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Abstract

A methodology for specifying concurrent systems is presented. A model
of computation for concurrent systems is presented first. The syntax and
semantics of the language CRYSTAL are introduced. The specification of
a system is called a space-time algorithm since space and time are explicit
parameters in the description. Fixed-point semantics is used for abstracting
the behavior of a system from its implementation. The consistency between
an implementation and its description can therefore be ensured using this
method. Formal semantics for an arbitrary transistor network is given. An
“interpreter” for space-time algorithms — a hierarchical simulator — for
VLSI systems is presented. The framework can be viewed as a concurrent
programming notation when describing communicating processes and as a

hardware description notation when specifying integrated circuits.
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Chapter 1

Introduction

Recent developments in the technology of fabricating large-scale in-
tegrated circuits have made it possible to implement computing systems that
use many hundred thousand transistors to achieve a given task. An inter-
esting design will have high computational complexity rather than merely a
vast number of identical simple components such as memory elements. Such
a design can be represented as a fully instantiated implementation of ob-
jects of the implementation medium (e.g. transistors in VSLI technology) or
as successive hierarchical levels of implementations where each level is con-
structed of objects which are abstract models of the implementation at the
level below it. The former allows implementation details at the bottom level
to penetrate throughout the whole design. Such a representation may be
suited for machine execution but is hard to deal with from a designer’s point
of view, and verifying both its functionality and physical layout is costly. As
the complexity of the design grows, the limitation of this approach becomes
more apparent. The second approach is aimed at managing the complexity
of a design. The design is partitioned into successive levels of sub-systems

until each is of a manageable complexity — the hierarchical design method

[27].
1. A Hierarchical Design

Imagine that one wants to carry out the computation of a matrix multi-
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plication; there are many possible ways to do it. One possible implementation

of this function is by the algorithm shown in Figure 1-1 [22].

Oun .

Figure 1-1 A Systolic Algorithm

The elementary building block has three inputs and three outputs, each
of which is a bounded integer. Each element performs @,ut = Mip X bin+ain,
Moyt = M, and b,u: = b;,. How each element is implemented is not of
concern here, only the behavioral description of each of the elements used in
designing and reasoning about the systolic algorithm. The complexity and
performance of the algorithm are also discussed based on these measurements
of each element. The area required by the algorithm is discussed using the
area of each element as a unit, and the time required are measured using
that required by each element as a unit. Once the design of this algorithm
is completed, that is, once it is verified to be correct and to satisfy the
requirements in performance, one can move on and focus on the design of

each individual element.
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Such an element can be implemented by serial operations on each bit
of a binary number, or by concurrent operations on a word that stores the
binary number. A possible bit-serial implementation [25],[44] is shown in
Figure 1-2; three sequences of input bits are shifted into the pipeline and the

result sequences come out the other end.
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Figure 1-2 A Pipelined Algorithm

The elementary building block is now a half adder with some shift
registers. Some effort may be spent on how to minimize the total delay so that
the maximum throughput is possible. Boolean algebra is used in verifying the
correctness of the algorithm. When the design at this level is completed, one

moves on to a detailed implementation of each element.

Again a particular implementation is proposed, and the logic circuit

gshown in Figure 1-3 is an “algorithm” describing the design.
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Figure 1-3 One bit inner product circuit — an algorithm

At this level, switching logic elements are used. In turn, these logic
elements are implemented in a certain technology. Transistors, capacitors,
etc., are used to implement these logic functions as shown in Figure 1-4. At

this level, algebra of signals [3] will be used.
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Figure 1-4 A transistor network — an algorithm



Eventually, when the design is completed, it will be realized in a physical
domain. By partitioning the design into these levels, the designer needs
only to concentrate on one level at a time. The details of lower levels are

completely hidden.
2. Interplay of Space and Time

In each of the algorithms chosen above, the exact location and time step
for the arrival of data at a processing element are important. The interplay
of space and time does not occur in a program in a conventional “high-level”
language since only one thing happens at a time, and where each item of data
is physically stored is not important. This is not the case in the design of
VLSI systems. Data that are far apart cost more energy and take more time
to access, since a longer wire means larger capacitance and resistance. What
is considered a good algorithm in a traditional language is not necessarily
good when physical cost is taken into account. For example the algorithm
Quicksort has performance advantage nlogn over the n? required by the
Interchange sort algorithm. Yet Quicksort involves swapping data that are
arbitrarily far apart; each unit of cost is as expensive as accessing data that
are farthest away. On the other hand, interchange sort only swaps data that
are next to each other, thus each unit of cost is that involved in accessing
only the neighboring elements [41]. This locality of communication is the key
to an algorithm that is amenable to VLSI implementation. Hence VLSI is an
environment in which both space and time need to be considered for design,

verification and analysis of algorithms.
3. Notation for Describing VLSI Systems

So far the above examples of algorithms for VLSI are described by

pictures. It is possible to reason about an algorithm informally using pictures
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when it is relatively simple. A formal notation will not only be helpful in
reasoning about the design, but can also be used to generate simulation and
drive the compilation or assembly of physical layouts. Moreover, it is the
first step towards an automatic verification tool (theorem prover) for VLSI
gystems. There have been many proposals for specification of concurrent
systems. They differ in expressiveness, treatment of semantics, range of
applicability, and programming styles — to name a few of them, data flow
equations by Kahn[20], Actor Systems by Hewitt and Baker[15], its semantics
of nondeterministic nature by Clinger [10], CSP by Hoare [16], CCS by
Milner [30], Trace Theory by Rem, van de Snepscheut and Udding [34],
and work focused on hardware description by Gordon [13], Cardelli [7], and
Milne [28]. A special class of concurrent systems — linear systems — can
be specified using z-transform notation. The work by Johnsson et. al.[19],
illustrates not only verification but synthesis of these systems. However, none
of the notations has the combination of all the following properties to allow

specification of general concurrent VLSI systems.

Formal Semantics. With the advent of computer aided design tools
for VLSI circuits, specifying VLSI designs in an ezecutable form has become
well-accepted. However, the specification must be mantpulable as well for the
following reason: the hierarchical design method demands proper interfaces
among pieces of the design at each level as well as consistency between the
abstract model at one level and the implementation at the level below. At a
very low level, where the inputs and internal states of a sub-system are only
a few bits, consistency checking can be done by exhaustively verifying all
possible cases. For any larger sub-system, the consistency check amounts to
verification of a program, where the program corresponds to the specification
of the sub-system. Therefore, the specification language must have a formal

semantics so that the specification of a given design can be formally verified.
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Applicability. Another important property of a language for VLSI
systems is its applicability to objects of all levels. It must be able to describe
a network of processes as well as a transistor network. It must be capable
of describing a realistic system in a simple way and at the same time must
be amenable to a simple treatment of semantics. A language is of no use if

either the description or the semantics is insurmountably complicated.

Referential Transparency. Functional (or applicative) languages,
different from imperative (or assignment-based) languages, have the property
that different occurrences of the same expression in a program always have
the same value. A program written in a functional language is therefore
free of side-effects and easier to reason about. Functional language also
describes the following kind of concurrency automatically: functions ¢ and
hin f(g(z,y), h(z, 2)) are independent due to the referential transparency of

variable z and therefore can be evaluated concurrently.

History Sensitivity. Variables in an imperative language retain the
state of a computation so that it can be used to affect the behavior later in the
computation. This property is especially important in describing real-time
systems where input to a program is a stream of data taken by the program
as the computation proceeds rather than given initially as a set of data. It is
very difficult to describe concurrent systems such as architectures for signal
processing without explicit modification of state. A functional description for

such applications becomes very cumbersome.

In this thesis, a methodology for specifying and verifying VLSI systems
is presented. The focus is on deterministic concurrent systems rather than
non-deterministic systems in general. The notation allows description of

non-deterministic systems, but in common with other treatments lacks a
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completely satisfactory treatment of their semantics. Following Carnap’s
Aziom Systems for Physics[6], explicit space and time parameters are used to
describe a given concurrent system. With explicit time as a parameter, change
of state can be expressed by state transition functions in the manner of [1].
Hence the language is history sensitive and at the same time allows the clarity
of functional programming. The same notation applies to systems ranging
from the level of transistors up to the level of communicating processes.
Fixed-point semantics [37] is used for abstracting the behavior of system
from its implementation. The consistency between an implementation and
its description can therefore be verified. The framework can be viewed as a
concurrent programming notation when describing communicating processes;

a hardware description notation when specifying integrated circuits.

4, An Overview

In the next chapter, a model of computation for concurrent systems is
first presented. It differs from “Communicating Sequential Processes” [16] in

two important aspects.

(1) It separates the deterministic concurrent model from a more general
nondeterministic one. The former is presented first and the extension

to the latter in Chapter 6.

(2) An applicative state transition in the sense of [1] is introduced so

that a functional style of programming is possible.

The syntax and semantics of the language CRYSTAL are introduced.
The description of a system is called a space-time algorithm since space and
time are explicit in the description. Some knowledge about Scott’s theory

of computable functions is assumed. In the third chapter, the systolic and
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pipelined algorithms are described and proofs of their correctness are given.
Since the class of asynchronous algorithms is quite different from systems

with global clocks, two versions of the systolic algorithm are presented and

compared.

In Chapter 4, formal semantics for an arbitrary transistor network is
given. In Chapter 5, an “interpreter” for space-time algorithms — a hierar-
chical simulator — for VLSI systems is presented. Finally, some extensions

of the work and future directions for the research are discussed.
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Chapter 2

A Framework for Expressing Concurrency

1. Model of Computation

The model consists of a collection of processes[11], [17], [16]. Each

process has

(i) a control state register for determining the communication of the

process with other processes,
(ii) a data store,
(iii) the machinery for computing a state transition function [1].

(iv) input ports and output ports. A port is filled in the sense that a
place in a Petri-net [33], [32] is filled by a token and emptied as a
token is removed from a place when the corresponding transition is
fired. Without loss of generality, we assume that each port can be
filled only by one data item at any instant, or in Petri-net term, each
place has at most one token at a time. This assumption is equivalent
to that each port is a queue of finite length n (or at most n tokens

in a any place of a given Petri net).

To describe the relationship among processes, coordinate systems are

used.
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(v) Each process is located in a space coordinate system where each

coordinate is taken from a countable set.

(vi) It is often convenient to use a global time coordinate to index the
operations occurring in the ensemble when there exists a total or-
dering of these operations. In general, operations occurring in the
ensemble of processes are concurrent and cannot be totally ordered.
Therefore, each process has a local time coordinate, taken from a
countable well ordered set, that is used to index the operations each
process has performed. Relationships among these local time coor-
dinates of the processes must be derived for verifying the correctness

of an algorithm.

(vii) The relationship among processes is established by identifying input
port of process 8; at its £,,’th operation with the output port of
process 82 at its ¢,,’th operation. The counting of the operations is

defined below.
A process operates according to the following procedure.

(viii) The state of the control state register is used to select a set of input
ports. The state of this register is used only in this way and is not

used as an argument to a state transition function.

(ix) If all of the selected input ports are filled, we say that communication
is established. The process now starts an operation, called #'th
invocation, consisting of 1) emptying the selected input ports and
2) evaluating the state transition function (firing a transition as in
Petri-net), called the t’th snvocation of the process where ¢ is the
time coordinate of the process. If some input ports are not filled, the

process waits until they are.
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(x) Data in the selected input ports and the state in the data store
are arguments to the state transition function. After the function
is evaluated, the result is used to update the data store and control
state register and to fill the designated output ports. If some of the
designated output ports are not emptied, the process waits until they
are emptied and then fills them. After all designated output ports
are filled, the t’th invocation is completed and the process starts step
(viii) again for the ¢ + 1’th invocation where £ + 1 denotes the next

element in the well ordered set for the time coordinate.

2. Universality of the Model

Such a collection of processes is clearly as powerful as a Turing machine
since the machinery in each process can be a Turing Machine if there is no
bound on the size of the data store. The interesting case is that each of the
processes is a finite automata. Such a system is shown to be universal by von
Neumann [42). To illustrate this model, we show how to simulate a Turing
machine using an ensemble of an unbounded number of finite processes (each
of the parts (i) — (iii) is finite). We construct an “object-oriented” Turing
machine O using a collection of finite processes according to a given Turing

machine T'.

Let each process have the finite state machine of Turing machine T and
a data store that corresponds to one tape square of T. The control state
register has three possible states, “left”, “right” and “self”. The processes
are arranged as a linear array. We can index the processes by using integers.
The particular process corresponding to the square which is initially under
the read head has space coordinate 0 and is called pg. The processes to the left
of po have coordinate —1,—2,...,etc, and those to the right have coordinate

1,2,...etc. A global time coordinate is used since the events occurring in this
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machine are totally ordered. Each process has a pair of input and output
ports to each of its two neighbors and a pair of “self-linked” input and output
ports. Connections between neighboring processes are made by identifying
the input port of one process with the corresponding output port of the
neighbor for all £ where ¢ is the time coordinate. The “self-linked” input
port is identified with the corresponding output port for all £. Each of these
processes corresponds to a square of the tape in machine T and the finite
number of symbols inscribed on the tape initially are put in the data store of

each corresponding process.

Initially, the control state register of process pp is set to “self”. The
control state register of all the processes to the left of py is set to be “right”
and those to the right of py be “left”. Machine O is started from the
environment by filling the “self-linked” input port of process py with gp, the
initial state of T'. After s in the data store (symbol on the corresponding
square in T') and input go (current state in T) are applied to the state
transition function (finite state machine in T), process py updates the data
store with the new symbol 8; (as T would write on the tape), sends g; (the
new state of T) to either the left, the right, or the “self-linked” output ports
according to the direction of read head movement in 7. The control state
is updated as “right”, “left” or “self” according to the head moving left,
right, or not moving, respectively. An invocation is complete at this point
and the process which receives the above new symbol in its input port is
ready for action. Note that in machine O, only one process is active at any
instant since there is only one tape square being read at any instant in 7.
This sequentiality allows us to order the invocations of processes in a global
time frame. It is interesting to see that what is stored as state in 7" becomes

input /output in O and vice versa.
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The computation of O consists of a sequence of the above basic events
which correspond to the basic moves that constitute the computation of T'.
Machine O either proceeds indefinitely as machine T would or terminates
after some finite number of events and the result of the computation is the
gsymbols in the data store in each process. It is clear from this construction
that machine O simulates Turing Machine T. Hence we have shown that our
model of computation is as powerful as a Turing machine. A simulator for any
system modeled as an ensemble of processes will be described in Chapterb 5.
It is implemented in a conventional programming environment and therefore

completes the demonstration of the equivalence of the two models.
3. The Language CRYSTAL*

The language and its semantics are based on the typed A-calculus version
[29] of Scott’s theory of computable functions [37]. Each of the parts or
operations of the computation model above is described by either a constant

value, a variable, a function or a function of functions.

Data Types. There are various data types for state and inputs/outputs

for a wide range of systems of interests. Examples of data types are

(i) The set of analog voltage values A = {a:0 < a < V' }: a subset of

the set of real numbers.
(ii) The set of boolean values B = { 0,1 }.

(iii) The set of n-bit words in 2’s complement representation {i :

—2(r=1) < i < 2(*=1) }: a gubset of the set of integers.

State transition functions. According to the model of computation,

2 state transition function is the basic unit used in constructing a system.

