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Abstract

A methodology for specifying concurrent systems is presented. A model of computation for concurrent systems is presented ßrst. The syntax and semantics of the ianguage CRYSTAL are introduced. The specißcation of a system is caiied a space-time algorithm since space and time are explicit parameters in the description. Fixed-point semantics is used for abstracting the behavior of a system from its implementation. The consistency between an implementation and its description can therefore be ensured using this method. Formal semantics for an arbitrary transistor network is given. An "interpreter" for space-time algorithms — a hierarchical simulator — for VLSI systems is presented. The framework can be viewed as a concurrent programming notation when describing communicating processes and as a hardware description notation when specifying integrated circuits.
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Chapter 1

Introduction

Recent developments in the technology of fabricating iarge-scaie in­tegrated circuits have made it possible to implement computing systems that use many hundred thousand transistors to achieve a given task. An inter­esting design will have high computational complexity rather than merely a vast number of identical simple components such as memory elements. Such a design can be represented as a fully instantiated implementation of ob­jects of the implementation medium (e.g. transistors in VSLI technology) or as successive hierarchical levels of implementations where each level is con­structed of objects which are abstract models of the implementation at the level below it. The former allows implementation details at the bottom level to penetrate throughout the whole design. Such a representation may be suited for machine execution but is hard to deal with from a designer's point of view, and verifying both its functionality and physical layout is costly. As the complexity of the design grows, the limitation of this approach becomes more apparent. The second approach is aimed at managing the complexity of a design. The design is partitioned into successive levels of sub-systems until each is of a manageable complexity — the hierarchical design method [27].
1. A Hierarchical Design

Imagine that one wants to carry out the computation of a matrix multi­



2plication; there are many possible ways to do it. One possibie implementation of this function is by the algorithm shown in Figure 1-1 [22].

Figure 1-1 A Systolic Algorithm
The elementary building block has three inputs and three outputs, each of which is a bounded integer. Each element performs α<,ut = wi,⅛ × 6t∏ + n,⅛, ‰ttt = w⅛∏ and ⅛<,ut = 6,∏. How each element is implemented is not of concern here, only the behavioral description of each of the elements used in designing and reasoning about the systolic algorithm. The complexity and performance of the algorithm are also discussed based on these measurements of each element. The area required by the algorithm is discussed using the area of each element as a unit, and the time required are measured using that required by each element as a unit. Once the design of this algorithm is completed, that is, once it is verified to be correct and to satisfy the requirements in performance, one can move on and focus on the design of each individual element.



3Such an element can be implemented by serial operations on each bit of a binary number, or by concurrent operations on a word that stores the binary number. A possible bit-serial implementation [25],[44] is shown in Figure 1-2; three sequences of input bits are shifted into the pipeline and the result sequences come out the other end.

Figure 1-2 A Pipelined Algorithm
The elementary building block is now a half adder with some shift registers. Some effort may be spent on how to minimize the total delay so that the maximum throughput is possible. Boolean algebra is used in verifying the correctness of the algorithm. When the design at this level is completed, one moves on to a detailed implementation of each element.

Again a particular implementation is proposed, and the logic circuit shown in Figure 1-3 is an "algorithm" describing the design.



4

At this level, switching logic elements are used. In turn, these logic elements are implemented in a certain technology. Transistors, capacitors, etc., are used to implement these logic functions as shown in Figure 1-4. At this level, algebra of signals [3] will be used.

Figure 1-4 A transistor network — an algorithm



5
Eventually, when the design is completed, it will be realized in a physical domain. By partitioning the design into these levels, the designer needs only to concentrate on one level at a time. The details of lower levels are completely hidden.

2. Interplay of Space and TimeIn each of the algorithms chosen above, the exact location and time step for the arrival of data at a processing element are important. The interplay of space and time does not occur in a program in a conventional "high-level" language since only one thing happens at a time, and where each item of data is physically stored is not important. This is not the case in the design of VLSI systems. Data that are far apart cost more energy and take more time to access, since a longer wire means larger capacitance and resistance. What is considered a good algorithm in a traditional language is not necessarily good when physical cost is taken into account. For example the algorithm Quicksort has performance advantage ttlogw over the x? required by the Interchange sort algorithm. Yet Quicksort involves swapping data that are arbitrarily far apart; each unit of cost is as expensive as accessing data that are farthest away. On the other hand, interchange sort only swaps data that are next to each other, thus each unit of cost is that involved in accessing only the neighboring elements [41]. This locality of communication is the key to an algorithm that is amenable to VLSI implementation. Hence VLSI is an environment in which both space and time need to be considered for design, verihcation and analysis of algorithms.
3. Notation for Describing VLSI SystemsSo far the above examples of algorithms for VLSI are described by pictures. It is possible to reason about an algorithm informally using pictures 



6when it is relatively simple. A forma! notation will not on!y be he!pfu! in reasoning about the design, but can also be used to generate simulation and drive the compilation or assembly of physical layouts. Moreover, it is the first step towards an automatic verißcation tool (theorem prover) for VLSI systems. There have been many proposals for specification of concurrent systems. They di fier in expressiveness, treatment of semantics, range of applicability, and programming styles — to name a few of them, data how equations by Kahn[20], Actor Systems by Hewitt and Baker[15], its semantics of nondeterministic nature by Clinger [10], CSP by Hoare [16], CCS by Milner [30], Trace Theory by Rem, van de Snepscheut and Udding [34], and work focused on hardware description by Gordon [13], Cardelli [7], and Milne [28]. A special class of concurrent systems — linear systems — can be specißed using z-transform notation. The work by Johnsson et. al.[19], illustrates not only verißcation but synthesis of these systems. However, none of the notations has the combination of all the following properties to allow specißcation of general concurrent VLSI systems.
Formal Semantics. With the advent of computer aided design tools for VLSI circuits, specifying VLSI designs in an ezect½αMe form has become well-accepted. However, the specißcation must be nταntpufαMe as well for the following reason: the hierarchical design method demands proper interfaces among pieces of the design at each level as well as consistency between the abstract model at one level and the implementation at the level below. At a very low level, where the inputs and internal states of a sub-system are only a few bits, consistency checking can be done by exhaustively verifying all possible cases. For any larger sub-system, the consistency check amounts to verißcation of a program, where the program corresponds to the specißcation of the sub-system. Therefore, the specißcation language must have a formal semantics so that the specißcation of a given design can be formally verißed.
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Applicability. Another important property of a language for VLSI systems is its applicability to objects of all levels. It must be able to describe a network of processes as well as a transistor network. It must be capable of describing a realistic system in a simple way and at the same time must be amenable to a simple treatment of semantics. A language is of no use if either the description or the semantics is insurmountably complicated.
Referential Transparency. Functional (or applicative) languages, different from imperative (or assignment-based) languages, have the property that different occurrences of the same expression in a program always have the same value. A program written in a functional language is therefore free of side-effects and easier to reason about. Functional language also describes the following kind of concurrency automatically: functions y and λ in ∕(y(z, y), ∕⅛(z, z)) are independent due to the referential transparency of variable z and therefore can be evaluated concurrently.
History Sensitivity. Variables in an imperative language retain the state of a computation so that it can be used to affect the behavior later in the computation. This property is especially important in describing real-time systems where input to a program is a stream of data taken by the program as the computation proceeds rather than given initially as a set of data. It is very difficult to describe concurrent systems such as architectures for signal processing without explicit modification of state. A functional description for such applications becomes very cumbersome.
In this thesis, a methodology for specifying and verifying VLSI systems is presented. The focus is on deterministic concurrent systems rather than non-deterministic systems in general. The notation allows description of non-deterministic systems, but in common with other treatments lacks a 



8completely satisfactory treatment of their semantics. Following Carnap's Aziom ⅜∕*te∏M  /or P⅛yMCg[6], explicit space and time parameters are used to describe a given concurrent system. With explicit time as a parameter, change of state can be expressed by state transition functions in the manner of [1]. Hence the language is history sensitive and at the same time allows the clarity of functional programming. The same notation applies to systems ranging from the level of transistors up to the level of communicating processes. Fixed-point semantics [37] is used for abstracting the behavior of system from its implementation. The consistency between an implementation and its description can therefore be verißed. The framework can be viewed as a concurrent programming notation when describing communicating processes; a hardware description notation when specifying integrated circuits.
4. An Overview

In the next chapter, a model of computation for concurrent systems is first presented. It differs from "Communicating Sequential Processes" [16] in two important aspects.
(1) It separates the deterministic concurrent model from a more general nondeterministic one. The former is presented first and the extension to the latter in Chapter 6.
(2) An applicative state transition in the sense of [1] is introduced so that a functional style of programming is possible.
The syntax and semantics of the language CRYSTAL are introduced. The description of a system is called a space-time algorithm since space and time are explicit in the description. Some knowledge about Scott's theory of computable functions is assumed. In the third chapter, the systolic and 



9pipelined algorithms are described and proofs of their correctness are given. Since the class of asynchronous algorithms is quite different from systems with global clocks, two versions of the systolic algorithm are presented and compared.
In Chapter 4, formal semantics for an arbitrary transistor network is given. In Chapter 5, an "interpreter" for space-time algorithms — a hierar­chical simulator — for VLSI systems is presented. Finally, some extensions of the work and future directions for the research are discussed.
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Chapter 2

A Framework for Expressing Concurrency

1. Model of Computation

The mode! consists of ⅛ collection of proceMeg[ll], [17], [16]. Each process has
(i) a control state register for determining the communication of the process with other processes,

(ii) a data store,
(iii) the machinery for computing a state transition /unction [1].
(iv) input ports and output ports. A port is /tiled in the sense that a place in a Petri-net [33], [32] is Riled by a token and emptied as a token is removed from a place when the corresponding transition is fired. Without loss of generality, we assume that each port can be Riled only by one data item at any instant, or in Petri-net term, each place has at most one token at a time. This assumption is equivalent to that each port is a queue of Rnite length n (or at most π tokens in a any place of a given Petri net).
To describe the relationship among processes, coordinate systems are used.



11(v) Each process is located in a space coordinate system where each coordinate is taken from a countable set.
(vi) It is often convenient to use a global time coordinate to index the operations occurring in the ensemble when there exists a total or­dering of these operations. In general, operations occurring in the ensemble of processes are concurrent and cannot be totally ordered. Therefore, each process has a local time coordinate, taken from a countable well ordered set, that is used to index the operations each process has performed. Relationships among these local time coor­dinates of the processes must be derived for verifying the correctness of an algorithm.

(vii) The relationship among processes is established by identifying input port of process Hi at its i,^'th operation with the output port of process #2 at its t,,^th operation. The counting of the operations is defined below.
A process operates according to the following procedure.

(viii) The state of the control state register is used to select a set of input ports. The state of this register is used only in this way and is not used as an argument to a state transition function.
(ix) If all of the selected input ports are Riled, we say that communication is established. The process now starts an operation, called i'th invocation, consisting of 1) emptying the selected input ports and 2) evaluating the state transition function (Rring a transition as in Petri-net), called the t'th invocation of the process where t is the time coordinate of the process. If some input ports are not Riled, the process waits until they are.



12(x) Data in the selected input ports and the state in the data store are arguments to the state transition function. After the function is evaluated, the resuit is used to update the data store and control state register and to fi∏ the designated output ports. If some of the designated output ports are not emptied, the process waits until they are emptied and then fills them. After all designated output ports are Riled, the t'th invocation is completed and the process starts step (viii) again for the t + Γth invocation where ⅛ + 1 denotes the next element in the well ordered set for the time coordinate.
2. Universality of the Model

Such a collection of processes is clearly as powerful as a Turing machine since the machinery in each process can be a Turing Machine if there is no bound on the size of the data store. The interesting case is that each of the processes is a finite automata. Such a system is shown to be universal by von Neumann [42]. To illustrate this model, we show how to simulate a Turing machine using an ensemble of an unbounded number of finite processes (each of the parts (i) — (iii) is finite). We construct an "object-oriented" Turing machine O using a collection of finite processes according to a given Turing machine T*.Let each process have the ßnite state machine of Turing machine T and a data store that corresponds to one tape square of T. The control state register has three possible states, "left", "right" and "self". The processes are arranged as a linear array. We can index the processes by using integers. The particular process corresponding to the square which is initially under the read head has space coordinate 0 and is called po. The processes to the left of po have coordinate —1, —2,.. .,etc, and those to the right have coordinate 1,2,.. .,etc. A global time coordinate is used since the events occurring in this 



13machine are totally ordered. Each process has a pair of input and output ports to each of its two neighbors and a pair of "self-linked" input and output ports. Connections between neighboring processes are made by identifying the input port of one process with the corresponding output port of the neighbor for all i where i is the time coordinate. The "self-linked" input port is identified with the corresponding output port for all ½. Each of these processes corresponds to a square of the tape in machine Τ' and the ßnite number of symbols inscribed on the tape initially are put in the data store of each corresponding process.
Initially, the control state register of process po is set to "self". The control state register of all the processes to the left of po is set to be "right" and those to the right of p∏ be "left". Machine O is started from the environment by Riling the "self-linked" input port of process po with q⅛, the initial state of Τ'. After so in the data store (symbol on the corresponding square in Τ') and input go (current state in Τ') are applied to the state transition function (Rnite state machine in Τ'), process po updates the data store with the new symbol ½ι (as Τ' would write on the tape), sends qι (the new state of Τ') to either the left, the right, or the "self-linked" output ports according to the direction of read head movement in Τ'. The control state is updated as "right", "left" or "self" according to the head moving left, right, or not moving, respectively. An invocation is complete at this point and the process which receives the above new symbol in its input port is ready for action. Note that in machine 0, only one process is active at any instant since there is only one tape square being read at any instant in Τ'. This sequentiality allows us to order the invocations of processes in a global time frame. It is interesting to see that what is stored as state in Τ' becomes input/output in 0 and vice versa.



14The computation of 0 consists of a sequence of the above basic events which correspond to the basic moves that constitute the computation of T. Machine O either proceeds indeßnitely as machine T would or terminates after some ßnite number of events and the result of the computation is the symbols in the data store in each process. It is clear from this construction that machine O simulates Turing Machine 7*.  Hence we have shown that our model of computation is as powerful as a Turing machine. A simulator for any system modeled as an ensemble of processes will be described in Chapterb 5. It is implemented in a conventional programming environment and therefore completes the demonstration of the equivalence of the two models.
3. The Language CRYSTAL*

The language and its semantics are based on the typed λ-calculus version [29] of Scott's theory of computable functions [37]. Each of the parts or operations of the computation model above is described by either a constant value, a variable, a function or a function of functions.
Data Types. There are various data types for state and inputs/outputs for a wide range of systems of interests. Examples of data types are
(i) The set of analog voltage values ^ = {a:0<a<V}:a subset of the set of real numbers.(ii) The set of boolean values B = { Ô, Î }.

