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ABSTRACT 

Additive analysis-synthesis using the phase vocoder is a powerful tool for 

the exploration of musical timbre. In this research, previous investigations of 

this subject are extended in two significant directions. 

First, an improved analysis of the phase vocoder is developed to explain the 

errors introduced by undersampling and modification of the magnitude and 

phase-derivative signals. Two sources of error are identified. It is shown that 

the first of these involves crosstalk between adjacent frequency channels, and 

can be eliminated through the development of a tracking version of the phase 

vocoder. Alternatively, restrictions can be placed on the phase-derivative signal 

to preserve the absolute phase. The second source of error appears to be 

inherent in the phase vocoder formulation. 

Secondly, the tracking phase vocoder is used to investigate differences 

between solo and ensemble sounds. A search is conducted for the minimal set 

of cues which will produce an ensemble sensation. It is shown that the primary 

requirement is that there be at least four to eight harmonics, each of which has 

a characteristic amplitude modulation proportional to its frequency. In 

addition, a number of issues related to the quality of the ensemble sensation 

and its efficient synthesis are examined. 
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I. INTRODUCTION 

The application of modern digital signal processing techniques to the 

analysis of musical sound has proven to be extremely fi:uitful. These methods 

have been especially useful in studying timbre - that aspect of musical sound 

which enables us to discriminate between two different instruments playing the 

same pitch at the same subjective loudness. Recent work at Stanford's Center 

for Computer Research in Music and Acoustics has greatly enhanced our 

understanding of this phenomenon and has led directly to several practical 

applications. This investigation significantly extends that work by improving the 

analytical techniques and applying them to more complex sounds. In particular, 

we consider the differences between a solo violin and a violin section playing in 

unison. We begin with a brief introduction to the field and an overview of the 

chapters to follow. 

1.1 Background 

The analysis of musical sound has a considerable history. The pioneering 

contributions of Helmholtz were first published in 1863. The following century, 

however, brought only sporadic progress. This was due almost entirely to the 

limitations of the available technololgy. In the 1960's, the Widespread 

introduction of digital processing techniques essentially eliminated this 

restriction and revolutionized the field. 

Today, investigations of musical sound run the gamut from simple 

experiments with a digital spectrum analyzer to large scale research projects 

with a dedicated computer. The research itself, however, can be divided into 

three distinct areas: physical acoustics, psychoacoustics, and digital signal 

processing. In principle, these areas have much in common; but in practice, 



-2-

they are surprisingly isolated. We will discuss each of them briefly. 

Researchers in physical acoustics are primarily concerned with the physics 

of musical instruments and concert halls. They recognize sound as a three­

dimensional wave phenomenon and analyze it accordingly. This is a marked 

contrast to the other two areas in which the one-dimensional amplitude-versus­

time signal of a microphone or speaker is considered to be adequate. In this 

report we consider only one-dimensional signals, but we refer to physical 

acoustical experiments where appropriate. 

Psychoacoustics deals with the perceptual effects of carefully defined test 

sounds. Early workers in this area made important discoveries about the 

nature of hearing by observing the response to sine wave and white noise input 

signals. More recent investigations, however, have been considerably less 

fruitful. To a large extent, this simply reflects the limitations of the 

psychoacoustical approach. Unfortunately, these limitations have been so 

widely ignored that they are well worth stating explicitly. 

Psychoacoustics represents an engineering approach to the problem of 

sound analysis. It is very good at determining classes of acoustic signals which 

are perceptually equivalent, but it is very poor at discovering the internal 

processing scheme which explains this equivalence. That information must 

ultimately come from neurophysiological studies. Meanwhile, there is little value 

to psychoacoustical experiments which attempt to deduce this processing 

scheme on the basis of responses to highly artificial test sounds. 

There is also a question about the usefulness of such artificial test signals 

in the investigation of timbre. Timbre is a highly multidimensional phenomenon 

in which the important factors depend strongly on the particular sounds being 

compared. A far more promising approach to the analysis of timbre would be to 
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start with :real musical sounds and systematically eliminate those features 

which are not perceptually significant. Indeed, this latter approach is the one 

taken in this investigation. 

The primary focus of this study, though, is on digital signal processing, This 

is by far the most recent, and probably the most active, branch of musical 

sound analysis. Much of this interest stems from the virtually unlimited 

potential of the computer itself as a musical instrument, To exploit this 

capability, however, we first must determine what kinds of waveforms produce a 

given perceptual effect. Hence, the computer provides not only a powerful 

means of timbre investigation, but also a powerful motivation for it. 

Unfortunately, digital processing of musical sounds to date has been nearly 

as much an art as a science. The ubiquity of digital equipment has attracted a 

great many investigators, but has encouraged very little rigor. In fact, much 

work in this area has been reported only by word of mouth. In this report, we 

take considerable pains to establish a clear and unified framework in which this 

research can be usefully conducted. Indeed, we view this as one of the primary 

contributions of this study. 

Most of the useful techniques for digital processing of musical sound have 

come from the field of digital speech processing. This is not surprising since 

both these fields are ultimately concerned with the way sound is perceived. 

However, these fields share two more immediate goals as well: efficient encoding 

of signals, and easy modification of signals. Each of these is sufficiently 

important to merit further discussion. 

Digitizing a typical speech waveform results in 80,000 bits of data per 

second; for music, the result is 800,000 bits per second. In both cases, the 

perceptually significant information can be transmitted at one percent of this 
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data rate. Since bandwidth and memory are expensive commodities, methods 

for accomplishing this data compression are of great interest. 

It is also very useful to be able to change one perceptual feature of a music 

or speech signal without affecting the others. In particular, much effort is 

devoted to separating pitch from the other temporal aspects of a given sound. 

The ear performs this operation automatically, but accomplishing it analytically 

remains difficult. 

By far the most successful technique for attaining these goals has been 

that of analysis-synthesis. The fundamental assumption of this approach is that 

the signal can be well represented by a model whose parameters are varying 

with time. The analysis is devoted to determining the values of these 

parameters, while the synthesis is simply the output of the model itself. 

However, the success of this method depends very much on the appropriateness 

of the model. In computer music applications, three distinct classes of models 

have been found to be useful: additive models, subtractive models, and 

nonlinear models. We will discuss each of these briefly. 

Additive analysis-synthesis attempts to represent the signal as a sum of 

sine waves; the instantaneous amplitudes and frequencies of these sine waves 

are the parameters to be estimated. This is a very computation intensive 

approach, but it is capable of truly impressive fidelity. In our view, this simply 

reflects the excellent match between the additive model and the human hearing 

system. This fidelity makes additive analysis-synthesis the method of choice for 

investigating timbre. 

Subtractive analysis-synthesis takes a nearly opposite approach. The signal 

is modeled as a pulse train which passes through a time varying filter. This 

amounts to modeling the process by which the sound is produced as opposed to 
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the process by which it is perceived. In the case of speech signals, the pulse 

train amplitude and frequency and the filter coefficients are usually estimated 

by the technique of linear prediction. This method offers tremendous flexibility 

in modifying and resynthesizing the sound, but at the cost of reduced fidelity. 

There have been several outstanding attempts to apply it to musical signals 

[Petersen, 1976; Moorer, 1979; Lansky and Steiglitz, 1981], but its potential lies 

more in the creation of novel musical effects than in timbral analysis. 

Nonlinear models, too, are more important for sound generation than for 

sound analysis. The most notable of these is the FM representation of Chowning 

[ 1973]. The basis of this technique is a summation formula which expresses a 

sine wave with sinusoidal frequency modulation as a sum of harmonic sine 

waves; the relative amplitudes of each harmonic depend on the modulation 

index. A number of related methods have also been proposed [Moorer, 1976; 

Saunders, 1977], all featuring extremely efficient synthesis with no 

consideration of analysis. Indeed, it is only recently that an analysis-synthesis 

interpretation has even been developed for these models [LeBrun, 1979; Justice, 

1979]. 

In this report we deal exclusively with additive analysis-synthesis. The first 

successful application of this technique to the study of timbre was in the work 

of Fletcher [1962; 1963; 1965; 1967] which led to a number of important 

discoveries. This is all the more impressive today in that Fletcher depended 

entirely on analog equipment. Early digital implementations of this approach 

were developed by Luce [1963], Freedman [1965), Risset [1966], Beauchamp 

[1969], and Keeler [1972]. However, the current state of the art was defined by 

Moorer and Grey in a landmark series of investigations [Moorer, 1975; Grey, 

1975; Grey and Moorer, 1977; Grey, 1978; Grey and Gordon, 1978; Moorer, 1978]. 
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It is their work which constitutes the starting point for the reseach to be 

reported here. 

1.2 Overview 

We begin in Chapter Two with a careful introduction to additive analysis­

synthesis. We also review the work of Moorer and Grey and discuss its 

implications. This provides the necessary background for the chapters to follow. 

In Chapter Three, we investigate the use of the phase vocoder for additive 

analysis-synthesis. In particular, we seek to understand those errors which 

arise when the phase vocoder magnitude and phase-derivative signals are 

undersampled or modified prior to resynthesis. To this end, we consider the 

relation between these signals and the parameters of the additive model; this 

leads to the identification of two independent sources of error. We show that 

the first of these involves crosstalk between adjacent frequency channels and 

can be eliminated through the development of a tracking version of the phase 

vocoder. Alternatively, restrictions can be placed on the phase-derivative signal 

to preserve the absolute phase. The second source of error appears to be 

inherent in the phase vocoder formulation. 

In Chapter Four, we use the tracking phase vocoder to investigate 

differences between solo and ensemble sounds. In particular, we seek to identify 

those cues which are sufficient to produce an ensemble sensation. We show that 

the primary requirement is that there be at least four to eight harmonics, each 

of which has a characteristic amplitude modulation proportional to its 

frequency. In addition to this, we examine a number of issues related to the 

quality of the ensemble sensation. Lastly, we consider the implications of these 

results for the efficient synthesis of ensemble sounds from solos. 
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Il. ADDITIVE ANALYSIS-STiffHESIS 

Additive analysis-synthesis has proven to be a powerful tool for the 

investigation of timbre. In this chapter we present a care@ful introduction to the 

additive analysis-synthesis technique. We begin by examining the connection 

between the additive model and both physical and psychological acoustics. We 

then review the work of Moorer and Grey upon which our own research has been 

based. Finally, we consider some of the more recent developments in this field. 

2.1 Physical acoustics and psychoacoustics 

A violinist produces sound by drawing a horsehair bow across a string. This 

induces oscillations of the string which are transmitted to the violin body and to 

the surrounding air. These oscillations propagate throughout the room as a 

mechanical wave disturbance in which pressure and particle velocity vary 

periodically. Thus, a three-dimensional sound field is created with the property 

that the displacement-versus-time at any point is related to that of the string. 

However, the displacement waveform in the sound field also includes the effects 

of filtering by the violin body and of reflections from surfaces within the room. 

A listener perceives sound by sampling this three-dimensional sound field at 

two distinct points. In each ear, pressure variations are channelled through the 

auditory canal to the tympanic membrane or eardrum (Figure 1). Oscillations 

of this membrane are transmitted to the oval window of the cochlea through a 

series of three small bones which provide impedance matching. It is in the 

cochlea that the actual transduction of sound to neural impulses is 

accomplished. 

The cochlea is a snail-shaped structure consisting of a coiled tube filled 

with saline solution (Figure 2). Running the length of this tube through the 
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Figure l. Anatomy of the peri phera 1 auditory sys tern. 
(from Lindsay and Norman, 1972) 
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Figure 2. A schenatic view of the cochlea. 
( from Lindsay and Norman, 1972) 
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center is the basilar membrane, a thin sheet with a dense array of motion­

detecting hair cells. Audible sounds produce pressure variations at the oval 

window which propagate through the fluid of the cochlea to excite traveling 

waves on the basilar membrane. The resulting displacements are translated by 

the hair cells into the neural impulses which form the input to the brain. 

A crucial feature of this system is that the width and stiffness of the basilar 

membrane vary considerably over the length of the cochlea. Consequently, a 

given traveling wave typically exhibits a maximum amplitude over only one small 

region of the membrane. In particular, if the input sound is a pure sinusoid, 

then the location of maximal displacement on the membrane is determined 

solely by the frequency of the input. A high frequency tone produces a peak 

excitation near the oval window while lower frequency tones result in maximal 

displacements proportionally farther along the membrane. Hence, the cochlea 

and basilar membrane effectively perform a Fourier transform of the incoming 

sound. 

Another important and closely related feature of this system has emerged 

from psychoacoustic investigations. The hair cells are distributed along the 

basilar membrane such that there is a roughly constant number covering any 

1 /3 octave region of frequency space along the membrane. Two pure tones 

whose frequencies lie within this critical bandwidth are heard as a single tone 

of complex timbre; more widely separated tones are heard distinctly. This is a 

statement about the resolution of the Fourier transform. 

Further psychoacoustic investigations have disclosed yet another 

interesting aspect of this system. It seems that the brain devotes considerable 

attention to the magnitude portion of this Fourier transform while largely 

ignoring the phase. This is shown by numerous experiments in which the 
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relative phasing of harmonics is varied with only a subtle effect on the perceived 

sound. Additional information of this type can be found in any standard 

acoustics text (eg. Backus, 1969). 

2.2 Sound. recording and reproduction 

Audible sound can be described entirely by the time variation of pressure at 

the tympanic membrane of each ear. It is possible to record and recreate these 

variations exactly [Schroeder, 1970], but such prodigious efforts are necessary 

only for studying the spatial features of the sound. In general, it is sufficient 

merely to record and reproduce the free field pressure variation at a point well 

removed from the listener. The resulting sound is audibly inferior to the live 

sound, but retains nearly all the perceptually important features. 

In this investigation we work exclusively with the free field pressure 

variation, but with one additional complication: analog-to-digital and digital-to­

analog conversion of the audio signal. In principle, this conversion can be 

accomplished with negligible degradation of the signal: in practice, errors can be 

introduced both by quantization and by sampling and lowpass filtering [Blesser, 

1978; 1981]. The work reported here uses 16 bit quantization with a 50 KHz 

sampling frequency and an B-pole Butterworth lowpass filter. This results in 

imperfections which are audible only under worst case test conditions. 

The complete sound recording and reproduction sequence is shown in 

Figure 3. The crucial feature of this sequence is that it does not significantly 

alter the perceived sound. It follows that the signal in the cochlea and the 

signal in the computer both carry the same perceptual information. The 

challenge is to determine which features of the signal carry which pieces of 

information. It is here that the focus shifts from physical and psychological 

acoustics to digital signal processing. 
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2. 3 The additive model 

The digitized signal from a typical violin tone is shown in Figure 4. The 

waveform is basically periodic, but the amplitude, frequency, and waveshape all 

change significantly over the course of ten to twenty cycles. This quasi-periodic 

behavior is typical of a great many Western musical instruments. In fact, it will 

be taken as the defining characteristic of the signals with which this 

investigation is concerned. 

The goal now is to find a representation of these signals in which the 

perceptually important information is easily identifiable. The underlying 

periodicity immediately suggests an expansion in terms of Fourier series. Of 

course, this cannot be done exactly because the periodicity is only approximate. 