CRYSTAL stands for “Concurrent Representation of Your Space-Time A.lgorithm
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Depending on the systems of interest, different functions are used as a primi-
tive state transition functions. In designing a VLSI system, a primitive can
be an analog model of a transistor when detailed electrical characteristics of
the system are desired. A switch level model of a transistor is used if the
logic values computed by the circuit are desired. An adder is the primitive,
for example, when a multiplier is built. A state transition function can also
be implemented as a collection of existing systems rather than given as a
primitive, in which case it is called a composite state transition function. Its

meaning will be precisely defined below.

In describing a primitive state tramsition function, say, a model of a
transistor, functions like addition, minimum, maximum on subsets of integers
are used. These functions are primitives of the language and must not be
confused with those of the system under construction. We may well use the
plus function (which models parts of the behavior of a transistor) to construct

a piece of machinery for computing the plus function (which models an n-bit

adder, for example).

Let x = (z1,%2,...,Zm) denote the arguments of a state tramsition
function f where z; € D; (the data type of z,),t =1,2,...,m.
J:Di XDy X - XDy — D",
F(x) = (f1, f2,- -, fn)(x)

Each component f; of such 2 function is an element of [Dy X Do X -+ X D, —

(1)

D); in the syntax below, we call each component a state transition function.

Coordinates. To express the relationship among invocations of
processes in the space-time coordinate system, or to express different state
transition functions (or different relationships of invocations) at different
points in the coordinate system it is necessary to use functions on these coor-

dinates. These functions are primitives of the language and like the plus
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function, must not be confused with elements of the system being described.
Although expressions of coordinates are not part of the computation of the
system being designed, they are part of how the system is going to be con-
structed (space coordinates) and used (time coordinates), i.e., what timing

discipline is imposed. Examples of such data types:

(i) The discrete time domain T = {0,1,2,...} (the set of non-negative

integers).

(ii) The discrete space domain § = {(z,§): 0 <z < n,0 < y < n},

where z,y are integers.

(ili) The set of k-tuples £ = {(ey,€2,-..,€x—1,€x)} Where e5,¢z,...,€
are space and time coordinates. This class of data types is called the

space-time domain.

Data Streams. Each process is a point in a space coordinate system and
each invocation of a process is a point in a space-time coordinate system where
the space coordinates are the same as the corresponding space coordinates
of the process and the time coordinate is local within the process. Control
state, data, inputs and outputs of all processes as used in the invocation have
the same coordinates as the invocation. The state and input/output values
are defined in the space-time coordinates as the computation proceeds. They
are expressed as unknown functions from the space-time domain to a certain
value domain. In the beginning of the computation, only the initial state
and initial inputs are defined. As the computation continues, more state and
inputs/outputs become defined in the space-time domain; the computation
ends when no more of them are defined. Each of these unknowns is called a

data stream.

Space-time Algorithm. An algorithm describing a system consists of

the description of the computational part (applying state and input/output
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to state transition functions) and the communicative part (equating or iden-
tifying an input with an output at another point in the space-time domain).

The result is a system of recursion equations in the space-time coordinates.
4. The Syntax of CRYSTAL

In the following, syntactic objects are capitalized and the semantic ob-
jects are in lower case. IN and OUT are names of data streams. Construct
(PTERM,) specifies the computation part of an algorithm and (CTERM) the
relationships (connections) among invocations. (ETERM) specifies an ex-
pression in the space-time domain and (DTERM) that in the value domain.
Aj,As,...,B;,B;, ... denote fixed constants in the space-time domain and
the value domain, respectively. Fy,..., Fj, Fy,...,F;, Gy,Go,...,Gj, and
Hjy,...,H; denote fixed primitive functions over various domains. An example
of them would be a “if-then-else” function.

(SPACE-TIME ALGORITHM (STA)) +
(OUTy(S,T.),...,0UT.(S,T,),IN:(S,Ts),. .-, IN®(S,Ts))
= ((PTERM)y,...,(PTERM),, (CTERM}4,...,(CTERM),,)

(PTERM) «(ETERM)
| (STATE TRANSITION FUNCTION)(IN;(S,T,),...,IN.(S, T.))!

| F1((PTERM)y, (PTERM),,...,{(PTERM);,)

| F;((PTERM),, (PTERM)y, ..., (PTERM);,)

(ETERM) « | 4; | Az | ---
1817,
| G1((ETERM);, (ETERM)q, ..., (ETERM);,)

| G;((ETERM);, (ETERM);, ..., (ETERM);,)

fState transition functions can have various numbers of bound variables, for simplicity, we
always use M of them
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(STATE TRANSITION FUNCTION (STF)) «+(PRIMITIVE STF)
| (coMPOSITE sTF)?

(PRIMITIVE STF) « A\(X},X),..., X,,).(DTERM)

(DTERM) «B; | B2 | ---
1 X1 | X2 |- X
| H; ((DTERM);, (DTERM), ..., (DTERM);,)

| H;((DTERM);, (DTERM);, ..., (DTERM);,)

(CTERM) +(ETERM)
| OUT: ((ETERM),, (ETERM),)

| OUT,((ETERM),, (ETERM),)
| X3 1 X5 | | X
| F}((cTERM);,{CTERM)y, ..., (CTERM);, )

| F;({(CTERM);, (CTERM)g, .. ., (CTERM);;)

5. The Semantics of CRYSTAL

The meaning of (SPACE-TIME ALGORITHM (STA)) is a continuous func-
tional

Y(OUT,...,0UT,,INy,..., IN,) =
(Z[(PTERM);,]..., Z[{PTERM),], Z[(CTERM);],..., Z[(CTERM),,])

where the semantic function X' maps from the syntactic catagory of terms

fAn algorithm can be built from primitive state transition functions or another algorithm
which implements a state transition function. This construct will be given in the last
section when the behavior of an algorithm is defined.
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to [Env — § + T + D], where Env is the environment and p € Env. This

semantic function is defined inductively as follows.

(i) Constants.
Y[AdJp=a:i, a;€8S+T

Y[Bi]p=1b; bi€D.

(ii) Variables.
X[S]e € S,

Z[T]reT,
Z'IIX,-]]p eD.
ZxJeeD.

(iii) Functions.
Y[GH{ETERM),,...,(ETERM);,)] = g(X[(ETERM);],..., Z[(ETERM),])
where g is some fixed continuous function in [(S + T)' — § + T]
L[H((DTERM),,...,(DTERM);)] = A(Z[(DTERM)],..., Z[(DTERM})])
where h is some fixed continuous function in [D! — D]
L[F((PTERM)y, ..., (PTERM))] = f(X[(PTERM)],..., Z[(PTERM)])
where f is some fixed continuous function in [(S + T+ D) = S+ T + D]
Z[F'((CTERM}, ..., (CTERM))] = f(Z[(CTERM);],..., Z[(CTERM),])
where f' is some fixed continuous function in [(S + T + D) = § + T + D]

The least fixed-point of the functional ¥ is defined in terms
of the least fixed-point of each component of W, denoted by
(OoUTY,...,OUTZ,INS,. .., INZ). All constructs above are continuous,
which is proved by induction on the structure of terms by using the closure
property of continuous functions under composition, A-abstraction and the

fixed-point operation. The proofs can be found in [29].

6. The Behavior of an Algorithm

The function an algorithm computes, the least fixed-point of the func-

tional, is a function from the space and time domain to the value domain. If
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an algorithm is to be treated as a black box when used to construct some other
algorithms, we must describe outputs at the end of a computation in terms
of inputs at the beginning of the computation. This behavioral description

is obtained from the least fixed-point by the following:
(RESULT OF STA) +
(Y4,...,Y5) =(BEHAVIOR OF STA)IN({IPORT);),...,
IN ((TPORT) )
where 71,..,Jm €{1,2,...,m}

(BEHAVIOR OF STA) «+ ((COMPOSITE STF)y,...,(COMPOSITE STF),)

(COMPOSITE STF) « A\X},...,X,).OUT({(OPORT))
where j € {1,2,...,n}

(OPORT) + (A,, A;)
where L[A,] = a, € § and Y[A] =a: € T.

(IPORT) « (A,, A,)
where L[[A,] =a, € S and Y[4,] =a: €T.

The semantics of (BEHAVIOR OF STA) is an n'-tuple function from D™
to D*'. Thus the system described by the algorithm can be abstracted as
a system of state transition functions that maps inputs and current states
(X1,...,X7.) to outputs and next states (Y,...,Y?%,). It therefore can serve
as a primitive building block ((COMPOSITE STF)) for constructing a more

complex system.
7. A Simple Example of a Space-Time Algorithm

The following is a very simple space-time algorithm which corresponds
to the program that computes the factorial function in an assignment based

language. Given an input @, this program computes fac as the result.
count + a, fac « 1
while count > Odo
begin fac « fac X count;count := count — 1, end;
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For any ¢ > a, in the following corresponding space-time algorithm,
fac(t) = a!. Since this algorithm is sequential, only one process is needed
and the space domain degenerates to one point. Let T = 0,1,2,... be the

time domain.

count(t —1) > 0 — count(t—1)—1
count(t — 1) < 0 — count(t—1)

fac(t) ={; > 0 count(t — 1) > 0 — fac(t — 1) X count(t — 1) (2.1)
count(t —1) < 0 — fac(t —1)

Data streams in this example are count and fac. Both count(t) and fac(t)
are of type N = {0,1,2,...}. Three state transition functions in the
algorithm are f(z;, z2) = (a, 1) where each component is a constant function,
9(z1,22) = (21 — 1,22 X z1), and h(z;,z2) = (z1,22). Notice that in the
above algorithm, count is used as a variable for keeping track of the number
to be multiplied to the partial result. Why do we not write the algorithm as
the following equation where the time coordinate ¢ is used in the computation
of factorial a?

=01

t<a—fac(t—1) X1t
fw(t)=t>o->{- — fac(i—1)

t > a— fac(t— 1)

The reason is that £ is not part of the implementation, it is only a reference
frame for us to envision and reason about the computation. To see that the
algorithm computes the factorial function, we claim that the following is the

least fixed-point of (2.1).

t>a—-0
count°°(t)={
t<a—a-t
t>a— al
fac™(t) = tSa—’(a_!,)! (2.2)
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By induction on £, (2.2) can be shown to be the least solution of (2.1).
Notice that for all £ > a, both count(t) = count(t—1) and fac(t) = fac(t—
1). Thus the time domain can be restricted such that ¢ < a. In general, a

system reaches its steady state at #,4.44y and

totcady = m:lx{ uti\s.(Stream;(s,t) — Stream;(s,t — 1)) = X28.0] : 1 € {1,2,.

where p is the minimalization operator and ¢ is the number of data streams.

The behavior of the algorithm is )\a.fac(t.,wdy) = Ma.a!, and thus the

algorithm implements the factorial function correctly.

.on}}
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Chapter 3

Semantics of Systolic Arrays

Systolic structure is a term used to describe a class of computational
arrays in which locality of communication is employed to achieve a high
system throughput [21]. It has been applied to the areas of signal processing,
pattern matching for data bases, parsing of formal languages, etc., (for
references, see [21]). In the following, a formal description of the matrix
multiplication algorithm by [22] is given with a proof of correctness. Since
different timing schemes result in different descriptions and proofs, both
the synchronous version and self-timed version are given. Kung’s original
algorithm assumes a global clock, i.e., every process performs an operation
synchronously. The same algorithm with a different timing scheme, e.g., a
self-timed [39] scheme can conceptually simplify the interaction of processes,
the flow of data, and the initiation of the system. This simplicity results
from the fact that the self-timed scheme assures that each process does not
perform any operation until all the meaningful data items have reached the
process. On the other hand, the self-timed scheme does not have any global
control, the ordering of the system events is an emergent property of the
local synchronization. Thus the specification of the relationships among

invocations of processes has to be verified.
1. Matrix Multiplication on a Systolic Array

As shown in Figure 1-1, identical elements are interconnected into a
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hexagonal array. Each element has three inputs and three outputs as indi-
cated by the incoming and outgoing arrows, respectively. Such an element
performs an inner product operation, i.e., ¢out = € + @45 X bsp, and trans-
mits the other two inputs, i.e., @ous = G¢pn, bour = bin. Two matrices to be
multiplied, A and B, and a matrix C for accumulating the partial results are
fed into the array as shown in the figure. The final results will come out from

the top of the array as shown.

Each element is represented by a process in our model. It has only one
control state, namely, always choosing all input ports. It does not have any
internal state but only takes inputs from input ports and writes to output
ports, and therefore the data store is empty. The three components of the
state transition function are described above. As shown in Figure 3-1, the
3-dimensional Cartesian coordinate system is chosen as the space coordinates
because the symmetry of the data flow can be described by the dihedral group
of order 3 [23]. The center of this hexagon (coordinates (0,0,0)) can be viewed
as a corner of a cube; the hexagon covers the three faces that contain this
corner. The relationship among the time coordinates of processes depends

on the timing scheme.
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[ -
Figure 3-1 The Space Coordinates of A Hexagonal Array

2. A Synchronous System

In a synchronous system, a global clock triggers the operations of all
elements at once. The clock period (cycle time) is the maximum of the amount
of time necessary for each invocation to be completed. In this case, the time
coordinates of all processes have a simple relationship: they are identical.

Hence a global time coordinate is used for invocations of all processes.

The Algorithm. Let z,y,z be the space coordinates and £ the time
coordinate; they are non-negative integers. The space-time domain is defined
using the the following expressions which indicate parts of the domain. Some
of these expressions are shown in Figure 3-2. For example, .y restricts the

zy plane to an area within the specified bounds in the first quadrant.
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»H

Figure 3-2 The initialization of a synchronous systolic array

Expressions correspond to quadrants, axis, and the origin:

Py =(n>2z>0)A(n>y>0A(2=0)
(n>y>0A(r>2>0A(z=0)

Pyz =
Pz =n>2>0A(>z2>0A(y=0)
P =(n>2z>0)A(y=0A(z=0)
py=(n>y>0A(z=0A(z=0)

p.=(n>2z>0A(z=0A(y=0)
o =(z=0A(y=0A(z=0)

The areas where elements of matrices are placed initially:

o> Al > 0 A=yl <P Az <30)V{y <3m) A(z=0)

Pa
oy =(z> 0 A(z > 0 A(lz—z] <M A((z<3n)V(z <3n)Aly=10)
pe=(y > 0)A(z>0)A(ly—2 <n)A(ly<3n)V(z<3n))A(z=0)
cphfs((y_>_n)v(z_>_n))/\(ly-—zl<n)/\(y<3n)/\(z<3n)/\(z=0)

Expressions which are unions of other expressions:
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©n =Pzy V Pyz VP2V Vipy V.V, (the area within the hexagon)
Cor =Pyz Y P2z V Vs
Py =Py= \Y Pzy \Y Py
Pt =Pazy \% Paz \% Pz

The space-time domain:

Pe =pPa VpV e
pe=0<t<4n-1)+1

Let 8in, bin, and e¢;, be the input data streams, and a,u:, bou: and
€,ut be the output data streams. The following are (PTERM)’s which specify
the computation (functional) part of the algorithm. The symbol | means

undefined.
Pa 'V Par —* ain(x: Y, % t)

aout(z, Y, 2, t) =
else — |
b V H b inlZ, z. 1

bout(z, Yy, 2, t) = 12 tn( Yy, 2, )
else = |
Prt — c,-,,(z, Y, 2, t)

Cout(z) Y, 2, t) =\Ph Cin(:E; Y, <, t) + a;n(z, Y,z t) X bin(z, Y,z t) (2)

else — |

(CTERM)’s specify the connections.

t=1 —+a0(x,y,z)
‘Pa""a'aut(z’i'lxy'l"l:zit—l)

a;.(z,y,2,1) =
tn( ¥ 2, ) t>1—> cpar—baout(z;y;z'—l)t—l)
else — |

t=1 %bo(Z,y,Z)
Pb "’bout(z'*' lxy)z+1)t_l)

b' 22, ,z,t =
m( y ) t>1-— oy — bout(z:y— 1,z,t— 1)
else = |
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t=1-— co(z,y,z)
Pe —’cout(zyy'*'l;z"'l)t_l)

cin(z,y,2,t) =
t>1— pcl—}cout(z—-l,y,z’t__l) (3)
else — | .