(iii) The set of n-bit words in 2's complement representation {t : _gfn-i) < ⅛ < 2("^*) }: a subset of the set of integers.
State transition functions. According to the model of computation, 

a state transition function is the basic unit used in constructing a system.
CRYSTAL, stands for "Concurrent Representation of Your Space-Time Algorithm 



15Depending on the systems of interest, different functions are used as a primi­tive state transition functions. In designing a VLSI system, a primitive can be an anaiog mode! of a transistor when detailed electrica! characteristics of the system are desired. A switch level model of a transistor is used if the logic values computed by the circuit are desired. An adder is the primitive, for example, when a multiplier is built. A state transition function can also be implemented as a collection of existing systems rather than given as a primitive, in which case it is called a composite state transition function. Its meaning will be precisely defined below.
In describing a primitive state transition function, say, a mode! of a transistor, functions like addition, minimum, maximum on subsets of integers are used. These functions are primitives of the language and must not be confused with those of the system under construction. We may well use the plus function (which models parts of the behavior of a transistor) to construct a piece of machinery for computing the plus function (which models an π-bit adder, for example).
Let X = (z1,z2,...,%m) denote the arguments of a state transition function ∕ where z,- G P, (the data type of z,-), ⅛ = 1,2,.. .,τn.ΛPι×⅞×-..×⅛.→P-,∕(χ) = (A, /2, - -A)(χ)Each component A of such a function is an element of [Pj X 2⅛ × - — × ‰ → P]; in the syntax below, we call each component a state transition function.
Coordinates. To express the relationship among invocations of processes in the space-time coordinate system, or to express different state transition functions (or different relationships of invocations) at different points in the coordinate system it is necessary to use functions on these coor­dinates. These functions are primitives of the language and like the plus 



16function, must not be confused with elements of the system being described. Although expressions of coordinates are not part of the computation of the system being designed, they are part of how the system is going to be con­structed (space coordinates) and used (time coordinates), i.e., what timing discipline is imposed. Examples of such data types:(i) The discrete time domain T = { 0,1,2,...} (the set of non-negative integers).(ii) The discrete space domain S = {(z, y) : 0 < z < n, 0 < y < n}, where z, y are integers.(iii) The set of ⅛-tuples f = {(e1,e2,...,e⅛-ι,e⅛)} where 6ι,e2)---)⅞ are space and time coordinates. This class of data types is called the space-time domain.
Data Streams. Each process is a point in a space coordinate system and each invocation of a process is a point in a space-time coordinate system where the space coordinates are the same as the corresponding space coordinates of the process and the time coordinate is local within the process. Control state, data, inputs and outputs of all processes as used in the invocation have the same coordinates as the invocation. The state and input/output values are deßned in the space-time coordinates as the computation proceeds. They are expressed as unknown functions from the space-time domain to a certain value domain. In the beginning of the computation, only the initial state and initial inputs are deßned. As the computation continues, more state and inputs/outputs become deßned in the space-time domain; the computation ends when no more of them are deßned. Each of these unknowns is called a data stream.

Space-time Algorithm. An algorithm describing a system consists of the description of the computational part (applying state and input/output 



17to state transition functions) and the communicative part (equating or iden­tifying an input with an output at another point in the space-time domain). The result is a system of recursion equations in the space-time coordinates.
4. The Syntax of CRYSTAL

In the following, syntactic objects are capitalized and the semantic ob­jects are in lower case. 7JV and OGT are names of data streams. Construct (PTERM) specißes the computation part of an algorithm and (cTERM) the relationships (connections) among invocations. (ETERM) specißes an ex­pression in the space-time domain and (DTERM) that in the value domain. Aι,-A2,...,j81,β2,-- - denote βχed constants in the space-time domain and the value domain, respectively. ⅞,...,⅜, Fγ,..., Fy, Gχ, G2, -.Gy, and Fι, . . ., Ry denote βχed primitive functions over various domains. An example of them would be a "if-then-else" function.(SPACE-TIME ALGORITHM (STA)) <-(oyτι(3, τ.),..., 0t7T"(∕y, τ,), ∕Yι(^, τ.),..., j‰(^, τ,)) = ((PTERM)1,..., (PTERM)^, (cTERM)ι,..., (cTERM)^)(PTERM) <-(ETERM)] (STATE TRANSITION FUNCTION)(77Vι(^,7^), ...,7AT^(^,7^))^ ] ⅞((PTERM)ι, (PTERM)2, -. -, (PTERM),J
] ⅞-((PTERM)ι, (PTERM)2,..., (PTERM);,.)(ETERM) <- ] Ai [ ⅛ ] - - -)S)T,] Gι((ETERM)ι, (ETERM)2,..., (ETERM)tJ

( Gy((ETERM)ι, (ETERM)2,..., (ETERM)iJ
'State transition functions can have various numbers of bound variables, for simplicity, we 
always use Î7Î of them



18(STATE TRANSITION FUNCTION (STF)) ^-(PRIMITIVE STF)] (COMPOSITE STF)^(PRIMITIVE STF) λ(Y1,X2, - - .,‰).(DTERM)(DTERM) ] B2 ] - - -[Xl ]X2[ F1((DTERM)1, (DTERM)2, -. -, (DTERM)tJ
] Fj((DTERM)ι, (DTERM)2, -. -, (DTERM)^.)

(CTERM) <-(ETERM)[ OtiT∖((ETERM),,(ETERM)i)
] Ot∕T^((ETERM),,(ETERM)J
[ ((CTERM)1, (cTERM)2,.. (cTERM)∕^ )
] Fy((CTERM)ι, (CTERM)2,..., (CTERM)^.)

5. The Semantics of CRYSTAL

The meaning of (SPACE-TIME ALGORITHM (STA)) is a continuous func­tional
Ψ(oyτh..., otr⅞, 7jV1,..., =(Σ*][(PTERM)ι,  ]..., 27][(PTERM)^, Σ*{[(cTERM)ι]},...,  Σ*[[(cTERM)^]])  where the semantic function J7 maps from the syntactic catagory of terms 

* An algorithm can be buiit from primitive state transition functions or another algorithm 
which implements a state transition function. This construct will be given in the last 
section when the behavior of an algorithm is defined.



19to [Ænv -+ S + T + P], where Ænv is the environment and G Ænv. This semantic function is deßned inductively as follows.
(i) Constants. = a, G S + TC P-(ii) Variabies.

€ τ, 
(≡ P. 
e P.(iii) Functions.r[[G((ETERM)ι,..., (ETERM)i)] ≡ y(r[[(ETERM)ι]],..., Σ[[(ETERM)^) where p is some Exed continuous function in [(S + T)*  -→ S + T] 27[[F((DTERM}ι,..., (DTERM}()]] = ∕⅛(Σ*[[(DTERM)ι]],...,  Σ[[(DTERM)^) where A is some Exed continuous function in [P*  → P] 27j[F({PTERM)ι,..., (PTERM)<)]] = ∕(r{[(PTERM)ι]ι,..., Σ*[[(PTERM^]])  where ∕ is some βχed continuous function in [(S + T + P)*  → S + T + P] 27[[F'((CTERM)1,..., (cTERM)t)]] = ∕(Σ[[(cTERM)ι]},..., Γ][(cTERM)i]]) where ∕' is some Exed continuous function in [(S + T + P)*  → S + T + P]

The ieast Exed-point of the functional Ψ is deEned in terms of the least Exed-point of each component of Ψ, denoted by (Ot∕7'^,...,OI7T^,∕2V^,...,∕JV^). All constructs above are continuous, which is proved by induction on the structure of terms by using the closure property of continuous functions under composition, λ-abstraction and the Exed-point operation. The proofs can be found in [29].
6. The Behavior of an Algorithm

The function an algorithm computes, the least Exed-point of the func­tional, is a function from the space and time domain to the value domain. If



20an algorithm is to be treated as a black box when used to construct some other algorithms, we must describe outputs at the end of a computation in terms of inputs at the beginning of the computation. This behavioral description is obtained from the !east fixed-point by the following:(RESULT OF STA) +-(Kl,.. .,T^) ≡≡(BEHAVIOR OF STA)(f7V^((lPORT)ι),..., ∕^,((IPORT)^)) where ⅛,..E {1,2,..., tn}(BEHAVIOR OF STA) <- ((COMPOSITE STF)ι,..., (COMPOSITE STF)„,) (COMPOSITE STF) ⅝- λ(X⅛,...,J‰).0U7y°((θPORT)) where J € {1,2,..., n }(OPORT) <- (A,,½t)where J7j[A,]] = α, E S and 27{[Ai]] = α⅛ E T.(IPORT) (A,,A)where Σ*{[A,]]  = α, E S and 27{[At]] = a⅛ E T.
The semantics of (BEHAVIOR OF STA) is an n'-tuple function from P"*'  to P"∖ Thus the system described by the algorithm can be abstracted as a system of state transition functions that maps inputs and current states (Xi,..., -X^∏γ) to outputs and next states (T^,..., X∏')- It therefore can serve as a primitive building block ((COMPOSITE STF)) for constructing a more complex system.

7. A Simple Example of a Space-Time AlgorithmThe following is a very simple space-time algorithm which corresponds to the program that computes the factorial function in an assignment based language. Given an input a, this program computes ∕ac as the result.couni i— a, ∕ac 4— 1while couni > Odobegin ∕ac *-  ∕ac X couni; couni :== couni — 1; end;



21For any f > a, in the following corresponding space-time algorithm, 
f⅛c(t) = a!. Since this algorithm is sequential, only one process is needed and the space domain degenerates to one point. Let T = 0,1,2,... be the time domain.

count(f) = count(i — 1) > 0

eount(i — 1) < 0

count(t — 1) — 1

eount(t — 1)

t = 0→ 1
ieoun

t > 0 → < ι*  ÷7
^count(i — 1) ≤ 0 -+ f⅛c(i — 1)Data streams in this example are count and fac Both count (i) and fac(i) are of type A/ ≡ {0,1,2,...}. Three state transition functions in the algorithm are ∕(zι, Z2) = (a, 1) where each component is a constant function, p(z1,z2) = (a⅛ — 1, Z2 X zι), and h(z1,z2) = (z1,z2). Notice that in the above algorithm, count is used as a variable for keeping track of the number to be multiplied to the partial result. Why do we not write the algorithm as the following equation where the time coordinate i is used in the computation of factorial a?

t = 0→ 1
it < a → fae(t — 1) × i 

t>0→{ ^
(t > a → f⅛c(t — 1)The reason is that t is not part of the implementation, it is only a reference frame for us to envision and reason about the computation. To see that the algorithm computes the factorial function, we claim that the following is the least fixed-point of (2.1).

t > a → 0

t < a → a — t

t(i — 1) > 0 → fac(t — 1) × count(t — 1)

count °°(t) = i

f⅛c°°(t) = (2.2)



22By induction on i, (2.2) can be shown to be the ieast solution of (2.1). Notice that for ail t > a, both count(½) = count(i-1) and fac(½) = fnc(t- 1). Thus the time domain can be restricted such that t < a. In general, a system reaches its ½afe at i,te<κfy andt*te<κiy  = max{ ^t,[λa.(Sireami(a, t) — Sireat7⅛(a, t — 1)) = λ⅛.0] : t 6 {1,2,..., r⅛} } where is the minimalization operator and ⅛ is the number of data streams.
The behavior of the algorithm is λa.f⅛c(i<,te<κfy) == λa.a!, and thus the algorithm implements the factorial function correctly.
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Chapter 3

Semantics of Systolic Arrays

Systolic structure is a term used to describe a class of computational arrays in which locality of communication is employed to achieve a high system throughput [21], It has been applied to the areas of signal processing, pattern matching for data bases, parsing of formal languages, etc., (for references, see [21]). In the following, a formal description of the matrix multiplication algorithm by [22] is given with a proof of correctness. Since different timing schemes result in different descriptions and proofs, both the synchronous version and self-timed version are given. Kung's original algorithm assumes a global clock, i.e., every process performs an operation synchronously. The same algorithm with a different timing scheme, e.g., a self-timed [39] scheme can conceptually simplify the interaction of processes, the how of data, and the initiation of the system. This simplicity results from the fact that the self-timed scheme assures that each process does not perform any operation until all the meaningful data items have reached the process. On the other hand, the self-timed scheme does not have any global control, the ordering of the system events is an emergent property of the local synchronization. Thus the specißcation of the relationships among invocations of processes has to be verißed.
1. Matrix Multiplication on a Systolic Array

As shown in Figure 1-1, identical elements are interconnected into a



24hexagonal array. Each element has three inputs and three outputs as indi­cated by the incoming and outgoing arrows, respectively. Such an element performs an inner product operation, i.e., <⅛ut = + α,n × ⅛nd trans­mits the other two inputs, i.e., == <⅛y⅛, ‰*t  = 6.∏- Two matrices to bemultiplied, A and β, and a matrix C for accumulating the partial results are fed into the array as shown in the figure. The final results will come out from the top of the array as shown.

Each element is represented by a process in our model. It has only one control state, namely, always choosing all input ports. It does not have any internal state but only takes inputs from input ports and writes to output ports, and therefore the data store is empty. The three components of the state transition function are described above. As shown in Figure 3-1, the 3-dimensional Cartesian coordinate system is chosen as the space coordinates because the symmetry of the data How can be described by the dihedral group of order 3 [23]. The center of this hexagon (coordinates (0,0,0)) can be viewed as a corner of a cube; the hexagon covers the three faces that contain this corner. The relationship among the time coordinates of processes depends on the timing scheme.



25

Figure 3-1 The Space Coordinates of A Hexagonal Array
2. A Synchronous System

In a synchronous system, a global clock triggers the operations of all elements at once. The clock period (cycle time) is the maximum of the amount of time necessary for each invocation to be completed. In this case, the time coordinates of all processes have a simple relationship: they are identical. Hence a global time coordinate is used for invocations of all processes.
The Algorithm. Let z, y, z be the space coordinates and f the time coordinate; they are non-negative integers. The space-time domain is defined using the the following expressions which indicate parts of the domain. Some of these expressions are shown in Figure 3-2. For example, %⅛y restricts the zy plane to an area within the specißed bounds in the Erst quadrant.
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Figure 3-2 The initialization of a synchronous systolic array
Expressions correspond to quadrants, axis, and the origin:⅜⅛, =≡(π > z > 0) A (∏ > y > 0) A (2 = 0)P,; =(π > y > 0) A (" > 2 > 0) A (z = 0)⅜y,, ≡=(π > j? > 0) Λ (" > z > 0) Λ (y = 0)=(w > z > 0) Λ (y = 0) A (2 = 0)Py ≡(n > y > 0) A (2 = 0) A (z = 0)y?, =(w > 2 > 0) A (z = 0) A (y = 0)%>. =(z = 0) A (y = 0) ^ (^ == 0)The areas where elements of matrices are placed initially:p. =(z ≥ 0) A (y > 0) A ([Z - y] < ") A ((z < 3∏) V (y < 3^)) A (2 = 0)=(; > 0) A (z > 0) A ([2 - z[ < ^) A ((2 < 3^) V (z < 3n)) A (y = 0)p<, =(y > 0)Λ(2 > 0)A([y-2] < ")Λ((y < 3∏)V(2 < 3n))Λ(z = 0)≡((y > ") V (2 > ̂ )) A (]y - 2[ < ^) A (y < 3κ) A (2 < 3^) A (z = 0)

Expressions which are unions of other expressions:



27%⅛ ≈%⅛y V V ⅛⅛z V V ÿ?y V V (the area within the hexagon) ⅜⅛, ≡⅛Py% V %⅛z V⅝y⅛v =≡⅛2y*  V ⅜p,y V iPy≡^y V V %⅛The space-time domain:
≡≡P. V y)⅛ V y).

y)i =0 < i < 4(w - 1) ⅛ 1

Let a,H) bin, and be the input data streams, and a<,ut, b.^ and 
c.⅛⅛ be the output data streams. The following are (PTERM)'s which specify the computation (functional) part of the algorithm. The symbol J_ means undefined.

