjected to a pressure oscillation with a p n / w b 2 ~ 2  

value of 0.02. The lines labelled [I] are the magnitudes of the response at the 

fundamental excitation frequency, wf so that in this case, the abscissa represents 

wf/wb. The lines labelled [2] represent the magnitudes of the response at twice the 

excitation frequency, and in this case the abscissa represents 2wj/wb. A general 

line labelled [m] represents the magnitude of the response at  m times the excitation 

frequency, and in this case the abscissa represents the frequency, rnwf/wb. Thus, 

all the harmonics are plotted against the actual reduced frequency, w/wb, at which 

they occur and in this figure we have presented the results for harmonics up to fifth 

order. In viewing these results it should be recognised that those harmonics with 

magnitudes below a certain level are of dubious significance since higher order 

nonlinearities could markedly alter those results. It can be seen that wb is the 

dominant frequency in the radius oscillation as would be expected from the linear 

analysis. 

Eller and Flynn (1969) observed that for pressure oscillations with an am- 

plitude larger than a threshold value, the bubble radius oscillation will contain a 

subharmonic of order one half. This can also be seen in Lauterborn's numerical 

calculation of the frequency response of a single bubble (Lauterborn (1976)) and 

in the third order perturbation solution of Prosperetti(l974). The threshold value 

of pressure oscillation needed to generate subharmonics in the response is a min- 

imum for the excitation frequency of 2wb (Eller and Flynn(1969)). The presence 

of a subharmonic component also marks the beginning of large amplitude radius 

oscillations. The presence of subharmonics in the response has been used as the 

beginning of sound emission in cavitation by Vaughan(l968) and Neppiras(l968). 

On the other hand, the present solution does not give rise to  subharmonics in the 

domain of its validity; i.e., Rn/Ro << 1. The present model addresses the steady 

state frequency response of bubbly flows in weakly nonlinear situations, and the 



numerical solution of the Rayleigh-Plesset equation (Equation (2)) for weakly non- 

linear situations does not yield subharmonic components in the response. This is 

because the subharmonics are generated by nonlinearities at  an order higher than 

quadratic. Also, the absence of subharmonics from our approximate solution does 

not imply limitation of the validity of the present solution for weakly nonlinear 

situations defined by R,/R, << 1. 

More accurate nonlinear solutions than the one described above (for example 

Prosperetti (1974)) exist and have been reported in the literature. The value of 

the present solution lies in its simplicity and the feasibility of incorporating it in 

an analysis of the collective response of a cloud of bubbles. 

2.4. A Semi-infinite Bubble Layer 

The specific problem addressed in this paper is shown schematically in 

Fig. 2.5. Liquid containing bubbles is bounded by a flat wall that oscillates 

in a direction normal to itself at a given frequency, w f .  The resulting flow is 

assumed to be a function of x and t only. The continuum mechanics equations are 

used with a number of simplifying assumptions in order to obtain a soluble set of 

equations. The volume of liquid involved in condensation and evaporation during 

bubble oscillation has been ignored. This is a reasonable assumption in view 

of the large difference of densities between the liquid and the vapor phases. The 

liquid has been assumed to be incompressible, and the relative motion between the 

phases has been ignored. The compressibility of the liquid and the relative motion 

provide for the energy dissipation in the flow. These were found by d'Agostino 

and Brennen (1988a) to have very little effect on important features such as the 

natural frequencies of the flow. The most important contribution of these damping 

mechanisms is in making the response nonsingular at resonant frequencies. This 

can be incorporated in the present solution by taking an appropriate value of 

effective viscocity in place of the liquid viscocity used in the Rayleigh-Plesset 

equation. Hence, neglecting the medium compressibility and the relative motion 

are reasonable assumptions. The breakup and coalescence of bubbles are assumed 

not to occur for flows under weakly nonlinear excitation. The number of bubbles 

per unit liquid volume, q', will remain constant under these assumptions, and q' is 



also assumed to be uniform. Under these simplifying assumptions, the continuity 

and the momentum equations can be written in the form: 

The solution to the problem represented by Equations ( lo) ,  (11) and (2) is 

obtained in Lagrangian coordinates, X and T for which the above equations 

become 

and 

Consistent with the structure of the solution sought, the relationship between the 

Lagrangian and the Eulerian coordinates, X and x, is written in the form 

and the bubble volume, r ,  and pressure, P, are expressed by the expansions 

and 

The expansions (14), (15) and (16) are substituted into Equation (12) and 

coefficients of ein6T are equated to obtain 



Similar substitution into the momentum equation (Equation (13)) leads to 

dPn - = ( 1  - a , )  n2b2xn 
dX 

2 2 d X .  7. dPn+ +'g [ ( 1  - a o ) ( n -  j )  6 ~ n - j - &  - a ,  3 - 
j=1 r,, dX 1 

Note that in the linear approximation Equations (17) and (18) become 

and 
dPn - = ( 1  - a0)n2b2xn 
dX 

It is consistent with the level of approximation to substitute these first order 

expressions into the quadratic terms in Equations (17) and (18), which then 

become 

and 
dPn - = ( 1  - a,)  n2b2xn + 0 (aO3)  
dX 

The simple algebraic relation between the bubble radius, R, and the bubble 

volume, T, namely, r = 4 ~ ~ ~ 1 3 ,  leads to 

and using this in (21) and (22), one obtains the following equation 

d2 (Pn/wb2R02) 
2 

d ( x l ~ , ) ~  
= 3 0  ( 1  - ) (2 )  Rl Ro + fnl (x )  



where fnl (X) is given by 

At this point in the solution we have obtained one relation, Equation (24), 

connecting the pressure coefficients, Pn to the radius coefficients, R,. We now 

introduce the Rayleigh-Plesset equation, which will provide a second such relation. 

More specifically, we use Equation (5) which may be written as 

where 

where (n, j )  and p2 (n, j )  are given by Equations (8) and (9). For convenience 

we define An such that 

xn2 = 3a0 ( 1  - a,) - / A  (n)  

Now the linear terms involving the radius coefficients, R,/R,, can be eliminated 

from the simultaneous Equations (24) and (26) to yield the following differential 

equation for the pressure coefficients, Pn: 

d2 (Pn/wb2R02) Pn 

4 x 1 ~ ~ ) ~  = xn2  [- w ~ ~ R ~ ~  - fn2 (x) ]  + fn l  ( X )  

The solution of this equation has the form 

where from Equations (26) and (30) we have 



and using Equations (29) and (30) 

d2fn3  
- A n 2  [ fn3 ( X )  - f n 2  ( X ) ]  + fnl ( X )  

d ( x / ~ , ) ~  - 

Having obtained the form of solution (31) and noting that the linear component 

of this solution can be written as 

we can proceed to evaluate fnl (X) and fnq (X) from Equations (25) and (27) by 

noting that it is consistent with the level of approximation to use the expression 

(33) in quadratic terms. Then Equation (32) can be solved exactly, the solution 

taking the form : 

where 

and 

Using Equations (20), (30) and (34) we get following equation 

where 



and 

This completes the solution because for given fluid and bubble properties, the 

values of A, are known through the definition (28). For a given nondimensional 

wall oscillation amplitude, X,(O)/R, and given bubble properties Equation (37) 

can be solved for a, using a Newton-Raphson scheme. Then P ~ / ~ ~ ~ R ~ ~  at the 

wall can be calculated using Equations (30) and (34). Equations (33) and (27) 

are used to estimate fn2  (X),  which is then used with Equations (34) and (31) to 

calculate the radius response, R,/ R,. 

Equation (37) is similar in structure to Equation (5). Thus for wall motion 

at a single frequency, wf, the only nonzero response occurs at  the harmonics of wf. 

For the same reasons as given earlier in the context of Equation (5), the solutions 

to the Equation (37) are independent of the interval of descritization, S. Also, 

both pn/wb2Q2 and Rn/Ro appear only at harmonics of the frequency of the 

wall oscillation, wf. Thus the software may be written so as to evaluate only the 

response of nonzero amplitude, in other words at the harmonics of the excitation 

frequency. Calculation of the harmonics up to order 10 was found to be sufficient, 

harmonics of higher order being negligible. For the purpose of demonstrating the 

nonlinear effects, we chose to vary the wall oscillation frequency from wb/lOO to 

2wb, and the resulting magnitudes of the harmonics pn/wb2 R , ~  and Rn/Ro at the 

wall are plotted as functions of the reduced frequency nS/wb. Data for the two 

sets of values listed in Table 2.1 will be presented. A convenient reference case 

will consist of water tunnel conditions, listed in Table 2.1, plus a void fraction, 

a,, of 0.02 and an amplitude of wall oscillation, X,(O)/R, , of 0.03. The ocean 

conditions listed in Table 2.1 will be used to examine the effect of varying the 

viscous and surface tension parameters. The effect on the results of varying a, 

and X,(O)/ R, will also be examined. 

Results for the reference case are presented in Fig. 2.6 in exactly the same 



way as the earlier results were presented in Fig. 2.4. We reiterate that data below 

a certain magnitude will be substantially affected by higher order nonlinearities. 

The first point to note is that the response rapidly decays at higher harmonics. 

For the purpose of discussion of the results, a frequency at  which the response is 

a maximum will be called an enhanced frequency and a frequency at which the 

response is a minimum will be called a suppressed frequency. From Fig. 2.6, it can 

be seen that the dominant enhanced frequency for the bubble radius oscillations is 

wb for harmonics of all orders. Also, the second harmonic has enhanced frequencies 

of wb and 2wb where the response at 2wb is significant. It can also be seen that the 

higher harmonics have other enhanced and suppressed frequencies. 

In contrast to the radius oscillations, fundamental harmonic in pressure 0s- 

cillation has a suppressed frequency close to wb. The pressure oscillation increases 

linearly with excitation frequency for excitation frequencies greater than wb . The 

linear increase in pressure for frequencies larger than wb indicates that the bubbles 

do not respond as quickly as the excitation requires and that the whole bubble 

mass moves as a homogeneous medium in response to the oscillating wall, with 

lesser influence of bubble oscillation for frequencies larger than wb. The suppres- 

sion in the fundamental harmonic at wb is also predicted by the linear solution. 

It can be seen that the dominant second harmonic response occurs at 2wb which 

is of a little larger amplitude than the response of the fundamental harmonic at 

wb. Furthermore, harmonics of all orders have a suppressed frequency of approxi- 

mately 3wb, though the reasons for this are not clear. Significant amplitude of the 

second harmonic is one of the main results from the nonlinear analysis. Also, the 

minimum amplitude of pressure oscillation at wb probably indicates the effect of 

global motion in the flow. 

Apart from considering the frequency response at the wall, it is also of 

interest to know its variation away from the wall. This is indicated in Figs. 2.7 

and 2.8. The amplitude of the first harmonic is plotted as a surface, indicating 



its variation as a function of the frequency ratio, w/wb and the distance from the 

wall, X/Ro. The first harmonic of the pressure oscillation decays rapidly with 

distance from the wall for frequencies larger than wb. On the other hand, decay is 

less rapid for lower frequencies. The fundamental harmonic of radius oscillation 

decays rapidly till the distance of 2Ro from the wall for frequencies close to wb. The 

decay is less rapid farther away from the wall. The second harmonic of pressure 

and radius oscillation also decays rapidly up to a distance of 2Ro from the wall; 

the decay at larger distances is slower in comparison. The pressure oscillation at 

2wb decays completely about 20R0 away from the wall. 

The effect of changing the viscous and the surface tension parameters while 

all other parameters remain unchanged is illustrated in Figs. 2.9 and 2.10 for the 

first and second harmonic, respectively. This contains a comparison between the 

results for the ocean conditions and the earlier results for the the water tunnel 

conditions. Larger viscous and surface tension parameters tend to  inhibit bubble 

oscillations. Hence the response curves for the ocean conditions exhibit sharper 

peaks and troughs. Otherwise, the basic form of the response is very similar for 

the two sets of data. An additional feature of the results presented in Fig. 2.10 

deserves special attention. First, note that the strong nonlinearity present at the 

enhanced frequency for ocean conditions has resulted in splitting into two adjacent, 

enhanced frequencies. This is exemplified in Fig. 2.10 by the response in the radius 

oscillations at 2wb. 

Next, the effect of varying the void fraction is demonstrated in Figs. 2.11 and 

2.12, where data for void fraction values of 0.005, 0.020 and 0.100 are compared. 

Note that the main features of the results, namely, the enhanced and suppressed 

frequencies, remain almost the same. However, the nonlinear response is enhanced 

as the void fraction is reduced. This dependence can be predicted from the 

linear solution in which both radius and pressure are given by terms multiplied 

by the factor [(I - a,) /3a,1'/~. For the small void fractions considered here, 



the denominator dominates this factor and implies larger effects at smaller void 

fractions. This is observed at both the fundamental and second harmonics. Also, 

with the increased level of nonlinearity, stronger second harmonic response is seen 

at wb and approximately 0.6wb, which is absent at the larger void fractions. 

Finally, the effect of changing the amplitude of the wall motion Xn(0)/Ro 

while keeping void fraction constant at 0.02 is shown in Figs. 2.13 and 2.14. Values 

of 0.01, 0.03 and 0.06 for X,(O)/R, are used. The nonlinear effects become 

stronger for larger values of Xn(0)/Ro. The effect is similar to the effects seen 

from decreasing void fraction. 

2.5. A Bubble Layer of Finite Thickness 

The geometry of the flow for which a solution was obtained in Section 2.4 was 

not typical of any real flow in the sense that it was not characterized by any typical 

dimension of the bubble "cloud. It is known that the presence of such length scale as 

a finite thickness of the bubble layer results in characteristic natural frequencies 

of the bubble cloud (d7Agostino and Brennen (1988a) and Omta (1987)). The 

natural frequencies for undamped oscillation of a spherical bubble cloud were given 

by d'Agostino and Brennen (1988a) as 

where A, is the equilibrium radius of the cloud. It can be easily seen that all 

the natural frequencies given by the Equation (40) are less than wb and are 

packed progressively closer to wb. It is also known that the lowest characteristic 

natural frequency of the cloud dominates the frequency response. These were 

some of the most interesting results of the linearized analysis by d9Agostino and 

Brennen (1988a). We shall explore the influence of weak nonlinear effects on these 

phenomena. 