B b L . .
y substituting (3) into (2), &in, b:n, and e;, are eliminated. The space-time
al . . - i
gorithm obtained is a system of recursion equations in &,y:, boy: and e
y You out

'and the initial inputs ag(z,y, 2), bo(z, ¥y, z) and ey(z,y, 2).

(
t=1— {‘aan“' — a9(2,9, 2)

else — |
agut(z, y, 2, t) = { Saa. - aout(z + l;y + l, Z,t - 1)
t>1— (Pa'_)aOUt(z;yaz_l)t_l)
{ else — |

4

eV Py —* bO(z; Y, Z)

b else — |
Out(z, v, 2, t) = { pyp — bout(z -+ 1, Y,z + 1, t— 1)

t>1— 0w _’bout(z)y—lﬂz;t—l)
else & |

ti=1—-

\
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Pht — € (z) Y, z)

=1 {pr = co(z,y,2) + 89(z,y, 2) X bo(z,y, 2)

else —» |

t>1-—

Ph

©h

"oh' - cout(z,y + 1,2’ + l,t'— 1)

Ap;—
rpa — cout(z:y"" 1,Z+ l,t— 1)

taou(z+ 1,y +1,2,t —1) X boys(z,y — 1,2, — 1)
©b — Cour(z,y+1,2+1,t—1)

+a,ut(Z, 9,2 — 1,1 — 1) X boye(z + 1,9, 2+ 1,t — 1)
else = coue(z,y+ 1,2+ 1, —1)

\ +aouf(z1 Y,z — 1: t— 1) X bout(zi V- 11 Z,t - 1)
Ape —
(Pa = Cout(z — 1,y,2,t — 1)

+aou(z+1,y+ 1,2, —1) X bous(z,y — 1,2, — 1)
©b — Cout(z — 1,y,2,t — 1)

\ +aout(z: y,z2—1,t— 1) X bout(z +Ly,z2+1,t— 1)

(4)

lelse — __L

The Input and Output Mapping Funections. The above algorithm

is defined in terms of the initial inputs &y, by and eg. To see that the above

algorithm performs matrix multiplication, it is necessary to map the elements

of matrices from the indices to the space-time coordinates (an input mapping

function) and map the final output from the space-time coordinates to the

structure of matrices (an output mapping function). A Matrix with elements

from some value domain D is a function from the domain N? of index pairs

to D where N = {0,1,...,n—1}.

Given space-time coordinates, the following pairs of input mapping func-

tions give the index pair (s, 7) for a matrix.
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(Ia; Ja); (Ib; Jb); (Ic; Jc) € [8 — .N2]

—_—r = 2y—2z
Ia(zx v, z) = {2y z2=0 (IDOd 3) 73
else = |
23—
Ju(z,9,2) = {22: —y =0(mod 3) =
else =& |
_ {22: — 2z =0 (mod 3) — %%°=
:B, Yy, 2) =
else =+ |
_ {22:-— z =0 (mod 3) — 22
Z YyY, ) =
else =& |
— = 2y—=
L(z,y,2) = {2y z = 0 (mod 3) — =5
else » |
—_— = 22—y
J(2,9,2) = {2z y = 0 (mod 3) = =5
else & |

(6a)

(66)

(6¢)

The initial inputs are defined in terms of matrices (4, B,C € [N? — D))

and the input mapping functions.

( (2y —z =0 (mod 3)) A (2z — y = 0 (mod 3))
Pa — A(I (:C Y, Z), ( z,Y, z))

a.o(:c, Y z) =1 else — 0

Pa! —

lelse — |

( (22 — 2 =0 (mod 3)) A (22 — z = 0 (mod 3))
P — — B(Ii(z,y, 2), Js(z,y, 2))

bo(z,4,2) = else — 0

co(Z, Y, Z) = S

(

Py —
lelse = |

(2y — 2= 0 (mod 3)) A (22 — y = 0 (mod 3))
Pe = = O(L(2,9,2), Jo(2,v, 2))

else —» 0
et — 0

lelse — |

(7)
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Output mapping functions (X,,Ys,Zs,Te), (Xs,Ys,Zs,Ts) and
Xe,Ye, Z,, T,) in [N? — €] where
Xa(1,7) = max(j — 1,0),Ya(, 7) = max(t1 — 7,0), Z,(i,5) =n -1
Xp(1,7) = max(i — 7,0),Ys(3, 7)) = n — 1, Z4(3, §) = max(j — 1,0)
X.(3,7) =n—1,Y.(¢, 7) = max(f — 5,0), Z.(3, j) = max(j — ¢,0)
TG, =T,7) =T, 7) =n+min(i,7) +i+ 5

(8)

The resulting matrices A', B' and C’ are defined as
A3, 5) = a33(Xa(%,7), Yali, 5), Za(s, 3), Tuls, 7))
B'("' .7) = bout(Xb(i: j): Yb(it j)r Zb(i: 7)s Tu(s, .7)) (9)
C'(": .7) = out(Xc(i: j): Yc(ir j): ZC(i: .7): Tc(i, -7))
The Proof of Correctness. The above system of recursion equations

and the input and output mapping functions must be shown to correctly

implement the familiar identity and matrix functions, i.e.

Proposition 1:
A, 5) =A(, 7)
B'(i,5) =B(i, 5)
n—1
C'(,5) =Y A(i, k) X B(k, 5) + C(s, 3)
ivhoereOSi<n, 0<5<n

The first step towards the proof is to verify the following function (a, b, ¢)
to be the the least fixed point (a5, bgs,, €55;) of the space-time algorithm
(4). Given any point in the space-time domain, this function gives the values
computed by the algorithm in terms of the initial inputs ag, by and ¢;.

Proposition 2:

a, b3, = b, and ¢, = ¢ where

8% =
(Pa V Par —
ao(z + max(t — 1 — 2,0),y + max(t — 1 — 2,0),

&(Z, v, 2, t) = ma,x(z — (t - 1)) 0))

\else — |
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(P V oy —
bo(z + max(t — 1 — y,0), max(y — (¢ — 1)),

bley.21) = z+ max(t—1-—1y),0)
lelse — |
(Pc V Per —
co(max(z — (t — 1),0), y + max(t — 1 — z,0),
e(z,y,2,t) = | z + max(t — 1 — z,0)) (10)
| +81 + 52
\elge — |
where '
0
S = Z ao(z + k + max(Us, 0), y + max(Uz, 0), max(—Us, 0))
k=K, :

X bg(z + k& + max(U;, 0), max(—Uj, 0), z + max(Uq, 0))

and

K,
S = 2 ap(max(V2,0), y + k + max(Vz,0), max(—V2,0))
k=0
X bo(max(Vy,0), max(—V4,0), z + k + max(V;,0)),

and
Ui=t—-14+k—y, Ue=t—-1+k—-2,
Vi=(t—-1-z—k)—(y+k), Voe=(@t—-1—z—k)—(2+k),
K; =1-—min(z,t—1), Ke=minn—1-y,n—1—21t—1-2)
Proof :

The proof is by induction on ¢ for each phase of a “computational
wave”. The significance of defining phase is that the partial result of a
given output is carried by a wavefront of a fixed phase. Let di(z,y, 2,t) =
z + y + z + 2t be the phase for the incident wave and ¢,(z,y,2,t) =
z+y + z—t be that of the reflected wave.

First we show that a33, = a and similarly, b33, = b. If not ¢, V par

then from (4) and (10) 835, = | = a. If , V pa then
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(i) If t = 1, since z > 0, max(z—(t—1),0) = 2z and max(t—1—z,0) = 0.
Therefore

aszt(z' y’ z’ l)

= a0(‘77: Y, z) by (4)
= a(z; Y, 2, l) by (10)

(i) (£ > 1) A @a.

8oz, ¥, 2,t) =a5,(z+ 1,y +1,2,t— 1) by (4)
=a(z+1,y+1,2,t—1)
by induction hypothesis since
piz+1L,y+1,2,t—1) = ¢;{z,y,2,1t)
=sao((z+1)+(t—-1)—-1,(y+1)+(t—1)—1,0,0) by (10)
=ag(z+t—1,y+t—1,0,0)
=a(z,y, z,1)

(iii) (£ > 1) A par.

a:‘:lt(z’ y’ z, t)
=a,0,(z,y,z—1,t—1) by (4)
=a(z,y,z—1,t — 1)
by induction hypothesis since ¢,(z,y,z—1,t — 1) = ¢,(z, Y,2,t)
=ao(z +max((t—1) =1~ (2~ 1),0),y + max((t~ 1) - 1 - (= — 1), q),
max((z —1)— (¢t —1—1),0),0) by (10)
=a9(z + max(t — 1 - z,0), y + max(t — 1 — z,0), max(z — (t—1),0), 0)
=a(z,y, 2,t)

Next we show that ¢33, = ¢. If not p, V o then e, = 1l=c I
®c V o then

(i) t = 1. In this case, §; = S, = 0 since K; = 1 and K, <.

Pht — 00(2, v, Z)

coolz,y,2,1 ={
t ) o — co(z, v, 2’) + 80(3, Y, z) X bo(z, Y, z) by (4)
=c(z,y,2,1)+0+0 by (10)



(i) (t > 1) A .

cout(z, 9, 2,1)

=coue(z,y+1,24+1,t 1) by (4)

=c(z,y+1,z+ 1,1 —1)
by induction hypthesis since ¢;(z,y + 1,2 + 1, — 1) = ¢i(z,v, 2, 1)

=¢o(0,(y+ )+ (-1 —1L(z+1)+(t~1)-1,00+0+0 by (10)
since max(z — (£ —1),0) = 0 and K; = 0,K, <0

=co(0,y +t—1,2+¢t~1,004+0+0

=c¢(z,y, 2,t)

(iii) (¢ > 1) A r A w..

con:(0,9,2,1)
(Pa = Cout(T, ¥+ 1,2+ 1,8 —1)
+8ou(z+1,y4+1,2,¢t— 1) X boy(z,y — 1,2, — 1)
) b —* Cout(T, ¥y +1,2+1,¢— 1)
- +a-out(2,y,z——1,t—1) X bou(z+1,y,2+1,t —1) by (4)
else — cout(z; y+1lL,z+1,t1—1)
| +8out(Z, 4,2 — 1,6 — 1) X byye(z,y— 1,2,t — 1)
=co(0,(y + 1)+ (E—1~1),(z4+ 1)+ (t—1—1),0)
+ Mz, 9,2,8)51(0,y + 1,2+ 1, — 1)
+ XMz, 9,2,8).50,y+ 1,2+ 1,t — 1)
+ ao(max(t — 1 - 2,0),y + max(t — 1 — z,0), max(z — (t — 1),0),0)
X bo(max(t — 1 —y,0), max(y — (t— 1),0), 2 + max(t — 1 — y, 0),0)
by (10) and the hypothesis (using both the reflected and incident waves)
—co(0,y +t— 1,2+t —1,0) + \z,y,2).5.(0, 4, 2,)
+ Nz,9,2,1).52(0,y, 2, 1)
since \(2,4,2,8).81(0,y + 1,2 + 1, — 1) = (2,9, 2,£).51(0,y, z,t) = 0

(iv) (£ > DA pr A por.
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eglolt(z’ y’ z’ t)
Pa = Cout(z — 1,y,2,t —1)
+a,u(z+1L,y+1,2,t—1) X byys(z,y— 1,2, t - 1) by (4
1 2 _’cout(z_l:yrzxt—l) y )
+8out(z,y,2—1,t —1) X bous(z + 1,y,2+ 1, — 1)
=cg(max(z -1~ (t-1-1),0),y + max(t—1—1—(z — 1),0),
z+ max(t—1-1-(z—1),0),0)
+Mz,y,2,1).8:1(z - 1,y,2,t — 1) + \(z,9,2,1).52(z — 1,y,2,t — 1)
+ ag(max(z+t—1—2,0),y + max(z +¢—1— z,0),
max(z — (t — 1) —z,0),0)
X bo(max(z +t—1—y,0), max(y — (t — 1) — z,0),
z+max(z+t—1—y,0),0)
by induction hypthesis and (10)
=c¢o(max(z — (t — 1),0), y + max(t — 1 — z,0), z + max(t — 1 — z,0),0)
+Xz,9,2,t).5(z,9,2,t) + Mz,¥,2,1).5(z,y, 2, t)
since A\(z,y, 2,t).S2(z — 1,y,2,t — 1) = \(z,y, 2,1).82(z,y,2,t). O

3. A Self-timed System

A self-timed system has no global clock which synchronizes each invoca-
tion of all processes. The time coordinates of processes do not have a simple
relationship as a synchronous system does. The initialization is also different.
The following expressions indicate the parts of the space domain where ele-

ments of matrices are placed initially.

)

- see
F LT
A
L

A
')




Figure 3-3 The initialization of a self-timed systolic array

Poa =Pzy VP2V py
Py =Pz Vi Vs
Pe=PyzVoyVP:

The space-time domain:

s =pa VsV pe
pi(z,y,2) =0 < t < n—max(z,y, 2)

(PTERM)’s that define the processes:

o — ain(m; v,z t(z,y,z))

Bou z:yrz;tz, , =
4 (=3 z)) {elae - |

Pr — bin(z: v, 2, t(::,g,z))

bou:(z, ;z;tz, 2)) =
o=y (=9 )) {else—-»_L

Pr — cs’n(z: Y, 2, t(z,y,z))
caut(z: v,z t(z,y,z)) = +ain(z; ¥, 2, t(z,y,z)) X bin(z; Y,z t(:,y,z)) (12)
else — | |
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(CTERM)’s that define the connections:

( "Pa, - a'o(z: 1) z)

t(-"'yv") =1- Pa! — aou’(z) v,z—1, t(-“,%z—l))

else — |

a;.lz,y, 21 = ¢
m( ¥,2, (z,y,z)) ’(pa — aout(z + l,y+ 1, zZ, t(-"+1.y+l,z))

t(x.y.Z) >1—pa — a,ut(z,y,2—1, t(z,y,z-—l))

\ Lelae - _L

(

(s — bo(z,y, 2)
t(z,y,z) =14 P — bout(Z; y—1,z t(z,y—-l,z))

else — __L
(Pb —* bout(z +1,y,z+1, t(1+1,y,z+1))

tz,y,2) > 1= 5 = bousz,y — 1, 2, t(z,y—1,2))
{ \else — |

bin(z: ¥,z t(z,y,z)) = 4

( (P — 00(2:, Y, Z)

t(z,y,z) =19 P — cout(z - 1,9,z t(z—-l,y,z))

\else — |

c‘n(z) Y, 2, t(zyyyz)) = Vpc — cou,(z, Yy + 1; z+ 1, t(z,y+1,z+1))

t(z,g,z) >1-— P! — cout(z - L9, 2, t(z—l,y,z))

{ lelge — |
(13)

Note that there are free variables in the expressions of (CTERM)’s. They
are the time coordinates of neighboring processes which communicate with
process (z,y, z). To obtain the semantics of the algorithm, the semantics of

.these free variables must be obtained first. Since the communications between
neighboring processes determine the relationships of the time coordinates of

the processes, the time coordinate of one can be expressed as a function of
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the other. The correctness of these functions that relate the neighboring
processes must be proven. Since a communication is established by input
ports being filled by neighboring processes or by initialization of the system,
such a function depends on the initial input functions ag, by, and e¢g. They

are defined as follows.