, , i^. V → a,⅛(z, y, 2, ⅛)
3⅛ut(z, y,2, i) — ∖

(ei⅛e → J_

, , . i⅛p⅛ V ⅝⅛' → b,^(z, y, t)
b.ut(z, y, 2, i) ≈ -{

(eiae → J_ 
i→ Ci„(z, y, t)

c.u⅛(z, y, a, t) = { p⅛ → c^(z, y, j?, t) + a^(z, y, t) X b,⅛(z, y, t) (2) 
→ [

(cTERM)'s specify the connections.
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(3)
By substituting (3) into (2), a,⅛,b,⅛, and c,⅛ are eliminated. The space-time aigorithm obtained is a system of recursion equations in a<,ut, b.ut and <⅛ut and the initiai inputs ao(z,y,z), bo(z, y, z) and co(z,y, z).



29i%⅛'→Co(z,y,z)* = * → ∖ %⅛ → co(z, y, 2) + ⅛o(z, y, z) X bo(z, y, z)→ ]f > 1 -⅜→ c<,ut(z, y + 1, z + 1, i - 1)%⅛ A %⅛ →→ c.M⅛(z, y + 1, z + 1, i - 1)
c.ut(z, y, z, i) = -

+*⅛ut(z  + 1, y + 1, z, ⅛ - 1) × b.Mt(z, y - 1, z, t - 1) → c.ui(z, y + 1, z + 1, i - 1)y, z - 1, i — 1) χ b<,ut(z + 1, y, z + 1, i — 1) e^e → c.ut(z, y + 1, z + 1, i - 1)+a.ut(z, y, z - 1, t - 1) X b.^(z, y - 1, z, i - 1) ⅛⅛ Λ ÿ?.' →Cout(z 1, y, z, i 1)
J +a<,ut(z + 1, y + 1, z, f - 1) × b.ut(z, y - 1, z, i - 1) ) ⅛⅞ → c.Mt(z - 1, y, z, i - 1)t y, z - 1, i — 1) X b.ut(z + 1, y, z + 1, i - 1).e⅞e → J_ (4)

The Input and Output Mapping Functions. The above algorithm is defined in terms of the initial inputs ao, bo and co- To see that the above algorithm performs matrix multiplication, it is necessary to map the elements of matrices from the indices to the space-time coordinates (an input mapping function) and map the ßnal output from the space-time coordinates to the structure of matrices (an output mapping function). A Matrix with elements from some value domain P is a function from the domain of index pairs to P where .A/ ≡ { 0,1,..., π — 1}.
Given space-time coordinates, the following pairs of input mapping func tions give the index pair (⅛, J) for a matrix.
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) i2y - z == 0 (mod 3) → (ei⅛e → J_ (6a)2z — y ≡ 0 (mod 3) ei⅛e → J_ 2a;—y

3

2z — 2 = 0 (mod 3) e/ae -⅛ !⅛(s, y^
⅛(z, y, Z

22 — z = 0 (mod 3) d⅛e -→ ] 2a;—a:
3

(6⅛)
2y — 2 = 0 (mod 3) e⅛e → [ 2y-≈

3 (6a)

3

te⅛e → J_The initia! inputs are defined in terms of matrices (A, 7?, C € [½2 → P]) and the input mapping functions.
*o(s, y^) ≡ %⅛, → 0

(2y — z ≡ 0 (mod 3)) Λ (2z — y ≡ 0 (mod 3)) → ^4(7*(z,  y, 2), J.(z, y, 2))e⅛e → 0e∕3e → j_
b0(z,y,2) =

i(2z — z = 0 (mod 3)) A (22 — z = 0 (mod 3)) %⅛ → < → B(7⅛(z, y, 2), ⅛(z, y, 2))⅛⅛e -+ 0⅛5y → 0efae -⅜ J_
co(z,y, z) = → 0e⅞e

(2y — 2 = 0 (mod 3)) A (22 — y = 0 (mod 3)) -⅜C(7.(z,y,2),J.(z,y,2))→ 0 (7)



31Output mapping functions (‰Ya,⅞,⅞), (X⅛,%, ⅞,⅞) and(‰y,,⅞,⅞) in [A∕2 → f] wherey) ≡≡ max(y -t, 0), y.(t, y) ≡ max(t - y, 0), Z.(⅛, y) = κ - 1y) ≡ rnax(t - y, 0), %(t, y) = n - 1, Z⅛(t, y) ≡ max(y -1,0) -Xc(i,y) ≡ M - 1, Yc(⅛, y) = max(t - y, 0), ⅞(t, y) = max(y - ⅛, 0)y) ≡ %(⅛ y) ≡ y) ≡ "+y)+1+y (8)
The resulting matrices A', 2?' and (7' are deßned asy) ≡ a-,(x.(t, y), y.(i, y), zji, y), τ.(^, y))B'(i, y) = y), y,(i, y), y), τ⅛(i, y)) (9)c‰') ≡ c^(x.(i,y),y.(t,y),z.(t,y),‰(t,y))

The Proof of Correctness. The above system of recursion equations and the input and output mapping functions must be shown to correctly implement the familiar identity and matrix functions, i.e.
Proposition 1:Λ'(t', j) =A(i,y) β'M =B('', J) n-1C'(.', y) = ∑ A(<, ⅛) × β(⅛, y) + c(,-, y)⅛=0where 0<⅛<n, 0<y<nThe ßrst step towards the proof is to verify the following function (a, b, c) to be the the least βχed point (a^^,b^^,c∞J of the space-time algorithm 

(4). Given any point in the space-time domain, this function gives the values computed by the algorithm in terms of the initial inputs ao, bo and co-
Proposition 2:a⅝t = a, b⅝, = b, and c⅜, = c where‰ V p., →] ao(z + max(t — 1 — 2,0), y + max(i — 1 — 2,0), a(z, y, 2, i) ≡ <) max(2-(t-l),O))

-→ J_



32'%⅛ V %>y →bo(z + max(t — 1 - y, 0), max(y - (t — 1)),biz, y, z, t) = < z + max(t — 1 — y), 0).eiae → J_V ⅝⅛*  → co(max(z — (t — 1), 0), y + max(t — 1 — z, 0),c(z, y,z,t) = ∕ z + max(i-1 —z,0)) (10)+<$^1 + <?2else → ]where ο⅜ ≡ ∑ ao(z + ⅛ + max(U2,0), y + max(t⅞, 0), max(-172,0)) ⅛==Kj X bo(z + ½ + max(t7ι,0),max(-f7ι,0),z + max(t∕ι,0)) and
⅛ = ∑ ao(max(⅞, 0), y + A + max(V⅛, 0), max(-⅛, 0))⅛≈o X bo (max(⅛, 0), max(-¾, 0), z + A: + max(V^, 0)),andt7ι=t-l + ⅛- y, t^≡t-l + A — z,⅞ ≡ (t — 1 — z — ⅛) — (y + ⅛), ⅛ ≡ (t — 1 — z — ⅛) — (z + ½),.Kl = 1 — min(z,t — 1), Λ⅛ ≡ min(n — 1 — y, Μ—1 — z, t — 1 — z)

Proof :The proof is by induction on i for each phase of a "computational wave". The significance of defining phase is that the partiai result of a given output is carried by a wavefront of a fixed phase. Let <^(z, y, z, f) = z + y + z + 2i be the phase for the incident wave and ^^(z, y, z, t) = z + y + z — tbe that of the rejected wave.First we show that a^⅛ = a and similariy, b^ = b. If not %⅛ V ⅛5⅛' then from (4) and (10) a∞, = _]_ = a. If ⅛p. V y).i then



33(i) If % = 1, since z > 0, max(z-(t—1),0) = z and max(t-1—z,0) = 0. Therefore
*⅜t(s,y,z, 1) = ao(z,y,z) ⅛y (4)= a(z,y,z,l) by (10)(ii) (i > 1) A y)..

y, z, t) =a^ Jz + 1, y + 1, z, i - 1) by (4)=a(z + 1, y + 1, z, t — 1)by induction hypothesis since%,-(a + 1, y + 1, z, t - 1) = ^,-(z, y, z, i)=ao((z + 1) + (i- 1) - l,(y + 1) + (t- 1) - 1,0,0) by (10) =ao(% +1 — 1, y + t — 1,0,0)=a(z, y, z, t)(iii) (t > 1) A y>.<.
^t(z,y,z,t) 1,^-1) by (4)=a(z,y,z- l,t- 1)by induction hypothesis since ^,(z, y, z — 1, t — 1) = ^r(z, y, z, f) ≈ao(z + max((t - 1) - 1 - (z - 1), 0), y + max((t - 1) - 1 - (z - 1), o), max((z-l)-(i-l-l),0),0) by (10)=ao(z + max(i — 1 — z, 0), y + max(t — 1 — z, 0), max(z — (i — g), 0)=a(z,y,z,t)Next we show that c⅜⅛ = e. If not %⅛ V %⅛' then = _j_ —.V then(i) i == 1. In this case, ⅜ == ⅜ == 0 si∏ce 7Γι = 1 and .Kg < 0c°° fz z n —→ eo(z,y,z)‰u⅛∖Z, y, z, ιj—< ,→ Co (z, y, z) + ao (z, y, z) × bo (z, y, z) =c(z, y, z, 1) + 0 + 0 by (10)



34(ii) (ί > 1) Λ %⅛'.
c^t(z,y,z,t)=c⅜t(z,y + l,z+ l,t- 1) =e(z, y + 1, ζ + 1, ί — 1) by (4)

by induction hypthesis since ^,(z, y + 1, z + 1, t - 1) = -(z, y, z, t)=<⅛(0, (y + 1) + (t - 1) - 1, + 1) + (t - I) - 1,0) + 0 + 0 by (10) since max(z - (t - l),0) = 0 and = 0,J⅞ <0=co(O, y + t-l,z + t-l,0) + 0 + 0 =e(z,y,z,t)
(iii) (t > 1) Λ Λ 

c^t(0, y, z,t)→ c.u⅛(z, y + 1, z + 1, ⅛ - 1)+⅛ui(z + 1, y + 1, z, t — 1) χ b.t,⅛(z, y — 1, z, t — 1)_ ⅜⅞→c<,<ιt(z,y + l,z + l,t-i)+⅛ut(z, y^ z — 1, t — 1) X b.ut(z + 1, y, z + 1, t — 1) e∕⅛e y + 1) z + 1, t — 1)+⅛ut(a, y, z — 1, t — 1) X b.ut(z, y — 1, z, t — 1) ==co(O, (y + 1) + (^ — 1 - 1), (z + 1) + (t - 1 — 1), 0)+ λ(z, y, z, t).^ι (0, y + 1, z + 1, i _ 1)+ λ(z,y,z,t).⅜(0,y + 1,z + l,t - 1)+ ao(max(t — 1 — z, 0), y ⅛ max(t — 1 — z, 0), max(z — (t — 1), 0), 0)X bo(max(t — 1 — y, g), m⅛χ(y — (t — 1)^ o), z + max(t — 1 — y, 0), 0) by (10) and the hypothesis (using both the rejected and incident waves) =co(O, y + t-l,z + *-l,O)  + ∖(^, y^ z, t).^ι (0, y, z, t)+ λ(z, y,z,i).⅞(0,y, g,since λ(z, y^ z, t).<Sι (0, y + ι z + 1, t — 1) = λ(z, y, z, t).5*ι (0, y, z, t) = 0
(iv) (t > 1) Λ %⅛ Λ



35<⅝t(z,y,z,t)
%⅛ →c.,,t(z-l,y,z,t-l)*i^ 1, y *b  1) z, ί 1) X b<,ut(z, y * 1, z, ί — 1)

→ c.ui(z - 1, y, Z, i - 1)+⅛ut(z, y, z - 1, i - 1) X b.u⅛(z + 1, y, z + 1, t - 1)=co (max(z — 1 — (t — 1 — 1), 0), y + max(t — 1 — 1 — (z — 1), 0),z + max(i — 1 — 1 — (z — 1), 0), 0)+ λ(z, y, z, i).Sι(z - 1, y, z, t - 1) + λ(z, y, z, t).⅜(z - 1, y, z, t - 1)+ ⅛o(ι^^x(z + i — 1 — z, 0), y + max(z + i — 1 — z, 0),max(z — (t — 1) — z, 0), 0)X bo(max(z + i — 1 — y, 0), max(y — (t — 1) — z, 0), z + max(z +1 - 1 - y, 0), 0)by induction hypthesis and (10)=co(max(z — (t — 1), 0), y + max(t — 1 — z, 0), z + max(t — 1 — z, 0), 0) + λ(z, y, z, t).⅛ (z, y, z, t) + X(z, y, z, t).⅛(z, y, z, t) since λ(z, y, z, t).⅜(z - 1, y, z, i - 1) = \(z, y, z,i).⅜(z, y, z, t). C
3. A Self-timed System

A self-timed system has no global clock which synchronizes each invoca­tion of all processes. The time coordinates of processes do not have a simple relationship as a synchronous system does. The initialization is also di Ser ent. The following expressions indicate the parts of the space domain where ele­ments of matrices are placed initially.
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X

Figure 3-3 The initialization of a seif-timed systolic array
P. ≡≡⅜9χy V %⅛ V 4P, ≡‰ V y?, V y),V 9?y VThe space-time domain: %⅛ ≡y). V %⅛ V ⅞⅛ ⅜p⅛(z, y, =0 < i < π — max(a;, y,

(PTERM)'s that dehne the processes:

(12)



37(cTERM}'s that deßne the connections:

Note that there are free variables in the expressions of (cTERM)'g, They are the time coordinates of neighboring processes which communicate with process (z, y, a). To obtain the semantics of the aigorithm, the semantics of these free variables must be obtained first. Since the communications between neighboring processes determine the relationships of the time coordinates of the processes, the time coordinate of one can be expressed as a function of 



38the other. The correctness of these functions that relate the neighboring processes must be proven. Since a communication is established by input ports being β∏ed by neighboring processes or by initialization of the system, such a function depends on the initial input functions ao, bo, and co- They are deßned as fo∏ows.
Input Mapping Functions. The functions (⅞, J.), (⅞, ⅛) and (⅛, ⅛) which map from the space coordinates to index pair of matrices are elements of [f → jys].

f⅛9. → Z
A(z,y,z y⅛ → z eZae → J_<4(z, y,z ⅜⅞ → z eise → J_

The initiai input functions ao, bo, and co,.i→ ^L(^(z, y, z), J.(z, y, z)) *o(z,y,z) = < ,
. X f^⅛→^(4(z,y,z),J⅛(z,y,z)) b.(z,y,z) = t̂e⅛e →i⅜p. → ^(‰(z, y, 2), ⅛(z, y, z)) eo(z,y,2)==l! → _L



39Let s = (z, y, ί?), t(s) = and w(s) = ζ + y + 3. In order tore!ate time coordinates of processes, we look at two processes a and s' where an output port p of s' is connected to an input port of g and the fo!!owing condition holds:
for each invocation, p is a!ways selected by process s as one of the input ports and a!ways selected by s' as one of its output ports.