A layer bounded by the oscillating wall on the interior and by incompressible 

liquid on the exterior is considered here (Fig. 2.15). Since the incompressible liquid 



on the outer side is infinite in extent, it must always be at rest. It can be easily 

verified that the natural frequencies of such a bubble layer are given, in case of 

undamped bubble dynamics, by 

With damping, the natural frequencies of the cloud differ from the above values 

by only a small amount. If the bubble layer has a finite thickness, I ,  the solution 

to Equation (29) has the following form 

where fn3 (X) satisfies Equation (32). From Equation (26) and (42) we have 

R n  - = a n e - X n X / R O  + bneXn(X-z ) /RO + [fn3 (X) - fn2 (X)] /A (n) 
R o  

Using the first two terms of above equation to evaluate fnl (X) (Equation (25)) 

and fnz (X) ((27)) in Equation (32)) fn3 (X) can be solved exactly, the solution 

taking the form 



where 

In linear analysis, Equation (43) may be written as 

This can be used in evaluating fna (X), defined in Equation (27), and Rn/R, 
can then be calculated using Equation (43). Using Equations (20), (42) and (44) 



we get the following equation 

where 

An X n  --- - - ane-XnXIRo + bneXnXIRo 
3% Ro 

6 3  = A n  (F + L + j )  I' (n, j )  

A (n) ((4 + .\n+j) - X i )  

+E 
j=1 

The boundary conditions for solving Equation (52) are (i) the given wall oscillation 

amplitude at x = 0, and (ii) the oscillation of the fluid at the exterior of the layer 

as zero. The constants Cl - C4 and ~1 - ~4 can be evaluated using their definitions 

for given fluid and bubble properties. Thus, applying the boundary conditions, a 

set of nonlinear algebraic equations is obtained for a, and b,. These are solved 

- - K1 (n, j )  a jun- je - (Xj+ A ~ - j ) X / R o  
- 

- K 2  (n, j )  a j b n - j e - X j X / R o + X n - j ( X - ' ) / R o  

. e X j ( X - l ) / R o - X n - j X / R o  + K 2  (n , j )  b j a n - 3  

+ K1 (n, j )  bjb,-je(Xj+Xm-j)(X-l)/Ro 

+ y 
j=1 

- - 
- 6 3  (n, j )  q a n + j  e - ( q + ~ n + j ) ~ / ~ o  

- 
- 6 4  (n , j )  q b n + j e  

-AjX/Ro+Xn+j(X-Z) /R ,  

- 
+ 6 4  (n , j )  b j a n + j e  Xj (X- ' ) /Ro-An+jX/Ro 



using a Newton-Raphson scheme. Since Equation (52) is similar to Equation (37), 

it can be seen that the solution is independent of the way in which the frequency 

domain is discretized. As before, the solution consists of nonzero amplitudes only 

at the harmonics of the excitation frequency. 

Having calculated a,  and b,, be calculated using Equa- 

tion (42) and Rn/Ro obtained using Equation (43). The frequency response of the 

bubbly layer was calculated by varying the wall oscillation frequency from wb/lOO 

to 2wb. Calculation up to 20 harmonics was found to be sufficient, harmonics of 

higher order being negligible. 

A typical frequency response of the bubble cloud of finite thickness is shown 

in Fig. 2.16. The values for the water tunnel conditions given in Table 2.1 have 

been used. The frequency response is shown in the same manner as earlier in 

Figs. 2.4 and 2.6. The first and second harmonics are marked as [I] and [2]. 

The amplitudes of higher order harmonics are negligible in comparison. The first 

harmonic is similar to that predicted by the linear solution. For both the pressure 

and the radius response, significant amplitudes of oscillation can be observed at 

the characteristic natural frequencies of the cloud with the response at the lowest 

natural frequency being dominant. It is also observed that the response at the 

characteristic natural frequencies close to wb are overwhelmed by the response 

modification that is due to proximity of wb, making it impossible to distinguish 

the peaks at characteristic natural frequencies close to wg. Also, the response 

at the second harmonic of the lowest characteristic natural frequency (at 2wl) is 

greater than the response at other natural frequencies of the bubble cloud. The 

response for excitation frequencies close to and greater than wb is similar to that 

for the bubble layer of infinite thickness discussed in Section 2.4. 

In other words, the most significant frequency is the lowest natural frequency 

of the cloud and even weak nonlinear effects cause the harmonics of this frequency 

to dominate the other natural cloud frequencies. Since, the second harmonic re- 



sponse at 2wl is not highly damped, there remain some important high frequencies 

such as 2wl. This is the main addition to the results of the linearized analysis of 

d7Agostino and Brennen (1988a). 

Following d'Agostino and Brennen (1988a), the flow solution is divided 

into 3 different regimes, namely: sub-resonant (0 < wf < wl), trans-resonant 

(wl < wf < wb) and super-resonant (wf > wb). The first and second harmonics 

of the radius oscillation and the pressure oscillation are shown as surface plots 

in Figs. 2.17 and 2.18, respectively. The amplitude of a harmonic is plotted as 

function of the frequency ratio, w/wb and the distance from the wall, XI1 in these 

figures to understand the frequency response of the cloud away from the oscillating 

wall. In cases of the sub-resonant and trans-resonant excitation, the amplitudes 

of oscillation form standing wave patterns, whose amplitude decays slowly with 

distance from the wall. In case of super-resonant excitation, the response is seen 

to decay rapidly with distance from the wall. 

The response to sub-resonant and trans-resonant excitation for spherical 

bubble clouds was seen to decay rapidly with distance from the center of the cloud 

(d' Agostino and Brennen (1988a)). Comparing the response of a spherical cloud 

and the present flat layer, it appears that the strong decay at a distance from the 

bubble center in the case of a spherical cloud is caused by attenuation that is due 

to spherical divergence. In other words, the response at the center of the spherical 

cloud is much stronger than the response at the boundary of the cloud because 

of the focussing of the spherically symmetric disturbance. Thus, for sub-resonant 

and trans-resonant excitations the magnitude of the response is determined by 

the geometry of the bubble cloud and the excitation. The bubbles have ample 

time to react to the excitation, and the bubble dynamics significantly influences 

the response throughout the layer. In the case of super-resonant excitation, the 

response is seen to decay rapidly with the distance from the oscillating wall in the 

same way as it decayed rapidly with the distance from the boundary of a spherical 



cloud (d'Agostino and Brennen (1988a)). Thus, in the case of super-resonant 

excitation, the response gets weaker with increasing distance from the source of 

excitation. In this case, the excitation is too fast for bubbles to follow and the 

bubbles act stifle Thus, the bubble dynamics does not play any significant role 

except in dissipation of the input energy. 

The effects of variation in the viscous parameter v / & J ~ R , ~  and the surface 

tension parameter s / ~ ~ ~ ~ R ~ ~  are indicated in Figs. 2.19 and 2.20. The two sets 

of data used for comparison are the same as given in Table 2.1 for the earlier case 

of bubble layer of infinite thickness, namely, the water tunnel conditions and the 

ocean conditions. Again, higher values of viscous and surface tension parameters 

are seen to inhibit pressure and bubble radius oscillations at the characteristic 

natural frequencies of the bubble cloud. It is also important to note that the effect 

of change in viscous and surface tension parameters are significant only near the 

characteristic natural frequencies of the cloud. 

As can be seen from Equation (41), the spread of the natural frequencies 

of the cloud is determined by the value of the parameter 3ao (1 - a,) (Z/R,)~; a 

similar behavior was observed for the spherical bubble clouds (d'Agostino and 

Brennen (1988a)). For a given value of the void fraction and the bubble radius, 

the layer with the larger thickness has smaller characteristic natural frequencies. 

The effect of variation in the thickness of the bubble layer, ZIR,, for a given value 

of the void fraction will be examined next, followed by observations on the effect 

of the void fraction, a,, for a given value of the thickness to bubble radius ratio, 

ZIRO. 

Figs. 2.21 and 2.22 show the changes in frequency response of the layer 

because of the increase in its thickness. The increase in the thickness results in 

lower natural frequencies of the cloud, as can be expected from Equation (41). 

It is clear from the Figs. 2.21 and 2.22 that the change in the thickness of the 

layer does not influence the frequency response for super-resonant excitation and 



for excitation frequencies close to wb. In order to investigate this, consider the 

response of the fundamental harmonic shown in Fig. 2.21. The amplitude of 

oscillation is a maximum at the lowest cloud natural frequency, w l ,  in cases for 

which wl is greater than 0 . 5 ~ ~ .  However, the amplitude of oscillation at w2 is 

greater than at wl in the case for which wl is about 0 . 2 5 ~ ~ .  It appears that the 

amplitude of oscillation at a cloud natural frequency increases as that cloud natural 

frequency gets closer to about 0 . 5 ~ ~ .  The response at the second harmonic shown 

in Fig. 2.22 also appears to follow the same pattern. This explains the change of 

this solution for a layer of finite thickness to the solution for an infinitely thick 

layer. The cloud natural frequencies move to values much less than 0 . 5 ~ ~  with 

increase in the thickness of the layer, and the amplitude of oscillation at these 

cloud natural frequencies reduces to the same value as in the case of an infinitely 

thick layer. 

Figs. 2.23 and 2.24 illustrate the effect of change in the void fraction on the 

frequency response of the layer. An increase in the value of void fraction reduces 

the characteristic natural frequencies, which is also obvious from Equation (41) .  

The amplitude of oscillation is reduced by an increase in the void fraction for 

excitation frequencies close to and greater than wb. Also, two other features of Fig. 

2.23 are noteworthy. First, the amplitude of pressure oscillation at wl is larger for 

the void fraction of 0.020 than for the void fraction of 0.005. The possible reason 

for this is the proximity of wl to 0 . 5 ~ ~  for the void fraction of 0.020. Second, the 

amplitude of oscillation at wl is larger than at w;! for the void fraction of 0.1, which 

is contrary to the result for a, = 0.02 and l/Ro = 50 seen earlier in Fig. 2.21. 

Thus, it appears that both the proximity of the cloud natural frequencies to 0.5wb 

and the void fraction influence the relative amplitudes of oscillation at wl and w2. 

Lastly, the effect of the amplitude of wall oscillation X,(O)/R,  is shown 

in Figs. 2.25 and 2.26. Larger amplitudes increase the amplitude of pressure 

and radius oscillation at all frequencies just as expected. Some new enhanced 



frequencies around 0 . 5 5 ~ ~  and 0 . 8 ~ ~  can be seen in Fig. 2.26 for the largest 

amplitude of wall oscillation. 

Because of the limitations on the solution which restrict the validity to 

I Rn/RoI << 1, further changes in the frequency response due to reduction in a, or 

increase in Xn(0)/Ro , v / w ~ R , ~  and s l p w b 2 ~ 2  could not be investigated. 

2.6. A Semi-infinite Layer with Bubble Size Distribution 

Most of the research efforts in modeling bubbly mixtures so far have assumed 

bubbly mixtures of identical bubbles. In most practical cases, uniformly sized 

bubbles are impossible to achieve. The free nuclei in water have a distribution of 

the bubble sizes (Gates and Acosta (1978)). Recently Maeda et al. (1991) have 

used holography to measure the distribution of bubble sizes in cavitation clouds. 

The bubble size distribution can be described by 

The distribution of the form given by Equation (57) has been used to describe the 

nuclei number distribution in sea water and different water tunnel facilities with 

N = 0.00001 and m = 3 -, 4 (Brennen and Ceccio (1989)). This section presents 

a weakly nonlinear model of flows of such bubbly mixtures. Since such flows have 

a number of length and time scales in terms of the bubble radii and their natu- 

ral periods, we can expect different mechanisms linking the interaction between 

different time scales. Such an interaction leads to a new physical phenomenon 

termed harmonic cascading. 

In this model we assume that the bubble number density distribution for 

equilibrium size per unit liquid volume, T,I (R,), is given. This quantity is assumed 

to be uniform and constant. The relative velocity between the phases and the 

compressibility of the medium have been neglected in order to keep the equations 

simple. These assumptions have been discussed in detail in Section 2.4. The 

number of bubbles per unit liquid volume with equilibrium size between R, and 

R, + dR, is given by 7 (R,) dR,. The volume of bubbles per unit liquid volume 



can then be written as 

where the volume of the bubble, r ,  is given by Equation (15) and R, and RM 

are the minimum and the maximum value for the radius of the bubbles present 

in the layer. Thus, the number of bubbles per unit total volume with equilibrium 

radius between R, and R, + dR,, q* (R,) dR,, can be written as 

9* (Ro) dRo = 9 (Ro) (1 - a)  ~ R o  = 9 (Ro) dR0 

RM 9 (Ro) ~ d R o  + SR, 

We use a dispersed phase number continuity equation (DPNC) to model mass 

and number conservation. Assuming the liquid to be incompressible, the dispersed 

phase number continuity equation, which assumes that the bubbles are neither 

created nor destroyed is 

Assuming that the number density per unit total volume is conserved, the above 

eauation reduces to 

The corresponding momentum equation is given by 

The solution to the problem represented by (2), (59) (61) and (62) is solved in 

Lagrangian coordinates, X and T, as described earlier in Section 2.4. The above 

equations become 

and 

Also using Equation (15) we can write 

N 

9 ( R ~ )  rdRo = /RM n (R.) [To + n (G (x) e 
Rm n=l  



Following Equation (58) this can be written as 

where 

Equations (14), (15), (16), (59) and (66) are substituted into the dispersed phase 

number continuity equation (Equation (63)), and coefficients of einbT are equated 

to obtain 

Similar substitution into the momentum equation (Equation (64)) leads to 

Note that in the linear approximation, Equations (68) and (69) become 

(1  - a,) N-n 

+- C 2 
j= 1 

dPn -- - (1  - a,) n262Xn 
dX 

d7q + ( n + j ) 2 b 2 ~ n + j d X  

It is consistent with the level of approximation to substitute these first order 

expressions into quadratic terms in Equations (68) and (69), which can then be 



written as 

and 
d (Pn/w:l:) 

2 

d (XI14 = (1 ) ($1 (F) +0(3)  
Here, w, and I ,  are the reference frequency and length scales used for nondimen- 

sionalizing the results. Using Equations (23) and Equation (5) and the linear part 

of Equation (5) to approximate R,/R,, we arrive at 

Using Equations (67) and (74), we arrive at the following: 

where 4' (n) , $' (n, j) and 0' (n, j) are given by 

m /  (.) = ~y 31) (Ro) 54 1: dRo 
A (n) wtR2, 

38 (RO) 'Ow:': [I p : ~ ~ { ) ]  dBo 
d t  (n,j) = J R M  A (j) A (n - j) wf R$ 2 

Rm 

Using Equations (72), (73) and (75) and the linear part of Equation (75) to 

evaluate A, in quadratic terms, we have following equation, 

where 



2 

o (n, j> = (1 - a,) (2)  01 (n,.i) 

Equation (79) has the following approximate solution (accurate to the second 

order and obtained in manner similar to the solution to Equation (24) given by 

Equation (30)) 

Using the solution given by Equation (83) and relation (73), the following relation 

for the conditions at the wall may be obtained: 

In the case of identical bubbles, we have 

where rl' is the total number of bubbles per unit liquid volume and R: is the 

radius of the bubbles. It can be seen that above result reduces to that for identical 

bubbles given in Section 2.4. Using Equation (85), Equations (83) and (84) can 

be respectively reduced to Equations (30) and (37). 