But the fact that the cochlea itself performs a kind of Fourier analysis is an 

additional and powerful motivation to proceed in this direction. Indeed, an 

examination of the cochlea suggests that the human auditory system is 

hardwired for a bandpass filter bank representation of the audio signal. The 

additive model is an attempt to mimic this representation in a very simple 

mathematical form. 

In the additive model, the signal is treated as a sum of nearly harmonic 

sinusoids or partials . Formally, this is stated as 

ll 
x(n) = ~ ~(n) sinl 2rrnT [kf +Fk(n)] J (2.1) 

k=l 

where x (n) is the signal at time nT, Tis the time between consecutive samples, 

/ is the fundamental frequency of the tone, Ak(n) is the amplitude of the k"" 

partial at time nT, Fk(n) is the frequency deviation of partial k at time nT, and 

M is the total number of partials to be included in the sum - typically ten to 

twenty. 
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20 , 000 _ a. Waveform of entire tone 
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4 48 . 496. 50.. 512. 520. 
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Figure 4. ~Javefom of a typical digitized violin tone. The tone 
is F5 (698 Hz) played with moderate vibrato. 
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It is generally assumed that the fundamental frequency is known or can be 

easily determined and that the amplitudes and frequencies of each partial are 

slowly varying. The goal of the analysis is then to estimate those amplitudes 

~ (n) and frequency deviations F11; (n) for each partial. There are many 

techniques for accomplishing this, but by far the most important have been the 

heterodyne filter [Moorer, 1975] and the phase vocoder [Moorer, 1978]. 

(Actually, the phase vocoder can be used as an additive analysis-synthesis 

system without direct reference to the additive model; however, we find it 

instructive to make the connection explicit.) 

2.4 The heterodyne filter 

The heterodyne filter can be viewed as a bank of analysis devices in which 

each device extracts one partial from the signal and estimates its amplitude and 

frequency as a function of time. The algorithm is given by 

n+L-1 ,,.. 
a11;(n) = E x(m)sin(2rrk/mT) (2.2) 

m=n 

n+L-l ,,.. 
b11;(n) = E x(m)cos(2rrk/mT) (2.3) 

m=n 

1 

A11;(n) = [al(n) + bbn)]2 (2.4) 

(2.5) 

(2.6) 

where j is the known or previously determined fundamental frequency, k is the 

partial number, x(n) is the input waveform at time nT, and L is chosen so that 

the summation extends over exactly one period of the input waveform. The 
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variables A1c(n), ~1c(n), and F'1c(n) are the desired estimates of the actual 

amplitude, phase, and frequency respectively. 

,,.. 1 
The key to this approach is the choice of L such that / = LT' Equations 

(2.2) and (2.3) can be viewed as applying a filter with z transform 

H(z) = l-z-L to the signals x(m)sin(2rr/mT) and x(m)cos(2rr/mT) 
1-z-l 

respectively. With the proper choice of L, this places zeros of transmission at all 

harmonic frequencies rf except for r =k. With the proper choice of j, these 

zeros annihilate all partials of the waveform x (n) except for the k th partial. The 

sequences a1c(n) and b1c (n) then constitute an accurate phase quadrature 

representation of that partial. and equations (2.4) thru (2.6) simply convert to 

polar form. However, any error in j will lead to incomplete cancellation of the 

other partials and a corresponding ripple on the amplitude and frequency 

estimates. To eliminate this rippie, these estimates are themselves subjected to 

considerable additional smoothing before finally being accepted. 

Although the heterodyne filter is fairly straightforward, its implementation 

in the sampled-data domain involves several subtleties which reappear in the 

phase vocoder and are therefore deserving of mention. For example, the 

operation described in equation (2.5) produces only the pri.ncipal value of the 

phase angle while the derivative in equation (2.6) assumes a continuous phase 

function. Methods for unwrapping the principal value into a continuous 

function are given by Schafer [ 1969] and Moorer [ 1975]. Another example is 

presented by the derivative itself. This operation is performed either by first 

fitting a polynomial to the phase function [Moorer, 1975] or by filtering the 

phase function with a bandlimited differentiator [Rabiner and Gold, 1975]. 

The most important issue in the implementation of the heterodyne filter is 
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the question of how often the formulas (2.2) thru (2.6) must be evaluated to 

avoid significant degradation of the estimates. The Nyquist theorem suggests 

that the estimates be computed at no less than twice the highest frequency 

present in the signals At(n) and h(n). However, these signals are 

fundamentally non-bandlimited because of the nonlinear operations by which 

they were obtained. Moorer therefore suggested that the calculations be carried 

out at the original input sample rate. This issue will be examined more closely 

in Chapter 3. 

2. 5 The use of the heterodyne filter in the investigation of timbre 

It is easy to show that the heterodyne filter can accurately extract the 

amplitudes and frequencies of each harmonic in a synthetic tone of constant 

fundamental frequency j. The more important issue is how it performs on 

actual instrument waveforms. This question was extensively investigated by 

Grey as the first step in his far-reaching study of timbre [ Grey and Moorer, 

1977]. 

Grey tested a number of musically sophisticated listeners in a high quality 

sound recording and reproduction environment with stimuli consisting of 

isolated tones from a variety of instruments. The tones were presented both in 

their original tape-recorded form and in modified versions based on the additive 

model. Grey found that those tones which were resynthesized directly from the 

amplitude and frequency estimates of the heterodyne filter were nearly 

indistinguishable from the originals. Furthermore, those differences which were 

perceptible seemed more related to articulation and background noise than to 

actual timbre. This result established additive analysis-synthesis, and the 

heterodyne filter in particular, as a valid technique for investigating timbre; it 

indicated that the entire procedure did indeed preserve the perceptually 
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significant information in the musical signal. 

Grey further discovered that each amplitude and frequency function .A,t(n) 

and F',t(n) could be replaced by a several line-segment approximation with only 

a small additional loss of fidelity in the resynthesized version. This 

tremendously reduced the amount of data required by the additive model but 

with very little sacrifice of important information. Furthermore, it confirmed 

the intuitively appealing notion that the overall shape of the amplitude and 

frequency functions was far more important than their detailed structure. This 

was an additional suggestion of the extent to which the additive model matched 

the representation within the human auditory system itself. 

Having established the shape of the amplitude and frequency functions as 

the primary determinant of perceived timbre, Grey next attempted to link 

specific aspects of the shape with specific features of the perceived sound. In 

this endeavor, he was only moderately successful; in the process, though, he 

provided an outstanding paradigm for the investigation of timbre: 

1) Acquire several samples of the sounds to be investigated, and fit them to 

the additive model using a technique such as the heterodyne filter or 

phase vocoder. 

2) Equalize the various samples in terms of perceived loudness, pitch, and 

duration by appropriate scaling of the amplitude and frequency 

functions in the additive model representation. 

3) Form a hypothesis as to which feature of the additive model 

representation is related to a particular perceptual feature. 

4) Test the hypothesis by modifying only that one feature in the additive 

model representation and then resynthesizing the sound. 

The crucial feature of this approach is the continued reliance on additive 
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analysis-synthesis, not only to provide an instructive representation of the 

signal, but also to equalize all perceptual aspects of the signal except the one 

specifically under examination. We will adhere closely to this methodology 

throughout Chapter 4. 

The difficult step in the above · procedure is the formation of a likely 

hypothesis for testing. Grey, in his search for promising hypotheses, made 

extensive use of the technique of multidimensional scaling. This is a procedure 

in which each possible pair in a set of stimuli is rated on the basis of perceived 

similarity. These ratings form the input to a computer program which 

represents the stimuli as a set of points in a multidimensional space where 

distance is proportional to perceived dissimilarity. By collapsing this space into 

a relatively few dimensions while preserving the distance relations, the program 

can suggest the subconscious groupings which led to the observed similarity 

judgements. These groupings can in turn suggest those particular aspects of 

the signal which are perceived to be most important. 

In this investigation, we reject the use of multidimensional scaling for two 

simple but rarely mentioned reasons. First, the groupings obtained with this 

technique are extremely dependent on the particular stimuli in the original 

sample set. This means that they are not nearly so fundamental as is often 

assumed. Second, and most importantly, the groupings are only suggestive of 

the particular features which the brain appears to target. The correct 

identification of these features still depends very much on the ingenuity of the 

person examining the groupings. The contribution of the multidimensional 

scaling procedure is therefore rather small. 
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2.6 More recent developments 

The primary limitation of the heterodyne filter is the requirement that the 

fundamental analysis frequency f always be very near to the actual 

fundamental frequency of the signal. Hence, this technique can be applied only 

to isolated tones with no vibrato. To overcome these restrictions, Moorer 

suggested the use of the phase vocoder [1978]. However, discussion of this 

technique will be deferred until Chapter 3. 

With the work of Moorer and Grey, the additive model became widely 

recognized as the standard for high fidelity sound synthesis; however, the model 

itself has attracted little additional research. Two investigators attempted to 

further reduce the amount of data required by the additive model, each with 

moderate success [Strawn, 1979; Charbonneau, 1981]. Beyond this, timbre 

research has continued to consist either of analyses of natural instrument 

tones with no attempt at resynthesis, or of perceptual tests of highly artificial 

electronic tones. 

Research in the digital analysis of musical sound has also shifted its focus 

from additive analysis-synthesis. A number of studies have been conducted with 

the goal of developing improved nonlinear analysis-synthesis techniques 

[LeBrun, 1979; Arfib, 1979; Beauchamp, 1982]. These techniques have the merit 

of being computationally efficient, but with a corresponding reduction in fidelity. 

Attention has also been focused on the automatic transcription of music with an 

additive model, but with less emphasis on accurate reproduction of timbre 

[Piszczalski and Galler, 1977; 1981]. 

One recent and novel idea which could be useful in future investigations of 

timbre is that of critical band analysis-synthesis [Petersen and Boll, 1981]. This 

technique models the critical band phenomena of the basilar membrane with a 
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kind of constant-Q Fourier transform in which the width of each frequency bin 

is proportional to its center frequency. This maps a given input signal into a 

representation which is even more similar to that of the cochlea than the 

additive model representation. However, it remains to be seen how successful 

this technique will be in practice. 
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m. THE PHASE VOCODER 

The phase vocoder has proven to be an extremely useful tool for performing 

additive analysis-synthesis. In this chapter we seek an understanding of the 

errors which arise when the phase vocoder magnitude and phase-derivative 

signals are modified prior to resynthesis. We begin with a review of the phase 

vocoder and its relation to short-time Fourier analysis. We then consider the 

relation between the phase vocoder magnitude and phase-derivative signals and 

the parameters of the additive model; this leads to the identification of two 

independent sources of error. We show that the first of these involves crosstalk 

between adjacent frequency channels and can be eliminated by the development 

of a tracking version of the phase vocoder. Alternatively, restrictions can be 

placed on the phase-derivative signal to preserve the absolute phase. The 

second source of error appears to be inherent in the phase vocoder formulation. 

3.1 History 

The phase vocoder is an analysis-synthesis technique based upon the time­

dependent Fourier transform. It was originally developed by Flanagan and 

Golden [ 1966] as a device for reducing the bandwidth of speech signals: however, 

its usefulness in modifying pitch and timing was also immediately apparent. 

Unfortunately, the early implementations of this technique were so computation 

intensive that its attraction was very limited. 

The following decade brought a number of advances in our understanding 

of short-time Fourier analysis culminating in the work of Portnoff [1976]. 

Portnoff showed that the phase vocoder could be formulated as an analysis­

synthesis identity system: the synthesized output could be made identical to the 

input both in theory and in practice. Furthermore, Portnoff described efficient 
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techniques for performing both the analysis and synthesis. It was this work 

which led Moorer [1978] to suggest that the phase vocoder replace his earlier 

heterodyne filter technique for additive analysis-synthesis. 

Moorer's investigation of the phase vocoder was largely empirical; he simply 

demonstrated its effectiveness in the analysis and synthesis of musical sounds. 

He observed that using the phase vocoder to modify sounds could result in 

strange errors, but he did not attempt to analyze this phenomenon. A similarly 

empirical viewpoint was adopted by Flanagan and Christensen [ 1980] in their 

evaluation of phase-vocoder-based schemes for reducing the bandwidth of 

speech signals. Only in a companion paper by Flanagan [ 1980] was there any 

attempt to analyze the phase vocoder itself. The novel feature of our work is to 

explicitly relate the phase vocoder magnitude and phase-derivative signals to 

the parameters of the additive model. This provides a basis for understanding 

the errors which arise from the undersampling and modification of these 

signals. 

3.2 Short-time Fourier analysis 

We begin our investigation by reviewing the fundamentals of short-time 

Fourier analysis. Our treatment of this area is basically that of Rabiner and 

Schafer [ 1978] with some appropriate modifications. 

A proper understanding of the phase vocoder begins with an understanding 

of the time-dependent Fourier transform. A useful definition of the time­

dependent Fourier transform is 

00 

X(n,G.>) = ~ h(n-m) x(m) exp(-jG.>m) (3.1) 
m=-

where x ( m) is the signal and h ( n -m) is an appropriate Window function. There 

are two distinct ways in which this equation can be viewed: the Fourier 
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transform interpretation, and the linear filtering interpretation. 

In the first interpretation, we assume that n is fixed; then X(n,CJ) is just the 

normal Fourier transform of the sequence h(n-m)x(m). A sufficient condition 

for this transform to exist is that it be absolutely summable. Since the window 

h (n -m) is usually of finite duration, this condition is easily satisified. 

In this interpretation, the role of the window is to select a portion of the 

signal to be Fourier transformed. The specific portion selected is determined by 

the value of n. It is also clear from this interpretation that the Fourier 

transform X(n ,CJ) is the convolution of the desired signal transform with the 

Fourier transform of the window. Consequently, the window should be chosen to 

have a transform with the magnitude characteristic of a narrow band, lowpass 

filter. 

In the second interpretation, we assume that c:v is fixed; then X(n ,c:v) can be 

viewed as the convolution of the impulse response h (n) with the sequence 

x (n )exp (-j c.Jn). In this form, the similarity with Moorer's heterodyne filter is 

unmistakable. Indeed, if we choose 

h(n) = {~ 
-L <n ~ 0 
otherwise (3.2) 

where Lis the number of samples in a single period of x(n.), then equation (3.1) 

can be viewed simply as a complex version of equations (2.2) and (2.3). However, 

it is generally advantageous to choose an h (n) which more closely approximates 

an ideal lowpass filter. 

In this interpretation, the multiplication of x (n) by e::r:p (-j c:vn) shifts the 

spectrum of x(n) in the region of CJ to baseband (and also to 2CJ). The baseband 

spectrum is extracted by the narrow band, lowpass filter with impulse response 

h (n ). The virtue of this interpretation is that it makes explicit the fact that the 
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time-dependent Fourier transform is a discrete-time, linear, shift-invariant 

system. 