We c!aim that
Proposition 3:Whenever output port p is filled by t(s')'th invocation of s' and process a is ready (all of its input ports are Riled, see step (ix), Section 1 of Chapter 2) for its t(s)'th invocation then

t(s) — t(s') = c (15)
holds for some constant integer c.
Proof :Let equation (15) hold initially for some c, t(s) = ⅛, and t(s') = ⅛- We show that (15) still holds if process g is ready for a new invocation ⅛ +1, i e., to show that p is Riled by ⅛ + Γth invocation of s'. If process s is ready for to + Γth invocation, then p must have been Riled again since s always selects p and the last item in p is taken by to'th invocation of 8. Hence process 8' must have completed at least one more invocation and Riled its output port p, i.e., t(s') > ⅞ + 1.On the other hand, the number of times s' can be invoked is contrained by 8. Initially process 8 is ready to start its to'th invocation. Process s' can start its ⅛ + l'th invocation if it is ready. Since p is always one of the selected output ports of s', s' cannot complete its ⅞ + 1 invocation



40(hence starts its a' + 2'th invocation) without s having started its io'th invocation and emptied p which was Riled by the ⅛'th invocation of a'. Therefore, p is Riled by t(⅛*)'th  invocation of a*  where t(s') < ⅛ + 1. This proves that (15) holds. D
For this algorithm, the following relationships among invocations of neighboring processes holds. w(⅛') = w(s) + 2 → i(a) — 1 (16) w(⅛*)  = w(a) — 1 → t(⅛)We can use Proposition 3 because in this algorithm all processes always select all input ports and all output ports. If process a is closer to the origin than **, i.e., w(s') = w(a) + 2, then by (14), p is Riled at the initialization. Hence c = 1 in this case. If process a is further away from the origin than a', i.e., tu(⅛') = w(⅛)-1, then by (14), p is not Riled at the initialization and therefore c = 0.
By replacing the free variables ⅛(χ,,y,,,') in (13) by a function of i^ y ^(≡ i(a)) deRned by (16), all variables in (13) become bound. A set of equations similar to (4) can be obtained and the functionality of this self-timed systolic algorithm can be veriRed in the same way as the synchronous case. Before verifying the functionality of the algorithm, we need to show that the algo­rithm is free of deadlock, i.e., for each process (z, y, 2), all & = π-max(z, y, 2) invocations required for computing the result (deRned by the time domain %⅛) are realizable. By initialization, process (0,0,0) can start its first invocation since all of its three inputs are Riled. However, the number of invocations is also constrained by the initialization, since any process (z,y,2) where ½ = 1, i.e., on the boundary of the array, can be invoked at most one time only. It is easy to show that these boundary processes will be invoked at least once by induction on w = z + y + 2. The Rrst invocation of all processes thus 



41results in a configuration of the ports being filled exactly the same as the initialization except for the boundary ones. Hence by induction on ½ we can show that any process (z, y, g) will be invoked ⅛ times. DNow we can assert that the least fixed-point of the algorithm is the following:
Proposition 4:

(I?)
Proof :Similar to that of Proposition 2, the proof is by induction. In this case, the induction is over the well-founded set,K = {⅛ι⅛≡z + y + z+ 3(t(z,y,z))} for each phase of the wave. The phase of the reflected wave is = t(z,y,z) and that of the incident wave is = z + y + z + 2i(, y
Similar to the synchronous case, using the following set of output map­ping functions in (9), Proposition 1 holds for the self-timed system.
Output Mapping Functions, ⅞), (J⅞, %,.%,%), and(‰ Y., Z., ⅞) wherey) ≡≡y- min(t, y), ⅞(‰ J) ≡ t - min(i, y), ⅞(t, J) ≡≡ n - 1 - min(i, y). -⅜(⅛J*)  ≡≡ ⅛ - min(i, y), y) == n - 1 - min(t, y), Z⅛(i, y) ≡≡ y - min(t, y).y) ≡ η - 1 - min(t, y), Ρ.(ί,y) ≡ t - min(V, y), Z.(⅛, y) ≡ y - min(i, y), ⅞(*,y)  ≡ ?i.(^y) ≡ ⅞(t,y) ≡ min(i,y). (18)



42From both algorithms, we observe that the input and output mapping functions and the behavior description of the hexagonal array are much simpler for the self-timed version. This result is not accidental, for the interaction among hows of data for this particular algorithm only utilizes one third of the resources (time and space). In the self-timed version, only one third of the processes (all processes with the same ⅛ = z+y+^+3t^ are active at any instant. In the synchronous version, all processes are active at all times; thus padding zeros are necessary since only one third of the inputs are "real" data. The simplicity of the self-timed version is a pay-off of the more sophisticated synchronization method. It is necessary to prove that local synchronization gives rise to a relationship of the time coordinates among all the neighboring processes and the computation is deadlock free.
In summary, the behavior of a systolic array is obtained by:
(i) An input mapping function from the structure of the value domain to the space-time structure of the system.

(ii) The fixed-point of the space-time algorithm which defines the com­putation of the system in the space-time domain.
(iii) An output mapping function from the space-time structure to the structure of the value domain.

4. Pipelined Architecture

The pipelined architecture (Figure 1-2) is very similar to the systolic architecture (Figure 1-1) in that local communication is used to avoid long propagation delay. It is usually simpler to describe and analyze because of the one dimensional structure in space. In the example presented below, 



43each stage of the pipeline has an internai state, which is not the case in the systolic array example. ïn CRYSTAL, since the time coordinate is explicitly used, internal state pose no difficulty in describing a system.
The following is the space-time algorithm for an M-stage pipelined in­ner product element IPE given the behavioral description of a one bit inner product element IPB shown in Figure 3-4. The function this pipeline imple­ments is B X Λf+A,n where J? and Λf are π-bit non-negative binary numbers and A,n is a 2π-bit non-negative binary number.

3⅛t½

fτ⅛⅛t

load, ut

Figure 3-4 A single bit inner product element IPB
We show that the behavior of an IPE element ( the composition of n IPB elements and several π bit shift registers) is in fact the function above. The symbol "-", and "+" denotes the "and" and "or" operations on boolean values Ô and Î. Let S = { 0,1,2,..., ½ } be the space domain for indexing the IPB elements and shift registers and T = { 0,1,2,...} be the set of non-negative integers which indicates the steps of computation. Since the behavior of this 



44pipeline inner product element is periodic in time, the value of the expression ⅛ — 3 can be restricted to within 1 and 2π. The space-time domain f for the pipeline is deßned as
f = {(3, i) : 3 E S,t E T, and l<t-⅛<2n}

The va!ue of a(3, t) is the accumulated partial sum computed by IPB element 4 at step i. c(3, f) and bb(3, i) are the carry of an adder and the 3'th bit of multiplier 23, respectively, both are internal states of IPB element 3. Signal I0ad(3, t) is for loading bb(3,i) from b(3,i), a bit of the multiplier. Signal k(3, 2) is used to clear the internal state of the carry and multiplier of the previous word before a new word starts. The value of k(3, i) computed at the A — Γth cycle (word) is used as an initial condition for the ⅛'th word. In this case, i and 3 such that i — 3 == 0 which is not in the specißed space-time domain is used in place of i and 3 such that i — 3 = 2π in the description of 
k

a E [f → B]
, .∖ i3>0→a(3-l,t-l)φ(bb(3,%)-m(3-l,i-2))φc(3,i-l)"^ = b = o→A<,(<)

e € [f → 3]
Î3 > 0 →

f tl=J MAJ(a(3-l,i-l),(bb(3,i).m(3-l,t-2)), 
j c(3,%-l))-k(3-1,2—l) + 0-k(3-l,i-1) 
b = 0 → j_

bb =E [B —ί B]
Î3 > 0 -⅛ (bb(3,2 — 1) - l0ad(3 — 1, t — 2) 

bbi3 J +b(" * ^ ' - 1,ί - 2)) - k(3- 1,⅛- 1)

' Ί +0 k(3-l,i-l)

(⅛ = 0 → _[_The following are shift registers (delay elements) for propagating operands. Two register cells (two units of delay) are used for each of the

(1)
(2)

(3)
the



45signals Load and m, whereas one register cell is used for each of the signals k and b in an IPB element.
⅛ad 6 [f → B](# > 0) A (% > 2) -+ Ioad(⅛ — 1, t — 2) r⅛ = o→ îH — 0 → < ιt > 0 → Ôthereforeii==2a→l!oad(⅛, i) = <g<i<2a→J-^2⅛ <i<2κ + ⅛→0

(4)

k e [f → B]i(⅛ > 0) A (i > 1) → k(a - 1, ί - 1)
L t,0<i<2n-l→0thereforek(g, i) = b<i<2π + s- l→0

(5)

b E → B]i(a > 0) Λ (i > 1) → b(s - l,i - 1) b(⅛,i) = <__ o → iθ < i < w→B(i - 1)(, (n < t < 2τ⅛ —⅜ _Ltherefore,. ,. ia<i<κ + ^→B(i-1 —a)bf ∏ = <(n + s<t<2π+8-m E → B]> 0) A > 2) → m(⅛ — l,i — 2)= L =( t∏ < t < 2n → Ôthereforep < i < 2⅛ → J_m(⅛, i) = < 2s < ⅛ < n + 2s → M(i — 2⅛)^(?î + 2s < i < 2r⅛ + s) → Ô

(6)

(7)



46F⅛om the functional description of shift registers, (4), (5) and (6), the func­tional description of the internal state bb can be derived.
ii=3→0

bb(*,i)  = J*  ≈ 2*  → b(*  - l,t- 1) = B(i- 1 - a) = B(s - 1)
) (⅛ < i < 2g — 1) V (2# < t < 2π + g — 1) → bb(s, t — 1)

= 2n + a → Ô (S)
G < t < 2a-l →0

= ∖2s<t<2κ + s-1→ B(g — 1)
(t = 2w + ⅛ —⅝ Ô

To prove the correctness of this algorithm, the space-time structure is first mapped to another structure. The multiplication of two n-bit binary numbers can be represented by a recurrence of the partial product. In the following t is used to indicate the partial product at stage t and J is used to indicate bit j*.  Let
<½ = { 0,1,2,..., π } and ½⅛ ≡ { 0,1,2,..., 2π — 1},

and A and C be two functions in [A4 X -½ -*  B] where
A(⅛,y) ≡ a(i,t + J + 1) and C(i,y) = c(⅛,t + J + 1).

Inversely,
a(a, f) ≡ A(g, t — 1 — a) and c(g, t) = C(a, t — 1 — ⅛) (9)

Using dehnition (9) and substituting the result obtained in (7) and (8) into (1) and (2), we obtain the following relations among the new functions A, C, B and Μ.
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a(g, ί) = A(g, ί — 1 — ⅛)

s > Ο -⅛
i2s + 1→

A(a - 1, (ί - 1) - 1 - (3 - 1)) φ (B(s - 1). Μ((ί - 2) - 2(3 -1))) 
φc(s,(t-l)-s)

(3 < t < 2s — 1) V (" + 2s — 1 < t < 2w + 3) → 
A(3-l,(i-l)-l-(3-l))φc(3,(i-l)-l-3)  

a = Ο → Αο(ί)
(10) 

c(^ ί) = C(g, ί — 1 — 3)
/3 > Ο -⅜

i2a <i<w + 2s-1→
MAJ(A(3 - 1, (ί - 1) - 1 - (3 - ι))^

, (Β(Λ-1).Μ((ί-2)-2(.-Ι))),φ,(ί-ί)-ϊ-.))
(3 < ί < 23 — 1) V (^ + 23 — 1 < ί < 2w + 3) → 

ΜΑJ(A(g - 1, (t - 1) - 1 - (3 - ι)), ο, φ, (ί - 1) - 1 - g)) 
ti = 2n + 3- l→0

.8 = Ο → (II)Let ί = a and y = ί — 1 — 3, substituting them into (9) and (10) we obtain
A(i,j) = j A(i -1, y) φ (B(i -1). M(y - (i -1))) φ c(i∖ y -1) 

[(o<y <! — i)v(w + t- ι<y <2^)→ 
t A(v-ι,y)φφ,y-ι)

Aθ(j')
(12)

¾ — 1 < y < M + ⅛ — ι →

MAJ(A(< - 1, y), (B(,' - 1) - M(_/ - (,' - 1))), c(.', y - 1))

C⅛ yj _ , ί > Ο —* (Ο < y < t' - 1) v(κ + ' — 1 < y < 2n — 1)

= J_ (13)



48In the above two equations, if j is not in ½⅛, it is understood as 2rt + j of the previous word computed in the pipe!ine. We now proceed to show that equation (12) and (13) embody an algorithm for computing the inner product of positive numbers in the binary representation.
Let x(A), y(A), and z(A) for A = 0,1,2,..., w — 1 be the binary repre­sentation of non-negative integers z, y and z, respectively. A recurrence formula for addition of binary numbers z = z + y is*(⅛) = y(½) Φ x(⅛) Φ w(A - 1)w(A) = MAJ(y(A),x(A),w(A — 1))for A = 0,1,..., π — 1 and z(π) = w(π — 1) (14)where w(A)⅛ are the carry bits and w(-l) = Ô.Notice that the boolean ezclusive or function is actually modulo 2 addition of bits and the mαyor⅛y function is the floor ("integer" division) of sum of bits divided by 2, i.e.,z(A) = (y(A) + x(A) + w(A — 1)) (mod 2)w(⅛) = (y(⅛) + x(⅛) + w(⅛ -1))2 (15)

By a straight forward induction on π, it can be shown that
∑ 2*z(½)  = ∑ 2*x(⅛)  + ∑ 2'y(⅛).⅛=o ⅛=o ⅛=0Due to the βniteness of machines, usually z = z+y (mod 2") is the operation performed. This operation is deßned similarly byz(½) = y(A) φ x(A) φ w(A - 1) for A = 0,1,..., ∏ — 1 and w(A) = MAJ(y(A),x(A),w(A-l)) for A == 0,1,..., π — 2 and w(—1) == Ô and z(n) = w(w — 1) — Ô

(16)



49For the pipeline inner product element, we need to show that 
2n—1 /tt—1 n—1∑ 2^A(n,y) = i ∑ 2^B(A;) × ∑

∖⅛=≈0

2n-l ∖M(⅛) + ∑ 2⅛-o(y) j (mod 2^")⅛=o y=o ∕
2rt—1

tt+*- 1

1 ∕ rt—1 ∖ 2tt-1= ∑ 2'B(<) × ∑ 2*M(⅛) ! + ∑ 2P i≈o ∖ ⅛==o ∕ y=o
M—1 2 n—1

= Σ + Σ s'A.(y)t=o y*=o
n—1where d, = 2*B(⅛)  × ∑ 2^M(⅛) = ∑ 2-^M(j - t)B(i) ⅛=o y=t= Σ 2^Ap(j) + do^ + dι^ + +