For the purpose of evaluating typical results from this analysis, a bubble 

cloud is assumed to contain bubbles between radii 10.0 pm and 100.0 pm. The 

ambient conditions are the same as listed in Table 2.1 so far as ambient pressures 



are concerned. Other values no longer apply. The largest natural frequency of 

the bubble and the largest bubble radius present in the cloud are chosen as a 

convenient reference frequency, w, and reference length scale, 1, respectively. 

For a given bubble size distribution, ambient conditions and fluid properties, 

the coefficients, 4' (n), $J' (n, j) and 8'(n, j) are evaluated using Equations (76), 

(77) and (78) respectively. The integrals were evaluated numerically the using 

trapezoidal rule, and the Richardson extrapolation was used to estimate the value 

of the integral for zero step size. The parameters A,, PI (n, j) and P2 (n, j) 

have been defined earlier by Equations (7), (8) and (9), respectively. Now, A,, 

$I (n, j) and 0 (n, j) can be calculated using Equations (80)-(82). Equation (84) 

is solved using the Newton-Raphson scheme to calculate the constants c, for 

a given amplitude of wall oscillation, Xn (0) 11,. Knowing c,, the amplitude of 

pressure oscillation can be calculated from Equation (83). Using this solution, 

the values of R,/R, are calculated for different values of R,, using Equation (31). 

The amplitude of R,/R, is checked to be less than 1 to insure validity of the 

solution. Equation (84) is similar in structure to Equations (5) and (37), and 

the solution is nonzero only at the harmonics of the excitation frequency. Once 

again, calculations of up to 20 harmonics were found to be sufficient, harmonics of 

higher order being negligible. The check on I R,/R,I is performed only for the those 

bubbles for which the frequencies present (excitation frequency and its harmonics) 

are natural frequencies. 

Numerical results were computed for a number of typical cases. For each 

case the results were obtained for the size distribution density slope, m = 2, 3, 

4 and the value of N* was adjusted to give the void fraction for the case. The 

results for six different cases were calculated in order to investigate the effect of 

changes in void fraction, ambient conditions and amplitude of wall oscillation. The 

excitation frequency is varied between wr/lOO and 1 . 2 5 ~ ~  in order to calculate the 

frequency response. 
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A typical frequency response of the cloud is shown in Fig. 2.27 for ambient 

conditions for a water tunnel given in Table 2.1. The main features of the frequency 

response are the same for both of the ambient conditions for the water tunnel and 

the ocean. 

Fig. 2.27 shows the amplitude of pressure oscillation for the fundamental 

and the second harmonic, which are marked [I] and [2], respectively, as well as the 

solution obtained from the linearized analysis, which is marked [L]. The amplitudes 

of higher harmonics were found to be negligible. The frequency ratio is the ratio 

of the actual frequency at which the response occurs to the reference frequency, 

similar to Figs. 2.4 and 2.6. It is seen that the amplitude of the first harmonic 

pressure oscillation increases with increasing excitation frequency. The number 

of bubbles is larger for the smaller size for which the natural frequency of the 

bubble is larger. Thus, for a larger frequency ratio, or excitation frequency, a 

larger number of bubbles are excited at their natural frequency, thus leading to 

an increase in amplitude of the pressure oscillation. The s t i g  behavior of bubbles 

whose natural frequencies are less than the excitation frequency (seen in Section 

2.4 as a response to the super-resonant excitation) also contributes to an increase 

in amplitude of the pressure oscillation. 

When the wall is oscillated at a frequency, wf , the bubbles with their natural 

frequency equal to wf are excited with the largest amplitude. Because of the 

nonlinearity present in the system, the flow variables oscillate at  the harmonics of 

the excitation frequency, wf . Thus, the pressure oscillation at 2w excites bubbles 

with their natural frequency equal to 2wf. Since the number of bubbles with the 

natural frequency, 2wf, is larger than the number of bubbles with the natural 

frequency, wf, the response resulting from the bubbles with a natural frequency 

of 2wf may be significant and may be larger for larger values of rn. In other 

words, the excitation may cascade its way to higher frequencies. This mechanism 

is termed as harmonic cascading for the rest of the discussion. 
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The amplitude of oscillation of the second harmonic is shown in Fig. 2.27. 

The ratio of amplitude of the second harmonic to the amplitude of the first 

harmonic increases for larger values of size density distribution slope, m. This may 

be expected from the mechanism of harmonic cascading described above. Also, 

the linear solution is larger than the first harmonic, and the difference between 

the linear solution and the first harmonic is larger for larger values of m. For 

excitation frequencies larger than the reference frequency, w,, the amplitude of the 

second harmonic is very small and the difference between the linear and nonlinear 

solutions is also very small. This may be expected since w, is the highest natural 

frequency present in the cloud, and the effect of harmonic cascading is expected 

to  decrease for wall oscillation frequencies larger than 0 . 5 ~ ~ .  For excitation 

frequencies up to 0 . 5 ~ ~ )  harmonic cascading remains an important effect with 

the amplitude of the second harmonic becoming larger than the amplitude of the 

first harmonic for m = 4. For excitation frequencies larger than 0.5w,, the increase 

is due to the collective response of the bubbles to the excitation. 

Fig. 2.28 presents the amplitude of pressure oscillation for the first and the 

second harmonic as a function of the frequency ratio, wlw, and the distance from 

the wall, XIZ,. It is quite clear that the pressure oscillation decays rapidly away 

from the wall, decaying to very small values at the distance of 41, from the wall. 

The frequency responses for different values of the size density distribution 

slope, m, are compared in the Fig. 2.29. The void fraction is the same for all cases. 

It appears that an increase in the value of m reduces the amplitude of the first 

harmonic. For a given value of the void fraction, the number of bubbles is larger 

for larger values of rn, and reduction in the amplitude of the pressure oscillation 

may be caused by the increased number of bubbles since that increases damping 

in the system. The weaker response for increased void fraction seen earlier for 

a layer of identical bubbles may also be caused by an increase in the number of 

bubbles. Also, the amplitude of the second harmonic is not influenced strongly by 



change in the value of m. 

The effect of ambient conditions on the frequency response of the bubble layer 

is shown in Figs. 2.30 and 2.31. It is clear that the changes in ambient conditions 

do not strongly influence the frequency response of the layer. However, it does 

appear that ambient conditions at the ocean do promote a little stronger harmonic 

cascading. This may be explained as follows. The super-resonant excitation 

of bubbles that have a natural frequency less than the excitation frequency, 

contributes significantly to the amplitude of the fundamental harmonic and this is 

not strongly influenced by reduction in the viscous and surface tension parameters 

at ocean conditions. However, bubble dynamics plays a stronger role in generation 

of the second harmonic through harmonic cascading, and thus increase in the 

amplitude of the second harmonic with a reduced effect of viscocity and surface 

tension at ocean conditions may be expected. Hence, stronger harmonic cascading 

at the ocean conditions can be expected. 

The effect of changes in the void fraction on the frequency response of the 

layer is shown in Figs. 2.32 and 2.33. A larger value of the void fraction produces 

a weaker response. The effect of change in the amplitude of the wall oscillation is 

shown in Figs. 2.34 and 2.35. Just as in the case of a layer with identical bubbles, 

larger wall oscillations produce stronger pressure oscillations. 

2.7. Summary 

In this work some of the nonlinear effects, which can occur when a plane 

wall bounding a bubbly liquid oscillates in a direction normal to itself, have been 

investigated. Specifically, these effects have been examined in terms of bubble 

radius and pressure oscillations. The principal results are summarized below. 

The presence of a finite length scale such as the finite thickness of the bubble 

layer results in characteristic natural frequencies of the bubble layer (known as 

cloud natural frequencies) all of which are less than the bubble natural frequency, 



wb. Natural frequencies are determined mainly by the void fraction and the ratio 

of thickness of the layer to the bubble radius. The dominant response occurs for 

excitation at the lowest cloud natural frequency. The response is dominated by 

the first and the second harmonic components. The amplitude of the response 

increases as the lowest natural frequency gets closer to about 0 . 5 ~ ~ .  The cloud 

natural frequencies are very small for large thickness to  bubble radius ratio and 

the frequency response becomes the same as for an infinitely thick layer. 

For excitation frequencies in the sub-resonant and trans-resonant regimes 

( w < wb ), the amplitude of oscillation forms standing wave patterns in the 

layer in which the amplitude slowly decays with distance from the oscillating wall. 

However, for super-resonant excitation the oscillation amplitude decays rapidly 

with distance from the source of excitation. This rapid decay is caused by the 

reduced effect of bubble dynamics in the super-resonant regime in which the bubbly 

layer behaves like a homogeneous compressible layer. 

The phenomenon of harmonic cascading is seen to take place in a bubbly 

mixture containing bubbles of different sizes. Harmonic cascading occurs when a 

low frequency excitation applied to the layer at a frequency, w f ,  results in a large 

amplitude of oscillation at the frequency of 2wf because of the presence of a large 

number of bubbles with a natural frequency of 2 w f .  The ratio of the amplitude 

of the second harmonic to the amplitude of the first harmonic defines the extent 

of harmonic cascading. This ratio increases with an increase in the number of 

bubbles with small radii relative to the number of bubbles with large radii. It 

is noteworthy that the phenomenon of harmonic cascading can be modelled only 

by a nonlinear model because the linearized models do not allow for frequency 

dispersion. 

Larger values of the void fraction cause a reduction in the amplitude of 

pressure and radius oscillation in all cases. This may imply reduced acoustic 

noise in bubbly mixtures and damage potential in cavitating flows. The reduction 



of acoustic noise at increased void fraction has been observed experimentally by 

Arakeri and Shanmuganathan (1985). A larger number of bubbles present at large 

void fraction may cause stronger dissipation and a reduced amplitude of oscillation. 

2.8. Limitations 

In this section we shall examine the various limitations of the present model. 

First, the present model is based on continuum mechanics. This requires that 

the bubble spacing be much smaller than the shortest characteristic length scale 

present in the flow. Hence, bubble spacing is required to be much less than 

the thickness of the bubble layer. The wavelength of disturbances is required 

to be much larger than the bubble size in order to insure a spherically symmetric 

disturbance for each bubble assumed in the present theory. This holds true for 

excitation frequencies far above the linear resonance frequency of the bubble, and 

so the condition is easily satisfied. 

The local pressure disturbance resulting from volume oscillations of neigh- 

boring bubbles is assumed to be negligible as compared to the global pressure 

fluctuations. d'Agostino and Brennen (1988a) have given a condition for this as- 

sumption to be satisfied. This condition is generally satisfied in low void fraction 

flows for small amplitude oscillation (diAgostino and Brennen (1988a)). 

The amplitude of the radius oscillation is required to be small; in particular, 

IR,/R,I < 1 must be satisfied. This is also required to avoid the following 

inst ability in the bubble dynamics. For pressure oscillations exceeding a threshold 

value, bubbles larger than a critical size have been known to grow to a large size 

and then collapse violently (Flynn(1964), Eller and Flynn(1969) and Brennen and 

Ceccio (1989)). Such bubbles have been referred to as transient cavities in the 

literature. Bubble oscillation does not grow into collapse of a transient cavity if 

the ratio of the maximum size of the bubble to the equilibrium bubble radius does 

not exceed 2.0 (Flynn (1964)). The effect of damping is also reduced for large 
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bubbles. These place an upper limit on the excitation, which is smaller for large 

bubbles. In practice, (R,/R,I < 1 is expected to dictate the maximum applicable 

excitation for a given bubble size, for which the theory remains applicable. 

The range of void fraction, for which the present theory may be applied, is 

also bounded by an upper and a lower limit. The lower limit of the void fraction 

is determined by the maximum bubble separation required under continuum 

assumption as well as the requirement of a maximum permissible amplitude of 

radius oscillation, IR,/R,I. The upper limit on void fraction is determined by the 

requirement of local pressure disturbance to be negligible in colnparison to the 

global pressure oscillation (d'Agostino and Brennen (1988a)). 

The phenomenon of rectified diffusion results in slow growth of the equilib- 

rium size of a bubble (Hsieh and Plesset (1961)). Thus, the theory can be applied 

to the bubbly layers subject to steady state oscillation for long periods only if the 

equilibrium size, R, is tracked and the values appropriate to a particular time are 

employed. 

2.9 Practical Applications 

The theory may also be applied in order to understand the behavior of the 

dense cavitation clouds shed in cavitating foils and the cloud formed by breakup 

of the collapsing bubble in the travelling bubble cavitation. Also, the bubbly 

mixtures are found in a number of industrial applications. Some ultrasonic devices 

used in sono-chemistry involve bubbly mixtures subject to periodic disturbances. 

In cavitating flows, the typical value of void fraction is much less than 1% 

and the bubble sizes vary between 10 ,urn and 150 ,urn. In view of the discussion 

given above (Section 2.8), the present theory is valid for small excitations. For 

example, the amplitude of wall oscillation was limited to less than a few percent 

of the equilibrium bubble radius in the present problems. The maximum allowed 

excitation, for the theory to remain applicable, is proportional to the void fraction 



and inversely proportional to the bubble radius. The main results from the theory 

remain unaltered as long as R,/R, < 1 is satisfied. 

In spite of being limited to small amplitude oscillations and thus to a small 

excitation, the results from the theory may be used to  understand qualitatively 

the response of bubbly mixtures in practical situations. In particular, harmonic 

cascading should be present in many practical situations. Figs. 2.36 and 2.37 show 

two examples of spectra reported in the literature where harmonic cascading may 

be responsible for the features of the spectra. Fig. 2.36 shows the spectra of noise 

that is due to cavitation produced by a rotating rod in the Thames river (Mellen 

(1954)). It contains peaks at 1.25, 2.50 and 5.0 kHz (marked respectively as (I), 

(2) and (3)). The peaks at 1.25 and 2.5 kHz are of equal magnitude, and the peak 

at 2.5 kHz may have been caused by harmonic cascading, though Mellen has cited 

possibility of interference resulting from reflected waves as a reason. The second 

example (Fig. 2.37) has been taken from Blake (1986) and shows spectra of noise 

that is due to cavitation on the suction side of a propeller blade. The peaks at 

8.5, 17 and 34 kHz (marked (I) ,  (2), (3)) may be due to harmonic cascading. The 

results of Arakeri and Shanmuganathan (1985) do not exhibit harmonic cascading. 