Input Mapping Functions. The functions (I,, Ja), (I3, J3) and (1, J,)
which map from the space coordinates to index pair of matrices are elements

of [ — N2].
Pa—Y

Po — T

Ja(z,y,2) = {else - |

P
I(z,y,2) = {else - |
Pp— 2
Jo(z,y,2) = {else - |
L(z,y,2) = {else-—» 1

Je(z,9,2) = {else - |

The initial input functions ay, by, and ¢g,.

Pa — -A(Ia(z) v, Z), Ja(z) Y, z))

ao(z,y,2) = {else ol

Py A(Ib(z) v, z)) Jb(z; Y, z))
else -+ |
Pe — A(Ic(zx v, z): Jc(zx Y, z))
else = |

bO(zt Y, z) = {

eo(z,y,2) = { (14)
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Let 8 = (z,4,2), t(8) = t(z,y,2), 30d w(s) = z+ y + 2. In order to
relate time coordinates of processes, we look at two processes s and &' where

an output port p of & is connected to an input port of s and the following

condition holds:

for each invocation, p is always selected by process 8 as one of the

input ports and always selected by &' as one of its output ports.

We claim that

Proposition 3:

Whenever output port p is filled by #(s')’th invocation of s’ and process s
is ready (all of its input ports are filled, see step (ix), Section 1 of Chapter
2) for its t(s)’th invocation then

t(s)—t(&)=c (15)

holds for some constant integer c.
Proof :

Let equation (15) hold initially for some ¢, t(8) = t;, and #(s') = .
We show that (15) still holds if process 8 is ready for a new invocation
to+1, i.e., to show that p is filled by tj + 1’th invocation of &'. If process
8 is ready for ¢{p + 1’'th invocation, then p must have been filled again
since 8 always selects p and the last item in p is taken by £;’th invocation
of 5. Hence process 8' must have completed at least one more invocation
and filled its output port p, i.e., t(s') > £ + 1.
On the other hand, the number of times &' can be invoked is contrained
by &. Initially process s is ready to start its £p’th invocation. Process &'
can start its £y + 1’th invocation if it is ready. Since p is always one of

the selected output ports of &, 8’ cannot complete its £ + 1 invocation



40

(hence starts its &' + 2’th invocation) without 8 having started its £p’th
invocation and emptied p which was filled by the t{’th invocation of &'.
Therefore, p is filled by ¢(s')’th invocation of &' where t(s') < t) + 1.
This proves that (15) holds. O

For this algorithm, the following relationships among invocations of

neighboring processes holds.
Ho') = {w(g') = w(s)+2—t(s)—1 (16)

w(s') = w(s) — 1 — {(s)

We can use Proposition 3 because in this algorithm all processes always select
all input ports and all output ports. If process s is closer to the origin than
¢, ie., w(s') = w(s) + 2, then by (14), p is filled at the initialization. Hence
¢ = 1 in this case. If process 8 is further away from the origin than &, i.e.,

w(s') = w(s)—1, then by (14), p is not filled at the initialization and therefore

c=0.

By replacing the free variables ¢,/ 4 .+ in (13) by a function of ¢(, , .)(=
t(s)) defined by (16), all variables in (13) become bound. A set of equations
similar to (4) can be obtained and the functionality of this self-timed systolic
algorithm can be verified in the same way as the synchronous case. Before
verifying the functionality of the algorithm, we need to show that the algo-
rithm is free of deadlock, i.e., for each process (z, y, 2), all £ = n—max(z, y, 2)
invocations required for computing the result (defined by the time domain ;)
are realizable. By initialization, process (0,0,0) can start its first invocation
since all of its three inputs are filled. However, the number of invocations is
also constrained by the initialization, since any process (z,y, z) where k =1,
i.e., on the boundary of the array, can be invoked at most one time only. It
is easy to show that these boundary processes will be invoked at least once

by induction on w = z + y + 2. The first invocation of all processes thus
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results in a configuration of the ports being filled exactly the same as the
initialization except for the boundary ones. Hence by induction on k we can

show that any process (z,y, z) will be invoked k times. [

Now we can assert that the least fixed-point of the algorithm is the

following:

Proposition 4:

YoV Par — 8o(z +1t,y+1,0)
a:f‘t(z,y,z,t)s{ ’ ’

else —» |
ws V pp — b0(3+t:0:z+t)

bz, y,2,t) =
‘ ) {else—+__|_

®c V 9 — eg(max(z — ¢,0), y + max(t — z,0), z + max(t — z,0))
02‘;:(-"’, ¥, 2 t) = + EZ;to aO(k; y+i, 0) X bin(k: 0,2+ t)

else —» | an

Proof :

Similar to that of Proposition 2, the proof is by induction. In this
case, the induction is over the well-founded set K = {k : k = z+y+2+
3(t(z,y,2)) } for each phase of the wave. The phase of the reflected wave
is ¢, = t(3 4 ,) and that of the incident wave is ¢; = z+y+2z+ 2t(2,9,2)-
O.

Similar to the synchronous case, using the following set of output map-

ping functions in (9), Proposition 1 holds for the self-timed system.

Output Mapping Functions. (X,,Y,,Z,,T.), (Xs,Ys, Zs, Ts), and
(X.,Y., Z,, T.) where
X.(1,7) = 7 — min(s, 7), Yo (%, 7) = ¢ — min(s, 7), Z,(¢,7) = n — 1 — min(s, 7).
X3(3,7) = ¢ — min(s, 7), Y3(2, 7) = n — 1 — min(s, 7), Z,(z, 7) = 7 — min(s, 7).
X,(i,5) = n—1—min(, 7), Y.(s, 5) = i — min(i, 7), Z,(i, 7) = § — min(s, 5).
To(4,5) = To(i, 7) = To(s, §) = min(s, 7).
(18)
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From both algorithms, we observe that the input and output mapping
functions and the behavior description of the hexagonal array are much
gsimpler for the self-timed version. This result is not accidental, for the
interaction among flows of data for this particular algorithm only utilizes
one third of the resources (time and space). In the self-timed version, only
one third of the processes (all processes with the same k = z+y+2431(,, 5))
are active at any instant. In the synchronous version, all processes are active
at all times; thus padding zeros are necessary since only one third of the
inputs are “real” data. The simplicity of the self-timed version is a pay-off
of the more sophisticated synchronization method. It is necessary to prove
that local synchronization gives rise to a relationship of the time coordinates

among all the neighboring processes and the computation is deadlock free.
In summary, the behavior of a systolic array is obtained by:

(i) An input mapping function from the structure of the value domain

to the space-time structure of the system.

(ii) The fixed-point of the space-time algorithm which defines the com-

putation of the system in the space-time domain.

(iii) An output mapping function from the space-time structure to the

structure of the value domain.

4. Pipelined Architecture

The pipelined architecture (Figure 1-2) is very similar to the systolic
architecture (Figure 1-1) in that local communication is used to avoid long
propagation delay. I is usually simpler to describe and analyze because of

the one dimensional structure in space. In the example presented below,
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each stage of the pipeline has an internal state, which is not the case in the
systolic array example. In CRYSTAL, since the time coordinate is explicitly

used, internal state pose no difficulty in describing a system.

The following is the space-time algorithm for an n-stage pipelined in-
ner product element IPE given the behavioral description of a one bit inner
product element IPB shown in Figure 3—4. The function this pipeline imple-
ments is B X M + A;,, where B and M are n-bit non-negative binary numbers

and A;, is a 2n-bit non-negative binary number.

D > Gout
Gin ————s p>
! C
Min . D D > Moyt
bbb
load;n, D «E - loadout
bin D - bout

Figure 3-4 A single bit inner product element IPB

We show that the behavior of an IPE element ( the composition of n IPB
elements and several n bit shift registers) is in fact the function above. The
symbol “”, and “+” denotes the “and” and “or” operations on boolean values
Oandi Let S = {0,1,2,...,n} be the space domain for indexing the IPB
elements and shift registers and T = {0,1,2,...} be the set of non-negative

integers which indicates the steps of computation. Since the behavior of this
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pipeline inner product element is periodic in time, the value of the expression
t — 8 can be restricted to within 1 and 2n. The space-time domain € for the

pipeline is defined as

E={(s1t):8€85,t€T,and1<t—s8<2n}

The value of a(s,t) is the accumulated partial sum computed by IPB
element s at step £. ¢(s,t) and bb(s, t) are the carry of an adder and the s’th
bit of multiplier B, respectively, both are internal states of IPB element s.
Signal load(s,t) is for loading bb(s,t) from b(s,t), a bit of the multiplier.
Signal k(s, t) is used to clear the interna! state of the carry and multiplier of
the previous word before a new word starts. The value of k(s,t) computed at
the k — 1’th cycle (word) is used as an initial condition for the k’th word. In
this case, £ and s such that ¢ — 8 = 0 which is not in the specified space-time
domain is used in place of ¢ and 8 such that { — 8 = 2n in the description of

k.

ac [ — B]
__[8>0—a(s—1,t—1)P (bb(s, ) -m(s — 1, — 2)) D (s, — 1)
a(s, 1) = {a =0 — Ao(t) |
(1

c €[ — B
8>0—
MAI(a(s — 1, — 1), (bb(s, 1) - m(s — 1,¢ - 2)), (2)
o(s,4) = e(s,t—1)) k(s —1,t—1)+0 k(s —1,t 1)
8=0—b_|_
bb =€ [ — B]

8> 0— (bb(s,t—1)-load(s —1,t—2)
+b(s —1,t —1)-load(s —1,t —2)) - k(s —1,t —1) (3)
+0-k(s—1,t—-1)

8=0— |

The following are shift registers (delay elements) for propagating the

bb(s,t)

operands. Two register cells (two units of delay) are used for each of the
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signals load and m, whereas one register cell is used for each of the signals

k and b in an IPB element.

load € [£ — B]

load(s,t)=<8__0_+{t=0—+i
L t>0—0
therefore
([t =25 — 1

load(s,t) ={s <t < 28— |
h2's<t§2n+.'3—>6

k €[ — B]
(6>0A(t>1)—=k(s—1,t—1)
k(s t) = 8=0_+{t=0—+1 .
0<t<2n—-1-50
therefore

k(s t)_{t=8—-+i
’ 8<t<2n+s—-10

be[f — B]
(8>0A(t>1)—Db(s—1,t—1)
b(s,t) = 8=0_’{0<t_<_n—>B(t—1)
n<t<2n— |
therefore
b(s,t)={s<t§n+s—+3(t——l—-s)
ntaea<t<2n+4+8— |
m € [ — B]

(s > 0)A(t>2) > m(s—1,t—2)
m(s,t)=<8__o_){0_§t<n—>M(t)
\ n_<_t<2n—+6

therefore
(s <t < 28— |

m(s,t) =428 <t < n+28— Mt—2s)
L(n-*—2e_<_t$2n.+8)-->6

(8 > 0)A(t > 2) — load(s — 1, 2)

(4)

(5)

(6)

(7)
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From the functional description of shift registers, (4), (5) and (8), the func-

tional description of the internal state bb can be derived.

(t=128—0
t=28—+b(s—-1,t—1)=B(t—1—-38)=B(s—1)
(6<t<28—1)Vv(28<t<2n+s—1)— bb(s,t-1)
t=2n+8— 0 (8)
r.~1<t$28—1—>()

=423<t<2n+8—-1-+B(s—1)

t=2n+3—0

bb(s,t) =

To prove the correctness of this algorithm, the space-time structure is
first mapped to another structure. The multiplication of two n-bit binary
numbers can be represented by a recurrence of the partial product. In the
following 7 is used to indicate the partial product at stage ¢ and 7 is used to

indicate bit 5. Let
M ={0,1,2,..,n}and Mo ={0,1,2,...,2n—1},
and A and C be two functions in [Ny X N — B] where
A7) =a(i,i+ 7+ 1) and C(¢,7) = c(,t + 5 + 1).
Inversely,
a(s,t) = A(s,t —1—38) and ¢(s,t) = C(s,t — 1 — ) (9)

Using definition (9) and substituting the result obtained in (7) and (8) into
(1) and (2), we obtain the following relations among the new functions A, C,

B and M.
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as,t) = A(s,t — 1—3)
8 >0—
26 <t<n+28—1—

Ale—1,(t—1)~1—(s— 1)) @ (B(s — 1) - M((t — 2) — 2(s — 1)))
={ {  ©c(s(t—1)—3s)
(6<t<28-1)V(n+28—1<t<2n+s8)—

. A(s—-1,(t-1)—-1—-(s—-1))PC(s,(t—1)—1—3)
;8=0-—)Ao(t)

(10)
c(s,t) =C(s,t —1—3)
(8 > 0—
(26 <t<n+28—1—

MAJ(A(s—1,(t—1)—1— (s — 1)),
(B(s — 1) - M((t — 2) — 2(5 — 1)), C(s, (t — 1) — 1~ 8))
(6<t<28-1)V(n+2s8—1<t<2n+38)—
MAJ(A(s—1,(t—1)—1—(s—1)),0,c(s,(t —1)—1—3))

t=2n+8—1—0
x8=0-—)_]_ '

(11)
Let ¢ = 8 and j = t — 1 — &, substituting them into (9) and (10) we obtain
( (1i—-1<j<n+i-1-
' Ai—-1,7) @ (BE-1) -MF—-(E-1))DciEi—1)
Al .)__{1,>0—H L. . .
(1,5) = 0<ji<i-1V(n+i-1<j<2n)—
‘ L A(-1,7)@cl,5-1)
2 =0 — Ag(7)
(12)
, i—1<j<n+i—1-

MAI(A(:—1,7),(B(E — 1) - M(7 — ( — 1)), C(3,5 — 1))
1>0-0{0<5<i-1)v(r+i—-1<7<2n-1)—
nJ(A(” -1, j)) 6) C(i) J- l))

C(z,5) = |

;j=2n-1—+6
t=0— |

(13)
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In the above two equations, if 5 is not in Mg, it is understood as 2n + j of
the previous word computed in the pipeline. We now proceed to show that
equation (12) and (13) embody an algorithm for computing the inner product

of positive numbers in the binary representation.

Let x(k), y(k), and 2(k) for k = 0,1,2,...,m — 1 be the binary repre-
sentation of non-negative integers z, y and 2, respectively. A recurrence
formula for addition of binary numbers z =z + y is

5(k) = y(k) ® x(k) @ w(k—1)
w(k) = BAI(y (k), x(k), w(k — 1))

for k=0,1,...,n—1 and z(n) = w(n —1) (14)
where w(k)’s are the carry bits and
w(-1) = 0.