= p^ (the n'th partial product) fPt Pt—ι d^ d^-, t = 1,2,..., w(p. = ∑γ^' 2^'A.W
By induction on i and (16), it can easily be shown that

2n-lPt (mod 2^") = 2^A(i,y) and thereforey=o
2n—1∑ 2^A(n,y) =p∏ (mod 2^") y=o

M—12*B(½) X ∑ 2^=M(⅛) +
⅛=0

(mod 2^")
Thus the correctness of the above pipelined algorithm has been shown. This proof is approached differently from those of the systolic arrays in the previous sections where the solution with space-time domain is obtained and



50then mapped to the structure of matrices. In this proof, the space-time coordinates are mapped to the coordinates indicating the stage of the partia! product and the hit number for the equation. The solution is therefore obtained with these indices as domains. It is because these indices are more convenient for expressing the muitipiication function as sequences of bits. Wie DOW let A.., = ∑⅜' 2'A(n,,'), = ∑^1^' 2''A,(A β = ∑∑⅛ 2⅛(⅛),and M == ∑⅛=o 2^M(⅛). The functionality of the pipeline can be described by A,ut = X Μ. The data type is a bounded integer rather than a bit.The IPE element can thus be used at the next level without its implementation detail but only its functionality.
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Chapter 4

Transistor Networks

Examples of primitive state transition functions given in the previous Chapter are familiar mathematically defined functions. To describe a transistor network, however, functions which model the circuit components must be given. A satisfactory circuit model must be an abstraction at a suitable level of the detailed physical behavior of circuits. A model must be justißed from the underlying electrical model with a given set of assump­tions made about the particular technology used for the components. The ingenious part in devising such a model is to attain a set of assumptions which have a high enough level of abstraction to allow a model that is computation­ally practical but still has enough power to describe real circuits. We have chosen Bryant's [3] switch level model of metal-oxide-semiconductor (MOS) technology as the primitive functions for transistor networks. This model has been widely tested by users of his simulator MOSSIM [4]. A transistor network is approximated by a series of conductance networks, each of which is represented by a system of linear equations in this model. A "unit-delay" timing model, which Bryant defined operationally, is used to obtain a new conductance network from the result of the previous conductance network. This model provides the resulting values of all nodes of a transistor network given initial state and values on input nodes. For the purpose of simulating an entire design at the transistor level, Bryant's model alone suffices. However, hierarchical simulation and verißcation of a network require obtaining the 



52behavior (a function) of a each sub-network rather than just the values of nodes of each sub-network. It is therefore necessary to re-formulate the en­tire switch-level model as a space-time algorithm and thus provide formal semantics for an arbitrary transistor network. The functional abstraction of the network can then be used as a building block at the next level. In this way, a VLSI system can be described and verified hierarchically in a simple and uniform manner all the way from networks of transistors to high level networks of processors.
1. Circuit Components as Processes

A VLSI circuit is composed of primitive circuit components such as transistors and nodes. Each of these components has certain attributes such as voltage, current, capacitance, and resistance associated with it. Each of them performs actions which are governed by physical laws defining relations among the attributes. A component (a transistor or a node) is represented as a process. Attributes such as capacitance and resistance are constants associated with this process. Voltages on capacitors are represented by the state of the process. The inputs and outputs of the process (called g⅛nα⅛), are used to represent the how of current. The actions performed by each component are represented by state transition functions. For a network of circuit components as a whole, signals are initially defined only at the sources. They gradually propagate in space and reach more components, influence one another and therefore change with time, until they reach a steady state. That is, the signals at all nodes of a circuit do not change anymore. But for an oscillatory circuit this situation may not occur and there exists no steady state. The dynamics of a circuit can be viewed as initial signals, which are undefined over most of the network, evolving into better and better signals (a chain of monotonically more defined functions). This phenomenon 



53corresponds to our formalization of a signal as a data stream (an unknown function from the space-time domain to the data type of signal values).
2. Data Types for Transistor NetworksPossible data types for a VLSI system include:(i) The set of boolean values B ≡ { Ô, Î }.(ii) The set of ternary logic values V = {0,1,X} where X represents an illegal voltage between logic 0 (Ô) and logic 1 (Î).(iii) The set of transistor types P = { d⅞∕pe, πtype,ptype}, which denote n-channel depletion mode, and n-channel or p-channel enhancement mode transistors, respectively.(iv) C ≡ {c1,c2,...,<⅛} is a discrete set of capacitance strengths : a subset of the set of positive integers. These strengths are ordered by the usual ordering on integers, namely, (⅛ < C2 < - - - < <⅛.(v) 4? ≡ {yι,P2,---,Similarly, a discrete set of conductancestrengths where Pi < #2 < - - < -(vi) The set of signal strengths S ≡ {0} + C + a sum of data types. The switch level model assumes the capacitance strength is always weaker than the conductance strength except for t⅛ which is the capacitance strength of sources. This set is totally ordered as 0 < <⅛ < C2 < - - - < c„_i < pi < P2 < " ' < y-y < Each adjacent pair of strengths model actual conductance or capacitance that diSer by order of magnitude.(vii) The set of signal values Σ = S × V: a product of data types. Each signal value has both a signal strength and a logic value.(viii) A set of functions from data type f (space-time) to S (signal strength): a set of continuous functions over data types.
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3. Primitives — MOS Switch Level Model

An MOS transistor has three terminais: source, drain, and gate. The voit age on the gate of such a transistor controls the current how between the source and drain. The source and drain are completely symmetrical. In [3], the behavior of a transistor network is approximated by a series of logical conductance network. Transistors that are on are represented as a high conductance and those that are ojf as a zero conductance. Different sized transistors resuit in conductances which differ in order of magnitude and different sized nodes have capacitances that di Ser in order of magnitude. The steady state of each conductance network affects the topology of the next conductance network by the gate voltage which controls the on or oh state of each transistor. The transition from one conductance network topology to the next is based on the unit-delay model of switching a transistor with respect to its gate voltage.
For each conductance network, the Thévenin equivalent circuit is first constructed from the original network. For each node, the equivalent ad­mittance with respect to all sources (combining the admittance accumulated along each path to a source or input) is computed. The voltage for each node of the equivalent circuit is then obtained.
In order to detect whether there is any danger of charge sharing or paths to both logic 1 and logic zero in a conductance network, Ternary logic values are used for node voltages. If the gate voltage of a transistor is X G T, it is ambiguous what the conductance for that transistor is. An effective way of handling this case is by obtaining three separate strengths and then computing the strength and voltage for each node. First the equivalent admittance is computed from all sources and all stored charge of voltage, 



55both Î and Ô, assuming a∏ transistors with X on their gates are off. Then the equivalent admittances from Î sources or stored charge and Ô sources or stored charge are computed separately where transistors with x on their gate are treated as on. These admittances are called the one part and zero part, respectively. Once all three admittances are evaluated, they are combined to produce the new node strength and voltage. The following is a hierarchy of processes which models an arbitrary transistor network. For each process, its states and state transition functions are described. In deßning the functions, formal parameters are used and should not be confused with the states if the same symbols are used. The inputs and outputs are not explicitly dißerentiated from the states where a process is deßned although this information is in the description at a higher level where the process is used.
4. Transistor as a Process

States.4.1 A constant po € (? which is the conductance strength of the transistor when it is on.
4.2 pi € and p2 € the conductances whose values depend on gate voltage of the transistor. Both pi and p2 equal po if the gate voltage is such that the transistor is on and zero if the transistor is off. When the gate voltage is X, pi is the minimum conductance in the sense that the transistor is treated as if it were off and p2 is the maximum in the sense that the transistor considered as on.4.3 p € <P, a constant specifying the type of the transistor.4.4 ⅛r € S and dr G S, signal strengths computed by the transistor at its source and drain.
State Transition Functions



564.5 The function coup/e mode!s a signa! strength ⅛ coup!ed with a con­ductance <7- The node strength (or equivalent conductance) is affected by the conductance y connecting (in series) to it, The effect of two conductance in series is treated as the weaker one of the two since the order of magnitude approximation is used.
coupfe € [S X 4? → S] coup∕g(½, y) = min(⅛, y)

4.6 The functions setcoπducι and aetc0nduc2 mode! the contro! of the transistor conductance by the gate vo!tage v. aetcowduci gives the minimum conductance yι and 8ctcoτκfuc2 gives the maximum con­ductance y2 mentioned above.
8eicoπducι E [T X P X →'p = diype → y

8etc0πduc2 E [T X P X -+
8^cowduc2(v,p, y) =

5. Node as a Process
States.5.1 The node capacitance c E



575.2 The equivalent admittance of the node α E S.5.3 The node logic value v E T and node strength s E S.5.4 The zero part z E S and the one part y E S.
State Transition Functions.

5.5 { combine*  }⅞=Q is a family of functions which model the behavior ofa node where r conductance paths join. The order of magnitude ap­proximation, where the strongest signal always dominates all weaker signals, is used. In the following, we will drop the superscript i when we refer to the function.
comMwe E S'^*̂ ι  → Sc<w⅛6iwe = λ(⅛o, Hi..., s,) = max(so, si,..., Sr)

5.6 The functions ini⅝αM and twi⅛il set up the signal strength accord­ing to the voltage on the node for computing the zero part and the one part, respectively.
⅛m⅜αM) E [S × T -→ S]
tmi⅛∕l E [S × T → S] ttMitail(s, v) =

5.7 A family of functions models the approximationthat the node voltage is determined by the path with the greatest admittance (the dominating path). Signals are propagated step by step through each circuit component in the switch level model. A



58signal not on the dominating path might become the signa! on the node at some intermediate step before the steady state of the circuit is reached. If the circuit is acyclic, this fau!ty signa! will eventua∏y be overridden by the dominating one. In genera!, circuits may be cyc!ic, and such intermediate signais cannot be overridden. For that reason any signa! strength which resuits from the para!!e! combination of paths will be ignored (set to 0) if it is weaker than the equivalent admittance a.
coπ⅛6iwevu%ue G [S'^ι^2 -⅜ g] icom<⅛tπe(so, #ι..., #,) < a → 0 conz⅛ir⅛evu∕ue(a, sp, ⅛ι..., s,) = { cow⅛⅛i%g(so, ..., s,) > a →! cof^⅛⅛e(gQ,sι...,s^)

5.8 The function coy7τpuieva∕ue combines the zero part and the one part.The equiva!ent admittance a is obtained assuming the minimum conductance. For transistors with X on their gate, the zero part and one part are obtained assuming maximum conductance. Since the equivalent admittance a must have originated on either a Î or a Ô , at !east one of y and z must be at !east as !arge as a. If one of y and z is smaller than a, we can be sure that the !arger one results from a dominant admittance path even if all of the transistors with X on their gate are treated as off. Hence the node is given the value corresponding to the larger one. On the other hand if both y and z are as large as or larger than a, we cannot be sure that there will not be an equal strength path to both 1 and 0 for some choice of on or off for transistors with X on their gates. Hence under these conditions the node is given the value X. This mechanism also assures that the 



59connection of two nodes with equal capacitance strength and different stored values will generate an X.
compute value E [S^ → T]iso = 0Λ^ι ^>0→0 computevα∕ue(⅛o, ⅛ι) = < > ο Λ ⅛ι = 0 → Î^e⅛e → X

5.9 The function updα%e models the dynamic storage of charge on the capacitance. A signai can be stored on a capacitance c but its strength a can oniy be as large as c.updαie G [S X C —ί S] updaie(s, c) ≡ min(a, c)
6. Conductance Network as a Process

States. A conductance network is composed of conductances (approximation of the transistors) and nodes. It is therefore a compo3⅛⅛n of processes and not a prt'm½fve process. The states of this composite process are the collection of states of each individual component. We describe each collection by a function from the space-time domain defined below.
½ι = { 1,2,..., r⅛} is the set which indexes over the nodes in a network.

Let J and Jf be two disjoint subsets of ½ι. Set J indexes over the input and source nodes (these are nodes that provide signals). Set indexes over internal nodes (those which provide no signal but are capable of storing charge dynamically). Let ,‰<⅛n be the set of transistors of the network. Each transistor can be uniquely identißed with the triple (V, jf, ⅛) where ⅛, J, and ½ G ½ι denote nodes at the source, drain and gate of the transistor. Hence a



60connectivity function ∕ E [-½tr<Mi **+  A∕ι^]
which maps the transistors into their unique identihcation can he defined. Then

½ ≡ c A"is the set that indexes over transistors. The space time domain is A4 X T, for nodes and A4 X T for transistors. The states are described by the following functions from the space-time domain.
6.1 Unknown streams a, z and y in [A4 × T → S] are the collection of the equivalent admittance, zero part and one part of all nodes, respectively.
6.2 Streams sr and dr are elements of [A4 X T → S] which are collections of signal strengths at the source and the drain of the transistors.
6.3 Go, Gι, and G2 which are constant functions with respect to time i and therefore are elements of [A4 → ^].
6.4 C is an element of [A4 → C] which is the collection of the capacitance strengths of all nodes.
6.5 Vξ [Jf → T], and S€ [Jf → S]. which are the collections of initial voltage and strength of the signals on all internal nodes and are constant functions with respect to % at this level. The strength of input nodes are deßned by C, the capacitance strength above. For sources, this strength is t⅛, the greatest element of signal strength S. Variables tMι,t∏2,. - -,M⅛ are for input nodes of the network and their values will be assigned by the environment.
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6.6 A, Z, and Y 6 [½t → S] are the collection of admittances, zero parts and one parts of the network at steady state defined be!ow.
Algorithms defining State Transition Functions. The state transi­tion functions for the primitive processes (transistors and nodes) dehne the outputs and next state directiy in terms of inputs and current states. For a composite process, outputs and next state usua∏y cannot be defined directiy; rather they are defined recursively. The state transition function which re­lates outputs and next state to inputs and current state is the fixed point of the recursion equations describing the network. The following are the recur­sion equations for computing the equivalent admittance at each node for an arbitrary conductance network.
6.7 Compute the equivalent admittance at each node.