However, that may be due to lack of variation in the size of bubbles generated by 

electrolysis. Most of the spectra measurement reported in the literature have been 

made using half-octave frequency resolution. Clearly, a finer spectra resolution 

in the spectra measurement is required in order to resolve harmonic cascading 

unambiguously. 

The upper limit of the validity of the present theory also serves as the 

threshold above which catastrophic growth and collapse of cavitation bubbles may 

be seen in practical flow situations. 



Table 2.1 

Fluid and Bubble Parameters for the Examples Presented 

These data are for water at 20° C. 

Data Set Application Ro PO k v / w b ~ , 2  s / ~ ~ ~ ~ R ~ ~  

(Pa)  

I Water Tunnel 14 13146 1 0.01 0.10 

I1 Ocean 20 101325 1 0.0028 0.012 

Other Data: 

Y = 0.000001 Kg/(m.s) 

S = 0.0734 N / m  

p = 1000.0 ~ ~ / ( r n ~ )  

P, = 2339 Pa 



Time, r = wbt 

Figure 2.1: Radius R (7) / R, is plotted against the nondimensional 

time, r = wbt for a single bubble. The parameters : p , / w b 2 ~ 2 =  0.04, 

wb/wp = 3.0 and v / w b h 2  and s / ~ ~ ~ R ~ ~  are for the water tunnel con- 

ditions. (-) is the numerical solution and (- - - -) is the approxi- 

mate analytical solution 



Time, r = wbt  

Figure 2.2: Radius R (7) / Ro is plotted against the nondimensional 

time, r = wbt for a single bubble. The parameters : P , / W ~ ~ R ~ ~ =  0.08, 

w b / w p  = 3.0 and v / w b ~ 0 2  and s / ~ ~ ~ ~ R ~ ~  are for the water tunnel con- 

ditions. (-) is the numerical solution and (- - - -) is the approxi- 

mate analytical solution 



Frequency Ratio, n6/wb 

Figure 2.3: Comparison of the spectra of [I - R (7) /Ro] obtained for a 

single bubble from numerical integration of the Rayleigh-Plesset equa- 

tion (-) and the present approximate (- - - 3 analysis. The param- 

eters : P , / w ~ ~ R , ~ =  0.08, Wb/wp = 6.0 and V / W ~ R , ~  and are 

for the water tunnel conditions. 



Frequency Ratio, nS/wb 

Figure 2.4: The frequency response of a single bubble; IRnI/R, is 

plotted against the frequency ratio, n6/wb, for the first five harmonics. 

The parameters: P ~ / w ~ ~ R ~ ~ =  0.02 and V / W ~ R , ~  and s/pwb2 R , ~  are for 

the water tunnel conditions. 



Mean Bubble 

Number of Bubbles per 

Unit Liquid Volume, 77' 

Figure 2.5: Schematic of the Oscillating Wall Problem. 



Frequency Ratio, nS/wb 

Figure 2.6: The frequency response of the bubbly cloud; IR,J/R,(X = 0) 

and lp,l/wb2Ro2(~ = 0) are plotted against the frequency ratio, n6/wb, for 

the first five harmonics. The parameters: X,(O)/R, = 0.03, a,= 0.02 and 

U / W ~ R , ~  and s l p w b 2  RO3 are for the water tunnel conditions. 



Figure 2.7: The frequency response of the bubbly cloud; (a) I RnI/Ro 

and (b) Ipn l / w b 2 ~ 0 2  for the fundamental harmonic are plotted against 

the frequency ratio, w,/wb, and the distance from the oscillating wall, 

XIR,, to illustrate the decay away from the wall. The parameters: 

Xn(0)/Ro = 0.03, a,= 0.02 and v / w ~ R , ~  and s / ~ w ~ ~ R ~ ~  for the water 

tunnel conditions. 



Figure 2.8: The frequency response of the bubbly cloud; (a) IRnI/Ro 

and (b) ~ P ~ ~ / w ~ ~ R ~ ~  for the second harmonic are plotted against the 

frequency ratio, 2wZ/hJb, and the distance from the oscillating wall, 

XIR,, to illustrate the decay away from the wall. The parameters: 

X.(0)/Ro = 0.03, ao= 0.02 and u/wbRo2 and s / ~ w ~ ~ R ~ ~  are for the 

water tunnel conditions. 
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Figure 2.9: The effect of variation in v /waRO2 and s / ~ ~ ~ ~ R ~ ~  on 

the fundamental harmonic; I Rn I /Ro(X = 0 )  and 1 pn l/wb2 R O 2 ( x  = 0 )  

for the fundamental harmonic are plotted against the frequency ratio, 

w,/wb. The parameters: X, (O) /R ,  = 0.03, a,= 0.02 and V / W ~ R ~  and 

s / ~ ~ ~ R ~ ~  are for the water tunnel and the ocean conditions. 
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Figure 2.10: The effect of variation in u / w ~ R ~ ~  and s / ~ ~ ~ ~ R ~ ~  on 

the second harmonic; I R, I / Ro ( X  = 0) and I P, 1 /wb2 RO2 ( X  = 0) for the 

second harmonic are plotted against the frequency ratio, 2 ~ x 1 ~ ~ .  The 

parameters: Xn(0)/Ro = 0.03, a,= 0.02 and u / w ~ R ~ ~  and s / ~ ~ ~ ~ R ~ ~  

are for the water tunnel and the ocean conditions. 



Frequency Ratio, ws/wb 

Figure 2.11: The effect of change in the void fraction, a,, on the 

fundamental harmonic; I Rn I/Ro(X = 0) and I P , ~ / W ~ ~ R , ~ ( X  = 0) for 

the fundamental harmonic are plotted against the frequency ratio, 

w,/wb. The parameters: Xn(0)/Ro = 0.03 and U / W ~ R , ~  and s / ~ ~ ~ ~ R ~ ~  

are for the water tunnel conditions. Values of the void fraction, a,, of 

0.005, 0.020 and 0.100 are used. 



Frequency Ratio, 2wZ/wb 

Figure 2.12: The effect of change in the void fraction, a,, on the sec- 

ond harmonic; I R, I /  R,(X = 0) and I P, l/wb2 R , ~  (X = 0) for the second 

harmonic are plotted against the frequency ratio, 2wZ/wb. The param- 

eters: Xn(0)/Ro = 0.03 and V / W ~ R , ~  and s / ~ ~ ~ R ~ ~  are for the water 

tunnel conditions. Values of the void fraction, a,, of 0.005, 0.020 and 

0.100 are used. 
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Figure 2.13: The effect of change in the amplitude of wall oscilla- 

tion, X n ( 0 ) / R o ,  on the fundamental harmonic; IRnI/Ro(X = 0 )  and 

I pn 1 /wb2 RO2 ( X  = 0) for the fundamental harmonic are plotted against 

the frequency ratio, w,/wb. The parameters: a,= 0.02 and 

and slpwb2RO3 are for the water tunnel conditions. X n ( 0 ) / R o  values 

of 0.01, 0.03 and 0.06 are used. 
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Figure 2.14: The effect of change in the amplitude of wall os- 

cillation, X,(O) / R,, on the second harmonic; I R, I/R,(X = 0 )  and 

I pn 1 /wb2 fiO2 ( X  = 0 )  for the second harmonic are plotted against the 

frequency ratio, 2wx/wb. The parameters: a,= 0.02 and v / w b ~ 0 2  and 

s / ~ ~ ~ ~ R ~ ~  are for the water tunnel conditions. X n ( 0 ) / R o  values of 

0.01, 0.03 and 0.06 are used. 
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Figure 2.15: Schematic of the Oscillating Wall Problem With a Layer 

of Finite Thickness. 



Frequency Ratio, nS/wb 

Figure 2.16: The frequency response of a bubbly layer of finite thick- 

ness; I&I/Ro(X = 0) and I P , ~ / W ~ ~ R , ~ ( X  = 0) are plotted against the 

frequency ratio, n6/wb, for the first two harmonics. The parameters: 

Xn(0)/Ro = 0.02, ao= 0.02, i/Ro= 20 and u / w b ~ 0 2  and s / ~ w ~ ~ R ~ ~  

are for the water tunnel conditions. 



Figure 2.17: The frequency response of a bubbly layer of finite thick- 

ness; (a) 1 Rn I / Ro and (b) 1 P, 1 /wb2 R~~ for the fundamental harmonic are 

plotted against the frequency ratio, wZ/wb, and the distance from the 

oscillating wall, X/l, for the first harmonic. The parameters: Xn(0)/Ro 

= 0.02, a,= 0.02, l/Ro= 20 and u / w b ~ 0 2  and s / ~ ~ ~ ~ R ~ ~  are for the 

water tunnel conditions. 



Figure 2.18: The frequency response of a bubbly layer of finite thick- 

ness; (a) 1 Rn [ / Ro and (b) 1 pn 1 /ub2 R~~ for the second harmonic are plot- 

ted against the frequency ratio, 2wZ/wb, and the distance from the oscil- 

lating wall, X/1, for the second harmonic. The parameters: X ,  (0)/Ro 

= 0.02, a,= 0.02, l/Ro= 20 and u / w b ~ 0 2  and s / ~ ~ ~ ~ R ~ ~  are for the 

water tunnel conditions. 
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Figure 2.19: The effect of variation in V / W ~ R , ~  and s / ~ ~ ~ ~ R ~ ~  on 

the fundamental harmonic; I Rn l / R o ( X  = 0 )  and I pn l/wb2 R~~ ( X  = 0 )  

for the fundamental harmonic are plotted against the frequency ratio, 

w,/wb. The parameters: X,(O)/R,  = 0.005, a,= 0.02, l /Ro= 20 and 

v / w ~ R , ~  and are for the water tunnel and the ocean 

conditions. 



Frequency Ratio, 2 ~ x 1 ~ ~  

Figure 2.20: The effect of variation in v / w ~ R ~ ~  and s / ~ ~ ~ ~ R ~ ~  on 

the second harmonic; IRn I/Ro(X = 0) and I P, I / w ~ ~ R ~ ~ ( x  = 0) for the 

second harmonic are plotted against the frequency ratio, 2wX/wb. The 

parameters: Xn(0)/Ro = 0.005, a,= 0.02, l/Ro= 20 and v / w b ~ 0 2  and 

~ / ~ w b ~ ~ ~ ~  are for the water tunnel and the ocean conditions. 
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Figure 2.21: The effect of change in the thickness of the bubble layer, I /  Ro, 

on the fundamental harmonic; I RnI/Ro(X = 0) and ~ P , ~ / w ~ ~ R , ~ ( x  = 0) for 

the fundamental harmonic are plotted against the frequency ratio, w, /wb. 

The parameters: Xn(0)/Ro = 0.02, a,= 0.02 and v/wbRO2 and s / ~ w ~ ~ R ~ ~  

are for the water tunnel conditions. Values of the thickness of the bubble 

layer, l/Ro, of 10, 20 and 50 are used. 
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Figure 2.22: The effect of change in thickness of the bubble layer, l/Ro, 

on the second harmonic; I Rn I / Ro (X = 0) and I pn 1 /wb2 R , ~  (X = 0) for 
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the second harmonic are plotted against the frequency ratio, 2wZ/wb. 

The parameters: Xn(0)/Ro = 0.02, a,= 0.02 and v / w ~ R , ~  and 

s/pwb2 R , ~  are for the water tunnel conditions. Values of the thickness 

of the bubble layer, Z/R,, of 10, 20 and 50 are used. 
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frequency Ratio, wz/wb 

Figure 2.23: The effect of change in the void fraction, a,, on the fundamen- 

tal harmonic; I R, I /R,(X = 0) and I P, l/wb2 R02(x = 0) for the fundamental 

harmonic are plotted against the frequency ratio, wZ/wb. The parameters: 

X n ( 0 ) / R o  = 0.02, Z/R,= 20 and v / w b ~ 0 2  and s / ~ ~ ~ ~ R ~ ~  are for the water 

tunnel conditions. Values of the void fraction, a,, of 0.005, 0.020 and 0.100 

are used. 
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Figure 2.24: The effect of change in the void fraction, a,, on the sec- 

ond harmonic; I Rn I/R,(X = 0) and I P, l/wb2 R,~(x = 0) for the second 

harmonic are plotted against the frequency ratio, 2ws/wb. The parame- 

ters: X,(O)/R, = 0.02, Z/R,= 20 and V / W ~ R , ~  and s l p w b 2 ~ 2  are for 

the water tunnel conditions. Values of the void fraction, a,, of 0.005, 

0.020 and 0.100 are used. 
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Figure 2.25: The effect of change in the amplitude of wall oscilla- 

tion, X n  ( 0 ) / R o ,  on the fundamental harmonic; I Rn ( / R , ( X  = 0 )  and 

I P , ~ / U ~ ~ R ~ ~ ( X  = 0 )  for the fundamental harmonic are plotted against 

the frequency ratio, wz/wb.  The parameters: a,= 0.02, I/Ro= 20 and 

v / w b ~ 0 2  and s / ~ ~ ~ ~ R ~ ~  are for the water tunnel conditions. Values of 

the amplitude of wall oscillation, X n ( 0 ) / R o ,  of 0.005, 0.010 and 0.020 

are used. 
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Figure 2.26: The effect of change in the amplitude of wall os- 

cillation, Xn (O)/R,, on the second harmonic; I Rn I / Ro(X = 0) and 

I pnl/wb2 R O 2 ( x  = 0) for the second harmonic are plotted against the 

frequency ratio, 2wZ/wb. The parameters: a,= 0.02, l/R,= 20 and 

v/wbRO2 and s l p w a 2 ~ 3  are for the water tunnel conditions. Values 

of the amplitude of wall oscillation, Xn(0)/Ro, of 0.005, 0.010 and 0.020 

are used. 
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Figure 2.27: The frequency response of a bubbly layer with a given 

size distribution of bubbles; I pn l /wr21r2 (~  = 0) is plotted against the 

frequency ratio, nS/w,, for the first two harmonics and the linear 

solution for (a)m = 2, (b)m = 3 and (c)m = 4. The parameters: 

Xn(O)/Zr= 0.0002, a,= 0.05 and the ambient conditions are for the 

water tunnel. 