Based on these two interpretations, two distinct resynthesis procedures 

have been developed. In each of these, we assume that X(n,c.>) has been 

evaluated at N frequencies CJ1c: = 2; k where k = 0, 1, ... , N-1. The first synthesis 

technique is the overlap addition method, derived from the Fourier transform 

interpretation: 

(3.3) 

This procedure inverts the Fourier transform X(n ,c.>) for every J?lh. value of n to 

produce windowed segments of x(n) spaced by R samples in time. These 

segments are overlapped and added to produce the resynthesized version of 

x(n). 

The second resynthesis technique is the filter bank summation method, 

derived from the linear filtering interpretation: 

(3.4) 

In this procedure, the resynthesized signal is simply the sum of signals from 

each band of the filter bank, translated back to the original center frequencies 

of the band. 

With either of these synthesis techniques, the synthesized y (n) will be a 

close approximation to the original x (n) provided that the sampling rate of 

X(n ,c.>) is sufficiently great. From the linear filtering interpretation, it is clear 

that the sampling rate in time must be at least twice the bandwidth of the filter. 

It can then easily be shown that the Fourier transform interpretation imposes a 

related restriction on the sampling in frequency such that the required overall 
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sampling rate is on the order of 2 to 4 times that of x(n). In return for this 

higher sampling rate, we obtain a very general representation of x(n) with 

tremendous flexibility and usefulness. However, not even this tradeoff is always 

necessary. 

By substituting equation (3.1) into equation (3.4), we find that the filter 

bank summation technique can be used to resynthesize x (n) exactly and at the 

original sampling rate, provided only that some very modest restrictions are 

applied to h (n ). To do this, the sampling rate in time is maintained at twice the 

filter bandwidth, but the sampling rate in frequency (i.e., the value of N) is 

reduced. The key requirement is simply that h (n) = 0 for all (nonzero) values of 

n which are integer multiples of N. With this one additional constraint, 

equations (3.1) and (3.4) can be rewritten as an analysis-synthesis identity 

system: 

~ 2rr 
X(n,k) = ~ h(n-m) x(m) exp(-j-km) 

m=- N 
(3.5) 

1 N-1 2rr 
x ( n) = N 1c~o X( n ,k ) exp (j 7n) (3.6) 

where k = 0, 1, ... , N-1. If X(n ,k) is expressed in magnitude and phase form, 

then equations (3.5) and (3.6) can also be taken as the definition of the phase 

vocoder. 

The Fourier transform interpretation can also be employed to develop more 

efficient formulations of equations (3.5) and (3.6). In both cases, the key to 

improved efficiency is to manipulate the equation into the form of a discrete 

Fourier transform. For equation (3.5), we seek J (m-n) such that 

N-1 2 
X(n,k) = ~o /(m-n) exp(-j ;km) (3.7) 



- 27 -

If N is a power of 2, then a substantial reduction in computation can be 

obtained by employing a Fast Fourier Transform algorithm to perform the 

calculation. 

It turns out that this manipulation is always possible provided that the 

window h (n) is of finite duration, say L samples. If L=N, then the manipulation 

is trivial. In the more general case, it can be shown [Schafer and Rabiner, 1973] 

that the required function/ (m-n) is 

(3.8) 

where the notation (( ))N means that the integer inside the double set of 

parentheses is to be interpreted modulo N, and 

... 
Un(q) = ~ x(Nr+q+n) h(-Nr-q) (3.9) 

r=-co 

for q = 0, 1, ... , N-1. This looks complicated but simply indicates that the 

sequence x (m +n )h (-m) is broken into segments of length N samples, and that 

the segments are added together to produce Un ( q) which is then circular shifted 

by n modulo N. 

The advantage of this approach can easily be demonstrated by example. 

The direct implementation of equation (3.5) requires ZLN real multiplications 

per output sample; equation (3.7) requires L + ZN log2 N. In practice, the 

values of L and N are chosen so that the frequency bins of the transform are at 

least as closely spaced as the harmonics. If the sampling rate is 50 KHz and the 

fundamental frequency is 200 Hz, then appropriate values for L and N are 

L =1200 and N=256. This translates to a factor of 140 reduction in the required 

computation load. 

A similar savings can be effected by manipulating equation (3.6) to give 

n+Q!l-1 1 N-1 2rr 
x(n) = ~ h(n-m) N ~ V(m,k) exp(j Nkn) 

m=n-RQ+l k=O 

(3.10) 
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[
X(m,k) 

V(m,k) = o 
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m = 0, ±R, ±2R, ... 
otherwise (3.11) 

and L = 2RQ-1. It is assumed that X(n,k) has been computed at the minimum 

allowable rate; hence there is one sample of X(n ,k) for every R samples of x (n ). 

Rather than interpolating the values of X(n ,k) and then evaluating equation 

(3.6), this technique transforms back to the time domain first and then 

interpolates. 

On the other hand, in situations where only a few frequency channels of the 

phase vocoder are actually required, it may be more efficient to calculate each 

channel separately. In this case, the sequence x (n )exp (-j 2; kn) can be 

obtained with relatively little computation by calculating it prior to the 

convolution with h(n). The calculation of X(n,k) can then be viewed as a simple 

lowpass filtering problem. 

Lastly, we note that the filter h (n) can easily be made to obey the 

constraint that h (rN)=O for r = ±1, ±2, ... by defining it as a suitably windowed 

version of the ideal lowpass impulse response 

sin ( 7J) 
~d9fll (n) = ----

1T7't 

N 

(3.12) 

This approach also guarantees that the filter h ( n) will have a linear phase 

response. A number of appropriate classical windows are discussed by Harris 

[1978]. Alternatively, a suitable window can be designed using the McClellan­

Parks-Rabiner optimal FIR filter design program [1975]. 
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3.3 1he phase vocoder 

We now consider the phase vocoder specifically. In principle, the phase 

vocoder is just another technique for performing short-time Fourier analysis­

synthesis; in practice, however, it presents several additional complications, all 

of which can be attributed to its reliance on magnitude and phase. 

A useful definition of the phase vocoder is provided by the following pair of 

equations: 

~ 2rr 
X(n,k) = I; h(n-m) x(m) exp(-j-km) 

m=- N 
(3.13) 

1 N-1 2 
x(n) =NI; IX(n,k)I exp(jrp(n,k)) exp(j:::!!.../cn) 

k~ N 
(3.14) 

If rp(n,k) is simply arg[X(n,k)], then equations (3.13) and (3.14) are identical to 

equations (3.5) and (3.6), and everything is fine. However, the prime attraction 

of the phase vocoder is that it can provide a representation of x(n) in which the 

perceptually significant parameters - amplitude and frequency - are explicit. 

This is what makes it so useful in data rate reduction and in independent 

modification of pitch and timing. Hence, taking some liberties with notation, we 

define 

nT 
rp(n,k) = f ~(t ,k) dt + arg [X(O,k)] (3.15) 

0 

. d 
rp(n,k) = dtarg[X(n,k)] (3.16) 

We will refer to IX(n,k)I, rp(n,k), and ~(n,k) as the magnitude, phase, and 

phase-derivative signals, respectively. In contrast, we will reserve the terms 

amplitude and frequency for describing the signals which constitute the input 

to the phase vocoder. For convenience, we also define 



a(n,k) = ReX(n,k) 

b(n,k) = ImX(n,k) 
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(3.17) 

(3.18) 

We now examine the problems which arise as a consequence of the 

transformation to magnitude and phase derivative. 

The first problem is that the bandwidths of IX( n ,k) I and ~ ( n ,k) can be 

significantly greater than those of a(n,k) and b (n,k); this is a consequence of 

the highly nonlinear transformation required for the conversion to magnitude 

and phase derivative. This problem does not necessarily prevent the phase 

vocoder from being useful for data rate reduction; rather, it reflects the fact 

that the magnitude and phase-derivative signals are generally more slowly 

varying than a (n ,k) and b (n ,k ), but that they can occasionally be more rapidly 

varying. 

The bandwidths of IX(n,k) I and ~(n,k) are important because they 

determine the minimum allowable sampling rate for these signals. These signals 

can always be sampled at the same rate as a (n ,k) and b (n ,k) if no subsequent 

modifications are intended; but there is no guarantee that such signals will be 

usefully related to the actual amplitudes and frequencies. In the case of speech 

signals, Flanagan [1980] suggested that !X(n,k) I and ~(n,k) could probably be 

bandlimited to one quarter of the filter bandwidth. However, for musical 

signals, where :fidelity is a far more important criterion, Moorer [ 1978] 

recommended that the conversion be carried out at the original input sampling 

frequency. Unfortunately, this results in a tremendous increase in the 

computation requirements. 

When X(n ,k) is required at the input sampling rate, it is still most efficient 

to first obtain it at the minimum output sampling rate as described in Section 

3.2; the decimated version can then be interpolated back to the original 
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sampling rate. However, the transform technique of equation (3.10) can now no 

longer be used, and the interpolation alone requires ZLN multiplications per 

output sample. This is a tremendous increase in computation even without 

considering the calculations required to perform the conversion to magnitude 

and phase derivative. 

The other problem in the implementation of the phase vocoder has to do 

with the way in which this conversion is actually performed. The magnitude and 

phase can easily be obtained as 

1 

IX(n,k) I = [a 2 (n,k) + b 2 (n,k)] 2 

y,(n,k) = a.tan[ b(n,k) l 
a (n,k) 

(3.19) 

(3.20) 

But the phase in equation (3.20) is only the principal value. To differentiate the 

phase, a continuous phase function must be available. One alternative is to 

calculate 

· (n,k) = a(n,k)b (n,k) - b (n,k)ci(n,k) 
IC a 2 (n ,k) + b 2 (n ,k) 

(3.21) 

where ci (n ,k) and b (n ,k) are obtained by filtering a (n ,k) and b (n ,k) with a 

bandlimited differentiator. This method was used by Flanagan and Christensen 

[ 1980 ]. However, Moorer [ 1978] showed that a preferable solution is to calculate 

only angle differences. It can easily be shown that 

6. (n,k) = atan[b(n,k)a(n-1,k)-a(n,k)b(n-1,k)l 
rp a(n,k)a(n-1,k) - b(n,k)b(n-1,k) (3.22) 

with initial conditions a.(O,k) = 1, b (O,k) = 0. By using the angle differences in 

place of ~(n ,k ), the original phase can be reconstructed exactly. Moorer saw 

this simply as a way to recreate discontinuities in x(n), but we will show that it 

is in fact crucial to the effective use of the phase vocoder. 
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In the sections to follow, we present a number of results obtained using 

only several channels of a phase vocoder: the values of N in these examples are 

similar but not identical to those which would be used in a multi-channel 

Fourier transform implementation. The filters for this vocoder were all designed 

by applying a Blackman window to the ideal impulse response of equation (3.12). 

This gives h(n) = [ .42 + .50 cos(¥-n) + .08 cos( ~Ti 2n)] h.ideai(n) where 

L n = 0, ±1, ±2, ... , ± 2. Whenever phase derivatives (as opposed to angle 

differences) were required, they were obtained by filtering the unwrapped phase 

with a bandlimited differentiator designed via the McClellan-Parks-Rabiner 

optimal FIR filter design program. The filtering was performed by fast 

convolution using the overlap-add method. Unless otherwise specified, the input 

and output sampling rates in all examples are 50 KHz. 

3.4 Error sources: estimated amplitude and frequency 

Because the phase vocoder can be efficiently implemented as an analysis­

synthesis identity system, it has been widely assumed that the relation between 

the magnitude and phase-derivative signals and the parameters of the additive 

model (i.e., amplitude and frequency deviation) is unimportant. This is true 

when the synthesis is performed without undersampling or modification, but 

such instances are the exception. We now consider the more general case. 

The effects of linear (ie. additive and multiplicative) modifications of X(n ,k) 

were investigated by Allen and Rabin er [ 1977]. They showed that the 

consequences of such modifications depended on the particular technique used 

to perform the synthesis: overlap addition versus filter bank summation. They 

further showed that, for the filter bank summation technique, the effect of an 

additive spectral modification was to produce an additive component in the 
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reconstructed signal, while the etl'ect of a multiplicative spectral modification 

was to convolve the original signal with a time-limited, window-weighted version 

of the time response due to the modification. However, they left unanswered the 

entire question of nonlinear modification. 

In our investigation, we are particularly concerned with nonlinear 

modifications of the type 

(3.23) 

where a is a scaling constant of order unity. This type of modification is 

frequently employed to introduce changes in pitch. We are also concerned with 

the bandwidths of IX(n,k)I and ~(n,k) because of the implications for sampling 

rate modifications. In both cases, our approach is to relate the magnitude and 

phase-derivative signals to the actual amplitudes and frequencies of the input 

signals. In the process, we generalize some of the results of Flanagan [ 1980]. 

As a prelude, we recall that the Hilbert transform of a signal y (n) is defined 

as the convolution of that signal with the impulse response 

sin2 ( 1rn) 
' 2 h(n) =---

1rn 

2 

where h (0)=0. Thus, the Hilbert transform of y (n) is 

(3.24) 

(3.25) 

(In this chapter, y(n) always indicates the Hilbert transform of y(n); this 

should not be confused with the notation of Chapter 2 in which it referred to the 

estimate of y (n ).) A more useful definition of the Hilbert transform can be 

obtained via the inverse Fourier transform: 
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I fl' 211' l 
g(n) = 2

1
rr I-jY(e) exp(jen) de+ [iY(e) exp(jen) dej (3.26) 

where Y(e) is the Fourier transform of y (n ). In this view, the Hilbert transform 

1r 
is obtained by retarding the phases of all sinusoidal components by 

2 
. 

Furthermore, the Fourier transform of y ( n) + ;g ( n) is nonzero only for 

positive frequencies. This makes the Hilbert transform very useful in 

representing narrow band signals; it is frequently used this way in 

communication theory [eg. Schwartz, 1966], and its use in the analysis to follow 

is patterned after the communication theory approach. 

We begin by assuming a signal x (n) which is bandlimited to frequencies 

between c..> 1 and c..>2 . Such a signal can always be expressed in the form 

x(n) = sr(n)cos(c..>0 nT) + sq(n)sin(c..>0 nT) 

or equivalently, 

x(n) = A(n)cos(c..>0 nT+e(n)) 

where 

1 

A(n) = [sr2(n) + s/(n)]2 

Here, CJ0 is any frequency not less than ~2
, and Tis the sampling period. 

(3.27) 

(3.28) 

(3.29) 

(3.30) 

There are infinitely many pairs of sr(n) and sq(n) (or A(n) and e(n)) which 

satisfy equation (3.27) for a given x (n ). However, there is a "best" pair, at least 

in a certain sense. To obtain it, we impose the additional assumption that sr(n) 

and sq (n) are bandlimited to frequencies less than c.>0 • (Note, however, that we 

make no such assumptions about A(n) and e(n).) We can now take the Hilbert 



- 35 -

transform of equation (3.27) to obtain 

(3.31) 

Equations (3.27) and (3.31) are linear in sr(n) and sq(n ); hence, they can be 

solved to yield 

(3.32) 

(3.33) 

which is, in fact, the "best" pair in that these particular sr(n) and sq(n) are the 

lowpass functions of minimum bandwidth. 