(z € J → C(z)½ = 0 → S(z) ½ > 0 A even(t) → corπ⅛iMe(a(z, t — 1), sr((z, ji, ⅞), t — 1),..., sr((z,jl,⅛i),t- l),dr((tι,z,⅛ι+ι,t- 1),..., dr(tr, z, ⅛+,, t - 1))odd(t) → a(z, t — 1) (1) where ∕ is the number of transistors whose source is node z and r is the number of transistors whose drain is node z. For the sake of clarity, we use ⅛,...,⅛ and & — 1,to express the neighboring nodes of node z (since these nodes are fixed for a given network), instead of using the connectivity function ∕ mentioned above to express these nodes as an explicit function of z.
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'odd(t) → coup∕e(a((⅛,y, ⅛) o 2,t — 1), Gι(t,y, ⅛))sr((t,J, ⅛),t) = < even(i) A t > 0 → sr((i, y, ½), t — 1) (2)
U = o → _L

iodd(t) → coupie(a((t,y, ⅛) o l,t — l),Gι(i,y, Λ:)) dr((⅛, J, ½), t) = < even(i) A t > 0 → dr((t,y, &), t - 1)L = 0 → J_
Substituting (2) and (3) into (1) we havefz E I → C(z)/-Î = 0 → S(z)t > 0 A even(i) → com,⅛ine(a(z, t — 1), coupie(a(à, t - 2), Gι(z,yι, ⅛)),.. coup^(a(y, % - 2), Gi(z, y, ⅛)), coup!e(a(tι, t - 2), Gi (⅛, z, ^∕+ι)),..., coupfg(a(^,t - 2), Gι(i^, z, ⅞+r))) .odd(i) → a(z, t — 1)Notice that when t is odd, a is exactly the same as it was at t — 1, therefore it is redundant to specify a at odd t. Hence (4) can be written as

a(z, t) = -

(3)

(4)

and
'z E 7 → C(z)= 0 → S(z)t > 0 → coτn,Mfig(a(z, % — 1),coup⅛(a(yι, t - 1), Gι (z, ⅛, ⅛ ))..., z e X → < coup∕e(a(y, t - 1), Gι (z,y, ⅛i)), coup⅛(a(⅛, t -1), Gι(tι, z, ⅛+ι)),...,. coup^e(a(^, t - 1), Gι(⅛,, z, ⅛,+r)))

(5)

This equation deßnes the equiva!ent admittance for each node in terms of the equivalent admittance of ai! nodes adjacent to it. For an isolated node,



63the equivalent admittance is just the node capacitance strength. For a group of nodes which are not connected by any conductance paths to sources, the equivalent capacitances for these nodes are computed. The phenomenon of charge sharing occurs in this situation and is handled proper!y by the same mechanism which handies the combination of paths. Function a. specißes the equivalent admittance for any node at any time. Since the functional in (5) is continuous, a is well defined by the βχed-point theorem. Notice that the time domain is infinite, thus obtaining a takes an infinite number of time steps. Fortunately, most circuits reach a 3%e<κ⅞∕ ⅛iαfe in a 6nite subset of the time domain. In our framework, a process reaches its steady state if all of its states do not change after a certain time has elapsed. Using a specißc process as an example, the collection of equivalent admittances of a conductance network becomes steady at time if for every node in ,½, the admittance α is the same as it was at one time step earlier, i.e.,
pf[λz.(α(z, i)-a(z, f—1)) = λz.0] = ‰ where ∕⅛ is the minimalization operator.
This operator /A gives the smallest i such that λz.(α(z, i) — α(a,i — 1)) = λz.0. We can now restrict the time domain to *⅞.  ≡ {0,1,2..., The equivalent admittance on all nodes can then be described by
A E [-½ι -+ S], A(z) ≡ a^°(z, ⅛J where is the least βχed point of (5).

6.8 Compute the zero part of the network. The equations are similar to the ones above except that the maximum conductance G2 is used instead of Gj, and the equivalent admittance A obtained above is used.
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z(z, ί) = -

'z 6 J -→ tnitiα∕O(c(z),tM,)
it == 0 → znittαiθ(s(z), V(z))

ί > Ο Λ even(f) → co!π⅛iπevatug(A(z), ζ(ζ, ί — 1), 
sr((z, Ji, Α:ι ), ί - 1),..., sr((z, ⅛, ⅛^), ί - 1), 
dr((⅛, ζ, ⅛(+ι, ί - 1),..., d⅛, ζ, t - 1))) 

.odd(t) → z(z,t — 1)

zeJr → -

(6)∖

iodd(t) -→ coup⅛(z((i,j,⅛)o2,i-l),G2(⅛⅛))
sr((⅛, y, ⅛), ί) = ί even(t) Λ ί > 0 → sr((t, j', ⅛), ί - 1) (7)

\ί = 0 —ί _J_'odd(t) → coupte(z((i,y, ⅛) ο 1, ί - 1), G2(i,y, Α:)) 
dr((i, J) %) == ' even(t) Λ ί > 0 → dr((i, j, ⅛), ί — 1),ί = 0 → J_Following the same steps as above and substituting (7) and (8) into (6), have

'z € 7 → !7MtiαZ0(c(z), iw.,)
∕⅛ = 0 → tmt⅛10(s(z),V(z))

t > 0 → comMnevαlue(A(z), (z(z,t — 1), 

coup∕e(z(yι,t- l),G2(z,y1,⅛1))..., 

coup∕e(z(^,t - 1), Gg(z,y, ⅛J), 

coup∕e(z(iι, t - 1), G2(⅛,z, ⅛⅛ι)),..., 

C0Up^(z(4,t - 1), G2(ir^ Z, ⅞+r)))

(8)
we

(9)

Similarly, the least fixed-point of the equation is an element of [½ι X ⅞, -*  S], where is the restricted time domain and the steady state zero part strength on all nodes is described by
Z6[-½→S], Z(z) = z'*(z,⅛).
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6.9 Compute the one part of the network. Similar to equation (9), we 
have

'z G J →

y("<') = Lex→

MMfiα∕l(c(z),ty⅛)'t = 0 —ί MM%iαil(s(z), V(g))t > 0 → comMnevαfue(A(z), (a(z,i — 1), coup^e(y(yι, i - 1), G2(s,⅛, ⅞))..., coup⅛(y(,½, i - 1), G2(z, ⅛, A;J), coup∕g(y(⅛ι, i - 1), Gg(⅛, z, ⅛⅛ι)),..
. COUp%e(y(iy, ί 1), G2(ir, Z, ⅛i+r)))

(10)

The one part of the network can be obtained as before, and is described byYG[-½→S], Y(z) = yt"(z,fy)where ⅞, == ∕ii[λz.(y(z, i) — y(z, f — l))z.0], and y^ is the least fixed point of(10).
State Transition Functions. The state transition functions are leastβχed-points of above algorithms.-<E⅛v E [[.Mi —T] X [A/j → S] X [A∕2 -*,%?] —* [^4 S]]Eyv(V, S, G) = AZero, One E [[A∕j → V] X [½ → X [½> → → [A∕ι → S]]Zero(V, S,A,G) = Z One(V,S,A, G) ==Y

6.10 With the above functions, the node voltage for the conductancenetwork can be obtained by the following function:Cneiwor½ G [[½ι → T] X [½ι → S] × [½2 → → [^∕ι → T] X [^4 → S]]CneiworA(V, S, Gι, G2) ≡ (λz.compufevαfue(Zero(V, S, ^gv(V, S, Gι), G2)(z), One(V, S, ⅛(V, S, Gj, Gg)(z))), Eqv(V, S, Gj)
Formation of Conductance Network



686.11 Compute the connectivity of the network (network topology) which is given by those transistors that are on. There are two possible extremal network topologies; one is given by assuming maximum conductance and the other by assuming minimum conductance. The state transition function for computing the topology of each conduc­tance network is deRned asTopo G [[<½1 —* T] X [½≥ → X [-½2 **+  [-½2 *→ ,ί?]2]Topo(V, Ρ, Go) = (λ(i,y, ½).3etcoπducι(V(⅛),P(i,y,⅛), Go(t,y, ½)), λ(t, y, A;).sef c0nduc2 (V(⅛), P(i, y, ^), Go(i, y, ⅛)) )
6.12 Dsfore models the dynamically stored charge on each node by setting the strength of the signal stored on each node to the capacitance strength of that node.Z⅛tore G [[½ι -+ S] X [½ι → C] → [½ι → S]]Dsfore(S, C) = λz.updαfe(s(z), C(z))

7. Transistor Network as a Process

After obtaining the functions for a conductance network and the forma­tion of a new conductance network, a space-time algorithm which describes a transistor network can be given.
Algorithm for a Transistor Network. The following equation describes how the topology of each of the successive conductance network is constructed from the signals computed by the previous conductance net­work. Each of these conductance networks computes its signal values from the dynamically stored signals of the previous network. Notice that each time step at this level corresponds to ⅛⅛ + 6t + fy Rner steps at the conductance 



67network level. ∕t==0→(⅛,⅛)(V, <y)(t) = ∖ t > 0 -+ Cnetwor½(V(t — 1), L⅛tore(S(t — 1), Co), (11) t T.p.(V(t-l),P.,G.))
The least hxed-point of the functional in (11) is denoted by(V,S)<6[7⅛→[-½→S]×[⅛→*ι'])where f = ^t[V(t) - V(i -1) = λz.0 Λ ^(t) - ⅛(t- 1) = λz.0] and *⅜  is the restricted time domain at this ievel.We further λ-abstract the appropriate arguments to obtain the fo∏owing function which models the behavior of a transistor network,Tnetwor⅛ € {[-½ι P] X [.λ/i -*̂  ^] X [^2 X [-Vι —T] X —ί S] —*[7^ → → V] X [½ S]]]TMe^or⅛(Po,Go,Co,⅞,-S'o) ≡ (V,^-For a given set of transistors (7⅞ specihes the types and Go the conductance strength) and nodes (Co specihes the node capacitance strength), the connec­tion among the nodes (dehnes <½), and the initiai state of the network (% and ⅜), the function gives the behavior of the network in time (each step being a conductance network). The steady state signai vaiues for aii nodes are given by (v,s)e[½ → V X s](V, s) ≡ 7⅛etwor⅛(⅞, Go, ⅞, ⅜, Vo)(f)-Let t∏ι,M⅛,-..,M⅛ 6 I be the input nodes and 01,02,..., <⅛ 6 T be the output nodes, then the functionai description of the network is*Mt G [[V X S]" → [V X S]?]net = (ne⅛ι, ne⅛, * - -, ne⅞)where ne⅛(tnι,...,tr⅛) = Tne⅛∕mr⅛(⅝,Go,Co,⅜,%)(f)(o*)and * = 1,2,..



68Let the new time step t' be time steps at the transistor network level. At this point, the behavior of the network is obtained. It is a state transition function from inputs (⅛∏ι,..., ⅛r⅛) and initiai state at ∕ = 0 (also t' = 0) to outputs (oι,..., Oq) and next state (the steady state at the transistor network ievel) at t' = 1 (t = ^).
8. Functional Abstraction and Semantic HierarchyIn describing a transistor network, three hierarchical ieveis are en­countered, namely, the transistor and node level, conductance network level and the transistor network level. In order to approach the design hierarchi­cally or raise the design to the level of functional blocks, the entire transistor network must be partitioned into pieces where the behavior of each piece can be obtained and thereafter abstracted as a state transition function. The partition is not arbitrary; it only makes sense to partition in such a way that the behavior of the algorithm with the partition (with or without an equivalent functional abstraction) is equivalent to that of the original algo­rithm without the partion (and abstraction). When a partition satisfies this criterion, a new hierarchical level is created. We call it a *emay½ic  /eve/. There are ways to partition a design that do not satisfy the criterion but are useful in the physical layout of a design. Any level created by these partitions is termed a ⅛yπ∕αc∕⅛ /eve/.
9. Data AbstractionAside from the functional abstraction achieved by taking the least fixed- point of an algorithm, data abstraction often occurs. By the deEnition of (7networ⅛, we can see that if all inputs to a transistor network are the gates, the strengths of these input signals are immaterial since only the strengths of dynamic stored charges are used. Therefore the strength part of signal can be ignored at yαie level and the data type become T instead of T × S.



69In the next chapter, different semantic hierarchies are defined so that data abstraction can be performed at each !eve!. If a transistor network is docked (by either a dock or seff-timed signaling), the data type can be further abstracted to be β the boolean domain rather than the Ternary fogic values. Once the c∕oc⅛ed cd/ ievei of abstraction is achieved, the manipulation of functional deßnitions of circuits is in the famiiiar regime where boolean al­gebra or the usual aigebra on integers can be appiied. Forma! verißcation can be done using various inductive techniques [43] such as structura! induction [5]. Since a docked ce!I is usua∏y fair!y sma!l, an exhaustive simu!ation of the ce!! is more convenient than forma! manipulation of its description by hand. A hierarchica! simulator based on the space-time a!gorithms and their semantics wi!! be described in the next chapter.



70

Chapter 5

A Hierarchical Simulator

Simulation consists of exercising the representation of a design on a general purpose computer. It differs from programming only because the ultimate implementation will be in a different medium, say a VLSI chip. In order for simulation to be in any sense effective, the simulated system must perform the same function as the ultimate implementation. A VLSI chip is a highly concurrent object; the simulation of such a chip amounts to programming a highly concurrent system. It follows that any demonstrably correct simulation technique will be one of the two types:(i) The entire design is represented as an implementation with objects which are abstract models of the medium at the bottom level (e.g. transistor model). The simulation operates on a representation which is a direct image of the fully instantiated implementation in the medium.(ii) The design is represented as a hierarchy of implementations. Each level of implementation is constructed of objects which are abstract models of the implementation at the level below it. The simulation operates on a hierarchical representation where each level is refined by the level below it.The first approach requires only a model of the implementation medium. The second approach requires, in addition, a general principle for obtaining 



71an abstract mode! from a given implementation of objects at the lower level. The second approach allows the implementation details to be hidden and therefore yields a clearer conceptualization of the design and a more efficient simulation.
1. Multi-level and Mixed-level Simulation

In the design of a VLSI system, the traditional levels of hierarchy are circuit level, gate-level, and register transfer level. This partitioning helps designers focus on one particular level of design at any given time. When they focus on the register transfer level, for example, they can reason about the overall design in terms of the functionality of the inter-connected blocks and a given timing scheme, without worrying about the details inside each block. On the other hand, when they are designing at the circuit-level, the focus is on one functional block at a time rather than on the whole system. Hierarchical simulators such as VISTA [12] and [31] allow designers to focus on one part of the design in this way. Ideally, if the overall system design is shown to be correct in terms of the functional blocks, and each functional block is shown to be correct in terms of its circuit-level or gate­level implementation, the designers need not examine the correctness of the detailed implementation across two different functional blocks; i.e., each of these hierarchical levels provides an abstraction of the level below it. The functionality of the overall design will always be preserved when the designers cross the different levels. The complexity of a large system design can only be effectively managed through these levels of abstraction. Preserving the functionality, i.e., maintaining consistency between hierarchical levels, is the most important property of a hierarchical simulator, and the most difficult to achieve. Successful treatment of the consistency problem has not been found in the literature.