Figure 2.28: The frequency response of a bubbly layer with a given 

size distribution of bubbles; I P , ~ / W , ~ Z , ~  for the (a) first and (b) second 

harmonic is plotted against the distance from the wall, XIZ,, and 

the frequency ratio, (a) w,/w, and (b) 2w,/w,, respectively. The 

parameters: X,(O)/Z,= 0.0002, a,= 0.05, m = 3 and the ambient 

conditions are for the water tunnel. 
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Figure 2.29: The effect of variation in the bubble size density distribution 

slope, m, on the (a) first and (b)second harmonic; I ~ . l / w , ~ l , ~ ( ~  = 0) is 

plotted against the frequency ratio, (a) w,/wr and (b) 2w,/w,, respectively. 

The parameters: X,(O)/l,= 0.0002, a,= 0.05 and the ambient conditions 

are for the water tunnel. 
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Figure 2.30: The effect of variation in ambient conditions on the fun- 

damental harmonic; I P, 1 /wr 21r2 (X = 0) for the fundamental harmonic 

is plotted against the frequency ratio, w,/wr, for (a)m = 2, (b)m = 3 

and (c)m = 4. The parameters: X,(0)/lr= 0.0002, a,= 0.05 and the 

ambient conditions are for the water tunnel and the ocean. 
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Figure 2.31: The effect of variation in ambient conditions on the 

second harmonic; I pn l /wr21r2(~  = 0) for the second harmonic is plotted 

against the frequency ratio, 2w,/wr, for (a)m = 2, (b)m = 3 and (c)m 

= 4. The parameters: Xn(0)/lr= 0.0002, a,= 0.05 and the ambient 

conditions are for the water tunnel and the ocean. 



Frequency Ratio, w, /wr 

400 

Figure 2.32: The effect of changes in void fraction, a,, on the fun- 

I I I I I I ,' 
/ 

Fundamental Harmonic / - I 

Void Fraction I 
/ 

- 
/ 

- 0.10 f 
/ - -- - - -  0.05 / .- - 

# 
,- 

- - 0.01 .. .- 
C .*- 

#- ,.-' 

dament a1 harmonic; I P, 1 /wT21r2 (X = 0) for the fundament a1 harmonic 

is plotted against the frequency ratio, w,/wr, for (a)m = 2, (b)m = 

200 - 
n 
0 

I I 
% 

3 and (c)m = 4. The parameters: X,(O)/l,= 0.0002 and the ambient 

w 
CJ b 
Y 

c.I C 
3 
\ - 

300 $ - 
(D 
0 
4 200 
s 

conditions are for the water tunnel. Values of the void fraction, a,, of 

+ 
/ - Fundamental Harmonic / - 

/ 

Void Fraction I 
/ - / - 0.10 / - 

/ - - - - -  0.05 I - - .. - - 0.01 / 
.A 

0.01, 0.05 and 0.10 are used. 

-v * - . t! 
.r( 100 - 
4 
Q, 

6 0 - 
E z 250 
m 
E 200 e, 

150 

- d- 
/ 

Fundamental Harmonic / - / - 
Void Fraction / 

I - / - 0.10 / 
f 

- 
- ----.  0.05 r' - / 

- - - 0.01 r. 
/ .., , 

100 - .- C' 

+- 



Frequency Ratio, 2w,/w, 

60 

40 

Figure 2.33: The effect of changes in void fraction, a,, on the sec- 

ond harmonic; ~P,~/w,~z,~(x = 0) for the second harmonic is plotted 

against the frequency ratio, 2w,/w,, for (a)m = 2, (b)m = 3 and (c)m 

= 4. The parameters: X,(O)/I,= 0.0002 and the ambient conditions 

are for the water tunnel. Values of the void fraction, a,, of 0.01, 0.05 
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Figure 2.34: The effect of changes in the amplitude of wall oscillation, 

X n ( 0 ) /  on the fundamental harmonic; 1 pnl/wr22,2 (X = 0) for the 

fundamental harmonic is plotted against the frequency ratio, w,/w,, 

for (a)m = 2, (b)m = 3 and (c)m = 4. The parameters: Xn(0)/lT= 

0.0002 and the ambient conditions are for the water tunnel. Values 

of the amplitude of wall oscillation, Xn(0)/lT, of 0.00008, 0.0002 and 

0.0005 are used. 
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Figure 2.35: The effect of changes in amplitude of wall oscillation, 

Xn(0)/lr, on the second harmonic; ~ P , J / w , ~ ~ , ~ ( x  = 0) for the second 

harmonic is plotted against the frequency ratio, 2wx/w,, for (a)m = 2, 

(b)m = 3 and (c)m = 4. The parameters: Xn(0)/l,= 0.0002 and the 

ambient conditions are for the water tunnel. Values of the amplitude 

of wall oscillation, X,(O)/l,, of 0.00008, 0.0002 and 0.0005 are used. 
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Figure 2.36: The power spectra of noise that is due to cavitation 

produced by rotating rods in the Thames river (from Mellen (1954)). 

The peaks at 1.25, 2.5 and 5 lcHz (marked respectively as (I), (2) and 

(3)) may be due to harmonic cascading. 
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Figure 2.37: The spectra of noise that is due to cavitation on the 

suction side of a propeller blade (from Blake (1986)). The peaks at 8.5, 

17 and 34 kHz (marked respectively as (I), (2) and (3)) may be due to 

harmonic cascading. 



Chapter 3 

AN ACOUSTICAL STUDY OF TRAVELLING BUBBLE CAVITATION 

3.1. Introduction 

The dynamics and acoustics of travelling bubble cavitation have been ex- 

tensively studied both experimentally and theoretically for many years. Most of 

the theoretical work has focussed on modifications of the Rayleigh equation for 

a spherically collapsing cavity. Plesset contributed a substantial body of work 

in this area, and Gilmore (1952) included compressible effects. Deviations from 

the spherical geometry that are due to the presence of a wall, and the resulting 

shape deformations were investigated by Plesset and Chapman (1971) and more 

recently by Blake et al. (1986). Fitzpatrick and Strasberg (1956) proposed us- 

ing the Rayleigh - Plesset equation in combination with the pressure history in 

the flow to calculate the bubble radius and the resulting noise from the collapse 

process. Brooke Benjamin (1958) related the presence of f -2  variation in the 

power spectra of the resulting noise to the generation of shocks that are due to 

effects of compressibility during the bubble collapse process. This research has 

been summarized in the excellent review by Plesset and Prosperetti (1977). 

Experiment ally, researchers initially measured the cavitation noise generated 

in a venturi (Harrison (1952)) and by stirring rods (Mellen (1954)). Photographic 

and acoustical studies of the collapse of a spark or laser generated cavity in a 

quiescent liquid have also been used by a number of researchers including Harrison 

(1952), Mellen (1956a and 1956b) and more recently, Kimoto (1987) and Vogel et 

a1.(1989). Photographic studies in such quiescent environments have revealed the 

presence of a reentrant jet generated by the collapsing bubble as seen in numerical 

calculations of Plesset and Chapman (1971). Vogel et al. have also photographed 

shock waves resulting from the collapse of such cavities, thus confirming the 

importance of the effects of liquid compressibility. 



A number of researchers, notably Knapp and Hollander (1948), Parkin 

(1952)) Blake et al. (1977)) Hamilton (1981), Hamilton et al. (1982), Marboe et al. 

(1986) and Ceccio and Brennen (1991) have studied the collapse of hydrodynam- 

ically generated cavitation bubbles. These studies show that cavitation bubbles 

are usually hemispherical (Knapp and Hollander (1948)) Parkin (1952)). Blake et 

al. (1977) have photographed the collapse of a bubble in cavitation over a tripped 

hydrofoil where the bubble deforms into a hemispherical shape before collapsing 

and also breaks up into pieces during the collapse process. A similar pattern 

of bubble breakup has been observed photographically in travelling bubble cav- 

itation around axisymmetric headforms by Ceccio and Brennen (1991). van der 

Meulen and van Renesse (1989) have acoustically and photographically studied 

the collapse of laser produced cavities around hemispherical headforms. 

Mellen (1954, 1956a and 195613) made measurement of spectra of the noise 

produced by a collapsing cavity and of the cavitation noise produced by stirring 

rods. The noise generated by hydrodynamic cavitation has been measured by 

Hamilton (1981), Hamilton et al. (1982), Marboe et al. (1986)) Blake et al. (1977). 

Arakeri and Shanmuganathan (1985) used spectra measurements to determine 

the value of the void fraction above which interactive effects between bubbles 

became important. Many researchers have suggested treating the noise pulses as 

a stochastic process (Morozov (1969), Illichev and Lesunovskii (1963) and Baiter 

(1974)). This involves using the noise generated by a single collapsing bubble 

to synthesize the spectra of the noise generated by travelling bubble cavitation 

(Baiter (1986)). 

Some of the earliest studies of a single bubble in cavitation observed the 

bubble collapsing, growing and collapsing again (Knapp and Hollander (1948)). 

Harrison (1952) traced the origins of the rebound to the presence of permanent gas 

in the bubble. Since that time rebounding has been observed in both flow induced 

cavitation and in the collapse of spark or laser produced cavities. Rebounding 



generates two or more pressure pulses separated by a comparatively low pressure 

level produced by the intermediate growth phase. Another phenomenon called 

multipeaking can be seen in the acoustic signal generated by the collapse of spark 

produced cavities (Mellen (1956a) and Teslenko (1979)). Ceccio and Brennen 

(1991) also observed the multiple peaked pulses in the noise from single events. 

Thus rebounding and multipeaking are seen to be characteristic features of 

the noise generated by collapse of a bubble. The present investigation examines 

these characteristic features as well as their impact on measures of the acoustic 

signal such as the spectra. The dependence of multipeaking and rebounding on 

flow conditions such as cavitation number, flow velocity and to a limited extent 

on the local flow structure has also been investigated in order to understand the 

collapse mechanism in travelling bubble cavitation. The results will be compared 

to the calculations using the Rayleigh-Plesset equation in a manner similar to that 

proposed by Fitzpatrick and Strasberg (1956). It is hoped that the information 

yielded by such an investigation can be used in a model similar to the one suggested 

by Baiter (1986) to construct the spectra of travelling bubble cavitation. 

3.2. Experimental Details 

The experiments were conducted in the Low Turbulence Water Tunnel 

(Gates (1977)) at the California Institute of Technology. It is shown schematically 

in Fig. 3.1. The experimental equipment and installation used by Ceccio and 

Brennen (1991) were employed in these experiments. All the experiments were 

conducted at  a fixed velocity with the desired cavitation number obtained by 

lowering the static pressure in the water tunnel. The air content was measured by 

a Van Slyke apparatus and was maintained between 8 and 10 ppm. 

Travelling bubble cavitation was produced on the two axisymmetric head- 

forms used by Ceccio and Brennen (1991) namely, a Schiebe headform of diameter 

5.08 c m  (Gates et  al. (1979)) and an I.T.T.C. headform of 5.59 cm diameter 



(Lindgren and Johnsson (1966)). The Schiebe headform was designed to suppress 

laminar separation in cavitating conditions (Schiebe (1972)). It possesses a sharp 

pressure drop with a minimum pressure coefficient of -0.75. The I.T.T.C. headform 

posses a laminar separation region. It has a relatively smooth pressure drop with 

a minimum pressure coefficient of -0.62. Fig. 3.2 shows profiles and pressure coef- 

ficients for these headforms. The headforms were made of lucite in order to make 

them approximately acoustically transparent in water. An ITC-1042 hydrophone 

was placed inside the headform interior, which was filled with water. This allows 

relatively reverberation-free recording of the initial portion of the acoustic signal 

generated by the cavitation on the surface of the headform. A collapsing bubble is 

a sound source of monopole type and the sound gets weaker away from this source. 

Thus reverberation from the tunnel walls reaching the hydrophone is considerably 

weaker than the original acoutic emission. It means that since the cavitation 

site is much closer to the hydrophone than it would be if the hydrophone were 

placed near tunnel walls, the distortion of the signal that is due to the natural 

acoustic modes of the water tunnel and the acoustic reflections from the water 

tunnel walls are minimized. However, the acoustic path between the bubble and 

the hydrophone is not perfectly transparent and some sound may have been lost 

due to reflection and refraction at the surfaces of the headform. This has been 

found qualitatively to be insignificant by Ceccio (1990) by comparing the signal 

to the signal recorded by a far field hydrophone. Also, the output voltage of the 

hydrophone was converted to pressures using a steady state calibration and this 

may have introduced some errors since the signals in this experiment are transient. 

An experimental schematic is included in Figure 3.1. 

The signal from the hydrophone was amplified and extremely low frequencies 

( << 1 H z )  were removed by a high pass filter. The filtered signal was then digitally 

sampled at 500 kHz. It should be noted that the hydrophone has a corner frequency 

of 80 kHz. Therefore, the sampling rate of 500 kHz is more than sufficient to 



capture the details of the acoustic signal detected by the hydrophone. Thus, for 

example, the peak amplitudes are meaningful and do not differ appreciably from 

the actual peak amplitudes measured by the hydrophone. The signals generated 

by a number of bubbles collapsing next to the headform almost simultaneously 

have been eliminated by the software used to process the acoustic data. Around 

500 acoustic traces were collected for each of six operating conditions comprised of 

3 cavitation numbers (0.45, 0.50 and 0.55) and two flow velocities (8 and 9 m/sec). 

The duration of the recording was adjusted to capture the complete acoustic trace 

from an individual bubble collapse. A typical acoustic trace is shown in Fig. 

3.3, and a sketch illustrating the definition of some of the measured quantities is 

included as Fig. 3.4. These records were digitally processed in the following way. 

First peaks were detected and classified as belonging to the main pulse or the 

rebound pulse. Then quantities such as the peak amplitude and the time interval 

between the peaks were evaluated. In addition, the following quantities were also 

evaluated: 

Here I, is the acoustic impulse, tl and t2 being times of the begining and the 

end of the main pulse (or the rebound pulse). The integral, I,, is an alternative 

measure of the strength of the pulse, and r, is the duration of the pulse. Also 

measured were the time between the maximum peaks in the main and the rebound 

pulses, d and the ratio of maximum amplitude in the main pulse to the maximum 

amplitude in the rebound pulse, r. 



3.3. Experimental Results 

3.3.1. Occurrence of Multipeaking and Rebounding 

First, the probabilities of occurrence of the phenomena of rebounding and 

multipeaking were examined statistically in order to  gain some insight into these 

phenomena. The dependence of these probabilities on cavitation number, a, and 

to a limited extent on flow velocity, u, are presented in Fig. 3.5 for both headforms. 

Consider first the phenomenon of multipeaking in the main pulse. The following 

trends can be clearly seen from the data of Fig. 3.5. First note that changing the 

flow velocity from 8 to 9 m/sec has little effect on results. This is not surprising 

since change in velocity is small; significantly different velocities could not be 

obtained because of operational limits on this water tunnel. van der Meulen 

and van Renesse (1989) also found the flow velocity to  have very small effect. 