In the analysis to follow, we always assume that sr(n) and sq(n) are defined 

as in equations (3.32) and (3.33). It is then easy to show that A (n) and e(n) in 

equations (3.29) and (3.30) are given by 

1 

A(n) = [x 2(n) + x2(n)] 2 (3.34) 

(3.35) 

This may be recognized as the motivation for the frequently defined analytic 

signal 

z(n) = x(n) + jx(n) 

= A (n) exp (j 0(n )) exp (j r., 0 nT) 

from which equation (3.28) can be obtained by taking the real part. 

(3.36) 

(3.37) 

We now consider the relation between A(n) and e(n) and the phase vocoder 

signals IX(n:k)I and i;o(n,k). With no loss of generality, we assume that r.,0 is 

2rrk 
such that NT = r., 0 • We then have (equation 3.38) 

.. ... 
X(n,r.,0 )= ~ h(n-m)x(m)cos(c.>0 mT)-j ~ h(n-m)x(m)sin(ev0 mT) 

m=-• 
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Substituting equation (3.27) for x (n) gives (equations 3.39 and 3.40) 

... ... 
a(n,c.>0 )= ~ h(n-m)sr(m)[l+cos(2c.>0 mT)]+ ~ h(n-m)s11 (m)sin(2r.>0 mT) 

m.=-oo m.=-.. 

... "" 
b(n,c..,0 )= ~ h(n-m)sr(m)sin(2r.>0 mT)- ~ h(n-m)s11 (m)[l-cos(2c..,0 m.T)] 

m=--- m=-ca 

where a constant factor of ~ has been absorbed into the filter impulse response 

h(n). 

We now note that sr ( n) and s11 ( n) are bandlimited to c..,0 and that h ( n) is 

chosen to be the impulse response of a lowpass filter. We therefore make the 

( excellent) assumption that h ( n) is a sufficiently good filter to make the terms 

at 2r..i0 negligible. We then have 

.. 
a (n ,c.>0 ) = ~ h (n-m) sr(m) 

m.=-oo 
... 

b(n,c.>0 ) = - ~ h(n-m) s 11 (m) 
m=-co 

(3.41) 

(3.42) 

Furthermore, if h (n) is the impulse response of an ideal lowpass filter with 

cutoff frequency c.>0 , then 

(3.43) 

and JX(n,k) I and cp(n,k) are identical to A(n) and e(n). This result was also 

obtained by Flanagan [1980], but in a less rigorous fashion. 

In the more general case, the impulse response h ( n) differs significantly 

from the ideal; in fact, it is a windowed version of the ideal. We can then convert 

equations (3.41) and (3.42) back to magnitude and phase form to obtain 

.. 
IX(n,c.>0 )1 = I ~ h(n-m) A(m) exp(je(m)) I (3.44) 

m=--oo 

.. 
cp(n,r.>0 ) = arg[ ~ h(n-m) A(m) exp(j0(m))] (3.45) 

m=-
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which is the result we are seeking. 

Equations (3.44) and (3.45) show the connection between the phase vocoder 

magnitude and phase-derivative signals and the parameters of the additive 

model; it is instructive to examine them in detail. In particular, we consider the 

phase vocoder signals as estimates of the additive model parameters and show 

that there is an undesirable coupling of the amplitude and phase through the 

filter convolution. This coupling is automatically unscrambled in the 

resynthesis, but it can be a source of error when the phase is modified prior to 

resynthesis. We seek ways to minimize this error. 

We first examine equation (3.44) and assume that the frequency deviation 

of the signal x(n) from c.>0 is zero. Then e(n) = 0, and the phase vocoder 

magnitude is simply the magnitude of the true amplitude convolved with the 

impulse response h (n ). Furthermore, we note that A (n) is always positive; 

hence, the absolute value is inconsequential except for very rapid attacks and 

decays where a filter with a sharp cutoff may introduce some ringing. 

From this, two immediate conclusions can be drawn. First, the filter 

bandwidth should be as wide as possible to minimize smearing of the amplitude 

estimate. (Of course, the bandwidth cannot be greater than the fundamental 

frequency of the tone being analyzed.) Secondly, the bandwidth of I X(n ,k) I is 

simply that of the lowpass filter ( except possibly during rapid attacks and 

decays) provided that the analysis frequency and the instantaneous frequency 

are closely matched. 

If we now assume that the analysis frequency and the instantaneous 

frequency are not well matched but that the latter is still constant, we can write 

0( n) = 2; {3n. Then equation ( 3.44) can be viewed as taking a kind of Fourier 

transform of the impulse response h(n-m) weighted by the amplitude A(n), 
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21r and evaluating the transform at frequency N(i; if the actual amplitude is 

constant then the estimated amplitude is scaled by H( 2; (3). 

Again, two conclusions are possible. First, the filter magnitude response 

should be as flat as possible. Secondly, the bandwidth of I X(n ,k) I can be made 

arbitrarily large, for example, by choosing e(n) to be a linearly increasing 

frequency (a chirp ). Then the time response of I X(n ,k) I is simply the 

frequency response of h (n) with a time scale depending on the rate of increase 

of e(n ). (Of course, a chirp is not strictly a narrowband input, but the 

conclusion is still valid.) 

For equation (3.45) it is more difficult to make exact statements, but it is 

clear that any variation in the amplitude A (n) distorts the averaging which is 

used to estimate e(n ). In particular, a sharp dip in amplitude tends to flatten 

the filter impulse response and introduce significant phase errors. In contrast, 

a sharp peak in amplitude tends to reinforce the filter impulse response and not 

create any significant distortion in the phase signal. Furthermore, distortions 

in phase are considerably magnified in the phase-derivative signal. This pattern 

is unfortunate in that sharp amplitude minima are quite common in some 

sounds, but fortunate in that frequency errors which occur during amplitude 

minima are not easily heard. As in equation (3.44), this distortion can be 

eliminated by matching the analysis frequency to the instantaneous frequency. 

Confirmation of the above observations is provided by Figures 5 thru 9. 

Figure 5 shows the frequency response I H(c.>) I for two different filters, each of 

which meets the requirements for a phase vocoder with N=25. In Figures 6 thru 

9, these filters are used to illustrate the behavior of the magnitude and phase­

derivative signals fork =1 (ie. the channel centered at 2000 Hz). Figures 6 and 8 

show how the magnitude signal is affected by changes in the frequency of x (n ), 



-39-

a. Frequency response (db) with 1201 point Blackman window 
o.-----""l:"'l""-----,r-----....------,------, 

-20. 

-40. 

-60 

-80 .-i--~1--+---+---+-.Q.---1--+-i--+--+-+-t---f-+--+--+-....-t--1--+--+-~-1 
0. 1. 2. 3. 4. 5. 

Frequency (KHz) 

b. Frequency response (db) with 121 point Blackman window 
0."1"""--il::::::'--r------r-----,------r---.--, 

-20. 

-40. 

-60. 

-80.+--+-........ -+-+---+-~-+--+--+-~~-f--Jit-~~-t------i 
1. 2. 3. 4. 5. 

Frequency (KHz} 

Figure 5. Frequency response of two possible filters for N=25. 
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a. Magnitude 

10,000. 

o.+-.._.....,. ___ -+-__ .....,.-+--+---~-------1---+-+--+---+-i 
a. 20. 40. 60. 80. 100. 

Time (msec) 

b. Input frequency (Hz) 

2000. 

0.'t"-+-11-+-+--+---+-+-11-+-+-+--+-+-1,-4,-+--+--+-+--lP"-+-+-+-~ 
0. 20. 40. 60. 80. 100. 

Time (msec} 

Figure 6. Magnitude signal for k=l, N=25, and filter of Figure Sa 
with input frequency varying as shown in (b.). 
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a. Input amplitude 
20,000. --...:.--....,;..----------------,r---------n 

10,000. · 

o.+-+-t-t-+--f--+-+-t---t-.J.-+--+-+-t---f-+-+--+--+-t---t-+-+--+--'1 
0. 20. 40. 60. 80. 100. 

Time (msec) 

2500. 
b. Phase derivative (Hz) 

2250. 

2000.-1---........ _.._-+-4-+--i-+--+-+--l--+--+--+-+-l-+--+--+-¼-+--+---+--+-'1 
0. 20. 40. 60. 80. 100. 

Time (msec) 

Figure 7. Phase-derivative signal for k=l, N=25, and filter of 
Figure 5a with input amplitude varyinq as shown in (a.) 
and input frequency of 2200 Hz. 
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a. Magnitude 
20,000. -----r------.....----...------.------

10,000. -------------------------, 
\ 
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I 
I 
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\ 
\ 
\ 

0. +-+-~..--+---+----+-+--11-+-+--+--+-+-+--lf--+-+--+--+--+-+-........ 

0. 20. 40. 60. 80. 100. 
Time (msec) 

b. Input frequency (Hz) 
4000 . ..------------------.---------

2000. - ---- -- -------- --------- - -

0. +-+-1~-+--+--+--+-+-i--l-+--+--+--+-+-i----f-+--+--+--+-+-....... I---I 

0. 20. 40. 60. 80. 100. 
Time (msec) 

Figure 8. Magnitude signal for k=l, N=25, and filter of Figure Sb 
with input frequency varying as shown in (b.). 
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a. Input amplitude 
20,000. -------------------,-------, 
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b. Phase derivative (Hz) 
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2000 
0. 
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. . • . • 20. 
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' . I . . J 
40. 60. 
Time (msec) 

80. 100. 

I 

1-

Q 
~ 

. . I 

' 
. . 

80. 100. 

Figure 9. Phase-derivative signal for k=l, N=25, and filter of 
Figure 5b with input amplitude varying as shown in (a.) 
and input frequency of 2200 Hz. 
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while Figures 7 and 9 show the effect on the phase derivative of changes in the 

amplitude of z(n). It is interesting to note that, in Figures 6 and 8, the input 

frequency changes by half the channel separation while only significantly 

distorting the magnitude for the filter with the gradual roll-off. However, in 

Figures 7 and 9, a frequency displacement of only /
0 

the channel separation 

introduces severe distortions in the phase-derivative signal for either filter; but 

the distortions occur only at amplitude minima. It should also be noted that 

these examples are more severe than would normally be encountered in music 

or speech. 

The underlying message of equations (3.44) and (3.45) is that the 

magnitude and phase-derivative signals are accurate estimates of the true 

amplitude and frequency only when the input signal is well within the filter 

bandpass. This is scarcely surprising, but it is nevertheless quite important. 

First, this observation provides a useful perspective for examining the role of 

the phase vocoder in modifying pitch independently of amplitude; we return to 

this point momentarily. Secondly, this observation is important in determining 

the minimum allowable sampling rate for X(n ,k) and a ~(n ,k ), because the 

distortions in these signals tend to increase their bandwidth; this issue is 

addressed more fully in Section 3.6. Lastly, this observation is important if the 

phase vocoder is to be used with the additive model to study timbre; this is a 

primary motivation for the tracking phase vocoder of Section 3.7. 

A typical music or speech signal is actually a sum of signals of the type 

defined by equation (3.28) with harmonically (or almost harmonically) related 

frequencies. For the composite signal to be reconstructed exactly, the relative 

phasing of the individual harmonics (or partials) must be faithfully reproduced. 

This is a nontrivial task when the phase must be reconstructed from its 
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derivative. Fortunately, the ear is generally insensitive to this relative phasing. 

This is also true of the phase vocoder provided that the individual partials are 

well within their respective filter bandwidths. Unfortunately, typical music and 

speech signals vary sufficiently that this condition is never satisfied for very 

long. 

Even when a given partial is not confined to the center of any one bandpass 

filter, the phase vocoder can still reconstruct this partial exactly by adding in 

the information from adjacent frequency channels. However, this can be done 

only if the relative phasing of each channel is properly maintained. Otherwise, 

destructive interference between the different channels will severely distort the 

amplitude of the reconstructed partial. (An example of this is given in Figure 10 

for a signal with linearly increasing frequency.) This fact has been noted before 

[Rabiner, 1978], but has apparently not been fully appreciated. 

Since the discrete versions of differentiation and integration are not exact, 

the relative phasing of different frequency channels can very easily be lost. In 

the sampled-data domain, an ideal differentiator has the frequency response 

{3.46) 

In contrast, it can easily be shown that the frequency response of a system 

. which simply takes angle differences is 

(3.47) , 

It follows that the angle difference is a good approximation to the phase 

derivative for small values of "'· An ideal integrator would have the frequency 

response 

(3.48) 
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a. Original waveform 

0. 

0. 60. 120. 180. 240. 300. 
Time (msec) 

b. Resynthesized waveform 

0. 

0. 60. 120. 180. 240. 300. 
Time (msec) 

Figure 10. Incorrect resynthesis of a linear FM signal due to failure 
to preserve the relative phasing of adjacent channels. 
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But the infinite gain at DC cannot be obtained with a finite impulse response. 

Therefore, it is customary to perform the integration by simply accumulating 

the derivative values. This can be shown to result in a frequency response of 

exp (j;) 
H(GJ)= ---

2jsin( ~) 
(3.49) 

This is clearly the right thing to do for the angle differences, but not for the 

phase derivative except for small values of GJ. Since typical music and speech 

signals include quite large values of GJ, the use of the phase derivative is 

inevitably a source of error. This error is quite significant because it leads to 

audible interchannel interference. 

In our research, we found only two reliable ways of preserving this phasing. 

The first of these is to use the angle differences in place of the phase-derivative 

signal, and to reconstruct the phase by simple addition. Even then, however, 

great care must be taken to avoid altering the angle differences. For example, 

decimation cannot be performed via the usual lowpass filtering technique; 

rather the successive angle differences are simply added together. Interpolation 

of the angle differences must also be avoi.ded unless it is performed simply by 

equally subdividing each difference. The second technique avoids all of these 

problems by allowing a single frequency channel to track each partial 

individually; this is the tracking phase vocoder of Section 3.7. 

We now ask whether the angle differences can be modified as in equation 

(3.23) without affecting the reconstructed amplitude. It is clear that the 

proposed modification is simply a linear transformation of the phase: 

e(n,k) ➔ ae(n,k) + (a:-1) 2; kn (3.50) 

To examine this, we consider the x (n) defined in equation (3.28) with 
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e(n) = {3n 2; this can be viewed as a kind of locally narrowband signal. If A(n) 

is constant, then it can easily be shown analytically that the modification in 

question will not alter the reconstructed amplitude. However, it is not clear 

whether this still holds true when A ( n) is varying. 

To examine this further, we constructed a number of examples on the 

computer. For instance, Figures 11 and 12 show the magnitude and phase 

derivative for two adjacent channels when the input frequency increases linearly 

from the center of one channel to the center of the next while the input 

amplitude is changing severely. The individual signals are badly distorted, but 

as long as the relative phasing of adjacent channels was accurately 

reconstructed, we could detect no significant amplitude distortions in any 

example (Figure 13). Upon refelection, this appears reasonable because the 

transformation of equation (3.50) is precisely the one which keeps the phase­

derivative signals of Figures 11 b and 12b properly synchronized. We therefore 

conclude that pitch modification can in fact be accomplished while faithfully 

reproducing the amplitude-versus-time for each partial. 

However, it does not follow from this that pitch modifications will never 

alter the timbre of a sound. Indeed, a mechanism by which timbre alteration 

can still occur will now be described. 