72A multi-level simulator, when used as a tool to verify a hierarchi­cal design, should provide a way to ensure the consistency of the design throughout all levels. On the other hand, the simulator should allow blocks of different levels to be connected through proper interfaces which handle the timing and the matching of various input/output data types. The key issue in such a multi-level simulator is the interface mechanism. In this chapter, we present a simulator in which a uniform representation is used at all levels of the design. A method of abstraction for maintaining consistency between levels and proper interfacing of timing and data types is described.
2. Semantic Hierarchy and Syntactic Hierarchy

In conventional programming languages, macros and procedures or /unc­tions have long been recognized as two different ways to facilitate program­ming. Macros are used only at a syntactic level to ease the specification, and do not provide any semantic abstraction, since they are expanded during compilation. The object code of a program using macros is exactly the same as its counterpart without using macros. However, procedures and functions are used not only to facilitate specißcation, but to encapsulate a piece of code with a well-defined interface to other parts of a program. Ideally, a function should not allow any side-effects and therefore provides a semantic abstrac­tion. We make the distinction of the %yy½αci⅛ λ⅛rarc⅛y vs. the 6eτnanh'c Merarc⅛y in a simulator in a way analogous to the distinction between mac­ros and procedures in a programming language. The syntactic hierarchy in the simulator serves two purposes: One is ease of specißcation, just as mac­ros in a programming language; the other is that it contains information about spatial locality. Since it has been observed that activities in circuits tend to be local [3], this information can be exploited by the simulation al­gorithm to achieve better performance. Unlike simulators which take a ßat 



73network specification where the locality information has been thrown away by the preprocessing to be recovered iater on by topologicai analysis, this simulator takes advantage of user's hierarchical specißcation and requires neither preprocessing nor topological analysis.
Syntactic Ce!is. In the context of a switch-level simulator, transistors and nodes are objects from which everything else is constructed. They are bottom level cells of the semantic hierarchy. We call this bottom level the conductance-level since an active device (transistor) is approximated by a passive conductance. A syntactic cell is a circuit consisting of an intercon­nection of transistors and nodes where there is no restriction on the input nodes or the output nodes of the cell. The state of a node in a syntactic cell can directly or indirectly influence nodes in the others and thus the cell provides no abstraction for the behavior of a circuit.
Figure 5-1 shows an nMOS exclusive nor cell which is an example of a syntactic cell.

Figure 5-1 A non-restoring exclusive nor circuit XNOR.
Although a syntactic cell like the one shown in Figure 5-1 is a com­position of transistors and nodes, it is at the same semantic level (or of the 



74same semantic type) as transistors and nodes. A syntactic cell can also be a composition of other syntactic cells of the same semantic type, although these cells can be nested at an arbitrary depth in the syntactic hierarchy. No separation of the hierarchy into leaf cells and composition cells [35] is required, i.e., a transistor or a node can be composed with a syntactic cell directly without making it into a syntactic cell by itself. The simulation of such a cell produces exactly the same result as the circuit represented without hierarchy. The equivalence of Bryant's model of a hat network with our hierarchical represented network can be shown by straightforward induction on the level of the syntactic hierarchy.
The semantic hierarchy is constructed for abstracting the behavior of circuits. A syntactic cell is made into a semantic cell if an abstraction of its behavior is desired. This new prim⅛ive semantic cell is used as an "atom" in a new syntactic hierarchy, which in turn is used within each semantic level in order to clarify the specißcation and express the locality of cells.
For simulator based on a switch-level model, the semantic levels can be the bottom level transistors and nodes (conductance-level), gate-level, clocked cell level (in a more general sense including a self-timed [391] module with request and acknowledge signals), register transfer level, and other higher levels. We call all levels at and above the clocked cell level the ∕unci⅛n<½ level since the functionality of cells at those levels can be abstracted.
Gate-level Cells. A yαfe-∕eve∕ cell is a composition of conductance­level cells (transistors, nodes and syntactic cells composed of them) with the restriction that the input nodes be uni-directional, i.e., the input nodes are gates of transistors. Figure 5-2 shows a gate-level cell. Note that the XNOR circuit in Figure 5-1 is not a gate-level cell.
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According to the unit-delay model of a transistor, the gate node of a transistor will not affect the state of the transistor until a given conductance network is settled. Since each of the input nodes of a gate-level cell is the gate node of a transistor, no intermediate state on that node will be seen by the cell until the node reaches the inner conductance-level steady state described above. The gate-level cell is aüected by each of its inputs when each of these gate nodes reaches its steady state and causes the corresponding transistor to change state. Notice that to abstract the behavior of a gate-level cell, we can only discard the intermediate states on all of its output nodes (prior to its reaching the inner conductance-level steady state). We cannot just keep the outer transistor-level steady state and discard all the conductance level steady states. Therefore, the conventional way of thinking about a gate-level cell as a functional block (in which all intermediate states before reaching the outer transistor-level steady-state are discarded) is not formally correct. This incorrect abstraction must be remedied by some other analysis in the design process. For a simulator, such incorrect abstraction will miss, for example,



76the glitch in the circuit shown in Figure 5-3.

Figure 5-3 A gate-level circuit that generates logic 0

If we reason about the circuit shown in Figure 5-3 at the functional level, the output of this cell will be a logic 0 for all possible inputs. Yet when the input is initially 1 and switches to 0, the output will become a logic 1 before it settles back to 0. If the inner conductance-level steady state is kept, the simulation output will reject the glitch properly. In actual design practice, one often reasons about interconnections of gate-level cells which behave like the above example, even though the functional abstraction is not formally correct. This formally incorrect but practically valuable abstraction works because one adopts a timing discipline in composing gate­level cells. The timing discipline ensures that each combinational circuit in a given network can only be affected by the steady state value of the output of the combinational cell to which it is connected. Familiar examples of this discipline are a two phase non-overlapping clock scheme where the clock period of each phase is long enough for a combinational circuit to settle, and a self-timed request-acknowledge signaling. An intermediate value on an output node will not propagate because of the timing discipline in the same way that the intermediate value of a local variable will not be returned by a function in a programming language. Therefore the timing discipline provides a semantic abstraction similar to a function in a programming language.
Clocked Cells. A clocked-cell is a composition of conductance level cells, with the restriction that all input nodes must satisfy a timing discipline 



77which insures that only the steady-state of the output nodes can he seen by other cells to which they are connected. (Figure 5-4 shows a docked ceU formed by two other clocked ce∏s.)

Figure 5-4 A clocked Mu∏er C-element containing two sub-cells
The steady state of a primitive clocked cell (which does not contain any other clocked cell as a component, for example, as each of the sub-cells shown in Figure 5-4) is the steady state at transistor-level for that cell. Each of these cells can only see the steady state of other cells and therefore provides an abstraction. The gate-level abstraction is at a lower level than the clocked cell level since not only the steady state of the transistor-level is kept but all the steady states at the conductance level are kept as well. Bryant [3] points out that the gate-level cells provide a useful modeling abstraction since it is not necessary to keep track of the a⅛naf 4trenpi⅛ used in the conductance-level.



78Experience with MOS design has shown that specifying a chip in terms of gate-Ieveis ce∏s is not convenient because the restriction on inputs does not ailow elective use of pass transistors. Since clocked ce∏s are usua∏y small, we use them as the semantic level immediately above the conductance-level cells. Sub-circuits within them are represented as syntactic cells. In this simulator we therefore do not support the gate-level abstraction. In a technology other than MOS, the gate-level may well be an appropriate level of abstraction, and is very easy to implement within our simulator.
We will now proceed to illustrate the model and its use in specißcation and simulation by way of a simple example — a pipelined inner product element similar to that described in [25]. Figure 5-5 shows an example of a hierarchical partition of a single bit inner product cell IPB described in [44] which will be used later in the pipelined inner product element.

Figure 5-5 A single bit inner product element IPB



79

This ceil is of type clocked-cell and consist of three clocked-cells, A which is not circled in the Figure, Di and Dg which are circled. Cell A contains five syntactic cells, hiAJ, two XNOR gates, an AND gate, and an inverter. It also contains four transistors and four gate nodes each with on it, four input nodes 6, n¾ and, c and finally, two output nodes p and q.
Celis Di and D2 are identical· Each consists of one syntactic ceii, the inverter, a transistor and a gate node with ^2 on it, an input node p for Di and q for D2, respectively and finally an output node c for Di and (⅛ut for D2, respectively. The inputs to the IPB are α^, 6, m and the clocks. The output is α.ut. There is one bit of internal state in this cell, namely the carry c. The current state of c is denoted by and next state by
The simulation of this syntactic cell proceeds by (1) obtaining the steady state of each clocked-cell (A, Di and D2) using its inputs and state, inde­pendently of the other cells and, (2) transferring the outputs of one cell to the inputs of the others. Notice that a IPB cell is a syntactic cell, and therefore each of the three sub-cells is only invoked once. The IPB cell can be further abstracted to be a bit-level cell. However, it is then necessary to obtain the steady state of the IPB cell. The above procedure is iterated until the out­puts of all three sub-cells do not change any more. This iteration yields the steady state of the IPB cell at the bit-level. This example shows that each semantic level requires an iteration to obtain its steady state. In the example of constructing an π bit pipelined element below, we do not use the bit-level abstraction, and so the above described procedure is invoked only once.

To verify the correctness of this circuit, the three clocked-cells are re­placed by their functional specification, shown in Figure 5-6. The cell 



80specified in a functional form is simuiated and compared with the one (with detai!ed impiementation) described above.
IF %ι THEN

BEGIN

9<- (α,⅝φ (NOT (6 AND m)))φc..r.

P MAJ(u^, ⅛ AND rr⅛, ;

END ELSE

IF %2 THEN

BEGIN

^out NOT Ç, Cuggt NOT p,

END;Figure 5-6 The functionai specification of a 1-bit inner product element.
Notice that the data type in the functionai specification is ⅛oofeαn rather than 3⅛nt½ (which has two components, the signa! strength and the signai state) used in the conductance-ievei representation, and that the aigebra of signais [3] is different from ordinary boolean aigebra. In many cases, such as this inner product celi, a correct signa! on the output of each clocked cell can only be a logic 0 or a logic 1 which falls into the domain of boolean algebra, although the internal nodes or even the intermediate state of the outputs can be in state X. The algebra of signals contains the signal state X, which represents an intermediate voltage between 1 and 0. The steady state output of a proper clocked cell will always be a binary value. If the output of a clocked-cell is an X, then either an error has occurred in the implementation or functional abstraction at the clocked cell level should not be applied. It is possible, in fact, very common, for the output of a clocked cell to be un⅛nown, for example, when the output is a function of some state variable which 



81has not been initialized. At every ieve! we use the symbo! J_ (pronounced ⅛o⅛om) to represent an undeßned value. It must not be confused with X which represents a voltage between logic 0 and logic 1 at the conductance­level· Since an intended output wili never depend on an unknown value J_, a possible way of handiing a _j_ in the input of a function would be to deßne the corresponding output also to be _[_. An algebra extended this way is called 
nt½ur<½⅞∕ ezien<fed [26]. (Although there exists other possible extensions, the natural extension is used in this simulator.).

Notice that even at the level of a simple 1-bit cell, we can see the kind of data abstraction that always accompanies functional abstraction. Each level has its own algebra for manipulating data and functions. A formal treatment of the model of computation that allows such abstractions (input/output mapping functions for data abstraction and βχed-point semantics for func­tional abstraction) is given in the previous Chapters.
Word-level Cells. The functional specißcation given in Figure 5-6 is used in the next level of composition, in this example the pipelined inner product element. The performance of the simulation using this specification will be drastically improved in comparison with the circuit-level specißcation. Although exhaustive checking is possible for verifying the consistency between the two specißcations for a single cell like IPB, it becomes rapidly impractical as the size of the cell grows. Then it becomes necessary for the notation or language in which the design is described to have formal semantics in order to allow verißcation of the consistency between two dißerent levels of specißcation. Space-time algorithms are an example of such a notation. Although the current simulator is implemented as an embedded language in an ordinary programming language, the primitives for specifying the design are a direct mapping of the above formal notation.



82An π-bit pipelined inner product element can be composed by connecting n IPB cells serially, the specific scheme is shown in Chapter 3. We call this cell IPE. It can be viewed as a word-level cell where a pulse input !%⅛ indicates the start of a word (say, least significant bit of an π bit word). We can adapt the interface of this cell so that the clocks can be hidden inside the cell and the bit serial input and output can be abstracted as words. Figure 5-7 shows the data abstraction which maps input words α,γ,, & and t¾ into series of bits and collects output bits to be the word ⅞,ut- The bits ⅛[i], and t¾[t]are put in one by one to the IPE at its input ports ⅛pe⅛, and tpe^.. Asuitable clock is also generated for the cell. Once the inputs and the clocks are valid, IPE is called upon to compute its result (written as IPE.com,pu½e in Figure 5-7). It computes by invoking each of the IPB cells, transfers the results of one IPB to the next and repeats until each of the result returned by all IPB cells becomes steady. The individual IPB cell, when invoked, in turn invokes each of its sub-cells A, Di and D2 only one time as described above.
The functional abstraction of the IPE is shown in Figure 5-8. Again, the consistency of the two different levels can be verified by the combination of formal verification and simulating both specißcations.

IF ⅛⅛ THEN

FOR ï := 0 TO π — 1 DO (loading phase) 

BEGIN
*P6<H" <- u,n[t], ⅛f⅛ <- ⅛], tpe^ 4- m[i]; (input mapping)

4—high, ^2 <—low; IPE.compute;

4—lov, ^2 4—high; IPE.compute;

END;

FOR t := 0 TO H — 1 DO (unloading phase)
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BEGIN

<—high, 4—low; IPE.compute;

4—low, <—high; IPE.compuie;

⅛.uiW ⅛pe...J (output mapping)

END;Figure 5-7 Interface of an π bit-serial element to higher-level specißcation,
IF ∕⅛⅛ THEN a.ut 4- + ⅛ X mFigure 5-8 The functional specification of the inner product element,

The n bit inner product element can be used to construct, for example, a systolic array performing matrix multiplication [22]. At the level of a systolic array, the inner product element is used in the functional form as in Figure 5-8, regardless of its implementation as bit serial or word parallel. We have to be careful however, since the mapping functions that constitute the data abstraction are never unique. The mapping may be from π serial bits to a word or from n parallel bits to a word. The mapping in the former is from time domain to an abstract word and the latter is from space domain to an abstract word. In connecting two inner product elements at this level, one must make sure that the output mapping function of one element is the inverse of the input mapping function of the element to which it is connected. Two IPE elements as shown in Figure 5-7 can be connected since the output mapping of one (from bits for 0 < t < w to an n bit word A<,ut) isthe inverse of the input mapping of the other (from w bit word α,⅛ to bits V⅞wnH for 0 < ⅛ < w). The lower level has the same interface problem in a different form. It is the timing discipline used in the design that allows abstraction to the clocked cell level. This discipline can be one of several kinds. For example it may be two, three or four phase clock, or a two or 



84four cycle request-acknowledge protocol. Once again the condition imposed on the output of one cell must match that of the input of the cell to which it connects.
3. "Structured Programming" in VLSIThe systolic array can also be abstracted from its implementation and used as an abstract machine performing matrix multiplication, which is presented in Chapter 3. Notice that the abstraction mechanism is precisely the same at all levels. Considering the bottom-up approach, we summarize the two essential steps in the hierarchical design method:(1) Use a cell deßned by its implementation in the context of cells defined by their functional specißcations. In order to adapt the interface between the cell and its context, a new cell containing the following three parts is constructed:i) A function which maps inputs in the data representation of the high level to the inputs at the lower level.ii) The implementation at the lower level.iii) A function which maps the outputs at the lower level to outputs in the data representation at the higher level.This cell is now a proper cell with exactly the same interface as a higher level cell. We can use it as such or

(2) Replace such an implementation with its functional specißcation. These two versions shall be verißed to be consistent either by simulat­ing them against each other, by formal verißcation or by a combina­tion of the two. Once the results are identical, the βrst cell can be replaced by its functional equivalent.