Second, the probability of rebounding increases as the cavitation number, a, is 

reduced, and this appears to  be the case for both the headforms. It is particularly 

evident that rebounding almost never occurs for the highest of the three cavitation 

numbers tested, a = 0.55. The probability of occurrence of both multipeaking and 

rebounding is higher for the I.T.T.C. headform than for the Scliiebe headform. The 

main difference between the two headforms is in the probability of multipeaking. 

For the I.T.T.C. headform, the probability of occurrence of double peaked events 

is almost independent of a. Events with more than two peaks almost never occur 

with the Schiebe headform. The probability of occurrence of multipeaking in the 

rebound pulse was also examined and exhibited trends similar to the main pulse. 

As seen in Fig. 3.6, the rebounds are predominantly single peaked (approximately 

80 % for the I.T.T.C. headform and 90 % for the Schiebe headform). 

It is convenient to classify the cavitation events with a rebound by a combi- 

nation of two letters, where the first letter represents the number of peaks in the 

main pulse and the second letter represents the number of peaks in the rebound 

pulse. We use m to denote multiple peaks and s to denote a single peak. The 



probability of occurrence of different kinds of events is shown in Fig. 3.7. It can 

be seen that I.T.T.C. headform has mostly ms-type events [ 50 % ] but mm and 

ss-type events are also present in significant numbers [ 25 % 1. The Schiebe head- 

form has mostly ss-type events with ms-type events also present about 20 % of 

the time. It is observed that sm events are rare, indicating that a multi-peaked 

rebound pulse is unlikely if the main pulse is single peaked. 

Obviously, the two headforms produce characteristically different events 

because of the differences in the interaction between the bubble dynamics and 

the flow structure. The rebound pulse indicates a second collapse separated from 

the first collapse by a growth phase. van der Meulen and van Renesse (1989) have 

related the rebounding of the bubble to its distance from the headform. In their 

study of collapse of the laser produced cavities around hemispherical headforms, 

the bubbles very close to the headform were observed not to rebound. Thus, the 

pattern of rebounding may be governed by the distance between the growing nuclei 

and the headform. Because of the presence of boundary layer separation on the 

I.T.T.C. headform, the nuclei are expected to be farther from the surface than they 

are for the Schiebe headform, which does not produce boundary layer separation. 

Thus, the probability of rebounding would be greater with the I.T.T.C. headform 

as observed in the present experiments. 

The multipeaking, however, could be the result of several mechanisms as 

follows: 

[a] Multiple peaks may be the result of multiple shock waves emitted 

during the bubble collapse process (Mellen (1954) and (1956), Kimoto 

(1987), and Vogel et al. (1989)). Collapsing cavities have been observed 

to generate microjets (Kimoto (1987) and van der Meulen and van 

Renesse (1989)). Kimoto (1987) has separately measured the pulse 

resulting from microjet impact and the subsequent pulse generated 

when the remnant cloud of smaller bubbles collapses. He found that 



the remnant cloud shock was about 3 times stronger than the microjet 

shock and that the time between them was about 0.1 msec. The 

peak separation was roughly 0.015 msec in the present experiments. 

Furthermore, using a Schlieren technique, Vogel et al. have observed 

two shock waves emitted that were due to nonspherical bubble collapse. 

Hence, the multiplicity of peaks could be the result of a number of 

shock waves generated during the bubble collapse. 

[b] Cavitation bubbles can break up into several pieces while collapsing 

(as seen by Ceccio (1990) and as shown in Fig. 3.8) and therefore 

generate two or more peaks. From the photographs of Ceccio one can 

estimate the two pieces to be 1 mm apart, which at a flow velocity of 

about 10 m/sec would lead to peaks roughly 0.1 msec apart. This is 

substantially larger than the observed peak separation of about 0.015 

msec. The bubble may break up during the collapse due to shear in 

the flow or as a result of the onset of higher order oscillations. 

[c] Volume oscillations during the collapse process could cause multiple 

peaks. Since the natural period of oscillation for a 20 prn bubble is 

0.015 msec, which is consistent with the observed peak separation, 

volume oscillations during the collapse may be a plausible reason for 

multiple peaks. The natural oscillations of the bubble can be caused 

by the strong pressure gradient that the bubble passes through while 

travelling next to the headform. 

[dl van der Meulen and van Renesse (1989) have reported generation of 

a jet, a counter jet and disintegrating vortex rings during the collapse 

of a bubble in the flow around a headform. The multiple peaks may 

be caused by the jet, the counter jet and the disintegrating vortex 

rings. The production of a counter jet was seen to be promoted by 

larger distances between the bubble and the surface of the headform. 



In particular, this may explain the greater degree of multipeaking for 

the I.T.T.C. headform than for the Schiebe headform. 

The above variations in the probabilities of multipeaking and rebounding 

are probably governed by the size distribution of the nuclei and by the manner 

in which the nuclei are ingested into the low pressure zone around the headform. 

Distinctly different pressure distributions (Fig 3.2) and presence (absence) of the 

laminar separation probably cause the differences in travelling bubble cavitation 

around the I.T.T.C. and Schiebe headforms. 

3.3.2. Some Characteristic Measures of the Acoustic Signal 

We now turn to other statistical features in the acoustic signal by first 

examining the mean value of the measured quantities. The error bars in the figures 

3.10-3.15 have been calculated using a 95 % confidence level following Bendat and 

Piersol (1971). First, the ratio of the maximum amplitude in the main pulse to 

the maximum amplitude in the rebound pulse, r, is shown in Fig. 3.9 for the two 

velocities, for the various types of events and for the two headforms. It is seen that 

most of the data is clustered around the value of 2. With a 95 % confidence level, 

we find that the mean value of r will lie between 1.5 and 2.5. It seems that the 

bubble fission observed by Ceccio and Brennen (1991) happens in such a way that 

the collapse of the bubble cloud, which is generated by the first collapse, generates 

only half of the maximum pressure generated by the first collapse. This may mean 

that during the first collapse, certain nonlinear modes of surface oscillation are set 

up, which cause the bubble to break up in a repeatable way. A somewhat similar 

behavior was observed to occur in the results for the ratio of the pulse width, 

7, for the first collapse to the same quantity for the second collapse. This ratio 

varied between 2 to 4 for the Schiebe headform and 3.5 to 8.25 for the I.T.T.C. 

headform. Also, the ratio of the impulse, I,, for the first collapse to that for the 

second collapse exhibited a similar behavior. Thus, it is clear that collapse after 



rebound generates less sound than the main collapse in contrast to  the observation 

made by Hamilton (1981). 

The time between the maximum peak in the main pulse and the maximum 

peak in the rebound pulse, d, was also measured and exhibited a mean value 

between 0.5 and 1.4 msec. We have examined the classic film of Knapp entitled 

Studies of Cavitation, which shows travelling bubble cavitation around a 1.5 caliber 

ogilvie. The value of d from that film is approximately 1.5 msec, which is of the 

same order of magnitude as the present observation. This lends confirmation to 

the conclusion that the two pulses in the present acoustic records are emitted by 

two collapses separated by a growth phase. It is observed that the value of d 

increased with reduction in the cavitation number and as expected, is larger at  8 

m/sec than at 9 m/sec for both the headforms (Fig. 3.10). van der Meulen and 

van Renesse (1989) also observed delayed rebound at smaller flow velocities. 

Also, the value of d is larger for the I.T.T.C. headform than for the Schiebe 

headform at both flow velocities and the smaller values of a (0.50 and 0.45). The 

reason for this may be the larger radius of the I.T.T.C. headform, which enlarges 

length scales requiring larger times between the collapses. Also, multipeaking is 

seen to delay the rebound for reasons that are not understood. 

The quantities P, I,, I,, rw, and r, were also examined in order to under- 

stand the effect of multipeaking and rebounding on these representative measure- 

ments of the acoustic signal. We consider first the variation in the mean value of 

these quantities with the cavitation number for both headforms. The previously 

mentioned two letter symbols are used to denote the types of events with a re- 

bound. In addition, sp and mp indicate single and multipeaked events without a 

rebound. It is seen from Fig. 3.11 that I, increases with reduction in cavitation 

number. The mean values of P and I, behave in a similar fashion, though the 

dependence of r, on a is quite different. The pulse width, rw, has maximum 

value for the intermediate cavitation numbers in most cases. An exception to this 



trend are mp type events for the Schiebe headform for which the pulse width, 

"-w , decreases with the decrease in the cavitation number at  the flow velocity of 9 

m/sec and increases with decrease in the cavitation number at the flow velocity 

of 8 m/sec. Fig. 3.12 shows the variation in the peak separation, 7,. It remains 

close to 12 ps for the Schiebe headform but increases from 15 ps to 23 - 28 ps for 

the I.T.T.C. headform as the cavitation number is reduced. 

Next, the dependence of the mean value of the above characteristics on the 

flow velocity, the type of event and the headform will be examined. It was seen 

from the data that the characteristic measures P,  Im, Is and rw changed in a 

similar way with changes in the type of event, the flow velocity and the headform. 

Figs. 3.11 and 3.13-3.15 show some of these results. In case of the I.T.T.C. 

headform, the mean values of these characteristics for mp and ms type events 

are roughly the same, and which are larger than the values for sp type events 

(Fig.3.11). In case of the Schiebe headform, the values for sp and ss type events 

are roughly the same, and which are less than the values for mp type events. This 

pattern for the Schiebe headform can be seen only at  the cavitation number of 

0.45, the uncertainty in the estimate being larger at larger values of a. 

The effect of flow velocity on P, I,, Is and rw is shown in Fig. 3.13 for 

the I.T.T.C. headform and Fig. 3.14 for the Schiebe headform. The values of 

these characteristics at 8 m/sec are larger than the values at 9 m/sec for the 

cavitation number of 0.45. This inequality is reversed as the cavitation number is 

increased to 0.55. The exceptions to this trend are sp type  events on the Schiebe 

headform for which an increase in the flow velocity increases the values of these 

characteristics. 

The value of these characteristics for two headforms were compared for 

corresponding cases, and typical observations are presented in Fig. 3.15. It is 

seen that the values of these characteristics for the I.T.T.C. headform are larger 

than the values for the Schiebe headform at the cavitation number of 0.45. This 



inequality disappears as the cavitation number is increased to 0.50 and 0.55. In 

addition, P has a larger value for the Schiebe headform than for the I.T.T.C. 

headform at the cavitation number of 0.55 in case of sp-type events. The reasons 

for these variations are not understood. 

3.3.3. Comparison Between Experimental Results and Theoretical Calculations 

It is useful to compare the current experimental results to the analytical 

results calculated from the Rayleigh-Plesset equation: 

This equation governs the response, R (t) of a bubble subject to pressure dis- 

turbance, P, (t). R, is the equilibrium radius. Equation (89) is integrated nu- 

merically for different bubble radii, experimental conditions and pressure history 

for comparison with the experimental data. Pressure distributions for the Schiebe 

headform (Gates et al. (1979)) and the I.T.T.C. headform (Hoyt (1966)) have been 

determined previously and were employed to construct the pressure time history 

that a nucleus passing close to the headform would experience, assuming no slip 

between the fluid and the bubble and a small offset from the stagnation stream 

line. These pressure distributions are given in Fig 3.2. The radiated acoustic 

pressure, Pr, is then calculated as 

p d 2 v  
Pr (x, t)  = -- 

47rx dt2 

where V (t) is the volume of the bubble and x is the distance from the bubble to 

the point of measurement. Acoustic pressures resulting from nuclei of various sizes 

were calculated and used to calculate the impulse, I,, pulse width, T, and time 

interval between two successive collapses following Equations (86)-(88). Here, t l  

and t2 were taken to be times when d2v/dt2 = 0 on either side of a collapse. The 

distance x is assumed to be Rh, the headform radius, since that is the location of 



the hydrophone in the experiments. To facilitate comparison, these quantities are 

nondimensionalized as follows: 

These calculations were used to obtain an envelope for the theoretical data. Values 

of I*, r:, d* from individual cavitation events have been plotted along with the 

theoretically obtained envelope in Figs. 3.16 and 3.17, which show r$ and d* as 

functions of the impulse, I*, for the I.T.T.C. headform. The solid and dashed 

lines indicate the theoretical values for cavitation numbers of 0.6 and 0.3 and form 

the theoretical envelope. It can be seen from Fig. 3.16 that the data points form 

a small cluster near the origin for the cavitation number of 0.55. These values 

are close to the theoretical solution. This cluster becomes larger with the same 

orientation on the plot as the cavitation number is reduced to 0.50 when most 

of the data points lie above the theoretical envelope. However, the cluster moves 

downward and rightward with large values of I* and small values of 7:: when the 

cavitation number is reduced further to 0.45. Now most of the data are seen to 

lie below the theoretical values. Though the model based on the Rayleigh-Plesset 

equation yields results that are the right order of magnitude, it fails to predict 

the dependence of the pulse width, r:, on the cavitation number. It might be 

argued that experimentally obtained values of r$ are highly susceptible to error. 

However, r: is halved as the cavitation number is reduced from 0.50 to 0.45, which 

is larger than any uncertainty in the measurement. 

Fig. 3.17 shows a similar plot for the time between the first and the 

second collapses, d*, as a function of the impulse, I*. It is seen that most of 

the experimental values for the cavitation numbers of 0.55 and 0.50 lie in the 



theoretical envelope. However, as the cavitation number is reduced to 0.45, the 

data show a wide scatter. Note that definitive conclusions were difficult to arrive 

at since rebounds are not numerous. 

Figs. 3.18 and 3.19 illustrate the dependence of the data on the flow velocity. 

A smaller flow velocity delays the rebound (Fig. 3.18). It appears that the 

first and second collapses occur at specific locations (determined by the pressure 

distribution) on the headform. The smaller flow velocity is expected to increase 

this interval for negligible slip between the bubble and the flow. On the other hand, 

a larger flow velocity is seen to increase the pulse width, 7: (Fig. 3.19), which 

is contrary to what may be expected and this may indicate significant relative 

motion between the bubble and the fluid during the collapse process. 

It is noteworthy that the time between the main pulse and the rebound, d*, 

is well correlated to the impulse, I* for cavitation number of 0.50 (Fig. 3.18) but 

shows wide scatter for the cavitation number of 0.45 (Fig. 3.17). The reasons for 

this are not understood. 