3.5 Error sources: actual amplitude and frequency 

The phase vocoder makes the tacit assumption that the signal in each filter 

channel is (at least over a suitable time period) a pure sine wave. Of course, the 

phase vocoder is still an analysis-synthesis identity system even when this 

condition is violated; however, its usefulness for efficient encoding and pitch 

modification depends heavily on this assumption. In the preceding section, we 

showed that the magnitude and phase-derivative signals in a given channel could 
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a. Magnitude 
l O, 000. -------------.....------.-----

5000. · · 

0.-i---+-o-Lt--+-4--+-+-+-➔-+-+--+-+-+-f-+--1--+--i-f--i~~ ....... -1 
0. 50. 100. 150. 200. 250. 

Time (msec) 

1500 _ b. Phase derivative (Hz 

1000. 

500.+-+1--11--+-+-+-+--t--+--+-4-t---+--+--+-+---li--+-+--+-4--i--+--+--+-I 
0. 50. 100. 150. 200. 250. 

Time (msec) 

Figure 11. Magnitude and phase derivative for k=5, N=250, and filter 
of Figure 16 with input signal of Figure 13a. The fre­
quency increases linearly from 1000 Hz to 1200 Hz. 
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a. Magnitude 
10,000. 

5000. 

0. 
0. 50. 100. 150. 200. 250. 

Time (msec) 

b. Phase derivative (Hz) 
1500. 

1000. 

500 . +-+-+-1~-l--+--+--+-+-~--+--+-+-+-t---4--+--+--+--+-+-+-1 

0. 50. 100. 150. 200. 250. 
Time (msec) 

Figure 12. Magnitude and phase derivative for k=6, N=250, and filter 
of Figure 16 with input signal of Figure 13a. The fre­
quency increases linearly from 1000 Hz to 1200 Hz. 
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a. Original waveform 
10,000.-----

o.-+--..j 

-10,000. _____ _ 

b. Modified waveform 
10,000. 

.. 

'" 
. 

0. 

. 
• I-

-10,000. 
0. 

. . 

-
I 

. . . . 
50. 

250. 
Time 

,- ' I 

l 'I a 

' V 
,. 

' . . . I . 
100. 150. 200. 250. 

Time (msec) 

Figure 13. Original and modified waveforms for a two octave pitch 
translation. The original frequency varies linearly from 
1000 Hz to 1200 Hz. 
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be distorted, even when the input to that channel was a pure sinusoid of slowly 

varying amplitude and phase. In this section, we examine the more general case 

in which the input signal is a sum of sine waves, or a sine wave plus noise, or 

simply noise. Again, we rely on some well known results from communication 

theory [Schwartz, 1966]. 

We begin by considering an input signal x (n) consisting entirely of 

bandlimited Gaussian noise centered about c..i0 • Such a signal can still be 

expressed in the form of equation (3.27) by taking sr(n) and sq(n) to be 

independent Gaussian random variables with a probability distribution 

1 s 2 

p(s) = ✓2rra2 exp(-2a2 ) (3.51) 

where a 2 is the expected value of [s(n)]2, ie. u2 = <s(n)s(n)>. Equivalently, 

equation (3.28) can be used, in which case A(n) and e(n) are independent 

random variables with probability distributions 

1 A2 
p(A) = -A exp(--) 

a 2 2a2 

1 
p(e) = -

2rr 
o ~ e < 2rr 

(3.52) 

(3.53) 

These are the Rayleigh distribution and the uniform distribution, respectively. 

Furthermore, the autocorrelation functions R,.(m) = <sr(n )sr(n +m)> and 

Rq(m) = <sq(n)sq(n+m)> can be expressed as 

(3.54) 

where R:e(m) = <x(n)x(n+m)>. Taking the Fourier transform of this result and 

assuming that the two-sided spectral density G:e(c..i) is symmetric about CJ0 , it can 

then easily be shown that the spectral densities of sr(n) and sq(n) are 

(3.55) 
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Hence, we can still use the analysis of the preceding section; however, we will not 

attempt to calculate the autocorrelation functions for A (n) and e(n). 

The above analysis is very easily extended to the case of signal plus noise. 

With no loss of generality, we can write 

x(n) = a(n)cos(e.>0 nT) + n(n) 

= [ a (n )+TI.r(n) ]cos (e.>0 nT) + n 11 (n )sin (e.>0 nT) 

= A(n)cos (e.> 0 nT + e(n)) 

(3.56) 

(3.57) 

(3.58) 

(The phase of the signal term is arbitrary and does not affect the result.) The 

new sr(n) is again a Guassian-distributed random variable, but now with mean 

vaiue a(n). It can then be shown that the probability distribution of A(n) is 

where /0 (z) is the zeroth order modified Bessel function of the first kind: 

21T 

!0 (z) = 
2
1 J exp (z cos (e))d 8 
1T 0 

The probability distribution of the phase is approximately 

✓-a:- asin2(e) p ( e) = - 2 cos ( e) exp ( - 2 ) 
1Ta a 

(3.59) 

(3.60) 

(3.61) 

provided that the signal-to-noise ratio is sufficiently large [Cahn, 1960]. 

Alternatively, we can simply View the signal-plus-noise case as a subset of the 

case to follow. 

We now consider the case where more than one sine wave occupies a given 

frequency channel. This occurs when the filter bandwidth is greater than the 

fundamental frequency, or when more than one voice is sounding, or when 

reverberation or noise is present. If the individual sine waves are 

(3.62) 
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(3.63) 

then it can easily be shown that their sum z(n) = x 1(n) + z 2(n) has an 

amplitude and phase given by 

1 

A(n) = [af (n) + 2a 1(n)a2 (n)cos(9:a(n)-e1(n)) + al(n)]2 (3.64) 

(3.65) 

Typically, e(n) varies linearly with time at a rate determined by the 

instantaneous frequency. Now, if a 1(n) = a 2 (n), then 

(3.66) 

(3.67) 

( 9:a(n)-e1(n)) Th. where 0(n) equals O or 1r depending on the sign of cos 
2 

. · 1s 

shows that the instantaneous frequency of the sum is the average of the 

instantaneous frequencies except for occasional spikes due to the phase 

flipping. On the other hand, if a 1(n) » a 2 (n), then 

2a2(n) !. 
A(n) ~ a 1(n)[l + ( ) cos(e._a(n)-e1(n))] 2 

a. 1 n 

~ a 1(n) + a 2(n)cos(e2(n)-e1(n)) 

(3.68) 

(3.69) 

(3.70) 

(3.71) 

which shows that a small sine wave introduces a simultaneous amplitude and 

frequency modulation to a larger sine wave which occupies the same channel. 

Furthermore, the frequency of the modulation is simply the difference between 
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the two individual frequencies. While the above results are quite easily obtained, 

they have important implications for the phase vocoder which have not 

previously been fully appreciated. 

Equations (3.66) and (3.67) are important because they show that 

destructive interference of two pure sine waves can lead to phase flips of 180 

degrees and corresponding spikes in the phase-derivative signal. A further 

example of this is given in Figures 14 and 15. In both cases, it is clear that the 

phase-derivative spike is merely an artifact of the analysis technique; a narrow 

band filter centered at the peak frequency of the spike would not detect any 

energy at any time. 

Furthermore, we conducted tests in which a pair of sine waves were 

analyzed and resynthesized both with and without phase flipping (ie., both 

without and with suppression of spikes). We found that the ear was utterly 

incapable of distinguishing between the two; this is not surprising in that the 

phase flips occur only at amplitude nulls. Hence, we conclude that the phase 

flips within a given channel of the phase vocoder are not perceptually 

significant. Again we note, however, that the phase signal in each channel must 

be accurately reproduced to avoid crosstalk between adjacent channels upon 

re synthesis. 

Equations (3.68) thru (3.71) also describe a situation which is quite 

common in the analysis of musical sound. In essence, all of these equations are 

saying that the filter bandwidths are too wide (i.e., there are too few frequency 

channels) to separate the signal into sinusoidal components. Consequently, the 

composite amplitudes and frequencies include modulation terms which tend to 

increase the bandwidths of I X(n ,k) I and rp(n ,k). In addition, the composite 

amplitudes and frequencies have pitch information inextricably linked with 
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lO,000. a. Waveform of entire signal 

0. 

I 

-lO,OOO. ➔t-+l-+-1 -11--+-1-+-I -fl-+l-+-1 -ft-+l-+-1 ➔l-+-1-ll-tl-+-•--· -+l-+-1-t-l -+l-+l-+-I -ii>--;: 

0. 20. 40. 60. 80. 100. 
Time (msec) 

500 _ b. Waveform of 5 msec segment showing phase flip 

-500. T"""-l-f-i-+--t--+-+-+---t-+-+--+-+-i-+-+--+--+-+--,1-+-+--+-........-i 
55. 56. 57. 58. 

Time (msec) 
59. 60. 

Figure 14. Phase flipping in the sum of a 1000 Hz sine wave and a 
990 Hz to 1000 Hz linear FM sine wave. 



-57-

a. Phase {degrees) 
180. 

0. 

-180. 
o. 20. 

b. Phase derivative 
1010. 

1000. 

990. 
0. 20. 

40. 6 . 80. 100. 
Time (msec) 

(Hz) 

40. 6 . 80. 100. 
Time (msec) 

Figure 15. Phase and phase derivative for k=5, N=250, and filter of 
Figure 16 with input signal of Figure 14. 
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temporal variations. As a result, pitch modifications of the type defined by 

equation (3.23) can have undesirable effects on timbre. 

For example, suppose that the actual signal has components at 500 Hz and 

600 Hz (an interval of a minor third in musical terminology). Translating this 

signal downward by one octave results not in components at 250 Hz and 300 Hz 

as desired, but rather in components at 225 Hz and 325 Hz (an interval of nearly 

a fifth ). Even in music involving only a single voice, this effect still occurs 

(albeit on a smaller scale) because of sympathetic vibration of undamped 

strings, reverberation, noise, etc. This suggests that the filter bandwidths 

should be made as narrow as possible. However, some amount of undesirable 

modulation appears to be inevitable in any practical phase vocoder. 

It is also worth noting that even in a phase vocoder which does have only a 

single sine wave in any given filter bandpass, there is still a potential for timbre 

modification when pitch translation is performed. This occurs because 

modifiying the pitch also modifies the center frequencies of any broad 

resonances or formants which may exist. In the case of speech, this 

modification can be quite objectionable. 

Lastly, we consider an extension of the above analysis which is relevant to 

Chapter 4 to follow. This is the case of M independent sine waves within a given 

filter bandwidth (i.e., an ensemble). With a good deal of algebra, it can be shown 

that 

M M 1 

A(n) = I[~ az2(n) + ~ ~ ai(n)am(n)cos(ei(n)-8m(n))]2 1 

l =l l=l m J!,l 

e(n) = atan 

JI 
~ ai(n)sin(et(n)) 

...,';=1-------1 + 0(n) 
~ at(n)cos(0i(n)) 
l=l 

(3.72) 

(3.73) 
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where 0(n) again equals O or 1T depending on the sign of A(n) prior to taking the 

absolute value in equation (3.68). If 8i(n) = p,nT+e,(O), then the amplitude has 

a sum of modulating terms with the most rapid variation corresponding to the 

most widely separated sine waves within the filter bandwidth. In this case, it is 

also instructive to examine the phase-derivative. 

:t atan(u) = l+~ 2 ~~, it can be shown that (equation 3.74) 

/J /J 

Recalling that 

Z:: a?(n )Pi + Z:: Z:: a, (n )am(n )Pm cos ((/3, -Pm.)nT+0t (0)-em (0)) 
e(n): _i=_1....,/J:-:------'=-::":;,-m_,., _________________ _ 

Z:: a?( n) + Z:: Z:: a, ( n )am ( n) cos ( (/3, -f3m )n T+ e1 (0)-em ( 0)) 
l=l l =1 m,ol 

This indicates a frequency modulation with at least a qualitative similarity to 

the amplitude modulation in equation (3.72). 

3. 6 Band'UJidths of the magnitude and phase-derivative signals 

The fact that the magnitude and phase signals are not strictly bandlimited 

has troubled investigators from the time that the phase vocoder was first 

conceived. The phase-derivative signal ~(n,k) presents an even worse case. 

While the differentiation of the phase signal does not actually increase its 

bandwidth, it does multiply the spectrum by c.> and thus enhances the higher 

frequency components. Flanagan [ 1980] showed that this problem could be 

partially circumvented by using the signals /X(n ,k) /2 and /X(n ,k) I 2~(n ,k ). 1t 

can be shown that these signals are bandlimited by the filter h (n) and therefore 

can be sampled at the same rate as a (n ,k) and b (n ,k ). However, it is still 

necessary to obtain ~(n ,k) initially, and this must be done at a much higher 

sampling rate. 

Moorer [ 1978] reported that the non-bandlimited nature of the conversion 

to magnitude and phase made it necessary to calculate these signals at the 



-60-

original input sampling rate. We have already noted (Section 3.3) that this 

results in a tremendous increase in computation load. Furthermore, there is no 

a priori reason to be satisfied with the input sampling frequency; a particularly 

wideband signal might require interpolation to an even higher sampling rate 

before it could be computed without aliasing. In this section, however, we show 

that useful magnitude and phase signals can be calculated at the same sampling 

rate as a (n ,k) and b (n ,k ), provided that proper care is taken. 

We begin by considering the magnitude signal. It was shown in Section 3.4 

that the magnitude signal is bandlimited to the filter bandwidth except for two 

perturbing influences. Furthermore, in the case of sine wave inputs, these 

perturbations can generally be ignored. If the instantaneous frequency is 

centered within the filter bandpass, then the only perturbation is the absolute 

value in equation (3.44); this is significant only when the actual amplitude is 

switched on or off very suddenly. If the instantaneous frequency is not centered 

within the filter bandpass, then a rapid change in frequency can significantly 

increase the bandwidth of the magnitude signal; but this rarely occurs. An 

important example of this bandlirniting is given in Figure 17, in which the 

response of the magnitude signal to a step change in amplitude is seen to be 

very nearly the step response of the filter. 

For more complex narrow band signals such as those in the preceding 

section, the above argument collapses due to the rapid changes in phase. It is 

still possible to show bandlimiting in the case of two sine waves with slightly 

different frequencies, but the more general case of signal-plus-noise is 

analytically 'intractable. Consequently, we are forced to determine the 

bandwidth of the magnitude signal numerically for some representative cases. 

In the experiments to follow, we use the filter of Figure 16 when the channel 
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Figure 16. Impulse and frequency response for filter with N=250 
and 1201 point Blackman window. 
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Figure 17. Step response of the magnitude signal with the filter of 
Figure 16. The input amplitude is shown in (a.). 
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separation is 200 Hz and the filters of Figure 5 when the separation is 2000 Hz. 

This provides a means of realistically examining narrowband signals while also 

comparing the effects of different filters which cannot always be implemented 

with narrow bandwidths. To determine the approximate bandwidth of the 

magnitude signal, we apply a 3-term Blackman-Harris window [Harris, 1978] and 

take a 2048 point Fast Fourier Transform, using zero fill where appropriate. 