85The order of these two steps can be reversed for the top-down approach. In the top-down approach, instead of an implementation of lower level func­tions being abstracted to be a higher level function, a higher level function is implemented by some lower level functions. Such rehnement of design can be carried out until the implementation at the bottom is completed.
What we have shown is a method for constructing systems from switch­level circuits to functional blocks through successive semantic abstractions. Stated the other way around, we have started with functional specißcation at the top level and successively relined the specißcation until it is implemented in the bottom level representation of the medium (in this case, switch-level model of transistors and nodes). In contrast to the conventional view of βχed hierarchical levels, the partitioning of a semantic hierarchy is ßexible and problem oriented. Designers can partition each system in the way that is most natural to the design, rather than trying to ßt it into rigid pre-deßned levels which are not necessarily appropriate.

4. Implementation of the Simulator

The example shown above is very specißc, and one can obviously write a multi-level simulator for this particular system. Such a simulator would be of limited use since it only handles designs partitioned in the same way. 
A general purpose simulator which must support arbitrary levels and mixed- level seems at Brst unrealistic. We approach this problem by:

1. Separating out the part that is universal to all system levels
2. Using the power of an embedded language [24].

Embedded languages. It has been observed in integrated circuit layout languages that an embedded language — a language supporting



8ßgraphics primitives in an existing programming language — has the generality and flexibility in the specification of designs that an interactive graphic layout system usually lacks. The effort of making a graphic system as powerful as an embedded language is essentially that of supporting a general purpose programming language. It is much more sensible to let the compiler of an existing language do the work. The same philosophy applies to a specißcation language for simulation. We build into a programming language the simula­tion algorithm and an interactive user interface (corresponding to the debug­ger in a programming environment) for testing the design. One specifies cells in an embedded simulation language by invoking primitives for transistors, nodes, syntactic cells and semantic cells. These primitives are pre-defined in the language. With the power of a general programming language, users can then specify functional abstractions, the data abstractions, and various data types at any level according to their conceptualization of the design.
Representation of Cells. Cells are represented as nwdufes in a pro­gramming language supporting separately compilable modules. The language we have used for this specific implementation is Mainsail*  [45]. A cell has in it the specißcation of its constituents, i.e., the implementation in terms of lower level cells, and the procedure for computing its result. The former is supplied by the user and the latter is incorporated automatically. Cells of dißerent natures — primitive, composite, semantic or syntactic — have dißerent ways of computing their result. Each of them is made into a template and the template is compiled together with the specißcation of the cell's construction in the case of a composition cell. A module is typed according to the template incorporated into it. The net eßect is that each module contains the functions necessary to compute its own behavior.

*MainsaiI is a registered trademark of Xidak Inc.

We use a module instead of a procedure to represent each cell because 



87a cell can be mapped directly into a module which has a data section to represent the cell's inputs, outputs and states, and a procedure section for the specißcation of its constituents or the computation of its behavior. Each module aiso has one bit of state which records whether any inputs have changed since it reached its !ast steady state. No computation is necessary if they are the same since the outputs of the last computation are still valid. This "change bit" allows a truly efficient implementation.
Representation of Connections. The computational aspects of a system have attracted much more attention than the communication aspects. Since the transfer of information does cost energy and resources (wires), it must be taken into account. The communication among modules is repre­sented also as a module which contains the connectivity information and various ways to transfer information from an output port to the correspond­ing input port. Both uni-directional and bi-directional connections can be represented. More important, the connection modules make it possible to simulate a collection of concurrent processes by a sequential machine in an order independent way.
The Universal Fixed-Point Algorithm. By viewing a computational system as an ensemble of cells and connections, we devise a fixed-point algo­rithm to find the steady state of a cell. The fixed-point algorithm performs a task similar to the so-called "relaxation" algorithm. It can be viewed as an interpreter for a space-time algorithm which describes the system. It takes the implementation of a cell in terms of connections and cells in a bipartite format. The algorithm starts by evaluating all the connections (interpreting (cTERM)'s). Since at this point, all data streams are totally undefined func­tions, only the initially assigned state and input/output values of variables J⅞,,X2)...,-Xw⅛ result. Then each cell is invoked (interpreting (PTERM)); 



88and the state transition function of the cell is eva!uated. After aH have been invoked, each connection is in turn invoked, to transfer the data and thereby bring about the interactions among connected ceils (interpreting (CTERM)'s). This procedure is iterated untii the steady state is reached. The bipartite ar­rangement of cells and connections resuits in the property that the order in which each ce∏ is invoked is immateria! in the algorithm. Each iteration of the aigorithm therefore generates values corresponding to the values of the least fixed-point of the space-time algorithm at some points in the space-time domain. Since the algorithm is to terminate once the steady state is reached, the algorithm yields the correct value which is the corresponding value of the least fixed-point at steady state. Since all cells and connections are rep­resented uniformly at all semantic levels, only a single universal fixed-point algorithm is necessary.
Elements of a. Multi-level Simulator. The following modules, em­bedded into Mainsail, serve as templates for user deßned circuits:

1. Cells of various types: transistors, syntactic cells, conductance net­works, clocked cells, and functional cells.
2. Connections of various types: nodes, bi-directional connections for syntactic cells below clocked cell level, and uni-directional connec­tions for functional cells. The formation of conductance network topology is also represented as a connection module.

In the object-oriented view of computation such as Simula [2], Smalltalk [18], etc., the above templates are the superclasses of the user deßned classes (cells). These templates are the only structure we build into the simulator. Instead of building and maintaining data structures that represent a design, the structure is embedded in user's specißcation of inter-connected modules.



89Hence, no global simulation aigorithm is necessary to traverse the data struc­ture.
Each of the modules has variables, constants, and procedures for com­puting its behavior. Nodes, transistors, conductance networks, the formation of conductance network topology, and clocked ceils (transistor networks) are described in Chapter 4 where the behaviors are deßned by state transition functions. On the other hand, the behavior of primitive functional cells are deßned in a cell library or supplied by the user. Transistors, nodes and primitive functional cells compute directly. A composite cell contains the following lists: sub-modules for the constituents, connections, external input ports and external output ports. It causes its constituents to compute in a recursive manner until one of the primitive functions or abstracted functions is encountered. In the case of a semantic cell, it iterates until reaching its steady state and returns its result. For a syntactic cell, it only computes one iteration and then return its result. The behavior of a bi-directional connection is similar to a node. The behavior of a uni-directional connection is simply transferring data from an output port of one cell to the input port (or ports for broadcasting) of another.

Programming consists of three stages: specifying, compiling, and ex­ecuting along with debugging of a program; simulation likewise consists of specifying, constructing the structure of a design (compiling), and exercising (executing and debugging) a design.
Specifying a Design. The user interface for specifying a design con­tains the following keywords and procedures:
(i) for a syntactic cell, 2⅜(∕inCC⅛!Z for a composite semanticcell and for a abstracted functional cell. These keywords



90cause a template containing the procedure for different ways of com­puting to be created during the "compile time". It also creates the procedure head (7owτpo⅛g for the user specified constituents. The body of the procedure Compose consists of invocations of the follow­ing procedures for a user to specify a design.
During "compile time", these invocations cause the template created by the keywords above to be filled with actual instances of the celΓs constituents.
(ii) Aiode(iype); where ⅛ype indicates whether the node is a input node or a internal node.

(iii) Trαw(c0w(%uciαwce∕)irew(7iλ, iype); where iype indicates enhance­ment, depletion mode or p-type, n-type transistors.
(iv) <Su&AfoJtiie(cfass); where cfαss indicates a module of certain type, say, an exclusive-or gate.
(v) Jdenii∕y(∕romPori, toPori); where /romPori and toPori are either nodes in a transistor level design or an input port and an output port for a higher level design. A connection module will be created and attached to the connection list in the cell's template.

(vi) Ezθui(pori)j and Ez/n(pori); for declaring the interface of a cell to the environment. These ports are attached to the corresponding lists in the template.
Compiling. Each composite cell module contains the procedure Compose for constructing the internal structure of a design. When this pro­cedure of the top-level module of a design is invoked, it in turn invokes the user specified procedures ^u⅛Λfodu∕e, Jder½i∕y, Ez7n or Ezθui. Procedure 



91<S*uMfodt½e  creates instances of the submodules, updates the submodule list and in turn invoices the Coynpoae procedure of the submodules. This action proceeds recursively until a primitive cell specified by, for example, Node or Tran, or an abstracted functional cell, is reached. A connection between submodules is established when the procedure ∕deπfi∕y is invoiced.
Executing and Debugging. After a network has been constructed, inputs to the network are provided by the user. The simulation of the network starts when the procedure (7oyπpuie of the top-level cell module is invoked. Modules of different nature (primitive or composite, syntactic or semantic) compute differently as described in the previous section.
The debugging of a network is no different than debugging a program and there is no reason not to take advantage of the debugging environment of the programming language in which the simulator is embedded. Inserting a breakpoint into a program text specifies the desired time for a user to examine or force values onto some variables in the program. Similarly, specifying the level of the semantic hierarchy determines the desired time to examine and force values onto ports of modules in a network.

5. Summary

A multi-level simulator which allows user-defined levels instead of rigidly pre-deßned levels is described. A clear distinction is drawn between the modularization for ease of specißcation and for semantic abstraction — the syntactic hierarchy and the semantic hierarchy, respectively. An example of multi-level simulation is given which spans from circuit-level up to the abstract function of an inner product element.
With a formal model as a basis, the implementation of the simulator is simple and uniform at all levels. A single universal βχed-point algorithm is 



92used. This approach raises the activity of simulation from a low level cor­responding to macro assembly level in a programming language to a hierar­chical specification corresponding directly to the conceptualization of user's design. Functional abstraction and data abstraction (interfaces between two different levels) of systems have been illustrated. These abstractions are the key to the consistency and efhciency of a multi-level simulator. In simulation, showing that the specißcation and the implementation are equivalent is not merely desirable but absolutely essential. This working example has shown that formal semantics is an essential feature of any design tool as well as any concurrent programming language.
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Chapter 6

Conclusions

1. Summary of the Thesis

A formal methodology for describing concurrent systems has been given. It is based on a model of computation where a system is an ensemble of processes. The language CRYSTAL used in describing the systems has fixed- point semantics. The hierarchical design method now has a firm basis, where the semantics of a space-time algorithm describing an implementation is used as an elementary building block at the next level.
This methodology has been applied to designs spanning several different levels. It is proven to be effective in handling realistic systems. The language can be viewed either as a hardware description language which serves as specißcation for simulation, or as a programming language for concurrent systems where descriptions can be formally manipulated and the correctness of systems can be proved. The power of this framework lies in providing functional abstraction (fixed-point semantics) and data abstraction (moving from more detailed data types to higher level data types) for system designs. This method of abstraction is essential for meeting the challenge of more and more complex systems.
This methodology, when applied to the simulation of VLSI circuits, results in a simple yet efficient and universal simulator for designs at all 



94levels. The simulation algorithm is simply the interpretation of the definition of fixed-point. DifRcult issues in the area of multi-level and mixed-level simulation have been clarißed.
2. Extension to Nondeterministic Systems

In the model presented in Chapter 2, if the control state register is replaced by an oracle which nondeterministically decides the set of input ports to choose and operations described in (viii) and (ix) are replaced by the following, the model becomes a non-deterministic one.
(viii)' The oracle chooses a set of input ports.

(ix)' If all of the chosen input ports are Riled, we say that the communica­tion is established. The process now starts an operation, called the i'th invocation of the process where t is the time coordinate of the process. If some input ports are not Riled, the set of chosen input ports are discarded. The process goes back to step (viii)'.
In the deterministic system, the relationship of the time coordinates between neighboring processes is completely determined by the control state generated by a state transition function which in turn is deterministic. Hence the functions that dehne this relationship are unique and only one space-time algorithm results. In the case of the non-deterministic model, depending on the decision made by the oracle and when various inputs ports are Riled, a set of functions which describe the relationships will result. For each of the relationships, there corresponds a space-time algorithm. The semantics of each of the algorithms is obtained the same way as that for a deterministic system; the semantics of the whole system will then be the set of all the individual ones. If the system is determinate, i.e., all the different algorithms 



95produce the same result, then the behavior of the system can still be described by a state transition function. Otherwise, when it is used in the next level, there are a set of functions corresponding to the system, and the number of algorithms describing the composition of these sets of functions grows exponentially with the number of levels. From a verification point of view, keeping track of the exponential number of possible outcomes is extremely impractical. Statistical treatments of non-deterministic systems in which probabilistic assertions can be made about these systems is a promising approach. This area certainly deserves much more research.
3. Future Work

Silicon Compilation. Thus far, a space-time algorithm has only been used in the behavioral aspect of VLSI systems, namely, formal verification and simulation. To obtain a physical implementation, a general method of ob­taining layouts from given sets of layouts of sub-systems must be given. The structural aspect (physical layout) is today approached separately from the behavioral aspect. A system is usually described by two sets of specißcations: one for layout, one for simulation. The functionality is verified by simulation and the layout is verified by extracting circuit features (e.g. transistors) and simulating the extracted version. The ideal would be to use one specification that is powerful enough to generate both simulation (interpretation) and layouts (compilation). Our methodology is readily applicable to such an integrated behavioral and structural design tool. Difficulty has been ex­perienced [36] in using a behavioral description of cells consisting of only a few interconnected transistors, and generating the topological information automatically for placing transistor features from this description. Hence at the Clocked Cell level, or syntactic levels below it, a representation [46] of the topological information and feature sizes provided by the user is used and 



96the behavioral information is extracted from this representation. From these levels up, all specifications will be behavioral. General composition, routing and placement algorithm will generate the structual information automati­cally. This approach has the advantage that only one specißcation is ever used: the structural representation at the bottom level and the behavioral representation at the levels above. Once the silicon compiler itself has been verißed as correct, each design only need be verißed by simulation and for­mal verihcation and no consistency check between layout and simulation is necessary.
Automatic Verification of VLSI Systems. Verihcation of the be­havior of systems has been done mainly by simulation. As mentioned earlier in this thesis, it is practically impossible to verify the behavior completely by simulation. The space-time algorithm is suitable for automatic verihcation since it is based on the typed λ-calculus [13]. The use of an appropriate sym­bolic manipulation system for verifying large systems is a favored approach for dealing with the increasing complexity of VLSI. Such a technique could, in principle, replace simulation for verihcation at every level even down to the transistors.
Analysis and Synthesis Techniques. Space-time algorithms provide a way of describing concurrent systems; the fixed-point semantics and induc­tion principles allow verihcation of these systems. What needs to be developed is a calculus for manipulating the space-time equations so that systems can be synthesized from their specißcation. In linear systems, matrix theory, z- transform notation and its calculus provide powerful tools for manipulating the description of these systems. Numerous synthesis techniques have evolved from these analysis techniques. Techniques for more general classes of ap­plications will facilitate both silicon compilation (synthesis) and automatic



97verification (analysis) of these systems.
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