Notice that the boolean ezclustve or function is actually modulo 2 addition
of bits and the majority function is the floor (“integer” division) of sum of
bits divided by 2, i.e.,

2(k) = (y(k) + x(k) + w(k — 1)) (mod 2)

wlb) = [(y(k) +x) 4wk —1) J (15)

By a straight forward induction on n, it can be shown that

n—1 n-—1

zn: 2bs(k) = ) oEx(k)+ Y 2%y (k).
k=0 k=0 k=0

Due to the finiteness of machines, usually 2 = z+y (mod 2") is the operation

performed. This operation is defined similarly by

(k) = y(k) @ x(k) ® w(k — 1)
for k=0,1,...,n—1 and
wik) = WAX(y(E), x(k), w(k — 1) (16)
for k=0,1,...,n—2 and w(-1) = 0
and 8(n) =w(n—1) =0
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For the pipeline inner product element, we need to show that

2n—1 n—1 n—1 2n~1
Y 2A(n,g) = (Z 2kB(k) X ) 2FM(k) + ) 2"Ao(f)) (mod 227)

=0 k=0 k=0 =0
Since
n-—1 2n—1
) 2*B(k) x Z 2EM(k) + D 27A0(5)
k=0 3=0
n—1 n—1 2n—1 i
= Z (2‘B(i) X Z 2’°M(k)) + Z 27 Ao(7)
i=0 k=0 j=0
n—1 2n-1
=Y di+ Y 27a0(9)
=0 =0
n—1 n+i—1
where d; = 2'B(i) X Y 2FM(k)= Y 2/M(j —1)B(3)
k=0 J=i

((((E e o)

= pn (the n’th partial product)

wher {P:‘ =pi1+di—1, t=12,..,n
e 1.
Po = 25201 27 Ao(7)

By induction on ¢ and (18), it can easily be shown that

2n—1
p; (mod 227) = Z 27A(3,7) and therefore
=0
2n—1 )
z 2’A(n, 5) =pn (mod 22%)
=0

n—1 2n—-1
( D 2kB(k) X Y 2kM(k) + Z 2’Ao(1)) (mod 2°7)

Thus the ¢orrectness of the above pipelined algorithm has been shown.
This proof is approached differently from those of the systolic arrays in the

previous sections where the solution with space-time domain is obtained and
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then mapped to the structure of matrices. In this proof, the space-time
coordinates are mapped to the coordinates indicating the stage of the partial
product and the bit pumber for the equation. The solution is therefore
obtained with these indices as domains. It is because these indices are more
convenient for expressing the multiplication function as sequences of bits. We
now let Apue = 350" 27A(n, 5), Ain = Xony! 27A0(4), B = 52} 2*B(k),
and M = Z:;}, 2¥M(k). The functionality of the pipeline can be described
by Aoyt = Ain+B X M. The data type is a bounded integer rather than a bit.
The IPE element can thus be used at the next level without its implementation

detail but only its functionality.
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Chapter 4

Transistor Networks

Examples of primitive state transition functions given in the previous
Chapter are familiar mathematically defined functions. To describe a
transistor network, however, functions which model the circuit components
must be given. A satisfactory circuit model must be an abstraction at a
suitable level of the detailed physical behavior of circuits. A model must
be justified from the underlying electrical model with a given set of assump-
tions made about the particular technology used for the components. The
ingenious part in devising such a model is to attain a set of assumptions which
have a high enough level of abstraction to allow a model that is computation-
ally practical but still has enough power to describe real circuits. We have
chosen Bryant’s [3] switch level model of metal-oxide-semiconductor (MOS)
technology as the primitive functions for transistor networks. This model
has been widely tested by users of his simulator MOSSIM [4]. A trapsistor
network is approximated by a series of conductance networks, each of which
is represented by a system of linear equations in this model. A “unit-delay”
timing model, which Bryant defined operationally, is used to obtain a new
conductance network from the result of the previous conductance network.
This model provides the resulting values of all nodes of a transistor network
given initial state and values on input nodes. For the purpose of simulating an
entire design at the transistor level, Bryant’s model alone suffices. However,

hierarchical simulation and verification of a network require obtaining the
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behavior (a function) of a each sub-network rather than just the values of -
nodes of each sub-network. It is therefore necessary to re-formulate the en-
tire switch-level model as a space-time algorithm and thus provide formal
semantics for an arbitrary transistor network. The functional abstraction of
the network can then be used as a building block at the next level. In this
way, a VLSI system can be described and verified hierarchically in a simple
and uniform manner all the way from networks of transistors to high level

networks of Processors.
1. Circuit Components as Processes

A VLSI circuit is composed of primitive circuit components such as
transistors and nodes. Each of these components has certain attributes such
as voltage, current, capacitance, and resistance associated with it. Each of
them performs actions which are governed by physical laws defining relations
among the attributes. A component (a transistor or a node) is represented
as a process. Attributes such as capacitance and resistance are constants
associated with this process. Voltages on capacitors are represented by the
state of the process. The inputs and outputs of the process (called signals),
are used to represent the flow of current. The actions performed by each
component are represented by state transition functions. For a network of
circuit components as 2 whole, signals are initially defined only at the sources.
They gradually propagate in space and reach more components, influence
one another and therefore change with time, until they reach a steady state.
That is, the signals at all nodes of a circuit do not change anymore. But
for an oscillatory circuit this situation may not occur and there exists no
steady state. The dynamics of a circuit can be viewed as initial signals,
which are undefined over most of the network, evolving into better and better

gignals (a chain of monotonically more defined functions). This phenomenon
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corresponds to our formalization of a signal as a data stream (an unknown

function from the space-time domain to the data type of signal values).

2. Data Types for Transistor Networks
Possible data types for a VLSI system include:
(i) The set of boolean values B = {6, 1}.

(ii) The set of ternary logic values ¥V = { 0, 1,X } where X represents an
illegal voltage between logic 0 (6) and logic 1 (i).

(iii) The set of transistor types P = { dtype, ntype, ptype }, which denote
n-channel depletion mode, and n-channel or p-channel enhancement
mode transistors, respectively.

(iv) C = {c1,¢c2,...,6x } is a discrete set of capacitance strengths : a
subset of the set of positive integers. These strengths are ordered by

the usual ordering on integers, namely, ¢; < co < --+ < €.

WG = {91,92,.-,9,} Similarly, a discrete set of conductance

strengths where g; < go < --- < g, .

(vi) The set of signal strengths § = {0} + C + §: a sum of data types.
The switch level model assumes the capacitance strength is always
weaker than the conductance strength except for ¢, which is the
capacitance strength of sources. This set is totally ordered as 0 <
61 << <1 <1 < g2 << gy < . Each adjacent
pair of strengths model actual conductance or capacitance that differ

by order of magnitude.

(vii) The set of signal values X' = § X V: a product of data types. Each

signal value has both a signal strength and a logic value.

(viii) A set of functions from data type £ (space-time) to S (signal

strength): a set of continuous functions over data types.
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3. Primitives — MOS Switch Level Model

An MOS transistor has three terminals: source, drain, and gate. The
voltage on the gate of such a transistor controls the current flow between
the source and drain. The source and drain are completely symmetrical.
In [3], the behavior of a transistor network is approximated by a series of
logical conductance networks. Transistors that are on are represented as a
high conductance and those that are off as a zero conductance. Different
sized transistors result in conductances which differ in order of magnitude
and different sized nodes have capacitances that differ in order of magnitude.
The steady state of each conductance network affects the topology of the next
conductance network by the gate voltage which controls the on or off state
of each transistor. The transition from one conductance network topology

to the next is based on the unit-delay model of switching a transistor with

respect to its gate voltage.

For each conductance network, the Thévenin equivalent circuit is first
constructed from the original network. For each node, the equivalent ad-
mittance with respect to all sources (combining the admittance accumulated
along each path to a source or input) is computed. The voltage for each node

of the equivalent circuit is then obtained.

In order to detect whether there is any danger of charge sharing or paths
to both logic 1 and logic zero in a conductance network, Ternary logic values
are used for node voltages. If the gate voltage of a tramsistor is X € 7V,
it is ambiguous what the conductance for that transistor is. An effective
way of handling this case is by obtaining three separate strengths and then
computing the strength and voltage for each node. First the equivalent

admittance is computed from all sources and all stored charge of voltage,
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both i and 0, assuming all transistors with X on their gates are off. Then
the equivalent admittances from i sources or stored charge and 0 sources
or stored charge are computed separately where transistors with x on their
gate are treated as on. These admittances are called the one part and
gero part, respectively. Once all three admittances are evaluated, they are
combined to produce the new node strength and voltage. The following is a
hierarchy of processes which models an arbitrary transistor network. For each
process, its states and state transition functions are described. In defining
the functions, formal parameters are used and should not be confused with
the states if the same symbols are used. The inputs and outputs are not
explicitly differentiated from the states where a process is defined although
this information is in the description at a higher level where the process is

used.
4, Transistor as a Process

States.

4.1 A constant gy € § which is the conductance strength of the transistor
when it is on.

42 g; € § and g2 € §, the conductances whose values depend on gate
voltage of the transistor. Both g; and g» equal g if the gate voltage
is such that the transistor is on and gzero if the transistor is off. When
the gate voltage is X, gy is the mintmum conductance in the sense
that the transistor is treated as if it were off and g, is the mazimum
in the sense that the transistor considered as on.

43 p € P, a constant specifying the type of the transistor.

4.4 sr € § and dr € S, signal strengths computed by the transistor at

its source and drain.

State Transition Functions
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4.5 The function couple models a signal strength s coupled with a con-
ductance g. The node strength (or equivalent conductance) is affected
by the conductance g connecting (in series) to it, The effect of two
conductance in series is treated as the weaker one of the two since

the order of magnitude approximation is used.

couple € [S X § — §]
couple(s, g) = min(s, g)

4.6 The functions setconduc; and setconduce model the control of the
transistor conductance by the gate voltage v. setconduc; gives the
minimum conductance ¢g; and setconduco gives the maximum con-

ductance go mentioned above.

setconducy E[V X P X G — G]

(p = diype — ¢
P=ntype—+{(”=A0)v(v=x)—+O
setconducy(v,p, g) = ¢ v=1-9g
v=1)viv=%x)—0
p=ptype—>{( R ( )=
\ v=0—yg
setconducs € [V X P X § — §]
[p = diype — ¢
{,,_—_6_->o
p = niype — »
setconduce(v,p, g) = | (v=DV@p=X)—y
p—ptype—+{"=i—+0
\ (v=0V=X)—y

5. Node as a Process
States.
5.1 The node capacitance ¢ € C.
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5.2 The equivalent admittance of the node a € §.
5.3 The node logic value v € V and node strength s € §.
5.4 The zero part z € § and the one part y € §.

State Transition Functions.

5.5 { combine'}._, is a family of functions which model the behavior of
a node where r conductance paths join. The order of magnitude ap-
proximation, where the strongest signal always dominates all weaker
signals, is used. In the following, we will drop the superscript ¢ when

we refer to the function.

combinec §™t1 5 §

combine = \(sg, 8;...,8,) = max(sg, 81, .. ., 8r)

5.6 The functions ¢nitial0 and snitiall set up the signal strength accord-
ing to the voltage on the node for computing the zero part and the

one part, respectively.

tnitial0 €[S XV — §]
tnitial0(s, v) = {v = lﬂ—’ 0
v=0Vv=X)—s

tnitiall€[§ X V — S]
v=0-0

initiall(s,v) = {(v —ive= X) — 8

5.7 A family of functions { combinevalue};_, models the approximation
that the node voltage is determined by the path with the greatest
admittance (the dominating path). Signals are propagated step by

step through each circuit component in the switch level model. A
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signal not on the dominating path might become the signal on the
node at some intermediate step before the steady state of the circuit
is reached. If the circuit is acyclic, this faulty signal will eventually be
overridden by the dominating one. In general, circuits may be cyclic,
and such intermediate signals cannot be overridden. For that reason
any signal strength which results from the paralle]l combination of
paths will be ignored (set to 0) if it is weaker than the equivalent

admittance a.

combinevalue € [§™% — §]
combine(sg,81...,8,) < a—0

combinevalue(a, 8¢, 8;. . ., 8,) = { combine(sp,8;...,8,) > a —
combine(sg, 8. .., 8,)

5.8 The function computevalue combines the zero part and the one part.
The equivalent admittance a is obtained assuming the minimum
conductance. For transistors with X on their gate, the zero part
and one part are obtained assuming maximum conductance. Since
the equivalent admittance a must have originated on either a 1 or a
0 , at least one of y and z must be at least as large as a. If one of
y and z is smaller than a, we can be sure that the larger one results
from a dominant admittance path even if all of the transistors with
X on their gate are treated as off. Hence the node is given the value
corresponding to the larger one. On the other hand if Both y and 2
are as large as or larger than a, we cannot be sure that there will not
be an equal strength path to both 1 and 0 for some choice of on or off
for transistors with X on their gates. Hence under these conditions

the node is given the value X. This mechanism also assures that the
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connection of two nodes with equal capacitance strength and different

stored values will generate an X.

computevalue € [§2 — V]
8 =0A8 >0— 0
computevalue(so,81) = sy > 0N 8; =0 — 1

elge - X

5.9 The function update models the dynamic storage of charge on the
capacitance. A signal can be stored on a capacitance ¢ but its
strength 8 can only be as large as ¢.

update € [§ X C — §]
update(s, c) = min(s, c)

6. Conductance Network as a Process

States. A conductance network is composed of conductances
(approximation of the transistors) and nodes. It is therefore a composition of
processes and not a primitive process. The states of this composite process
are the collection of states of each individual component. We describe each

collection by a function from the space-time domain defined below.
Ny ={1,2,...,n} is the set which indexes over the nodes in a network.

Let I and X be two disjoint subsets of N;. Set I indexes over the input
and source nodes (these are nodes that provide signals). Set X indexes over
internal nodes (those which provide no signal but are capable of storing
charge dynamically). Let Ni,o, be the set of transistors of the network. Each
transistor can be uniquely identified with the triple (3, 7, k) where 4, 7, and &

€ N; denote nodes at the source, drain and gate of the transistor. Hence a
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connectivity function

f € [Ntra.n. - Nlal

which maps the transistors into their unique identification can be defined.

Then
N2 = f(Ntra.n) C Nla

is the set that indexes over transistors. The space time domain is ¥; X T, for
nodes and N2 X T for transistors. The states are described by the following

functions from the space-time domain.

8.1 Unknown streams &, £ and y in [Ny X T — §] are the collection

of the equivalent admittance, zero part and one part of all nodes,

respectively.

6.2 Streams sr and dr are elements of [No X T — §] which are collections

of signal strengths at the source and the drain of the transistors.

6.3 Gg, Gi, and G2 which are constant functions with respect to time ¢

and therefore are elements of [M; — §].

8.4 C is an element of [N; — C] which is the collection of the capacitance

strengths of all nodes.

6.5 ve [X — V], and 8€ [X — §]. which are the collections of initial
voltage and strength of the signals on all internal nodes and are
constant functions with respect to ¢ at this level. The strength of
input nodes are defined by C, the capacitance strength above. For
sources, this strength is c., the greatest element of signal strength
$. Variables tny,tn2,...,tn, are for input nodes of the network and

their values will be assigned by the environment.
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6.6 A, Z,and Y € [N; — §] are the collection of admittances, zero parts

and one parts of the network at steady state defined below.