Figure 18 shows the waveform and spectrum of a signal which is actually 

the sum of a 1 KHz sine wave and white Gaussian noise. The noise was generated 

by summing independent samples from a uniform distribution as described in 

Rabiner and Gold [1975]. Figure 19 shows the magnitude signal obtained from 

the phase vocoder with the filter of Figure 16 centered at 1 KHz. The spectrum 

in Figure 19b makes it clear that the magnitude signal in this case is still 

effectively bandlimited by the filter. 

A more demanding example is provided by the white Gaussian noise signal 

of Figure 20. Indeed, we consistently found this case to be the one in which the 

magnitude signal attained its greatest bandwidth. The exact value of this 

bandwidth depends upon which particular definition is adopted, but we did 

observe two consistent trends. First, the spectrum of the magnitude signal 

depended surprisingly little on the sharpness of the filter cutoff: this is 

illustrated in Figures 21 and 22 for a center frequency of 2000 Hz and the two 

filters of Figure 5. Secondly, the bandwidth of the magnitude signal (as 

measured by the -40 db point) was usually less than the channel separation. 

Occasionally, however, it was as much as twice the separation. 

We did not conduct any tests of the perceptual effects of undersampling, 

but we conjecture that such effects would be least evident precisely for those 

instances in which the magnitude signal attains its greatest bandwidth - i.e., the 
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Figure 18. Waveform and spectrum of l KHz sine wave plus white 
Gaussian noise. 
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Figure 19. Magnitude for k=5, N=250, and filter of Figure 16 with input 
signal of Figure 18. The spectrum of the maqnitude signal 
is shown in (b.). 
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Figure 20. Waveform and spectrum of white Gaussian noise. 
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input signal of Figure 20. The spectrum of the magni­
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case of noise alone. Consequently, we found it sufficient to sample the 

magnitude signal at twice the channel separation; this is the same sampling rate 

as is typically required for a (n ,k) and b (n ,k) with a nonideal filter. 

We now consider the phase-derivative signal. For a pure sinusoid, the most 

:rapid possible change in phase corresponds to the highest frequency within the 

filter bandwidth. Hence, it suffices to sample the phase at twice the filter 

bandwidth. This bandlimiting can also be easily demonstrated in the case of 

simple frequency modulation. The frequency modulation introduces sidebands 

in the input signal x (n) with a spacing equal to the modulating frequency. When 

this frequency becomes too large, the sidebands fall outside the filter bandpass, 

and the signal within the filter becomes a sine wave of constant frequency. But 

in the case of more complex signals, we again must rely on numerical examples 

to form our conclusions. 

We first examine the response of the phase-derivative signal to a step 

change in frequency (assuming that both initial and final frequencies are well 

within the filter bandpass). This is an important and nontrivial case. It turns 

out that - as with the magnitude signal - the step response of the phase 

derivative is very nearly that of the filter; this is clearly illustrated in Figure 23 

in which the filter of Figure 16 is centered at 1 KHz. This indicates that the 

phase-derivative signal is also bandlimited by the filter with regard to step 

changes in frequency. 

The bandlimiting due to the filter is also evident in the case of signal-plus­

noise (Figure 24). We therefore turn directly to the case of noise alone. Figure 

25 shows the phase-derivative signals corresponding to the magnitude signals of 

Figures 21a and 22a. The most obvious features a:re the ubiquitous spikes 

occurring (as predicted in Section 3.5) at the minima of the magnitude signals. 
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Figure 23. Step response of the phase-derivative signal with the filter 
of Figure 16. The input frequency is shown in (a.). 
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Figure 24. Phase derivative for k=5, N=250, and filter of Figure 16 
with input signal of Figure 18. The spectrum of the 
phase derivative is shown in (b.). 
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Figure 25. Phase derivative for k=l, N=25, and filters of Figure 5 
with input signal of Figure 20. 
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These spikes reflect changes in phase so rapid that not even the original 50 KHz 

sampling rate is always sufficient. 

A similar problem arises when an actual input signal is preceded by a block 

of zeros. The first nonzero phase value occurs when the· rightmost point of the 

filter impulse response overlaps the first nonzero signal value. This produces a 

step change in phase which is not bandlimited by the filter. In fact, this step is 

as rapid as the sampling rate at which it is computed. It follows that the phase­

derivative signal will contain a spike whose magnitude depends on the sampling 

rate. (An alternative is to prohibit the initial block of zeros and to simply 

compute an initial phase which is not differentiated. But then it is unclear how 

to treat this initial phase when modifying pitch.) 

We have seen that while the magnitude signal is not bandlimited in theory, 

it is nevertheless extremely bandlimited in practice. However, the above 

examples show that the phase and phase-derivative signals are not even 

particularly bandlimited in practice. Rather than abandoning all hope of 

computing these signals at lower sampling rates, we now examine the errors 

which arise in such instances. 

We first note that, in the absence of spikes, the bandwidth of the phase­

derivative signal is substantially smaller. This is illustrated in Figure 26 for the 

filter of Figure 16 centered at 1 KHz with a white Gaussian noise input. We made 

measurements on a number of such examples and found that the bandwidth 

(again measuring from the -40 db point) of the phase-derivative signal without 

spikes was typically less than twice the channel separation. It was occasionally 

as much as four times this separation, but only when amplitude minima were so 

pronounced as to produce distortions in the phase-derivative which bordered on 

being spikes themselves. As with the magnitude signal, these phase-derivative 
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Figure 26. Phase derivative for k=5, N=250, and filter of Figure 16 
with input signal of Figure 20. The spectrum of the phase 
derivative is shown in (b.). 
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signals could still be fairly accurately computed at twice the channel separation 

(i.e., the same :rates as a (n ,k) and b (n ,k )). 

We now consider the phase-derivative signal with spikes. The consequences 

of computing this signal at too low a sampling rate can be seen in Figure 27 in 

which the filter of Figure 16 is centered at 4 KHz with a white Gaussian noise 

input. The 1 KHz signal captures all of the features of the 50 KHz signal except 

for the central spike. This error is purely local and inaudible because it occurs 

at a minimum of the amplitude signal. However, it can have global and audible 

consequences if its integration produces a constant error in the reconstructed 

phase. 

The angle difference avoids this problem because the phase can always be 

trivially and exactly reconstructed. The angle difference signal still contains 

spikes which vary with the sampling rate at which the differences are computed, 

but the instantaneous absolute phase is always preserved (except for possible 

differences of 2rr). Consequently, any errors in representing the spikes are 

purely local, and there is no need to use the original 50 KHz sampling rate. 

The tracking phase vocoder (Section 3.7), offers even greater possibilities 

for bandwidth reduction. For example, with the tracking phase vocoder, the 

absolute phase in each channel is no longer critical to a perceptually 

satisfactory reproduction of the signal. Hence, the spikes can be suppressed 

entirely without significantly altering the reconstruction. Furthermore, the 

tracking phase vocoder adjusts the channel center frequency to match the 

instantaneous frequency of the input; as a result, many of the phase distortions 

which increarae the bandwidth of the stationary vocoder signals do not even 

arise. Lastly, the tracking phase vocoder can be used with filter bandwidths 

significantly less than the spacing between harmonics. This reduces the 



-76-

a. Phase derivative (Hz) calculated at 50 KHz 
1500. 

500. 
0. 20. 40. 60. 80. 100. 

Time (msec) 

b. Phase derivative (Hz) calculated at l KHz 
H:.nn 
1.JVV• 

500. -t,-+-,i,...-+,-+--+-+--,1---+-+--+-+--,1---+---+--+-+-~--+-4--+--+---l--+~ 

0. 20. 40. 60. 80. 100. 
Time (msec) 

Figure 27. Phase-derivative signals calculated at two different sample 
rates for k=20, N=250, and filter of Figure 16 with input 
of Figure 20. 



-77-

required sampling rates even further. 

3. 7 The tracking phase vocoder 

Conceptually, a pitch-tracking phase vocoder is a simple extension of the 

standard phase vocoder described in the preceding sections. Indeed, a kind of 

pitch-tracking phase vocoder was described by Malah [ 1979] as a time domain 

algorithm for harmonic bandwidth reduction. However, the advantages of such 

a vocoder have not previously been fully appreciated. In this section, we 

enumerate those advantages and show how a tracking version of the phase 

vocoder can easily be implemented. 

From the standpoint of timbre investigation, the most important feature of 

a tracking phase vocoder is that it minimizes distortions in the amplitude and 

frequency estimates. As shown in Section 3.4, these distortions arise when the 

channel center frequency and the instantaneous frequency are not well 

matched. These distortions are of no consequence in the resynthesis because 

they cancel, although they do increase the bandwidths of the magnitude and 

phase signals. More importantly, however, these distortions make it extremely 

difficult to determine the true behavior of the amplitude and frequency signals. 

Consequently, it is difficult to develop simple models from which to proceed. This 

is particularly true for the kinds of complex musical signals which are analyzed 

in Chapter 4 (eg., violin with vibrato and violin ensemble). 

Another important advantage of a pitch tracking phase vocoder is that the 

partial under analysis remains centered within the filter bandpass; 

consequently, contributions from adjacent channels are negligible, and the 

potential crosstalk can be ignored. As a result, it is no longer essential to 

preserve the absolute phase in each channel. For example, frequency spikes 

due to interference can be automatically suppressed with no audible effect. 
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In addition, a tracking phase vocoder lends itself to a variety of bandwidth 

compression schemes. For example, unusually narrowband filters can be used 

to retain only a narrow frequency region surrounding each harmonic. This is 

also an effective noise reduction technique. The limitation to this approach is 

(as noted in Section 3.4) that the magnitude signal is itself subject to the 

bandlimiting of the filter: for a narrow enough filter, the magnitude will be 

significantly smeared. 

On the other hand, a tracking version of the phase vocoder also presents 

several disadvantages. It is more complex to implement, yet its accuracy (in 

terms of resynthesis) can never exceed that of the standard phase vocoder. 

Furthermore, a tracking phase vocoder inevitably embodies assumptions which 

are unnecessary for the standard phase vocoder: consequently, it is significantly 

less robust. For example, attempting to track white Gaussian noise can lead the 

vocoder on a random walk through the frequency domain. Hence, we usually 

specify a magnitude threshold below which tracking is suppressed. This also 

prevents the vocoder from losing lock when it encounters a frequency spike. 

Even with this precaution, however, the ultimate performance depends on the 

intelligence of the tracking algorithm. 

For isolated tones, we are able to track individual partials without difficulty 

using a fairly simple algorithm. However, for more complex inputs it is 

necessary to provide a more global tracking strategy as well: the tracking of 

individual partials must be supplemented with some form of pitch tracking. In 

such situations we have found it preferable to perform the analysis in two 

passes: We first apply a standard pitch detection algorithm [Moorer, 1973; 

Tucker and Bates, 1978] and correct it by hand if necessary. We then run the 

tracking phase vocoder in a mode in which the tracking is predetermined. 
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We now consider the actual implementation of a tracking phase vocoder. 

The introduction of tracking means that the Fourier transform interpretation of 

Section 3.2 is no longer appropriate. Consequently, the efficient Fast Fourier 

Transform computational techniques of Section 3.2 are no longer applicable. 

Instead, the analysis is performed independently for each partial of interest, 

and the synthesis is performed from the additive model. 

The algorithm itself is fairly straightforward. To begin, we choose an 

appropriate value of c.., and simply evaluate equation (3.1) for every Ru" value of 

n (where R represents an appropriate decimation factor so that the sampling 

rate of X(n ,CJ) is twice the filter bandwidth). The restrictions on the filter 

impulse response are no longer significant, so h ( n) can be any desired lowpass 

filter. For each calculated value of X(n,c..,), we immediately compute IX(n ,c.>) I 

according to equation (3.19) and ~r;ti(n,c..,) according to equation (3.22). An 

. . . • . . . . . • . . . . 2rr • , , 
estimate or tne mstantaneous rrequency 1s now given oy c.>-t- RT D.r;ti, n ,c..>). 

Whenever the short-time average value of ~rp(n ,c..,) becomes too large, it is time 

to adjust c.>. 

The details of this adjustment determine the kind of feedback control loop 

which is established; for typical input signals, however, we find that almost any 

reasonable tracking scheme is sufficient. The critical issue is that the phase of 

X(n +R,c..>n!IW) bears no relation to the phase of X(n ,c.>01a), Consequently, it is 

essential that the calculation at time n be repeated for the new c.>. This 

establishes a new reference phase from which the differences can now be 

calculated. 

An example of the tracking phase vocoder output is given in Figure 28 for 

the input signal of Figure 13a. It is clear that both magnitude and angle 

difference signals are considerably less distorted than for the stationary phase 



-80-

a. Magnitude 
10,000.-------a,g----,-----r---r-------

5000. 

V 
0. 

0. 50. 100. 150. 200. 250. 
Time (msec) 

b. Angle difference (Hz) 
1500 . ......., ....... ______ __,,. ___ ___, ____ ~--r-----i 

1000. 

0. 50. 100. 150. 200. 
Time (msec) 

Figure 28. Magnitude and angle difference for the input signal of 
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vocoder signals of Figures 11 and 12. However, the resynthesized signal is 

actually inferior to that of the stationary phase vocoder (which is perfect) due 

to the bandlimiting of the magnitude signal in the tracking version. In general, 

the choice of an appropriate filter for the tracking phase vocoder involves a 

tradeofl' between smearing the magnitude signal and retaining undesirable 

noise. In many applications, it is possible that a simple rectangular impulse 

response will suffice; in this event, the computations are greatly simplified, and 

the tracking phase vocoder is simply a tracking heterodyne filter. 

3. 8 Conclusions 

As a consequence of the preceding analysis, we can draw four significant 

conclusions: 

1) The angle difference signai is not, as is frequently assumed, merely a 

simple approximation to the phase-derivative signal. Rather, it is 

superior to the phase-derivative signal. because it permits accurate 

reconstruction of the phase. 

2) The magnitude and angle difference signals can, in fact, be accurately 

calculated at the minimum output sampling rate in most cases of 

interest. At worst, this produces errors of 2rr during frequency spikes. 

3) Pitch modification can be performed with negligible modification of the 

amplitude signal; but this does not guarantee negligible modification of 

the timbre. 

4) A tracking phase vocoder provides a useful alternative to the standard 

version, particularly in the investigation of timbre. It eliminates 

distor"tions in the magnitude and phase signals, and entirely avoids the 

problem of interchannel interference. 

These conclusions amount to a significant improvement in the phase vocoder 
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analysis technique. This improved technique is the basis for the results in 

Chapter 4. 
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IV. ADDITIVE ANAI..YSIS-snITID:SIS OF KNS:OBLE SOUNDS 

A violin section playing in unison sounds very different from a solo violin. 

This is true even when the comparison is carried out via a low fidelity monaural 

sound reproduction system. It is strange, then, that while numerous attempts 

have been made to synthesize ensemble sound, virtually none have been made 

to analyze it. In this chapter we undertake such an analysis with two basic 

goals: 1) to identify the minimal cues required for the ensemble sensation, and 

2) to identify the cues which enhance that sensation. 