It is clear from Figs. 3.16-3.19 that present experimental data for I*, r$ 

and d* are closer to the values predicted by the Rayleigh-Plesset model than the 

Impulse and maximum bubble volume data by Ceccio and Brennen (1991). It 

appears that the Rayleigh-Plesset model overestimates the maximum volume of 

the bubble while it predicts right order of magnitude for the Impulse, I*, pulse 

width, r$ and the time between the first and second collapse, d*. It should also be 

noted that the Rayleigh-Plesset equation includes only viscous dissipation and 

does not model break up of a bubble which is the primary source of energy 

dissipation in our experiments. Thus a bubble undergoes at most one rebound 

in our experiments while multiple rebounds are predicted by the Rayleigh-Plesset 

equation. 



3.3.4. Power Spectra Measurement 

In order to examine the spectral content of the cavitation, the hydrophone 

output was sampled at 1 MHz and about 200 acoustic traces of 16384 data 

points each were collected for each operating condition. These data records were 

processed to obtain a separate record of 8192 points for each cavitation event in 

the record, which were then used to calculate the power spectra. These data sets 

were processed to classify each of them by the two letter combination used earlier. 

It was found that the data sets predominantly contained events of mp and sp type. 

Thus, power spectra calculations can be meaningfully used to examine the effect 

of multipeaking and its variation with flow conditions. All the individual spectral 

density data available for each type of event are averaged to yield mean power 

spectral density relevant to that type. 

We first examine the variation in total spectral power with the type of event 

and the flow conditions. Secondly, the distribution of total spectral power over 

different frequencies will be examined. This has been achieved by nondimension- 

alizing the power spectral density by total spectral power to yield nondimensional 

power spectral density. The sum of the ordinates lying between two frequencies 

in such a graph gives the fraction of total spectral power emitted between those 

two frequencies. The nondimensionalization has been carried out as follows. The 

mean power spectral density is given by Ai, i = 1, (N + 1)/2, where i indicates 

the frequency of (i - 1) R'IN, R' is the sampling rate and N is the total number 

of data points in the record. Then, Pz is defined as 

and the total spectral power is given as 



Nondimensional values of Ai are defined as 

Then the value of Cy=,a; gives the fraction of total spectral power contained 

between the frequencies given by (m - l ) R 1 / N  and (n - 1) R'IN. This nondimen- 

sional spectral density is used to understand the distribution of spectral energy. 

Similar nondimensionalized power spectral densities may be used to study the in- 

terference effects in bubbly mixtures in a manner similar to that of Arakeri and 

Shanmuganathan (1985) .  

The error in the spectra calculation is estimated using the methods of Bendat 

and Piersol (1980) in which the normalized standard error E is given by 

where q is number of data sets used to calculate the average power spectra. The 

bias error in the calculation is assumed to be negligible. With a 95 % confidence 

level, the percentage limits on the average value of power spectra are approxi- 

mately given by 100 .0 / [1  f 24 .  This error is listed in Table 3.1 for different types 

of flow conditions and events and represents the maximum percentage uncertainty 

in the value of spectral power density at every frequency in the measurement 

range. The total spectral power will have the same maximum percentage uncer- 

tainty. The total spectral power is assumed to have zero uncertainty in order to 

estimate maximum percentage uncertainty in the nondimensional spectral den- 

sity. Furthermore, percent age errors listed in Table 3.1 also represent maximum 

percentage uncertainty in nondimensional spectral density. 

Figs. 3.20 and 3.21 illustrate the variation in the total spectral power with 

flow conditions for the two headforms. The total spectral power, P,, is a measure 

of the sound energy emitted. The results for the I.T.T.C. headform, shown in Fig. 



3.20, are considered first. It is clear that P, is larger for mp-type events compared 

to  sp-type events and does not show any consistent variation with flow velocity 

or cavitation number. On the other hand, for the Schiebe headform, P, decreases 

monotonically with increasing cavitation number and increases with increasing 

velocity (Fig. 3.21). Again, P, is larger for mp-type events than for sp-type 

events at the cavitation number of 0.45, though the difference is small at larger 

cavitation numbers. 

The above results for P, differ from the results for I, explored earlier. But 

it is important to recall that the total spectral power, P,, contains the effects of 

reverberations from the water tunnel, whereas I, is a measure of the total spectral 

power in the acoustic pulse alone. 

The nondimensional spectral power density is also calculated from the model 

based on the Rayleigh-Plesset equation. The radiated acoustic pressure calculated 

from the volume oscillations of the bubble is used to obtain the power spectrum, 

which is nondimensionalized in the same manner as the power spectrum of the 

experiment a1 acoustic records (Equation (96)). A typical comparison of the 

nondimensional spectral power density is shown in Fig. 3.22. The cavitation noise 

has a larger fraction of P, emitted in the low frequency region compared to the 

noise calculated from the Rayleigh-Plesset equation. Consider some features of the 

experimental power spectrum. The spectrum decays as f for frequencies less 

than 80 IcHx. It is clear that no shock waves are detected through the hydrophone 

since their presence would be indicated by an f -2 decay in the spectra (Brooke 

Benjamin(l958)). The decay of f -0.6 predicted by the Rayleigh-Plesset model is 

not seen in the data. The reasons for the discrepancy between the theoretical and 

experiment a1 results are probably that the complex processes of bubble collapse 

are not adequately modeled by the Rayleigh-Plesset equation. 

The changes in the nondimensional power spectra were examined in order 

to understand the redistribution of the spectral energy that was due to changes 



in the cavitation number, the flow velocity, the type of event and the headform. 

Some of the significant results are shown in Figs. 3.23-3.30 and are discussed 

below. The details are listed in Tables 3.2-3.5. It is important to note that these 

differences are meaningful since uncertainty is around 30 % in most cases, while 

the differences in the spectra are in the orders of magnitude. 

The changes in nondimensional spectral density that are due to reduction 

in the cavitation number are shown in Fig. 3.23 for the I.T.T.C. headform and 

Fig. 3.24 for the Schiebe headform, and the details are summarized in Table 3.2. 

The spectral energy of the cavitation events on the I.T.T.C. headform shifts 

from medium and high frequencies to low frequencies as the cavitation number is 

reduced at a flow velocity of 8 m/sec (Fig. 3.23). In particular, the spectral energy 

contained between the frequencies of 30 kHz and 6OkHz is significantly reduced. 

Note that the peak separation, T,, also increases from 15 psec (1/66 kHz-') to 

28 psec (1/36 k ~ z - l )  with the same reduction in the cavitation number, which 

suggests that changes in the spectral energy distribution and the eflective width 

of the acoustic pulse represented by the peak separation rs are correlated. For 

mp-type events on the Schiebe headform, the spectral energy is transferred from 

high frequencies to medium frequencies (Fig. 3.24), and the fraction of spectral 

energy contained between the frequencies of 50 kHz and 80 kHz is significantly 

reduced. However, these changes do not appear related to the variation in the 

peak separation. The details of the changes in spectral energy distribution in 

other cases are listed in the Table 3.2. 

Spectral energy distribution is not affected by multipeaking except in a few 

cases for the Schiebe headform (Table 3.3). Fig 3.25 shows a typical comparison 

between the nondimensional spectra for sp- and mp-type events on the Schiebe 

headform. It appears that spectral energy is transferred from high frequencies to 

medium frequencies as a result of multipeaking. In particular, reduction of the 

fraction of spectral energy contained between the frequencies of 50 lcHz and 75 kHz 



is significant. Such a reduction may be caused by the increase in eflective width 

of the acoustic pulse as a result of the multipeaking. 

The effect of flow velocity on nondimensional spectral density has been 

examined next. For low cavitation number events on the I.T.T.C. headform, the 

spectral energy is transferred from low frequencies to medium and high frequencies 

as a result of increase in flow velocity (Fig. 3.26). The fraction of spectral energy 

contained between 25 kHz and 65 kHz is observed to be significantly increased by 

the increase in flow velocity. On the other hand, the spectral energy is transferred 

from high and medium frequencies to very low frequencies with increase in flow 

velocity for the events on the Schiebe headform (Fig. 3.27). The extent of this 

energy transfer decreases with the reduction in cavitation number. The details 

of the effect of change in flow velocity on nondimensional spectral density are 

summarized in Table 3.4. 

Nondimensional spectral density for the two headforms are compared next. 

At the flow velocity of 8 m/sec, the Schiebe headform has a larger fraction of 

spectral energy in the low frequency range as compared to the I.T.T.C. headform 

(Fig. 3.28) at the cavitation number of 0.55. As the cavitation number is reduced 

to 0.45, the Schiebe headform has a smaller fraction of spectral energy in the low 

frequency range as compared to the I.T.T.C. headform(Fig. 3.29). In comparison, 

the Schiebe headform has a larger fraction of spectral energy in the low frequency 

range at the flow velocity of 9 m/sec(Fig. 3.30). The details of the differences in 

spectral energy distribution between two headforms are summarized in Table 3.5. 

3.4. Summary 

In present experiments on travelling bubble cavitation around axisymmetric 

headforms, the cavitation bubbles were seen to collapse, rebound and collapse 

again, resulting in an acoustic signal consisting of two pulses, a phenomenon 

known as rebounding. Each of the pulses in the acoustic signal produced by 



a single cavitation event may contain more than one peak. This is known as 

multipeaking. The occurrence of rebounding and multipeaking and their impact 

on some of the characteristic measures of the acoustic signal such as spectra have 

been investigated in order to learn more about the process of cavitation bubble 

collapse and about sound emission in travelling bubble cavitation. 

It is observed that for the I.T.T.C. headform, multipeaking and rebounding 

increase with reduction in cavitation number. However, for the Schiebe headform, 

multipeaking decreases and rebounding increases as the cavitation number is 

reduced. The flow velocity seems to have little effect on these results. In the 

case of the Schiebe headform, most events with a rebound produced single peaked 

acoustic pulses, whereas in the case of the I.T.T.C. headform, most such events 

produced a multipeaked pulse from the first collapse, followed by a single peaked 

pulse from the second collapse. The ratio of peak amplitude of the main pulse to 

the peak amplitude of the rebound pulse is close to 2.0 for all flow conditions and 

types of events. This may indicate a fairly repeatable process of bubble fission and 

rebound. Some factors such as smaller cavitation number, smaller flow velocity 

and multipeaking are seen to delay the rebound. 

Other features of the single bubble acoustic output such as P, I,, I, and 

rw were examined to understand the effect of changes in cavitation number, flow 

velocity and local flow structure. It was found that all of these except the pulse 

width %increased significantly in magnitude with the reduction in cavitation 

number. Multipeaking and rebounding were seen to increase the magnitude of 

these characteristics. The peak separation, r,, was practically constant at 12 ps 

for the Schiebe headform but increased from 15 ps to 23-28 ps with reduction in 

cavitation number for the I.T.T.C. headform. These characteristics had larger 

values for the smaller flow speed the at cavitation number of 0.45, and this 

inequality was reversed with an increase in the cavitation number to 0.55. These 

characteristics also had larger values for the I.T.T.C. headform than for the Schiebe 



headform at cavitation number of 0.45 and this inequality disappeared with an 

increase in cavitation number to 0.55.  Both of these variations were observed for 

all of the characteristics, P, I,, I, and 7,. 

Theoretical investigation based on the Rayleigh-Plesset equation is seen to 

predict right order of magnitude for these quantities but fails to predict properly 

the dependence of pulse width on cavitation number. The theory does not predict 

the distribution of spectral energy well. 

The fraction of spectral energy contained in the high frequency range (30kHz- 

80kHz) is reduced by reduction in the cavitation number. This appears correlated 

to an increase in eflective width of the pulse represented by peak separation, r,, in 

the case of the I.T.T.C. headform. Similar reduction in the fraction of the spectral 

energy contained in high frequencies occurs for the Schiebe headform because of 

multipeaking. This may also be due to an increase in the eflective width of the 

acoustic signal caused by multipeaking. 

An increase in flow velocity increases the fraction of spectral energy con- 

tained in high frequencies for the I.T.T.C. headform. However, the effect is just 

the opposite for the Schiebe headform for which the fraction of spectral energy 

contained in high frequencies is reduced by an increase in flow velocity. 

All these variations do not appear correlated, and thus each of these details 

is an important piece in the detailed picture of bubble collapse in travelling bubble 

cavitation. 



Headform 

I.T.T.C. 

I.T.T.C. 

I.T.T.C. 

I.T.T.C. 

I.T.T.C. 

I.T.T.C. 

Schiebe 

Schiebe 

Schiebe 

Schiebe 

Schiebe 

Schiebe 

Table 3.1 

Percentage Errors in Power Spectral Density 

Range of 

% error 

Single Peaked Events 

(SP) 

Range of 

% error 

Double Peaked Events 

(dp) 



Table 3.2 

Changes in the Nondimensional Power Spectral Density 

Cavitation Number Reduction 

0.55 t 0.50 0.50 -+ 0.45 

I.T.T.C. - s p  - 8 

I.T.T.C. - m p  - 8 

I.T.T.C. - ~p - 9 

I.T.T.C. - m p  - 9 

Schiebe - s p  - 8 

Schiebe - m p  - 8 

Schiebe - s p  - 9 

Schiebe - m p  - 9 

increase 

No Change 

No Change 

No Change 

0 - 0.15, 1 - 2.5 

4.5 - 23, 57 - 71 

No Change 

0.25 - 10 

No Change 

No Change 

decrease 

No Change 

No Change 

No Change 

0.15 - 1, 2.5 - 4.5 

No Change 

30 - 97 

No Change 

No Change 

increase 

0 - 0.2 

0 - 0.2 

No Change 

No Change 

No Change 

No Change 

0.5 - 61 

0.2 - 60 

decrease 

0.2 - 13, 30 - 70 

0.2 - 5, 23 - 60 

No Change 

No Change 

No Change 

0 - 0.2 

0 - 0.2, 60 - 77 

The left column indicates the headform, the type of event and the flow velocity. 

The numbers indicate the frequency range (in kHz) in which the spectral energy 

content is increased (decreased) as a result of change in the flow condition given 

at the top of the columns. 

No Change indicates that no change in the spectral energy distribution is observed 

as a result of change in the flow condition. 



Table 3.3 

Changes in the Nondimensional Power Spectral Density 

Effect of Multipeaking 

increase decrease 

I.T.T.C. - 0.55 - 8 No Change No Change 

I.T.T.C. - 0.55 - 9 No Change No Change 

I.T.T.C. - 0.50 - 8 No Change No Change 

I.T.T.C. - 0.50 - 9 No Change No Change 

I.T.T.C. - 0.45 - 8 No Change No Change 

I.T.T.C. - 0.45 - 9 No Change No Change 

Schiebe - 0.55 - 8 No Change No Change 

Schiebe - 0.55 - 9 No Change No Change 

Schiebe - 0.50 - 8 0 - 10 10 - 100 

Schiebe - 0.50 - 9 No Change No Change 

Schiebe - 0.45 - 8 0.3 - 10 0 - 0.3, 30 - 70 

Schiebe - 0.45 - 9 0.5 - 10 40 - 74 

The left column indicates the headform, the cavitation number and the flow 

velocity. 