Algorithms defining State Transition Functions. The state transi-
tion functions for the primitive processes (transistors and nodes) define the
outputs and next state directly in terms of inputs and current states. For a
composite process, outputs and next state usually cannot be defined directly;
rather they are defined recursively. The state transition function which re-
lates outputs and next state to inputs and current state is the fixed point of
the recursion equations describing the network. The following are the recur-
sion equations for computing the equivalent admittance at each node for an

arbitrary conductance network.

6.7 Compute the equivalent admittance at each node.

(z € I — C(z)
[t::O — S(:D)

t > 0 Aeven(t) —
combine(a(z,t — 1),sr((z, 71, k1), —1),...,

a(z’t)=*zéx—+4
sr((z, 51, ki), t — 1),dr((51, 2, k11,2 — 1),.. .,
dr(i,, z, k[+,-, t— 1))
| (odd(t) — alz,t —1)

(1)
where ! is the number of transistors whose source is node z and r is the
number of transistors whose drain is node z. For the sake of clarity, we use
Fseeesdls 81,..5% and k—1,..., k4, to express the neighboring nodes of
node z (since these nodes are fixed for a given network), instead of using the
connectivity function f mentioned above to express these nodes as an explicit

function of z.
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odd(t) — couple(a((s, 5,k) 0 2,t — 1),G1(1, 7, k))
sr((t,7,k),t) = {even(t) At > 0 — sr((s,5,k),t — 1) (2)
t=0— |

odd(t) — couple(a((,7,k) 0 1,t —1),G1(1, 5, k))
dr((z,5,k),t) = {even(t) At > 0 — dr((s,7,k),t — 1) (3)
t=0— |
Substituting (2) and (3) into (1) we have

(z € ] — C(z)
(t =0 — S(Z)

t > 0 A even(t) — combine(a(z,t — 1),
couple(afsi,t — 2), Gi(z, /1, k1)), . - .,

a(z,t) = { z€EX — couple(a(y, t — 2),Gi(z, 71, k1)),

couple(a(iy,t — 2), G1(¢1; 2, ki4+1)), - - .,

couple(a(i,,t — 2), G (i, z, ki+,)))

\ lodd(t) — a(z,t — 1)

(4)

Notice that when t is odd, a is exactly the same as it was at ¢ — 1, and

therefore it is redundant to specify a at odd t. Hence (4) can be written as

(z € I — C(z)
(t =0 — S(z)
t > 0 — combine(alz,t —1),
a(z,t) = 4 zEX - couple(a(s, t — 1), Gy(z, 51, k1))- . ., (5)

couple(a(s, t — 1), G1(z, 21, k1)),
couple(a(iy,t — 1), Gi (41, 2, ki+1)), - . .,
\ \ couple(a(i,,t — 1), G1(¢,, z, kits)))

This equation defines the equivalent admittance for each node in terms of

the equivalent admittance of all nodes adjacent to it. For an isolated node,



63

the equivalent admittance is just the node capacitance strength. For a group
of nodes which are not connected by any conductance paths to sources, the
equivalent capacitances for these nodes are computed. The phenomenon of
charge sharing occurs in this situation and is handled properly by the same
mechanism which handles the combination of paths. Function a specifies the
equivalent admittance for any node at any time. Since the functional in (5) is
continuous, & is well defined by the fixed-point theorem. Notice that the time
domain is infinite, thus obtaining a takes an infinite number of time steps.
Fortunately, most circuits reach a steady state in a finite subset of the time
domain. In our framework, a process reaches its steady state if all of its states
do not change after a certain time has elapsed. Using a specific process as an
example, the collection of equivalent admittances of a conductance network
becomes steady at time ¢, if for every node in N;, the admittance a is the

same as it was at one time step earlier, i.e.,
ptPz.(a(z, t)—a(z,t—1)) = Xz.0] = £,, where g is the minimalization operator.

This operator u gives the smallest ¢ such that \z.(a(z,t) — a(z,t — 1)) =
Az.0. We can now restrict the time domain to Tz, = {0,1,2...,£,}. The

equivalent admittance on all nodes can then be described by

AE[M — 8], A(z)= al(z,&,) where a®e is the least fixed point of (5).

6.8 Compute the zero part of the network. The equations are similar
to the ones above except that the maximum conductance G; is used

instead of Gj, and the equivalent admittance A obtained above is

used.
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e

sr((Z,7,k),t) =

(

dr((s,7,k),t) = 1

\
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(z € I — initial0(C(z),3n;)
t = 0 — initial0(s(z), V(z))

t > 0 A even(t) —+ combinevalue(A(z), 2(z,t — 1),
sr((z, 71, k1),t —1),...,80((z, 71, k1), t — 1),
dr((zy, 2, k41, t — 1),...,dr(i,, 2, kg, t — 1))

; odd(t) — s(z,t — 1)

(6)

'Odd(t) - couple(z((i, I k) 02,t— 1)) GZ(i) 7 k))
even(t) At > 0 — sr((s,7,k),t— 1) (7
=0 _L

odd(t) — couple(s((, 7, k) o 1, — 1), Ga (s, 5, &)
even(t) At > 0— dr((i,7,k),t — 1) (8)
t=0— |

Following the same steps as above and substituting (7) and (8) into (6), we

have

z(z’t)=4zEI—H

\

(z € 1 — initial0(C(z),in,)

t = 0 — initial0(S(z), V(z))

t > 0 — combinevalue(A(z), (z(z,t — 1),
couple(z(sy,t — 1), Ga(z, 71, k1))- - -, (9)
couple(z(gi,t — 1), Go(z, 21, k1)),
couple(z(iy, t — 1), Ge (41, 2, k141)), - - -,

' couple(s(i,, t — 1), Go(1,, 2, ki++)))

Similarly, the least fixed-point of the equation is an element of [N; X T¢, —

8], where T, is the restricted time domain and the steady state zero part

strength on all nodes is

described by

Z€[M—S], z(z) =2z, &)
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6.9 Compute the one part of the network. Similar to equation (9), we

have

(z € I — initiall(C(z),in,)
[t = 0 — initiall(S(z), V(z))

t > 0 — combinevalue(A(z), (alz,t — 1),

Y(z, t) = 9 z€X — ¢ ""Uple()’(J.l, t— 1)) GQ(Z: .:111 kl)) ‘< (10)
couple(y(ﬂ: t— 1)7 G2(z; M kl)))

couple(y(ilf t— 1)) G2(i1; z, kl+1)): R

\ \ couple(y(i,,t — 1), Ga(¢r, z, ki+r)))

The one part of the network can be obtained as before, and is described by

YE [N — S, Y(z)=y%(z,¢,)
where £, = pt\z.(y(z,1) — y(z,t — 1))z.0], and y*v is the least fixed point of(10).

State Transition Functions. The state transition functions are least
fixed-points of above algorithms.
Egue[[M = V] X [N = S| X [Ne— G] = [M — S]]
Egv(v,s,G)=A
Zero,One € [[NMy = V] X [N = S2 X [Me = §] = [Ny = §]]
Zero(V,8,A,G)=Z
One(V,8,A,G)=Y

6.10 With the above functions, the node voltage for the conductance

network can be obtained by the following function:

Crnetwork € [Ny = V] X [M = S] X [Me = G]* = [M = V] X [M —= S]]
Crnetwork(V, s, Gy, Gg) = (\z.computevalue(Zero(V, s, Equ(V, S, G1), Gz)(z),
One(V, s, Equ(V,§,G1), Ge)(z))), Egqv(V,8,G1))

Formation of Conductance Network
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8.11 Compute the connectivity of the network (network topology) which
is given by those transistors that are on. There are two possible
extremal network topologies; one is given by assuming maximum
conductance and the other by assuming minimum conductance. The
state transition function for computing the topology of each conduc-
tance network is defined as

Topo € [N — V] X [Me = P X [N — G] — [N — GI]
Topo(V,P,Gp) = (M, 7, k).setconduc, (V(k), P(3, 7, k), Go (2, 7, k)),
A, 7, k).setconduco (V(k),P(1, 7, k), Go(, 7, k)

)

6.12 Dstore models the dynamically stored charge on each node by setting

the strength of the signal stored on each node to the capacitance
strength of that node.

Dstore € [Ny — S] X [M = C] = [M — §]]
Dstore(s, C) = hz.update(s(z), C(z))

7. Transistor Network as a Process

After obtaining the functions for a conductance network and the forma-
tion of a new conductance network, a space-time algorithm which describes

a transistor network can be given.

Algorithm for a Transistor Network. The following equation
describes how the topology of each of the successive conductance network
is constructed from the signals computed by the previous conductance net-
work. Each of these conductance networks computes its signal values from
the dynamically stored signals of the previous network. Notice that each time

step at this level corresponds to £, + &, + £, finer steps at the conductance
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network level.

t=0—(Vp, So)
(V,8)(t) = {t > 0 — Cnetwork(V(t — 1), Dstore(S(t — 1), Cy), (11)
Topo(V(t — 1), Py, Gy))

The least fixed-point of the functional in (11) is denoted by

(V,8)* €[Te = [N = S X [M — V]
where § = ut[V(t)—V(t—1) = z.0A S(t) — S(t — 1) = \z.0]
and T is the restricted time domain at this level.
We further M-abstract the appropriate arguments to obtain the following

function which models the behavior of a transistor network,

Trnetwork € [[My = P} X [Mp = G] X [Ne = C] X [Mp = V] X [Ny — 8] —
[Te = [M — V] X [M = S]]
Trnetwork(Py, Go, Co, Vo, S0) = (V, S)E.

For a given set of transistors (Py specifies the types and Gy the conductance
strength) and nodes (Cp specifies the node capacitance strength), the connec-
tion among the nodes (defines M), and the initial state of the network (Vp
and Sp), the function gives the behavior of the network in time (each step
being a conductance network). The steady state signal values for all nodes

are given by

(V,s)€[M =7V XS]
(v, 8) = Tnetwork(Py, Gy, Co, So, Vo)(€).
Let iny,tny,...,4n, € I be the input nodes and 0y,0z,...,04 € X be the

output nodes, then the functional description of the network is

net € [[V X S)P — [V X §)1]

net = (nety, netg, . .., nety)
where nety(iny, ..., inp) = Tnetwork(Py, Go, Co, So, Vo)(£)(0:)
andt1=12,..,q.
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Let the new time step ' be § time steps at the transistor network level. At
this point, the behavior of the network is obtained. It is a state fransition
function from inputs (¢ny,...,4n,) and initial state at £ = 0 (also t' = 0) to
outputs (oy,...,04) and next state (the steady state at the transistor network

level) at ¢ =1 (t = §).
8. Functional Abstraction and Semantic Hierarchy

In describing a transistor network, three hierarchical levels are en-
countered, namely, the transistor and node level, conductance network level
and the transistor network level. In order to approach the design hierarchi-
cally or raise the design to the level of functional blocks, the entire transistor
network must be partitioned into pieces where the behavior of each piece can
be obtained and thereafter abstracted as a state transition function. The
partition is not arbitrary; it only makes sense to partition in such a way
that the behavior of the algorithm with the partition (with or without an
equivalent functional abstraction) is equivalent to that of the original algo-
rithm without the partion (and abstraction). When a partition satisfies this
criterion, a new hierarchical level is created. We call it a semantic level.
There are ways to partition a design that do not satisfy the criterion but are
useful in the physical layout of a design. Any level created by these partitions

is termed a syntactic level.

9. Data Abstraction

Aside from the functional abstraction achieved by taking the least fixed-
point of an algorithm, data abstraction often occurs. By the definition of
Cnetwork, we can see that if all inputs to a transistor network are the gates,
the strengths of these input signals are immaterial since only the strengths of
dynamic stored charges are used. Therefore the strength part of signal can

be ignored at gate level and the data type become V instead of V X §.
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In the next chapter, different semantic hierarchies are defined so that
data abstraction can be performed at each level. If a transistor network is
clocked (by either a clock or self-timed signaling), the data type can be further
abstracted to be B the boolean domain rather than the Ternary logic values.
Once the clocked cell level of abstraction is achieved, the manipulation of
functional definitions of circuits is in the familiar regime where boolean al-
gebra or the usual algebra on integers can be applied. Formal verification can
be done using various inductive techniques [43] such as structural induction
[5]. Since a clocked cell is usually fairly small, an exhaustive simulation of
the cell is more convenient than formal manipulation of its description by
hand. A hierarchical simulator based on the space-time algorithms and their

semantics will be described in the next chapter.
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Chapter 5

A Hierarchical Simulator

Simulation consists of exercising the representation of a design on a
general purpose computer. It differs from programming only because the
ultimate implementation will be in a different medium, say a VLSI chip.
In order for simulation to be in any sense effective, the simulated system
must perform the same function as the ultimate implementation. A VLSI
chip is a highly concurrent object; the simulation of such a chip amounts to
programming a highly concurrent system. It follows that any demonstrably

correct simulation technique will be one of the two types:

(i) The entire design is represented as an implementation with objects
which are abstract models of the medium at the bottom level (e.g.
transistor model). The simulation operates on a representation which

is a direct image of the fully instantiated implementation in the

medium.

(i) The design is represented as a hierarchy of implementations. Each
level of implementation is constructed of objects which are abstract
models of the implementation at the level below it. The simulation

operates on a hierarchical representation where each level is refined

by the level below it.

The first approach requires only a model of the implementation medium.

The second approach requires, in addition, a general principle for obtaining
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an abstract model from a given implementation of objects at the lower level.
The second approach allows the implementation details to be hidden and

therefore yields a clearer conceptualization of the design and a more efficient

simulation.
1. Multi-level and Mixed-level Simulation

In the design of a VLSI system, the traditional levels of hierarchy are
circuit level, gate-level, and register transfer level. This partitioning helps
designers focus on one particular level of design at any given time. When
they focus on the register transfer level, for example, they can reason about
the overall design in terms of the functionality of the inter-connected blocks
and a given timing scheme, without worrying about the details inside each
block. On the other hand, when they are designing at the circuit-level,
the focus is on one functional block at a time rather than on the whole
system. Hierarchical simulators such as VISTA [12] and [31] allow designers
to focus on one part of the design in this way. Ideally, if the overall system
design is shown to be correct in terms of the functional blocks, and each
functional block is shown to be correct in terms of its circuit-level or gate-
level implementation, the designers need not examine the correctness of the
detailed implementation across two different functional blocks; i.e., each of
these hierarchical levels provides an abstraction of the level below it. The
functionality of the overall design will always be preserved when the designers
cross the different levels. The complexity of a large system design can only
be effectively managed through these levels of abstraction. Preserving the
functionality, i.e., maintaining consistency between hierarchical levels, is the
most important property of a hierarchical simulator, and the most difficult to

achieve. Successful treatment of the consistency problem has not been found

in the literature.
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A multi-level simulator, when used as a tool to verify a hierarchi-
cal design, should provide a way to ensure the consistency of the design
throughout all levels. On the other hand, the simulator should allow blocks
of different levels to be connected through proper interfaces which handle the
timing and the matching of various input/output data types. The key issue
in such a multi-level simulator is the interface mechanism. In this chapter,
we present a simulator in which a uniform representation is used at all levels
of the design. A method of abstraction for maintaining consistency between

levels and proper interfacing of timing and data types is described.
2. Semantic Hierarchy and Syntactic Hierarchy

In conventional programming languages, macros and procedures or func-
tions have long been recognized as two different ways to facilitate program-
ming. Macros are used only at a syntactic level to ease the specification,
and do not provide any semantic abstraction, since they are expanded during
compilation. The object code of a program using macros is exactly the same
as its counterpart without using macros. However, procedures and functions
are used not only to facilitate specification, but to encapsulate a piece of code
with a well-defined interface to other parts of a program. Ideally, a function
should not allow any side-effects and therefore provides a semantic abstrac-
tion. We make the distinction of the syntaclic hierarchy vs. the semantic
hierarchy in a simulator in a way analogous to the distinction between mac-
ros and procedures in a programming language. The syntactic hierarchy in
the simulator serves two purposes: One is ease of specification, just as mac-
ros in a programming language; the other is that it contains information
about spatial locality. Since it has been observed that activities in circuits
tend to be local [3], this information can be exploited by the simulation al-

gorithm to achieve better performance. Unlike simulators which take a flat
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network specification where the locality information has been thrown away
by the preprocessing to be recovered later on by topological analysis, this
simulator takes advantage of user’s hierarchical specification and requires

neither preprocessing nor topological analysis.