4.1 History 

The ensemble or choir effect has a long history amongst organ 

manufacturers and a somewhat more recent one amongst computer musicians. 

While both of these groups obviously have some idea of what characterizes 

ensembie sound, they have concentrated their attention on trial-and-error 

schemes for synthesizing it. Furthermore, they have tended to report their 

schemes only by word of mouth or via patent disclosures. This sort of approach 

has led to some reasonable ensemble simulations, but has not contributed 

much understanding of the underlying perceptual cues. 

A rare discussion of these schemes in a scientific context appeared in an 

article by Le Caine in 1956. Le Caine identified ensemble sound with beating 

between partials of slightly different frequencies. Consequently, the simulation 

techniques which he described consisted of adding together multiple voices in 

such a way that the individual frequencies were always different. However, none 

of these techniques was entirely satisfactory. 

A more recent and more efficient approach to ensemble simulation consists 

of adding together variably time-delayed versions of the solo. This also results 
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in beating between partials of different frequencies and a corresponding 

ensemble sensation. Again, however, the final product is less than pe:rfect. 

In ou:r view, the difficulties encountered in simulating ensemble sound 

:reflect not only the :richness of the ensemble perception, but also the limitations 

of past approaches. Indeed, a number of important questions implicit in these 

approaches have yet to be addressed directly. Fo:r example, is the summation of 

multiple voices capable even in principle of producing a completely convincing 

ensemble sound? If so, what sort of complexity is :required in the individual 

voices? And how does this :relate to the variable time-delay technique? These 

are questions which require a more analytical approach. 

4.2 Experimental method 

In our research, we viewed the ensemble sensation as a timbral attribute 

which could be investigated in the same way that Grey [ 1975] investigated the 

timbres of individual instruments. We therefore adhered closely to Grey's 

methodology throughout our study. In particular, we used the tracking phase 

vocoder and the additive model to analyze both solo and ensemble sounds; to 

represent them in a perceptually meaningful framework; to equalize pitch, 

loudness, and duration while modifying other perceptual features; and to 

resynthesize different versions of the sounds for perceptual evaluation. 

Because our investigation was the first to examine this aspect of timbre, we 

found it necessary to impose a number of limitations on our analysis. First, we 

worked entirely with monaural :recording and reproduction; as a result, we 

virtually eliminated spatial cues. This is standard practice in the analysis of 

solo timbres, but perhaps more questionable in the analysis of ensembles. 

However, the analysis of spatial cues is an entirely separate, and largely 

unexplored, area of :research. 
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In addition, we restricted our investigation primarily to the identification of 

perceptual cues. A logical extension of this research would be to apply this 

knowledge to the development of superior techniques for ensemble simulation. 

However, the detailed development of these techniques was beyond the scope of 

this investigation. 

A third (and unanticipated) limitation was in the quality of the sound 

examples available to us. This arose from our dependence on volunteers for 

both recording and listening sessions. We had no trouble obtaining excellent 

solo sounds, but we experienced considerable difficulty in finding comparable 

ensemble sounds. This restricted our analysis, but not severely. 

Another practical limitation was in the relative informality of our listening 

procedure. This informality arose primarily because the diversity of the 

required perceptual judgements made formulation of a standardized test quite 

difficult. Instead, we presented listeners with unidentified sounds and simply 

solicited comments. For the relatively crude discriminations which were 

frequently required, this method provided more than adequate consistency, 

both among different listeners and over repeated trials with a single listener. 

However, any further investigation of the trends identified in this research 

would definitely require a rigorous and formalized evaluation procedure. In 

addition, it would utilize professional ensembles and examples of considerably 

greater duration. 

A final restriction was in the variety of instruments which we could 

investigate. Since the violin is the single instrument most widely associated with 

a distinctive ensemble timbre, we concentrated almost exclusively on the violin. 

However, it seems reasonable to assume that most of our results hold for other 

instruments as well. 
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In the sections to follow, we present results obtained with ensemble violin 

sounds from three distinct sources: 

1) A recording at 7 ! inches per second with quarter track tape of four 

violins in a moderately reverberant :room. This was our best ensemble 

source due both to the quality of the playing and to the variety of the 

musical material. 

2) A recording at 15 inches per second with half track tape of ten violins in a 

moderately reverberant hall, but with significant ambient noise. The 

recording took place at a rehearsal of a local college orchestra; 

unfortunately, the quality of the playing was frequentiy unacceptable. 

3) Commercial phonograph recordings of violin concerti. The problem here 

was in finding musical selections in which the solo violin and the violin 

section (in unison) played the same material. and each in the absence of 

any extraneous sounds. We did find several appropriate examples, but 

used them only for preliminary testing. 

In each of the above recording sessions, we obtained samples of solo violin 

for each example played by the ensemble. In addition, we recorded solo 

violinists in two entirely separate sessions: 

1) Direct-to-disk ( !) digitization of various solo violinists playing in a 

soundproof box adjacent to our computer. 

2) A recording at 15 inches per second with half track tape of a solo violin in 

an anechoic chamber. We also obtained samples of solo trumpet in the 

same session. 

The complete sound recording and reproduction sequence is shown in Figure 3 

and was described in Section 2.2. 
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4. 3 Wolin solo 

In order to compare a violin ensemble to a solo violin, we first must 

establish the characteristics of the solo. Several investigators have addressed 

this issue, but none quite sufficiently for our purposes. Fletcher [1965; 1967] 

performed detailed analyses of the tones produced by a solo violinist in an 

anechoic chamber, and made important discoveries about the effects of vibrato. 

However, his investigation was limited by the fact that his analysis-synthesis 

techniques were entirely analog. Grey [ 1975] used the heterodyne· filter to 

obtain a more exact representation of a violin tone, but he considered only a 

single tone of very limited duration (300 msec) and with no vibrato. More 

recently, Miller [1981] investigated violin vibrato, but using measurements 

directly from the violin rather than from the recorded tone. 

The displacement-versus-time of the violin string at the point of contact 

with the bow is a roughly sawtooth function due to the alternate sticking and 

slipping of the bow hairs on the string. However, these oscillations undergo 

considerable filtering by the violin body so that the recorded waveform is rarely 

a simple sawtooth. This waveform varies with the particular instrument being 

played, with the bowing technique, and with the precise pitch of the tone. If 

these conditions are held constant, then the waveform is quite reproducible; but 

this seldom occurs in actual musical examples. 

The vast majority of violin tones are produced with a periodic pitch 

variation known as vibrato . A typical vibrato introduces a roughly sinusoidal 

pitch variation of ±1 .% at a frequency of 5 to 7 Hz. However, it also introduces a 

periodic amplitude modulation which is different for each partial. Consequently, 

the spectrum of the violin waveform is constantly varying throughout any single 

period of the vibrato. This variation can be seen both in the waveform (Figure 
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figure 29. Waveforms of a so1o violin played with and without vibrato. 
The tone is C#5 (555 Hz). 
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in Figure 29b. 
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29) and in the individual partials (Figure 30). This phenomenon was first noted 

by Fletcher [1965; 1967], and was shown to be indispensable for convincing 

simulations of violin sounds. 

Fletcher conjectured that the amplitude modulation was a consequence of 

individual partials being swept in and out of nearby body resonances. (Room 

resonances are ruled out because the effect occurs even in recordings from an 

anechoic chamber.) We were able to lend further support to this hypothesis by 

showing that the particular bow and finger motions associated with vibrato are 

neither necessary nor sufficient for producing this effect. For example, Figure 

31 shows the amplitude variation of the fundamental which results from simply 

sliding the index finger of the left hand down the string to produce a glissando . 

This motion affects the bowing and damping of the string very differently from 

the vibrato; nevertheless, the differences in amplitude at 550 Hz and 560 Hz are 

comparable to the differences observed with a ±5 Hz vibrato at 555 Hz. 

In contast, Figure 32 shows the variation in the waveform as the amplitude 

is increased at constant frequency. It is evident that the strength of the higher 

partials does change, but not nearly enough to link the amplitude modulations 

during vibrato to mere variations in bowing. In addition we note that, in the 

case of vibrato, the higher partials frequently exhibit a more complex amplitude 

modulation which is consistent With being swept through several adjacent 

resonances. We therefore find it very plausible that these amplitude 

modulations do arise entirely as a consequence of body resonances. 

An independent demonstration of the importance of body resonances was 

provided by Mathews and Kohut [ 1973]. They showed that an electrical 

resonance network could be used to greatly enhance the realism of 

electronically produced violin sounds. This idea has also been applied in some 
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Figure 31. Amplitude variation of the fundamental for a downward 
glissando. The frequency variation is shown in (b.). 
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recent digital music synthesizers. In our work, we found that a useful 

alternative could be developed using the additive model. 

Following the approach of Grey, we approximated the amplitude and 

frequency estimates of each partial with five to ten line segments apiece. In this 

representation, we sought to capture average values rather than details of the 

modulation. (This is illustrated for the amplitudes of the first eight partials of a 

typical tone in Figure 33.) We were then able to independently impose pitch 

variation and amplitude variation for each partial. We found that very plausible 

simulations could be obtained by using a sinusoidal amplitude modulation of 

about 30% ; this modulation had the same periodicity as the vibrato, but its 

phase was chosen randomly for each partial. 

In general. we found that the line segment approximations without 

modulation retained a vague violin-like character, but were not very realistic. 

We also found that any modulation produced a vast improvement in realism, 

but that both amplitude and frequency modulation were necessary for the 

ultimate effect. Even then, however, the attacks lacked the "crunch" which is 

associated with the bow noise during the attack. 

We also made use of our improved analysis capabilities to examine the 

harmonicity of the violin partials. Fletcher reported that the violin partials 

were actually harmonic, at least within the limits of his analog measurement 

technique. However, Grey's analysis showed significant deviations from 

harmonic behavior throughout the entire tone. Further evidence of 

inharmonicity was obtained by Charbonneau [1981]: in attempting to simplify 

the additive model representation of cello tones, he found that the assumption 

of perfectly harmonic partials introduced a very slight but perceptible 

alteration in the sound. 
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TIME ( sec.) 

Figure 33. The line segment approximation for the amplitude 
of the first eight partials of a tone played with 
vibrato. 
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The tracking phase vocoder provided a means for resolving this issue 

because it automatically minimized the distortions in the estimated frequency. 

We found that the partials of the violin were, in fact, harmonic except possibly 

during the attack portion of the tone. This portion is typically accompanied by 

so much bow noise that attempting to define a single frequency is pointless. 

Since Charbonneau's tones were of extremely short duration (300 msec), it 

seems probable that his results were due entirely to slight differences in the 

attack. 

Since ensemble sound arises from different instruments playing 

simultaneously, we also analyzed several different violins individually to 

determine the extent of the variations among them. We found that these 

variations were considerable, but still no greater than those of a single violin 

playing a number of different pitches. 

Lastly, we used the tracking phase vocoder to analyze solo violins playing in 

reverberant rooms rather than in an anechoic chamber. At any point in a room, 

the reflections from various surfaces add together in such a way that some 

frequencies interfere constructively while others interfere destructively. This is 

generally thought of as coloring the recorded sound by imposing a 

characteristic weighting on the spectrum. However, for the violin, it is more 

appropriate to adopt a dynamic view in which each reflection has its own 

particular pitch corresponding to the particular phase of the vibrato cycle in 

which it originated. Consequently, the reverberation looks to the phase vocoder 

like several different violins playing at once. (For example, there are frequency 

spikes such as described in Chapter 3 for the case of two sine waves of slightly 

differing frequency.) How the ear is able to distinguish between the 

reverberation and the actual ensemble is an interesting problem. 
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4.4 Violin ensemble 

Our best example of violin ensemble came from a chamber group with only 

four violins. This was a smaller number than we would have preferred, but it 

proved to be quite sufficient: the ensemble sound differed markedly from the 

solo both perceptually and analytically. A detailed comparison of the solo sound 

with the ensemble is provided by Figures 34 thru 39. In this example the tone is 

F5 (690 Hz) played mezzo forte with normal vibrato: however, these figures 

illustrate features which were common to all our examples. 

First, we note the presence of pronounced beating in the magnitude signals 

of Figures 36 and 38. This beating is not particularly regular: however, it clearly 

increases in frequency for the higher harmonics. Of course, this is just what we 

should expect: if the fundamental frequencies differ by b.J, then the 10th 

harmonics differ by lOD./, and their beat frequency is proportionally higher. In 

addition, we note that the magnitude nulls occur at different points in time for 

different harmonics. 

A second obvious difference between solo and ensemble can be seen in 

Figures 37 and 39; the composite frequency of the four violins shows almost no 

trace of the individual vibratos. (The more severe frequency spikes in these 

examples are suppressed for the sake of clarity.) Indeed, for the higher 

harmonics, it is difficult to make any sense at all of the frequency estimates 

provided by the phase vocoder. However, we note that since the individual violin 

waveforms are exactly harmonic, their sum must be also. 

To test the importance of these two features, we performed a simple 

experiment. We took the additive model representations for several solo tones 

and for several ensemble tones, and equalized them in pairs for pitch, loudness, 

and duration. We then synthesized mixed versions in which the ensemble 
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Figure 34. Comparison of solo and ensemble waveforms for F5 (690 Hz). 
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Figure 36. Amplitude of the fundamental for the waveforms of Figure 34. 
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Figure 38. Amplitude of the fifth harmonic for the waveforms of 
Figure 34. 
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amplitudes were paired with the solo frequencies and vice versa. Surprisingly, 

we found that the tones synthesized with the ensemble amplitude functions 

were indistinguishable from the true ensembles, regardless of their frequency 

variation. The tones synthesized with solo amplitude functions and ensemble 

frequency functions were distinguishable from the true ensembles, but they still 

retained a weak ensemble sensation. (However, we note that in this case, 

frequency spikes did not coincide with amplitude nulls.) Hence, we concluded 

that the amplitude variation of the ensemble was sufficient but not entirely 

necessary for the ensemble sensation. 

4.5 The use of isolated tones 

The comparisons of the preceeding section were based entirely upon the 

use of isolated tones. We viewed these comparisons as a valuable starting point 

for our investigation, but we also recognized their limitations. In this section, 

we discuss extensions of the above research to both shorter and longer time 

periods. 

We first asked whether any particular portion of the tone was itself 

sufficient to produce an ensemble sensation. A number of early timbre 

investigations made sharp distinctions between the attack portion of the tone 

and the steady state and decay portions. Wedin and Goude [1972] in 

particular found that the attack portion was crucial in the determination of 

timbre; solo tones with the attacks deleted were surprisingly difficult to identify. 

We therefore wondered whether the steady state portion of the ensemble would 

still be identifiable as an ensemble. 

To test this, we selected steady state portions of varying duration (.2 sec to 

1 sec) from the equalized solo and ensemble tones and applied trapezoidal 

windows with ramp times ranging from 1 msec to 50 msec. (The attack time for 
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the violin is typically in the range of 50 msec to 200 msec.) We found that the 

difference between solo and ensemble remained obvious throughout all 

examples. This is significant because it rules out the attack (and 

nonsimultaneous attacks in particular) as a necessary cue for the ensemble 

sensation. It can be reconciled with the findings of Wedin and Goude by 

assuming that the crucial element for timbral discrimination is not the attack 

specifically, but rather the presence of variation within the tone segment. In the 

solo violin waveform, this variation is provided by the vibrato; in the ensemble it 

is provided by the beating. 