The numbers indicate the frequency range (in kHz) in which the spectral energy 

content is increased (decreased) as a result of change in the flow condition given 

at the top of the columns. 

No Change indicates that no change in the spectral energy distribution is observed 

as a result of change in the flow condition. 



Table 3.4 

Changes in the Nondimensional Power Spectral Density 

Effect of Flow Velocity 

I.T.T.C. - ~p - 0.55 

I.T.T.C. - s p  - 0.50 

I.T.T.C. - s p  - 0.45 

I.T.T.C. - m p  - 0.55 

I.T.T.C. - m p  - 0.50 

I.T.T.C. - m p  - 0.45 

Schiebe - sp - 0.55 

Schiebe - sp - 0.50 

Schiebe - sp - 0.45 

Schiebe - m p  - 0.55 

Schiebe - m p  - 0.50 

Schiebe - m p  - 0.45 

8 t 9 m/sec 

increase decrease 

No Change No Change 

No Change No Change 

0.23 - 64 0 - 0.23 

No Change No Change 

0 - 0.2, 5 - 24 0.2 - 5, 24 - 51 

57 - 68 

0.2 - 14, 24 - 64 0 - 0.2 

0 - 0.2 0.2 - 100 

0 - 0.2 0.2 - 100 

No Change No Change 

0 - 0.2 0.2 - 100 

0 - 0.2 0.2 - 10 

52-85 

No Change No Change 

The left column indicates the headform, the type of event and the cavitation 

number. 

The numbers indicate the frequency range (in kHz) in which the spectral energy 

content is increased (decreased) as a result of change in the flow condition given 

at the top of the columns. 

No Change indicates that no change in the spectral energy distribution is observed 

as a result of change in the flow condition. 



Table 3.5 

Changes in the Nondimensional Power Spectral Density 

Difference Between Two Headforms 

1.T.T.C .t Schiebeheadform 

increase decrease 

sp - 8 - 0.55 0 - 0.32,61 - 108 2 - 9.3 

SP - 8 - 0.50 0 - 0.3, 20 - 74 0.3 - 6 

SP - 8 - 0.45 0.2 - 100 0 - 0.2 

SP - 9 - 0.55 0 - 0.3 0.3 - 64 

sp - 9 - 0.50 0 - 0.3 0.3 - 37 

SP - 9 - 0.45 0.1 - 0.4 2 - 21 

mp - 8 - 0.55 0 - 0.3, 16 - 90 0.3 - 9 

mp - 8 - 0.50 0 - 0.3, 6 - 10 0.3 - 3.6, 66 - 80 

mp - 8 - 0.45 0.17 - 53 0 - 0.17, 55 - 70 

mp - 9 - 0.55 0 - 0.3 0.3 - 66 

mp - 9 - 0.50 0 - 0.3 0.3 - 24 

mp - 9 - 0.45 0 - 0.3 1 - 7, 45 - 66 

The left column indicates the type of event, the flow velocity and the cavitation 

number. 

The numbers indicate the frequency range (in kHz) in which the spectral energy 

content is increased (decreased) as a result of change in the flow condition given 

at the top of the columns. 

No Change indicates that no change in the spectral energy distribution is observed 

as a result of change in the flow condition. 
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Figure 3.4: Sketch of a typical acoustic trace with the definitions of 

some measured quantities. 
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Figure 3.8: A typical photograph from Ceccio and Brennen (1991) 

illustrating the bubble breaking up into two or more pieces during the 

collapse. 
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Figure 3.9: Ratio of the peak pressure amplitude of the main pulse 

to peak pressure amplitude of the rebound pulse, r ,  as a function of 

the cavitation number. The legend indicates the headform, the type of 

event and the flow velocity. 
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Figure 3.10: Variation of the time between the main pulse and the 

rebound pulse as a function of the cavitation number. The legend 

indicates the headform, the type of event and the flow velocity. 
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Figure 3.11: The figure illustrates the dependence of the acoustic 

impulse, I,, on the type of event for the I.T.T.C. headform. The flow 

velocity is 8 m/sec. 
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Figure 3.12: The peak separation, T,, as a function of the flow velocity 

for each headform. The legend indicates the type of headform and the 

flow velocity. 



0.44 0.46 0.48 0.50 0.52 054 0.56 

Cavitation Number, a 

Figure 3.13: The figure illustrates the dependence of I, on the flow 

velocity for sp-type event on the I.T.T.C. headform. 
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Figure 3.14: The figure illustrates the dependence of the acoustic 

impulse, Im, on the flow velocity for mp-type events on the Schiebe 

headform. 
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Figure 3.15: The figure illustrates the variation of the acoustic im- 

pulse, I,, with the type of headform for sp-type of events. The flow 

velocity is 8 m/sec. 
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Figure 3.16: Experimentally obtained values of the nondimensional 

pulse width, rc, plotted against the nondimensional impulse, I*, and 

compared with the values from the numerical integration of the Rayleigh- 

Plesset equation. The data for the I.T.T.C. headform and different cav- 

itation numbers. The flow velocity is 8 m/sec. 
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Figure 3.17: Experiment ally obtained values of the nondimensional 

time between the main pulse and the rebound pulse, d*, plotted against 

the nondimensional impulse, I*, and compared with the values from 

the numerical integration of the Rayleigh-Plesset equation. The data 

for the I.T.T.C. headform and different cavitation numbers. The flow 

velocity is 8 m/sec. 



1 I 

- - 
0  0  

2, 
- 0  

0  - 
0  

0  o *  
+I; 8 *. 

Experimental Values 

O 8 m/sec 
o 9 m/sec 

I 

Impulse, I* 

Figure 3.18: Experimentally obtained values of the nondimensional 

time between the main pulse and the rebound pulse, d*, plotted against 

the nondimensional impulse, I*. The data for the I.T.T.C. headform, 

different flow velocities and cavitation number of 0.50. 
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Figure 3.19: Experiment ally obtained values of the nondimensional 

pulse width, T:, plotted against the nondimensional impulse, I*. The 

data for the I.T.T.C. headform, different flow velocities and cavitation 

number of 0.45. 
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Figure 3.20: The total spectral power, P,, plotted against the cavita- 

tion number for different types of events and the flow velocities. Data 

for the I.T.T.C. headform. 
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Figure 3.21: The total spectral power, P,, plotted against the cavita- 

tion number for different types of events and the flow velocities. Data 

for the Schiebe headform. 
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Figure 3.22: Typical nondimensional power spectral density obtained 

from the experimental data for the Schiebe headform at a= 0.45 and 

flow velocity of 9 m/sec. The superimposed spectrum is from the 

numerical calculations using the Rayleigh-Plesset equation for a 100 

pm nucleus at the water tunnel conditions. 
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Figure 3.23: Effect of reduction in the cavitation number on the 

nondimensional power spectral density. Experimental data for sp-type 

events on the I.T.T.C. headform and flow velocity of 8 m/sec. 
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Figure 3.24: Effect of reduction in the cavitation number on the 

nondimensional power spectral density. Experimental data for mp- 

type events on the Schiebe headform and flow velocity of 8 m/sec. 
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Figure 3.25: Effect of multipeaking on the nondimensional power 

spectral density. Experimental data for the Schiebe headform at a = 

0.50 and flow velocity of 8 m/sec. 
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Figure 3.26: Effect of flow velocity on the nondimensional power 

spectral density. Experimental data for mp-type events on the I.T.T.C. 

headform at a = 0.45. 
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Figure 3.27: Effect of flow velocity on the nondimensional power 

spectral density. Experimental data for mp-type events on the Schiebe 

headform a t  a = 0.55. 
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Figure 3.28: Comparison of the nondimensional power spectral den- 

sity for the I.T.T.C. and the Schiebe headforms. Experimental data 

for mp-type events, flow velocity of 8 m/sec and cavitation number of 

0.55. 
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Figure 3.29: Comparison of the nondimensional power spectral den- 

sity for the I.T.T.C. and the Schiebe headforms. Experimental data 

for sp-type events, flow velocity of 8 m/sec and cavitation number of 

0.45. 
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Figure 3.30: Comparison of the nondimensional power spectral den- 

sity for the I.T.T.C. and the Schiebe headforms. Experimental data 

for mp-type events, flow velocity of 9 m/sec and cavitation number of 

0.55. 



Chapter 4 

CONCLUSIONS 

Two different aspects of cavitation noise have been investigated in the present 

work. The nonlinear interactive effects in bubbly mixtures have been theoretically 

modeled in the first part and the collapse process of a bubble in travelling bubble 

cavitation has been acoustically studied in the second part. 

The nonlinear interactive effects in flows of bubbly mixtures have been 

studied by modeling the frequency response of a bubble layer next to a wall 

oscillating normal to itself. The response of the layer has been calculated in terms 

of the amplitude of pressure and radius oscillation in the bubbly mixture. The 

conclusions are summarized below: 

The presence of a finite length scale such as finite thickness of 

the bubble layer results in characteristic natural frequencies of the 

layer (called cloud natural frequencies), all of which are less than the 

linearized natural frequency of a single bubble, wb. The cloud natural 

frequencies are determined by the void fraction, the ratio of layer 

thickness to the bubble radius and the linearized natural frequency 

of a single bubble in the layer. 

The excitation at the lowest cloud natural frequency generates 

strongest response in the layer. The response of the layer is dominated 

by the fundamental and the second harmonic components. Since the 

amplitude of the second harmonic is significant, not all of the high 

frequency response is damped out. 

The amplitude of the response is increased by the proximity of lowest 

cloud natural frequency to 0 . 5 ~ ~ .  

The amplitude of different harmonic components of the pressure 

and the radius oscillation form standing wave patterns in the layer 



for excitation frequencies in sub-resonant and trans-resonant regimes 

( w f  < wa) .  The amplitude of the standing wave decays slowly with 

distance from the wall. 

The response decays rapidly with distance from the source of exci- 

tation for excitation frequencies in the super-resonant regime. 

The phenomenon of harmonic cascading is seen to takes place in a 

bubbly mixture containing bubbles of different sizes. In this case, the 

excitation at a frequency, w f  , results in strong response at a frequency 

2wf because of presence of a large number of bubbles with a natural 

frequency of 2wf in the layer. The phenomena of harmonic cascading 

can be modeled only by a nonlinear model. 

Smaller void fraction, reduced viscous and surface tension effects 

and larger amplitude of excitation promote stronger response in the 

layer. 

Conclusions from the acoustical study of bubble collapse in travelling bubble 

cavitation around axisymmetric headforms are summarized below: 

The bubbles collapse and sometimes rebound and collapse again, 

resulting in up to two pulses in the acoustic signal generated from 

collapse of a single bubble. Each of the pulses may contain more than 

one peak - a phenomenon referred to as multipeaking. 

Both multipeaking and rebounding increase with reduction in the 

cavitation number for I.T.T.C. headform. However, multipeaking de- 

creases and rebounding increases with reduction in the cavitation num- 

ber for the Schiebe headform 

, A change in flow velocity does not influence the occurrence of 

multipeaking and rebounding. 



The peak amplitude of the acoustic pulse from the first collapse is 

always twice as large the peak amplitude of the second collapse. This 

suggests a definite mechanism of bubble fission before the rebound. 

Smaller cavitation number, smaller flow velocity and multipeaking 

delay the rebound. 

The characteristic measures of the acoustic signal such as the 

peak amplitude and acoustic impulse increased with reduction in the 

cavitation number. The pulse width exhibited a maximum for the 

intermediate value of the cavitation number. 

The peak separation was found to be fairly constant at about 12 ps 

for the Schiebe headform but increased from 15 ps to  23-28 ps with 

reduction in the cavitation number for the I.T.T.C. headform. 

The characteristic measures of the acoustic signal have larger value at 

smaller flow velocity at the cavitation number of 0.45. This inequality 

is reversed at larger cavitation numbers. 

The characteristic measures of the acoustic signal have larger value 

for the I.T.T.C. headform than for the Schiebe headform at the cavi- 

tation number of 0.45. This inequality disappears at larger cavitation 

numbers. 

A theoretical model based on the Rayleigh-Plesset equation is seen 

to predict the right order of magnitude for the characteristic measures 

of the acoustic signal but does not properly predict the dependence 

of pulse width on cavitation number. The model does not predict the 

distribution of spectral energy in noise emitted very well. 

The fraction of spectral energy contained in high frequencies (30 

kHz-80kHz) is reduced significantly with decrease in the cavitation 



number in some cases. In the case of the I.T.T.C. headform, this 

reduction appears correlated to the increase in eflective width of the 

acoustic signal represented by the peak separation. 

Multipeaking does not appear to influence the distribution of spec- 

tral energy for the I.T.T.C. headform. In case of the Schiebe headform, 

the fraction of spectral energy contained between 50kHz and 75kHz is 

significantly reduced as a result of multipeaking. This may be caused 

by increase in eflective width of the acoustic pulse that is due to mul- 

tipeaking. 

In the case of the I.T.T.C. headform, the fraction of spectral 

energy in the high frequency range is significantly increased by an 

increase in flow velocity. However, in the case of the Schiebe headform, 

the fraction of spectral energy contained in the low frequency range 

increases with increase in flow velocity. 

Clearly, many of the observations from the acoustical study of bubble collapse 

are not well understood in terms of physical mechanisms in bubble collapse. 

However, these observations may be used in a statistical model (Baiter(1986)) for 

description of the single bubble cavitation noise. The results from modeling of the 

nonlinear effects in bubbly mixtures when combined with a statistical description 

obtained from acoustical study of single bubble cavitation noise may be used to 

describe qualitatively the noise generated by bubbly mixtures. 

An acoustical study to characterize the effect of various factors such as 

Reynolds number, length scales in the flow, nuclei number distribution and various 

flow structures is needed to obtain a complete picture of noise emission from 

bubble collapse. Additional data such as the cavitation event rate and bubble size 

information measured by Ceccio and Brennen (1991) need to be incorporated in 

such a study. A few high speed films taken along with the acoustic data can be 



used to gain detailed understanding of the physical mechanisms in the collapse 

process of a single bubble, while a large number of acoustic traces can be gathered 

and analyzed to obtain a statistically meaningful picture of the noise emission by 

a collapsing bubble. 

The nonlinear effects also need to be modeled differently to allow for large 

oscillations in bubble radius amplitude, which will give us a detailed and more 

realistic understanding of the interactive effects in bubble clouds. 
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