Syntactic Cells. In the context of a switch-level simulator, transistors
and nodes are objects from which everything else is constructed. They are
bottom level cells of the semantic hierarchy. We call this bottom level the
conductance-level since an active device (transistor) is approximated by a
passive conductance. A syniactic cell is a circuit consisting of an intercon-
nection of transistors and nodes where there is no restriction on the input
nodes or the output nodes of the cell. The state of a node in a syntactic
cell can directly or indirectly influence nodes in the others and thus the cell

provides no abstraction for the behavior of a circuit.

Figure 5-1 shows an nMOS ezclusive nor cell which is an example of a

syntactic cell.

+
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Figure 5-1 A non-restoring exclusive nor circuit XNOR.

Although a syntactic cell like the one shown in Figure 5-1 is a com-

position of transistors and nodes, it is at the same semantic level (or of the
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same semantic type) as transistors and nodes. A syntactic cell can also be
a composition of other syntactic cells of the same semantic type, although
these cells can be nested at an arbitrary depth in the syntactic hierarchy.
No separation of the hierarchy into leaf cells and composition cells [35] is
required, i.e., a transistor or a node can be composed with a syntactic cell
directly without making it into 2 syntactic cell by itself. The simulation of
such a cell produces exactly the same result as the circuit represented without
hierarchy. The equivalence of Bryant’s model of a flat network with our
hierarchical represented network can be shown by straightforward induction

on the level of the syntactic hierarchy.

The semantic hierarchy is constructed for abstracting the behavior of
circuits. A syntactic cell is made into a semantic cell if an abstraction of its
behavior is desired. This new primitive semantic cell is used as an “atom” in
a new syntactic hierarchy, which in turn is used within each semantic level

in order to clarify the specification and express the locality of cells.

For simulator based on a switch-level model, the semantic levels can be
the bottom level transistors and nodes (conductance-level), gate-level, clocked
cell level (in a more general sense including a self-timed [391) module with
request and acknowledge signals), register transfer level, and other higher
levels. We call all levels at and above the clocked cell level the functional

level since the functionality of cells at those levels can be abstracted.

Gate-level Cells. A gate-level cell is 2 composition of conductance-
level cells (transistors, nodes and syntactic cells composed of them) with the
restriction that the input nodes be uni-directional, i.e., the input nodes are
gates of transistors. Figure 5-2 shows a gate-level cell. Note that the XNOR

circuit in Figure 5-1 is not a gate-level cell.
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Figure 5-2 A restoring exclusive or gate XOR.

According to the unit-delay model of a transistor, the gate node of a
transistor will not affect the state of the transistor until a given conductance
network is settled. Since each of the input nodes of a gate-level cell is the gate
node of a transistor, no intermediate state on that node will be seen by the
cell until the node reaches the inner conductance-level steady state described
above. The gate-level cell is affected by each of its inputs when each of these
gate nodes reaches its steady state and causes the corresponding transistor
to change state. Notice that to abstract the behavior of a gate-level cell, we
can only discard the intermediate states on all of its output nodes (prior to
its reaching the inner conductance-level steady state). We cannot just keep
the outer transistor-level steady state and discard all the conductance level
steady states. Therefore, the conventional way of thinking about a gate-level
cell as a functional block (in which all intermediate states before reaching the
outer transistor-level steady-state are discarded) is not formally correct. This
incorrect abstraction must be remedied by some other analysis in the design

process. For a simulator, such incorrect abstraction will miss, for example,
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the glitch in the circuit shown in Figure 5-3.

IN T Dc ouT

Figure 5-3 A gate-level circuit that generates logic 0

If we reason about the circuit shown in Figure 5-3 at the functional
level, the output of this cell will be a logic 0 for all possible inputs. Yet
when the input is initially 1 and switches to 0, the output will become a
logic 1 before it settles back to 0. If the i;mer conductance-level steady
state is kept, the simulation output will reflect the glitch properly. In actual
design practice, one often reasons about interconnections of gate-level cells
which behave like the above example, even though the functional abstraction
is not formally correct. This formally incorrect but practically valuable
abstraction works because one adopts a timing discipline in composing gate-
level cells. The timing discipline ensures that eQEh combi:n‘ational circuit in
a given network can only be affected by the steady state value of the output
of the combinational cell to which it is connected. Familiar examples of
this discipline are a two phase non-overlapping clock scheme where the clock
period of each phase is long enough for a combinational circuit to settle,
and a self-timed request-acknowledge signaling. An intermediate value on an
output node will not propagate because of the timing discipline in the same
way that the intermediate value of a local variable will not be returned by a
function in a programming language. Therefore the timing discipline provides

a semantic abstraction similar to a function in a programming language.

Clocked Cells. A clocked-cell is a composition of conductance level

cells, with the restriction that all input nodes must satisfy a timing discipline
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which insures that only the steady-state of the output nodes can be seen by
other cells to which they are connected. (Figure 5-4 shows a clocked cell

formed by two other clocked cells.)
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Figure 5-4 A clocked Muller C-element containing two sub-cells

The steady state of a primitive clocked cell (which does not contain any
other clocked cell as a component, for example, as each of the sub-cells shown
in Figure 5-4) is the steady state at transistor-level for that cell. Each of these
cells can only see the steady state of other cells and therefore provides an
abstraction. The gate-level abstraction is at a lower level than the clocked cell
level since not only the steady state of the transistor-level is kept but all the
steady states at the conductance level are kept as well. Bryant [3] points out
that the gate-level cells provide a useful modeling abstraction since it is not

necessary to keep track of the signal strength used in the conductance-level.
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Experience with MOS design has shown that specifying a chip in terms of
gate-levels cells is not convenient because the restriction on inputs does not
allow effective use of pass transistors. Since clocked cells are usually small, we
use them as the semantic level immediately above the conductance-level cells.
Sub-circuits within them are represented as syntactic cells. In this simulator
we therefore do not support the gate-level abstraction. In a technology other
than MOS, the gate-level may well be an appropriate level of abstraction,

and is very easy to implement within our simulator.

We will now proceed to illustrate the model and its use in specification
and simulation by way of a simple example — a pipelined inner product
element similar to that described in [25]. Figure 5-5 shows an example of a
hierarchical partition of a single bit inner product cell IPB described in [44]

which will be used later in the pipelined inner product element.

MAJ |

Figure 5-5 A single bit inner product element IPB
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This cell is of type clocked-cell and consist of three clocked-cells, A which
is not circled in the Figure, D; and D, which are circled. Cell A contains five
syntactic cells, MAJ, two XNOR gates, an AND gate, and an inverter. It also
contains four transistors and four gate nodes each with ¢; on it, four input

nodes a;,, b, m and, ¢ and finally, two output nodes p and q.

Cells D; and Dy are identical. Each consists of one syntactic cell, the
inverter, a transistor and a gate node with ¢, on it, an input node p for D,
and g for Dy, respectively and finally an output node ¢ for D; and a,u: for
Dy, respectively. The inputs to the IPB are a;y, b, m and the clocks. The
output is aou:. There is one bit of internal state in this cell, namely the carry

c. The current state of ¢ is denoted by ¢.,, and next state by cpez:-

The simulation of this syntactic cell proceeds by (1) obtaining the steady
state of each clocked-cell (A, D; and D.) using its inputs and state, inde-
pendently of the other cells and, (2) transferring the outputs of one cell to the
inputs of the others. Notice that a IPB cell is a syntactic cell, and therefore
each of the three sub-cells is only invoked once. The IPB cell can be further
abstracted to be a bit-level cell. However, it is then necessary to obtain the
steady state of the IPB cell. The above procedure is iterated until the out-
puts of all three sub-cells do not change any more. This iteration yields the
steady state of the IPB cell at the bit-level. This example shows that each
semantic level requires an iteration to obtain its steady state. In the example
of constructing an n bit pipelined element below, we do not use the bit-level

abstraction, and so the above described procedure is invoked only once.

To verify the correctness of this circuit, the three clocked-cells are re-

placed by their functional specification, shown in Figure 5-6. The cell
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specified in a functional form is simulated and compared with the one (with

detailed implementation) described above.

IF ¢, THEN
BEGIN
g+ (a;,, @ (NOT(b AND m)))Dccur.,
p— MAJ(a;,,b AND m,ccur):
END ELSE
IF ¢, THEN
BEGIN
Gout + NOT g, Cnezt +— NOT p;
END,;

Figure 5-6 The functional specification of a 1-bit inner product element.

Notice that the data type in the functional specification is boolean rather
than signal (which has two components, the signal strength and the signal
state) used in the conductance-level representation, and that the algebra of
signals [3] is different from ordinary boolean algebra. In many cases, such as
this inner product cell, a correct signal on the output of each clocked cell can
only be a logic 0 or a logic 1 which falls into the domain of boolean algebra,
although the internal nodes or even the intermediate state of the outputs
can be in state X. The algebra of signals contains the signal state X, which
represents an intermediate voltage between 1 and 0. The steady state output
of a proper clocked cell will always be a binary value. If the output of a
clocked-cell is an X, then either an error has occurred in the implementation
or functional abstraction at the clocked cell level should not be applied. It is
possible, in fact, very common, for the output of a clocked cell to be unknown,

for example, when the output is a function of some state variable which
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has not been initialized. At every level we use the symbol | (pronounced
bottom) to represent an undefined value. It must not be confused with X
which represents a voltage between logic 0 and logic 1 at the conductance-
level. Since an intended output will never depend on an unknown value |, a
possible way of handling a | in the input of a function would be to define the
corresponding output also to be | . An algebra extended this way is called
naturally eztended [26]. (Although there exists other possible extensions, the

natural extension is used in this simulator.).

Notice that even at the level of a simple 1-bit cell, we can see the kind of
data abstraction that always accompanies functional abstraction. Each level
has its own algebra for manipulating data and functions. A formal treatment
of the model of computation that allows such abstractions (input/output
mapping functions for data abstraction and fixed-point semantics for func-

tional abstraction) is given in the previous Chapters.

Word-level Cells. The functional specification given in Figure 5-6 is
used in the next level of composition, in this example the pipelined inner
product element. The performance of the simulation using this specification
will be drastically improved in comparison with the circuit-level specification.
Although exhaustive checking is possible for verifying the consistency between
the two specifications for a single cell like IPB, it becomes rapidly impractical
as the size of the cell grows. Then it becomes necessary for the notation
or language in which the design is described to have formal semantics in
order to allow verification of the consistency between two different levels
of specification. Space-time algorithms are an example of such a notation.
Although the current simulator is implemented as an embedded language in
an ordinary programming language, the primitives for specifying the design

are a direct mapping of the above formal notation.
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An n-bit pipelined inner product element can be composed by connecting
n IPB cells serially, the specific scheme is shown in Chapter 3. We call this
cell IPE. It can be viewed as a word-level cell where a pulse input lsb indicates
the start of a word (say, least significant bit of an n bit word). We can adapt
the interface of this cell so that the clocks can be hidden inside the cell and
the bit serial input and output can be abstracted as words. Figure 5-7 shows
the data abstraction which maps input words d;,, b and # into series of bits
and collects output bits to be the word d@,4e. The bits @;,[], I;[z], and h[t]
are put in one by one to the IPE at its input ports ipe,, , tpe, and ipe,,. A
suitable clock is also generated for the cell. Once the inputs and the clocks
are valid, IPE is called upon to compute its result (written as IPE.compute
in Figure 5-7). It computes by invoking each of the IPB cells, transfers the
results of one IPB to the next and repeats until each of the result returned by
all IPB cells becomes steady. The individual IPB cell, when invoked, in turn

invokes each of its sub-cells A, D; and Dy only one time as described above.

The functional abstraction of the IPE is shown in Figure 5-8. Again, the
consistency of the two different levels can be verified by the combination of

formal verification and simulating both specifications.

IF lsb THEN

FOR ¢:=0 T0 n—1 DO (loading phase)

BEGIN
tpeq;, + Ginlt], tpep — a[z], ipey, — m[i]; (input mapping)
¢1 +high, ¢, +—low; IPE.compule;
¢1 +low, ¢2 +high; IPE.compule;

END,

FOR ¢:=0 TO n—1 DO (unloading phase)



BEGIN
¢ «high, ¢, «+low; IPE.compute;
¢ +—low, ¢ «high; IPE.compute;
dout[t] < tpea,,,: (output mapping)
END;
Figure 5-7 Interface of an n bit-serial element to higher-level specification.

IF lsb THEN 8,4, « Gin +b X 11

Figure 5-8 The functional specification of the inner product element,

The n bit inner product element can be used to construct, for example, a
systolic array performing matrix multiplication [22]. At the level of a systolic
array, the inner product element is used in the functional form as in Figure
5-8, regardless of its implementation as bit serial or word parallel. We have
to be careful however, since the mapping functions that constitute the data
abstraction are never unique. The mapping may be from n serial bits to a
word or from n parallel bits to a word. The mapping in the former is from
time domain to an abstract word and the latter is from space domain to
an abstract word. In connecting two inner product elements at this level,
one must make sure that the output mapping function of one element is the
inverse of the input mapping function of the element to which it is connected.
Two IPE elements as shown in Figure 5-7 can be connected since the output
mapping of one (from bits ipe,,,[¢] for 0 < ¢ < n to an n bit word &,y:) is
the inverse of the input mapping of the other (from n bit word é&;, to bits
tpe,;. [f] for 0 < ¢ < n). The lower level has the same interface problem
in a different form. It is the timing discipline used in the design that allows
abstraction to the clocked cell level. This discipline can be one of several

kinds. For example it may be two, three or four phase clock, or a two or
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four cycle request-acknowledge protocol. Once again the condition imposed

on the output of one cell must match that of the input of the cell to which

it connects.
3. “Structured Programming” in VLSI

The systolic array can also be abstracted from its implementation and
used as an abstract machine performing matrix multiplication, which is
presented in Chapter 3. Notice that the abstraction mechanism is precisely
the same at all levels. Considering the bottom-up approach, we summarize

the two essential steps in the hierarchical design method:

(1) Use a cell defined by its implementation in the context of cells defined
by their functional specifications. In order to adapt the interface

between the cell and its context, a new cell containing the following

three parts is constructed:

i) A function which maps inputs in the data representation of the

high level to the inputs at the lower level.
ii) The implementation at the lower level.

iii) A function which maps the outputs at the lower level to outputs

in the data representation at the higher level.