We also compared the solo and ensemble attacks; because of their duration, 

we found that the attacks themselves were sufficient to discriminate between 

solo and ensemble. In general. the ensemble attacks were more gradual than 

the solos. Furthermore, we found that imposing a very rapid attack on all 

partials of an ensemble tone in synchrony produced an initial but rapidly fa ding 

sensation of solo. Hence we concluded that, while the attack is not crucial to 

the ensemble sound, it cannot be entirely ignored. 

The above experiments showed that the steady state portion of a single 

tone is sufficient to identify the ensemble sensation; however, such a time 

interval is scarcely sufficient to determine the quality of that sensation. For 

careful evaluations of quality, we would expect to use time intervals of at least 

several minutes. In this investigation, however, the limitations of memory and 

computing power made it difficult to work with time intervals of more than 

several seconds. Nevertheless, we did undertake a preliminary study of longer 

sound examples. 

The extension of timbral research beyond the level of isolated tones is a 

fairly recent idea. A first step in this direction was taken by Grey in 1978. Grey 
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noted that musical context could affect the perception of timbre in at least 

three important ways: 

1) The opportunity to compare the spectra of a variety of pitches from the 

same instrument could lead to the creation of a composite spectral map. 

2) The articulation employed in playing successive tones could provide 

crucial additional inf orrnation. 

3) The mode of listening might vary dramatically in different musical 

contexts. 

In Grey's study, he simply resynthesized a particular solo tone at different 

pitches and concatenated the resulting tones to form musical patterns. He 

found that the nature of the patterns did affect the timbral discrimination. 

However, in avoiding the analysis-synthesis of connected tones, he excluded the 

first two of the above points from consideration. 

In our work, we asked whether we could extend the analysis to include 

useful representations of connected tones. An example of a typical legato 

transition between two different pitches is shown in Figure 40. The phase 

vocoder output for the channel tracking the fundamental is shown in Figure 41. 

It can be seen that there is a slowly decaying amplitude and frequency 

modulation throughout the first quarter second of the new note. This is an 

indication that the room reverberation introduces a considerable overlap of the 

two tones. It is possible that transitions of this sort can be effectively simulated 

with simple overlapping, but we performed only preliminary investigations in 

this regard. A significant problem in such analyses was in obtaining reliable 

tracking for the higher harmonics during the transition. 

4.8 The use of multiple voices 

Perhaps the ultimate goal of musicians involved in ensemble simulation, is 
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to discover a single mathematical operation which will transform any given solo 

waveform into a convincing ensemble. Implicit in their attempts, is the 

assumption that this can in fact be done. A weaker assumption, which is also 

widely shared, is that a summation of independent tones from a single 

instrument can produce a convincing ensemble. However, there are a number 

of conceivable reasons why this might not be so. 

Instrumentalists in an ensemble each occupy a unique location in space. 

Consequently, their individual sounds are colored differently by reverberation. 

In addition, they play separate instruments which vary considerably in the 

details of their individual timbres. It is certainly possible that the combined 

effects of these differences might be audible. Furthermore, we know very little 

about the detailed interactions between the musicians in the context of the 

ensemble. This information could be obtained by placing separate microphones 

on each violin in the ensemble and correlating the different signals, But are 

such details really important in the final product? 

To answer this question, we conducted a detailed test of the "summation of 

multiple voices" technique. We collected a variety of examples in which a single 

violinist repeated a note or phrase from four to ten times. At first, we simply 

added these together arithmetically. The result sounded very much like an 

ensemble, but there were obvious cues in the decay portion because not all 

repetitions had precisely the same length. 

In a modified version of this experiment,, we used the additive model to 

equalize the repetitions for duration prior to addition. We then added the 

multiple individual voices together and equalized them for loudness and pitch 

with respect to the ensemble. We found that listeners could still discriminate 

between the different examples, because each was unavoidably different. 
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However, listeners were unable to consistently identify the true ensemble as 

such; that is, within the limits of our experimental method, the simulated 

ensemble was not identifiably inferior. 

Interestingly enough, it was quite easy to disctiminate the artificial 

ensemble analytically. This was because the spectrum of the simulated 

ensemble retained the irregular deviations of the solo instrument; for the 

ensemble these solo variations tended to cancel. This is (as described in Section 

4.5) a cue which would not be evident for an isolated tone, but which would 

definitely be a factor when listening to an entire passage. An illustration of this 

effect is given in Figure 42. 

We were also curious about the importance of synchrony in creating the 

simulated ensemble. The only kn.own study of asynchrony in actual ensemble 

performances was carried out by Rasch [1979]. He found that asynchronies of 

30 to 50 msec were not uncommon for string ensembles, and he offered a 

number of possible explanations as to why such differences are generally not 

perceived. We wondered, though, whether these differences could play a role in 

the ensemble sensation. Consequently, we constructed another set of simulated 

ensembles using the same technique as above, but varying the synchrony of the 

attacks. We found that the significant factor was not so much the synchrony 

itself, but rather the way in which the corresponding vibrato patterns happened 

to correlate. In cases where the vibratos themselves were in synchrony, the 

ensemble effect was poor regardless of the attacks. 

4. 7 Minimal cues for ensemble sensation 

We next attempted to determine the minimum set of perceptual cues which 

would still provide the ensemble sensation. We already knew that neither the 

attack nor the composite frequency variation was important; hence we 
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Figure 42. Comparison of amplitude for the first ten partials 
of an actual ensemble (above) and a summation of 
multiple solo voices (below). 
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constructed entirely artificial tones and experimented simply with amplitude 

modulation. We found that nothing at all could be done to an isolated sine wave 

which would result in an ensemble sensation. This is not surprising, because we 

feel intuitively that the ensemble sensation corresponds to a situation in which 

the ear is somehow overburdened, but in which there is nevertheless a certain 

structure. In the case of an isolated sine wave, this is apparently simply not 

possible. 

Interestingly, we found that simply adding in higher partials also failed to 

result in an ensemble sensation. Rather, as the variation in the individual 

partials approached the level which was associated ·with ensemble sound in our 

other examples, the perceptual effect became increasingly less unified. Instead 

of hearing a single tone of complex timbre, listeners reported a number of 

simultaneous sine waves of different frequency. 

This difficulty in obtaining fusion with certain artificial kinds of sounds has 

been noted before [McAdams, 1980]. The solution is to impose a common 

envelope and vibrato on the individual partials. After a great deal of 

experimentation, we settled on a linear attack and decay of 20 msec duration 

and a spectrum which rolled off inversely with frequency. Even then, we found 

that anywhere from four to eight partials were required before the sound could 

be identified as an ensemble. 

We also considered a variety of amplitude modulations. For example, a very 

simple amplitude modulation which has been employed in some recent 

simulation techniques is a beating whose frequency is independent of the 

frequency of the partial. We found that this technique produced only a very 

marginal ensemble effect. In general, we found that the more rapid beating of 

the higher partials in the actual ensemble was essential to prevent the ear from 
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detecting the amplitude modulation explicitly. On the other hand, rapid beating 

of the lower partials simply made the ensemble sound badly out of tune. 

We also succeeded in creating a somewhat weaker ensemble sensation using 

only frequency modulation. We did this by synthesizing a tone in which the 

phase of the vibrato sinusoid was different for each partial; consequently, none 

of the partials were instantaneously harmonic, but all were harmonic on the 

average. We found that the ensemble sensation persisted even when we used 

tones with missing partials so that there was only one partial per critical 

bandwidth. This suggested that the comparison of frequencies was being carried 

out at some higher level of processing. 

4. 8 '!he number of instruments in the ensemble 

Another aspect of the ensemble sensation which we attempted to 

investigate was the number of instruments in the ensemble. Unfortunately, our 

recorded examples provided us with only two different sizes of ensemble: four 

and ten. Furthermore, the recording environments for these two examples were 

significantly different. Consequently, we could not reliably attribute differences 

in the perceived timbre to differences in the number of instruments; indeed, 

listeners who heard these examples varied widely in their estimates of the 

number of instruments involved. 

To circumvent this problem, we constructed artificial ensembles by adding 

together varying numbers of independent solos as in Section 4.6. However, 

these solos - having all been produced by the same instrumentalist - all had 

nearly identical vibratos. As a result, the crucial factor in the ensemble sound 

was not the number of solos, but rather the relative phasing of the vibrato in 

the individual solos. Only solos with significantly different instantaneous 

frequencies appeared to contribute to the ensemble sensation. 
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As an added refinement, we used the line segment approximation technique 

of Section 4.3 to synthesize solos with different vibrato rates and then added 

these together. However, we still failed to observe any perceptual correlation 

with the number of solo voices. We therefore turned to the examination of 

artificial tones such as those of Section 4.7; but rather than applying an 

artificial amplitude modulation, we constructed independent voices and added 

them together. All of the voices in these experiments had a 20 msec linear 

attack and decay and consisted of eight harmonic partials with intensities 

inversely proportional to frequency. This allowed us to explicitly evaluate the 

effect of known solo frequency variations on the amplitude of the sum. 

We first experimented with solo voices of constant amplitude and 

frequency. We found that the most acceptable ensemble sounds resulted when 

solo pitches were all within one or two percent of a given average value. 

Individual pitch deviations of more than two percent produced a distinct out-of­

tune sensation in the ensemble. These percentages were fairly independent of 

the actual pitch (ie. 1 the important factor was the ratio of pitch deviation to 

average pitch rather than the actual pitch deviation in Hz). 

To determine the effect of varying the number of solo voices, we allowed the 

solo pitches to be chosen randomly from within ±1.5 percent of a specified 

average value; we then added the solos together to produce various size 

ensembles. These ensembles were automatically equalized for pitch (250 Hz) 

and duration (1 sec), and then iteratively adjusted to equalize the perceived 

loudness. This last operation was necessary because differences in loudness 

translated to major discrepancies in perceived timbre. 

We found by listening that there was a significant difference between one, 

two, and three voices, but very little difference between three and ten voices. We 
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then analyzed selected harmonics to see if these observations could be 

explained in terms of the corresponding amplitude modulations. As expected, 

we found that two-voice ensembles had a very regular amplitude modulation; 

however, the addition of a third voice completely disrupted this regularity. 

Furthermore, the addition of voices beyond the third was virtually indetectable 

(Figure 43). Hence, we concluded that any timbral differences between large and 

small ensembles must be more related to differences in loudness ( or to 

differences in the constituent solo timbres) than to any inherent feature of 

ensemble sound. 

Lastly, we used the above technique to investigate the effect of individual 

vibratos on the composite amplitude modulation. For this experiment, we used 

a sinusoidal vibrato and allowed the rate to be chosen randomly between 5 Hz 

and 7 Hz for each voice. We found that the vibrato did introduce a recognizable 

distortion in the amplitude modulation (Figure 44), but that this distortion was 

not actually audible. This was somewhat surprising because the case of no­

vibrato versus vibrato was easily distinguishable in our recorded ensemble 

examples. To improve the realism of our simulations, we imposed individual 

amplitude modulations on each harmonic as described in Section 4.3. However, 

the simulations with vibrato were still indistinguishable from those without. The 

explanation for this is still unknown. 

4. 9 Simulation of ensemble sounds 

The development of an improved technique for ensemble simulation was 

beyond the scope of this research; nevertheless, we did undertake some 

preliminary investigations. The most popular existing choir effect generator 

appears to be the analog variable-time-delay circuit which is used in the Moog 

and many other electronic synthesizers. The sounds produced by this technique 
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Figure 43. Waveforms of simulated ensembles. (For clarity, each 
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have a definite ensemble timbre, yet they retain a distinctly artificial character. 

However, this could be due simply to the very artificial nature of the Moog solo 

sounds. Our first test was therefore to apply the Moog choir effect algorithm to 

real violin sounds. 

To determine the algorithm, we used the tracking phase vocoder to analyze 

recorded examples. We assumed that the simulated ensemble x(t) was the sum 

of a known solo x 1(t) and a variably time-delayed version x 2(t) for which the 

time delay !:J.(t) was the unknown to be determined. The phase vocoder 

frequency estimate for the fundamental was 

f (t) = 518 + 3 cos (2rr6t) + cos (2rr ! t) 
We took this to be the average of the solo frequency of 518 Hz and the variably 

time-delayed frequency of 

f 2(t) = 518 + 6 cos (2rr6t) + 2 cos (211" ! t) 

We then had 

1"2(t) = 518 t + -
2
1 sin(2rr6t) + 

2
4 sin(2rr.!..t) 

7T' rr 2 

Furthermore, we had 

x2(t) = sin(21T'51B(t + .6(t))) 

x 2(t) = sin (2rr51Bt + 2rrl"2 (t)) 

Hence, the variable time delay .6(t) was given simply by sei;~~) . 

We found that ensemble simulations using this .6(t) were extremely similar 

to the Moog examples both perceptually and analytically (Figures 45 and 46). 

However, applying this algorithm to actual violin waveforms produced highly 

variably results. More research is needed to determine the explanation for this, 

but it seems possible that a more randomly varying time delay and/or an 
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additional independently varying time delay may be required. 

A novel method of ensemble simulation suggested by the results in this 

report is to use the additive synthesis technique with appropriate amplitude 

modulation automatically included. In applications where high quality is 

essential, this could provide an attractive alternative to the summation of 

multiple independent voices. However, the variable time delay technique is still 

more efficient when a solo voice is already available without computation. 

4.10 Conclusions 

The above results demonstrate the usefulness of applying an analytical 

approach to the problem of ensemble sound. In particular, we showed that the 

ensemble sensation results when there are at least four to eight partials, and 

when the amplitudes (and, to a lesser extent, the frequencies) of each partial 

vary in an uncorrelated manner so that the overall average values are still 

approximately those of the solo waveform. For the amplitude modulation, this 

variation is a beating which is proportional to the average frequency of the 

partial. However, several important questions remain unanswered. 

First, are these results valid for instruments other than the violin? In our 

view, it is quite likely that they are; in fact, we have performed preliminary 

experiments with solo trumpet (Figures 47 and 48) which fully support this 

assumption. The trumpet is not typically played with vibrato, but there is still a 

sufficient random frequency variation in a solo tone so that independent solos 

can be added to produce an ensemble sensation. 

Secondly, can these results be employed to create an improved ensemble 

simulation technique as suggested in Section 4.9? Again, it seems very likely 

that they can; but an appropriate test would require a professional ensemble, 

coherent musical examples, and a formal evaluation procedure. 
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A number of interesting extensions are also possible. For example, an 

intriguing feature of ensemble sounds is that th,:iy manage to :retain, to a 

surprising degree, the distinctive timbre of the underlying solo. Is this based 
. 

simply on gross spectral differences? An even more interesting question involves 

ensembles of different instruments playing in unison. Under what conditions 

can the individual timbres be identified, and when do they fuse into an entirely 

new timbre? These are questions to be answered by future investigations. 
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Figure 47. Waveform of a typical trumpet tone. The tone is 
C#5 (555 Hz). 
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