This cell is now a proper cell with exactly the same interface as a higher

level cell. We can use it as such or

(2) Replace such an implementation with its functional specification.
These two versions shall be verified to be consistent either by simulat-
ing them against each other, by formal verification or by a combina-
tion of the two. Once the results are identical, the first cell can be

replaced by its functional equivalent.
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The order of these two steps can be reversed for the top-down approach.
In the top-down approach, instead of an implementation of lower level func-
tions being abstracted to be a higher level function, a higher level function
is implemented by some lower level functions. Such refinement of design can

be carried out until the implementation at the bottom is completed.

What we have shown is a method for constructing systems from switch-
level circuits to functional blocks through successive semantic abstractions.
Stated the other way around, we have started with functional specification at
the top level and successively refined the specification until it is implemented
in the bottom level representation of the medium (in this case, switch-level
model of transistors and nodes). In contrast to the conventional view of fixed
hierarchical levels, the partitioning of a semantic hierarchy is flexible and
problem oriented. Designers can partition each system in the way that is
most natural to the design, rather than trying to fit it into rigid pre-defined

levels which are not necessarily appropriate.
4. Implementation of the Simulator

The example shown above is very specific, and one can obviously write
a multi-level simulator for this particular system. Such a simulator would
be of limited use since it only handles designs partitioned in the same way.
A general purpose simulator which must support arbitrary levels and mixed-

level seems at first unrealistic. We approach this problem by:
1. Separating out the part that is universal to all system levels
2. Using the power of an embedded language [24].

Embedded languages. It has been observed in integrated circuit

layout languages that an embedded language — a language supporting
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graphics primitives in an existing programming language — has the generality
and flexibility in the specification of designs that an interactive graphic layout
system usually lacks. The effort of making a graphic system as powerful as
an embedded language is essentially that of supporting a general purpose
programming language. It is much more sensible to let the compiler of an
existing language do the work. The same philosophy applies to a specification
language for simulation. We build into a programming language the simula-
tion algorithm and an interactive user interface (corresponding to the debug-
ger in a programming environment) for testing the design. One specifies cells
in an embedded simulation language by invoking primitives for transistors,
nodes, syntactic cells and semantic cells. These primitives are pre-defined in
the language. With the power of a general programming language, users can
then specify functional abstractions, the data abstractions, and various data

types at any level according to their conceptualization of the design.

Representation of Cells. Cells are represented as modules in a pro-
gramming language supporting separately compilable modules. The language
we have used for this specific implementation is Mainsail*[45]. A cell has in it
the specification of its constituents, i.e., the implementation in terms of lower
level cells, and the procedure for computing its result. The former is supplied
by the user and the latter is incorporated automatically. Cells of different
natures — primitive, composite, semantic or syntactic — have different ways
of computing their result. Each of them is made into a template and the
template is compiled together with the specification of the cell’s construction
in the case of a composition cell. A module is typed according to the template
incorporated into it. The net effect is that each module contains the functions

necessary to compute its own behavior.

We use 2 module instead of a procedure to represent each cell because

*Mainsail is a registered trademark of Xidak Inc.
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a cell can be mapped directly into a module which has a data section to .
represent the cell’s inputs, outputs and states, and a procedure section for
the specification of its constituents or the computation of its behavior. Each
module also has one bit of state which records whether any inputs have
changed since it reached its last steady state. No computation is necessary
if they are the same since the outputs of the last computation are still valid.

This “change bit” allows a truly efficient implementation.

Representation of Connections. The computational aspects of a
system have attracted much more attention than the communication aspects.
Since the transfer of information does cost energy and resources (wires), it
must be taken into account. The communication among modules is repre-
sented also as a module which contains the connectivity information and
various ways to transfer information from an output port to the correspond-
ing input port. Both uni-directional and bi-directional connections can be
represented. More important, the connection modules make it possible to
simulate a collection of concurrent processes by a sequential machine in an

order independent way.

The Universal Fixed-Point Algorithm. By viewing a computational
system as an ensemble of cells and connections, we devise a fixed-point algo-
rithm to find the steady state of a cell. The fixed-point algorithm performs
a task similar to the so-called “relaxation"’ algorithm. It can be viewed as an
interpreter for a space-time algorithm which describes the system. It takes
the implementation of a cell in terms of connections and cells in a bipartite
format. The algorithm starts by evaluating all the connections (interpreting
(CTERM)’s). Since at this point, all data streams are totally undefined func-
tions, only the initially assigned state and input/output values of variables

X1,Xs,..., X result. Then each cell is invoked (interpreting (PTERM));
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and the state transition function of the cell is evaluated. After all have been
invoked, each connection is in turn invoked, to transfer the data and thereby
bring about the interactions among connected cells (interpreting (CTERM)’s).
This procedure is iterated until the steady state is reached. The bipartite ar-
rangement of cells and connections results in the property that the order in
which each cell is invoked is immaterial in the algorithm. Each iteration of
the algorithm therefore generates values corresponding to the values of the
least fixed-point of the space-time algorithm at some points in the space-time
domain. Since the algorithm is to terminate once the steady state is reached,
the algorithm yields the correct value which is the corresponding value of
the least fixed-point at steady state. Since all cells and ‘connections are rep-
resented uniformly at all semantic levels, only a single universal fixed-point

algorithm is necessary.

Elements of a Multi-level Simulator. The following modules, em-

bedded into Mainsail, serve as templates for user defined circuits:

1. Cells of various types: transistors, syntactic cells, conductance net-

works, clocked cells, and functional cells.

2. Connections of various types: nodes, bi-directional connections for
syntactic cells below clocked cell level, and uni-directional connec-
tions for functional cells. The formation of conductance network

topology is also represented as a connection module.

In the object-oriented view of computation such as Simula [2], Smalltalk
[18], etc., the above templates are the superclasses of the user defined classes
(cells). These templates are the only structure we build into the simulator.
Instead of building and maintaining data structures that represent a design,

the structure is embedded in user’s specification of inter-connected modules.
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Hence, no global simulation algorithm is necessary to traverse the data struc-

ture.

Each of the modules has variables, constants, and procedures for com-
puting its behavior. Nodes, transistors, conductance networks, the formation
of conductance network topology, and clocked cells (transistor networks) are
described in Chapter 4 where the behaviors are defined by state transition
functions. On the other hand, the behavior of primitive functional cells are
defined in a cell library or supplied by the user. Transistors, nodes and
primitive functional cells compute directly. A composite cell contains the
following lists: sub-modules for the constituents, connections, external input
ports and external output ports. It causes its constituents to compute in a
recursive manner until one of the primitive functions or abstracted functions
is encountered. In the case of a semantic cell, it iterates until reaching its
steady state and returns its result. For a syntactic cell, it only computes
one iteration and then return its result. The behavior of a bi-directional
connection is similar to a node. The behavior of a uni-directional connection
is simply transferring data from an output port of one cell to the input port

(or ports for broadcasting) of another.

Programming consists of three stages: specifying, compiling, and ex-
ecuting along with debugging of a program; simulation likewise consists of
specifying, constructing the structure of a design (compiling), and exercising

(executing and debugging) a design.

Specifying a Design. The user interface for specifying a design con-

tains the following keywords and procedures:

(i) BeginSCell for a syntactic cell, BeginC Cell for a composite semantic

cell and BeginFCell for a abstracted functional cell. These keywords
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cause a template containing the procedure for different ways of com-
puting to be created during the “compile time”. It also creates the
procedure head Compose for the user specified constituents. The
body of the procedure Compose consists of invocations of the follow-

ing procedures for a user to specify a design.

During “compile time”, these invocations cause the template created by
P )

the keywords above to be filled with actual instances of the cell’s constituents.

(ii) Node(type); where type indicates whether the node is a input node

or a internal node.

(iii) Tran(conductanceStrength,type); where type indicates enhance-

ment, depletion mode or p-type, n-type transistors.

(iv) SubModule(class); where class indicates a module of certain type,

say, an exclusive-or gate.

(v) Identify(fromPort,toPort); where fromPort and toPort are either
nodes in a transistor level design or an input port and an output port
for a higher level design. A connection module will be created and

attached to the connection list in the cell’s template.

(vi) EzOut(port); and EzIn(port); for declaring the interface of a cell to

the environment. These ports are attached to the corresponding lists

in the template.

Compiling. Each composite cell module contains the procedure
Compose for constructing the internal structure of a design. When this pro-
cedure of the top-level module of a design is invoked, it in turn invokes the

user specified procedures SubM odule, Identify, EzIn or EzOut. Procedure
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SubModule creates instances of the submodules, updates the submodule list
and in turn invokes the Compose procedure of the submodules. This action
proceeds recursively until a primitive cell specified by, for example, Node
or Tran, or an abstracted functional cell, is reached. A connection between

submodules is established when the procedure Identify is invoked.

Executing and Debugging. After a network has been constructed,
inputs to the network are provided by the user. The simulation of the network
starts when the procedure Compute of the top-level cell module is invoked.
Modules of different nature (primitive or composite, syntactic or semantic)

compute differently as described in the previous section.

The debugging of a network is no different than debugging a program
and there is no reason not to take advantage of the debugging environment of
the programming language in which the simulator is embedded. Inserting a
breakpoint into a program text specifies the desired time for a user to examine
or force values onto some variables in the program. Similarly, specifying the
level of the semantic hierarchy determines the desired time to examine and

force values onto ports of modules in a network.

5. Summary

A multi-level simulator which allows user-defined levels instead of rigidly
pre-defined levels is described. A clear distinction is drawn between the
modularization for ease of specification and for semantic abstraction — the
syntactic hierarchy and the semantic hierarchy, respectively. An example
of multi-level simulation is given which spans from circuit-level up to the

abstract function of an inner product element.

With a formal model as a basis, the implementation of the simulator is

gimple and uniform at all levels. A single universal fixed-point algorithm is
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used. This approach raises the activity of simulation from a low level cor-
responding to macro assembly level in a programming language to a hierar-
chical specification corresponding directly to the conceptualization of user’s
design. Functional abstraction and data abstraction (interfaces between two
different levels) of systems have been illustrated. These abstractions are the
key to the consistency and efficiency of a multi-level simulator. In simulation,
showing that the specification and the implementation are equivalent is not
merely desirable but absolutely essential. This working example has shown
that formal semantics is an essential feature of any design tool as well as any

concurrent programming language.
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Chapter 6

Conclusions

1. Summary of the Thesis

A formal methodology for describing concurrent systems has been given.
It is based on a model of computation where a system is an ensemble of
processes. The language CRYSTAL used in describing the systems has fixed-
point semantics. The hierarchical design method now has a firm basis, where
the semantics of a space-time algorithm describing an implementation is used

as an elementary building block at the next level.

This methodology has been applied to designs spanning several different
levels. It is proven to be effective in handling realistic systems. The language
can be viewed either as a hardware description language which serves as
specification for simulation, or as a programming language for concurrent
systems where descriptions can be formally manipulated and the correctness
of systems can be proved. The power of this framework lies in providing
functional abstraction (fixed-point semantics) and data abstraction (moving
from more detailed data types to higher level data types) for system designs.
This method of abstraction is essential for meeting the challenge of more and

more complex systems.

This methodology, when applied to the simulation of VLSI circuits,

results in a simple yet efficient and universal simulator for designs at all
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levels. The simulation algorithm is simply the interpretation of the definition

of fixed-point. Difficult issues in the area of multi-level and mixed-level

simulation have been clarified.
2. Extension to Nondeterministic Systems

In the model presented in Chapter 2, if the control state register is
replaced by an oracle which nondeterministically decides the set of input
ports to choose and operations described in (viii) and (ix) are replaced by the

following, the model becomes a non-deterministic one.
(viii)’ The oracle chooses a set of input ports.

(ix) If all of the chosen input ports are filled, we say that the communica-
tion is established. The process now starts an operation, called the
t’th tnvocation of the process where t is the time coordinate of the
process. If some input ports are not filled, the set of chosen input

ports are discarded. The process goes back to step (viii).

In the deterministic system, the relationship of the time coordinates
between neighboring processes is completely determined by the control state
generated by a state transition function which in turn is deterministic. Hence
the functions that define this relationship are unique and only one space-time
algorithm results. In the case of the non-deterministic model, depending on
the decision made by the oracle and when various inputs ports are filled, a
set of functions which describe the relationships will result. For each of the
relationships, there corresponds a space-time algorithm. The semantics of
each of the algorithms is obtained the same way as that for a deterministic
system; the semantics of the whole system will then be the set of all the

individual ones. If the system is determinate, i.e., all the different algorithms
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produce the same result, then the behavior of the system can still be described
by a state transition function. Otherwise, when it is used in the next level,
there are a set of functions corresponding to the system, and the number
of algorithms describing the composition of these sets of functions grows
exponentially with the number of levels. From a verification point of view,
keeping track of the exponential number of possible outcomes is extremely
impractical. Statistical treatments of non-deterministic systems in which
probabilistic assertions can be made about these systems is a promising

approach. This area certainly deserves much more research.

3. Future Work

Silicon Compilation. Thus far, a space-time algorithm has only been
used in the behavioral aspect of VLSI systems, namely, formal verification and
simulation. To obtain a physical implementation, a general method of ob-
taining layouts from given sets of layouts of sub-systems must be given. The
structural aspect (physical layout) is today approached separately from the
behavioral aspect. A system is usually described by two sets of specifications:
one for layout, one for simulation. The functionality is verified by simulation
and the layout is verified by extracting circuit features (e.g. transistors) and
simulating the extracted version. The ideal would be to use one specification
that is powerful enough to generate both simulation (interpretation) and
layouts {compilation). Our methodology is readily applicable to such an
integrated behavioral and structural design tool. Difficulty has been ex-
perienced [36] in using a behavioral description of cells consisting of only
a few interconnected transistors, and generating the topological information
automatically for placing transistor features from this description. Hence at
the Clocked Cell level, or syntactic levels below it, a representation [46] of

the topological information and feature sizes provided by the user is used and
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the behavioral information is extracted from this representation. From these
levels up, all specifications will be behavioral. General composition, routing
and placement algorithm will generate the structual information automati-
cally. This approach has the advantage that only one specification is ever
used: the structural representation at the bottom level and the behavioral
representation at the levels above. Once the silicon compiler itself has been
verified as correct, each design only need be verified by simulation and for-

mal verification and no consistency check between layout and simulation is

necessary.

Automatic Verification of VLSI Systems. Verification of the be-
havior of systems has been done mainly by simulation. As mentioned earlier
in this thesis, it is practically impossible to verify the behavior completely by
simulation. The space-time algorithm is suitable for automatic verification
since it is based on the typed A-calculus [13]. The use of an appropriate sym-
bolic manipulation system for verifying large systems is a favored approach
for dealing with the increasing complexity of VLSI. Such a technique could,

in principle, replace simulation for verification at every level even down to

the transistors.

Analysis and Synthesis Techniques. Space-time algorithms provide
a way of describing concurrent systems; the fixed-point semantics and induc-
tion principles allow verification of these systems. What needs to be developed
is a calculus for manipulating the space-time equations so that systems can
be synthesized from their specification. In linear systems, matrix theory, z-
transform notation and its calculus provide powerful tools for manipulating
the description of these systems. Numerous synthesis techniques have evolved
from these analysis techniques. Techniques for more general classes of ap-

plications will facilitate both silicon compilation (synthesis) and automatic
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verification (analysis) of these systems.
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